WorldWideScience

Sample records for underlying host galaxy

  1. The unique structural parameters of the underlying host galaxies in blue compact dwarfs

    International Nuclear Information System (INIS)

    Janowiecki, Steven; Salzer, John J.

    2014-01-01

    The nature of possible evolutionary pathways between various types of dwarf galaxies is still not fully understood. Blue compact dwarf galaxies (BCDs) provide a unique window into dwarf galaxy formation and evolution and are often thought of as an evolutionary stage between different classes of dwarf galaxies. In this study we use deep optical and near-infrared observations of the underlying hosts of BCDs in order to study the structural differences between different types of dwarf galaxies. When compared with dwarf irregular galaxies of similar luminosities, we find that the underlying hosts of BCDs have significantly more concentrated light distributions, with smaller scale lengths and brighter central surface brightnesses. We demonstrate here that the underlying hosts of BCDs are distinct from the broad continuum of typical dwarf irregular galaxies, and that it is unlikely that most dwarf irregular galaxies can transform into a BCD or vice versa. Furthermore, we find that the starburst in a BCD only brightens it on average by ∼0.8 mag (factor of two), in agreement with other studies. It appears that a BCD is a long-lived and distinct type of dwarf galaxy that exhibits an exceptionally concentrated matter distribution. We suggest that it is this compact mass distribution that enables the strong star formation events that characterize this class of dwarf galaxy, that the compactness of the underlying host can be used as a distinguishing parameter between BCDs and other dwarf galaxies, and that it can also be used to identify BCDs which are not currently experiencing an intense starburst event.

  2. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  3. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  4. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    Science.gov (United States)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  5. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  6. Study of GRBs Hosts Galaxies Vicinity Properties

    Science.gov (United States)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0population characteristics. We calculate the volumetric density populatation of glalaxies around the GRB Hosts within a volume of an sphere whit radius of 10 h-1 Mpc and find a low density compared with a typical group of galaxies. In order to know the galaxies stellar formation state, in regions where GRBs are formed, we made an analysis of color index using SDSS data of μ [λ 3543], r[λ 6231] and calculate the indexes μ-r. We find a value μ-r=2.63, it means that the galactic ambient of GRBs Host regions are statistically redder than void and wall regions on a indirect way (Voids:μ-r=2.043; Walls:μ-r=2.162). Futhermore, we used a inverse concentration index analysis, ICI=R50/R90 and find that galaxies in GRBs Hosts vicinity are also of slightly early type than void and wall galaxies. With this work we provide characteristics on the regions for future works related with highredsift universe that using the GRBs.

  7. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  8. The Evolution of the Stellar Hosts of Radio Galaxies

    International Nuclear Information System (INIS)

    Lacy, Mark; Bunker, Andrew J.; Ridgway, Susan E.

    2000-01-01

    We present new near-infrared images of z>0.8 radio galaxies from the flux-limited 7C-iii sample of radio sources for which we have recently obtained almost complete spectroscopic redshifts. The 7C objects have radio luminosities ≅20 times fainter than 3C radio galaxies at a given redshift. The absolute magnitudes of the underlying host galaxies and their scale sizes are only weakly dependent on radio luminosity. Radio galaxy hosts at z∼2 are significantly brighter than the hosts of radio-quiet quasars at similar redshifts and the recent model AGN hosts of Kauffmann and Haehnelt. There is no evidence for strong evolution in scale size, which shows a large scatter at all redshifts. The hosts brighten significantly with redshift, consistent with the passive evolution of a stellar population that formed at z(greater-or-similar sign)3. This scenario is consistent with studies of host galaxy morphology and submillimeter continuum emission, both of which show strong evolution at z(greater-or-similar sign)2.5. The lack of a strong ''redshift cutoff'' in the radio luminosity function to z>4 suggests that the formation epoch of the radio galaxy host population lasts (greater-or-similar sign)1 Gyr, from z(greater-or-similar sign)5 to z∼3. We suggest these facts are best explained by models in which the most massive galaxies and their associated AGN form early because of high baryon densities in the centers of their dark matter haloes. (c) 2000 The American Astronomical Society

  9. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  10. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  11. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  12. Circumnuclear Structures in Megamaser Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pjanka, Patryk; Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Braatz, James A.; Lo, Fred K. Y. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Henkel, Christian [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Läsker, Ronald, E-mail: ppjanka@princeton.edu [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Kaarina (Finland)

    2017-08-01

    Using the Hubble Space Telescope , we identify circumnuclear (100–500 pc scale) structures in nine new H{sub 2}O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ∼100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  13. STATISTICS OF SATELLITE GALAXIES AROUND MILKY-WAY-LIKE HOSTS

    International Nuclear Information System (INIS)

    Busha, Michael T.; Wechsler, Risa H.; Behroozi, Peter S.; Gerke, Brian F.; Klypin, Anatoly A.; Primack, Joel R.

    2011-01-01

    We calculate the probability that a Milky-Way (MW)-like halo in the standard cosmological model has the observed number of Magellanic Clouds (MCs). The statistics of the number of MCs in the lambda cold dark matter model are in good agreement with observations of a large sample of Sloan Digital Sky Survey (SDSS) galaxies. Under the subhalo abundance matching assumption of a relationship with small scatter between galaxy r-band luminosities and halo internal velocities v max , we make detailed comparisons to similar measurements using SDSS Data Release 7 data by Liu et al. Models and observational data give very similar probabilities for having zero, one, and two MC-like satellites. In both cases, MW luminosity hosts have just a ∼10% chance of hosting two satellites similar to the MCs. In addition, we present a prediction for the probability for a host galaxy to have N sats satellite galaxies as a function of the magnitudes of both the host and satellite. This probability and its scaling with host properties is significantly different from that of mass-selected objects because of scatter in the mass-luminosity relation and because of variations in the star formation efficiency with halo mass.

  14. A redshift determination of the host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y. [RIKEN, Saitama (Japan); Tokyo Institute of Technology, Tokyo (Japan). Department of Physics; Yoshida, A. [Aoyama Garkuin Univ., Kanagawa (Japan). Department of Physics; Yamada, T. [National Astronomical Observatory, Tokyo (Japan)] (and others)

    2005-07-15

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically {approx} 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 {+-} 0.4) x 10{sup 54} erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10{sup 51} ergs, their opening angle is calculated as {theta}{sub j} = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts.0.

  15. A redshift determination of the host galaxy

    International Nuclear Information System (INIS)

    Urata, Y.

    2005-01-01

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically ∼ 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 ± 0.4) x 10 54 erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10 51 ergs, their opening angle is calculated as θ j = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts

  16. Discovery of a bright quasar without a massive host galaxy.

    Science.gov (United States)

    Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz

    2005-09-15

    A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.

  17. A Spatially Resolved Study of the GRB 020903 Host Galaxy

    Science.gov (United States)

    Thorp, Mallory D.; Levesque, Emily M.

    2018-03-01

    GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.

  18. Spectroscopy of superluminous supernova host galaxies

    DEFF Research Database (Denmark)

    Leloudas, G.; Kruehler, T.; Schulze, S

    2015-01-01

    -poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe...

  19. Do Low Surface Brightness Galaxies Host Stellar Bars?

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-09-20

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  20. Do Low Surface Brightness Galaxies Host Stellar Bars?

    International Nuclear Information System (INIS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-01-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  1. Host galaxies of type ia supernovae from the nearby supernova factory

    Science.gov (United States)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  2. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    Science.gov (United States)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  3. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  4. Spectro-photometric study of the GRB 030329 host galaxy

    International Nuclear Information System (INIS)

    Gorosabel, J.; Ramirez, D. Perez

    2005-01-01

    In this study we present optical/near-infrared (NIR) broad band photometry and optical spectroscopic observations of the GRB 030329 host galaxy. The Spectral Energy Distribution (SED) of the host is consistent with a starburst galaxy template with a dominant stellar population age of ∼ 150 Myr and an extinction A ν ∼ 0.6. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy. Two independent diagnostics, based on the restframe UV continuum and the [OII] line flux, provide a consistent unextincted star formation rate of SFRN ∼ 0.6 Myr -1 . The low absolute magnitude of the host (M B ∼ -16.5) implies a high specific star formation rate value, SSFR ≅ 34 Myr -1 (L/L) -1

  5. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  6. Radio-continuum emission from quasar host galaxies

    International Nuclear Information System (INIS)

    Condon, J. J.; Gower, A. C.; Hutchings, J. B.; Victoria Univ., Canada; Dominion Astrophysical Observatory, Victoria)

    1987-01-01

    Seven low-redshift quasars that are likely to be in spiral galaxies have been observed in a search for radio-continuum emission from the host galaxies of quasars. The properties of the individual quasars are listed, and 1.49 GHz contour maps of the seven quasar fields are presented. Map parameters and radio source parameters are given along with optical images of three of the objects. The results indicate that these quasars probably do reside in spiral galaxies. The radio luminosities, sizes, orientations, and u values all indicate that relativistic beaming alone cannot be used to explain the differences between the present sources and the far stronger radio sources seen in blazars or larger optically selected quasar samples. However, an apparent correlation between the radio luminosity and the ratio of the optical nuclear to host-galaxy luminosity is consistent with some beaming of nuclear radiation. 26 references

  7. Hydrodynamic effects of nuclear active galaxy winds on host galaxies

    International Nuclear Information System (INIS)

    Schiano, A.V.R.

    1984-01-01

    In order to test the hypothesized existence of a powerful, thermal wind in active galactic nuclei, the hydrodynamic effects of such a wind on a model galactic interstellar medium (ISM) are investigated. The properties of several model ISMs are derived from observations of the Milky Way's ISM and those of nearby spiral and elliptical galaxies. The propagation of the wind into the low density gas component of the ISM is studied using the Kompaneets approximation of a strong explosion in an exponential atmosphere. Flattened gas distributions are shown to experience blow-out of wind gas along the symmetry axis. Next, the interaction of dense, interstellar clouds with the wind is investigated. The stability and mass loss of clouds in the wind are studied and it is proposed that clouds survive the encounter with the wind over large timescales. It is proposed that the narrow emission line regions (NELR) of active galaxies are the result of the interaction of active nuclei photons and a thermal wind on large, interstellar clouds

  8. A Fast Radio Burst Host Galaxy

    OpenAIRE

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.

    2016-01-01

    In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in...

  9. Possible Correlations between the Emission Properties of SGRBs and Their Offsets from the Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Jin, Zhi-Ping; Li, Xiang; Fan, Yi-Zhong; Wei, Da-Ming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Zhang, Fu-Wen, E-mail: jin@pmo.ac.cn, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [College of Science, Guilin University of Technology, Guilin 541004 (China)

    2017-07-20

    Short gamma-ray bursts (SGRBs) are widely believed to be from mergers of binary compact objects involving at least one neutron star and hence have a broad range of spatial offsets from their host galaxies. In this work, we search for possible correlations between the emission properties of 18 SGRBs and their offsets from the host galaxies. The SGRBs with and without extended emission do not show significant differences between their offset distributions, in agreement with some previous works. There are, however, possible correlations between the optical and X-ray afterglow emission and the offsets. The underlying physical origins are examined.

  10. Statistical Properties of Gamma-Ray Burst Host Galaxies Jie-Min ...

    Indian Academy of Sciences (India)

    Statistical Properties of Gamma-Ray Burst Host Galaxies. Jie-Min Chen1, Jin Zhang2,3, ... of GRB host galaxies and explore possible correlations between these properties. We also investigate possible cosmic ... hydrogen column density for the GRB host galaxies in our sample. 6.295. The stellar masses are mainly in the ...

  11. Resolving the host galaxy of a distant blazar with LBT/LUCI 1 + ARGOS

    Science.gov (United States)

    Farina, E. P.; Georgiev, I. Y.; Decarli, R.; Terzić, T.; Busoni, L.; Gässler, W.; Mazzoni, T.; Borelli, J.; Rosensteiner, M.; Ziegleder, J.; Bonaglia, M.; Rabien, S.; Buschkamp, P.; Orban de Xivry, G.; Rahmer, G.; Kulas, M.; Peter, D.

    2018-05-01

    BL Lac objects emitting in the very high energy (VHE) regime are unique tools to peer into the properties of the extragalactic background light (EBL). However, due to the typical absence of features in their spectra, the determination of their redshifts has proven challenging. In this work, we exploit the superb spatial resolution delivered by the new Advanced Rayleigh guided Ground layer adaptive Optics System (ARGOS) at the Large Binocular Telescope to detect the host galaxy of HESS J1943+213, a VHE emitting BL Lac shining through the Galaxy. Deep H-band imaging collected during the ARGOS commissioning allowed us to separate the contribution of the nuclear emission and to unveil the properties of the host galaxy with unprecedented detail. The host galaxy is well fitted by a Sérsic profile with index of n ˜ 2 and total magnitude of HHost ˜ 16.15 mag. Under the assumption that BL Lac host galaxies are standard candles, we infer a redshift of z ˜ 0.21. In the framework of the current model for the EBL, this value is in agreement with the observed dimming of the VHE spectrum due to the annihilation of energetic photons on the EBL

  12. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  13. H α IMAGING OF NEARBY SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Theios, Rachel L.; Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Ross, Nathaniel R., E-mail: rtheios@astro.caltech.edu [Raytheon Space and Airborne Systems, 2000 E El Segundo Boulevard, El Segundo, CA 90245 (United States)

    2016-05-01

    We used narrowband (Δ λ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby ( z < 0.03) Seyfert galaxies in the 12 μ m active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10{sup −15} erg cm{sup −2} s{sup −1} arcsec{sup −2}, and corrected these images for [N ii] emission and extinction. We separated the H α emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended H α emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μ m polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The H α luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear H α emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of H α emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log( L {sub Hα}/erg s

  14. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    Science.gov (United States)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  15. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  16. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    International Nuclear Information System (INIS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors

  17. Starburst-driven Superwinds in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Peter; Podigachoski, Pece [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Wilkes, Belinda [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Haas, Martin, E-mail: pdb@astro.rug.nl, E-mail: podigachoski@astro.rug.nl [Astronomisches Institut, Ruhr Universität, Bochum (Germany)

    2017-07-01

    During the past five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signaling inflowing and outflowing gas winds with relative velocities up to several thousands of km s{sup −1}. In particular, the location of these winds—close to the quasar, further out in its host galaxy, or in its direct environment—and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback that we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.

  18. SDSS IV MaNGA - Properties of AGN Host Galaxies

    Science.gov (United States)

    Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.

    2018-04-01

    We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.

  19. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s –1 ) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  20. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Syed A. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangshu (China); Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC (Australia); Lidman, Chris; Zhang, Bonnie R. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Ruhlmann-Kleider, Vanina, E-mail: saushuvo@gmail.com [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette, Paris (France)

    2017-10-10

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.

  1. SIGNIFICANT ENHANCEMENT OF H{sub 2} FORMATION IN DISK GALAXIES UNDER STRONG RAM PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Benjamin; Bekki, Kenji [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2016-05-10

    We show for the first time that H{sub 2} formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H i and H{sub 2} components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H i caused by RP increases H{sub 2} formation in disk galaxies before RP rapidly strips H i, cutting off the fuel supply and causing a drop in H{sub 2} density. We also find that the level of this H{sub 2} formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H i and H{sub 2} mass in disk galaxies under strong RP. We discuss how the correlation between H{sub 2} fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H{sub 2} densities.

  2. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.

    2003-01-01

    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...... structures (like dust lanes, spiral arms or disks). A natural scenario which accounts of all the above results is a nuclear starburst that harbours a young population of stars from which the GRB originated....

  3. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    Science.gov (United States)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  4. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  5. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    International Nuclear Information System (INIS)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2013-01-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M * /M ☉ ) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  6. The Host Galaxy and the Extended Emission-Line Region of the Radio Galaxy 3C 79

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2008-04-01

    We present extensive ground-based spectroscopy and HST imaging of 3C 79, an FR II radio galaxy associated with a luminous extended emission-line region (EELR). Surface brightness modeling of an emission-line-free HST R-band image reveals that the host galaxy is a massive elliptical with a compact companion 0.8'' away and 4 mag fainter. The host galaxy spectrum is best described by an intermediate-age (1.3 Gyr) stellar population (4% by mass), superimposed on a 10 Gyr old population and a power law (αλ = - 1.8); the stellar populations are consistent with supersolar metallicities, with the best fit given by the 2.5 Z⊙ models. We derive a dynamical mass of 4 × 1011 M⊙ within the effective radius from the velocity dispersion. The EELR spectra clearly indicate that the EELR is photoionized by the hidden central engine. Photoionization modeling shows evidence that the gas metallicity in both the EELR and the nuclear narrow-line region is mildly subsolar (0.3-0.7 Z⊙), significantly lower than the supersolar metallicities deduced from typical active galactic nuclei in the Sloan Digital Sky Survey. The more luminous filaments in the EELR exhibit a velocity field consistent with a common disk rotation. Fainter clouds, however, show high approaching velocities that are uncoupled from this apparent disk rotation. The striking similarities between this EELR and the EELRs around steep-spectrum radio-loud quasars provide further evidence for the orientation-dependent unification schemes. The metal-poor gas is almost certainly not native to the massive host galaxy. We suggest that the close companion galaxy could be the tidally stripped bulge of a late-type galaxy that is merging with the host galaxy. The interstellar medium of such a galaxy is probably the source for the low-metallicity gas in 3C 79. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative

  7. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    OpenAIRE

    Leloudas, G.; Schulze, S.; Kruehler, T.; Gorosabel, J.; Christensen, L.; Mehner, A.; Postigo, A. de Ugarte; Amorin, R.; Thoene, C. C.; Anderson, J. P.; Bauer, F. E.; Gallazzi, A.; Helminiak, K. G.; Hjorth, J.; Ibar, E.

    2014-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusi...

  8. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  9. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Sako, Masao; Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce; Kunz, Martin [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945 (South Africa); Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Campbell, Heather [Institute of Astronomy, Madingley Road, Cambridge CB4 0HA (United Kingdom); D' Andrea, Chris B.; Lampeitl, Hubert [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluís [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysics, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Jha, Saurabh W., E-mail: olmstead@physics.utah.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  10. Radio Galaxy Zoo: Machine learning for radio source host galaxy cross-identification

    Science.gov (United States)

    Alger, M. J.; Banfield, J. K.; Ong, C. S.; Rudnick, L.; Wong, O. I.; Wolf, C.; Andernach, H.; Norris, R. P.; Shabala, S. S.

    2018-05-01

    We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Automated cross-identification will be critical for these future surveys, and machine learning may provide the tools to develop such methods. We apply a standard approach from computer vision to cross-identification, introducing one possible way of automating this problem, and explore the pros and cons of this approach. We apply our method to the 1.4 GHz Australian Telescope Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS) and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We train our method with two sets of data: expert cross-identifications of CDFS from the initial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component with the nearest galaxy performs comparably to our more complex methods, though our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex radio sources that have been cross-identified by experts, so there are not enough complex examples to learn how to cross-identify them accurately. Much larger datasets are therefore required for training methods like ours. We also show that training our method on Radio Galaxy Zoo cross-identifications gives comparable results to training on expert cross-identifications, demonstrating the value of crowdsourced training data.

  11. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen [Department of Physics, Xiamen University, Xiamen (China); Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan, E-mail: fangt@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen (China)

    2016-06-20

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  12. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Xie, Chen; Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-01-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  13. Type Ia supernova Hubble residuals and host-galaxy properties

    International Nuclear Information System (INIS)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2014-01-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  14. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  15. MODELING THE GRB HOST GALAXY MASS DISTRIBUTION: ARE GRBs UNBIASED TRACERS OF STAR FORMATION?

    International Nuclear Information System (INIS)

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam

    2009-01-01

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low-metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity relationship for galaxies, along with a sharp host metallicity cutoff suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that subsolar metallicity cutoffs effectively limit GRBs to low-stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low-metallicity cutoffs of 0.1 to 0.5 Z sun are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H) KK04 = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z ∼ 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity-biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  16. THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Jha, Saurabh W.; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Nordin, Jakob; Im, Myungshin; Marriner, John; Miquel, Ramon; Oestman, Linda; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Sollerman, Jesper

    2010-01-01

    We present an analysis of the host galaxy dependences of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2σ and 3σ) that SNe Ia are ≅0.1 ± 0.04 mag brighter in passive host galaxies than in star-forming hosts, after the SN Ia light curves have been standardized using the light-curve shape and color variations. This difference in brightness is present in both the SALT2 and MCLS2k2 light-curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R V = 1.0 ± 0.2, while SNe Ia in star-forming hosts require R V = 1.8 +0.2 -0.4 . The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4σ) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  17. A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies

    International Nuclear Information System (INIS)

    Fan, XiLong; Messenger, Christopher; Heng, Ik Siong

    2014-01-01

    We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% of the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.

  18. Correlations Between Central Massive Objects And Their Host Galaxies: From Bulgeless Spirals to Ellipticals

    OpenAIRE

    Li, Yuexing; Haiman, Zoltán; Mac Low, Mordecai-Mark

    2006-01-01

    Recent observations by Ferrarese et al. (2006) and Wehner et al. (2006) reveal that a majority of galaxies contain a central massive object (CMO), either a supermassive black hole (SMBH) or a compact stellar nucleus, regardless of the galaxy mass or morphological type, and that there is a tight relation between the masses of CMOs and those of the host galaxies. Several recent studies show that feedback from black holes can successfully explain the $\\msigma$ correlation in massive elliptical g...

  19. On the Origin of the Mass-Metallicity Relation for GRB Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /Boston U., Dept. Astron.

    2011-06-02

    We investigate the nature of the mass-metallicity (M-Z) relation for long gamma-ray burst (LGRB) host galaxies. Recent studies suggest that the M-Z relation for local LGRB host galaxies may be systematically offset towards lower metallicities relative to the M-Z relation defined by the general star forming galaxy (SDSS) population. The nature of this offset is consistent with suggestions that low metallicity environments may be required to produce high mass progenitors, although the detection of several GRBs in high-mass, high-metallicity galaxies challenges the notion of a strict metallicity cut-off for host galaxies that are capable of producing GRBs. We show that the nature of this reported offset may be explained by a recently proposed anti-correlation between the star formation rate (SFR) and the metallicity of star forming galaxies. If low metallicity galaxies produce more stars than their equally massive, high-metallicity counterparts, then transient events that closely trace the SFR in a galaxy would be more likely to be found in these low metallicity, low mass galaxies. Therefore, the offset between the GRB and SDSS defined M-Z relations may be the result of the different methods used to select their respective galaxy populations, with GRBs being biased towards low metallicity, high SFR, galaxies. We predict that such an offset should not be expected of transient events that do not closely follow the star formation history of their host galaxies, such as short duration GRBs and SN Ia, but should be evident in core collapse SNe found through upcoming untargeted surveys.

  20. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    Science.gov (United States)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (zBAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  1. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    Science.gov (United States)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  2. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  3. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence...

  4. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    Science.gov (United States)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  5. Is Black Hole Growth a Universal Process? Exploring Selection Effects in Measurements of AGN Accretion Rates and Host Galaxies.

    Science.gov (United States)

    Jones, Mackenzie

    2018-01-01

    At the center of essentially every massive galaxy is a monstrous black hole producing luminous radiation driven by the accretion of gas. By observing these active galactic nuclei (AGN) we may trace the growth of black holes across cosmic time. However, our knowledge of the full underlying AGN population is hindered by complex observational biases. My research aims to untangle these biases by using a novel approach to simulate the impact of selection effects on multiwavelength observations.The most statistically powerful studies of AGN to date come from optical spectroscopic surveys, with some reporting a complex relationship between AGN accretion rates and host galaxy characteristics. However, the optical waveband can be strongly influenced by selection effects and dilution from host galaxy star formation. I have shown that accounting for selection effects, the Eddington ratio distribution for optically-selected AGN is consistent with a broad power-law, as seen in the X-rays (Jones et al. 2016). This suggests that a universal Eddington ratio distribution may be enough to describe the full multiwavelength AGN population.Building on these results, I have expanded a semi-numerical galaxy formation simulation to include this straightforward prescription for AGN accretion and explicitly model selection effects. I have found that a simple model for AGN accretion can broadly reproduce the host galaxies and halos of X-ray AGN, and that different AGN selection techniques yield samples with very different host galaxy properties (Jones et al. 2017). Finally, I will discuss the capabilities of this simulation to build synthetic multiwavelength SEDs in order to explore what AGN populations would be detected with the next generation of observatories. This research is supported by a NASA Jenkins Graduate Fellowship under grant no. NNX15AU32H.

  6. The host galaxy and optical light curve of the gamma-ray burst GRB 980703

    DEFF Research Database (Denmark)

    Holland, S.; Fynbo, J.P.U.; Hjorth, J.

    2001-01-01

    We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre...... 980703 with any special features in the host. The host galaxy appears to be a typical example of a compact star forming galaxy similar to those found in the Hubble Deep Field North. The R-band light curve of the optical afterglow associated with this gamma-ray burst is consistent with a single power...

  7. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Telles, E. [Observatorio Nacional, Rua Jose Cristino, 77, Rio de Janeiro 20921-400 (Brazil); Nigoche-Netro, A. [Instituto de Astrofisica de Andalucia (IAA), Glorieta de la Astronomia s/n, 18008 Granada (Spain); Carrasco, E. R., E-mail: plagos@astro.up.pt, E-mail: etelles@on.br, E-mail: nigoche@iaa.es, E-mail: rcarrasco@gemini.edu [Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena (Chile)

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  8. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  9. A molecular gas-rich GRB host galaxy at the peak of cosmic star formation

    Science.gov (United States)

    Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.

    2018-05-01

    We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.

  10. Bar Frequency & Galaxy Host Properties using the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    Science.gov (United States)

    Sheth, Kartik; Mizusawa, T.; Kim, T.; Munoz-Mateos, J.; Regan, M. W.; de Swardt, B.; Gadotti, D.; S4G Team

    2011-01-01

    Using the volume limited sample of 2,331 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), we have classified the frequency of barred spiral galaxies. The literature abounds with frequency ranges from as low as 20% to as high as 80% but these variations are driven by the quality of the data, the sample size and the methodology of the studies. Using the 3.6 and 4.5 micron IRAC images from S4G, we are able to make a definitive measurement of the local bar fraction as a function of the galaxy host and environment. We present the results from this survey and discuss how the current bar fraction compares to the declining frequency of bars from the present day to z 1.

  11. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z * >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] λ5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  12. Investigating a population of infrared-bright gamma-ray burst host galaxies

    Science.gov (United States)

    Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.

    2018-04-01

    We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.

  13. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  14. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    Science.gov (United States)

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.

  15. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    Directory of Open Access Journals (Sweden)

    Peter Erwin

    2012-01-01

    Full Text Available Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio MNSC/M⋆, tot for NSCs in spirals (at least those with Hubble types Sc and later is typically an order of magnitude smaller than the mass ratio MBH/M⋆, bul of SMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later.

  16. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    International Nuclear Information System (INIS)

    Zhu, Yi-Nan; Wu, Hong

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M H i ), stellar mass (M * ), and H i-to-stellar mass ratio (M H i /M * ) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M H i or M H i /M * . The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  17. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  18. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    Science.gov (United States)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  19. THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Berger, Edo; Bagley, Megan M.

    2010-01-01

    We present the first observations from a large-scale survey of nearby (z < 1) long-duration gamma-ray burst (LGRB) host galaxies, which consist of eight rest-frame optical spectra obtained at Keck and Magellan. Along with two host galaxy observations from the literature, we use optical emission-line diagnostics to determine metallicities, ionization parameters, young stellar population ages, and star formation rates. We compare the LGRB host environments to a variety of local and intermediate-redshift galaxy populations, as well as the newest grid of stellar population synthesis and photoionization models generated with the Starburst99/Mappings codes. With these comparisons, we investigate whether the GRB host galaxies are consistent with the properties of the general galaxy population, and therefore whether they may be used as reliable tracers of star formation. Despite the limitations inherent in our small sample, we find strong evidence that LGRB host galaxies generally have low-metallicity interstellar medium (ISM) environments out to z ∼ 1. The ISM properties of our GRB hosts, including metallicity and ionization parameter, are significantly different from the general galaxy population and host galaxies of nearby broad-lined Type Ic supernovae. However, these properties show better agreement with a sample of nearby metal-poor galaxies.

  20. CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Samantha L.; Macri, Lucas M., E-mail: lmacri@tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2015-06-15

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period–Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  1. The Faint Optical Afterglow and Host Galaxy of GRB 020124: Implications for the Nature of Dark Gamma-Ray Bursts

    Science.gov (United States)

    Berger, E.; Kulkarni, S. R.; Bloom, J. S.; Price, P. A.; Fox, D. W.; Frail, D. A.; Axelrod, T. S.; Chevalier, R. A.; Colbert, E.; Costa, E.; Djorgovski, S. G.; Frontera, F.; Galama, T. J.; Halpern, J. P.; Harrison, F. A.; Holtzman, J.; Hurley, K.; Kimble, R. A.; McCarthy, P. J.; Piro, L.; Reichart, D.; Ricker, G. R.; Sari, R.; Schmidt, B. P.; Wheeler, J. C.; Vanderppek, R.; Yost, S. A.

    2002-12-01

    We present ground-based optical observations of GRB 020124 starting 1.6 hr after the burst, as well as subsequent Very Large Array and Hubble Space Telescope (HST) observations. The optical afterglow of GRB 020124 is one of the faintest afterglows detected to date, and it exhibits a relatively rapid decay, Fν~t-1.60+/-0.04, followed by further steepening. In addition, a weak radio source was found coincident with the optical afterglow. The HST observations reveal that a positionally coincident host galaxy must be the faintest host to date, R>~29.5 mag. The afterglow observations can be explained by several models requiring little or no extinction within the host galaxy, AhostV~0-0.9 mag. These observations have significant implications for the interpretation of the so-called dark bursts (bursts for which no optical afterglow is detected), which are usually attributed to dust extinction within the host galaxy. The faintness and relatively rapid decay of the afterglow of GRB 020124, combined with the low inferred extinction, indicate that some dark bursts are intrinsically dim and not dust obscured. Thus, the diversity in the underlying properties of optical afterglows must be observationally determined before substantive inferences can be drawn from the statistics of dark bursts.

  2. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  3. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    Science.gov (United States)

    Heintz, K. E.; Fynbo, J. P. U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D. A.; Rhodin, H.; Selsing, J.; Schulze, S.; Tanvir, N. R.; Møller, P.; Goldoni, P.; Xu, D.; Milvang-Jensen, B.

    2017-05-01

    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift γ-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 Å (4000 Å rest-frame) suggesting an unusually steep extinction curve. By analysing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at contamination by the host galaxy light at short wavelengths so that the scenario with an extreme 2175 Å extinction bump can be excluded. We localise the GRB to be at a projected distance of approximately 4 kpc from the centre of the host galaxy. Based on emission-line diagnostics of the four detected nebular lines, Hα, Hβ, [O II] and [O III], we find the host to be a modestly star forming (SFR = 1.34 ± 0.04 M⊙ yr-1) and relatively metal poor (Z=0.35+0.15-0.11 Z⊙) galaxy with a large dust content, characterised by a measured visual attenuation of AV = 1.74 ± 0.41 mag. We compare the host to other GRB hosts at similar redshifts and find that it is unexceptional in all its physical properties. We model the extinction curve of the host-corrected afterglow and show that the standard dust properties causing the reddening seen in the Local Group are inadequate in describing the steep drop. We thus conclude that the steep extinction curve seen in the afterglow towards the GRB is of exotic origin and issightline-dependent only, further confirming that this type of reddening is present only at very local scales and that it is solely a consequence of the circumburst environment. Based on observations carried out under programme IDs 095.D-0043(A, C) and 095.A-0045(A) with the X-shooter spectrograph and the FOcal Reducer and low dispersion Spectrograph 2 (FORS2

  4. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  5. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Burke, David L.; Hicken, Malcolm; Mandel, Kaisey S.; Kirshner, Robert P.

    2010-01-01

    From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar masses of the host galaxies of 70 low-redshift Type Ia supernovae (SNe Ia, 0.015 10.8 M sun in a cosmology fit yields 1 + w = 0.22 +0.152 -0.108 , while a combination where the 30 nearby SNe instead have host masses greater than 10 10.8 M sun yields 1 + w = -0.03 +0.217 -0.143 . Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SNe Ia.

  6. DYNAMICAL EVOLUTION OF AGN HOST GALAXIES-GAS IN/OUT-FLOW RATES IN SEVEN NUGA GALAXIES

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Rix, Hans-Walter; Emsellem, Eric; GarcIa-Burillo, Santiago; Combes, Francoise; Mundell, Carole G.

    2009-01-01

    To examine the role of the host galaxy structure in fueling nuclear activity, we estimated gas flow rates from several kpc down to the inner few 10 pc for seven nearby spiral galaxies, selected from the NUclei of GAlaxies sample. We calculated gravitational torques from near-infrared images and determined gas in/out-flow rates as a function of radius and location within the galactic disks, based on high angular resolution interferometric observations of molecular (CO using Plateau de Bure interferometer) and atomic (H I using the Very Large Array) gas. The results are compared with kinematic evidence for radial gas flows and the dynamical state of the galaxies (via resonances) derived from several different methods. We show that gravitational torques are very efficient at transporting gas from the outer disk all the way into the galaxies centers at ∼100 pc; previously assumed dynamical barriers to gas transport, such as the corotation resonance of stellar bars, seem to be overcome by gravitational torque induced gas flows from other nonaxisymmetric structures. The resulting rates of gas mass inflow range from 0.01 to 50 M sun yr -1 and are larger for the galaxy center than for the outer disk. Our gas flow maps show the action of nested bars within larger bars for three galaxies. Noncircular streaming motions found in the kinematic maps are larger in the center than in the outer disk and appear to correlate only loosely with the in/out-flow rates as a function of radius. We demonstrate that spiral gas disks are very dynamic systems that undergo strong radial evolution on timescales of a few rotation periods (e.g., 5 x 10 8 yrs at a radius of 5 kpc), due to the effectiveness of gravitational torques in redistributing the cold galactic gas.

  7. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    Science.gov (United States)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-06-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey r-band images with artificial AGN point sources added that are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover point source and host galaxy magnitudes with smaller systematic error and a lower average scatter (49 per cent). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ± 50 per cent if it is trained on multiple PSFs. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN is more robust and easy to use than parametric methods as it requires no input parameters.

  8. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    Science.gov (United States)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-03-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey (SDSS) r-band images with artificial AGN point sources added which are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source PS is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover PS and host galaxy magnitudes with smaller systematic error and a lower average scatter (49%). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ±50% if it is trained on multiple PSF's. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN it is more robust and easy to use than parametric methods as it requires no input parameters.

  9. POX 186: A Dwarf Galaxy Under Construction?

    Science.gov (United States)

    Corbin, M. R.; Vacca, W. D.

    2000-12-01

    We have obtained deep images of the ultracompact ( ~ 3'') blue compact dwarf galaxy POX 186 in the F336W, F555W, and F814W filters of the Planetary Camera of the Hubble Space Telescope. We have additionally obtained a low-resolution near ultraviolet spectrum of the object with STIS and combine this with a ground-based spectrum covering the visible continuum and emission lines. Our images confirm this object to be highly compact, with a maximum projected size of only ~ 240 pc, making it one of the smallest galaxies known. We also confirm that the outer regions of the galaxy consist of an evolved stellar population, ruling out earlier speculations that POX 186 is a protogalaxy. However, the PC images reveal the galaxy to have a highly irregular morphology, with a pronounced tidal arm on its western side. This morphology is strongly suggestive of a recent collision between two smaller components which has in turn triggered the central starburst. The F336W image also shows that the material in this tidal stream is actively star forming. Given the very small ( ~ 100 pc) sizes of the colliding components, POX 186 may be a dwarf galaxy in the early stages of formation, which would be consistent with current ``downsizing'' models of galaxy formation in which the least massive objects are the last to form. This work is supported by NASA and the Space Telescope Science Institute.

  10. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  11. Blending bias impacts the host halo masses derived from a cross-correlation analysis of bright submillimetre galaxies

    NARCIS (Netherlands)

    Cowley, William I.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun; Wilkinson, Aaron

    2017-01-01

    Placing bright submillimetre galaxies (SMGs) within the broader context of galaxy formation and evolution requires accurate measurements of their clustering, which can constrain the masses of their host dark matter haloes. Recent work has shown that the clustering measurements of these galaxies may

  12. The host galaxy of a fast radio burst

    OpenAIRE

    Keane, E. F.; Jencson, J.; Kasliwal, Mansi M.

    2016-01-01

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty i...

  13. The MUSE view of the host galaxy of GRB 100316D

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; Schulze, S.; Mehner, A.; Flores, H.; Cano, Z.; de Ugarte Postigo, A.; Kann, D. A.; Amorín, R.; Anderson, J. P.; Bauer, F. E.; Bensch, K.; Christensen, L.; Covino, S.; Della Valle, M.; Fynbo, J. P. U.; Jakobsson, P.; Klose, S.; Kuncarayakti, H.; Leloudas, G.; Milvang-Jensen, B.; Møller, P.; Puech, M.; Rossi, A.; Sánchez-Ramírez, R.; Vergani, S. D.

    2017-12-01

    The low distance, z = 0.0591, of GRB 100316D and its association with SN 2010bh represent two important motivations for studying this host galaxy and the GRB's immediate environment with the integral field spectrographs like Very Large Telescope/Multi-Unit Spectroscopic Explorer. Its large field of view allows us to create 2D maps of gas metallicity, ionization level and the star formation rate (SFR) distribution maps, as well as to investigate the presence of possible host companions. The host is a late-type dwarf irregular galaxy with multiple star-forming regions and an extended central region with signatures of on-going shock interactions. The gamma-ray burst (GRB) site is characterized by the lowest metallicity, the highest SFR and the youngest (∼20-30 Myr) stellar population in the galaxy, which suggest a GRB progenitor stellar population with masses up to 20-40 M⊙. We note that the GRB site has an offset of ∼660 pc from the most luminous SF region in the host. The observed SF activity in this galaxy may have been triggered by a relatively recent gravitational encounter between the host and a small undetected (LH α ≤ 1036 erg s-1) companion.

  14. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  15. Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. - direct measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies

    Science.gov (United States)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-06-01

    We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.

  16. The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Sokolov, V.V.; Gorosabel, J.

    2001-01-01

    that GRB 991208 is at 3.7 Gpc (for H-0 = 60 km s(-1) Mpc(-1), Omega (0) = 1 and Lambda (0) = 0), implying an isotropic energy release of 1.15 10(53) erg which may. be relaxed by beaming by a factor >10(2). Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus supporting...... a massive star origin. The absolute magnitude of the galaxy is M-B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of (11.5 +/- 7.1) M-circle dot yr(-1), which is much larger than the present-day rate in our Galaxy. The quasi simultaneous broad...

  17. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi [Gemini Observatory, 670 N Aohoku Place, Hilo, HI 96720 (United States); Stockton, Alan, E-mail: jshih@gemini.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  18. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Hartoog, O. E.; Kaper, L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); D' Elia, V. [INAF/Rome Astronomical Observatory, via Frascati 33, I-00040 Monteporzio Catone (Roma) (Italy); Zafar, T. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Afonso, P. M. J. [Physics and Astronomy Department, American River College, 4700 College Oak Drive, Sacramento, CA 95841 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Flores, H. [Laboratoire GEPI, Observatoire de Paris, CNRS-UMR8111, Universite Paris Diderot 5 place Jules Janssen, F-92195 Meudon (France); Goldoni, P. [APC, Astroparticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, Rue Alice Domon et Léonie Duquet, F-75205 Paris, Cedex 13 (France); Greiner, J. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavik (Iceland); Klose, S. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Levan, A. J., E-mail: sparre@dark-cosmology.dk [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  19. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Sparre, M.; Hartoog, O. E.; Krühler, T.

    2014-01-01

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio and extinction of the GRB host...

  20. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  1. Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies

    NARCIS (Netherlands)

    Cordes, J.M.; Wasserman, I.; Hessels, J.W.T.; Lazio, T.J.W.; Chatterjee, S.; Wharton, R.S.

    2017-01-01

    The amplitudes of fast radio bursts (FRBs) can be strongly modulated by plasma lenses in their host galaxies, including that of the repeating FRB 121102 at ∼1 Gpc luminosity distance. Caustics require the lens’ dispersion measure depth ({{DM}}{\\ell }), scale size (a), and distance from the source

  2. Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources

    Science.gov (United States)

    Cao, Liang; Lu, Youjun; Zhao, Yuetong

    2018-03-01

    Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts. Here, we present a comprehensive analysis of the host galaxy properties of SBBHs by implementing semi-analytical recipes for SBBH formation and merger into cosmological galaxy formation model. If the time delay between SBBH formation and merger ranges from ≲ Gyr to the Hubble time, SBBH mergers at redshift z ≲ 0.3 occur preferentially in big galaxies with stellar mass M* ≳ 2 × 1010 M⊙ and metallicities Z peaking at ˜0.6 Z⊙. However, the host galaxy stellar mass distribution of heavy SBBH mergers (M•• ≳ 50 M⊙) is bimodal with one peak at ˜109 M⊙ and the other peak at ˜2 × 1010 M⊙. The contribution fraction from host galaxies with Z ≲ 0.2 Z⊙ to heavy mergers is much larger than that to less heavy mergers. If SBBHs were formed in the early Universe (e.g. z > 6), their mergers detected at z ≲ 0.3 occur preferentially in even more massive galaxies with M* > 3 × 1010 M⊙ and in galaxies with metallicities mostly ≳ 0.2 Z⊙ and peaking at Z ˜ 0.6 Z⊙, due to later cosmic assembly and enrichment of their host galaxies. SBBH mergers at z ≲ 0.3 mainly occur in spiral galaxies, but the fraction of SBBH mergers that occur in elliptical galaxies can be significant if those SBBHs were formed in the early Universe; and about two-thirds of those mergers occur in the central galaxies of dark matter haloes. We also present results on the host galaxy properties of SBBH mergers at higher redshift.

  3. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    International Nuclear Information System (INIS)

    Tendulkar, S. P.; Kaspi, V. M.; Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N.; Cordes, J. M.; Chatterjee, S.; Bower, G. C.; Law, C. J.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Lazio, T. J. W.; Marcote, B.; Paragi, Z.; McLaughlin, M. A.; Ransom, S. M.; Scholz, P.

    2017-01-01

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10"−"4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m_r_′ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M _* ∼ (4–7) × 10"7 M _⊙, assuming a mass-to-light ratio between 2 to 3 M _⊙ L _⊙ "−"1. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M _⊙ yr"−"1 and a substantial host dispersion measure (DM) depth ≲324 pc cm"−"3. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  4. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Tendulkar, S. P.; Kaspi, V. M. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Cordes, J. M.; Chatterjee, S. [Cornell Center for Astrophysics and Planetary Science and Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Bower, G. C. [Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A’ohoku Place, Hilo, HI 96720 (United States); Law, C. J. [Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA 94720 (United States); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Burke-Spolaor, S.; Butler, B. J.; Demorest, P. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Marcote, B.; Paragi, Z. [Joint Institute for VLBI ERIC, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); McLaughlin, M. A. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Scholz, P., E-mail: shriharsh@physics.mcgill.ca, E-mail: bassa@astron.nl [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); and others

    2017-01-10

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10{sup −4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m{sub r′} = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M {sub *} ∼ (4–7) × 10{sup 7} M {sub ⊙}, assuming a mass-to-light ratio between 2 to 3 M {sub ⊙} L {sub ⊙} {sup −1}. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M {sub ⊙} yr{sup −1} and a substantial host dispersion measure (DM) depth ≲324 pc cm{sup −3}. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  5. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.

    2018-05-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  6. CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Hatsukade, Bunyo; Ohta, Kouji; Hashimoto, Tetsuya; Nakanishi, Kouichiro; Tamura, Yoichi; Kohno, Kotaro

    2012-01-01

    We present the results of the 16 cm wave band continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2σ upper limits on star formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 M ☉ yr –1 , respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB 021211, our result suggests the possibility that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB 051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.

  7. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    International Nuclear Information System (INIS)

    Rosario, D. J.; Wuyts, S.; Nandra, K.; Mozena, M.; Faber, S. M.; Koo, D. C.; Koekemoer, A.; Ferguson, H.; Grogin, N.; McGrath, E.; Hathi, N. P.; Dekel, A.; Donley, J.; Dunlop, J. S.; Giavalisco, M.; Guo, Y.; Kocevski, D. D.; Laird, E.; Rangel, C.; Newman, J.

    2013-01-01

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z ∼ 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z ∼ 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z ∼ 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z ∼> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  8. THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Heinis, S.; Gezari, S.; Kumar, S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-07-20

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  9. The Galaxy Hosts And Large-Scale Environments of Short-Hard Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Prochaska, Jason X.; Bloom, J.S.; Chen, H.-W.; Foley, R.J.; Perley, D.A.; Ramirez-Ruiz, E.; Granot, J.; Lee, W.H.; Pooley, D.; Alatalo, K.; Hurley, K.; Cooper, M.C.; Dupree, A.K.; Gerke, B.F.; Hansen, B.M.S.; Kalirai, J.S.; Newman, J.A.; Rich, R.M.; Richer, H.; Stanford, S.A.; Stern, D.

    2005-01-01

    The rapid succession of discovery of short-duration hard-spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gravitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long-duration soft-spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short-duration hard-spectrum GRBs. In particular, we present the Gemini-North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate-resolution (R ∼ 6000) spectrum of a fourth host. We find that these short-hard GRBs originate in a variety of low-redshift (z # circle d ot# yr -1 ) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star-black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 M # circle d ot# yr -1 . Therefore, it appears that like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion

  10. The host galaxy of the gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    León Tavares, J.; Chavushyan, V.; Puerari, I.; Patiño-Alvarez, V.; Carramiñana, A.; Carrasco, L.; Guichard, J.; Olguín-Iglesias, A.; Valdes, J. [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Añorve, C. [Facultad de Ciencias de la Tierra y del Espacio (FACITE) de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa (Mexico); Cruz-González, I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 DF (Mexico); Antón, S. [Instituto de Astrofísica de Andalucía-CSIC, E-18008 Granada (Spain); Karhunen, K.; Sanghvi, J., E-mail: leon.tavares@inaoep.mx [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20100 Turku (Finland)

    2014-11-01

    We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sérsic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.

  11. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    International Nuclear Information System (INIS)

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J.; Levan, A.; Tunnicliffe, R. L.; Mangano, V.; Fox, D. B.; Tanvir, N. R.; Menten, K. M.; Hjorth, J.; Roth, K.

    2013-01-01

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to δt ≈ 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A host V ≈ 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N H, i nt (z = 1.3) ≈ 2 × 10 22 cm –2 , is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at ≈0.9-11 days reveal a constant flux density of F ν (5.8 GHz) = 35 ± 4 μJy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z ≈ 1.3, with a resulting star formation rate of x ≈ 300 M ☉ yr –1 . The inferred extinction and small projected offset (2.2 ± 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n ∼ 10 –3 cm –3 , an isotropic-equivalent energy scale of E γ, i so ≈ E K, i so ≈ 7 × 10 51 erg, and a jet opening angle of θ j ∼> 11°. The expected fraction of luminous infrared galaxies in the short GRB host sample is ∼0.01 and ∼0.25 (for pure stellar mass and star formation weighting, respectively). Thus, the observed fraction of two events in about 25 hosts (GRBs 120804A and 100206A) appears to support our previous conclusion that short

  12. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Peng, Chien Y. [Giant Magellan Telescope Corporation, 251 S. Lake Ave., Suite 300, Pasadena, CA 91101 (United States); Barth, Aaron J. [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Im, Myungshin, E-mail: mkim@kasi.re.kr, E-mail: lho.pku@gmail.com, E-mail: peng@gmto.org, E-mail: barth@uci.edu, E-mail: mim@astro.snu.ac.kr [Department of Physics and Astronomy, Frontier Physics Research Division (FPRD), Seoul National University, Seoul (Korea, Republic of)

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.

  13. HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Chornock, Ryan; Soderberg, Alicia M.; Berger, Edo; Lunnan, Ragnhild, E-mail: Emily.Levesque@colorado.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-10-20

    GRB 120422A is a nearby (z = 0.283) long-duration gamma-ray burst (LGRB) detected by Swift with E {sub {gamma},iso} {approx} 4.5 Multiplication-Sign 10{sup 49} erg. It is also associated with the spectroscopically confirmed broad-lined Type Ic SN 2012bz. These properties establish GRB 120422A/SN 2012bz as the sixth and newest member of the class of subluminous GRBs supernovae (SNe). Observations also show that GRB 120422A/SN 2012bz occurred at an unusually large offset ({approx}8 kpc) from the host galaxy nucleus, setting it apart from other nearby LGRBs and leading to speculation that the host environment may have undergone prior interaction activity. Here, we present spectroscopic observations using the 6.5 m Magellan telescope at Las Campanas. We extract spectra at three specific locations within the GRB/SN host galaxy, including the host nucleus, the explosion site, and the 'bridge' of diffuse emission connecting these two regions. We measure a metallicity of log(O/H) + 12 = 8.3 {+-} 0.1 and a star formation rate (SFR) per unit area of 0.08 M {sub Sun} yr{sup -1} kpc{sup -2} at the host nucleus. At the GRB/SN explosion site we measure a comparable metallicity of log(O/H) + 12 = 8.2 {+-} 0.1 but find a much lower SFR per unit area of 0.01 M {sub Sun} yr{sup -1} kpc{sup -2}. We also compare the host galaxy of this event to the hosts of other LGRBs, including samples of subluminous LGRBs and cosmological LGRBs, and find no systematic metallicity difference between the environments of these different subtypes.

  14. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    Science.gov (United States)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  15. VizieR Online Data Catalog: Host galaxies of Superluminous Supernovae (Angus+, 2016)

    Science.gov (United States)

    Angus, C. R.; Levan, A. J.; Perley, D. A.; Tanvir, N. R.; Lyman, J. D.; Stanway, E. R.; Fruchter, A. S.

    2016-11-01

    Here we use nIR and rest-frame UV observations of a sample of 21 SLSN host galaxies, within a redshift range of 0.019 SCP 06F6). This HST sample (programme GO-13025; PI: Levan) comprised 21 targets, based on the sample of Neill et al. (2011ApJ...727...15N), supplemented with luminous SNe from the literature (up to 2012 Jan). (6 data files).

  16. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    International Nuclear Information System (INIS)

    Sun, Jiayi; Shen, Yue

    2015-01-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L Edd ) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ * (hence, the BH mass via the M–σ * relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ * systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ * on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties

  17. On the mass-metallicity relation, velocity dispersion and gravitational well depth of GRB host galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam; Møller, Palle; Fynbo, Johan P. U.

    2015-01-01

    -DLA samples and compare the measured stellar masses for the four hosts where stellar masses have been determined from SED fits. We find excellent agreement and conclude that, on basis of all available data and tests, long duration GRB-DLA hosts and intervening QSO-DLAs are consistent with being drawn from...... away from the metallicity in the centre of the galaxy, second the path of the sightline through different parts of the potential well of the dark matter halo will cause different velocity fields to be sampled. We report evidence suggesting that this second effect may have been detected....

  18. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...... - I colour than the eastern component, suggesting the presence of at least some dust. We do not detect the host galaxy of GRB 000301C in neither Lyalpha emission nor in U and I broad-band images. The strongest limit comes from combining the narrow and U-band imaging where we infer a limit of U...

  19. ACTIVE GALACTIC NUCLEI IN GROUPS AND CLUSTERS OF GALAXIES: DETECTION AND HOST MORPHOLOGY

    International Nuclear Information System (INIS)

    Arnold, Timothy J.; Martini, Paul; Mulchaey, John S.; Berti, Angela; Jeltema, Tesla E.

    2009-01-01

    The incidence and properties of active galactic nuclei (AGNs) in the field, groups, and clusters can provide new information about how these objects are triggered and fueled, similar to how these environments have been employed to study galaxy evolution. We have obtained new XMM-Newton observations of seven X-ray selected groups and poor clusters with 0.02 -1 ). We find that the X-ray selected AGN fraction increases from f A (L X ≥ 10 41 ; M R ≤ M* R + 1) = 0.047 +0.023 -0.016 in clusters to 0.091 +0.049 -0.034 for the groups (85% significance), or a factor of 2, for AGN above an 0.3-8 keV X-ray luminosity of 10 41 ergs -1 hosted by galaxies more luminous than M* R + 1. The trend is similar, although less significant, for a lower-luminosity host threshold of M R = -20 mag. For many of the groups in the sample, we have also identified AGN via standard emission-line diagnostics and find that these AGNs are nearly disjoint from the X-ray selected AGN. Because there are substantial differences in the morphological mix of galaxies between groups and clusters, we have also measured the AGN fraction for early-type galaxies alone to determine if the differences are directly due to environment, or indirectly due to the change in the morphological mix. We find that the AGN fraction in early-type galaxies is also lower in clusters f A,n≥2.5 (L X ≥ 10 41 ; M R ≤ M* R + 1) = 0.048 +0.028 -0.019 compared to 0.119 +0.064 -0.044 for the groups (92% significance), a result consistent with the hypothesis that the change in AGN fraction is directly connected to environment.

  20. Hosts and environments of low luminosity active galaxies in the local universe: The care and feeding of weak AGN

    Science.gov (United States)

    Parejko, John Kenneth

    The observed relationship between the mass of a galaxy's supermassive black hole and the galaxy's bulge mass suggests a relationship between the growth of the galaxy and the growth of its central black hole. When these black holes grow, they release phenomenal amounts of energy into their surroundings, possibly disrupting further growth of the galaxy. The feeding (inflowing matter) and feedback (outflowing energy) of a galaxy's central black hole may be intimately related to the properties of the host's environment, on scales many orders of magnitude beyond the black hole's gravitational influence. While feeding, a massive black hole reveals itself as an Active Galactic Nucleus (AGN), but only a few percent of all galaxies show evidence of an AGN. This thesis focuses on this question: What distinguishes galaxies that are currently hosting actively accreting black holes from those that are not? We use the vast data set provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to study the environments of a well defined sample of AGN hosts. To reduce contamination by galaxies that do not harbor actively accreting black holes, we define a clear, unambiguous sample of local AGN. Using this sample, we search for AGN in merging galaxies and measure the 2-point cross-correlation function of AGN and all galaxies to estimate the environments of AGN hosts compared to non-AGN hosts. We also describe trends in different subsamples of AGN, including luminosity and classification sub-type. Finally, we show how these techniques may be applied to future data sets such as forthcoming SDSS III data and X-ray data from the eROSITA satellite.

  1. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    French, K. Decker; Zabludoff, Ann [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Arcavi, Iair [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2017-02-01

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 10{sup 9.4}–10{sup 10.3} M {sub ☉}, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10{sup 5.5}–10{sup 7.5} M {sub ☉}. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.

  2. ON THE DISTRIBUTION OF STELLAR MASSES IN GAMMA-RAY BURST HOST GALAXIES

    International Nuclear Information System (INIS)

    Castro Ceron, J. M.; Michalowski, M. J.; Hjorth, J.; Malesani, D.; Watson, D.; Fynbo, J. P. U.; Gorosabel, J.; Morales Calderon, M.

    2010-01-01

    We analyze Spitzer images of 30 long-duration gamma-ray burst (GRB) host galaxies. We estimate their total stellar masses (M * ) based on the rest-frame K-band luminosities (L K rest ) and constrain their star formation rates (SFRs; not corrected for dust extinction) based on the rest-frame UV continua. Further, we compute a mean M * /L K rest = 0.45 M sun /L sun . We find that the hosts are low M * , star-forming systems. The median M * in our sample ((M * ) = 10 9.7 M sun ) is lower than that of 'field' galaxies (e.g., Gemini Deep Deep Survey). The range spanned by M * is 10 7 M sun * 11 M sun , while the range spanned by the dust-uncorrected UV SFR is 10 -2 M sun yr -1 sun yr -1 . There is no evidence for intrinsic evolution in the distribution of M * with redshift. We show that extinction by dust must be present in at least 25% of the GRB hosts in our sample and suggest that this is a way to reconcile our finding of a relatively lower UV-based, specific SFR (φ ≡ SFR/M * ) with previous claims that GRBs have some of the highest φ values. We also examine the effect that the inability to resolve the star-forming regions in the hosts has on φ.

  3. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm

    Science.gov (United States)

    Chen, Ting-Wan; Schady, Patricia; Xiao, Lin; Eldridge, J. J.; Schweyer, Tassilo; Lee, Chien-Hsiu; Yu, Po-Chieh; Smartt, Stephen J.; Inserra, Cosimo

    2017-11-01

    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this Letter, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12+{log}({{O}}/{{H}})∼ 8.8{--}9.1). Additionally, we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or gamma-ray burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.

  4. THE ROLE OF RADIATION PRESSURE IN THE NARROW LINE REGIONS OF SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Banfield, Julie [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Bhatt, Harish [Indian Institute of Astrophysics, Sarjapur Road, Bengaluru 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, PSL, CNRS, Sorbonne Universités, UPMC, F-75014 Paris (France); Jin, Chichuan [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square S, New York, NY 10012 (United States); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Srivastava, Shweta, E-mail: Rebecca.Davies@anu.edu.au [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)

    2016-06-10

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ∼ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ∼ 0 to −3.2 ≲ log U ≲ −3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  5. ON THE DEPENDENCE OF TYPE Ia SNe LUMINOSITIES ON THE METALLICITY OF THEIR HOST GALAXIES

    International Nuclear Information System (INIS)

    Moreno-Raya, Manuel E.; Mollá, Mercedes; López-Sánchez, Ángel R.; Galbany, Lluís; Vílchez, José Manuel; Rosell, Aurelio Carnero; Domínguez, Inmaculada

    2016-01-01

    The metallicity of the progenitor system producing a type Ia supernova (SN Ia) could play a role in its maximum luminosity, as suggested by theoretical predictions. We present an observational study to investigate if such a relationship exists. Using the 4.2 m William Herschel Telescope (WHT) we have obtained intermediate-resolution spectroscopy data of a sample of 28 local galaxies hosting SNe Ia, for which distances have been derived using methods independent of those based on SN Ia parameters. From the emission lines observed in their optical spectra, we derived the gas-phase oxygen abundance in the region where each SN Ia exploded. Our data show a trend, with an 80% of chance not being due to random fluctuation, between SNe Ia absolute magnitudes and the oxygen abundances of the host galaxies, in the sense that luminosities tend to be higher for galaxies with lower metallicities. This result seems likely to be in agreement with both the theoretically expected behavior and with other observational results. This dependence M B –Z might induce systematic errors when it is not considered when deriving SNe Ia luminosities and then using them to derive cosmological distances

  6. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  7. The Very Red Afterglow of GRB 000418: Further Evidence for Dust Extinction in a Gamma-Ray Burst Host Galaxy

    Science.gov (United States)

    Klose, S.; Stecklum, B.; Masetti, N.; Pian, E.; Palazzi, E.; Henden, A. A.; Hartmann, D. H.; Fischer, O.; Gorosabel, J.; Sánchez-Fernández, C.; Butler, D.; Ott, Th.; Hippler, S.; Kasper, M.; Weiss, R.; Castro-Tirado, A.; Greiner, J.; Bartolini, C.; Guarnieri, A.; Piccioni, A.; Benetti, S.; Ghinassi, F.; Magazzú, A.; Hurley, K.; Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.; Goldsten, J.; Gold, R.; Mazets, E.; Golenetskii, S.; Noeske, K.; Papaderos, P.; Vreeswijk, P. M.; Tanvir, N.; Oscoz, A.; Muñoz, J. A.; Castro Cerón, J. M.

    2000-12-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy, we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K~4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions. Based on observations collected at the Bologna Astronomical Observatory in Loiano, Italy; at the TNG, Canary Islands, Spain; at the German-Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institut for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; at the US Naval Observatory; and at the UK Infrared Telescope.

  8. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  9. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Rodríguez-Puebla, Aldo, E-mail: papastergis@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: jonesmg@astro.cornell.edu, E-mail: apuebla@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, 04510 México, D.F. (Mexico)

    2013-10-10

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

  10. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Levan, A.; Tunnicliffe, R. L. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Mangano, V. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Fox, D. B. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Menten, K. M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Hjorth, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Roth, K. [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-03-10

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to {delta}t Almost-Equal-To 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A {sup host}{sub V} Almost-Equal-To 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N{sub H,{sub int}}(z = 1.3) Almost-Equal-To 2 Multiplication-Sign 10{sup 22} cm{sup -2}, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at Almost-Equal-To 0.9-11 days reveal a constant flux density of F{sub {nu}}(5.8 GHz) = 35 {+-} 4 {mu}Jy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z Almost-Equal-To 1.3, with a resulting star formation rate of x Almost-Equal-To 300 M{sub Sun} yr{sup -1}. The inferred extinction and small projected offset (2.2 {+-} 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n {approx} 10{sup -3} cm{sup -3}, an isotropic-equivalent energy scale of E{sub {gamma},{sub iso}} Almost-Equal-To E{sub K,{sub iso}} Almost-Equal-To 7 Multiplication-Sign 10{sup 51} erg, and a jet opening angle of {theta}{sub j} {approx}> 11 Degree-Sign . The expected fraction of luminous infrared

  11. First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system

    Science.gov (United States)

    Arabsalmani, Maryam; Roychowdhury, Sambit; Zwaan, Martin A.; Kanekar, Nissim; Michałowski, Michał J.

    2015-11-01

    We report the detection and mapping of atomic hydrogen in H I 21 cm emission from ESO 184-G82, the host galaxy of the gamma-ray burst 980425. This is the first instance where H I in emission has been detected from a galaxy hosting a gamma-ray burst (GRB). ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the GRB and the associated supernova, SN 1998bw. This is one of the most luminous H II regions identified in the local Universe, with a very high inferred density of star formation. The H I 21 cm observations reveal a high H I mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the H I 21 cm emission reveals a disturbed rotating gas disc, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the GRB are both located in the highest H I column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the GRB. The high H I column density environment of the GRB is consistent with the high H I column densities seen in absorption in the host galaxies of high-redshift GRBs.

  12. The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; García-Benito, R.; de Ugarte Postigo, A.; Cano, Z.; Kann, D. A.; Bensch, K.; Della Valle, M.; Galadí-Enríquez, D.; Hedrosa, R. P.

    2018-02-01

    Context. Type I superluminous supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming (SF) dwarfs. One of the current key questions is whether Type I SLSNe can only occur in such environments and hosts. Aims: Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest Type I SLSN known to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star formation in this non-starburst spiral galaxy. Methods: We map the physical properties of different H II regions throughout the galaxy and characterise their stellar populations using the STARLIGHT fitting code. Kinematical information allows us to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. Results: NGC 3191 shows intense star formation in the western part with three large SF regions of low metallicity. Taking only the properties of emitting gas, the central regions of the host have a higher metallicity, a lower specific star formation rate, and lower ionisation. Modelling the stellar populations gives a different picture: the SLSN region has two dominant stellar populations with different ages, the younger one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at 45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has hosted a total of four SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (Type II), and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Conclusions: Our study shows that care should be taken when interpreting global host and even gas properties without looking at the stellar population history of the region

  13. The afterglow and elliptical host galaxy of the short gamma-ray burst GRB 050724.

    Science.gov (United States)

    Berger, E; Price, P A; Cenko, S B; Gal-Yam, A; Soderberg, A M; Kasliwal, M; Leonard, D C; Cameron, P B; Frail, D A; Kulkarni, S R; Murphy, D C; Krzeminski, W; Piran, T; Lee, B L; Roth, K C; Moon, D-S; Fox, D B; Harrison, F A; Persson, S E; Schmidt, B P; Penprase, B E; Rich, J; Peterson, B A; Cowie, L L

    2005-12-15

    Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.

  14. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    International Nuclear Information System (INIS)

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-01-01

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  15. Driving the growth of the earliest supermassive black holes with major mergers of host galaxies

    International Nuclear Information System (INIS)

    Tanaka, Takamitsu L

    2014-01-01

    The formation mechanism of supermassive black holes (SMBHs) in general, and of ∼10 9  m ⊙ SMBHs observed as luminous quasars at redshifts z>6 in particular, remains an open fundamental question. The presence of such massive BHs at such early times, when the Universe was less than a billion years old, implies that they grew via either super-Eddington accretion, or nearly uninterrupted gas accretion near the Eddington limit; the latter, at first glance, is at odds with empirical trends at lower redshifts, where quasar episodes associated with rapid BH growth are rare and brief. In this work, I examine whether and to what extent the growth of the z>6 quasar SMBHs can be explained within the standard quasar paradigm, in which major mergers of host galaxies trigger episodes of rapid gas accretion below or near the Eddington limit. Using a suite of Monte Carlo merger tree simulations of the assembly histories of 40 likely z>6 quasar host halos, I investigate (i) their growth and major merger rates out to z∼40, and (ii) how long the feeding episodes induced by host mergers must last in order to explain the observed z≳6 quasar population without super-Eddington accretion. The halo major merger rate scales roughly as ∝ (1+z) 5/2 , consistent with cosmological simulations at lower redshifts, with quasar hosts typically experiencing ≳10 major mergers between 15>z>6 (≈650 Myr), compared to ∼1 for typical massive galaxies at 3>z>0 (≈11 Gyr). The high rate of major mergers allows for nearly continuous SMBH growth if (for example) a merger triggers feeding for a duration comparable to the halo dynamical time. These findings suggest that the growth mechanisms of the earliest quasar SMBHs need not have been drastically different from their counterparts at lower redshifts. (paper)

  16. Supermassive Black Holes and Their Host Galaxies. I. Bulge Luminosities from Dedicated Near-infrared Data

    Science.gov (United States)

    Läsker, Ronald; Ferrarese, Laura; van de Ven, Glenn

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M •, and the bulge luminosities of their host galaxies, L bul, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M •, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M •-L bul relation in a companion paper.

  17. The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52

    Science.gov (United States)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Greene, Jenny E.

    2008-10-01

    We present new multiwavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus and to examine the mass of its black hole, previously estimated to be ~105 M⊙. HST ACS HRC images show that the host galaxy has a dwarf elliptical morphology (MI = - 18.4 mag, Sérsic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM-Newton show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and NH = 58+ 8.4-9.2 × 1021 cm -2, that moved out of the line of sight in between the XMM-Newton and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the SED of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of Lbol = 1.3 × 1043 ergs s-1. Finally, we compare black hole mass estimators, including methods based on X-ray variability, and optical scaling relations using the broad Hβ line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be MBH = (2.2-4.2) × 105 M⊙, with an Eddington ratio of Lbol/LEdd ≈ 0.2-0.5.

  18. Formation of dwarf ellipticals and dwarf irregular galaxies by interaction of giant galaxies under environmental influence

    OpenAIRE

    Chattopadhyay, Tanuka; Debsarma, Suma; Karmakar, Pradip; Davoust, Emmanuel

    2014-01-01

    A model is proposed for the formation of gas-rich dwarf irregular galaxies and gas-poor, rotating dwarf elliptical galaxies following the interaction between two giant galaxies as a function of space density. The formation of dwarf galaxies is considered to depend on a random variable, the tidal index theta, an environmental parameter defined by Karachentsev et al. (2004), such that for theta less than zero, the formation of dwarf irregular galaxy is assured whereas for theta greater than zer...

  19. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  20. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  1. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to gro...

  2. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Science.gov (United States)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant zteam through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  3. Possible correlations between gamma-ray burst and its host galaxy offset

    Science.gov (United States)

    Wang, Fei-Fei; Zou, Yuan-Chuan; Liu, Yu; Liao, Bin; Moharana, Reetanjali

    2018-06-01

    We collected the information of 304 gamma-ray bursts (GRBs) from the literature, and analyzed the correlations among the host galaxy offsets (the distance from the site of the GRB to the center of its host galaxy), T90,i (the duration T90 in rest-frame), TR45,i (the duration TR45 in rest-frame), Eγ,iso (the isotropic equivalent energy), Lγ,iso (=Eγ,iso /T90,i, the isotropic equivalent luminosity) and Lpk (peak luminosity). We found that T90,i, TR45,i, Eγ,iso, Lpk have negative correlation with offset, which is consistent with origin of short GRBs (SGRBs) and long GRBs (LGRBs). On separate analysis, we found similar results for log ⁡Eγ,iso - log ⁡ (offset) and log ⁡Lpk - log ⁡ (offset) relations in case of SGRBs only, while no obvious relation for LGRBs. There is no correlations between offset and Lγ,iso. We also put the special GRB 170817A and GRB 060218A on the plots. The two GRBs both have low luminosity and small offset. In the log ⁡ (offset) - log ⁡T90,i plot, we found GRB 170817A locates in between the two regions of SGRBs and LGRBs and it is the outlier in the offset -Eγ,iso, offset -Lγ,iso and offset -Lpk plots. Together with GRB 060218A being an outlier in all plots, it indicates the speciality of GRBs 170817A and 060218A, and might imply more subgroups of the GRB samples.

  4. SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cameronpace@suu.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2016-02-10

    The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infrared Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.

  5. Active Galaxy Host Properties from a New H I 21-cm Survey of the Swift BAT-detected AGN

    Science.gov (United States)

    Winter, Lisa M.; George, E. R.; Zauderer, B.; Darling, J.

    2013-01-01

    Many questions remain open on how central supermassive black holes and their host galaxies form and affect each other's evolution. In order to answer these questions, we need to understand the observational properties of a complete sample of active galaxies. To this end, we have been collecting and studying multi-wavelength spectroscopy of a unique sample of active galaxies selected in the very hard X-rays with the Swift Burst Alert Telescope. Here we present an analysis of the 21-cm H I spectra, which we observed with the 100-m Green Bank Telescope in 2012, for a sample of 95 Swift-detected AGN. With this complete sample, we show evidence for differences in the host cold gas mass content between obscured and unobscured AGN.

  6. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    International Nuclear Information System (INIS)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; March, Marisa C.; Fischer, Johanna-Laina; D’Andrea, Chris B.; Smith, Mathew; Kessler, Rick; Scolnic, Daniel M.; Jha, Saurabh W.; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.

    2016-01-01

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.

  7. ALMA Observations of the Host Galaxy of GRB 090423 at z = 8.23: Deep Limits on Obscured Star Formation 630 Million Years after the Big Bang

    Science.gov (United States)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Tanvir, N. R.; Stanway, E. R.; Levan, A. J.; Levesque, E. M.; Davies, J. E.

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F ν(222 GHz) Space Telescope rest-frame ultraviolet (UV) observations is SFRUV ~ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z >~ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  8. Co-evolution of Massive Black Holes and Their Host Galaxies

    Science.gov (United States)

    Chen, Y. M.

    2010-07-01

    A scenario of co-evolution of supermassive black holes (SMBHs) and galaxies has been clearly conducted by the important evidence from observational results of quasar host galaxies and the relation between spheroid and SMBH mass. There are a plenty of unresolved problems and questions, some being basic, to be addressed in this scenario. The main goal of the present thesis is focusing on the mysterious scenario including growth of primordial black holes, cosmological evolution of spins and duty cycle of SMBHs, and interaction between the SMBH activity and star formation in galaxies from low to high redshifts. We review the main progress of this field over the past decade since the discovery of Magorrian relation and present comments on some questions in light of our view of points. The key questions to be addressed in this thesis work are: (1) how does the fast growth of primordial black holes influence their evolution? (2) what is the equation to describe the co-evolution of SMBHs and galaxies? (3) what is the mechanism to control the co-evolution? (4) how to transport the fueling gas from kpc scale to the center? It has been suggested that fast growth of primordial black holes via super-Eddington accretion is a promising way to form SMBHs in high redshift universe. Neutrino cooling has been employed and expedites the growth. We consider the Compton heating of the surroundings of the primordial black holes. We find that the realistic accretion rate is only a few percent of the Eddington rate, and the accretion is episodic. It implies that the fast growth via super-Eddington is not feasible. These conclusions have been confirmed by the detailed numerical simulations of Milosavljevic et al. (2008). The difficulties of the fast growth via accretion of baryon particles make the formation of SMBHs elusive in high redshift universe. We developed a new formulation to calculate the duty cycle of SMBHs based on the Soltan argument. We show it can be expressed by the mass

  9. CORRELATION ANALYSIS OF A LARGE SAMPLE OF NARROW-LINE SEYFERT 1 GALAXIES: LINKING CENTRAL ENGINE AND HOST PROPERTIES

    International Nuclear Information System (INIS)

    Xu Dawei; Komossa, S.; Wang Jing; Yuan Weimin; Zhou Hongyan; Lu Honglin; Li Cheng; Grupe, Dirk

    2012-01-01

    We present a statistical study of a large, homogeneously analyzed sample of narrow-line Seyfert 1 (NLS1) galaxies, accompanied by a comparison sample of broad-line Seyfert 1 (BLS1) galaxies. Optical emission-line and continuum properties are subjected to correlation analyses, in order to identify the main drivers of the correlation space of active galactic nuclei (AGNs), and of NLS1 galaxies in particular. For the first time, we have established the density of the narrow-line region as a key parameter in Eigenvector 1 space, as important as the Eddington ratio L/L Edd . This is important because it links the properties of the central engine with the properties of the host galaxy, i.e., the interstellar medium (ISM). We also confirm previously found correlations involving the line width of Hβ and the strength of the Fe II and [O III] λ5007 emission lines, and we confirm the important role played by L/L Edd in driving the properties of NLS1 galaxies. A spatial correlation analysis shows that large-scale environments of the BLS1 and NLS1 galaxies of our sample are similar. If mergers are rare in our sample, accretion-driven winds, on the one hand, or bar-driven inflows, on the other hand, may account for the strong dependence of Eigenvector 1 on ISM density.

  10. Host Galaxy Properties and Black Hole Mass of Swift J164449.3+573451 from Multi-wavelength Long-term Monitoring and HST Data

    Science.gov (United States)

    Yoon, Yongmin; Im, Myungshin; Jeon, Yiseul; Lee, Seong-Kook; Choi, Philip; Gehrels, Neil; Pak, Soojong; Sakamoto, Takanori; Urata, Yuji

    2015-07-01

    We study the host galaxy properties of the tidal disruption object Swift J164449.3+573451 using long-term optical to near-infrared (NIR) data. First, we decompose the galaxy surface brightness distribution and analyze the morphology of the host galaxy using high-resolution Hubble Space Telescope WFC3 images. We conclude that the host galaxy is bulge-dominant and well described by a single Sérsic model with Sérsic index n=3.43+/- 0.05. Adding a disk component, the bulge to total host galaxy flux ratio (B/ T) is 0.83 ± 0.03, which still indicates a bulge-dominant galaxy. Second, we estimate multi-band fluxes of the host galaxy through long-term light curves. Our long-term NIR light curves reveal the pure host galaxy fluxes ˜500 days after the burst. We fit spectral energy distribution models to the multi-band fluxes from the optical to NIR of the host galaxy and determine its properties. The stellar mass, the star formation rate, and the age of the stellar population are {log}({M}\\star /{M}⊙ )={9.14}-0.10+0.13, {0.03}-0.03+0.28 {M}⊙ yr-1, and {0.63}-0.43+0.95 Gyr. Finally, we estimate the mass of the central super massive black hole which is responsible for the tidal disruption event. The black hole mass is estimated to be {10}6.7+/- 0.4 {M}⊙ from {M}{BH}-{M}\\star ,{bul} and {M}{BH}-{L}{bul} relations for the K band, although a smaller value of ˜ {10}5 {M}⊙ cannot be excluded convincingly if the host galaxy harbors a pseudobulge.

  11. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  12. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel; Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa; Gladders, Michael D.; Rigby, Jane R.; Dahle, Hakon; Florian, Michael

    2017-01-01

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  13. GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A.; Prochaska, J. X.; Werk, J. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Perley, D.; Cao, Y. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Cardwell, A.; Turner, J. [Gemini South Observatory, AURA, Casilla 603, La Serena (Chile); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cobb, B. E., E-mail: acucchia@ucolick.org [The George Washington University, Washington, DC (United States)

    2013-11-10

    We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z = 0.3568 ± 0.0005 host galaxy. The combination of a relatively bright optical afterglow (r' = 21.52 at Δt = 8.4 hr), together with an observed offset of 0.''9 from the host nucleus (4.8 kpc projected distance at z = 0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light. Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous (L∼0.8 L{sup *}{sub B}), star-forming (SFR = 1.84 M{sub ☉} yr{sup –1}) galaxy with almost solar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (SFR; both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB 130603B emission to be the product of the decay of radioactive species produced during the merging process of a neutron-star-neutron-star binary ({sup k}ilonova{sup )}. Ultimately, the discovery of more events similar to GRB 130603B and their rapid follow-up from 8 m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems and provide crucial

  14. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  15. Imaging of SDSS z > 6 Quasar Fields: Gravitational Lensing, Companion Galaxies, and the Host Dark Matter Halos

    Science.gov (United States)

    Willott, Chris J.; Percival, Will J.; McLure, Ross J.; Crampton, David; Hutchings, John B.; Jarvis, Matt J.; Sawicki, Marcin; Simard, Luc

    2005-06-01

    We have undertaken deep optical imaging observations of three 6.2dropouts is consistent with that found in random fields. We consider the expected dark matter halo masses that host these quasars under the assumption that a correlation between black hole mass and dark matter halo mass exists. We show that the steepness of the high-mass tail of the halo mass function at this redshift, combined with realistic amounts of scatter in this correlation, leads to expected halo masses substantially lower than previously believed. This analysis can explain the lack of companion galaxies found here and the low dynamical mass recently published for one of the quasars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  16. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION

    International Nuclear Information System (INIS)

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan; Bresolin, Fabio; Kudritzki, Rolf-Peter; Pastorello, Andrea; Valenti, Stefano

    2013-01-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M g = –17.42 ± 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 ± 0.1 dex as determined from the detection of the [O III] λ4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive 56 Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m AB ∼ 26, but do not detect SN 2010gx at these epochs. The limit implies that any 56 Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M ☉ of 56 Ni). The low volumetric rates of these supernovae (∼10 –4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z ☉ ), high progenitor mass (>60 M ☉ ) and high rotation rate (fastest 10% of rotators).

  17. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817

    Science.gov (United States)

    Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu; Lim, Gu; Ko, Jongwan; Shim, Hyunjin

    2017-11-01

    Recently, the optical counterpart of the gravitational-wave source GW170817 has been identified in the NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars (NSs). We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with {r}{eff}˜ 2{--}3 {kpc} and a Sérsic index of n=3{--}4 for the bulge component. The spectral energy distribution from 0.15 to 24 μm indicates that this galaxy has no significant ongoing star formation, a mean stellar mass of (0.3{--}1.2)× {10}11 {M}⊙ , a mean stellar age greater than ˜3 Gyr, and a metallicity of about 20%-100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from the literature, finding an angular diameter distance of 37.7 ± 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts (GRBs) but much different from those of long GRBs, supporting the picture of GW170817 as a result of the merger of two NSs.

  18. Optical, Near-IR, and X-Ray Observations of SN 2015J and Its Host Galaxy

    Science.gov (United States)

    Nucita, A. A.; De Paolis, F.; Saxton, R.; Testa, V.; Strafella, F.; Read, A.; Licchelli, D.; Ingrosso, G.; Convenga, F.; Boutsia, K.

    2017-12-01

    SN 2015J was discovered on 2015 April 27th and is classified as an SN IIn. At first, it appeared to be an orphan SN candidate, I.e., without any clear identification of its host galaxy. Here, we present an analysis of the observations carried out by the VLT 8 m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter). We show that SN 2015J resides in what appears to be a very compact galaxy, establishing a relation between the SN event and its natural host. We also present and discuss archival and new X-ray data centered on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor ≃ 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the X-rays at a level of ≃ 0.05 counts s-1. The unabsorbed X-ray luminosity derived from the XMM-Newton slew and SWIFT observations, {L}x≃ 5× {10}41 erg s-1, places SN 2015J among the brightest young supernovae in X-rays. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with ESO Telescopes at the La Silla-Paranal Observatory under program ID 298.D-5016(A), and with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. We also acknowledge the use of public data from the Swift data archive.

  19. A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203

    International Nuclear Information System (INIS)

    Watson, D.; French, J.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Castro Cerón, J. M.; Christensen, L.; O'Halloran, B.; Michałowski, M.; Gordon, K. D.; Covino, S.; Reinfrank, R. F.

    2011-01-01

    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG 031203. It is one of the nearest GRB hosts at z = 0.1055, allowing both low- and high-resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS). Medium-resolution UV to K-band spectroscopy with the X-shooter spectrograph on the Very Large Telescope is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and submillimeter observations. These data allow us to construct a UV to radio spectral energy distribution with almost complete spectroscopic coverage from 0.3 to 35 μm of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionization fine structure line emission indicative of a hard radiation field in the galaxy—in particular the [S IV]/[S III] and [Ne III]/[Ne II] ratios—suggestive of strong ongoing star formation and a very young stellar population. The absence of any polycyclic aromatic hydrocarbon emission supports these conclusions, as does the probable hot peak dust temperature, making HG 031203 similar to the prototypical blue compact dwarf galaxy (BCD), II Zw 40. The selection of HG 031203 via the presence of a GRB suggests that it might be a useful analog of very young star-forming galaxies in the early universe, and hints that local BCDs may be used as more reliable analogs of star formation in the early universe than typical local starbursts. We look at the current debate on the ages of the dominant stellar populations in z ∼ 7 and z ∼ 8 galaxies in this context. The nebular line emission is so strong in HG 031203 that at z ∼ 7, it can reproduce the spectral energy distributions of z-band dropout galaxies with elevated IRAC 3.6 and 4.5 μm fluxes without the need to invoke a 4000 Å break. Indeed, photometry of HG 031203 shows elevation of the broadband V

  20. THE OPTICAL AFTERGLOW AND z = 0.92 EARLY-TYPE HOST GALAXY OF THE SHORT GRB 100117A

    International Nuclear Information System (INIS)

    Fong, W.; Berger, E.; Chornock, R.; Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Graham, J. F.; Cucchiara, A.; Fox, D. B.

    2011-01-01

    We present the discovery of the optical afterglow and early-type host galaxy of the short-duration GRB 100117A. The faint afterglow is detected 8.3 hr after the burst with r AB = 25.46 ± 0.20 mag. Follow-up optical and near-infrared observations uncover a coincident compact red galaxy, identified as an early-type galaxy at a spectroscopic redshift of z ∼ 0.915 with a mass of ∼3 x 10 10 M sun , an age of ∼1 Gyr, and a luminosity of L B ≅ 0.5 L * . From a possible weak detection of [O II]λ3727 emission at z = 0.915 we infer an upper bound on the star formation rate of ∼0.1 M sun yr -1 , leading to a specific star formation rate of ∼ -1 . Thus, GRB 100117A is only the second short burst to date with a secure early-type host (the other being GRB 050724 at z = 0.257) and it has one of the highest short gamma-ray burst (GRB) redshifts. The offset between the host center and the burst position, 470 ± 310 pc, is the smallest to date. Combined with the old stellar population age, this indicates that the burst likely originated from a progenitor with no significant kick velocity. However, from the brightness of the optical afterglow we infer a relatively low density of n ∼ 3 x 10 -4 ε -3 e,-1 ε -1.75 B,-1 cm -3 . The combination of an optically faint afterglow and host suggests that previous such events may have been missed, thereby potentially biasing the known short GRB host population against z ∼> 1 early-type hosts.

  1. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    International Nuclear Information System (INIS)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John; Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben; Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya; Price, Larry R.; Raymond, Vivien; Kasliwal, Mansi M.; Nissanke, Samaya; Coughlin, Michael; Urban, Alex L.; Vitale, Salvatore; Mohapatra, Satya; Graff, Philip

    2016-01-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  2. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben [Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Price, Larry R.; Raymond, Vivien [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nissanke, Samaya [Institute of Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Coughlin, Michael [Department of Physics and Astronomy, Harvard University, Cambridge, MA 02138 (United States); Urban, Alex L. [Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Vitale, Salvatore; Mohapatra, Satya [LIGO Laboratory, Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139 (United States); Graff, Philip [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2016-09-20

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  3. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo

    2010-01-01

    We compare the redshifts, host galaxy metallicities, and isotropic (E γ,iso ) and beaming-corrected (E γ ) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z γ,iso , or E γ . These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  4. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  5. Kinematics of the SN Refsdal host revealed by MUSE: a regularly rotating spiral galaxy at z ≃ 1.5

    Science.gov (United States)

    Di Teodoro, E. M.; Grillo, C.; Fraternali, F.; Gobat, R.; Karman, W.; Mercurio, A.; Rosati, P.; Balestra, I.; Caminha, G. B.; Caputi, K. I.; Lombardi, M.; Suyu, S. H.; Treu, T.; Vanzella, E.

    2018-05-01

    We use Multi Unit Spectroscopic Explorer (MUSE) observations of the galaxy cluster MACS J1149.5+2223 to explore the kinematics of the grand-design spiral galaxy (Sp1149) hosting the supernova `Refsdal'. Sp1149 lies at z ≃ 1.49, has a stellar mass M* ≃ 5 × 109 M⊙, has a star formation rate (SFR) ˜eq 1-6 M_{⊙} yr^{-1}, and represents a likely progenitor of a Milky Way-like galaxy. All the four multiple images of Sp1149 in our data show strong [O II}-line emissions pointing to a clear rotation pattern. We take advantage of the gravitational lensing magnification effect (≃4×) on the [O II} emission of the least distorted image to fit three-dimensional kinematic models to the MUSE data cube and derive the rotation curve and the velocity dispersion profile of Sp1149. We find that the rotation curve steeply rises, peaks at R ≃ 1 kpc, and then (initially) declines and flattens to an average {V_flat}= 128^{+29}_{-19} km s-1. The shape of the rotation curve is well determined, but the actual value of Vflat is quite uncertain because of the nearly face-on configuration of the galaxy. The intrinsic velocity dispersion due to gas turbulence is almost constant across the entire disc with an average of 27 ± 5 km s-1. This value is consistent with z = 0 measurements in the ionized gas component and a factor of 2-4 lower than other estimates in different galaxies at similar redshifts. The average stellar-to-total mass fraction is of the order of one-fifth. Our kinematic analysis returns the picture of a regular star-forming, mildly turbulent, rotation-dominated (V/σ ≃ 5) spiral galaxy in a 4-Gyr-old Universe.

  6. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at z ≳ 6 studied with ALMA

    Science.gov (United States)

    Izumi, Takuma; Onoue, Masafusa; Shirakata, Hikari; Nagao, Tohru; Kohno, Kotaro; Matsuoka, Yoshiki; Imanishi, Masatoshi; Strauss, Michael A.; Kashikawa, Nobunari; Schulze, Andreas; Silverman, John D.; Fujimoto, Seiji; Harikane, Yuichi; Toba, Yoshiki; Umehata, Hideki; Nakanishi, Kouichiro; Greene, Jenny E.; Tamura, Yoichi; Taniguchi, Akio; Yamaguchi, Yuki; Goto, Tomotsugu; Hashimoto, Yasuhiro; Ikarashi, Soh; Iono, Daisuke; Iwasawa, Kazushi; Lee, Chien-Hsiu; Makiya, Ryu; Minezaki, Takeo; Tang, Ji-Jia

    2018-04-01

    We present our ALMA Cycle 4 measurements of the [C II] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity (M1450 > -25) quasars at z ≳ 6 discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [C II] line and FIR continuum luminosities lie in the ranges L_[C II] = (3.8-10.2)× 108 L_{⊙} and LFIR = (1.2-2.0) × 1011 L_{⊙}, which are at least one order of magnitude smaller than those of optically-luminous quasars at z ≳ 6. We estimate the star formation rates (SFRs) of our targets as ≃ 23-40 M_{⊙} yr-1. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically-luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The L_[C II]/L_FIR ratios of the hosts, ≃ (2.2-8.7) × 10-3, are fully consistent with local star-forming galaxies. Using the [C II] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as ≃ (1.4-8.2) × 1010 M_{⊙}. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at z ˜ 6, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically-luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of most of the low-luminosity quasars, including the HSC ones, are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole host galaxy evolution.

  7. Rapid Coeval Black Hole and Host Galaxy Growth in MRC 1138-262 : The Hungry Spider

    NARCIS (Netherlands)

    Seymour, N.; Altieri, B.; De Breuck, C.; Barthel, P.; Coia, D.; Conversi, L.; Dannerbauer, H.; Dey, A.; Dickinson, M.; Drouart, G.; Galametz, A.; Greve, T. R.; Haas, M.; Hatch, N.; Ibar, E.; Ivison, R.; Jarvis, M.; Kovacs, A.; Kurk, J.; Lehnert, M.; Miley, G.; Nesvadba, N.; Rawlings, J. I.; Rettura, A.; Rottgering, H.; Rocca-Volmerange, B.; Sanchez-Portal, M.; Santos, J. S.; Stern, D.; Stevens, J.; Valtchanov, I.; Vernet, J.; Wylezalek, D.

    2012-01-01

    We present a detailed study of the infrared spectral energy distribution of the high-redshift radio galaxy MRC 1138-26 at z = 2.156, also known as the Spiderweb Galaxy. By combining photometry from Spitzer, Herschel, and LABOCA we fit the rest-frame 5-300 mu m emission using a two-component,

  8. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  9. Formation of a Quasar Host Galaxy through a Wet Merger 1.4 Billion Years after the Big Bang

    Science.gov (United States)

    Riechers, Dominik A.; Walter, Fabian; Carilli, Christopher L.; Bertoldi, Frank; Momjian, Emmanuel

    2008-10-01

    We present high-resolution Very Large Array imaging of the molecular gas in the host galaxy of the high-redshift quasar BRI 1335-0417 (z = 4.41). Our CO(J = 2→ 1) observations have a linear resolution of 0.15' ' (1.0 kpc) and resolve the molecular gas emission both spatially and in velocity. The molecular gas in BRI 1335-0417 is extended on scales of 5 kpc, and shows a complex structure. At least three distinct components encompassing about two-thirds of the total molecular mass of 9.2 × 1010 M⊙ are identified in velocity space, which are embedded in a structure that harbors about one-third of the total molecular mass in the system. The brightest CO(J = 2→ 1) line emission region has a peak brightness temperature of 61 ± 9 K within 1 kpc diameter, which is comparable to the kinetic gas temperature as predicted from the CO line excitation. This is also comparable to the gas temperatures found in the central regions of nearby ultraluminous infrared galaxies, which are however much more compact than 1 kpc. The spatial and velocity structure of the molecular reservoir in BRI 1335-0417 is inconsistent with a simple gravitationally bound disk, but resembles a merging system. Our observations are consistent with a major, gas-rich ("wet") merger that both feeds an accreting supermassive black hole (causing the bright quasar activity), and fuels a massive starburst that builds up the stellar bulge in this galaxy. Our study of this z > 4 quasar host galaxy may thus be the most direct observational evidence that wet mergers at high redshift are related to AGN activity.

  10. THE EFFECTS OF X-RAY FEEDBACK FROM ACTIVE GALACTIC NUCLEI ON HOST GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Hambrick, D. Clay; Ostriker, Jeremiah P.; Naab, Thorsten; Johansson, Peter H.

    2011-01-01

    Hydrodynamic simulations of galaxies with active galactic nuclei (AGNs) have typically employed feedback that is purely local, i.e., an injection of energy to the immediate neighborhood of the black hole (BH). We perform GADGET-2 simulations of massive elliptical galaxies with an additional feedback component: an observationally calibrated X-ray radiation field which emanates from the BH and heats gas out to large radii from the galaxy center. We find that including the heating and radiation pressure associated with this X-ray flux in our simulations enhances the effects which are commonly reported from AGN feedback. This new feedback model is twice as effective as traditional feedback at suppressing star formation, produces three times less star formation in the last 6 Gyr, and modestly lowers the final BH mass (30%). It is also significantly more effective than an X-ray background in reducing the number of satellite galaxies.

  11. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  12. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  13. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    Science.gov (United States)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  14. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  15. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  16. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Savaglio, Sandra [Max Planck Institute for Extraterrestrial Physics, D-85748 Garching bei München (Germany); Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, Daniel A.; Cao, Yi [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos [Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova 10691 Stockholm (Sweden); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  17. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T.; Troja, E. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Aoki, K. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Guiriec, S.; Barthelmy, S. D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Im, M.; Jeon, Y. [Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Melandri, A.; D' Avanzo, P. [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xu, D. [Department of Particle Physics and Astronomy, The Weizmann Institute of Science, Rehovot 76100 (Israel); Gorosabel, J.; Sanchez-Ramirez, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan Province, 650011 (China); Briggs, M. S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  18. Active galactic nuclei. From the central engine to the host galaxy

    International Nuclear Information System (INIS)

    Gilbert, Didier

    2008-01-01

    After some recalls on galaxies, on their classification, on the Universe expansion and on the Hubble law, this academic report addresses active galactic nuclei (AGN) by describing their anatomy (central black hole, accretion disk, jets and winds, Broad Line Region, Narrow Line Region, molecular torus and dusts, radio lobes). The author also presents the unified model. In the next part, he proposes an overview of active galaxies and active galactic nuclei by distinguishing galaxies with a strong stellar activity, radio-quiet and radio-loud active galactic nuclei. Examples are presented for each of these types. In the last part, the author draws perspectives for research in cosmology, and outlines questions which are still to be answered

  19. CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Perley, R. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Cenko, S. B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Krühler, T. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R., E-mail: dperley@astro.caltech.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-10

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.

  20. ALMA observations of the host galaxy of GRB 090423 at z = 8.23: deep limits on obscured star formation 630 million years after the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Davies, J. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Stanway, E. R.; Levan, A. J. [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Levesque, E. M. [CASA, University of Colorado UCB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000 μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  1. Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection

    Science.gov (United States)

    Nicholl, M.; Williams, P. K. G.; Berger, E.; Villar, V. A.; Alexander, K. D.; Eftekhari, T.; Metzger, B. D.

    2017-07-01

    The localization of the repeating fast radio burst (FRB) 121102 to a low-metallicity dwarf galaxy at z = 0.193, and its association with a luminous quiescent radio source, suggests the possibility that FRBs originate from magnetars, formed by the unusual supernovae that occur in such galaxies. We investigate this possibility via a comparison of magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We calculate average volumetric rates of possible millisecond magnetar production channels, such as superluminous supernovae (SLSNe), long and short gamma-ray bursts (GRBs), and general magnetar production via core-collapse supernovae (CCSNe). For each channel, we also explore the expected host galaxy demographics using their known properties. We determine for the first time the number density of FRB emitters (the product of their volumetric birth rate and lifetime), {R}{FRB}τ ≈ {10}4 Gpc-3, assuming that FRBs are predominantly emitted from repetitive sources similar to FRB 121102 and adopting a beaming factor of 0.1. By comparing rates, we find that production via rare channels (SLSNe, GRBs) implies a typical FRB lifetime of ˜30-300 years, in good agreement with other lines of argument. The total energy emitted over this time is consistent with the available energy stored in the magnetic field. On the other hand, any relation to magnetars produced via normal CCSNe leads to a very short lifetime of ˜0.5 years, in conflict with both theory and observation. We demonstrate that due to the diverse host galaxy distributions of the different progenitor channels, many possible sources of FRB birth can be ruled out with ≲ 10 host galaxy identifications. Conversely, targeted searches of galaxies that have previously hosted decades-old SLSNe and GRBs may be a fruitful strategy for discovering new FRBs and related quiescent radio sources, and determining the nature of their progenitors.

  2. R-band host galaxy contamination of TeV γ-ray blazar Mrk 501: effects of aperture size and seeing

    Science.gov (United States)

    Feng, Hai-Cheng; Liu, Hong-Tao; Zhao, Ying-He; Bai, Jin-Ming; Wang, Fang; Fan, Xu-Liang

    2018-02-01

    We simulated the R-band contribution of the host galaxy of TeV γ-ray BL Lac object Mrk 501 in different aperture sizes and seeing conditions. An intensive set of observations was acquired with the 1.02 m optical telescope, managed by Yunnan Observatories, from 2010 May 15 to 18. Based on the host subtraction data usually used in the literature, the subtraction of host galaxy contamination results in significant seeing-brightness correlations. These correlations would lead to illusive large amplitude variations at short timescales, which will mask the intrinsic microvariability, thus giving rise to difficulty in detecting the intrinsic microvariability. Both aperture size and seeing condition influence the flux measurements, but the aperture size impacts the result more significantly. Based on the parameters of an elliptical galaxy provided in the literature, we simulated the host contributions of Mrk 501 in different aperture sizes and seeing conditions. Our simulation data of the host galaxy obviously weaken these significant seeing-brightness correlations for the host-subtracted brightness of Mrk 501, and can help us discover the intrinsic short timescale microvariability. The pure nuclear flux is ∼8.0mJy in the R band, i.e., the AGN has a magnitude of R ∼ 13.96 mag.

  3. Evidence for merger remnants in early-type host galaxies of low-redshift QSOs

    Czech Academy of Sciences Publication Activity Database

    Bennert, N.; Canalizo, G.; Jungwiert, Bruno; Stockton, A.; Schweizer, F.; Peng, Ch.; Lacy, M.

    2008-01-01

    Roč. 677, č. 2 (2008), s. 846-857 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxy mergers * quasars * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.331, year: 2008

  4. Spectacular Shells in the Host Galaxy of the QSO MC2 1635+119

    Czech Academy of Sciences Publication Activity Database

    Canalizo, G.; Bennert, N.; Jungwiert, Bruno; Stockton, A.; Schweizer, F.; Lacy, M.; Peng, Ch.

    2007-01-01

    Roč. 669, č. 2 (2007), s. 801-809 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : active galaxie s * interactions * evolution * quasars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.405, year: 2007

  5. The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817

    Science.gov (United States)

    Hjorth, Jens; Levan, Andrew J.; Tanvir, Nial R.; Lyman, Joe D.; Wojtak, Radosław; Schrøder, Sophie L.; Mandel, Ilya; Gall, Christa; Bruun, Sofie H.

    2017-10-01

    The historic detection of gravitational waves from a binary neutron star merger (GW170817) and its electromagnetic counterpart led to the first accurate (sub-arcsecond) localization of a gravitational-wave event. The transient was found to be ˜10″ from the nucleus of the S0 galaxy NGC 4993. We report here the luminosity distance to this galaxy using two independent methods. (1) Based on our MUSE/VLT measurement of the heliocentric redshift (z helio = 0.009783 ± 0.000023), we infer the systemic recession velocity of the NGC 4993 group of galaxies in the cosmic microwave background (CMB) frame to be v CMB = 3231 ± 53 km s-1. Using constrained cosmological simulations we estimate the line-of-sight peculiar velocity to be v pec = 307 ± 230 km s-1, resulting in a cosmic velocity of v cosmic = 2924 ± 236 km s-1 (z cosmic = 0.00980 ± 0.00079) and a distance of D z = 40.4 ± 3.4 Mpc assuming a local Hubble constant of H 0 = 73.24 ± 1.74 km s-1 Mpc-1. (2) Using Hubble Space Telescope measurements of the effective radius (15.″5 ± 1.″5) and contained intensity and MUSE/VLT measurements of the velocity dispersion, we place NGC 4993 on the Fundamental Plane (FP) of E and S0 galaxies. Comparing to a frame of 10 clusters containing 226 galaxies, this yields a distance estimate of D FP = 44.0 ± 7.5 Mpc. The combined redshift and FP distance is D NGC 4993 = 41.0 ± 3.1 Mpc. This “electromagnetic” distance estimate is consistent with the independent measurement of the distance to GW170817 as obtained from the gravitational-wave signal ({D}{GW}={43.8}-6.9+2.9 Mpc) and confirms that GW170817 occurred in NGC 4993.

  6. Fitting and Phenomenology in Type IA Supernova Cosmology: Generalized Likelihood Analyses for Multiple Evolving Populations and Observations of Near-Infrared Lightcurves Including Host Galaxy Properties

    Science.gov (United States)

    Ponder, Kara A.

    In the late 1990s, Type Ia supernovae (SNeIa) led to the discovery that the Universe is expanding at an accelerating rate due to dark energy. Since then, many different tracers of acceleration have been used to characterize dark energy, but the source of cosmic acceleration has remained a mystery. To better understand dark energy, future surveys such as the ground-based Large Synoptic Survey Telescope and the space-based Wide-Field Infrared Survey Telescope will collect thousands of SNeIa to use as a primary dark energy probe. These large surveys will be systematics limited, which makes it imperative for our insight regarding systematics to dramatically increase over the next decade for SNeIa to continue to contribute to precision cosmology. I approach this problem by improving statistical methods in the likelihood analysis and collecting near infrared (NIR) SNeIa with their host galaxies to improve the nearby data set and search for additional systematics. Using more statistically robust methods to account for systematics within the likelihood function can increase accuracy in cosmological parameters with a minimal precision loss. Though a sample of at least 10,000 SNeIa is necessary to confirm multiple populations of SNeIa, the bias in cosmology is ˜ 2 sigma with only 2,500 SNeIa. This work focused on an example systematic (host galaxy correlations), but it can be generalized for any systematic that can be represented by a distribution of multiple Gaussians. The SweetSpot survey gathered 114 low-redshift, NIR SNeIa that will act as a crucial anchor sample for the future high redshift surveys. NIR observations are not as affected by dust contamination, which may lead to increased understanding of systematics seen in optical wavelengths. We obtained spatially resolved spectra for 32 SweetSpot host galaxies to test for local host galaxy correlations. For the first time, we probe global host galaxy correlations with NIR brightnesses from the current literature

  7. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N. E.; Challis, P. M.; Czekala, I.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Leibler, C.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); McCrum, M.; Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Roth, K. C. [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States); Scolnic, D., E-mail: rlunnan@cfa.harvard.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); and others

    2013-07-10

    We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M{sub bol} {approx_equal} -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M{sub B} Almost-Equal-To -18 mag, diameter {approx}< 800 pc), with a low stellar mass (M{sub *} Almost-Equal-To 2.4 Multiplication-Sign 10{sup 7} M{sub Sun }), young stellar population ({tau}{sub *} Almost-Equal-To 5 Myr), and a star formation rate of {approx}2-3 M{sub Sun} yr{sup -1}. The specific star formation rate is the highest seen in an SLSN host so far ({approx}100 Gyr{sup -1}). We detect the [O III] {lambda}4363 line, and find a low metallicity: 12 + (O/H) = 7.8 {+-} 0.2 ({approx_equal} 0.1 Z{sub Sun }). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

  8. The Carnegie Supernova Project I. Methods to estimate host-galaxy reddening of stripped-envelope supernovae

    Science.gov (United States)

    Stritzinger, M. D.; Taddia, F.; Burns, C. R.; Phillips, M. M.; Bersten, M.; Contreras, C.; Folatelli, G.; Holmbo, S.; Hsiao, E. Y.; Hoeflich, P.; Leloudas, G.; Morrell, N.; Sollerman, J.; Suntzeff, N. B.

    2018-02-01

    We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SN photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub-sample for each traditionally defined spectroscopic sub-type (i.e., SNe IIb, SNe Ib, SNe Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0 d to +20 d relative to B-band maximum. This motivated the construction of intrinsic color-curve templates, which when compared to the colors of reddened SE SNe, yields an entire suite of optical and NIR color excess measurements. Comparison of optical/optical vs. optical/NIR color excess measurements indicates the majority of the CSP-I SE SNe suffer relatively low amounts of reddening (i.e., E(B-V)host 0.20 mag) objects with the Fitzpatrick (1999, PASP, 111, 63) reddening law model provides robust estimates of the host visual-extinction AVhost and RVhost. In the case of the SE SNe with relatively low amounts of reddening, a preferred value of RVhost is adopted for each sub-type, resulting in estimates of AVhost through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside in galaxies characterized by a range of dust properties. We also find evidence that SNe Ic are more likely to occur in regions characterized by larger RVhost values compared to SNe IIb/Ib and they also tend to suffer more extinction. The later finding is consistent with work in the literature suggesting SNe Ic tend to occur in regions of on-going star formation. Based on observations collected at Las Campanas Observatory.

  9. The environment and host haloes of the brightest z ˜ 6 Lyman-break galaxies

    Science.gov (United States)

    Hatfield, P. W.; Bowler, R. A. A.; Jarvis, M. J.; Hale, C. L.

    2018-04-01

    By studying the large-scale structure of the bright high-redshift Lyman-break galaxy (LBG) population it is possible to gain an insight into the role of environment in galaxy formation physics in the early Universe. We measure the clustering of a sample of bright (-22.7 model to measure their typical halo masses. We find that the clustering amplitude and corresponding HOD fits suggests that these sources are highly biased (b ˜ 8) objects in the densest regions of the high-redshift Universe. Coupled with the observed rapid evolution of the number density of these objects, our results suggest that the shape of high luminosity end of the luminosity function is related to feedback processes or dust obscuration in the early Universe - as opposed to a scenario where these sources are predominantly rare instances of the much more numerous MUV ˜ -19 population of galaxies caught in a particularly vigorous period of star formation. There is a slight tension between the number densities and clustering measurements, which we interpret this as a signal that a refinement of the model halo bias relation at high redshifts or the incorporation of quasi-linear effects may be needed for future attempts at modelling the clustering and number counts. Finally, the difference in number density between the fields (UltraVISTA has a surface density˜1.8 times greater than UDS) is shown to be consistent with the cosmic variance implied by the clustering measurements.

  10. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    Science.gov (United States)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; hide

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.

  11. Discovery of 21 New Changing-look AGNs: Study on Evolution of AGNs and AGN Host Galaxies

    Science.gov (United States)

    Yang, Qian; Wu, Xuebing; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Shangguan, Jinyi; Yao, Su; Wang, Bingquan; Joshi, Ravi; Green, Richard F.; Wang, Feige; Feng, Xiaotong; Fu, Yuming; Yang, Jinyi; Liu, Yuanqi

    2018-01-01

    The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08 Survey Explorer (WISE), were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at higher than 3σ confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared colors W1‑W2 become redder when the objects become brighter in the W1 band, possibly due to a stronger hot dust contribution in the W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs. The rare CL AGNs provide exceptional cases for the black hole and host stellar velocity dispersion relation studies at higher redshift. The faint state spectrum can be used to obtain the host stellar velocity dispersion without contamination from AGN component, and the bright state spectrum can be used to calculate the black hole mass with broad Balmer emission lines. The images at the non-AGN phase of CL AGNs are useful for studies of AGN host galaxies avoiding contamination from the luminous central engines.

  12. A Massive Molecular Gas Reservoir in the Z = 2.221 Type-2 Quasar Host Galaxy SMM J0939+8315 Lensed by the Radio Galaxy 3C220.3

    Science.gov (United States)

    Leung, T. K. Daisy; Riechers, Dominik A.

    2016-02-01

    We report the detection of CO(J = 3 \\to 2) line emission in the strongly lensed submillimeter galaxy (SMG) SMM J0939+8315 at z = 2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitationally lensed by the radio galaxy 3C220.3 and its companion galaxy at z = 0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of Scont = 7.4 ± 1.4 mJy. Using the CO(J = 3 \\to 2) line intensity of ICO(3-2) = (12.6 ± 2.0) Jy km s-1, we derive a lensing- and excitation-corrected CO line luminosity of {L}{{CO(1-0)}}\\prime = (3.4 ± 0.7) × 1010 (10.1/μL) K km s-1 pc2 for the SMG, where μL is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of Mgas = (2.7 ± 0.6) × 1010 (10.1/μL) M⊙. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1{}-1.3+1.1 K, a dust mass of Mdust = (5.2 ± 2.1) × 108 (10.1/μL) M⊙, and a total infrared luminosity of LIR = (9.1 ± 1.2) ×1012 (10.1/μL) L⊙. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a starbursting phase to an unobscured quasar phase as described by the “evolutionary link” model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.

  13. Linking black hole growth with host galaxies: the accretion-stellar mass relation and its cosmic evolution

    Science.gov (United States)

    Yang, G.; Brandt, W. N.; Vito, F.; Chen, C.-T. J.; Trump, J. R.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Koekemoer, A. M.; Schneider, D. P.; Vignali, C.; Wang, J.-X.

    2018-04-01

    Previous studies suggest that the growth of supermassive black holes (SMBHs) may be fundamentally related to host-galaxy stellar mass (M⋆). To investigate this SMBH growth-M⋆ relation in detail, we calculate long-term SMBH accretion rate as a function of M⋆ and redshift [\\overlineBHAR(M_{\\star }, z)] over ranges of log (M⋆/M⊙) = 9.5-12 and z = 0.4-4. Our \\overlineBHAR(M_{\\star }, z) is constrained by high-quality survey data (GOODS-South, GOODS-North and COSMOS), and by the stellar mass function and the X-ray luminosity function. At a given M⋆, \\overlineBHAR is higher at high redshift. This redshift dependence is stronger in more massive systems [for log (M⋆/M⊙) ≈ 11.5, \\overlineBHAR is three decades higher at z = 4 than at z = 0.5], possibly due to AGN feedback. Our results indicate that the ratio between \\overlineBHAR and average star formation rate (\\overlineSFR) rises towards high M⋆ at a given redshift. This \\overlineBHAR/\\overlineSFR dependence on M⋆ does not support the scenario that SMBH and galaxy growth are in lockstep. We calculate SMBH mass history [MBH(z)] based on our \\overlineBHAR(M_{\\star }, z) and the M⋆(z) from the literature, and find that the MBH-M⋆ relation has weak redshift evolution since z ≈ 2. The MBH/M⋆ ratio is higher towards massive galaxies: it rises from ≈1/5000 at log M⋆ ≲ 10.5 to ≈1/500 at log M⋆ ≳ 11.2. Our predicted MBH/M⋆ ratio at high M⋆ is similar to that observed in local giant ellipticals, suggesting that SMBH growth from mergers is unlikely to dominate over growth from accretion.

  14. DETERMINING TYPE Ia SUPERNOVA HOST GALAXY EXTINCTION PROBABILITIES AND A STATISTICAL APPROACH TO ESTIMATING THE ABSORPTION-TO-REDDENING RATIO R{sub V}

    Energy Technology Data Exchange (ETDEWEB)

    Cikota, Aleksandar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching b. München (Germany); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marleau, Francine, E-mail: acikota@eso.org [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck (Austria)

    2016-03-10

    We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.

  15. STRUCTURAL TRANSITION IN THE NGC 6251 JET: AN INTERPLAY WITH THE SUPERMASSIVE BLACK HOLE AND ITS HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chih-Yin; Asada, Keiichi; Nakamura, Masanori; Pu, Hung-Yi; Algaba, Juan-Carlos; Lo, Wen-Ping, E-mail: cytseng@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2016-12-20

    The structure of the NGC 6251 jet on the milliarcsecond scale is investigated using images taken with the European VLBI Network and the Very Long Baseline Array. We detect a structural transition of the jet from a parabolic to a conical shape at a distance of (1–2) × 10{sup 5} times the Schwarzschild radius from the central engine, which is close to the sphere of gravitational influence of the supermassive black hole (SMBH). We also examine the jet pressure profiles with the synchrotron minimum energy assumption to discuss the physical origin of the structural transition. The NGC 6251 jet, together with the M87 jet, suggests a fundamental process of structural transition in the jets of active galactic nuclei (AGNs). Collimated AGN jets are characterized by their external galactic medium, showing that AGN jets interplay with the SMBH and its host galaxy.

  16. Massive stars formed in atomic hydrogen reservoirs: H i observations of gamma-ray burst host galaxies

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, J.

    2015-01-01

    to be the fuel of star formation. Moreover, optical spectroscopy of GRB afterglows implies that the molecular phase constitutes only a small fraction of the gas along the GRB line of sight. Here we report the first ever 21 cm line observations of GRB host galaxies, using the Australia Telescope Compact Array......, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought. In this case, it is possible that star formation is directly fuelled by atomic gas (or that the H1-to-H2 conversion is very efficient, which rapidly...... exhaust molecular gas), as has been theoretically shown to be possible. This can happen in low-metallicity gas near the onset of star formation because cooling of gas (necessary for star formation) is faster than the H1-to-H2 conversion. Indeed, large atomic gas reservoirs, together with low molecular gas...

  17. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  18. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  19. Multi-Wavelength Studies on H2O Maser Host Galaxies J. S. Zhang ...

    Indian Academy of Sciences (India)

    on two projects: X-ray data analysis of individual maser source using. X-ray penetrability to explore maser host obscured AGN; multi- wavelength ... Figure 1. Adaptively smoothed three-color image in 0.3–8.0keV and spectra with fitting ... It provides a perspective to improve the accuracy of the Hubble constant H0 and to.

  20. A multi-colour study of the dark GRB 000210 host galaxy and its environment

    DEFF Research Database (Denmark)

    Gorosabel, J.; Christensen, Lise; Hjorth, J.

    2003-01-01

    (SED) of the host. The derived photometric redshift is z = 0.842(-0.042)(+0.014), which is in excellent agreement with the spectroscopic redshift (z = 0.8463 +/- 0.0002) proposed by Piro et al. (2002) based on a single emission line. Furthermore, we have determined the photometric redshift of all...

  1. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, Hawaii, 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago de Chile (Chile)

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  2. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN

    Science.gov (United States)

    Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.

    2009-12-01

    Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  3. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    Science.gov (United States)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  4. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    Energy Technology Data Exchange (ETDEWEB)

    Donato, D.; Troja, E. [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Cenko, S. B.; Fox, O. [Astrophysics Science Division, NASA/GSFC, Mail Code 661, Greenbelt, MD 20771 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Pursimo, T. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Kutyrev, A. [Observational Cosmology Laboratory, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, MD 20771-2400 (United States); Campana, S.; Fugazza, D. [Joint Space Science Institute, University of Maryland, College Park, MD 20742 (United States); Landt, H. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Butler, N. R., E-mail: davide.donato-1@nasa.gov [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-02-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10{sup 6} K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M {sub BH}/M {sub ☉}) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  5. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    International Nuclear Information System (INIS)

    Donato, D.; Troja, E.; Cenko, S. B.; Fox, O.; Covino, S.; Pursimo, T.; Cheung, C. C.; Kutyrev, A.; Campana, S.; Fugazza, D.; Landt, H.; Butler, N. R.

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10 6 K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M BH /M ☉ ) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  6. Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors

    Science.gov (United States)

    Howell, E. J.; Chan, M. L.; Chu, Q.; Jones, D. H.; Heng, I. S.; Lee, H.-M.; Blair, D.; Degallaix, J.; Regimbau, T.; Miao, H.; Zhao, C.; Hendry, M.; Coward, D.; Messenger, C.; Ju, L.; Zhu, Z.-H.

    2018-03-01

    The detection of black hole binary coalescence events by Advanced LIGO allows the science benefits of future detectors to be evaluated. In this paper, we report the science benefits of one or two 8 km arm length detectors based on the doubling of key parameters in an Advanced LIGO-type detector, combined with realizable enhancements. It is shown that the total detection rate for sources similar to those already detected would increase to ˜ 103-105 per year. Within 0.4 Gpc, we find that around 10 of these events would be localizable to within ˜10-1 deg2. This is sufficient to make unique associations or to rule out a direct association with the brightest galaxies in optical surveys (at r-band magnitudes of 17 or above) or for deeper limits (down to r-band magnitudes of 20) yield statistically significant associations. The combination of angular resolution and event rate would benefit precision testing of formation models, cosmic evolution, and cosmological studies.

  7. Riboflavin Provisioning Underlies Wolbachia's Fitness Contribution to Its Insect Host.

    Science.gov (United States)

    Moriyama, Minoru; Nikoh, Naruo; Hosokawa, Takahiro; Fukatsu, Takema

    2015-11-10

    Endosymbiotic bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial ecosystem. The success of Wolbachia has been ascribed to its remarkable phenotypic effects on host reproduction, such as cytoplasmic incompatibility, whereby maternally inherited bacteria can spread in their host populations at the expense of their host's fitness. Meanwhile, recent theoretical as well as empirical studies have unveiled that weak and/or conditional positive fitness effects may significantly facilitate invasion and spread of Wolbachia infections in host populations. Here, we report a previously unrecognized nutritional aspect, the provision of riboflavin (vitamin B2), that potentially underpins the Wolbachia-mediated fitness benefit to insect hosts. A comparative genomic survey for synthetic capability of B vitamins revealed that only the synthesis pathway for riboflavin is highly conserved among diverse insect-associated Wolbachia strains, while the synthesis pathways for other B vitamins were either incomplete or absent. Molecular phylogenetic and genomic analyses of riboflavin synthesis genes from diverse Wolbachia strains revealed that, in general, their phylogenetic relationships are concordant with Wolbachia's genomic phylogeny, suggesting that the riboflavin synthesis genes have been stably maintained in the course of Wolbachia evolution. In rearing experiments with bedbugs (Cimex lectularius) on blood meals in which B vitamin contents were manipulated, we demonstrated that Wolbachia's riboflavin provisioning significantly contributes to growth, survival, and reproduction of the insect host. These results provide a physiological basis upon which Wolbachia-mediated positive fitness consequences are manifested and shed new light on the ecological and evolutionary relevance of Wolbachia infections. Conventionally, Wolbachia has been regarded as a parasitic bacterial endosymbiont that manipulates the host insect's reproduction in a

  8. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    Energy Technology Data Exchange (ETDEWEB)

    Assef, R. J.; Diaz-Santos, T. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Walton, D. J.; Brightman, M. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-236, Pasadena, CA 91109 (United States); Alexander, D. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Bauer, F. [Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Blain, A. W. [Physics and Astronomy, University of Leicester, 1 University Road, Leicester LE1 7RH (United Kingdom); Finkelstein, S. L. [The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Wu, J. W., E-mail: roberto.assef@mail.udp.cl [UCLA Astronomy, P.O. Box 951547, Los Angeles, CA 90095-1547 (United States)

    2016-03-10

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M{sub ⊙} yr{sup −1}. Deep polarimetry observations could confirm the reflection hypothesis.

  9. HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?

    International Nuclear Information System (INIS)

    Assef, R. J.; Diaz-Santos, T.; Walton, D. J.; Brightman, M.; Stern, D.; Eisenhardt, P. R. M.; Tsai, C.-W.; Alexander, D.; Bauer, F.; Blain, A. W.; Finkelstein, S. L.; Hickox, R. C.; Wu, J. W.

    2016-01-01

    Hot dust-obscured galaxies (Hot DOGs) are a population of hyper-luminous infrared galaxies identified by the Wide-field Infrared Survey Explorer (WISE) mission from their very red mid-IR colors, and characterized by hot dust temperatures (T > 60 K). Several studies have shown clear evidence that the IR emission in these objects is powered by a highly dust-obscured active galactic nucleus (AGN) that shows close to Compton-thick absorption at X-ray wavelengths. Thanks to the high AGN obscuration, the host galaxy is easily observable, and has UV/optical colors usually consistent with those of a normal galaxy. Here we discuss a sub-population of eight Hot DOGs that show enhanced rest-frame UV/optical emission. We discuss three scenarios that might explain the excess UV emission: (i) unobscured light leaked from the AGN by reflection over the dust or by partial coverage of the accretion disk; (ii) a second unobscured AGN in the system; or (iii) a luminous young starburst. X-ray observations can help discriminate between these scenarios. We study in detail the blue excess Hot DOG WISE J020446.13–050640.8, which was serendipitously observed by Chandra/ACIS-I for 174.5 ks. The X-ray spectrum is consistent with a single, hyper-luminous, highly absorbed AGN, and is strongly inconsistent with the presence of a secondary unobscured AGN. Based on this, we argue that the excess blue emission in this object is most likely either due to reflection or a co-eval starburst. We favor the reflection scenario as the unobscured star formation rate needed to power the UV/optical emission would be ≳1000 M ⊙ yr −1 . Deep polarimetry observations could confirm the reflection hypothesis

  10. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  11. New calibration and some predictions of the scaling relations between the mass of supermassive black holes and the properties of the host galaxies

    Science.gov (United States)

    Benedetto, E.; Fallarino, M. T.; Feoli, A.

    2013-10-01

    We present a new determination of the slope and normalization of three popular scaling laws between the mass of supermassive black holes and stellar velocity dispersion, bulge mass and kinetic energy of the host galaxies. To this aim we have collected 72 objects taken from three different samples and we have used three fitting methods applying the statistical analysis also to the subset of early type galaxies and spirals separately. We find that the relation involving kinetic energy has a slightly better χ2 and linear correlation coefficient than the other two laws. Furthermore, its Hertzsprung-Russell-like behavior is confirmed by the location of young and old galaxies in two different parts of the diagram. A test of its predictive power with the two giant galaxies NGC 3842 and NGC 4889 shows that the mass of the black hole inferred using the kinetic energy law is the closest to the experimental value. The subset of early type galaxies satisfies the theoretical models regarding the black hole mass vs stellar velocity dispersion relation, better than the full sample. Tables 1 and 7 are available in electronic form at http://www.aanda.org

  12. Gas inflow and outflow in an interacting high-redshift galaxy. The remarkable host environment of GRB 080810 at z = 3.35

    Science.gov (United States)

    Wiseman, P.; Perley, D. A.; Schady, P.; Prochaska, J. X.; de Ugarte Postigo, A.; Krühler, T.; Yates, R. M.; Greiner, J.

    2017-11-01

    We reveal multiple components of an interacting galaxy system at z ≈ 3.35 through a detailed analysis of the exquisite high-resolution Keck/HIRES spectrum of the afterglow of a gamma-ray burst (GRB). Through Voigt-profile fitting of absorption lines from the Lyman series, we constrain the neutral hydrogen column density to NH I ≤ 1018.35 cm-2 for the densest of four distinct systems at the host redshift of GRB 080810, which is among the lowest NH I ever observed in a GRB host, even though the line of sight passes within a projected 5 kpc of the galaxy centres. By detailed analysis of the corresponding metal absorption lines, we derive chemical, ionic, and kinematic properties of the individual absorbing systems, and thus build a picture of the host as a whole. Striking differences between the systems imply that the line of sight passes through several phases of gas: the star-forming regions of the GRB host; enriched material in the form of a galactic outflow; the hot and ionised halo of a second interacting galaxy falling towards the host at a line-of-sight velocity of 700 km s-1; and a cool metal-poor cloud that may represent one of the best candidates yet for the inflow of metal-poor gas from the intergalactic medium. The reduced spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A107

  13. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    International Nuclear Information System (INIS)

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N.; Mullaney, James R.; Alexander, David M.; Goulding, Andy D.

    2014-01-01

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  14. THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Netzer, Hagai; Vestergaard, Marianne

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100 A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the Hβ R BLR -L relationship. Our best fit for the relationship gives a power-law slope of 0.52 with a range of 0.45-0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic errors in the current set of reverberation measurements from which we determine the form of the R BLR -L relationship.

  15. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    International Nuclear Information System (INIS)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-01-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.

  16. EVIDENCE FOR A ∼300 MEGAPARSEC SCALE UNDER-DENSITY IN THE LOCAL GALAXY DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, R. C. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Barger, A. J. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Cowie, L. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-09-20

    Galaxy counts and recent measurements of the luminosity density in the near-infrared have indicated the possibility that the local universe may be under-dense on scales of several hundred megaparsecs. The presence of a large-scale under-density in the local universe could introduce significant biases into the interpretation of cosmological observables, and, in particular, into the inferred effects of dark energy on the expansion rate. Here we measure the K-band luminosity density as a function of redshift to test for such a local under-density. For our primary sample in this study, we select galaxies from the UKIDSS Large Area Survey and use spectroscopy from the Sloan Digital Sky Survey (SDSS), the Two-degree Field Galaxy Redshift Survey, the Galaxy And Mass Assembly Survey (GAMA), and other redshift surveys to generate a K-selected catalog of ∼35, 000 galaxies that is ∼95% spectroscopically complete at K{sub AB} < 16.3 (K{sub AB} < 17 in the GAMA fields). To complement this sample at low redshifts, we also analyze a K-selected sample from the 2M++ catalog, which combines Two Micron All Sky Survey (2MASS) photometry with redshifts from the 2MASS redshift survey, the Six-degree Field Galaxy Redshift Survey, and the SDSS. The combination of these samples allows for a detailed measurement of the K-band luminosity density as a function of distance over the redshift range 0.01 < z < 0.2 (radial distances D ∼ 50-800 h{sub 70}{sup -1} Mpc). We find that the overall shape of the z = 0 rest-frame K-band luminosity function (M*-5log (h{sub 70}) = –22.15 ± 0.04 and α = –1.02 ± 0.03) appears to be relatively constant as a function of environment and distance from us. We find a local (z < 0.07, D < 300 h{sub 70}{sup -1} Mpc) luminosity density that is in good agreement with previous studies. Beyond z ∼ 0.07, we detect a rising luminosity density that reaches a value of roughly ∼1.5 times higher than that measured locally at z > 0.1. This suggests that the

  17. SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Valenti, S.; Smartt, S.; Botticella, M. T. [Astrophysics Research Centre, School of Maths and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Hurley, K. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Barthelmy, S. D.; Gehrels, N.; Cline, T. [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Levesque, E. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Narayan, G. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Briggs, M. S.; Connaughton, V. [CSPAR, University of Alabama in Huntsville, Huntsville, AL (United States); Terada, Y. [Department of Physics, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570 (Japan); Golenetskii, S.; Mazets, E., E-mail: nsanders@cfa.harvard.edu [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St. Petersburg 194021 (Russian Federation); and others

    2012-09-10

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3{pi} survey just {approx}4 days after explosion. The supernova (SN) had a peak luminosity, M{sub R} Almost-Equal-To -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v{sub Si} Almost-Equal-To 19 Multiplication-Sign 10{sup 3} km s{sup -1} at {approx}40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines {approx}2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of {sup 56}Ni, M{sub Ni} = 0.9 M{sub Sun }. Applying scaling relations to the light curve, we estimate a total ejecta mass, M{sub ej} Almost-Equal-To 4.7 M{sub Sun }, and total kinetic energy, E{sub K} Almost-Equal-To 11 Multiplication-Sign 10{sup 51} erg. The ratio of M{sub Ni} to M{sub ej} is {approx}2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H){sub PP04} + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and {approx}0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E{sub {gamma}} {approx}< 6 Multiplication-Sign 10{sup 48} erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E {approx}> 10{sup 48} erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less

  18. MID-INFRARED PROPERTIES OF OH MEGAMASER HOST GALAXIES. I. SPITZER IRS LOW- AND HIGH-RESOLUTION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-01-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 10 2.3 L sun . The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H 2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO 2 , HCN, C 2 H 2 , and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  19. Mid-Infrared Properties of OH Megamaser Host Galaxies. I. Spitzer IRS Low- and High-Resolution Spectroscopy

    Science.gov (United States)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-03-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 102.3 L sun. The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO2, HCN, C2H2, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  20. Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy

    Science.gov (United States)

    Kokubo, Mitsuru; Mitsuda, Kazuma; Sugai, Hajime; Ozaki, Shinobu; Minowa, Yosuke; Hattori, Takashi; Hayano, Yutaka; Matsubayashi, Kazuya; Shimono, Atsushi; Sako, Shigeyuki; Doi, Mamoru

    2017-08-01

    We present the Hα intensity map of the host galaxy of the repeating fast radio burst FRB 121102 at a redshift of z = 0.193 obtained with the AO-assisted Kyoto 3DII optical integral-field unit mounted on the 8.2 m Subaru Telescope. We detected a compact Hα-emitting (I.e., star-forming) region in the galaxy, which has a much smaller angular size (GMOS z\\prime -band image (≃ 1\\buildrel{\\prime\\prime}\\over{.} 4 (4.6 kpc) at FWHM with ellipticity b/a=0.45). The spatial offset between the centroid of the Hα emission region and the position of the radio bursts is 0\\buildrel{\\prime\\prime}\\over{.} 08+/- 0\\buildrel{\\prime\\prime}\\over{.} 02 (0.26 ± 0.07 kpc), indicating that FRB 121102 is located within the star-forming region. This close spatial association of FRB 121102 with the star-forming region is consistent with expectations from young pulsar/magnetar models for FRB 121102, and it also suggests that the observed Hα emission region can make a major dispersion measure (DM) contribution to the host galaxy DM component of FRB 121102. Nevertheless, the largest possible value of the DM contribution from the Hα emission region inferred from our observations still requires a significant amount of ionized baryons in intergalactic medium (IGM; the so-called “missing” baryons) as the DM source of FRB 121102, and we obtain a 90% confidence level lower limit on the cosmic baryon density in the IGM in the low-redshift universe as {{{Ω }}}{IGM}> 0.012. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  1. QUASARS PROBING QUASARS. VIII. THE PHYSICAL PROPERTIES OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDING z ∼ 2–3 MASSIVE GALAXIES HOSTING QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Marie Wingyee; Prochaska, J. Xavier [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Hennawi, Joseph F., E-mail: lwymarie@ucolick.org [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69115 Heidelberg (Germany)

    2016-10-01

    We characterize the physical properties of the cool T  ∼ 10{sup 4} K circumgalactic medium (CGM) surrounding z  ∼ 2–3 quasar host galaxies, which are predicted to evolve into present-day massive ellipticals. Using a statistical sample of 14 quasar pairs with projected separation <300 kpc and spectra of high dispersion and high signal-to-noise ratio, we find extreme kinematics with low metal ion lines typically spanning ≈500 km s{sup −1}, exceeding any previously studied galactic population. The CGM is significantly enriched, even beyond the virial radius, with a median metallicity [M/H] ≈ −0.6. The α /Fe abundance ratio is enhanced, suggesting that halo gas is primarily enriched by core-collapse supernovae. The projected cool gas mass within the virial radius is estimated to be 1.9 × 10{sup 11} M {sub ⊙} ( R {sub ⊥}/160 kpc){sup 2}, accounting for ≈1/3 of the baryonic budget of the galaxy halo. The ionization state of CGM gas increases with projected distance from the foreground quasars, contrary to expectation if the quasar dominates the ionizing radiation flux. However, we also found peculiarities not exhibited in the CGM of other galaxy populations. In one absorption system, we may be detecting unresolved fluorescent Ly α emission, and another system shows strong N v lines. Taken together, these anomalies suggest that transverse sightlines are—at least in some cases—possibly illuminated. We also discovered a peculiar case where detection of the C ii fine-structure line implies an electron density >100 cm{sup −3} and sub-parsec-scale gas clumps.

  2. ALMA INVESTIGATION OF VIBRATIONALLY EXCITED HCN/HCO{sup +}/HNC EMISSION LINES IN THE AGN-HOSTING ULTRALUMINOUS INFRARED GALAXY IRAS 20551−4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551−4250 at HCN/HCO{sup +}/HNC J = 3–2 lines at both vibrational ground ( v = 0) and vibrationally excited ( v {sub 2} = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v {sub 2} = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO{sup +}/HNC J = 3–2 emission lines at v = 0 are clearly detected. The HCN and HNC v {sub 2} = 1f J = 3–2 emission lines are also detected, but the HCO{sup +} v {sub 2} = 1f J = 3–2 emission line is not. Given the high energy level of v {sub 2} = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μ m spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO{sup +} and HNC. The flux ratio and excitation temperature between v {sub 2} = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational ( J -level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO{sup +} v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO{sup +} flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO{sup +} abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO{sup +}.

  3. THE FIRST GALAXIES: ASSEMBLY UNDER RADIATIVE FEEDBACK FROM THE FIRST STARS

    International Nuclear Information System (INIS)

    Pawlik, Andreas H.; Milosavljević, Miloš; Bromm, Volker

    2013-01-01

    We investigate how radiative feedback from the first stars affects the assembly of the first dwarf galaxies. To this end, we perform cosmological zoomed smoothed particle hydrodynamics simulations of a dwarf galaxy assembling inside a halo reaching a virial mass ∼10 9 M ☉ at z = 10. The simulations follow the non-equilibrium chemistry and cooling of primordial gas and the subsequent conversion of the cool dense gas into massive metal-free stars. To quantify the radiative feedback, we compare a simulation in which stars emit both molecular hydrogen dissociating and hydrogen/helium ionizing radiation with a simulation in which stars emit only molecular hydrogen dissociating radiation, and further with a simulation in which stars remain dark. Photodissociation and photoionization exert a strong negative feedback on the assembly of the galaxy inside the main minihalo progenitor. Gas condensation is strongly impeded, and star formation is strongly suppressed in comparison with the simulation in which stars remain dark. The feedback on the gas from either dissociating or ionizing radiation implies a suppression of the central dark matter densities in the minihalo progenitor by factors of up to a few, which is a significant deviation from the singular isothermal density profile characterizing the dark matter distribution inside the virial radius in the absence of radiative feedback. The evolution of gas densities, star formation rates, and the distribution of dark matter becomes insensitive to the inclusion of dissociating radiation in the late stages of the minihalo assembly, and it becomes insensitive to the inclusion of ionizing radiation once the minihalo turns into an atomically cooling galaxy. The formation of a rotationally supported extended disk inside the dwarf galaxy is a robust outcome of our simulations not affected by the inclusion of radiation. Low-mass galaxies in the neighborhood of the dwarf galaxy show a large scatter in the baryon fraction which is

  4. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Science.gov (United States)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational-wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ≳ 10 {Gyr} ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 {M}⊙ yr-1, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of {11.2}-1.4+0.7 Gyr, with a 90% confidence range of 6.8{--}13.6 {Gyr}. This in turn indicates an initial binary separation of ≈ 4.5 {R}⊙ , comparable to the inferred values for Galactic BNS systems. We also use new and archival Hubble Space Telescope images to measure a projected offset of the optical counterpart of 2.1 kpc (0.64r e ) from the center of NGC 4993 and to place a limit of {M}r≳ -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ˜200 km s-1. Future GW-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of r-process enrichment in the universe.

  5. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-16

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at $\\gtrsim 10$ Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M$_{\\odot}$ yr$^{-1}$, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of $11.2^{+0.7}_{-1.4}$ Gyr, with a 90% confidence range of $6.8-13.6$ Gyr. This in turn indicates an initial binary separation of $\\approx 4.5$ R$_{\\odot}$, comparable to the inferred values for Galactic BNS systems. We also use new and archival $Hubble$ $Space$ $Telescope$ images to measure a projected offset of the optical counterpart of $2.1$ kpc (0.64$r_{e}$) from the center of NGC 4993 and to place a limit of $M_{r} \\gtrsim -7.2$ mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of $\\sim 200$ km s$^{-1}$. Future GW$-$EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of $r$-process enrichment in the Universe.

  6. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third Laser Interferometer Gravitational Wave Observatory (LIGO) detections (36-29 M⊙ and 32-19 M⊙) suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches ∼90 per cent at ∼0.5 kpc from the galaxy centre, compared to a benchmark value of ∼5 per cent outside the core. The predicted merger rates inside bulges is ∼60 × βIII Gpc-3 yr-1 (βIII is the Pop III binarity fraction). To match the 90 per cent credible range of LIGO merger rates, we obtain: 0.03 proof for the existence of Pop III stars.

  7. Cuticle of 'Gala' and 'Galaxy' apples cultivars under different environmental conditions

    Directory of Open Access Journals (Sweden)

    Magda Andréia Tessmer

    2012-10-01

    Full Text Available This study aimed to analyze the cuticle thickness and pattern of epicuticular wax deposition in 'Gala' and 'Galaxy' apple cultivars (Malus domestica Borkh, from three Brazilian producing areas: Vacaria (RS, Fraiburgo (SC and São Joaquim (SC with altitudes of 971, 1,048 and 1,353m, respectively. Harvested fruit were kept under two storage conditions: regular atmosphere (RA (0 ºC and 90% RH and controlled atmosphere (CA (1.5% O2, 2.5% CO2, 0ºC and 90% RH. Cuticle thickness measurements were made using LM and the deposition pattern of epicuticular wax observed with a SEM. Altitude among the apple producing areas was not a factor in deposition pattern of waxes between the cultivars but at higher altitudes, the cuticle was thicker in both the cultivars. In the freshly-harvested fruits, waxes deposition in the form of platelets and the mechanism of “tear and repair” were observed. Severity of microcracks in the cuticle was more evident on the fruits from CA.

  8. Polar ring galaxies in the Galaxy Zoo

    Science.gov (United States)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  9. Redshift determination of the BL Lac object 3C 66A by the detection of its host galaxy cluster at z = 0.340

    Science.gov (United States)

    Torres-Zafra, Juanita; Cellone, Sergio A.; Buzzoni, Alberto; Andruchow, Ileana; Portilla, José G.

    2018-03-01

    The BL Lac object 3C 66A is one of the most luminous extragalactic sources at TeV γ-rays (very high energy, i.e. E > 100 GeV). Since TeV γ-ray radiation is absorbed by the extragalactic background light (EBL), it is crucial to know the redshift of the source in order to reconstruct its original spectral energy distribution, as well as to constrain EBL models. However, the optical spectrum of this BL Lac is almost featureless, so a direct measurement of z is very difficult; in fact, the published redshift value for this source (z = 0.444) has been strongly questioned. Based on EBL absorption arguments, several constraints to its redshift, in the range 0.096 GMOS-N multi-object spectroscopy. We found spectroscopic evidence of two galaxy groups along the blazar's line of sight: one at z ≃ 0.020 and the second one at z ≃ 0.340. The first one is consistent with a known foreground structure, while the second group presented here has six spectroscopically confirmed members. Their location along a red sequence in the colour-magnitude diagram allows us to identify 34 additional candidate members of the more distant group. The blazar's spectrum shows broad absorption features that we identify as arising in the intergalactic medium, thus allowing us to tentatively set a redshift lower limit at z_3C66A ≳ 0.33. As a consequence, we propose that 3C 66A is hosted in a galaxy that belongs to a cluster at z = 0.340.

  10. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions.

    Science.gov (United States)

    Gruntenko, Nataly Е; Ilinsky, Yury Yu; Adonyeva, Natalya V; Burdina, Elena V; Bykov, Roman A; Menshanov, Petr N; Rauschenbach, Inga Yu

    2017-12-28

    One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults. To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups. The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host

  11. Impact of seeing and host galaxy into the analysis of photo-polarimetric microvariability in blazars. Case study of the nearby blazars 1ES 1959+650 and HB89 2201+044

    Science.gov (United States)

    Sosa, M. S.; von Essen, C.; Andruchow, I.; Cellone, S. A.

    2017-11-01

    Blazars, a type of Active Galactic Nuclei, present a particular orientation of their jets close to the line of sight. Their radiation is thus relativistically beamed, giving rise to extreme behaviors, specially strong variability on very short timescales (I.e., microvariability). Here we present simultaneous photometric and polarimetric observations of two relatively nearby blazars, 1ES 1959+650 and HB89 2201+044, that were obtained using the Calar Alto Faint Object Spectrograph mounted at the 2.2 m telescope in Calar Alto, Spain. An outstanding characteristic of these two blazars is the presence of well resolved host galaxies. This particular feature allows us to produce a study of their intrinsic polarization, a measurement of the polarization state of the galactic nucleus unaffected by the host galaxy. To carry out this work, we computed photometric fluxes from which we calculated the degree and orientation of the blazars polarization. Then, we analyzed the depolarizing effect introduced by the host galaxy with the main goal to recover the intrinsic polarization of the galactic nucleus, carefully taking into consideration the spurious polarimetric variability introduced by changes in seeing along the observing nights. We find that the two blazars do not present intra-night photo-polarimetric variability, although we do detect a significant inter-night variability. Comparing polarimetric values before and after accounting for the host galaxies, we observe a significant difference in the polarization degree of about 1% in the case of 1ES 1959+650, and 0.3% in the case of HB89 2201+044, thus evidencing the non-negligible impact introduced by the host galaxies. We note that this host galaxy effect depends on the waveband, and varies with changing seeing conditions, so it should be particularly considered when studying frequency-dependent polarization in blazars. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated

  12. SUPPLEMENT: “GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP” (2016, ApJL, 829, L15)

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben [Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Price, Larry R.; Raymond, Vivien [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nissanke, Samaya [Institute of Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Coughlin, Michael [Department of Physics and Astronomy, Harvard University, Cambridge, MA 02138 (United States); Urban, Alex L. [Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Vitale, Salvatore; Mohapatra, Satya [LIGO Laboratory, Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139 (United States); Graff, Philip [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2016-09-01

    This is a supplement to the Letter of Singer et al., in which we demonstrated a rapid algorithm for obtaining joint 3D estimates of sky location and luminosity distance from observations of binary neutron star mergers with Advanced LIGO and Virgo. We argued that combining the reconstructed volumes with positions and redshifts of possible host galaxies can provide large-aperture but small field of view instruments with a manageable list of targets to search for optical or infrared emission. In this Supplement, we document the new HEALPix-based file format for 3D localizations of gravitational-wave transients. We include Python sample code to show the reader how to perform simple manipulations of the 3D sky maps and extract ranked lists of likely host galaxies. Finally, we include mathematical details of the rapid volume reconstruction algorithm.

  13. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  14. Parasite fitness traits under environmental variation: disentangling the roles of a chytrid's immediate host and external environment.

    Science.gov (United States)

    Van den Wyngaert, Silke; Vanholsbeeck, Olivier; Spaak, Piet; Ibelings, Bas W

    2014-10-01

    Parasite environments are heterogeneous at different levels. The first level of variability is the host itself. The second level represents the external environment for the hosts, to which parasites may be exposed during part of their life cycle. Both levels are expected to affect parasite fitness traits. We disentangle the main and interaction effects of variation in the immediate host environment, here the diatom Asterionella formosa (variables host cell volume and host condition through herbicide pre-exposure) and variation in the external environment (variables host density and acute herbicide exposure) on three fitness traits (infection success, development time and reproductive output) of a chytrid parasite. Herbicide exposure only decreased infection success in a low host density environment. This result reinforces the hypothesis that chytrid zoospores use photosynthesis-dependent chemical cues to locate its host. At high host densities, chemotaxis becomes less relevant due to increasing chance contact rates between host and parasite, thereby following the mass-action principle in epidemiology. Theoretical support for this finding is provided by an agent-based simulation model. The immediate host environment (cell volume) substantially affected parasite reproductive output and also interacted with the external herbicide exposed environment. On the contrary, changes in the immediate host environment through herbicide pre-exposure did not increase infection success, though it had subtle effects on zoospore development time and reproductive output. This study shows that both immediate host and external environment as well as their interaction have significant effects on parasite fitness. Disentangling these effects improves our understanding of the processes underlying parasite spread and disease dynamics.

  15. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.

    Science.gov (United States)

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-08-04

    Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Under thermal stress

  16. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Directory of Open Access Journals (Sweden)

    Tambutte Sylvie

    2009-08-01

    Full Text Available Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C. The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching and the non stressed states (control were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich. Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress

  17. Spitzer Observations of GRB Hosts: A Legacy Approach

    Science.gov (United States)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  18. Representation and judgement of possible host rock formations and areas under consideration of geology and safety

    International Nuclear Information System (INIS)

    2005-08-01

    This comprehensive report issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the representation and judgement of possible host rock formations and areas as far as safety and geological aspects are concerned. Nagra has to demonstrate the basic feasibility of the safe disposal of spent fuel (SF), vitrified high-level waste (HLW) and long-lived intermediate-level waste (ILW) in a deep geological repository, The report shows which possibilities for the disposal of SF, HLW and ILW exist in Switzerland and summarises the current state of general academic and applied geo-scientific research as well as the project-specific knowledge base that has been developed by Nagra over the past 30 years. The descriptions and assessments of the potential host rocks and areas are based on attributes that take into account experience gained both in Switzerland and abroad and are in agreement with international practice. An assessment of potential siting areas is looked at, in view of the preparation of a General Licence application, Nagra will also have to consider land-use planning and socio-economic aspects. This will be carried out in the next step according to the Sectoral Plan for Geological Disposal under the guidance of the relevant Swiss authorities

  19. Hosting Capacity of Solar Photovoltaics in Distribution Grids under Different Pricing Schemes

    DEFF Research Database (Denmark)

    Carollo, Riccardo; Chaudhary, Sanjay Kumar; Pillai, Jayakrishnan Radhakrishna

    2015-01-01

    Most of the solar photovoltaic (SPV) installations are connected to distribution networks. The majority of these systems are represented by single-phase rooftop SPVs connected to residential low voltage (LV) grids. The large SPV shares lead to grid integration issues such as voltage rise....... The results show that with the present TOU tariffs the EV integration in LV networks does not ease the grid bottlenecks for large PV penetration. Under the Net metering and DLMP the EV integration in LV grids tend to increase the PV hosting capacity......., overloading of the network components, voltage phase unbalance etc. A rapid expansion of Electric Vehicles (EVs) technology is estimated, whose connection is also expected to take place in the LV networks. EVs might represent a possible solution to the SPV integration issues as they can be used as fast...

  20. Starbursts and IRAS galaxies

    International Nuclear Information System (INIS)

    Belfort, P.

    1987-01-01

    Several observational hints suggest that most of the IRAS galaxies are undergoing bursts of star formation. A simple photometric model of starburst galaxy was developed in order to check whether starburst events are really able to account for the far-infrared and optical properties of all the IRAS galaxies with HII region-like spectra. FIR activities up to a few hundred are actually easily reached with rather small bursts in red host-galaxies, and L IR /L B , EW(Hα) and U-B) versus (B-V) diagrams can be used to estimate burst strength and extinction. But more observations are required to conclude about the most extreme cases. Four typical infrared-selected IRAS galaxies are presented and their burst strength and extinction estimated

  1. Sustainability of a Compartmentalized Host-Parasite Replicator System under Periodic Washout-Mixing Cycles

    Directory of Open Access Journals (Sweden)

    Taro Furubayashi

    2018-01-01

    Full Text Available The emergence and dominance of parasitic replicators are among the major hurdles for the proliferation of primitive replicators. Compartmentalization of replicators is proposed to relieve the parasite dominance; however, it remains unclear under what conditions simple compartmentalization uncoupled with internal reaction secures the long-term survival of a population of primitive replicators against incessant parasite emergence. Here, we investigate the sustainability of a compartmentalized host-parasite replicator (CHPR system undergoing periodic washout-mixing cycles, by constructing a mathematical model and performing extensive simulations. We describe sustainable landscapes of the CHPR system in the parameter space and elucidate the mechanism of phase transitions between sustainable and extinct regions. Our findings revealed that a large population size of compartments, a high mixing intensity, and a modest amount of nutrients are important factors for the robust survival of replicators. We also found two distinctive sustainable phases with different mixing intensities. These results suggest that a population of simple host–parasite replicators assumed before the origin of life can be sustained by a simple compartmentalization with periodic washout-mixing processes.

  2. The origin of galaxies

    International Nuclear Information System (INIS)

    Carr, B.J.

    1982-01-01

    The existence of galaxies implies that the early Universe must have contained initial density fluctuations. Overdense regions would then expand more slowly than the background and eventually - providing the fluctuations were not damped out first - they would stop expanding altogether and collapse to form bound objects. To understand how galaxies form we therefore need to know: how the initial density fluctuations arise, under what circumstances they evolve into bound objects, and how the bound objects develop the observed characteristics of galaxies. (author)

  3. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  4. Black Hole Caught Zapping Galaxy into Existence?

    Science.gov (United States)

    2009-11-01

    equivalent to about 350 Suns per year, one hundred times more than rates for typical galaxies in the local Universe. Earlier observations had shown that the companion galaxy is, in fact, under fire: the quasar is spewing a jet of highly energetic particles towards its companion, accompanied by a stream of fast-moving gas. The injection of matter and energy into the galaxy indicates that the quasar itself might be inducing the formation of stars and thereby creating its own host galaxy; in such a scenario, galaxies would have evolved from clouds of gas hit by the energetic jets emerging from quasars. "The two objects are bound to merge in the future: the quasar is moving at a speed of only a few tens of thousands of km/h with respect to the companion galaxy and their separation is only about 22 000 light-years," says Elbaz. "Although the quasar is still 'naked', it will eventually be 'dressed' when it merges with its star-rich companion. It will then finally reside inside a host galaxy like all other quasars." Hence, the team have identified black hole jets as a possible driver of galaxy formation, which may also represent the long-sought missing link to understanding why the mass of black holes is larger in galaxies that contain more stars [3]. "A natural extension of our work is to search for similar objects in other systems," says Jahnke. Future instruments, such as the Atacama Large Millimeter/submillimeter Array, the European Extremely Large Telescope and the NASA/ESA/CSA James Webb Space Telescope will be able to search for such objects at even larger distances from us, probing the connection between black holes and the formation of galaxies in the more distant Universe. Notes [1] Supermassive black holes are found in the cores of most large galaxies; unlike the inactive and starving one sitting at the centre of the Milky Way, a fraction of them are said to be active, as they eat up enormous amounts of material. These frantic actions produce a copious release of energy

  5. PEARS Emission Line Galaxies

    Science.gov (United States)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  6. Bacillus anthracis secretome time course under host-simulated conditions and identification of immunogenic proteins

    Directory of Open Access Journals (Sweden)

    Whittington Jessica

    2007-07-01

    Full Text Available Abstract Background The secretion time course of Bacillus anthracis strain RA3R (pXO1+/pXO2- during early, mid, and late log phase were investigated under conditions that simulate those encountered in the host. All of the identified proteins were analyzed by different software algorithms to characterize their predicted mode of secretion and cellular localization. In addition, immunogenic proteins were identified using sera from humans with cutaneous anthrax. Results A total of 275 extracellular proteins were identified by a combination of LC MS/MS and MALDI-TOF MS. All of the identified proteins were analyzed by SignalP, SecretomeP, PSORT, LipoP, TMHMM, and PROSITE to characterize their predicted mode of secretion, cellular localization, and protein domains. Fifty-three proteins were predicted by SignalP to harbor the cleavable N-terminal signal peptides and were therefore secreted via the classical Sec pathway. Twenty-three proteins were predicted by SecretomeP for secretion by the alternative Sec pathway characterized by the lack of typical export signal. In contrast to SignalP and SecretomeP predictions, PSORT predicted 171 extracellular proteins, 7 cell wall-associated proteins, and 6 cytoplasmic proteins. Moreover, 51 proteins were predicted by LipoP to contain putative Sec signal peptides (38 have SpI sites, lipoprotein signal peptides (13 have SpII sites, and N-terminal membrane helices (9 have transmembrane helices. The TMHMM algorithm predicted 25 membrane-associated proteins with one to ten transmembrane helices. Immunogenic proteins were also identified using sera from patients who have recovered from anthrax. The charge variants (83 and 63 kDa of protective antigen (PA were the most immunodominant secreted antigens, followed by charge variants of enolase and transketolase. Conclusion This is the first description of the time course of protein secretion for the pathogen Bacillus anthracis. Time course studies of protein secretion and

  7. Galaxy collisions

    International Nuclear Information System (INIS)

    Combes, F.

    1987-01-01

    Galaxies are not isolated systems of stars and gas, ''independent universes'' as believed by astronomers about ten years ago, but galaxies are formed and evolve by interaction with their environment, and in particular with their nearest neighbors. Gravitational interactions produce enormous tides in the disk of spiral galaxies, generate spiral arms and trigger bursts of star formation. Around elliptical galaxies, the collision with a small companion produces a series of waves, or shells. A galaxy interaction leads, in most cases, to the coalescence of the two coliders; therefore all galaxies are not formed just after the Big-Bang, when matter recombines: second generation galaxies are still forming now by galaxy mergers, essentially elliptical galaxies, but also compact dwarfs. Collisions between galaxies could also trigger activity in nuclei for radiogalaxies and quasars [fr

  8. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  9. THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE

    International Nuclear Information System (INIS)

    Reddick, Rachel M.; Wechsler, Risa H.; Behroozi, Peter S.; Tinker, Jeremy L.

    2013-01-01

    We provide new constraints on the connection between galaxies in the local universe, identified by the Sloan Digital Sky Survey, and dark matter halos and their constituent substructures in the Λ-cold dark matter model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (1) which halo property is most closely associated with galaxy stellar masses and luminosities, (2) how much scatter is in this relationship, and (3) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 ± 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy-halo connection can be modeled with sufficient fidelity for future precision studies of the dark universe.

  10. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret

    1990-01-01

    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  11. Riboflavin Provisioning Underlies Wolbachia’s Fitness Contribution to Its Insect Host

    Science.gov (United States)

    Moriyama, Minoru; Nikoh, Naruo; Hosokawa, Takahiro

    2015-01-01

    ABSTRACT Endosymbiotic bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial ecosystem. The success of Wolbachia has been ascribed to its remarkable phenotypic effects on host reproduction, such as cytoplasmic incompatibility, whereby maternally inherited bacteria can spread in their host populations at the expense of their host’s fitness. Meanwhile, recent theoretical as well as empirical studies have unveiled that weak and/or conditional positive fitness effects may significantly facilitate invasion and spread of Wolbachia infections in host populations. Here, we report a previously unrecognized nutritional aspect, the provision of riboflavin (vitamin B2), that potentially underpins the Wolbachia-mediated fitness benefit to insect hosts. A comparative genomic survey for synthetic capability of B vitamins revealed that only the synthesis pathway for riboflavin is highly conserved among diverse insect-associated Wolbachia strains, while the synthesis pathways for other B vitamins were either incomplete or absent. Molecular phylogenetic and genomic analyses of riboflavin synthesis genes from diverse Wolbachia strains revealed that, in general, their phylogenetic relationships are concordant with Wolbachia’s genomic phylogeny, suggesting that the riboflavin synthesis genes have been stably maintained in the course of Wolbachia evolution. In rearing experiments with bedbugs (Cimex lectularius) on blood meals in which B vitamin contents were manipulated, we demonstrated that Wolbachia’s riboflavin provisioning significantly contributes to growth, survival, and reproduction of the insect host. These results provide a physiological basis upon which Wolbachia-mediated positive fitness consequences are manifested and shed new light on the ecological and evolutionary relevance of Wolbachia infections. PMID:26556278

  12. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  13. The high energy galaxy

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  14. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    OpenAIRE

    Tambutte Sylvie; Tambutte Eric; Ferrier-Pages Christine; Mone Yves; Duval David; Foure Laurent; Roger Emmanuel; Adjeroud Mehdi; Vidal-Dupiol Jeremie; Zoccola Didier; Allemand Denis; Mitta Guillaume

    2009-01-01

    Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better unde...

  15. ORBITAL DEPENDENCE OF GALAXY PROPERTIES IN SATELLITE SYSTEMS OF GALAXIES

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom

    2010-01-01

    We study the dependence of satellite galaxy properties on the distance to the host galaxy and the orbital motion (prograde and retrograde orbits) using the Sloan Digital Sky Survey (SDSS) data. From SDSS Data Release 7, we find 3515 isolated satellite systems of galaxies at z -1 . It is found that the radial distribution of early-type satellites in prograde orbit is strongly concentrated toward the host while that of retrograde ones shows much less concentration. We also find the orbital speed of late-type satellites in prograde orbit increases as the projected distance to the host (R) decreases while the speed decreases for those in retrograde orbit. At R less than 0.1 times the host virial radius (R vir,host ), the orbital speed decreases in both prograde and retrograde orbit cases. Prograde satellites are on average fainter than retrograde satellites for both early and late morphological types. The u - r color becomes redder as R decreases for both prograde and retrograde orbit late-type satellites. The differences between prograde and retrograde orbit satellite galaxies may be attributed to their different origin or the different strength of physical processes that they have experienced through hydrodynamic interactions with their host galaxies.

  16. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  17. A NOVEL APPROACH TO CONSTRAIN THE MASS RATIO OF MINOR MERGERS IN ELLIPTICAL GALAXIES: APPLICATION TO NGC 4889, THE BRIGHTEST CLUSTER GALAXY IN COMA

    International Nuclear Information System (INIS)

    Gu Meng; Huang Song; Ho, Luis C.; Peng, Chien Y.

    2013-01-01

    Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (M I ≈ –18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of ∼90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies

  18. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen,; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ.

    2005-06-07

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We also find several ({approx}11) much fainter galaxies consistent with the XRT position from deep Keck imaging and have obtained Gemini spectra of several of these sources. Nevertheless we argue, based on positional coincidences, that the GRB and the bright elliptical are likely to be physically related. We thus have discovered reasonable evidence that at least some short-duration, hard-spectra GRBs are at cosmological distances. We also explore the connection of the properties of the burst and the afterglow, finding that GRB050509b was underluminous in both of these relative to long-duration GRBs. However, we also demonstrate that the ratio of the blast-wave energy to the {gamma}-ray energy is consistent with that

  19. AGAPE: the gravitational micro-lensing effect for the search for black matter under the form of MACHOs in direction of the M31 galaxy

    International Nuclear Information System (INIS)

    Le Du, Yann

    2000-01-01

    After a presentation of the physical framework and notions of observational cosmology, the author of this research thesis presents the phenomenon of gravitational micro-lensing on which AGAPE (Andromeda Galaxy Amplified Pixel Experiment) is based to detect the possible presence of baryonic black matter under the form of MACHOs (Massive compact halo objects, one of the possible candidates for black matter) within the halo of our galaxy and in that of a far galaxy, M31. He gives a precise description of observations performed by AGAPE at the Pic du Midi between 1994 and 1996. In order to observe M31, a new method has been developed (the pixel method) which is based on the light curve of each pixel of the M31 image. The author then reports the processing of light curves which notably aimed at reducing the discrepancy of points on these curves and at allowing a selection of interesting curves to be performed. He reports the characterisation of the searched signal from these curves, and then discusses the obtained results

  20. ALIGNMENTS OF GROUP GALAXIES WITH NEIGHBORING GROUPS

    International Nuclear Information System (INIS)

    Wang Yougang; Chen Xuelei; Park, Changbom; Yang Xiaohu; Choi, Yun-Young

    2009-01-01

    Using a sample of galaxy groups found in the Sloan Digital Sky Survey Data Release 4, we measure the following four types of alignment signals: (1) the alignment between the distributions of the satellites of each group relative to the direction of the nearest neighbor group (NNG); (2) the alignment between the major axis direction of the central galaxy of the host group (HG) and the direction of the NNG; (3) the alignment between the major axes of the central galaxies of the HG and the NNG; and (4) the alignment between the major axes of the satellites of the HG and the direction of the NNG. We find strong signal of alignment between the satellite distribution and the orientation of central galaxy relative to the direction of the NNG, even when the NNG is located beyond 3r vir of the host group. The major axis of the central galaxy of the HG is aligned with the direction of the NNG. The alignment signals are more prominent for groups that are more massive and with early-type central galaxies. We also find that there is a preference for the two major axes of the central galaxies of the HG and NNG to be parallel for the system with both early central galaxies, however, not for the systems with both late-type central galaxies. For the orientation of satellite galaxies, we do not find any significant alignment signals relative to the direction of the NNG. From these four types of alignment measurements, we conclude that the large-scale environment traced by the nearby group affects primarily the shape of the host dark matter halo, and hence also affects the distribution of satellite galaxies and the orientation of central galaxies. In addition, the NNG directly affects the distribution of the satellite galaxies by inducing asymmetric alignment signals, and the NNG at very small separation may also contribute a second-order impact on the orientation of the central galaxy in the HG.

  1. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and

  2. Galaxy formation

    International Nuclear Information System (INIS)

    Gribbin, J.

    1979-01-01

    The current debate on the origin and evolution of galaxies is reviewed and evidence to support the so-called 'isothermal' and 'adiabatic' fluctuation models considered. It is shown that new theories have to explain the formation of both spiral and elliptical galaxies and the reason for their differences. It is stated that of the most recent models the best indicates that rotating spiral galaxies are formed naturally when gas concentrates in the centre of a great halo and forms stars while ellipticals are explained by later interactions between spiral galaxies and merging, which can cancel out the rotation while producing an elliptical galaxy in which the stars, coming from two original galaxies, follow very elliptical, anisotropic orbits. (UK)

  3. Hubble Space Telescope Observations of Extended [O III]λ 5007 Emission in Nearby QSO2s: New Constraints on AGN Host Galaxy Interaction

    Science.gov (United States)

    Fischer, Travis C.; Kraemer, S. B.; Schmitt, H. R.; Longo Micchi, L. F.; Crenshaw, D. M.; Revalski, M.; Vestergaard, M.; Elvis, M.; Gaskell, C. M.; Hamann, F.; Ho, L. C.; Hutchings, J.; Mushotzky, R.; Netzer, H.; Storchi-Bergmann, T.; Straughn, A.; Turner, T. J.; Ward, M. J.

    2018-04-01

    We present a Hubble Space Telescope survey of extended [O III] λ5007 emission for a sample of 12 nearby (z continuing to be kinematically influenced by the central active galactic nucleus (AGN) out to an average radius of ∼1130 pc. These findings question the effectiveness of AGNs being capable of clearing material from their host bulge in the nearby universe and suggest that disruption of gas by AGN activity may prevent star formation without requiring evacuation. Additionally, we find a dichotomy in our targets when comparing [O III] radial extent and nuclear FWHM, where QSO2s with compact [O III] morphologies typically possess broader nuclear emission lines.

  4. Host suitability of soybean and corn genotypes to the root lesion caused by nematode under natural infestation conditions

    Directory of Open Access Journals (Sweden)

    Anderli Divina Ferreira Rios

    2016-04-01

    Full Text Available ABSTRACT: Among the nematode management strategies, genetic resistance is one of the most appropriate and desirable. However, resistant soybean and corn genotypes resistant to Pratylenchus brachyurus are not available up to the moment. The objective of this study was to evaluate the host suitability of 50 soybean and 38 corn genotypes to P. brachyurus under natural infestation. Soybean genotypes BRSGO Chapadões, BRSGO Paraíso, M-Soy 7211 RR, M-Soy 8008 RR, Emgopa 313 RR, M-Soy 8411, BRSGO Juliana RR, Emgopa 316 RR, BRSGO Luziânia RR and TMG 103 RR, and corn genotype Agromem 30A06 reduced the nematode population during the evaluation period.

  5. Demise of faint satellites around isolated early-type galaxies

    Science.gov (United States)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  6. THE ASSEMBLY OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We study the formation of 53 galaxy cluster-size dark matter halos (M = 10 14.0-14.76 M sun ) formed within a pair of cosmological Λ cold dark matter N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host ∼0.3 L * galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'preprocessing' in the group environment prior to their accretion into the cluster. On average, 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; less than 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past (∼<6 Gyr) than a field halo of the same mass. These results suggest that local cluster processes such as ram pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass, and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with ∼20% incorporated into the cluster halo more than 7 Gyr ago and ∼20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate timescale for late-type to early-type transformation within the cluster environment to be ∼6 Gyr.

  7. Isothermal Bondi Accretion in Jaffe and Hernquist Galaxies with a Central Black Hole: Fully Analytical Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ciotti, Luca; Pellegrini, Silvia, E-mail: luca.ciotti@unibo.it [Department of Physics and Astronomy, University of Bologna, via Piero Gobetti 93/2, I-40129 Bologna (Italy)

    2017-10-10

    One of the most active fields of research of modern-day astrophysics is that of massive black hole formation and coevolution with the host galaxy. In these investigations, ranging from cosmological simulations, to semi-analytical modeling, to observational studies, the Bondi solution for accretion on a central point-mass is widely adopted. In this work we generalize the classical Bondi accretion theory to take into account the effects of the gravitational potential of the host galaxy, and of radiation pressure in the optically thin limit. Then, we present the fully analytical solution, in terms of the Lambert–Euler W -function, for isothermal accretion in Jaffe and Hernquist galaxies with a central black hole. The flow structure is found to be sensitive to the shape of the mass profile of the host galaxy. These results and the formulae that are provided, most importantly, the one for the critical accretion parameter, allow for a direct evaluation of all flow properties, and are then useful for the abovementioned studies. As an application, we examine the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the black hole, under the hypothesis of classical Bondi accretion. An overestimate is obtained from regions close to the black hole, and an underestimate outside a few Bondi radii; the exact position of the transition between the two kinds of departure depends on the galaxy model.

  8. Why are classical bulges more common in S0 galaxies than in spiral galaxies?

    Science.gov (United States)

    Mishra, Preetish K.; Wadadekar, Yogesh; Barway, Sudhanshu

    2018-05-01

    In this paper, we try to understand why the classical bulge fraction observed in S0 galaxies is significantly higher than that in spiral galaxies. We carry out a comparative study of the bulge and global properties of a sample of spiral and S0 galaxies in a fixed environment. Our sample is flux limited and contains 262 spiral and 155 S0 galaxies drawn from the Sloan Digital Sky Survey. We have classified bulges into classical and pseudobulge categories based on their position on the Kormendy diagram. Dividing our sample into bins of galaxy stellar mass, we find that the fraction of S0 galaxies hosting a classical bulge is significantly higher than the classical bulge fraction seen in spirals even at fixed stellar mass. We have compared the bulge and the global properties of spirals and S0 galaxies in our sample and find indications that spiral galaxies which host a classical bulge, preferentially get converted into S0 population as compared to pseudobulge hosting spirals. By studying the star formation properties of our galaxies in the NUV - r color-mass diagram, we find that the pseudobulge hosting spirals are mostly star forming while the majority of classical bulge host spirals are in the green valley or in the passive sequence. We suggest that some internal process, such as AGN feedback or morphological quenching due to the massive bulge, quenches these classical bulge hosting spirals and transforms them into S0 galaxies, thus resulting in the observed predominance of the classical bulge in S0 galaxies.

  9. ALMA view of RX J1131-1231: Sub-kpc CO (2-1) mapping of a molecular disk in a lensed star-forming quasar host galaxy

    Science.gov (United States)

    Paraficz, D.; Rybak, M.; McKean, J. P.; Vegetti, S.; Sluse, D.; Courbin, F.; Stacey, H. R.; Suyu, S. H.; Dessauges-Zavadsky, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2018-05-01

    We present ALMA 2-mm continuum and CO (2-1) spectral line imaging of the gravitationally lensed z = 0.654 star-forming/quasar composite RX J1131-1231 at 240-400 mas angular resolution. The continuum emission is found to be compact and coincident with the optical emission, whereas the molecular gas forms a complete Einstein ring, which shows strong differential magnification. The de-lensed source structure is determined on 400-parsec-scales resolution using a Bayesian pixelated visibility-fitting lens modelling technique. The reconstructed molecular gas velocity-field is consistent with a large rotating disk with a major-axis FWHM 9.4 kpc at an inclination angle of i = 54° and with a maximum rotational velocity of 280 km s-1. From dynamical model fitting we find an enclosed mass within 5 kpc of M(r conversion factor of α = 5.5 ± 2.0 M⊙ (K km s-1 pc2)-1. This suggests that the star-formation efficiency is dependent on the host galaxy morphology as opposed to the nature of the AGN. The far-infrared continuum spectral energy distribution shows evidence for heated dust, equivalent to an obscured star-formation rate of SFR = 69-25+41 × (7.3/μIR) M⊙ yr-1, which demonstrates the composite star-forming and AGN nature of this system.

  10. Galaxy formation

    International Nuclear Information System (INIS)

    Silk, J.; Di Cintio, A.; Dvorkin, I.

    2014-01-01

    Galaxy formation is at the forefront of observation and theory in cosmology. An improved understanding is essential for improving our knowledge both of the cosmological parameters, of the contents of the universe, and of our origins. In these lectures intended for graduate students, galaxy formation theory is reviewed and confronted with recent observational issues. In lecture 1, the following topics are presented: star formation considerations, including IMF, star formation efficiency and star formation rate, the origin of the galaxy luminosity function, and feedback in dwarf galaxies. In lecture 2, we describe formation of disks and massive spheroids, including the growth of supermassive black holes, negative feedback in spheroids, the AGN-star formation connection, star formation rates at high redshift and the baryon fraction in galaxies.

  11. DISCOVERY OF A PSEUDOBULGE GALAXY LAUNCHING POWERFUL RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Kotilainen, Jari K.; Olguín-Iglesias, Alejandro [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); León-Tavares, Jonathan; Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, B-9000 Gent (Belgium); Anórve, Christopher [Facultad de Ciencias de la Tierra y del Espacio de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa, México (Mexico); Chavushyan, Vahram; Carrasco, Luis, E-mail: jarkot@utu.fi [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico)

    2016-12-01

    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole–galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.

  12. GAS OUTFLOWS IN SEYFERT GALAXIES: EFFECTS OF STAR FORMATION VERSUS AGN FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Melioli, C.; Pino, E. M. de Gouveia Dal, E-mail: claudio.melioli@iag.usp.br, E-mail: dalpino@iag.usp.br [Department of Astronomy (IAG-USP), University of Sao Paulo (Brazil)

    2015-10-20

    Large-scale, weakly collimated outflows are very common in galaxies with large infrared luminosities. In complex systems in particular, where intense star formation (SF) coexists with an active galactic nucleus (AGN), it is not clear yet from observations whether the SF, the AGN, or both are driving these outflows. Accreting supermassive black holes are expected to influence their host galaxies through kinetic and radiative feedback processes, but in a Seyfert galaxy, where the energy emitted in the nuclear region is comparable to that of the body of the galaxy, it is possible that stellar activity is also playing a key role in these processes. In order to achieve a better understanding of the mechanisms driving the gas evolution especially at the nuclear regions of these galaxies, we have performed high-resolution three-dimensional hydrodynamical simulations with radiative cooling considering the feedback from both SF regions, including supernova (Type I and II) explosions and an AGN jet emerging from the central region of the active spiral galaxy. We computed the gas mass lost by the system, separating the role of each of these injection energy sources on the galaxy evolution, and found that at scales within 1 kpc an outflow can be generally established considering intense nuclear SF only. The jet alone is unable to drive a massive gas outflow, although it can sporadically drag and accelerate clumps of the underlying outflow to very high velocities.

  13. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    Science.gov (United States)

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow. Copyright © 2015, American Association for the Advancement of Science.

  14. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease.

    Science.gov (United States)

    Imhann, Floris; Vich Vila, Arnau; Bonder, Marc Jan; Fu, Jingyuan; Gevers, Dirk; Visschedijk, Marijn C; Spekhorst, Lieke M; Alberts, Rudi; Franke, Lude; van Dullemen, Hendrik M; Ter Steege, Rinze W F; Huttenhower, Curtis; Dijkstra, Gerard; Xavier, Ramnik J; Festen, Eleonora A M; Wijmenga, Cisca; Zhernakova, Alexandra; Weersma, Rinse K

    2018-01-01

    Patients with IBD display substantial heterogeneity in clinical characteristics. We hypothesise that individual differences in the complex interaction of the host genome and the gut microbiota can explain the onset and the heterogeneous presentation of IBD. Therefore, we performed a case-control analysis of the gut microbiota, the host genome and the clinical phenotypes of IBD. Stool samples, peripheral blood and extensive phenotype data were collected from 313 patients with IBD and 582 truly healthy controls, selected from a population cohort. The gut microbiota composition was assessed by tag-sequencing the 16S rRNA gene. All participants were genotyped. We composed genetic risk scores from 11 functional genetic variants proven to be associated with IBD in genes that are directly involved in the bacterial handling in the gut: NOD2 , CARD9 , ATG16L1 , IRGM and FUT2 . Strikingly, we observed significant alterations of the gut microbiota of healthy individuals with a high genetic risk for IBD: the IBD genetic risk score was significantly associated with a decrease in the genus Roseburia in healthy controls (false discovery rate 0.017). Moreover, disease location was a major determinant of the gut microbiota: the gut microbiota of patients with colonic Crohn's disease (CD) is different from that of patients with ileal CD, with a decrease in alpha diversity associated to ileal disease (p=3.28×10 -13 ). We show for the first time that genetic risk variants associated with IBD influence the gut microbiota in healthy individuals. Roseburia spp are acetate-to-butyrate converters, and a decrease has already been observed in patients with IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2014-12-01

    Endosymbiosis between symbiotic Chlorella and alga-free Paramecium bursaria cells can be induced by mixing them. To establish the endosymbiosis, algae must acquire temporary resistance to the host lysosomal enzymes in the digestive vacuoles (DVs). When symbiotic algae isolated from the alga-bearing paramecia are kept under a constant dark conditions for 24 h before mixing with the alga-free paramecia, almost all algae are digested in the host DVs. To examine the cause of algal acquisition to the host lysosomal enzymes, the isolated algae were kept under a constant light conditions with or without a photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea for 24 h, and were mixed with alga-free paramecia. Unexpectedly, most of the algae were not digested in the DVs irrespective of the presence of the inhibitor. Addition of 1 mM maltose, a main photosynthetic product of the symbiotic algae or of a supernatant of the isolated algae kept for 24 h under a constant light conditions, did not rescue the algal digestion in the DVs. These observations reveal that unknown factors induced by light are a prerequisite for algal resistance to the host lysosomal enzymes. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  16. The post-infall evolution of a satellite galaxy

    OpenAIRE

    {Nichols} M.; {Revaz} Y.; {Jablonka} P.

    2015-01-01

    As galaxy simulations increase in resolution more attention is being paid towards the evolution of dwarf galaxies and how the simulations compare to observations. Despite this increasing resolution we are however, far away from resolving the interactions of satellite dwarf galaxies and the hot coronae which surround host galaxies. We describe a new method which focuses only on the local region surrounding an infalling dwarf in an effort to understand how the hot baryonic halo will alter the c...

  17. Globular Clusters - Guides to Galaxies

    CERN Document Server

    Richtler, Tom; Joint ESO-FONDAP Workshop on Globular Clusters

    2009-01-01

    The principal question of whether and how globular clusters can contribute to a better understanding of galaxy formation and evolution is perhaps the main driving force behind the overall endeavour of studying globular cluster systems. Naturally, this splits up into many individual problems. The objective of the Joint ESO-FONDAP Workshop on Globular Clusters - Guides to Galaxies was to bring together researchers, both observational and theoretical, to present and discuss the most recent results. Topics covered in these proceedings are: internal dynamics of globular clusters and interaction with host galaxies (tidal tails, evolution of cluster masses), accretion of globular clusters, detailed descriptions of nearby cluster systems, ultracompact dwarfs, formations of massive clusters in mergers and elsewhere, the ACS Virgo survey, galaxy formation and globular clusters, dynamics and kinematics of globular cluster systems and dark matter-related problems. With its wide coverage of the topic, this book constitute...

  18. Deficiency of normal galaxies among Markaryan galaxies

    International Nuclear Information System (INIS)

    Iyeveer, M.M.

    1986-01-01

    Comparison of the morphological types of Markaryan galaxies and other galaxies in the Uppsala catalog indicates a strong deficiency of normal ellipticals among the Markaryan galaxies, for which the fraction of type E galaxies is ≤ 1% against 10% among the remaining galaxies. Among the Markaryan galaxies, an excess of barred galaxies is observed - among the Markaryan galaxies with types Sa-Scd, approximately half or more have bars, whereas among the remaining galaxies of the same types bars are found in about 1/3

  19. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  20. A Novel Approach to Constrain the Mass Ratio of Minor Mergers in Elliptical Galaxies: Application to NGC 4889, the Brightest Cluster Galaxy in Coma

    Science.gov (United States)

    Gu, Meng; Ho, Luis C.; Peng, Chien Y.; Huang, Song

    2013-08-01

    Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (MI ≈ -18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of ~90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555.

  1. Evolution of dwarf galaxies in the Centaurus A group

    OpenAIRE

    Makarova, L.; Makarov, D.

    2007-01-01

    We consider star formation properties of dwarf galaxies in Cen A group observed within our HST/ACS projects number 9771 and 10235. We model color-magnitude diagrams of the galaxies under consideration and measure star formation rate and metallicity dependence on time. We study environmental dependence of the galaxy evolution and probable origin of the dwarf galaxies in the group.

  2. Prevotella as a Hub for Vaginal Microbiota under the Influence of Host Genetics and Their Association with Obesity.

    Science.gov (United States)

    Si, Jiyeon; You, Hyun Ju; Yu, Junsun; Sung, Joohon; Ko, GwangPyo

    2017-01-11

    While the vaginal ecosystem is maintained through mutualistic relationships between the host and the vaginal bacteria, the effect of host genetics on the vaginal microbiota has not been well characterized. We examined the heritability of vaginal microbiota and its association with obesity in 542 Korean females, including 222 monozygotic and 56 dizygotic twins. The vaginal microbiota significantly varied depending on host menopausal status and bacterial vaginosis. Lactobacillus and Prevotella, whose relative abundances are strongly associated with bacterial vaginosis, were the most heritable bacteria among the beneficial and potentially pathogenic vaginal microbiota, respectively. Candidate gene analysis revealed an association between genetic variants of interleukin-5 and the abundance of Prevotella sp. Furthermore, host obesity significantly increased the diversity of the vaginal microbiota in association with Prevotella. Our results provide insight into the effect of host genetics on the vaginal microbiota and their association with both vaginal and non-vaginal health. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Host-seeking behavior and dispersal of Triatoma infestans, a vector of Chagas disease, under semi-field conditions.

    Directory of Open Access Journals (Sweden)

    Ricardo Castillo-Neyra

    2015-01-01

    Full Text Available Chagas disease affects millions of people in Latin America. The control of this vector-borne disease focuses on halting transmission by reducing or eliminating insect vector populations. Most transmission of Trypanosoma cruzi, the causative agent of Chagas disease, involves insects living within or very close to households and feeding mostly on domestic animals. As animal hosts can be intermittently present it is important to understand how host availability can modify transmission risk to humans and to characterize the host-seeking dispersal of triatomine vectors on a very fine scale. We used a semi-field system with motion-detection cameras to characterize the dispersal of Triatoma infestans, and compare the behavior of vector populations in the constant presence of hosts (guinea pigs, and after the removal of the hosts. The emigration rate - net insect population decline in original refuge - following host removal was on average 19.7% of insects per 10 days compared to 10.2% in constant host populations (p = 0.029. However, dispersal of T. infestans occurred in both directions, towards and away from the initial location of the hosts. The majority of insects that moved towards the original location of guinea pigs remained there for 4 weeks. Oviposition and mortality were observed and analyzed in the context of insect dispersal, but only mortality was higher in the group where animal hosts were removed (p-value <0.01. We discuss different survival strategies associated with the observed behavior and its implications for vector control. Removing domestic animals in infested areas increases vector dispersal from the first day of host removal. The implications of these patterns of vector dispersal in a field setting are not yet known but could result in movement towards human rooms.

  4. Black hole feedback on the first galaxies

    Science.gov (United States)

    Jeon, Myoungwon; Pawlik, Andreas H.; Greif, Thomas H.; Glover, Simon C. O.; Bromm, Volker; Milosavljević, Miloš; Klessen, Ralf S.

    2012-09-01

    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through selfconsistent, cosmological simulations. X-ray radiation fromthe accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback startingwith the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.

  5. ISW-galaxy cross correlation: a probe of dark energy clustering and distribution of dark matter tracers

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Shahram; Mollazadeh, Amir [Department of Astronomy and High Energy Physics, Faculty of Physics, Kharazmi University, Mofateh Ave., Tehran (Iran, Islamic Republic of); Baghram, Shant, E-mail: khosravi_sh@khu.ac.ir, E-mail: amirmollazadeh@khu.ac.ir, E-mail: baghram@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of)

    2016-09-01

    Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM model will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ∼10{sup 12} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ∼ 10{sup 13} M {sub ⊙} and formation redshift of z {sub f} ∼ 2.0. Using the evolved bias we improve the χ{sup 2} for the ΛCDM which reconciles the ∼1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w {sub 0} and w {sub a} in the equation of state w {sub de} = w {sub 0} + w {sub az} /(1+ z ) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.

  6. The dark side of galaxy colour

    Science.gov (United States)

    Hearin, Andrew P.; Watson, Douglas F.

    2013-10-01

    We present age distribution matching, a theoretical formalism for predicting how galaxies of luminosity L and colour C occupy dark matter haloes. Our model supposes that there are just two fundamental properties of a halo that determine the colour and brightness of the galaxy it hosts: the maximum circular velocity Vmax and the redshift zstarve that correlates with the epoch at which the star formation in the galaxy ceases. The halo property zstarve is intended to encompass physical characteristics of halo mass assembly that may deprive the galaxy of its cold gas supply and, ultimately, quench its star formation. The new, defining feature of the model is that, at fixed luminosity, galaxy colour is in monotonic correspondence with zstarve, with the larger values of zstarve being assigned redder colours. We populate an N-body simulation with a mock galaxy catalogue based on age distribution matching and show that the resulting mock galaxy distribution accurately describes a variety of galaxy statistics. Our model suggests that halo and galaxy assembly are indeed correlated. We make publicly available our low-redshift, Sloan Digital Sky Survey Mr < -19 mock galaxy catalogue, and main progenitor histories of all z = 0 haloes, at http://logrus.uchicago.edu/~aphearin

  7. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-04-01

    The combination of galaxy-galaxy lensing (GGL) and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modeling can extend the approach down to nonlinear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with large scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older halos affects the cutoff of the mean occupation function for central galaxies, with halos in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h^{-1} Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2% or better. For a sample of red Mr ≤ -20 galaxies we achieve 2% recovery at r ≳ 2 h^{-1} Mpc with EDHOD modeling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1h-1Mpc, to within the uncertainties set by our finite simulation volume.

  8. The effects of assembly bias on the inference of matter clustering from galaxy-galaxy lensing and galaxy clustering

    Science.gov (United States)

    McEwen, Joseph E.; Weinberg, David H.

    2018-07-01

    The combination of galaxy-galaxy lensing and galaxy clustering is a promising route to measuring the amplitude of matter clustering and testing modified gravity theories of cosmic acceleration. Halo occupation distribution (HOD) modelling can extend the approach down to non-linear scales, but galaxy assembly bias could introduce systematic errors by causing the HOD to vary with the large-scale environment at fixed halo mass. We investigate this problem using the mock galaxy catalogs created by Hearin & Watson (2013, HW13), which exhibit significant assembly bias because galaxy luminosity is tied to halo peak circular velocity and galaxy colour is tied to halo formation time. The preferential placement of galaxies (especially red galaxies) in older haloes affects the cutoff of the mean occupation function ⟨Ncen(Mmin)⟩ for central galaxies, with haloes in overdense regions more likely to host galaxies. The effect of assembly bias on the satellite galaxy HOD is minimal. We introduce an extended, environment-dependent HOD (EDHOD) prescription to describe these results and fit galaxy correlation measurements. Crucially, we find that the galaxy-matter cross-correlation coefficient, rgm(r) ≡ ξgm(r) . [ξmm(r)ξgg(r)]-1/2, is insensitive to assembly bias on scales r ≳ 1 h-1 Mpc, even though ξgm(r) and ξgg(r) are both affected individually. We can therefore recover the correct ξmm(r) from the HW13 galaxy-galaxy and galaxy-matter correlations using either a standard HOD or EDHOD fitting method. For Mr ≤ -19 or Mr ≤ -20 samples the recovery of ξmm(r) is accurate to 2 per cent or better. For a sample of red Mr ≤ -20 galaxies, we achieve 2 per cent recovery at r ≳ 2 h-1 Mpc with EDHOD modelling but lower accuracy at smaller scales or with a standard HOD fit. Most of our mock galaxy samples are consistent with rgm = 1 down to r = 1 h-1 Mpc, to within the uncertainties set by our finite simulation volume.

  9. Dual Active Galactic Nuclei in Nearby Galaxies

    Science.gov (United States)

    Das, Mousumi; Rubinur, Khatun; Karb, Preeti; Varghese, Ashlin; Novakkuni, Navyasree; James, Atul

    2018-04-01

    Galaxy mergers play a crucial role in the formation of massive galaxies and the buildup of their bulges. An important aspect of the merging process is the in-spiral of the supermassive black-holes (SMBHs) to the centre of the merger remnant and the eventual formation of a SMBH binary. If both the SMBHs are accreting they will form a dual or binary active galactic nucleus (DAGN). The final merger remnant is usually very bright and shows enhanced star formation. In this paper we summarise the current sample of DAGN from previous studies and describe methods that can be used to identify strong DAGN candidates from optical and spectroscopic surveys. These methods depend on the Doppler separation of the double peaked AGN emission lines, the nuclear velocity dispersion of the galaxies and their optical/UV colours. We describe two high resolution, radio observations of DAGN candidates that have been selected based on their double peaked optical emission lines (DPAGN). We also examine whether DAGN host galaxies have higher star formation rates (SFRs) compared to merging galaxies that do not appear to have DAGN. We find that the SFR is not higher for DAGN host galaxies. This suggests that the SFRs in DAGN host galaxies is due to the merging process itself and not related to the presence of two AGN in the system.

  10. Formation of double galaxies by tidal capture

    International Nuclear Information System (INIS)

    Alladin, S.M.; Potdar, A.; Sastry, K.S.

    1975-01-01

    The conditions under which double galaxies may be formed by tidal capture are considered. Estimates for the increase in the internal energy of colliding galaxies due to tidal effects are used to determine the magnitudes Vsub(cap) and Vsub(dis) of the maximum relative velocities at infinite separation required for tidal capture and tidal disruption respectively. A double galaxy will be formed by tidal capture without tidal disruption of a component if Vsub(cap)>Vsub(i) and Vsub(cap)>Vsub(dis) where Vsub(i) is the initial relative speed of the two galaxies at infinite separation. If the two galaxies are of the same dimension, formulation of double galaxies by tidal capture is possible in a close collision either if the two galaxies do not differ much in mass and density distribution or if the more massive galaxy is less centrally concentrated than the other. If it is assumed as statistics suggest, that the mass of a galaxy is proportional to the square of its radius, it follows that the probability of the formation of double galaxies by tidal capture increases with the increase in mass of the galaxies and tidal distribution does not occur in a single collision for any distance of closest approach of the two galaxies. (Auth.)

  11. A NOVEL APPROACH TO CONSTRAIN THE MASS RATIO OF MINOR MERGERS IN ELLIPTICAL GALAXIES: APPLICATION TO NGC 4889, THE BRIGHTEST CLUSTER GALAXY IN COMA

    Energy Technology Data Exchange (ETDEWEB)

    Gu Meng; Huang Song [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ho, Luis C. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Peng, Chien Y. [Giant Magellan Telescope Organization, 251 South Lake Avenue, Suite 300, Pasadena, CA 91101 (United States)

    2013-08-10

    Minor mergers are thought to be important for the buildup and structural evolution of massive elliptical galaxies. In this work, we report the discovery of a system of four shell features in NGC 4889, one of the brightest members of the Coma cluster, using optical images taken with the Hubble Space Telescope and the Sloan Digital Sky Survey. The shells are well aligned with the major axis of the host and are likely to have been formed by the accretion of a small satellite galaxy. We have performed a detailed two-dimensional photometric decomposition of NGC 4889 and of the many overlapping nearby galaxies in its vicinity. This comprehensive model allows us not only to firmly detect the low-surface brightness shells, but, crucially, also to accurately measure their luminosities and colors. The shells are bluer than the underlying stars at the same radius in the main galaxy. We make use of the colors of the shells and the color-magnitude relation of the Coma cluster to infer the luminosity (or mass) of the progenitor galaxy. The shells in NGC 4889 appear to have been produced by the minor merger of a moderate-luminosity (M{sub I} Almost-Equal-To -18.7 mag) disk (S0 or spiral) galaxy with a luminosity (mass) ratio of {approx}90:1 with respect to the primary galaxy. The novel methodology presented in this work can be exploited to decode the fossil record imprinted in the photometric substructure of other nearby early-type galaxies.

  12. INSPIRALLING SUPERMASSIVE BLACK HOLES: A NEW SIGNPOST FOR GALAXY MERGERS

    International Nuclear Information System (INIS)

    Comerford, Julia M.; Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Yan, Renbin; Cooper, Michael C.; Coil, Alison L.; Faber, S. M.; Koo, David C.; Rosario, D. J.; Dutton, Aaron A.

    2009-01-01

    We present a new technique for observationally identifying galaxy mergers spectroscopically rather than through host galaxy imaging. Our technique exploits the dynamics of supermassive black holes (SMBHs) powering active galactic nuclei (AGNs) in merger-remnant galaxies. Because structure in the universe is built up through galaxy mergers and nearly all galaxies host a central SMBH, some galaxies should possess two SMBHs near their centers as the result of a recent merger. These SMBHs spiral to the center of the resultant merger-remnant galaxy, and one or both of the SMBHs may power AGNs. Using the DEEP2 Galaxy Redshift Survey, we have examined 1881 red galaxies, of which 91 exhibit [O III] and Hβ emission lines indicative of Seyfert 2 activity. Of these, 32 AGNs have [O III] emission-line redshifts significantly different from the redshifts of the host galaxies' stars, corresponding to velocity offsets of ∼50 km s -1 to ∼300 km s -1 . Two of these AGNs exhibit double-peaked [O III] emission lines, while the remaining 30 AGNs each exhibit a single set of velocity-offset [O III] emission lines. After exploring a variety of physical models for these velocity offsets, we argue that the most likely explanation is inspiralling SMBHs in merger-remnant galaxies. Based on this interpretation, we find that roughly half of the red galaxies hosting AGNs are also merger remnants, which implies that mergers may trigger AGN activity in red galaxies. The AGN velocity offsets we find imply a merger fraction of ∼30% and a merger rate of ∼3 mergers Gyr -1 for red galaxies at redshifts 0.34 < z < 0.82.

  13. LINER galaxy properties and the local environment

    Science.gov (United States)

    Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria

    2018-05-01

    We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.

  14. The H IX galaxy survey - II. H I kinematics of H I eXtreme galaxies

    Science.gov (United States)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-05-01

    By analysing a sample of galaxies selected from the H I Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected H I content based on their optical properties, we investigate what drives these H I eXtreme (H IX) galaxies to be so H I-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed H IX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in H IX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of H IX galaxies is comparable to the control sample, (3) H IX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most H IX galaxies live in higher spin haloes than most control galaxies. These results suggest that H IX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the H IX galaxies inherits their high specific angular momentum from their halo. The H I content of H IX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array through the large program C 2705.

  15. New Members in the Galaxy Group Around Giant Radio Galaxy DA 240

    Science.gov (United States)

    Chen, Ru-Rong; Peng, Bo; Strom, Richard

    2018-05-01

    With new spectroscopic observations of group candidates around the giant radio galaxy DA 240, we have identified five new group members, increasing the number to twenty-five. While all the new members are located some distance from the host galaxy, two of them lie in one of the radio lobes, and the rest are found at a distance from the radio components. The new group members reinforce our earlier conclusion that the distribution of the DA 240 group with respect to the radio lobes is unusual among giant radio galaxy host environments.

  16. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to

  17. Superclusters and galaxy formation

    International Nuclear Information System (INIS)

    Einasto, J.; Joeveer, M.; Saar, E.

    1979-01-01

    The spatial distribution of Galaxies and Galaxy congestions in the southern galactic hemisphere is studied. The rich galaxy congestions, containing many elliptic Galaxies and radiogalaxies, are linked with each other by chains of scanty congestions with moderate content of elliptic Galaxies and radiogalaxies. The flat formation, linking the density pikes and the intermediate chains, can reasonably be called supercongestion. In the central region of supercongestions there is a thin layer of Galaxies consisting of only spiral Galaxies. The neighbouring supercongestions touch each other, while the intersupercongestion space contains no Galaxy congestions and almost no Galaxies. It is shown that such a structure was, apparently, formed before the formation of Galaxies

  18. Radio emission in peculiar galaxies

    Science.gov (United States)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  19. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose.

    Science.gov (United States)

    Auld, Stuart K J R; Edel, Kai H; Little, Tom J

    2012-10-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  20. S0 galaxies in Formax

    DEFF Research Database (Denmark)

    Bedregal...[], A. G.; Aragón-Salamanca, A.; Merrifield, M. R.

    2006-01-01

    Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1......Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1...

  1. Gas Kinematics in GRB Host Galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam

    towards a relation between gas kinematics and mass. This also provides information on how the metallicities measured from absorption and emission methods differ from each other. Finally, in a direct study I show that gas velocity widths in both phases can be used as a proxy of stellar mass...... that their interstellar media imprint on the GRBs’ spectra. Hence they are invaluable tools to probe the star formation history of the Universe back to the earliest cosmic epochs. To this end, it is essential to achieve a comprehensive picture of the interplay between star formation and its fuel, neutral gas, in GRB...... simultaneously with a high velocity resolution. For the large GRB sample, I find the spatially averaged velocity to correlate with metallicity in both gas phases. This is an indicator of a mass-metallicity relation. Moreover, the velocity widths in the two gas phases correlate with each other which too points...

  2. Large-scale galaxy bias

    Science.gov (United States)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian

    2018-02-01

    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  3. Large-scale galaxy bias

    Science.gov (United States)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian

    2018-01-01

    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  4. THE NATURE OF DAMPED Lyα SYSTEMS AND THEIR HOSTS IN THE STANDARD COLD DARK MATTER UNIVERSE

    International Nuclear Information System (INIS)

    Cen Renyue

    2012-01-01

    Using adaptive mesh refinement cosmological hydrodynamic simulations with a physically motivated supernova feedback prescription, we show that the standard cold dark matter model can account for extant observed properties of damped Lyα systems (DLAs). With detailed examination of DLAs identified for each redshift snapshot through ray tracing through the simulation volumes containing thousands of galaxies, we find the following: (1) While DLA hosts roughly trace the overall population of galaxies at all redshifts, they are always gas-rich and have tendencies of being slightly smaller and bluer. (2) The history of DLA evolution is cosmological in nature and reflects primarily the evolution of the underlying cosmic density, galaxy size, and galaxy interactions. With higher density and more interactions at high redshift the size of DLAs is a larger fraction of their virial radius. (3) The variety of DLAs at high redshift is richer with a large contribution coming from galactic aqueducts, created through close galaxy interactions. The portion of gaseous disks of galaxies where most stars reside makes a relatively small contribution to DLA incidence at z = 3-4. (4) The majority of DLAs arise in halos of mass M h = 10 10 -10 12 M ☉ at z = 1.6-4, as these galaxies dominate the overall population of galaxies then. At z = 3-4, 20%-30% of DLA hosts are Lyman break galaxies (LBGs), 10%-20% are due to galaxies more massive than LBGs, and 50%-70% are from smaller galaxies. (5) Galactic winds play an indispensable role in shaping the kinematic properties of DLAs. Specifically, the high velocity width DLAs are a mixture of those arising in high-mass, high velocity dispersion halos and those arising in smaller mass systems where cold gas clouds are entrained to high velocities by galactic winds. (6) In agreement with observations, we see a weak but noticeable evolution in DLA metallicity. The metallicity distribution centers at [Z/H] = –1.5 to –1 and spans more than three

  5. X-RAY PROPERTIES OF YOUNG EARLY-TYPE GALAXIES. I. X-RAY LUMINOSITY FUNCTION OF LOW-MASS X-RAY BINARIES

    International Nuclear Information System (INIS)

    Kim, Dong-Woo; Fabbiano, Giuseppina

    2010-01-01

    We have compared the combined X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) detected in Chandra observations of young, post-merger elliptical galaxies with that of typical old elliptical galaxies. We find that the XLF of the 'young' sample does not present the prominent high-luminosity break at L X > 5 x 10 38 erg s -1 found in the old elliptical galaxy XLF. The 'young' and 'old' XLFs differ with a 3σ statistical significance (with a probability less than 0.2% that they derive from the same underlying parent distribution). Young elliptical galaxies host a larger fraction of luminous LMXBs (L X > 5 x 10 38 erg s -1 ) than old elliptical galaxies and the XLF of the young galaxy sample is intermediate between that of typical old elliptical galaxies and that of star-forming galaxies. This observational evidence may be related to the last major/minor mergers and the associated star formation.

  6. PRIMUS: THE DEPENDENCE OF AGN ACCRETION ON HOST STELLAR MASS AND COLOR

    Energy Technology Data Exchange (ETDEWEB)

    Aird, James; Coil, Alison L.; Moustakas, John; Smith, M. Stephen M. [Center for Astrophysics and Space Sciences, Department of Physics, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Blanton, Michael R.; Zhu Guangtun [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Burles, Scott M. [D.E. Shaw and Co., L.P., 20400 Stevens Creek Blvd., Suite 850, Cupertino, CA 95014 (United States); Cool, Richard J. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden St., Cambridge, MA 02138 (United States); Wong, Kenneth C. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2012-02-10

    We present evidence that the incidence of active galactic nuclei (AGNs) and the distribution of their accretion rates do not depend on the stellar masses of their host galaxies, contrary to previous studies. We use hard (2-10 keV) X-ray data from three extragalactic fields (XMM-LSS, COSMOS, and ELAIS-S1) with redshifts from the Prism Multi-object Survey to identify 242 AGNs with L{sub 2-10keV} = 10{sup 42-44} erg s{sup -1} within a parent sample of {approx}25,000 galaxies at 0.2 < z < 1.0 over {approx}3.4 deg{sup 2} and to i {approx} 23. We find that although the fraction of galaxies hosting an AGN at fixed X-ray luminosity rises strongly with stellar mass, the distribution of X-ray luminosities is independent of mass. Furthermore, we show that the probability that a galaxy will host an AGN can be defined by a universal Eddington ratio distribution that is independent of the host galaxy stellar mass and has a power-law shape with slope -0.65. These results demonstrate that AGNs are prevalent at all stellar masses in the range 9.5< log M{sub *}/M{sub sun}<12 and that the same physical processes regulate AGN activity in all galaxies in this stellar mass range. While a higher AGN fraction may be observed in massive galaxies, this is a selection effect related to the underlying Eddington ratio distribution. We also find that the AGN fraction drops rapidly between z {approx} 1 and the present day and is moderately enhanced (factor {approx}2) in galaxies with blue or green optical colors. Consequently, while AGN activity and star formation appear to be globally correlated, we do not find evidence that the presence of an AGN is related to the quenching of star formation or the color transformation of galaxies.

  7. The metal-enriched host of an energetic γ-ray burst at z ≈ 1.6

    Science.gov (United States)

    Krühler, T.; Fynbo, J. P. U.; Geier, S.; Hjorth, J.; Malesani, D.; Milvang-Jensen, B.; Levan, A. J.; Sparre, M.; Watson, D. J.; Zafar, T.

    2012-10-01

    metal-poor, both on absolute scales as well as relative to their stellar mass and SFR. GRB hosts could thus be fair tracers of the population of ordinary star-forming galaxies at high redshift. Based on observations made with telescopes at the European Southern Observatory at La Silla/Paranal, Chile under program 087.B-0737(C).

  8. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts.

    Science.gov (United States)

    De Maayer, Pieter; Chan, Wai Yin; Rubagotti, Enrico; Venter, Stephanus N; Toth, Ian K; Birch, Paul R J; Coutinho, Teresa A

    2014-05-27

    Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms. The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors. P. ananatis has an 'open' pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of

  9. Crashing galaxies, cosmic fireworks

    International Nuclear Information System (INIS)

    Keel, W.C.

    1989-01-01

    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined

  10. The Hot ISM of Normal Galaxies

    Science.gov (United States)

    Fabbiano, Giuseppina

    1999-01-01

    X-ray observations of galaxies have shown the presence of hot ISM and gaseous halos. The most spectacular examples am in early-type galaxies (E and S0), and in galaxies hosting intense starforming regions. This talk will review the observational evidence and highlight the outstanding issues in our understanding of this gaseous component, with emphasis on our present understanding of the chemical composition of these hot halos. It will address how Chandra, XMM, and future X-ray missions can address these studies.

  11. Star formation in active galaxies and quasars

    International Nuclear Information System (INIS)

    Heckman, T.M.

    1987-01-01

    I review the observational evidence for a causal or statistical link between star formation and active galactic nuclei. The chief difficulty is in quantitatively ascertaining the star formation rate in active galaxies: most of the readily observable manifestations of star formation superficially resemble those of an active nucleus. Careful multi-wavelength spatially-resolved observations demonstrate that many Seyfert galaxies are undergoing star formation. Our survey of CO emission from Seyferts (interpreted in conjunction IRAS data) suggests that type 2 Seyferts have unusually high rates of star formation, but type 1 Seyferts do not. Recent work also suggests that many powerful radio galaxies may be actively forming stars: radio galaxies with strong emission-lines often have blue colors and strong far-infrared emission. Determining the star formation rate in the host galaxies of quasars is especially difficult. Multi-color imaging and long-slit spectroscopy suggests that many of the host galaxies of radio-loud quasars are blue and a cold interstellar medium has been detected in some quasar hosts

  12. Galaxy Portal: interacting with the galaxy platform through mobile devices.

    Science.gov (United States)

    Børnich, Claus; Grytten, Ivar; Hovig, Eivind; Paulsen, Jonas; Čech, Martin; Sandve, Geir Kjetil

    2016-06-01

    : We present Galaxy Portal app, an open source interface to the Galaxy system through smart phones and tablets. The Galaxy Portal provides convenient and efficient monitoring of job completion, as well as opportunities for inspection of results and execution history. In addition to being useful to the Galaxy community, we believe that the app also exemplifies a useful way of exploiting mobile interfaces for research/high-performance computing resources in general. The source is freely available under a GPL license on GitHub, along with user documentation and pre-compiled binaries and instructions for several platforms: https://github.com/Tarostar/QMLGalaxyPortal It is available for iOS version 7 (and newer) through the Apple App Store, and for Android through Google Play for version 4.1 (API 16) or newer. geirksa@ifi.uio.no. © The Author 2016. Published by Oxford University Press.

  13. Observing and Simulating Galaxy Evolution

    DEFF Research Database (Denmark)

    Olsen, Karen Pardos

    and temperature structure of these, with locally resolved radiation fields. In the first study, SÍGAME is combined with the radiative transfer code LIME to model the spectral line energy distribution (SLED) of CO. A CO SLED close to that of the Milky Way is found for normal star-forming massive galaxies at z _ 2......, but 50% smaller _CO factors, with the latter decreasing towards the center of each model galaxy. In a second study, SÍGAME is adapted to model the fine-structure line of singly ionized carbon, [CII] at 158 _m, the most powerful emission line of neutral ISM. Applying SÍGAME to the same type of galaxies......, and sheds light on the AGN-host co-evolution by connecting the fraction and luminosity of AGNs with galaxy properties. By analyzing a large survey in X-ray, AGNs of high and low X-ray luminosity are extracted among massive galaxies at z _ 2 via AGN classification methods, and stacking techniques of non...

  14. Spherical galaxies.

    Science.gov (United States)

    Telles, J. E.; de Souza, R. E.; Penereiro, J. C.

    1990-11-01

    RESUMEN. Presentamos fotometria fotografica de 8 objetos y espectrosco- pla para 3 galaxias, las cuales son buenos candidatos para galaxias esfericas. Los resultados fotometricos se presentan en la forma de iso- fotas y de perfiles radiales promedlo, de los cuales se derivan para- metros estructurales. Estas observaciones combinadas con parametros di- namicos obtenidos de observaciones espectrosc6picas, son consistentes con el plano fundamental derivado por Djorgovski y Davis (1987). ABSTRACT. We present photographic surface photometry for 8 objects and spectroscopy for 3 galaxies which are good candidates for spherical galaxies. Photometric results are presented in the form of isophotes and mean radial profiles from which we derived structural parameters. These observations combined with dynamical parameters obtained from spectroscopic observations are consistent with the fundamental plane derived by Djorgovski and Davis (1987). Keq wo : CALAXIES-ELLIPTICAL

  15. Induction of MAP Kinase Homologues during Growth and Morphogenetic Development of Karnal Bunt (Tilletia indica) under the Influence of Host Factor(s) from Wheat Spikes

    Science.gov (United States)

    Gupta, Atul K.; Seneviratne, J. M.; Joshi, G. K.; Kumar, Anil

    2012-01-01

    Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) in response to certain environmental conditions, play important role in mating type switching (Fus3) and pathogenicity (Pmk1) in many fungi. In order to determine the roles of such regulatory genes in Tilletia indica, the causal pathogen of Karnal bunt (KB) of wheat, semi-quantitative and quantitative RT-PCR was carried out to isolate and determine the expression of MAP kinase homologues during fungal growth and development under in vitro culture. Maximum expression of TiFus3 and TiPmk1 genes were observed at 14th and 21st days of culture and decreased thereafter. To investigate whether the fungus alters the expression levels of same kinases upon interaction with plants, cultures were treated with 1% of host factors (extracted from S-2 stage of wheat spikes). Such treatment induced the expression of MAPks in time dependent manner compared to the absence of host factors. These results suggest that host factor(s) provide certain signal(s) which activate TiFus3 and TiPmk1 during morphogenetic development of T. indica. The results also provides a clue about the role of host factors in enhancing the disease potential due to induction of MAP kinases involved in fungal development and pathogenecity. PMID:22547988

  16. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  17. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  18. Chemical enrichment in isolated barred spiral galaxies.

    Science.gov (United States)

    Martel, Hugo; Carles, Christian; Robichaud, Fidéle; Ellison, Sara L.; Williamson, David J.

    2018-04-01

    To investigate the role of bars in the chemical evolution of isolated disc galaxies, we performed a series of 39 gas dynamical simulations of isolated barred and unbarred galaxies with various masses, initial gas fractions, and AGN feedback models. The presence of a bar drives a substantial amount of gas toward the central region of the galaxy. In the most massive galaxies, this results in a violent starburst, followed by a drop in star formation resulting from gas exhaustion. The time delay between Type Ia and Type II supernovae explosions means that barred galaxies experience a rapid increase in [O/H] in the central region, and a much more gradual increase in [Fe/H]. In unbarred galaxies, star formation proceeds at a slow and steady rate, and oxygen and iron are produced at steady rates which are similar except for a time offset. Comparing the abundance ratios in barred and unbarred galaxies with the same central stellar mass M*, we find in barred galaxies an enhancement of 0.07 dex in [O/H], 0.05 dex in [Fe/H], and 0.05 dex in [O/Fe]. The [O/H] enhancement is in excellent agreement with observations from the SDSS. The initial gas fraction has very little effect on the abundance ratios in barred and unbarred galaxies, unless the galaxies experience a starburst. We considered AGN-host galaxies located near the bottom of the AGN regime, M* ≳ 3 × 1010M⊙, where AGN feedback dominates over supernovae feedback. We found that the impact of AGN feedback on the central abundances is marginal.

  19. Manutenção da qualidade pós-colheita de maçãs 'Royal Gala' e 'Galaxy' sob armazenamento em atmosfera controlada Postharvest quality maintenance of 'Royal Gala' and 'Galaxy' apples stored under controlled atmosphere

    Directory of Open Access Journals (Sweden)

    Auri Brackmann

    2008-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficiência de condições de atmosfera controlada na conservação de maçãs 'Royal Gala' e 'Galaxy'. O delineamento utilizado foi o inteiramente casualizado com quatro repetições e unidade experimental composta por 25 frutos. Os tratamentos utilizados se originaram da combinação de duas culivares ('Royal Gala' e 'Galaxy' e sete diferentes condições de armazenamento, que foram: [1] Armazenamento refrigerado (AR; [2] 1,0kPa O2 + 2,0kPa CO2; [3] 1,0kPa O2 + 2,5kPa CO2; [4] 1,0kPa O2 + 3,0kPa CO2; [5] 0,8kPa O2 + 2,5kPa CO2; [6] 1,2kPa O2 + 2,5kPa CO2 e [7] 1,0kPa O2 + 2,5 kPa CO2. A temperatura nos tratamentos 1 ao 6 foi de +0,5°C e no tratamento 7, -0,5°C As avaliações foram realizadas após oito meses de armazenamento mais sete dias de exposição a 20°C. A maçã 'Galaxy' apresentou menor porcentagem de podridões e polpa farinácea e maior firmeza de polpa em relação à 'Royal Gala', não apresentando interação nestes parâmetros com as condições de armazenamento. A 'Galaxy' apresentou a menor porcentagem de frutos com degenerescência senescente e maior acidez titulável quando comparada com a 'Royal Gala', ocorrendo interação destes parâmetros com as condições de armazenamento. A melhor condição de armazenamento para a cultivar 'Royal Gala' foi de 1,0kPa O2 + 2,5kPa CO2 e para a 'Galaxy' foi de 0,8 a 1,0kPa O2 e 2,5kPa CO2, porém a 'Galaxy' pode ser armazenada por um período maior, pois, apresentou potencial de armazenamento superior a 'Royal Gala'.The aim of this research was to evaluate the efficiency of controlled atmosphere conditions in the conservation of 'Royal Gala' and 'Galaxy' apples. The experimental design was completely randomized, with four replicates and the experimental unit composed by 25 fruits. Treatments were originated from the combination of two cultivars (Royal Gala and Galaxy and seven storage conditions, that were: [1] Cold storage (CS; [2

  20. Alignments of galaxies within cosmic filaments from SDSS DR7

    International Nuclear Information System (INIS)

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C.

    2013-01-01

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  1. Alignments of galaxies within cosmic filaments from SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youcai; Yang, Xiaohu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lei [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: yczhang@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  2. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent

    1979-01-01

    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  3. Fossil evidence for spin alignment of SDSS galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J.T.; Weygaert, Rien van de; Arag´on-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic

  4. Galaxy Collisions Forging New Worlds from Cosmic Crashes

    CERN Document Server

    Struck, Curtis

    2011-01-01

    Galaxy collisions are the key process in building galaxies, triggering the formation of stars and the build-up of heavy elements that allow the formation of planets and solar systems. This book presents the revolutionary research advances achieved in the last decade and lucidly explains the underlying dynamical processes. Galaxy Collisions takes a comprehensive trip through the visually spectacular world of galaxy collisions; investigates the interactions of stars, gas clouds, and dark matter in galaxy collisions; uses analogies and metaphors to help comprehend the bizarre world of galaxies; presents recent research results to enhance the understanding of galaxy formation and evolution; includes discoveries of minor collisions within our own group of galaxies; shows how a galaxy collision might affect a solar system, or a planet like ours.

  5. Modeling Nearly Spherical Pure-bulge Galaxies with a Stellar Mass-to-light Ratio Gradient under the ΛCDM and MOND Paradigms. I. Methodology, Dynamical Stellar Mass, and Fundamental Mass Plane

    Science.gov (United States)

    Chae, Kyu-Hyun; Bernardi, Mariangela; Sheth, Ravi K.

    2018-06-01

    We carry out spherical Jeans modeling of nearly round pure-bulge galaxies selected from the ATLAS3D sample. Our modeling allows for gradients in the stellar mass-to-light ratio (M ⋆/L) through analytic prescriptions parameterized with a “gradient strength” K introduced to accommodate any viable gradient. We use a generalized Osipkov–Merritt model for the velocity dispersion (VD) anisotropy. We produce Monte Carlo sets of models based on the stellar VD profiles under both the ΛCDM and MOND paradigms. Here, we describe the galaxy data, the empirical inputs, and the modeling procedures of obtaining the Monte Carlo sets. We then present the projected dynamical stellar mass, {M}\\star {{e}}, within the effective radius R e, and the fundamental mass plane (FMP) as a function of K. We find the scaling of the K-dependent mass with respect to the ATLAS3D reported mass as: {log}}10[{M}\\star {{e}}(K)/{M}\\star {{e}}{{A}3{{D}}}]=a\\prime +b\\prime K with a‧ = ‑0.019 ± 0.012 and b‧ = ‑0.18 ± 0.02 (ΛCDM), or a‧ = ‑0.023 ± 0.014 and b‧ = ‑0.23 ± 0.03 (MOND), for 0 ≤ K expectation and only the zero-point scales with K. The median value of K for the ATLAS3D galaxies is ={0.53}-0.04+0.05. We perform a similar analysis of the much larger SDSS DR7 spectroscopic sample. In this case, only the VD within a single aperture is available, so we impose the additional requirement that the VD slope be similar to that in the ATLAS3D galaxies. Our analysis of the SDSS galaxies suggests a positive correlation of K with stellar mass.

  6. wft4galaxy: a workflow testing tool for galaxy.

    Science.gov (United States)

    Piras, Marco Enrico; Pireddu, Luca; Zanetti, Gianluigi

    2017-12-01

    Workflow managers for scientific analysis provide a high-level programming platform facilitating standardization, automation, collaboration and access to sophisticated computing resources. The Galaxy workflow manager provides a prime example of this type of platform. As compositions of simpler tools, workflows effectively comprise specialized computer programs implementing often very complex analysis procedures. To date, no simple way to automatically test Galaxy workflows and ensure their correctness has appeared in the literature. With wft4galaxy we offer a tool to bring automated testing to Galaxy workflows, making it feasible to bring continuous integration to their development and ensuring that defects are detected promptly. wft4galaxy can be easily installed as a regular Python program or launched directly as a Docker container-the latter reducing installation effort to a minimum. Available at https://github.com/phnmnl/wft4galaxy under the Academic Free License v3.0. marcoenrico.piras@crs4.it. © The Author 2017. Published by Oxford University Press.

  7. Galaxy Zoo: Observing secular evolution through bars

    International Nuclear Information System (INIS)

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-01-01

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  8. Peering Into an Early Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    Thirteen billion years ago, early galaxies ionized the gas around them, producing some of the first light that brought our universe out of its dark ages. Now the Atacama Large Millimeter/submillimeter Array (ALMA) has provided one of the first detailed looks into the interior of one of these early, distant galaxies.Sources of LightArtists illustration of the reionization of the universe (time progresses left to right), in which ionized bubbles that form around the first sources of light eventually overlap to form the fully ionized universe we observe today. [Avi Loeb/Scientific American]For the first roughly hundred million years of its existence, our universe expanded in relative darkness there were no sources of light at that time besides the cosmic microwave background. But as mass started to condense to form the first objects, these objects eventually shone as the earliest luminous sources, contributing to the reionization of the universe.To learn about the early production of light in the universe, our best bet is to study in detail the earliest luminous sources stars, galaxies, or quasars that we can hunt down. One ideal target is the galaxy COSMOS Redshift 7, known as CR7 for short.Targeting CR7CR7 is one of the oldest, most distant galaxies known, lying at a redshift of z 6.6. Its discovery in 2015 and subsequent observations of bright, ultraviolet-emitting clumps within it have led to broad speculation about the source of its emission. Does this galaxy host an active nucleus? Or could it perhaps contain the long-theorized first generation of stars, metal-free Population III stars?To determine the nature of CR7 and the other early galaxies that contributed to reionization, we need to explore their gas and dust in detail a daunting task for such distant sources! Conveniently, this is a challenge that is now made possible by ALMAs incredible capabilities. In a new publication led by Jorryt Matthee (Leiden University, the Netherlands), a team of scientists now

  9. Cosmology with void-galaxy correlations.

    Science.gov (United States)

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  10. Comparison of transcript profiles in different life stages of the nematode Globodera pallida under different host potato genotypes.

    Science.gov (United States)

    Palomares-Rius, Juan E; Hedley, Pete E; Cock, Peter J A; Morris, Jenny A; Jones, John T; Vovlas, Nikos; Blok, Vivian

    2012-12-01

    The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second-stage juveniles (J2s) and sedentary parasitic-stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  11. On the Nature and History of Blue Amorphous Galaxies

    Science.gov (United States)

    Marlowe, Amanda True

    1998-07-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution. We have embarked on a systematic study of 12 blue amorphous galaxies (BAGs) whose properties suggest that they are dwarf galaxies in a starburst or post-burst state. It seems likely that BAGs are related to other 'starburst' dwarfs such as blue compact dwarfs (BCDs) and HII galaxies. The BAGs in our sample, however, are considerably closer than BCDs and HII galaxies in other samples, and therefore easier to study. These galaxies may offer important insights into dwarf galaxy evolution. In an effort to clarify the role of BAGs in evolutionary scenarios for dwarf galaxies, we present and analyze Hα and UBVI data for our sample. BAGs, like BCDs and HII galaxies, have surface brightness profiles that are exponential in the outer regions but have a predominantly blue central blue excess, suggesting a young burst in an older, redder galaxy. Seven of the galaxies have the bubble or filamentary Hα morphology and double peaked emission lines that are the signature of superbubbles or superwind activity. These galaxies are typically the ones with the strongest central excesses. The starbursting regions are young events compared to the older underlying galaxy, which follow an exponential surface brightness law. Not all of the galaxies develop superwinds: the appearance of superwinds is most sensitive to the concentration and rate of star formation in the starbursting core. The underlying exponential galaxies are very similar to those found in BCDs and HII galaxies, though the 'burst' colors are slightly redder than those found in HII galaxies. BAGs are structurally similar to BCDs and HII galaxies. How BAGs fit into the dwarf galaxy evolutionary debate is less clear. While some compact dIs have properties similar to those of the underlying exponential galaxy in our sample, issues such as mass loss from superwinds, the impact of the starbursting core on the underlying galaxy, and

  12. Hubble Space Telescope Observations of cD Galaxies and Their Globular Cluster Systems

    Science.gov (United States)

    Jordán, Andrés; Côté, Patrick; West, Michael J.; Marzke, Ronald O.; Minniti, Dante; Rejkuba, Marina

    2004-01-01

    We have used WFPC2 on the Hubble Space Telescope (HST) to obtain F450W and F814W images of four cD galaxies (NGC 541 in Abell 194, NGC 2832 in Abell 779, NGC 4839 in Abell 1656, and NGC 7768 in Abell 2666) in the range 5400 km s-1cluster (GC) systems reveals no anomalies in terms of specific frequencies, metallicity gradients, average metallicities, or the metallicity offset between the globular clusters and the host galaxy. We show that the latter offset appears roughly constant at Δ[Fe/H]~0.8 dex for early-type galaxies spanning a luminosity range of roughly 4 orders of magnitude. We combine the globular cluster metallicity distributions with an empirical technique described in a series of earlier papers to investigate the form of the protogalactic mass spectrum in these cD galaxies. We find that the observed GC metallicity distributions are consistent with those expected if cD galaxies form through the cannibalism of numerous galaxies and protogalactic fragments that formed their stars and globular clusters before capture and disruption. However, the properties of their GC systems suggest that dynamical friction is not the primary mechanism by which these galaxies are assembled. We argue that cD's instead form rapidly, via hierarchical merging, prior to cluster virialization. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 Based in part on observations obtained at the European Southern Observatory, for VLT program 68.D-0130(A).

  13. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    .The most striking feature of these galaxies, however, is that they are surrounded by a large number of compact objects that appear to be globular clusters. From the observations, Van Dokkum and collaborators estimate that Dragonfly 44 and DFX1 have approximately 74 and 62 globulars, respectively significantly more than the low numbers expected for galaxies of this luminosity.Armed with this knowledge, the authors went back and looked at archival observations of 14 other UDGs also located in the Coma cluster. They found that these smaller and fainter galaxies dont host quite as many globular clusters as Dragonfly 44 and DFX1, but more than half also show significant overdensities of globulars.Main panel: relation between the number of globular clusters and total absolute magnitude for Coma UDGs (solid symbols) compared to normal galaxies (open symbols). Top panel: relation between effective radius and absolute magnitude. The UDGs are significantly larger and have more globular clusters than normal galaxies of the same luminosity. [van Dokkum et al. 2017]Evidence of FailureIn general, UDGs appear to have more globular clusters than other galaxies of the same total luminosity, by a factor of nearly 7. These results are consistent with the scenario in which UDGs are failed galaxies: they likely have the halo mass to have formed a large number of globular clusters, but they were quenched before they formed a disk and bulge. Because star formation never got going in UDGs, they are now much dimmer than other galaxies of the same size.The authors suggest that the next step is to obtain dynamical measurements of the UDGs to determine whether these faint galaxies really do have the halo mass suggested by their large numbers of globulars. Future observations will continue to help us pin down the origin of these dim giants.CitationPieter van Dokkum et al 2017 ApJL 844 L11. doi:10.3847/2041-8213/aa7ca2

  14. The Dark Side of Galaxy Color: evidence from new SDSS measurements of galaxy clustering and lensing

    OpenAIRE

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2013-01-01

    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measureme...

  15. Dwarf Galaxies in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille

    2018-01-01

    The existence of intermediate mass black holes (100 7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.

  16. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.

    2014-05-05

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  17. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  18. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction.

    Science.gov (United States)

    Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab

    2014-06-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. A Population Genomics Approach to Assessing the Genetic Basis of Within-Host Microevolution Underlying Recurrent Cryptococcal Meningitis Infection

    Directory of Open Access Journals (Sweden)

    Johanna Rhodes

    2017-04-01

    Full Text Available Recurrence of meningitis due to Cryptococcus neoformans after treatment causes substantial mortality in HIV/AIDS patients across sub-Saharan Africa. In order to determine whether recurrence occurred due to relapse of the original infecting isolate or reinfection with a different isolate weeks or months after initial treatment, we used whole-genome sequencing (WGS to assess the genetic basis of infection in 17 HIV-infected individuals with recurrent cryptococcal meningitis (CM. Comparisons revealed a clonal relationship for 15 pairs of isolates recovered before and after recurrence showing relapse of the original infection. The two remaining pairs showed high levels of genetic heterogeneity; in one pair we found this to be a result of infection by mixed genotypes, while the second was a result of nonsense mutations in the gene encoding the DNA mismatch repair proteins MSH2, MSH5, and RAD5. These nonsense mutations led to a hypermutator state, leading to dramatically elevated rates of synonymous and nonsynonymous substitutions. Hypermutator phenotypes owing to nonsense mutations in these genes have not previously been reported in C. neoformans, and represent a novel pathway for rapid within-host adaptation and evolution of resistance to first-line antifungal drugs.

  20. In Pursuit of the Least Luminous Galaxies

    Directory of Open Access Journals (Sweden)

    Beth Willman

    2010-01-01

    Full Text Available The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as 10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.

  1. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  2. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Holley-Bockelmann, Kelly [Vanderbilt University, Nashville, TN (United States); Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu [Institute of Space Technology (IST), Islamabad (Pakistan)

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  3. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    International Nuclear Information System (INIS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-01-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy

  4. Genesis of dwarf galaxies in interacting system

    International Nuclear Information System (INIS)

    Duc, Pierre-Alain

    1995-01-01

    This research thesis addresses the study of interacting and merging galaxies, and more particularly the associated stellar formation episodes. The author first reports an analysis of the central regions of these objects by studying a specific class among them, i.e. galaxies discovered by the IRAS satellite which are ultra-luminous in the far infrared. The author presents results obtained by optical and infrared imagery and spectroscopy of a complete sample of objects located in the southern hemisphere. In the second part, the author focusses on outside regions of interacting galaxies, discusses the observation of filaments formed under the influence of tidal forces acting during galactic collisions, and of condensations which are as luminous as dwarf galaxies. Then a multi-wavelength study of several neighbouring systems revealed the existence of a specific class of objects, the tidal dwarf galaxies, which are formed from stellar and gaseous material snatched from the disk of interacting galaxies. Gas-rich tidal dwarf galaxies contain, like dwarf irregular galaxies or blue compact galaxies, newly formed stars. But, in opposition with these ones, they are richer in heavy elements: this is one of the consequences of a specific mode of galactic formation based on a cosmic recycling [fr

  5. The Co-evolution of QSOs and Galaxies

    Science.gov (United States)

    Coziol, R.; Torres-Papaqui, J. P.; Andernach, H.

    2015-07-01

    Using two large samples of QSOs detected in the mid-infrared (MIR) with WISE, we find that the change of W2-W3 colors with redshift suggests that star formation in their host galaxies increases by a factor of 3 from z = 0 to 2.7, then stays constant up to z = 4, and decreases above z=4. This behavior is slightly different from the best fits for the star formation history of field galaxies as deduced from the Optical-UV and IR, but is consistent with what is observed for sub-mm galaxies at high z. Our results constitute the clearest evidence, so far, that QSO host galaxies form their stars before field galaxies, and are in good agreement with the hierarchical biased structure formation paradigm.

  6. Age bimodality in the central region of pseudo-bulges in S0 galaxies

    Science.gov (United States)

    Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.

  7. Ferulic Acid, But Not All Hydroxycinnamic Acids, Is a Novel T3SS Inducer of Ralstonia solanacearum and Promotes Its Infection Process in Host Plants under Hydroponic Condition

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2017-09-01

    Full Text Available Hydroxycinnamic acids (HCAs are typical monocyclic phenylpropanoids, including cinnamic acid (Cin, coumaric acid (Cou, caffeic acid (Caf, ferulic acid (FA and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS in Ralstonia solanacearum. FA significantly induced the expression of the T3SS and some type III effectors (T3Es genes in hrp-inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum, was able to promote its infection process in host plants under hydroponics condition.

  8. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    Energy Technology Data Exchange (ETDEWEB)

    Hearin, Andrew P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Fermilab Center for Particle Astrophysics; Watson, Douglas F. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Becker, Matthew R. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); KICP, Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Reyes, Reinabelle [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Berlind, Andreas A. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Physics and Astronomy; Zentner, Andrew R. [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), PA (United States)

    2014-08-12

    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measurements of the galaxy two-point correlation function and the galaxy-galaxy lensing signal as a function of M* and g-r color from the Sloan Digital Sky Survey, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of Conditional Abundance Matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM provides compelling evidence that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  9. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    Science.gov (United States)

    Hearin, Andrew P.; Watson, Douglas F.; Becker, Matthew R.; Reyes, Reinabelle; Berlind, Andreas A.; Zentner, Andrew R.

    2014-10-01

    The age-matching model has recently been shown to predict correctly the luminosity L and g - r colour of galaxies residing within dark matter haloes. The central tenet of the model is intuitive: older haloes tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g - r colour trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new Sloan Digital Sky Survey (SDSS) measurements of galaxy clustering and the galaxy-galaxy lensing signal ΔΣ as a function of M* and g - r colour, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the ΔΣ signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of conditional abundance matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM suggests that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  10. Weak Lensing by Galaxy Troughs in DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D. [Ludwig Maximilian Univ., Munich (Germany); Max Planck Inst. for Extraterrestrial Physics, Garching (Germany). et al.

    2015-09-29

    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  11. Multiwavelength Observations of the Dwarf Seyfert 1 Galaxy POX 52

    Science.gov (United States)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Rutledge, R. E.; Greene, J. E.

    2006-12-01

    POX 52 is an unusual narrow-line Seyfert 1 galaxy, having an estimated black hole mass of order 105 solar masses and a dwarf host galaxy with an absolute magnitude of only MV = -17.6, which gives us a unique opportunity to study black hole-bulge relations in the low-mass regime. We present new observations from a multiwavelength campaign to study its active nucleus and host galaxy. The data include observations from the Chandra and XMM-Newton Observatories, the Hubble Space Telescope, and the Very Large Array. Chandra data show a highly variable point source with a 2.0 10.0 keV luminosity of 0.7 * 1042 ergs/s. We will also describe the X-ray spectral shape, the structure of the host galaxy as determined from GALFIT modeling of the HST ACS/HRC images, and the spectral energy distribution of the active nucleus.

  12. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  13. DAGAL: Detailed Anatomy of Galaxies

    Science.gov (United States)

    Knapen, Johan H.

    2017-03-01

    The current IAU Symposium is closely connected to the EU-funded network DAGAL (Detailed Anatomy of Galaxies), with the final annual network meeting of DAGAL being at the core of this international symposium. In this short paper, we give an overview of DAGAL, its training activities, and some of the scientific advances that have been made under its umbrella.

  14. SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A 'GREEN VALLEY' GALAXY

    International Nuclear Information System (INIS)

    Da Silva, Robert L.; Xavier Prochaska, J.; Rosario, David; Tumlinson, Jason; Tripp, Todd M.

    2011-01-01

    Serendipitous observations of a pair z = 0.37 interacting galaxies (one hosting a quasar) show a massive gaseous bridge of material connecting the two objects. This bridge is photoionized by the quasar (QSO), revealing gas along the entire projected 38 h -1 70 kpc sightline connecting the two galaxies. The emission lines that result give an unprecedented opportunity to study the merger process at this redshift. We determine the kinematics, ionization parameter (log U ∼ -2.5 ± 0.03), column density (N H,perpendicular ∼ 10 21 cm -2 ), metallicity ([M/H] ∼ - 0.20 ± 0.15), and mass (∼10 8 M sun ) of the gaseous bridge. We simultaneously constrain properties of the QSO host (M DM > 8.8 x 10 11 M sun ) and its companion galaxy (M DM > 2.1 x 10 11 M sun ; M * ∼ 2 x 10 10 M sun ; stellar burst age = 300-800 Myr; SFR ∼6 M sun yr -1 ; and metallicity 12 + log (O/H) = 8.64 ± 0.2). The general properties of this system match the standard paradigm of a galaxy-galaxy merger caught between first and second passages while one of the galaxies hosts an active quasar. The companion galaxy lies in the so-called green valley, with a stellar population consistent with a recent starburst triggered during the first passage of the merger and has no discernible active galactic nucleus activity. In addition to providing case studies of quasars associated with galaxy mergers, quasar/galaxy pairs with QSO-photoionized tidal bridges such as this one offer unique insights into the galaxy properties while also distinguishing an important and inadequately understood phase of galaxy evolution.

  15. Star Formation in Irregular Galaxies.

    Science.gov (United States)

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  16. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngsoo [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krause, Elisabeth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Jain, Bhuvnesh [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Amara, Adam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Becker, Matt [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bridle, Sarah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Clampitt, Joseph [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crocce, Martin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gaztanaga, Enrique [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sanchez, Carles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wechsler, Risa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  17. Formation of galaxies

    International Nuclear Information System (INIS)

    Szalay, A.S.

    1984-12-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities and the correlation function of galaxies points to the possibility that galaxies do not form uniformly everywhere. Scale invariant properties of the cluster-cluster correlations are discussed. Comparing the correlation functions in a dimensionless way, galaxies appear to be stronger clustered, in contrast with the comparison of the dimensional amplitudes of the correlation functions. Theoretical implications of several observations as Lyman-α clouds, correlations of faint galaxies are discussed. None of the present theories of galaxy formation can account for all facts in a natural way. 29 references

  18. Does the galaxy-halo connection vary with environment?

    Science.gov (United States)

    Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.

    2018-05-01

    (Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.

  19. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, R. Scott; Comerford, Julia M. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO 80309 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Pooley, David, E-mail: Robert.Barrows@Colorado.edu [Department of Physics and Astronomy, Trinity University, San Antonio, TX 78212 (United States)

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (∼0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  20. Spatially Offset Active Galactic Nuclei. II. Triggering in Galaxy Mergers

    Science.gov (United States)

    Barrows, R. Scott; Comerford, Julia M.; Greene, Jenny E.; Pooley, David

    2017-04-01

    Galaxy mergers are likely to play a role in triggering active galactic nuclei (AGNs), but the conditions under which this process occurs are poorly understood. In Paper I, we constructed a sample of spatially offset X-ray AGNs that represent galaxy mergers hosting a single AGN. In this paper, we use our offset AGN sample to constrain the parameters that affect AGN observability in galaxy mergers. We also construct dual-AGN samples with similar selection properties for comparison. We find that the offset AGN fraction shows no evidence for a dependence on AGN luminosity, while the dual-AGN fractions show stronger evidence for a positive dependence, suggesting that the merger events forming dual AGNs are more efficient at instigating accretion onto supermassive black holes than those forming offset AGNs. We also find that the offset and dual-AGN fractions both have a negative dependence on nuclear separation and are similar in value at small physical scales. This dependence may become stronger when restricted to high AGN luminosities, although a larger sample is needed for confirmation. These results indicate that the probability of AGN triggering increases at later merger stages. This study is the first to systematically probe down to nuclear separations of <1 kpc (˜0.8 kpc) and is consistent with predictions from simulations that AGN observability peaks in this regime. We also find that the offset AGNs are not preferentially obscured compared to the parent AGN sample, suggesting that our selection may be targeting galaxy mergers with relatively dust-free nuclear regions.

  1. Galaxies and gamma-ray astronomy

    International Nuclear Information System (INIS)

    Bignami, G.F.; Fichtel, C.E.; Hartman, R.C.; Thompson, D.J.

    1979-01-01

    Comparisons between the recently measured X-ray spectra of active galaxies, the intensity upper limits to the γ-ray emission above 35 MeV from the same objects obtained from data from SAS 2, and other γ-ray data are used to address the nature of the high-energy spectra of several types of active galaxies, their contribution to the measured diffuse γ-ray emission between 1 and 150 MeV, and constraints which may be placed on cosmological evolutionary factors. It is found that a substantial increase in slope of the photon energy spectrum must occur in the low-energy γ-ray region for Seyfert galaxies, BL Lac objects, and emission line galaxies. A spectral steepening is also seen for 3C 273 and Cen A, the only quasar and radio galaxy for which accurate X-ray spectra are presently available above 20 keV. A cosmological integration shows that Seyfert galaxies, BL Lac objects, and quasars may account for most of the 1--150 MeV diffuse background, even without significant evolution. Sharp emission line galaxies and radio galaxies made a much smaller contribution under the same assumptions. The observed isotropic γ-radiation limits the γ-ray evolution possible for Seyfert galaxies, BL Lac objects, and quasars. The high-latitude galactic radiation limits the γ-ray evolution of normal field galaxies. The integrated emission of normal field galaxies with evolution back to z=4 cannot exceed about 10 times the integrated emission assuming no evolution

  2. A Modern Picture of Barred Galaxy Dynamics

    Science.gov (United States)

    Petersen, Michael; Weinberg, Martin; Katz, Neal

    2018-01-01

    Observations of disk galaxies suggest that bars are responsible for altering global galaxy parameters (e.g. structures, gas fraction, star formation rate). The canonical understanding of the mechanisms underpinning bar-driven secular dynamics in disk galaxies has been largely built upon the analysis of linear theory, despite galactic bars being clearly demonstrated to be nonlinear phenomena in n-body simulations. We present simulations of barred Milky Way-like galaxy models designed to elucidate nonlinear barred galaxy dynamics. We have developed two new methodologies for analyzing n-body simulations that give the best of both powerful analytic linear theory and brute force simulation analysis: orbit family identification and multicomponent torque analysis. The software will be offered publicly to the community for their own simulation analysis.The orbit classifier reveals that the details of kinematic components in galactic disks (e.g. the bar, bulge, thin disk, and thick disk components) are powerful discriminators of evolutionary paradigms (i.e. violent instabilities and secular evolution) as well as the basic parameters of the dark matter halo (mass distribution, angular momentum distribution). Multicomponent torque analysis provides a thorough accounting of the transfer of angular momentum between orbits, global patterns, and distinct components in order to better explain the underlying physics which govern the secular evolution of barred disk galaxies.Using these methodologies, we are able to identify the successes and failures of linear theory and traditional n-body simulations en route to a detailed understanding of the control bars exhibit over secular evolution in galaxies. We present explanations for observed physical and velocity structures in observations of barred galaxies alongside predictions for how structures will vary with dynamical properties from galaxy to galaxy as well as over the lifetime of a galaxy, finding that the transfer of angular

  3. A review on the complexity of insect-plant interactions under varying levels of resources and host resistance: the case of Myzus persicae-Prunus persica

    Directory of Open Access Journals (Sweden)

    Verdugo, JA.

    2016-01-01

    Full Text Available Introduction. Insect-plant interactions are affected directly or indirectly by stress factors. The effect of environmental resource availability on insect-plant interactions is here reviewed. Subsequently, the analysis focuses on aphid-host plant interactions, particularly in the system composed by the green peach aphid Myzus persicae and its primary host plant Prunus persica. Literature. Plant defenses arise in two ways: resistance and tolerance, both are affected by abiotic factors. The information gathered from studies (n = 29 on plant-aphid interactions addressing the reduction in water availability on plant resistance, showed that in 41,4% of the studies, drought stress elicits lower resistance, while 34.5%, 20.1% and 3.4%, showed higher, no change and conditional effects on plant resistance, respectively. Conclusions. Water stress elicits mixed effects on plant resistance to aphids. However, the literature review also suggests that cultural practices play a role in the fate of the peach-aphid interactions, whereas the development of predictive models aimed to assist crop-pest management systems still requires more basic information. Aphid responses to plant defenses under stressed conditions are still largely unexplored.

  4. The Taxonomy of Blue Amorphous Galaxies. I. Hα and UBVI Data

    Science.gov (United States)

    Marlowe, Amanda T.; Meurer, Gerhardt R.; Heckman, Timothy M.; Schommer, Robert

    1997-10-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution. We have embarked on a systematic study of 12 nearby dwarf galaxies (most of which have been classified as amorphous) selected preferentially by their blue colors. The properties of the galaxies in the sample suggest that they are in a burst or postburst state. It seems likely that these amorphous galaxies are closely related to other ``starburst'' dwarfs such as blue compact dwarfs (BCDs) and H II galaxies but are considerably closer and therefore easier to study. If so, these galaxies may offer important insights into dwarf galaxy evolution. In an effort to clarify the role of starbursts in evolutionary scenarios for dwarf galaxies, we present Hα and UBVI data for our sample. Blue amorphous galaxies, like BCDs and H II galaxies, have surface brightness profiles that are exponential in the outer regions (r >~ 1.5re) but have a predominantly blue central excess, which suggests a young burst in an older, redder galaxy. Seven of the galaxies have the bubble or filamentary Hα morphology and double-peaked emission lines that are the signature of superbubbles or superwind activity. These galaxies are typically the ones with the strongest central excesses. The underlying exponential galaxies are very similar to those found in BCDs and H II galaxies. How amorphous galaxies fit into the dwarf irregular-``starburst dwarf''-dwarf elliptical evolutionary debate is less clear. In this paper, we present our data and make some preliminary comparisons between amorphous galaxies and other classes of dwarf galaxies. In a future companion paper, we will compare this sample more quantitatively with other dwarf galaxy samples in an effort to determine if amorphous galaxies are a physically different class of object from other starburst dwarfs such as BCDs and H II galaxies and also investigate their place in dwarf galaxy evolution scenarios.

  5. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Alis [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA (United States); Wetzel, Andrew [TAPIR, California Institute of Technology, Pasadena, CA (United States); Garrison-Kimmel, Shea, E-mail: alis@ucolick.org [Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA (United States)

    2014-10-20

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  6. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    International Nuclear Information System (INIS)

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M star > 10 6 M ☉ that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  7. The AGN Luminosity Fraction in Galaxy Mergers

    Science.gov (United States)

    Dietrich, Jeremy; Weiner, Aaron; Ashby, Matthew; Martinez-Galarza, Juan Rafael; Smith, Howard Alan

    2017-01-01

    Galaxy mergers are key events in galaxy evolution, generally triggering massive starbursts and AGNs. However, in these chaotic systems, it is not yet known what fraction each of these two mechanisms contributes to the total luminosity. Here we measure and model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) in up to 33 broad bands from the UV to the far-IR for 23 IR-luminous galaxies to estimate the fraction of the bolometric IR luminosity that can be attributed to the AGN. The galaxies are split nearly evenly into two subsamples: late-stage mergers, found in the IRAS Revised Bright Galaxy Sample or Faint Source Catalog, and early-stage mergers found in the Spitzer Interacting Galaxy Sample. We find that the AGN contribution to the total IR luminosity varies greatly from system to system, from 0% up to ~90%, but is substantially greater in the later-stage and brighter mergers. This is consistent with what is known about galaxy evolution and the triggering of AGNs.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  8. Clusters of Galaxies

    Science.gov (United States)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  9. Cosmology and galaxy formation

    International Nuclear Information System (INIS)

    Rees, M.J.

    1977-01-01

    Implications of the massive halos and ''missing mass'' for galaxy formation are addressed; it is suggested that this mass consists of ''Population III'' stars that formed before the galaxies did. 19 references

  10. Do You See What I See? Exploring the Consequences of Luminosity Limits in Black Hole–Galaxy Evolution Studies

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Mackenzie L.; Hickox, Ryan C.; DiPompeo, Michael A. [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Mutch, Simon J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Croton, Darren J. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Ptak, Andrew F. [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2017-07-10

    In studies of the connection between active galactic nuclei (AGNs) and their host galaxies, there is widespread disagreement on some key aspects of the connection. These disagreements largely stem from a lack of understanding of the nature of the full underlying AGN population. Recent attempts to probe this connection utilize both observations and simulations to correct for a missed population, but presently are limited by intrinsic biases and complicated models. We take a simple simulation for galaxy evolution and add a new prescription for AGN activity to connect galaxy growth to dark matter halo properties and AGN activity to star formation. We explicitly model selection effects to produce an “observed” AGN population for comparison with observations and empirically motivated models of the local universe. This allows us to bypass the difficulties inherent in models that attempt to infer the AGN population by inverting selection effects. We investigate the impact of selecting AGNs based on thresholds in luminosity or Eddington ratio on the “observed” AGN population. By limiting our model AGN sample in luminosity, we are able to recreate the observed local AGN luminosity function and specific star formation-stellar mass distribution, and show that using an Eddington ratio threshold introduces less bias into the sample by selecting the full range of growing black holes, despite the challenge of selecting low-mass black holes. We find that selecting AGNs using these various thresholds yield samples with different AGN host galaxy properties.

  11. USING COLORS TO IMPROVE PHOTOMETRIC METALLICITY ESTIMATES FOR GALAXIES

    International Nuclear Information System (INIS)

    Sanders, N. E.; Soderberg, A. M.; Levesque, E. M.

    2013-01-01

    There is a well known correlation between the mass and metallicity of star-forming galaxies. Because mass is correlated with luminosity, this relation is often exploited, when spectroscopy is not available, to estimate galaxy metallicities based on single band photometry. However, we show that galaxy color is typically more effective than luminosity as a predictor of metallicity. This is a consequence of the correlation between color and the galaxy mass-to-light ratio and the recently discovered correlation between star formation rate (SFR) and residuals from the mass-metallicity relation. Using Sloan Digital Sky Survey spectroscopy of ∼180, 000 nearby galaxies, we derive 'LZC relations', empirical relations between metallicity (in seven common strong line diagnostics), luminosity, and color (in 10 filter pairs and four methods of photometry). We show that these relations allow photometric metallicity estimates, based on luminosity and a single optical color, that are ∼50% more precise than those made based on luminosity alone; galaxy metallicity can be estimated to within ∼0.05-0.1 dex of the spectroscopically derived value depending on the diagnostic used. Including color information in photometric metallicity estimates also reduces systematic biases for populations skewed toward high or low SFR environments, as we illustrate using the host galaxy of the supernova SN 2010ay. This new tool will lend more statistical power to studies of galaxy populations, such as supernova and gamma-ray burst host environments, in ongoing and future wide-field imaging surveys

  12. Stellar-to-halo mass relation of cluster galaxies

    International Nuclear Information System (INIS)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo

    2017-01-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar to halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the DES science veri cation archive, the CFHTLenS and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we nd a stellar to halo mass relation in good agreement with the theoretical expectations from Moster, Naab & White (2013) for central galaxies. In the centre of the cluster, we nd that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this nding as further evidence for tidal stripping of dark matter haloes in high density environments.

  13. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Podigachoski, Pece; Barthel, Peter [Kapteyn Astronomical Institute, University of Groningen, 9747 AD Groningen (Netherlands); Haas, Martin [Astronomisches Institut, Ruhr Universität, D-44801 Bochum (Germany); Leipski, Christian [Max-Planck Institut für Astronomie (MPIA), D-69117 Heidelberg (Germany); Wilkes, Belinda, E-mail: podigachoski@astro.rug.nl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  14. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    International Nuclear Information System (INIS)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-01-01

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies

  15. Infrared Photometric Study of Wolf–Rayet Galaxies

    Science.gov (United States)

    Chen, P. S.; Yang, X. H.; Liu, J. Y.; Shan, H. G.

    2018-01-01

    We collected observational data on 781 Wolf–Rayet (WR) galaxies from the literature to photometrically study their infrared properties measured by the 2MASS, WISE, IRAS, AKARI, and Herschel missions. It is found that in the 1–5 μm range the radiations of WR galaxies are dominated by the free–free emissions from the stellar winds and the circumstellar dust from the late-type stars in the host galaxy. In the 5–22 μm range, the radiation of WR galaxies is dominated by the free–free emissions and the synchrotron radiation from the central active galactic nucleus (AGN; but not always present). In the 22–140 μm range, the radiations of WR galaxies are dominated by the free–free emissions and the star formation/starburst activities. In the 250–500 μm range, the radiation of WR galaxies is dominated by the free–free emissions. In addition, the comparison with the non-WR galaxies is made. It is shown that some star formation WR galaxies have redder near-infrared colors than non-WR star-forming galaxies probably due to the gas emission in the near-infrared. In the 2–5 μm region WR galaxies have redder colors due to the thermal emission from circumstellar dust of late-type stars and the enhanced gas emission. In the 5–22 μm region, both WR galaxies and non-WR galaxies have similar behavior, indicative of having similar free–free emission as the dominant radiation. In the 25–140 μm region, both types of galaxies also have similar behavior, indicative of having free–free emission from the stellar winds or the thermal radiation from the starburst/star formation as the dominant radiation.

  16. Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Ibata, R.; Murdin, P.

    2000-11-01

    The Sagittarius DWARF GALAXY is the closest member of the Milky Way's entourage of satellite galaxies. Discovered by chance in 1994, its presence had previously been overlooked because it is largely hidden by the most crowded regions of our own Galaxy with which it is merging....

  17. Tidal interaction of galaxies

    International Nuclear Information System (INIS)

    Kozlov, N.N.; Syunyaev, R.A.; Ehneev, T.M.

    1974-01-01

    One of the hypotheses explaining the occurrence of anomalous details in interacting galaxies has been investigated. Pairs of galaxies with 'tails' oppositely directed or neighbouring galaxies with cofferdams 'bridges', as if connecting the galaxies, are called interacting galaxies. The hypothesis connects the origin of cofferdams and 'tails' of interacting galaxies with tidal effects ; the action of power gravitational forces in the intergalactic space. A source of such forces may be neighbouring stellar systems or invisible bodies, for instance, 'dead' quasars after a gravitational collapse. The effect of large masses of matter on the galaxy evolution has been investigated in the Institute of Applied Mathematics of the Academy of Sciences of the USSSR in 1971-1972 by numerical simulation of the process on a digital computer with the subsequent data transmission on a display. Different versions of a massive body flight relative to a galaxy disk are considered. Photographs of a display screen at different moments of time are presented. As a result of mathematical simulation of galaxies gravitational interactions effects are discovered which resemble real structures in photographs of galaxies. It seems to be premature to state that namely these mechanisms cause the formation of 'tails' and cofferdams between galaxies. However, even now it is clear that the gravitational interaction strongly affects the dynamics of the stellar system evolution. Further studies should ascertain a true scale of this effect and its genuine role in galaxy evolution

  18. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites

    Science.gov (United States)

    Wheeler, Coral; Oñorbe, Jose; Bullock, James S.; Boylan-Kolchin, Michael; Elbert, Oliver D.; Garrison-Kimmel, Shea; Hopkins, Philip F.; Kereš, Dušan

    2015-10-01

    We present Feedback in Realistic Environment (FIRE)/GIZMO hydrodynamic zoom-in simulations of isolated dark matter haloes, two each at the mass of classical dwarf galaxies (Mvir ≃ 1010 M⊙) and ultra-faint galaxies (Mvir ≃ 109 M⊙), and with two feedback implementations. The resulting central galaxies lie on an extrapolated abundance matching relation from M⋆ ≃ 106 to 104 M⊙ without a break. Every host is filled with subhaloes, many of which form stars. Each of our dwarfs with M⋆ ≃ 106 M⊙ has 1-2 well-resolved satellites with M⋆ = 3-200 × 103 M⊙. Even our isolated ultra-faint galaxies have star-forming subhaloes. If this is representative, dwarf galaxies throughout the Universe should commonly host tiny satellite galaxies of their own. We combine our results with the Exploring the Local Volume in Simulations (ELVIS) simulations to show that targeting ˜ 50 kpc regions around nearby isolated dwarfs could increase the chances of discovering ultra-faint galaxies by ˜35 per cent compared to random pointings, and specifically identify the region around the Phoenix dwarf galaxy as a good potential target. The well-resolved ultra-faint galaxies in our simulations (M⋆ ≃ 3-30 × 103 M⊙) form within Mpeak ≃ 0.5-3 × 109 M⊙ haloes. Each has a uniformly ancient stellar population ( > 10 Gyr) owing to reionization-related quenching. More massive systems, in contrast, all have late-time star formation. Our results suggest that Mhalo ≃ 5 × 109 M⊙ is a probable dividing line between haloes hosting reionization `fossils' and those hosting dwarfs that can continue to form stars in isolation after reionization.

  19. Clustering of Star-forming Galaxies Near a Radio Galaxy at z=5.2

    Science.gov (United States)

    Overzier, Roderik A.; Miley, G. K.; Bouwens, R. J.; Cross, N. J. G.; Zirm, A. W.; Benítez, N.; Blakeslee, J. P.; Clampin, M.; Demarco, R.; Ford, H. C.; Hartig, G. F.; Illingworth, G. D.; Martel, A. R.; Röttgering, H. J. A.; Venemans, B.; Ardila, D. R.; Bartko, F.; Bradley, L. D.; Broadhurst, T. J.; Coe, D.; Feldman, P. D.; Franx, M.; Golimowski, D. A.; Goto, T.; Gronwall, C.; Holden, B.; Homeier, N.; Infante, L.; Kimble, R. A.; Krist, J. E.; Mei, S.; Menanteau, F.; Meurer, G. R.; Motta, V.; Postman, M.; Rosati, P.; Sirianni, M.; Sparks, W. B.; Tran, H. D.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2006-01-01

    We present HST ACS observations of the most distant radio galaxy known, TN J0924-2201 at z=5.2. This radio galaxy has six spectroscopically confirmed Lyα-emitting companion galaxies and appears to lie within an overdense region. The radio galaxy is marginally resolved in i775 and z850, showing continuum emission aligned with the radio axis, similar to what is observed for lower redshift radio galaxies. Both the half-light radius and the UV star formation rate are comparable to the typical values found for Lyman break galaxies at z~4-5. The Lyα emitters are sub-L* galaxies, with deduced star formation rates of 1-10 Msolar yr-1. One of the Lyα emitters is only detected in Lyα. Based on the star formation rate of ~3 Msolar yr-1 calculated from Lyα, the lack of continuum emission could be explained if the galaxy is younger than ~2 Myr and is producing its first stars. Observations in V606i775z850 were used to identify additional Lyman break galaxies associated with this structure. In addition to the radio galaxy, there are 22 V606 break (z~5) galaxies with z850dropouts extracted from GOODS and the UDF parallel fields. We find evidence for an overdensity to very high confidence (>99%), based on a counts-in-cells analysis applied to the control field. The excess suggests that the V606 break objects are associated with a forming cluster around the radio galaxy. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 9291.

  20. Galaxies Die in Groups: An IRAC Autopsy

    Science.gov (United States)

    Wilman, D. J.; Pierini, D.; Tyler, K.; McGee, S. L.; Oemler, A., Jr.; Morris, S. L.; Balogh, M. L.; Bower, R. G.; Mulchaey, J. S.

    2008-10-01

    The most massive galaxies in the Universe are also the oldest. To overturn this apparent contradiction with hierarchical growth models, we focus on the group-scale haloes which host most of these galaxies. Our z˜0.4 group sample is selected in redshift space from the CNOC2 redshift survey. A stellar mass selected M_{*} ≲ 2×10^{10}M_{⊙} sample is constructed using IRAC observations. A sensitive Mid InfraRed (MIR) IRAC colour is used to isolate passive galaxies. It produces a bimodal distribution, in which passive galaxies (highlighted by morphological early-types) define a tight MIR colour sequence (Infrared Passive Sequence, IPS). This is due to stellar atmospheric emission from old stellar populations. Significantly offset from the IPS are galaxies where reemission by dust boosts emission at λ_{obs}=8 micron. We term them InfraRed-Excess galaxies whether star formation and/or AGN activity are present. They include all known morphological late-types. The fraction of InfraRed Excess galaxies, f(IRE) drops with M_{*}, such that f(IRE)=0.5 at a ``crossover mass'' of M_{cr}˜ 1.3×10^{11}M_{⊙}. Within our optically-defined group sample there is a strong and consistent deficit in f(IRE) at all masses, but most clearly at M_{*} ≲ 10^{11}M_{⊙}. Suppression of star formation must mainly occur in groups, and the observed trend of f(IRE) with M_{*} can be explained if suppression of M_{*} ≲ 10^{11}M_{⊙} galaxies occurs primarily in the group environment.

  1. SATELLITE DWARF GALAXIES IN A HIERARCHICAL UNIVERSE: THE PREVALENCE OF DWARF-DWARF MAJOR MERGERS

    OpenAIRE

    Deason, A; Wetzel, A; Garrison-Kimmel, S

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host...

  2. Star Formation in the Central Regions of Galaxies

    Science.gov (United States)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  3. Star clusters in evolving galaxies

    Science.gov (United States)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  4. New radio observations of the Circinus Galaxy

    International Nuclear Information System (INIS)

    Harnett, J.I.; Reynolds, J.E.

    1990-01-01

    We present new radio continuum and OH observations of the Circinus Galaxy which confirm the active nature of the nucleus. The continuum structure is dominated by two spurs of emission, which probably originate in the core and extend roughly along the minor axis of the galaxy. In addition, the OH absorption profiles clearly indicate a rapidly rotating cloud surrounding the nucleus or several independent clouds in the vicinity with inflowing and outflowing motions. The Circinus Galaxy is most probably a Seyfert with underlying nuclear starburst activity. (author)

  5. RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM

    International Nuclear Information System (INIS)

    Giodini, S.; Finoguenov, A.; Boehringer, H.; Pierini, D.; Smolcic, V.; Massey, R.; BIrzan, L.; Zamorani, G.; Oklopcic, A.; Pratt, G. W.; Schinnerer, E.; Koekemoer, A. M.; Salvato, M.; Sanders, D. B.; Kartaltepe, J. S.; Thompson, D.

    2010-01-01

    We quantify the importance of the mechanical energy released by radio galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-active galactic nuclei located inside X-ray-detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intragroup medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.

  6. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  7. The Taxonomy of Blue Amorphous Galaxies. II. Structure and Evolution

    Science.gov (United States)

    Marlowe, Amanda T.; Meurer, Gerhardt R.; Heckman, Timothy M.

    1999-09-01

    Dwarf galaxies play an important role in our understanding of galaxy formation and evolution, and starbursts are believed to affect the structure and evolution of dwarf galaxies strongly. We have therefore embarked on a systematic study of 12 of the nearest dwarf galaxies thought to be undergoing bursts of star formation. These were selected primarily by their morphological type (blue ``amorphous'' galaxies). We show that these blue amorphous galaxies are not physically distinguishable from dwarfs selected as starbursting by other methods, such as blue compact dwarfs (BCDs) and H II galaxies. All these classes exhibit surface brightness profiles that are exponential in the outer regions (r>~1.5re) but often have a predominantly central blue excess, suggesting a young burst in an older, redder galaxy. Typically, the starbursting ``cores'' are young (~107-108 yr) events compared to the older (~109-1010 yr) underlying galaxy (the ``envelope''). The ratio of the core to envelope in blue light ranges from essentially zero to about 2. These starbursts are therefore modest events involving only a few percent of the stellar mass. The envelopes have surface brightnesses that are much higher than typical dwarf irregular (dI) galaxies, so it is unlikely that there is a straightforward evolutionary relation between typical dIs and dwarf starburst galaxies. Instead we suggest that amorphous galaxies may repeatedly cycle through starburst and quiescent phases, corresponding to the galaxies with strong and weak/absent cores, respectively. Once amorphous galaxies use up the available gas (either through star formation or galactic winds) so that star formation is shut off, the faded remnants would strongly resemble dwarf elliptical galaxies. However, in the current cosmological epoch, this is evidently a slow process that is the aftermath of a series of many weak, recurring bursts. Present-day dE's must have experienced more rapid and intense evolution than this in the distant past.

  8. Galaxy Zoo: dust in spiral galaxies star

    OpenAIRE

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into ‘bulgy’ (early-type) and ‘discy’ (late-typ...

  9. Alignment between galaxies and large-scale structure

    International Nuclear Information System (INIS)

    Faltenbacher, A.; Li Cheng; White, Simon D. M.; Jing, Yi-Peng; Mao Shude; Wang Jie

    2009-01-01

    Based on the Sloan Digital Sky Survey DR6 (SDSS) and the Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(2θ)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L ∼ * ) galaxies out to projected separations of 60 h- 1 Mpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ∼ 25 deg. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for central galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference

  10. TIDAL INTERACTION AS THE ORIGIN OF EARLY-TYPE DWARF GALAXIES IN GROUP ENVIRONMENTS

    International Nuclear Information System (INIS)

    Paudel, Sanjaya; Ree, Chang H.

    2014-01-01

    We present a sample of dwarf galaxies that suffer ongoing disruption by the tidal forces of nearby massive galaxies. By analyzing structural and stellar population properties using the archival imaging and spectroscopic data from the Sloan Digital Sky Survey (SDSS), we find that they are likely a ''smoking gun'' example of the formation through tidal stirring of early-type dwarf galaxies (dEs) in the galaxy group environment. The inner cores of these galaxies are fairly intact and the observed light profiles are well fit by the Sérsic functions while the tidally stretched stellar halos are prominent in the outer parts. They are all located within a sky-projected distance of 50 kpc from the centers of the host galaxies and no dwarf galaxies have relative line-of-sight velocities larger than 205 km s –1 to their hosts. We derive the Composite Stellar Population properties of these galaxies by fitting the SDSS optical spectra to a multiple-burst composite stellar population model. We find that these galaxies accumulate a significant fraction of stellar mass within the last 1 Gyr and contain a majority stellar population with an intermediate age of 2 to 4 Gyr. Based on this evidence, we argue that tidal stirring, particularly through the galaxy-galaxy interaction, might have an important role in the formation and evolution of dEs in the group environment where the influence of other gas stripping mechanism might be limited

  11. The Hunt for Missing Dwarf Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    galaxies that resemble the UDGs found in Virgo and Coma clusters, verifying that such objects exist in environments beyond only massive clusters.And at the faint end of the sample, the authors find additional extremely low-surface-brightness dwarfs that are several orders of magnitude fainter even than classical UDGs.The authors describe the properties of these galaxies and compare them to systems like classical UDGs and dwarf spheroidal galaxies in our own Local Cluster. The next step is to determine which of the differences between the sample of NGFS dwarfs and previously known systems are explained by the environmental factors of their host cluster, and which are simply due to sample biases.With much more data from the NGFS still to come, it seems likely that we will soon be able to examine an even larger sample of no-longer-missing dwarfs!CitationRoberto P. Muoz et al 2015 ApJ 813 L15. doi:10.1088/2041-8205/813/1/L15

  12. The Greater Impact of Mergers on the Growth of Massive Galaxies: Implications for Mass Assembly and Evolution since z sime 1

    Science.gov (United States)

    Bundy, Kevin; Fukugita, Masataka; Ellis, Richard S.; Targett, Thomas A.; Belli, Sirio; Kodama, Tadayuki

    2009-06-01

    Using deep infrared observations conducted with the MOIRCS imager on the Subaru Telescope in the northern GOODS field combined with public surveys in GOODS-S, we investigate the dependence on stellar mass, M *, and galaxy type of the close pair fraction (5 h -1 kpc implied merger rate. In terms of combined depth and survey area, our publicly available mass-limited sample represents a significant improvement over earlier infrared surveys used for this purpose. In common with some recent studies, we find that the fraction of paired systems that could result in major mergers is low (~4%) and does not increase significantly with redshift to z ≈ 1.2, with vprop(1 + z)1.6±1.6. Our key finding is that massive galaxies with M *>1011 M sun are more likely to host merging companions than less massive systems (M * ~ 1010 M sun). We find evidence for a higher pair fraction for red, spheroidal hosts compared to blue, late-type systems, in line with expectations based on clustering at small scales. The so-called "dry" mergers between early-type galaxies devoid of star formation (SF) represent nearly 50% of close pairs with M *>3 × 1010 M sun at z ~ 0.5, but less than 30% at z ~ 1. This result can be explained by the increasing abundance of red, early-type galaxies at these masses. We compare the volumetric merger rate of galaxies with different masses to mass-dependent trends in galaxy evolution. Our results reaffirm the conclusion of Bundy et al. that major mergers do not fully account for the formation of spheroidal galaxies since z ~ 1. In terms of mass assembly, major mergers contribute little to galaxy growth below M * ~ 3 × 1010 M sun but play a more significant role among galaxies with M * gsim 1011 M sun ~ 30% of which have undergone mostly dry mergers over the observed redshift range. Overall, the relatively rapid and recent coalescence of high-mass galaxies mirrors the expected hierarchical growth of halos and is consistent with recent model predictions, even if

  13. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo, E-mail: b.cervantes@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-01-20

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10{sup 10} M {sub ⊙}, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).

  14. The Brachypodium-Puccinia graminis system: Solving a puzzle to uncover the underlying mechanisms of non-host resistance and plant immunity

    Science.gov (United States)

    Brachypodium distachyon is regarded as non-host to the causal agent of stem rust in wheat and barley, P. graminis f. sp. tritici (Pgt), and a near-host to the pathogens of forage grasses, P. graminis f. sp. lolii (Pgl) and P. graminis f. sp. phlei-pratensis (Pgp). Given the devastating effect of ste...

  15. Isolated galaxies, pairs, and groups of galaxies

    International Nuclear Information System (INIS)

    Kuneva, I.; Kalinkov, M.

    1990-01-01

    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G 1 be any galaxy and G 2 be its nearest neighbor at a distance R 2 . If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G 1 is an isolated galaxy. Let the midpoint of G 1 and G 2 be O 2 and r 2 =R 2 2. For the volume V 2 , defined with the radius r 2 , the density D 2 less than k mu, the galaxy G 2 is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3)), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten

  16. Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain

    Directory of Open Access Journals (Sweden)

    Rossi Luca

    2011-07-01

    Full Text Available Abstract Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica in Asturias (Spain, using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus, roe deer (Capreolus capreolus and red fox (Vulpes vulpes. Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity. The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species.

  17. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    Science.gov (United States)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  18. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    Science.gov (United States)

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.

  19. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila.

    Science.gov (United States)

    Duneau, David F; Kondolf, Hannah C; Im, Joo Hyun; Ortiz, Gerardo A; Chow, Christopher; Fox, Michael A; Eugénio, Ana T; Revah, J; Buchon, Nicolas; Lazzaro, Brian P

    2017-12-21

    Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection. We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll

  20. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  1. Modeling the distribution of Mg II absorbers around galaxies using background galaxies and quasars

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, R.; Lilly, S. J. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Kacprzak, G. G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, C. W., E-mail: rongmonb@phys.ethz.ch [New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    We present joint constraints on the distribution of Mg II absorption around high redshift galaxies obtained by combining two orthogonal probes, the integrated Mg II absorption seen in stacked background galaxy spectra and the distribution of parent galaxies of individual strong Mg II systems as seen in the spectra of background quasars. We present a suite of models that can be used to predict, for different two- and three-dimensional distributions, how the projected Mg II absorption will depend on a galaxy's apparent inclination, the impact parameter b and the azimuthal angle between the projected vector to the line of sight and the projected minor axis. In general, we find that variations in the absorption strength with azimuthal angles provide much stronger constraints on the intrinsic geometry of the Mg II absorption than the dependence on the inclination of the galaxies. In addition to the clear azimuthal dependence in the integrated Mg II absorption that we reported earlier in Bordoloi et al., we show that strong equivalent width Mg II absorbers (W{sub r} (2796) ≥ 0.3 Å) are also asymmetrically distributed in azimuth around their host galaxies: 72% of the absorbers in Kacprzak et al., and 100% of the close-in absorbers within 35 kpc of the center of their host galaxies, are located within 50° of the host galaxy's projected semi minor axis. It is shown that either composite models consisting of a simple bipolar component plus a spherical or disk component, or a single highly softened bipolar distribution, can well represent the azimuthal dependencies observed in both the stacked spectrum and quasar absorption-line data sets within 40 kpc. Simultaneously fitting both data sets, we find that in the composite model the bipolar cone has an opening angle of ∼100° (i.e., confined to within 50° of the disk axis) and contains about two-thirds of the total Mg II absorption in the system. The single softened cone model has an exponential fall off with

  2. Galaxy correlations and cosmology

    International Nuclear Information System (INIS)

    Fall, S.M.

    1979-01-01

    Correlations in the distribution of galaxies provide some important clues about the structure and evolution of the Universe on scales larger than individual galaxies. In recent years much effort has been devoted to estimating and interpreting galaxy correlations. This is a review of these efforts. It is meant to provide both an introductory overview of the subject and a critical assessment of some recent developments

  3. Neighbours of our galaxy

    International Nuclear Information System (INIS)

    Wielebinski, R.

    1982-01-01

    Large telescope and radio-astronomy bring remote regions of the universe into view. Radio waves are emitted by all celestial objects. Precise examination of our own galaxy, the Milky Way, is useful for investigating more remote objects. Some of the remote galaxies are noteworthy, because they emit up to 1,000 times more radio waves than their neighbours. Centaurus A is an example of such an active galaxy. (orig.)

  4. THE UBIQUITOUS RADIO CONTINUUM EMISSION FROM THE MOST MASSIVE EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Brown, Michael J. I.; Jannuzi, Buell T.; Floyd, David J. E.; Mould, Jeremy R.

    2011-01-01

    We have measured the radio continuum emission of 396 early-type galaxies brighter than K = 9, using 1.4 GHz imagery from the NRAO Very Large Array Sky Survey, Green Bank 300 ft Telescope, and 64 m Parkes Radio Telescope. For M K K < -25.5 early-type galaxies are greater than zero in all cases. It is thus highly likely that the most massive galaxies always host an active galactic nucleus or have recently undergone star formation.

  5. Watching AGN feedback at its birth: HST observations of nascent outflow host IC860

    Science.gov (United States)

    Alatalo, Katherine

    2016-10-01

    IC860 is a nearby IR-luminous early-type spiral with a unique set of properties: it is a shocked, poststarburst galaxy that hosts an AGN-driven neutral wind and a compact core of molecular gas. IC860 can serve as a rosetta stone for the early stages of triggering AGN feedback. We propose to use WFC3 on HST to obtain NUV, optical and near-IR imaging of IC860. We will create a spatially-resolved history of star formation quenching through SED-fitting of 7 requested broadband filters, and compare the spatially resolved star formation histories to in different positions within the underlying stellar features (such as spiral structure) that might define a narrative of how star formation is quenching in IC860. These observations will also resolve the super-star cluster sites to trace the most recent star formation. Finally, these observations will trace the mass of the outflow by building an absorption map of the dust. IC860 presents a unique opportunity to study a galaxy at an early stage of transitioning from blue spiral to red early-type galaxy, that also hosts an AGN-driven neutral wind and a compact, turbulent molecular gas core.

  6. Galaxy Zoo: dust in spiral galaxies

    Science.gov (United States)

    Masters, Karen L.; Nichol, Robert; Bamford, Steven; Mosleh, Moein; Lintott, Chris J.; Andreescu, Dan; Edmondson, Edward M.; Keel, William C.; Murray, Phil; Raddick, M. Jordan; Schawinski, Kevin; Slosar, Anže; Szalay, Alexander S.; Thomas, Daniel; Vandenberg, Jan

    2010-05-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4mag for the ugri passbands (estimating 0.3mag of extinction in z band). We split the sample into `bulgy' (early-type) and `discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of `bulgy' spirals is redder than the average edge-on colour of `discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr ~ -21.5mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. This publication has been made possible by the participation of more than

  7. Clusters of galaxies associated with quasars. I. 3C 206

    International Nuclear Information System (INIS)

    Ellingson, E.; Yee, H.K.C.; Green, R.F.; Kinman, T.D.

    1989-01-01

    Multislit spectroscopy and three-color CCD photometry of the galaxies in the cluster associated with the quasar 3C 206 (PKS 0837-12) at z = 0.198 are presented. This cluster is the richest environment of any low-redshift quasar observed in an Abell richness class 1 cluster. The cluster has a very flattened structure and a very concentrated core about the quasar. Most of the galaxies in this field have colors and luminosities consistent with normal galaxies at this redshift. The background-corrected blue fraction of galaxies is consistent with values for other rich clusters. The existence of several blue galaxies in the concentrated cluster core is an anomaly for a region of such high galaxy density, however, suggesting the absence of a substantial intracluster medium. This claim is supported by the Fanaroff-Riley (1974) class II morphology of the radio source. The velocity dispersion calculated from 11 spectroscopically confirmed cluster members is 500 + or - 110 km/s, which is slightly lower than the average for Abell class 1 clusters. A high frequency of interaction between the quasar host galaxy and cluster core members at low relative velocities, and a low intracluster gas pressure, may comprise a favorable environment for quasar activity. The properties of the cluster of galaxies associated with 3C 206 are consistent with this model. 59 refs

  8. Violence in the hearts of galaxies: aberration or adolescence?

    Science.gov (United States)

    Mundell, Carole G.

    2002-12-01

    Violent activity in the nuclei of galaxies has long been considered a curiosity in its own right; manifestations of this phenomenon include distant quasars in the early Universe and comparatively nearby Seyfert galaxies, both thought to be powered by the release of gravitational potential energy as material from the host galaxy accretes onto a central supermassive black hole (SMBH). Traditionally, the broader study of the formation, structure and evolution of galaxies has largely excluded active galactic nuclei. Recently, however, this situation has changed dramatically, both observationally and theoretically, with the realization that the growth and influence of the SMBH, the origin and development of galaxies and nuclear activity at different epochs in the Universe may be intimately related. The most spectacular fireworks seen in distant quasars may be relatively easy to explain, since the era of greatest quasar activity seems to coincide with turbulent dynamics at the epoch of galaxy formation in the young, gas-rich Universe. Ubiquitous black holes are believed to be a legacy of this violent birth. Alternatively, black holes may be the seeds that drive galaxy formation in the first place. Closer to home, and hence more recently in the history of the Universe, a fraction of comparatively ordinary galaxies, similar to our own, has reignited their central engines, albeit at a lower level of activity. Since these galaxies are more established than their younger and more distant counterparts, the activity here is all the more puzzling. Whatever the mechanisms involved, they are likely to play an important role in galaxy evolution. I review the intriguing evidence for causal links between SMBHs, nuclear activity and the formation and evolution of galaxies, and describe opportunities for testing these relationships using the next generation of earthbound and space-borne astronomical facilities.

  9. Violence in the hearts of galaxies: aberration or adolescence?

    Science.gov (United States)

    Mundell, Carole G

    2002-12-15

    Violent activity in the nuclei of galaxies has long been considered a curiosity in its own right; manifestations of this phenomenon include distant quasars in the early Universe and comparatively nearby Seyfert galaxies, both thought to be powered by the release of gravitational potential energy as material from the host galaxy accretes onto a central supermassive black hole (SMBH). Traditionally, the broader study of the formation, structure and evolution of galaxies has largely excluded active galactic nuclei. Recently, however, this situation has changed dramatically, both observationally and theoretically, with the realization that the growth and influence of the SMBH, the origin and development of galaxies and nuclear activity at different epochs in the Universe may be intimately related. The most spectacular fireworks seen in distant quasars may be relatively easy to explain, since the era of greatest quasar activity seems to coincide with turbulent dynamics at the epoch of galaxy formation in the young, gas-rich Universe. Ubiquitous black holes are believed to be a legacy of this violent birth. Alternatively, black holes may be the seeds that drive galaxy formation in the first place. Closer to home, and hence more recently in the history of the Universe, a fraction of comparatively ordinary galaxies, similar to our own, has reignited their central engines, albeit at a lower level of activity. Since these galaxies are more established than their younger and more distant counterparts, the activity here is all the more puzzling. Whatever the mechanisms involved, they are likely to play an important role in galaxy evolution. I review the intriguing evidence for causal links between SMBHs, nuclear activity and the formation and evolution of galaxies, and describe opportunities for testing these relationships using the next generation of earthbound and space-borne astronomical facilities.

  10. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G)

    International Nuclear Information System (INIS)

    Kim, Taehyun; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Hinz, Joannah L.; Zaritsky, Dennis; Lee, Myung Gyoon; Gadotti, Dimitri A.; Knapen, Johan H.; Schinnerer, Eva; Ho, Luis C.; Madore, Barry F.; Laurikainen, Eija; Salo, Heikki; Athanassoula, E.; Bosma, Albert; De Swardt, Bonita; Comerón, Sébastien; Regan, Michael W.; Menéndez-Delmestre, Karín; De Paz, Armando Gil

    2012-01-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T ≤ 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S 4 G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes ∼3%-10% to the total 3.6 μm luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigate the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.

  11. THE NUMBER OF TIDAL DWARF SATELLITE GALAXIES IN DEPENDENCE OF BULGE INDEX

    International Nuclear Information System (INIS)

    López-Corredoira, Martín; Kroupa, Pavel

    2016-01-01

    We show that a significant correlation (up to 5σ) emerges between the bulge index, defined to be larger for a larger bulge/disk ratio, in spiral galaxies with similar luminosities in the Galaxy Zoo 2 of the Sloan Digital Sky Survey and the number of tidal-dwarf galaxies in the catalog by Kaviraj et al. In the standard cold or warm dark matter cosmological models, the number of satellite galaxies correlates with the circular velocity of the dark matter host halo. In generalized gravity models without cold or warm dark matter, such a correlation does not exist, because host galaxies cannot capture infalling dwarf galaxies due to the absence of dark-matter-induced dynamical friction. However, in such models, a correlation is expected to exist between the bulge mass and the number of satellite galaxies because bulges and tidal-dwarf satellite galaxies form in encounters between host galaxies. This is not predicted by dark matter models in which bulge mass and the number of satellites are a priori uncorrelated because higher bulge/disk ratios do not imply higher dark/luminous ratios. Hence, our correlation reproduces the prediction of scenarios without dark matter, whereas an explanation is not found readily from the a priori predictions of the standard scenario with dark matter. Further research is needed to explore whether some application of the standard theory may explain this correlation

  12. Resolving Gas-Phase Metallicity In Galaxies

    Science.gov (United States)

    Carton, David

    2017-06-01

    with sizes approximately equal to the half width at half maximum of the point-spread function. However, we also find that the presence of star forming clumps can significantly complicate the interpretation of metallicity gradients in moderately resolved high-redshift galaxies. Therefore we emphasize that care should be taken when comparing nearby well-resolved observations to high-redshift observations of partially resolved galaxies. Chapter 4 We present gas-phase metallicity gradients for 94 star-forming galaxies between (0.08 , i.e. on average we find the centres of these galaxies to be more metal-rich than their outskirts. However, there is significant scatter underlying this and we find that 10% (9) galaxies have significantly positive metallicity gradients, 39% (37) have significantly negative gradients, 28% (26) have gradients consistent with being flat, the remainder 23% (22) are considered to have unreliable gradient estimates. We find a slight trend for a more negative metallicity gradient with both increasing stellar mass and increasing star formation rate (SFR). However, given the potential redshift and size selection effects, we do not consider these trends to be significant. Indeed when we normalize the SFR of our galaxies relative to the main sequence, we do not observe any trend between the metallicity gradient and the normalized SFR. This finding is contrary to other recent studies of galaxies at similar and higher redshifts. We do, however, identify a novel trend between the metallicity gradient of a galaxy and its size. Small galaxies ((r_d 3 kpc) with positive metallicity gradients, and overall there is less scatter in the metallicity gradient amongst the large galaxies. We suggest that these large (well-evolved) galaxies may be analogues of galaxies in the present-day Universe, which also present a common negative metallicity gradient. Chapter 5 The relationship between a galaxy's stellar mass and its gas-phase metallicity results from the complex

  13. Fossil evidence for spin alignment of Sloan Digital Sky Survey galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J. T.; van de Weijgaert, Marinus; Aragon-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This indicates the fact that the action of large-scale tidal torques affected the alignments of galaxies located in cosmic filaments. To this

  14. Winding sense of galaxies around the local supercluster

    International Nuclear Information System (INIS)

    Aryal, Binil

    2011-01-01

    We present an analysis of the winding sense (S and Z-shapes) of 1621 field galaxies that have radial velocity between 3000 km s -1 and 5000 km s -1 . The preferred alignments of S- and Z-shaped galaxies are studied using chi-square, autocorrelation and Fourier series tests. We classify all the galaxies into 32 subsamples and notice a good agreement between the position angle (PA) distribution of the S- and Z-shaped galaxies. The homogeneous distribution of the S- and Z-shaped galaxies is more noticeable for the late-type spirals (Sc, Scd, Sd and Sm) than for the early-types (Sa, Sab, Sb and Sbc). A significant dominance of S-mode galaxies is apparent in the barred spirals. A random alignment is evident in the PA-distribution of Z- and S-mode spirals. In addition, a homogeneous distribution of the S- and Z-shaped galaxies is found to be invariant under global expansion. The PA-distribution of the total S-mode galaxies is found to be random, whereas a preferred alignment is clear for all the Z-mode galaxies. It is found that the galactic planes of Z-mode galaxies tend to lie in the equatorial plane.

  15. Loss and gain of function in SERPINB11: an example of a gene under selection on standing variation, with implications for host-pathogen interactions.

    Directory of Open Access Journals (Sweden)

    Susana Seixas

    Full Text Available Serine protease inhibitors (SERPINs are crucial in the regulation of diverse biological processes including inflammation and immune response. SERPINB11, located in the 18q21 gene cluster, is a polymorphic gene/pseudogene coding for a non-inhibitory SERPIN. In a genome-wide scan for recent selection, SERPINB11 was identified as a potential candidate gene for adaptive evolution in Yoruba. The present study sought a better understanding of the evolutionary history of SERPINB11, with special focus on evaluating its selective signature. Through the resequencing of coding and noncoding regions of SERPINB11 in 20 Yorubans and analyzing primate orthologous sequences, we identified a full-length SERPINB11 variant encoding a non-inhibitory SERPIN as the putative candidate of selection--probably driven to higher frequencies by an adaptive response using preexisting variation. In addition, we detected contrasting evolutionary features of SERPINB11 in primates: While primate phylogeny as a whole is under purifying selection, the human lineage shows evidence of positive selection in a few codons, all associated with the active SERPINB11. Comparative modeling studies suggest that positively selected codons reduce SERPINB11's ability to undergo the conformational changes typical of inhibitory SERPINs--suggesting that it is evolving towards a new non-inhibitory function in humans. Significant correlations between SERPINB11 variants and the environmental variables, pastoralism and pathogen richness, have led us to propose a selective advantage through host-pathogen interactions, possibly linked to an adaptive response combating the emergence of infectious diseases in recent human evolution. This work represents the first description of a resurrected gene in humans, and may well exemplify selection on standing variation triggered by drastic ecological shifts.

  16. Is the cluster environment quenching the Seyfert activity in elliptical and spiral galaxies?

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Krone-Martins, A.; Cameron, E.; Coelho, P.; Hattab, M. W.; de Val-Borro, M.; Hilbe, J. M.; Elliott, J.; Hagen, A.; COIN Collaboration

    2016-09-01

    We developed a hierarchical Bayesian model (HBM) to investigate how the presence of Seyfert activity relates to their environment, herein represented by the galaxy cluster mass, M200, and the normalized cluster centric distance, r/r200. We achieved this by constructing an unbiased sample of galaxies from the Sloan Digital Sky Survey, with morphological classifications provided by the Galaxy Zoo Project. A propensity score matching approach is introduced to control the effects of confounding variables: stellar mass, galaxy colour, and star formation rate. The connection between Seyfert-activity and environmental properties in the de-biased sample is modelled within an HBM framework using the so-called logistic regression technique, suitable for the analysis of binary data (e.g. whether or not a galaxy hosts an AGN). Unlike standard ordinary least square fitting methods, our methodology naturally allows modelling the probability of Seyfert-AGN activity in galaxies on their natural scale, I.e. as a binary variable. Furthermore, we demonstrate how an HBM can incorporate information of each particular galaxy morphological type in an unified framework. In elliptical galaxies our analysis indicates a strong correlation of Seyfert-AGN activity with r/r200, and a weaker correlation with the mass of the host cluster. In spiral galaxies these trends do not appear, suggesting that the link between Seyfert activity and the properties of spiral galaxies are independent of the environment.

  17. The formation of galaxies

    International Nuclear Information System (INIS)

    Gunn, J.E.

    1983-01-01

    The presently fashionable ideas for galaxy formation are reviewed briefly, and it is concluded that the standard isothermal heirarchy fits the available data best. A simple infall picture is presented which explains many of the observed properties of disk galaxies. (orig.)

  18. The galaxy builders

    Science.gov (United States)

    Cho, Adrian

    2018-06-01

    Philip Hopkins, a theoretical astrophysicist at the California Institute of Technology in Pasadena, likes to prank his colleagues. An expert in simulating the formation of galaxies, Hopkins sometimes begins his talks by projecting images of his creations next to photos of real galaxies and defying his audience to tell them apart. "We can even trick astronomers," Hopkins says. For decades, scientists have tried to simulate how the trillions of galaxies in the observable universe arose from clouds of gas after the big bang. But only in the past few years have the simulations begun to reproduce both the details of individual galaxies and their distribution of masses and shapes. As the fake universes improve, their role is also changing. Previously, information flowed one way: from the astronomers studying real galaxies to the modelers trying to simulate them. Now, insight is flowing the other way, too, with the models helping guide astronomers and astrophysicists. The models suggest that the earliest galaxies were oddly pickle-shaped, that wafer-thin spiral galaxies are surprisingly rugged in the face of collisions, and, perhaps most important, that galaxies must form stars far more slowly than astrophysicists expected. Progress is coming so fast, says Tiziana Di Matteo, a numerical cosmologist at Carnegie Mellon University in Pittsburgh, Pennsylvania, that "the whole thing has reached this little golden age."

  19. The Evolution of Galaxies

    Czech Academy of Sciences Publication Activity Database

    Palouš, Jan

    2007-01-01

    Roč. 17, - (2007), s. 34-40 ISSN 1220-5168. [Heliospere and galaxy. Sinaia, 03.05.2007-05.05.2007] R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : ISM structure * stars formation * evolution of galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. Dwarf Elliptical Galaxies

    Science.gov (United States)

    Caldwell, N.; Murdin, P.

    2000-11-01

    DWARF SPHEROIDAL GALAXIES were first identified by Shapley, who had noticed two very diffuse collections of stars on Harvard patrol plates. Although these systems had about as many stars as a GLOBULAR CLUSTER, they were of much lower density, and hence much larger radius, and thus were considered distinct galaxies. These two, named Fornax and Sculptor after the constellations in which they ap...

  1. Hubble's Menagerie of Galaxies

    Indian Academy of Sciences (India)

    Srimath

    astronom ers have even w ondered ifH ubble's galaxy typ es form an evolutionary sequence: does one type of galaxy evolve into another? 1. T he D iscovery of G alaxies. A stronom ers began to ponder these issues only after they discovered w hat ...

  2. Our galaxy is exploding

    International Nuclear Information System (INIS)

    Closets, Francois de.

    1977-01-01

    Improvements made in radioastronomy, and infrared, X and γ emission studies of the Galaxy have allowed to study the galactic nucleus, which is characterized by an intense activity. The most recent hypotheses made to explain this activity and replace it in the general context of the evolution of the galaxies are presented [fr

  3. Our aging galaxy

    International Nuclear Information System (INIS)

    Lyngaa, G.

    1980-01-01

    The origin and evolution of the galaxies is described, according to the presently prevailing theories. The various types of galaxy and their structures are described, and also the formation of stars from the gas clouds. The spiral structure and the evolution of the disc are discussed. Finally the future development on the time scale of thousands of millions of years is briefly discussed. (JIW)

  4. The Seyfert galaxy population

    International Nuclear Information System (INIS)

    Meurs, E.

    1982-01-01

    A large sample of Seyfert galaxies, many of which are Markarian galaxies, has been observed with the WSRT in lambda 21 cm continuum radiation. The results are presented, and the number of radio detected Seyferts has now increased considerably. A number of accurate optical positions are given that were needed to identify radio sources with the Seyfert galaxies observed. Optical and radio luminosity functions of Seyfert galaxies are derived. The results are compared with such functions for other categories of objects that may be related to these galaxies. The discussions focus on the possible connections between normal galaxies, Seyferts, and optically selected quasars. Three investigations are reported on individual objects that are related to Seyfert galaxies. WSRT observations of four bright, optically selected quasars are presented. The identification of an X-ray discovered BL Lacertae object is discussed. Its radio emission is on a much lower level than for other BL Lacs. Perhaps it is a radio-quiet object in this class, suggesting a comparable difference in radio emission for BL Lacs as is known for quasars. Photo-electric photometry for the Seyfert galaxy NGC 1566 is reported. Besides a monitoring programme, multi-aperture photometry is described. (Auth.)

  5. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.

    1976-01-01

    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  6. THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K.; Sullivan, Mark; Howell, D. Andrew; Conley, Alex; Seibert, Mark; Madore, Barry F.; Neff, Susan G.; Schiminovich, David; Bianchi, Luciana; Donas, Jose; Milliard, Bruno; Heckman, Timothy M.; Lee, Young-Wook; Rich, R. Michael

    2009-01-01

    We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of ∼10 10 M sun , leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing 56 Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the 56 Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between 56 Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age- 56 Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshold of ∼3 Gyr

  7. MULTIPLE GALAXY COLLISIONS

    Science.gov (United States)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  8. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  9. Spectral evolution of galaxies

    International Nuclear Information System (INIS)

    Rocca-Volmerange, B.

    1989-01-01

    A recent striking event in Observational Cosmology is the discovery of a large population of galaxies at extreme cosmological distances (extended from spectral redshifts ≅ 1 to ≥ 3) corresponding to a lookback time of 80% of the Universe's age. However when galaxies are observed at such remote epochs, their appearances are affected by at least two simultaneous effects which are respectively a cosmological effect and the intrinsic evolution of their stellar populations which appear younger than in our nearby galaxies. The fundamental problem is first to disentangle the respective contributions of these two effects to apparent magnitudes and colors of distant galaxies. Other effects which are likely to modify the appearance of galaxies are amplification by gravitational lensing and interaction with environment will also be considered. (author)

  10. THE FIRST GALAXIES: ASSEMBLY WITH BLACK HOLE FEEDBACK

    International Nuclear Information System (INIS)

    Jeon, Myoungwon; Pawlik, Andreas H.; Bromm, Volker; Milosavljević, Miloš; Greif, Thomas H.; Glover, Simon C. O.; Klessen, Ralf S.

    2012-01-01

    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the BH accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the BH as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from an HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.

  11. The First Galaxies: Assembly with Black Hole Feedback

    Science.gov (United States)

    Jeon, Myoungwon; Pawlik, Andreas H.; Greif, Thomas H.; Glover, Simon C. O.; Bromm, Volker; Milosavljević, Miloš; Klessen, Ralf S.

    2012-07-01

    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the BH accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the BH as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from an HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.

  12. Ionised gas structure of 100 kpc in an over-dense region of the galaxy group COSMOS-Gr30 at z 0.7

    Science.gov (United States)

    Epinat, B.; Contini, T.; Finley, H.; Boogaard, L. A.; Guérou, A.; Brinchmann, J.; Carton, D.; Michel-Dansac, L.; Bacon, R.; Cantalupo, S.; Carollo, M.; Hamer, S.; Kollatschny, W.; Krajnović, D.; Marino, R. A.; Richard, J.; Soucail, G.; Weilbacher, P. M.; Wisotzki, L.

    2018-01-01

    We report the discovery of a 104 kpc2 gaseous structure detected in [O II]λλ3727, 3729 in an over-dense region of the COSMOS-Gr30 galaxy group at z 0.725 with deep MUSE Guaranteed Time Observations. We estimate the total amount of diffuse ionised gas to be of the order of ( 5 ± 3) × 1010 M⊙ and explore its physical properties to understand its origin and the source(s) of the ionisation. The MUSE data allow the identification of a dozen group members that are embedded in this structure through emission and absorption lines. We extracted spectra from small apertures defined for both the diffuse ionised gas and the galaxies. We investigated the kinematics and ionisation properties of the various galaxies and extended gas regions through line diagnostics (R23, O32, and [O III]/Hβ) that are available within the MUSE wavelength range. We compared these diagnostics to photo-ionisation models and shock models. The structure is divided into two kinematically distinct sub-structures. The most extended sub-structure of ionised gas is likely rotating around a massive galaxy and displays filamentary patterns that link some galaxies. The second sub-structure links another massive galaxy that hosts an active galactic nucleus (AGN) to a low-mass galaxy, but it also extends orthogonally to the AGN host disc over 35 kpc. This extent is likely ionised by the AGN itself. The location of small diffuse regions in the R23 vs. O32 diagram is compatible with photo-ionisation. However, the location of three of these regions in this diagram (low O32, high R23) can also be explained by shocks, which is supported by their high velocity dispersions. One edge-on galaxy shares the same properties and may be a source of shocks. Regardless of the hypothesis, the extended gas seems to be non-primordial. We favour a scenario where the gas has been extracted from galaxies by tidal forces and AGN triggered by interactions between at least the two sub-structures. Based on observations made with

  13. Emission-line galaxies toward the booetes void

    International Nuclear Information System (INIS)

    Moody, J.W.

    1986-01-01

    Galaxies with strong emission are potentially useful as probes of the large-scale galaxian distribution. However, to serve as probes, their relative frequency and clustering properties must be known. This dissertation presents a study of these properties for field galaxies having [OIII] λ5007 emission equivalent widths greater than 10 A and reports on a search for galaxies with [OIII] λ5007 emission in the direction of the Booetes void, a volume located at α = 4/sup h/48/sup m/, δ = 47 0 , and cz = 15,000 km/sec that has been demonstrated to be under-abundant in galaxies by a factor of at least four. The study of field emission-line galaxies was done in two magnitude limited surveys consisting of 341 galaxies from both the north and south galactic caps having previously published redshifts and photometry. The galaxy spectra used for redshifts were examined and supplemented by new observations for 56 objects, primarily those with confirmed or suspected emission. Emission-line galaxies were found to comprise 8.8% of galaxies in a Illa-J selected sample or 6.6% of galaxies in a Illa-F selected sample. A search for emission-line galaxies towards the Booetes void was undertaken using the Burrell Schmidt telescope and an objective prism giving a reciprocal dispersion of 900 A/mm at Hβ. Three gal