WorldWideScience

Sample records for underlying gaas substrate

  1. Quantum Dots obtained by LPE from under-saturated In-As liquid phases on GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz F E; Mishurnyi V; Gorbatchev A; De Anda F [Universidad Autonoma de San Luis Potosi, Instituto de Investigacion en Comunicacion Optica, Av. Karacorum 1470, Col. Lomas 4a Sec., CP 78210San Luis PotosI (Mexico); Prutskij T, E-mail: fcoe_ov@prodigy.net.mx, E-mail: andre@cactus.iico.uaslp.mx [BUAP, Instituto de Ciencias, Apartado Postal 207, 72000, Puebla (Mexico)

    2011-01-01

    In this work we inform about quantum dots (QD) obtained by Liquid Phase Epitaxy (LPE) on GaAs substrates from under-saturated In-As liquid phases. In our processes, we have prepared saturated In-rich liquid phases by dissolving an InAs wafer at one of the temperatures interval from 450 to 414 C for 60 minutes. The contact between In-As liquid phase and the GaAs substrate was always done at a constant temperature of 444 C for 5 seconds. Thus, the growth temperature for most of the samples was higher than the liquidus temperature. We think that the growth driving force is related to a transient process that occurs when the system is trying to reach equilibrium. Under the atom force microscope (AFM) we have observed nano-islands on the surfaces of the samples obtained from under-saturated liquid phases prepared at 438, 432 and 426 C. The 25 K photoluminescence spectrum shows a peak at a 1.33 eV, in addition to the GaAs related line.

  2. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Allard Jr, Lawrence Frederick [ORNL

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize the binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION

  3. Microwave GaAs Integrated Circuits On Quartz Substrates

    Science.gov (United States)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  4. Substrate and Mg doping effects in GaAs nanowires

    Directory of Open Access Journals (Sweden)

    Perumal Kannappan

    2017-10-01

    Full Text Available Mg doping of GaAs nanowires has been established as a viable alternative to Be doping in order to achieve p-type electrical conductivity. Although reports on the optical properties are available, few reports exist about the physical properties of intermediate-to-high Mg doping in GaAs nanowires grown by molecular beam epitaxy (MBE on GaAs(111B and Si(111 substrates. In this work, we address this topic and present further understanding on the fundamental aspects. As the Mg doping was increased, structural and optical investigations revealed: i a lower influence of the polytypic nature of the GaAs nanowires on their electronic structure; ii a considerable reduction of the density of vertical nanowires, which is almost null for growth on Si(111; iii the occurrence of a higher WZ phase fraction, in particular for growth on Si(111; iv an increase of the activation energy to release the less bound carrier in the radiative state from nanowires grown on GaAs(111B; and v a higher influence of defects on the activation of nonradiative de-excitation channels in the case of nanowires only grown on Si(111. Back-gate field effect transistors were fabricated with individual nanowires and the p-type electrical conductivity was measured with free hole concentration ranging from 2.7 × 1016 cm−3 to 1.4 × 1017 cm−3. The estimated electrical mobility was in the range ≈0.3–39 cm2/Vs and the dominant scattering mechanism is ascribed to the WZ/ZB interfaces. Electrical and optical measurements showed a lower influence of the polytypic structure of the nanowires on their electronic structure. The involvement of Mg in one of the radiative transitions observed for growth on the Si(111 substrate is suggested.

  5. Isolating GaSb Membranes Grown Metamorphically on GaAs Substrates Using Highly Selective Substrate Removal Etch Processes

    Science.gov (United States)

    Renteria, E. J.; Muniz, A. J.; Addamane, S. J.; Shima, D. M.; Hains, C. P.; Balakrishnan, G.

    2015-05-01

    The etch rates of NH4OH:H2O2 and C6H8O7:H2O2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH4OH:H2O2 solution has a greater etch rate differential for the GaSb/GaAs material system than C6H8O7:H2O2 solution. The selectivity of NH4OH:H2O2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11,000 ± 2000, whereas that of C6H8O7:H2O2 has been measured up to 143 ± 2. The etch contrast has been verified by isolating 2- μm-thick GaSb epilayers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high- resolution x-ray diffraction and atomic force microscopy.

  6. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Klimov, E. A. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Vasiliev, A. L.; Imamov, R. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation); Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Trunkin, I. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation)

    2017-01-15

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111)A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in “low-temperature” GaAs serve as formation centers of arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100–150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111)A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150–200 nm.

  7. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  8. MBE growth and characterization of GaAs1-x Sb x epitaxial layers on Si (0 0 1) substrates

    International Nuclear Information System (INIS)

    Toda, T.; Nishino, F.; Kato, A.; Kambayashi, T.; Jinbo, Y.; Uchitomi, N.

    2006-01-01

    We investigated the growth of GaAs 1- x Sb x (x=1.0, 0.82, 0.69, 0.44, 0.0) layers on Si (0 0 1) substrates using AlSb as a buffer layer. Epilayers were grown as a function of As beam equivalent pressure (BEP) under a constant Sb BEP, and they were then characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and micro-Raman scattering analysis. We confirmed that GaAs 1- x Sb x layers have been successfully grown on Si substrates by introducing AlSb layers

  9. Molecular-beam epitaxy on shallow mesa gratings patterned on GaAs(311)A and (100) substrates

    NARCIS (Netherlands)

    Gong, Q.; Nötzel, R.; Schönherr, H.-P.; Ploog, K.H.

    2002-01-01

    We report on the morphology and properties of the surface formed by molecular-beam epitaxy on shallow mesa gratings on patterned GaAs(311)A and GaAs(100). On GaAs(311)A substrates, the corrugated surface formed after GaAs growth on shallow mesa gratings along [011] is composed of monolayer high

  10. Synthesis of GaAs quantum dots on Si-layers on AlGaAs films grown on GaAs(100) substrates

    International Nuclear Information System (INIS)

    Mendez-Garcia, V. H.; Zamora-Peredo, L.; Saucedo-Zeni, N.

    2002-01-01

    In this work we report a novel method for obtaining GaAs quantum dots by molecular beam epitaxy (MBE) on an AlGaAs underlying film. We propose to use a Si monolayer (ML) grown on AlGaAs, in order to induce a 3D nucleation during the GaAs overgrowth. The samples were prepared in a Riber 32P MBE system employing undoped Si-GaAs(100) substrates. First, a 500 nm thick layer of Al x Ga 1-x As was grown with a nominal concentration x=0.35. Several samples were grown in order to analyze the effects of changing the Si interlayer thickness, and the amount of GaAs overgrowth, on the final structures. Previous to the Si-exposure, the AlGaAs presented a (1x3) surface reconstruction which gradually turned to a (3x1) structure when the Si-thickness was 1 ML, as observed in the reflection high-energy electron diffraction (RHEED) patterns. When the GaAs overgrowth started on this surface, transmission RHEED spots appeared and showed a considerable increase in intensity until reaching a maximum. This behavior is typical from a 3D island growth. If the GaAs overgrowth continues, the initial streaky RHEED patterns recovered indicating a 2D-growth. Thus, we prepared a sample stopping the GaAs overgrowth at the time when the diffraction 3D spot reached the maximum intensity, equivalent to 2ML of GaAs. The sample surface was analyzed in air by atomic force microscopy (AFM). Islands of 1.5 nm-height and 20x20 nm of base were clearly observed, these dimensions are suitable for applications in quantum dots. (Authors)

  11. Isolating GaSb membranes grown metamorphically on GaAs substrates using highly selective substrate removal etch processes

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Center for High Technology Materials; Balakrishnan, Ganesh [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Electrical and Computer Engineering. Center for High Technology Materials

    2017-02-24

    The etch rates of NH4OH:H2O2 and C6H8O7:H2O2 for GaAs and GaSb have been investigated to develop a selective etch for GaAs substrates and to isolate GaSb epilayers grown on GaAs. The NH4OH:H2O2 solution has a greater etch rate differential for the GaSb/GaAs material system than C6H8O7:H2O2 solution. The selectivity of NH4OH:H2O2 for GaAs/GaSb under optimized etch conditions has been observed to be as high as 11471 ± 1691 whereas that of C6H8O7:H2O2 has been measured up to 143 ± 2. The etch contrast has been verified by isolating 2 μm thick GaSb epi-layers that were grown on GaAs substrates. GaSb membranes were tested and characterized with high-resolution X-Ray diffraction (HR-XRD) and atomic force microscopy (AFM).

  12. Electrical performance of conducting polymer (SPAN) grown on GaAs with different substrate orientations

    Science.gov (United States)

    Jameel, D. A.; Aziz, M.; Felix, J. F.; Al Saqri, N.; Taylor, D.; Albalawi, H.; Alghamdi, H.; Al Mashary, F.; Henini, M.

    2016-11-01

    This article reports the effect of n-type GaAs substrate orientation, namely (100), (311)A and (311)B, on the electrical properties of sulfonated polyaniline (SPAN)/GaAs heterojunction devices. In addition, the inhomogeneity of the interface between various GaAs substrates and SPAN is investigated in terms of barrier height and ideality factor by performing I-V measurements at different temperatures (20-420 K). The I-V results indicate that the value of the rectification ratio (IF/IR) at 0.5 V is higher for SPAN/(311)B GaAs samples than for SPAN/(100) GaAs and SPAN/(311)A GaAs samples. Moreover, the barrier height decreases and the ideality factor increases with decreasing temperature for all three heterostructure devices. The high value of mean barrier Φbarb of SPAN/(311)B (calculated from the plots of Φb 0 as a function of 1/2kT) confirms that the GaAs substrate orientation results in an increase of barrier homogeneities. Furthermore, the C-V characteristics were obtained at room temperature. The C-V measurements showed that the carrier distributions at the interface and away from the interface in high index (311) GaAs orientations are more uniform and have better barrier homogeneity than those grown on the conventional (100) GaAs substrates.

  13. Characterization of a Ga-assisted GaAs nanowire array solar cell on si substrate

    DEFF Research Database (Denmark)

    Boulanger, J. P.; Chia, A. C. E.; Wood, B.

    2016-01-01

    A single-junction core-shell GaAs nanowire (NW) solar cell on Si (1 1 1) substrates is presented. A Ga-assisted vapor–liquid–solid growth mechanism was used for the formation of a patterned array of radial p-i-n GaAs NWs encapsulated in AlInP passivation. Novel device fabrication utilizing facet-...

  14. Molecular beam epitaxial growth and characterization of GaSb layers on GaAs (0 0 1) substrates

    International Nuclear Information System (INIS)

    Li Yanbo; Zhang Yang; Zhang Yuwei; Wang Baoqiang; Zhu Zhanping; Zeng Yiping

    2012-01-01

    We report on the growth of GaSb layers on GaAs (0 0 1) substrates by molecular beam epitaxy (MBE). We investigate the influence of the GaAs substrate surface treatment, growth temperature, and V/III flux ratios on the crystal quality and the surface morphology of GaSb epilayers. Comparing to Ga-rich GaAs surface preparation, the Sb-rich GaAs surface preparation can promote the growth of higher-quality GaSb material. It is found that the crystal quality, electrical properties, and surface morphology of the GaSb epilayers are highly dependent on the growth temperature, and Sb/Ga flux ratios. Under the optimized growth conditions, we demonstrate the epitaxial growth of high quality GaSb layers on GaAs substrates. The p-type nature of the unintentionally doped GaSb is studied and from the growth conditions dependence of the hole concentrations of the GaSb, we deduce that the main native acceptor in the GaSb is the Ga antisite (Ga Sb ) defect.

  15. Temperature dependent magnetic properties of the GaAs substrate of spin-LEDs

    International Nuclear Information System (INIS)

    Ney, A; Harris, J S Jr; Parkin, S S P

    2006-01-01

    The temperature dependence of the magnetization of a light emitting diode having a ferromagnetic contact (spin-LED) is measured from 2 to 300 K in magnetic fields from 30 to 70 kOe and it is found that it originates from the GaAs substrate. The magnetization of GaAs comprises a van Vleck-type paramagnetic contribution to the susceptibility which scales inversely with the band gap of the semiconductor. Thus, the temperature dependence of the band gap of GaAs accounts for the non-linear temperature dependent magnetic susceptibility of GaAs and thus, at large magnetic fields, for the spin-LED

  16. Self-Assembled Local Artificial Substrates of GaAs on Si Substrate

    Directory of Open Access Journals (Sweden)

    Frigeri C

    2010-01-01

    Full Text Available Abstract We propose a self-assembling procedure for the fabrication of GaAs islands by Droplet Epitaxy on silicon substrate. Controlling substrate temperature and amount of supplied gallium is possible to tune the base size of the islands from 70 up to 250 nm and the density from 107 to 109 cm−2. The islands show a standard deviation of base size distribution below 10% and their shape evolves changing the aspect ratio from 0.3 to 0.5 as size increases. Due to their characteristics, these islands are suitable to be used as local artificial substrates for the integration of III–V quantum nanostructures directly on silicon substrate.

  17. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    Science.gov (United States)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F.

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerence of GaAs and that Ti can protected GaAs from erosion by NH3. By depositing Ti on GaAs(111)A surface, a millor-like GaN layer could be grown at 1000 °C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future.

  18. Tolerance of GaAs as an original substrate for HVPE growth of free standing GaN

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mio; Sato, T.; Suemasu, T.; Hasegawa, F. [University of Tsukuba, Institute of Applied Physics, Tsukuba, Ibaraki 305-8573 (Japan)

    2004-09-01

    In order to investigate possibility of thick GaN growth on a GaAs substrate by halide vapar phase epitaxy (HVPE), GaN was grown on GaAs(111)/Ti wafer with Ti deposited by E-gun. It was found that surface treatment of the GaAs substrate by HF solution deteriorated greatly the tolerance of GaAs and that Ti can protected GaAs from erosion by NH{sub 3}. By depositing Ti on GaAs(111)A surface, a mirror-like GaN layer could be grown at 1000 C for 1 hour without serious deterioration of the original GaAs substrate. By increasing the growth rate, a thick free standing GaN will be obtained with GaAs as an original substrate in near future. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. High microwave performance ion-implanted GaAs MESFETs on InP substrates

    International Nuclear Information System (INIS)

    Wada, M.; Kato, K.

    1990-01-01

    Ion implantation was employed, for the first time, in fabricating GaAs MESFETs in undoped 2 μm thick GaAs epitaxial layers directly grown on InP substrates by low-pressure MOVPE. The Si-ion-implanted GaAs layer on InP substrates showed excellent electrical characteristics: a mobility of 4300 cm 2 /Vs with a carrier density of 2 x 10 17 cm -3 at room temperature. The MESFET (0.8 μm gate length) exhibited a current-gain cutoff frequency of 25 GHz and a maximum frequency of oscillation of 53 GHz, the highest values yet reported to GaAs MESFETs on InP substrates. These results demonstrate the high potential of ion-implanted MESFETs as electronic devices for high-speed InP-based OEICs. (author)

  20. Etching of GaAs substrates to create As-rich surface

    Indian Academy of Sciences (India)

    WINTEC

    during the manipulations of the substrate after the chemi- cal etching process. ... using the four techniques described in table 1 and for an. *Author for ... Etching of GaAs substrates to create As-rich surface. 563. Table 1. Treatment procedures used. Treatment. Techniques. 1st stage. 2nd stage. 3rd stage. 4th stage. 1. Treated ...

  1. Influence of substrate orientation on the structural properties of GaAs nanowires in MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, R., E-mail: rosnita@utm.my; Othaman, Z., E-mail: zulothaman@gmail.com; Ibrahim, Z., E-mail: zuhairi@utm.my; Sakrani, S., E-mail: samsudi3@yahoo.com [Faculty of Science, UniversitiTeknologi Malaysia, 81310 UTM, Johor (Malaysia); Wahab, Y., E-mail: wyussof@gmail.com [Razak School, UniversitiTeknologi Malaysia, 54100 Kuala Lumpur (Malaysia)

    2016-04-19

    In this study, the effect of substrate orientation on the structural properties of GaAs nanowires grown by a metal organic chemical vapor deposition has been investigated. Gold colloids were used as catalyst to initiate the growth of nanowiresby the vapour-liquid-solid (VLS) mechanism. From the field-emission scanning electron microscopy (FE-SEM), the growth of the nanowires were at an elevation angle of 90°, 60°, 65° and 35° with respect to the GaAs substrate for (111)B, (311)B, (110) and (100) orientations respectively. The preferential NW growth direction is always <111>B. High-resolution transmission electron microscope (HRTEM) micrograph showed the NWs that grew on the GaAs(111)B has more structural defects when compared to others. Energy dispersive X-ray analysis (EDX) indicated the presence of Au, Ga and As. The bigger diameter NWs dominates the (111)B substrate surface.

  2. Epitaxial growth on porous GaAs substrates

    Czech Academy of Sciences Publication Activity Database

    Grym, Jan; Nohavica, Dušan; Gladkov, Petar; Hulicius, Eduard; Pangrác, Jiří; Piksová, K.

    2013-01-01

    Roč. 16, č. 1 (2013), s. 59-64 ISSN 1631-0748 R&D Projects: GA ČR GAP102/10/1201; GA ČR GAP108/10/0253 Institutional support: RVO:67985882 ; RVO:68378271 Keywords : Electrochemical etching * Porous semiconductors * Epitaxial growth * GaAs Subject RIV: BH - Optics, Masers, Lasers; JA - Electronics ; Optoelectronics, Electrical Engineering (FZU-D) Impact factor: 1.483, year: 2013

  3. Self-assembled colloidal PbS quantum dots on GaAs substrates

    International Nuclear Information System (INIS)

    Lue, Wei; Yamada, Fumihiko; Kamiya, Itaru

    2010-01-01

    We report the fabrication and analysis of self-assembled monolayer and bilayer films of colloidal PbS quantum dots (QDs) on GaAs (001) substrates. 1,6-hexanedithiol is used as link molecule between QDs and GaAs substrates. Atomic force microscopy (AFM) and photoluminescence (PL) measurements confirm the formation of PbS QD film on GaAs. For the monolayer PbS QD film, the temperature-dependent PL shows a feature typical of close-packed film. For the bilayer PbS QD film fabricated from two different mean-sized PbS QDs, we find that the stacking sequence of QDs with different size affects the quantum yield and emission wavelength of the film.

  4. Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate

    Science.gov (United States)

    2010-01-01

    We report on the molecular beam epitaxy growth of Au-assisted GaAs p-type-doped NW arrays on the n-type GaAs(111)B substrate and their photovoltaic properties. The samples are grown at different substrate temperature within the range from 520 to 580 °C. It is shown that the dependence of conversion efficiency on the substrate temperature has a maximum at the substrate temperature of 550 °C. For the best sample, the conversion efficiency of 1.65% and the fill factor of 25% are obtained. PMID:20672038

  5. Nanoscale interfacial engineering to grow Ge on Si as virtual substrates and subsequent integration of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Darin [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States); Sheng, Josephine; Cederberg, Jeffrey G.; Li Qiming; Carroll, Malcolm S. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Han, Sang M., E-mail: meister@unm.ed [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-08-31

    We have demonstrated the scalability of a process previously dubbed as Ge 'touchdown' on Si to substantially reduce threading dislocations below 10{sup 7}/cm{sup 2} in a Ge film grown on a 2 inch-diameter chemically oxidized Si substrate. This study also elucidates the overall mechanism of the touchdown process. The 1.4 nm thick chemical oxide is first formed by immersing Si substrates in a solution of H{sub 2}O{sub 2} and H{sub 2}SO{sub 4}. Subsequent exposure to Ge flux creates 3 to 7 nm-diameter voids in the oxide at a density greater than 10{sup 11}/cm{sup 2}. Comparison of data taken from many previous studies and ours shows an exponential dependence between oxide thickness and inverse temperature of void formation. Additionally, exposure to a Ge or Si atom flux decreases the temperature at which voids begin to form in the oxide. These results strongly suggest that Ge actively participates in the reaction with SiO{sub 2} in the void formation process. Once voids are created in the oxide under a Ge flux, Ge islands selectively nucleate within the void openings on the newly exposed Si. Island nucleation and growth then compete with the void growth reaction. At substrate temperatures between 823 and 1053 K, nanometer size Ge islands that nucleate within the voids continue to grow and coalesce into a continuous film over the remaining oxide. Coalescence of the Ge islands is believed to result in the creation of stacking faults in the Ge film at a density of 5 x 10{sup 7}/cm{sup 2}. Additionally, coalescence results in films of 3 {mu}m thickness having a root-mean-square roughness of 8 to 10 nm. We have found that polishing the films with dilute H{sub 2}O{sub 2} results in roughness values below 0.5 nm. However, stacking faults originating at the Ge-SiO{sub 2} interface and terminating at the Ge surface are polished at a slightly reduced rate, and show up as 1 to 2 nm raised lines on the polished Ge surface. These lines are then transferred into the

  6. Nanoscale interfacial engineering to grow Ge on Si as virtual substrates and subsequent integration of GaAs

    International Nuclear Information System (INIS)

    Leonhardt, Darin; Sheng, Josephine; Cederberg, Jeffrey G.; Li Qiming; Carroll, Malcolm S.; Han, Sang M.

    2010-01-01

    We have demonstrated the scalability of a process previously dubbed as Ge 'touchdown' on Si to substantially reduce threading dislocations below 10 7 /cm 2 in a Ge film grown on a 2 inch-diameter chemically oxidized Si substrate. This study also elucidates the overall mechanism of the touchdown process. The 1.4 nm thick chemical oxide is first formed by immersing Si substrates in a solution of H 2 O 2 and H 2 SO 4 . Subsequent exposure to Ge flux creates 3 to 7 nm-diameter voids in the oxide at a density greater than 10 11 /cm 2 . Comparison of data taken from many previous studies and ours shows an exponential dependence between oxide thickness and inverse temperature of void formation. Additionally, exposure to a Ge or Si atom flux decreases the temperature at which voids begin to form in the oxide. These results strongly suggest that Ge actively participates in the reaction with SiO 2 in the void formation process. Once voids are created in the oxide under a Ge flux, Ge islands selectively nucleate within the void openings on the newly exposed Si. Island nucleation and growth then compete with the void growth reaction. At substrate temperatures between 823 and 1053 K, nanometer size Ge islands that nucleate within the voids continue to grow and coalesce into a continuous film over the remaining oxide. Coalescence of the Ge islands is believed to result in the creation of stacking faults in the Ge film at a density of 5 x 10 7 /cm 2 . Additionally, coalescence results in films of 3 μm thickness having a root-mean-square roughness of 8 to 10 nm. We have found that polishing the films with dilute H 2 O 2 results in roughness values below 0.5 nm. However, stacking faults originating at the Ge-SiO 2 interface and terminating at the Ge surface are polished at a slightly reduced rate, and show up as 1 to 2 nm raised lines on the polished Ge surface. These lines are then transferred into the subsequent growth morphology of GaAs deposited by metal-organic chemical vapor

  7. The X-ray investigation of GaAs nanorods grown onto Si[111] substrate

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, A.; Biermanns, Andreas; Pietsch, Ullrich [University of Siegen (Germany); Breuer, Steffen; Geelhaar, Lutz [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2010-07-01

    Nanorods (NR) are of particular interest due to the ability to synthesize single-crystalline 1D epitaxial structures and heterostructures in the nanometer range. It was found that nearly any AIIIBV semiconductor material can be grown as NRs onto another AIIIBV or group IV[111] substrate independent from lattice mismatch. We presented an X-ray characterization of GaAs NRs on Si[111] grown by gold-seed assist MBE method. We concentrated our research on 4 samples with different growth time: a) at 5s growth time several island but no NWs are found on the surface; b) at 60 s first NWs appeared; c) at 150 s the size of rods is increased; d) at 1800 s many NWs occupy the whole surface. Using synchrotron radiation we have performed experiments in symmetrical and asymmetrical out-of plane scattering geometry and depth resolved grazing-incidence diffraction. Combining the results we were able to determine the strain gradient between wurzite like NR and zincblende substrate. Using particularly asymmetric wurzite-like reflections under coherent beam illumination we could quantify the number of stacking faults In the talk we present details of the analysis and first simulation results.

  8. High quality GaAs single photon emitters on Si substrate

    International Nuclear Information System (INIS)

    Bietti, S.; Sanguinetti, S.; Cavigli, L.; Accanto, N.; Vinattieri, A.; Minari, S.; Abbarchi, M.; Isella, G.; Frigeri, C.; Gurioli, M.

    2013-01-01

    We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer

  9. Molecular Beam Epitaxial Growth of GaAs on (631) Oriented Substrates

    International Nuclear Information System (INIS)

    Cruz Hernandez, Esteban; Rojas Ramirez, Juan-Salvador; Contreras Hernandez, Rocio; Lopez Lopez, Maximo; Pulzara Mora, Alvaro; Mendez Garcia, Victor H.

    2007-01-01

    In this work, we report the study of the homoepitaxial growth of GaAs on (631) oriented substrates by molecular beam epitaxy (MBE). We observed the spontaneous formation of a high density of large scale features on the surface. The hilly like features are elongated towards the [-5, 9, 3] direction. We show the dependence of these structures with the growth conditions and we present the possibility of to create quantum wires structures on this surface

  10. Direct Growth of High-Quality InP Layers on GaAs Substrates by MOCVD

    Directory of Open Access Journals (Sweden)

    K. F. Yarn

    2003-01-01

    group V partial pressure, growth rate and V/III ratios. A mirror-like, uniform surface and high crystal quality of the metamorphic buffer layer directly grown on a GaAs substrate can be achieved. Finally, to investigate the performance of the metamorphic microwave devices, we also fabricate the InAlAs/InGaAs metamorphic HEMT on GaAs substrates.

  11. Impact of GaAs buffer thickness on electronic quality of GaAs grown on graded Ge/GeSi/Si substrates

    International Nuclear Information System (INIS)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.; Keyes, B. M.

    2000-01-01

    Minority carrier lifetimes and interface recombination velocities for GaAs grown on a Si wafer using compositionally graded GeSi buffers have been investigated as a function of GaAs buffer thickness using monolayer-scale control of the GaAs/Ge interface nucleation during molecular beam epitaxy. The GaAs layers are free of antiphase domain disorder, with threading dislocation densities measured by etch pit density of 5x10 5 -2x10 6 cm -2 . Analysis indicates no degradation in either minority carrier lifetime or interface recombination velocity down to a GaAs buffer thickness of 0.1 μm. In fact, record high minority carrier lifetimes exceeding 10 ns have been obtained for GaAs on Si with a 0.1 μm GaAs buffer. Secondary ion mass spectroscopy reveals that cross diffusion of Ga, As, and Ge at the GaAs/Ge interface formed on the graded GeSi buffers are below detection limits in the interface region, indicating that polarity control of the GaAs/Ge interface formed on GeSi/Si substrates can be achieved. (c) 2000 American Institute of Physics

  12. P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y.J.; Chia, C.K.; Liu, H.F.; Wong, L.M.; Chai, J.W.; Chi, D.Z.; Wang, S.J., E-mail: sj-wang@imre.a-star.edu.sg

    2016-07-15

    Highlights: • The heterogeneous integration of p-Ge/GaAs by MOCVD indicates significance for the application in optoelectronic devices such as p-MOSFET, dual band photodetector, etc. • Many undesired pillar-structures were observed on the p-Ge epilayers and we found that the cause of the pillar-like structures was related to the Ge-Ga dimers formed during the growth. • We found that a GaAs substrate with fewer Ga or Ge danglings was helpful in suppressing the formation of the unwanted pillar-like structures and thus obtaining high quality p-Ge epilayers. - Abstract: In this work, Ga-doped Geranium (Ge) films have been grown on GaAs (100) substrates by metal-organic chemical vapor deposition (MOCVD). Undesired pillar structures have been observed on the epilayers prepared at relatively lower temperatures. Energy dispersive X-ray spectroscopy (EDX) indicated that the pillars are mainly consisted of Ga atoms, which is totally different from that of the Ge film. It was demonstrated that the pillar structures could be reduced by simply raising the growth temperature while keeping the other growth conditions unchanged. In this regard, the growth mechanism of the pillars was related to the Ge-Ga dimers formed during the growth of p-Ge films. By further studying the influence of a GaAs or Ge buffer layer on the growth of p-Ge layers, we found that the GaAs substrate with lower density of Ga or Ge dangling bonds was helpful in suppressing the formation of the undesired pillar structures.

  13. Structural and morphological characterizations of ZnO films grown on GaAs substrates by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Agouram, S.; Zuniga Perez, J.; Munoz-Sanjose, V. [Universitat de Valencia, Departamento de Fisica Aplicada y Electromagnetismo, Burjassot (Spain)

    2007-07-15

    ZnO films were grown on GaAs(100), GaAs(111)A and GaAs(111)B substrates by metal organic chemical vapour deposition (MOCVD). Diethylzinc (DEZn) and tertiarybutanol (t-butanol) were used as Zn and O precursors, respectively. The influence of the growth temperature and GaAs substrate orientation on the crystalline orientation and morphology of the ZnO grown films has been analysed. Crystallinity of grown films was studied by X-ray diffraction (XRD); thickness and morphology of ZnO films were investigated by scanning electron microscopy (SEM). SEM results reveal significant differences between morphologies depending on growth temperature but not significant differences were detected on the texture of grown films. (orig.)

  14. Characterization of InSb layers on GaAs substrates using infrared reflectance and a modified oscillator formula

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.z [Physics Department, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Wagener, M.C. [Physics Department, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa)

    2009-12-01

    InSb epilayers on GaAs substrates are analyzed using infrared reflectance spectroscopy, but employing a modified Drude oscillator formula. The modified formula enables the determination of 13 parameters: six dielectric parameters for both layer and substrate separately, as well as the thickness of the layer. The formula is tested against previously published data, and to characterize layers grown in this laboratory.

  15. Characterization of InSb layers on GaAs substrates using infrared reflectance and a modified oscillator formula

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Wagener, M.C.

    2009-01-01

    InSb epilayers on GaAs substrates are analyzed using infrared reflectance spectroscopy, but employing a modified Drude oscillator formula. The modified formula enables the determination of 13 parameters: six dielectric parameters for both layer and substrate separately, as well as the thickness of the layer. The formula is tested against previously published data, and to characterize layers grown in this laboratory.

  16. Comparison of different pathways in metamorphic graded buffers on GaAs substrate: Indium incorporation with surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul, E-mail: rkp203@gmail.com [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Mukhopadhyay, P. [Rajendra Mishra School of Engineering Entrepreneurship, Indian Institute of Technology, Kharagpur 721302 (India); Bag, A.; Jana, S. Kr. [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Chakraborty, A. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302 (India); Das, S.; Mahata, M. Kr. [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Biswas, D. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)

    2015-01-01

    Highlights: • In(Al,Ga)As metamorphic buffers on GaAs have been grown. • Surface morphology, strain relaxation and compositional variation have been studied. • Al containing buffers shows inferior surface roughness. • Surface roughness modulates the indium incorporation rate. - Abstract: In this work, compositionally graded In(Al,Ga)As metamorphic buffers (MBs) on GaAs substrate have been grown by MBE through three different paths. A comparative study has been done to comprehend the effect of underlying MB on the constant composition InAlAs healing layer by analyzing the relaxation behaviour, composition and surface morphology of the grown structures. The compositional variation between the constant composition healing layers on top of graded MB has been observed in all three samples although the growth conditions have been kept same. Indium incorporation rate has been found to be dependent on underlying MB. By combining the result of atomic force microscopy, photo-luminescence and X-ray reciprocal space mapping, varying surface roughness has been proposed as the probable driving force behind different Indium incorporation rate.

  17. Comparison of different pathways in metamorphic graded buffers on GaAs substrate: Indium incorporation with surface roughness

    International Nuclear Information System (INIS)

    Kumar, Rahul; Mukhopadhyay, P.; Bag, A.; Jana, S. Kr.; Chakraborty, A.; Das, S.; Mahata, M. Kr.; Biswas, D.

    2015-01-01

    Highlights: • In(Al,Ga)As metamorphic buffers on GaAs have been grown. • Surface morphology, strain relaxation and compositional variation have been studied. • Al containing buffers shows inferior surface roughness. • Surface roughness modulates the indium incorporation rate. - Abstract: In this work, compositionally graded In(Al,Ga)As metamorphic buffers (MBs) on GaAs substrate have been grown by MBE through three different paths. A comparative study has been done to comprehend the effect of underlying MB on the constant composition InAlAs healing layer by analyzing the relaxation behaviour, composition and surface morphology of the grown structures. The compositional variation between the constant composition healing layers on top of graded MB has been observed in all three samples although the growth conditions have been kept same. Indium incorporation rate has been found to be dependent on underlying MB. By combining the result of atomic force microscopy, photo-luminescence and X-ray reciprocal space mapping, varying surface roughness has been proposed as the probable driving force behind different Indium incorporation rate

  18. A comparative study of Co thin film deposited on GaAs (1 0 0) and glass substrates

    International Nuclear Information System (INIS)

    Sharma, A.; Brajpuriya, R.; Tripathi, S.; Jain, D.; Dubey, R.; Shripathi, T.; Chaudhari, S.M.

    2006-01-01

    The structural, magnetic and transport properties of Co/GaAs (1 0 0) and Co/glass thin films have been investigated. The structural measurements reveal the crystalline nature of Co thin film grown on GaAs, while microcrystalline nature in case of glass substrate. The film grown on GaAs shows higher coercivity (49.0 G), lower saturation magnetization (3.65 x 10 -4 ) and resistivity (8 μΩ cm) values as compared to that on glass substrate (22 G, 4.77 x 10 -4 and 18 μΩ cm). The grazing incidence X-ray reflectivity and photoemission spectroscopy results show the interaction between Co and GaAs at the interface, while the Co layer grown on glass remains unaffected. These observed results are discussed and interpreted in terms of different growth morphologies and structures of as grown Co thin film on both substrates

  19. Tailoring broadband light trapping of GaAs and Si substrates by self-organised nanopatterning

    Energy Technology Data Exchange (ETDEWEB)

    Martella, C.; Chiappe, D.; Mennucci, C.; Buatier de Mongeot, F. [Dipartimento di Fisica, Università di Genova, via Dodecaneso 33, I-16146 Genova (Italy)

    2014-05-21

    We report on the formation of high aspect ratio anisotropic nanopatterns on crystalline GaAs (100) and Si (100) substrates exploiting defocused Ion Beam Sputtering assisted by a sacrificial self-organised Au stencil mask. The tailored optical properties of the substrates are characterised in terms of total reflectivity and haze by means of integrating sphere measurements as a function of the morphological modification at increasing ion fluence. Refractive index grading from sub-wavelength surface features induces polarisation dependent anti-reflection behaviour in the visible-near infrared (VIS-NIR) range, while light scattering at off-specular angles from larger structures leads to very high values of the haze functions in reflection. The results, obtained for an important class of technologically relevant materials, are appealing in view of photovoltaic and photonic applications aiming at photon harvesting in ultrathin crystalline solar cells.

  20. Growth and characterization of InAs columnar quantum dots on GaAs substrate

    International Nuclear Information System (INIS)

    Li, L. H.; Patriarche, G.; Rossetti, M.; Fiore, A.

    2007-01-01

    The growth of InAs columnar quantum dots (CQDs) on GaAs substrates by molecular beam epitaxy was investigated. The CQDs were formed by depositing a 1.8 monolayer (ML) InAs seed dot layer and a short period GaAs/InAs superlattice (SL). It was found that the growth of the CQDs is very sensitive to growth interruption (GI) and growth temperature. Both longer GI and higher growth temperature impact the size dispersion of the CQDs, which causes the broadening of photoluminescence (PL) spectrum and the presence of the additional PL peak tails. By properly choosing the GI and the growth temperature, CQDs including GaAs (3 ML)/InAs (0.62 ML) SL with period number up to 35 without plastic relaxation were grown. The corresponding equivalent thickness of the SL is 41 nm which is two times higher than the theoretical critical thickness of the strained InGaAs layer with the same average In composition of 16%. The increase of the critical thickness is partially associated with the formation of the CQDs. Based on a five-stack CQD active region, laser diodes emitting around 1120 nm at room temperature were demonstrated, indicating a high material quality. CQDs with nearly isotropic cross section (20 nmx20 nm dimensions) were formed by depositing a 16-period GaAs (3 ML)/InAs (0.62 ML) SL on an InAs seed dot layer, indicating the feasibility of artificial shape engineering of QDs. Such a structure is expected to be very promising for polarization insensitive device applications, such as semiconductor optical amplifiers

  1. Epitaxial growth of ZnO layers on (111) GaAs substrates by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ding Jian; Zhang Di; Konomi, Takaharu; Saito, Katsuhiko; Guo Qixin

    2012-01-01

    ZnO layers were grown on (111) GaAs substrates by laser molecular epitaxy at substrate temperatures between 200 and 550 °C. X-ray diffraction analysis revealed that c-axis of ZnO epilayer with a wurtzite structure is perpendicular to the substrate surface. X-ray rocking curves and Raman spectroscopy showed that the crystal quality of ZnO epilayers depends on the substrate temperature during the growth. Strong near-band-edge emission in the UV region without any deep-level emissions was observed from the ZnO epilayers at room temperature. The results indicate that laser molecular beam epitaxy is a promising growth method for obtaining high-quality ZnO layers on (111) GaAs substrates.

  2. Structural characterization of ZnTe grown by atomic-layer-deposition regime on GaAs and GaSb (100) oriented substrates

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Ojeda, Roberto Saúl [Universidad Politécnica de Pachuca (Mexico); Díaz-Reyes, Joel; Peralta-Clara, María de la Cruz; Veloz-Rendón, Julieta Salomé, E-mail: joel_diaz_reyes@hotmail.com [Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, (Mexico); Galván-Arellano, Miguel [Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (Mexico); Anda-Salazar, Francisco de [Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí (Mexico); Contreras-Rascon, Jorge Indalecio [Departamento de Física, Universidad de Sonora (Mexico)

    2017-10-15

    This work presents the characterization of ZnTe nano layers grown on GaAs and GaSb (100) substrates by the Atomic Layer Deposition (ALD) regime. Under certain conditions, the alternating exposition of a substrate surface to the element vapours makes possible the growth of atomic layers in a reactor where the atmosphere is high-purity hydrogen. ZnTe was grown simultaneously on GaAs and GaSb at the same run, allowing, a comparison between the effects produced by the superficial processes due to the different used substrates, thereby eliminating possible unintended changes of growth parameters. Nano layers on GaSb maintained their shiny appearance even at temperatures near 420°C. It was found that for exposure times below 2.5 s there was not growth on GaAs, while for GaSb the shortest time was 1.5 s at 385°C. By HRXRD the peak corresponding to (004) diffraction plane of ZnTe was identified and investigated, the FWHM resulted very wide (600-800 arcsec) indicating a highly distorted lattice mainly due to mosaicity. Raman scattering shows the peak corresponding to LO-ZnTe, which is weak and slightly shifted in comparison with the reported for the bulk ZnTe at 210 cm{sup -1}. Additionally, the measurements suggest that the crystalline quality have a dependence with the growth temperature. (author)

  3. Multilayers of GaAs/Mn deposited on a substrate of GaAs (001)

    International Nuclear Information System (INIS)

    Bernal-Salamanca, M; Pulzara-Mora, A; Rosales-Rivera, A; Molina-Valdovinos, S; Melendez-Lira, M; Lopez-Lopez, M

    2009-01-01

    In this work GaAs/Mn multilayers were deposited on GaAs (001) substrates by R.F magnetron sputtering technique, varying the deposition time (tg). Scanning electron and atomic force Microscopy studies were realized on the surface of the samples in order to determine the morphology and average roughness. X-ray diffraction spectra show that our samples tend to do amorphous. Raman spectroscopy at room temperature was employed to analyze the structural properties of the samples. We found that for a GaAs film taken as reference, the Raman spectra is dominated by the transverse (TO) and longitudinal (LO) modes located at 266 cm -1 and 291 cm -1 , respectively. However, for the GaAs/Mn multilayers the TO and LO modes decrease dramatically, and the Mn Raman modes in the range of 100 cm -1 and 250 cm -1 are evidenced. Additional new peaks located around 650 and 690 cm -1 are only observed for the samples with high Mn content. By using the mass reduced model we estimate that the Mn related peaks are located at 650.2 cm -1 and 695.2 cm -1 , in good agreement with the experimental data, these peaks are correlated with excitations due to (Mn) m As n localized structures.

  4. Multilayers of GaAs/Mn deposited on a substrate of GaAs (001)

    Energy Technology Data Exchange (ETDEWEB)

    Bernal-Salamanca, M; Pulzara-Mora, A; Rosales-Rivera, A [Laboratorio de Magnetismo y Materiales Avanzados, Universidad Nacional de Colombia, Sede Manizales, A.A. 127 (Colombia); Molina-Valdovinos, S; Melendez-Lira, M [Physics Department, Centro de Investigacion y Estudios Avanzados del IPN, Av. IPN No. 2508, Apartado Postal 14-740, 07000 Mexico D.F (Mexico); Lopez-Lopez, M, E-mail: aopulzaram@unal.edu.c [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Apartado Postal 1-1010, Queretaro 76000 (Mexico)

    2009-05-01

    In this work GaAs/Mn multilayers were deposited on GaAs (001) substrates by R.F magnetron sputtering technique, varying the deposition time (tg). Scanning electron and atomic force Microscopy studies were realized on the surface of the samples in order to determine the morphology and average roughness. X-ray diffraction spectra show that our samples tend to do amorphous. Raman spectroscopy at room temperature was employed to analyze the structural properties of the samples. We found that for a GaAs film taken as reference, the Raman spectra is dominated by the transverse (TO) and longitudinal (LO) modes located at 266 cm{sup -1} and 291 cm{sup -1}, respectively. However, for the GaAs/Mn multilayers the TO and LO modes decrease dramatically, and the Mn Raman modes in the range of 100 cm{sup -1} and 250 cm{sup -1} are evidenced. Additional new peaks located around 650 and 690 cm {sup -1} are only observed for the samples with high Mn content. By using the mass reduced model we estimate that the Mn related peaks are located at 650.2 cm{sup -1} and 695.2 cm{sup -1}, in good agreement with the experimental data, these peaks are correlated with excitations due to (Mn){sub m}As{sub n} localized structures.

  5. Study of molecular-beam epitaxy growth on patterned GaAs (311)A substrates with different mesa height

    NARCIS (Netherlands)

    Gong, Q.; Nötzel, R.; Schönherr, H.-P.; Ploog, K.

    2000-01-01

    We report on the evolution of the growth front during molecular-beam epitaxy on GaAs (3 1 1)A substrates stripe patterned along the [ ] direction as a function of the mesa height. During growth (1 0 0) and (2 1 1)A facets are formed and expand at the corners near the two opposite lying ( )A and (1 1

  6. New process for high optical quality InAs quantum dots grown on patterned GaAs(001) substrates

    NARCIS (Netherlands)

    Alonso-González, Pablo; González, Luisa; González, Yolanda; Fuster, David; Fernández-Martinez, Ivan; Martin-Sánchez, Javier; Abelmann, Leon

    2007-01-01

    This work presents a selective ultraviolet (UV)-ozone oxidation-chemical etching process that has been used, in combination with laser interference lithography (LIL), for the preparation of GaAs patterned substrates. Further molecular beam epitaxy (MBE) growth of InAs results in ordered InAs/GaAs

  7. GaMnAs on patterned GaAs(001) substrates: Growth and magnetotransport

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim; Glunk, Michael; Hummel, Thomas; Schoch, Wladimir; Limmer, Wolfgang; Sauer, Rolf [Institut fuer Halbleiterphysik, Universitaet Ulm, 89069 Ulm (Germany)

    2007-07-01

    A new type of GaMnAs microstructures with laterally confined electronic and magnetic properties has been realized in a bottom-up procedure by growing GaMnAs films on [1 anti 10]-oriented ridge structures with (113)A sidewalls and (001) top layers prepared on GaAs(001) substrates. Previous studies on planar GaMnAs samples have revealed different incorporation of Mn and excess As in (001) and (113)A layers. Accordingly, temperature- and field-dependent magnetotransport measurements on the overgrown ridge structures clearly demonstrate the coexistence of electronic and magnetic properties specific for (001) and (113)A GaMnAs in one single sample. This introduces an additional degree of freedom in the development of new functional structures.

  8. Co thin film with metastable bcc structure formed on GaAs(111 substrate

    Directory of Open Access Journals (Sweden)

    Minakawa Shigeyuki

    2014-07-01

    Full Text Available Co thin films are prepared on GaAs(111 substrates at temperatures ranging from room temperature to 600 ºC by radio-frequency magnetron sputtering. The growth behavior and the detailed resulting film structure are investigated by in-situ reflection high-energy electron diffraction and X-ray diffraction. In early stages of film growth at temperatures lower than 200 ºC, Co crystals with metastable A2 (bcc structure are formed, where the crystal structure is stabilized through hetero-epitaxial growth. With increasing the film thickness beyond 2 nm, the metastable structure starts to transform into more stable A1 (fcc structure through atomic displacements parallel to the A2{110} close-packed planes. The crystallographic orientation relationship between the A2 and the transformed A1 crystals is A1{111} || A2{110}. When the substrate temperature is higher than 400 ºC, Ga atoms of substrate diffuse into the Co films and a Co-Ga alloy with bcc-based ordered structure of B2 is formed.

  9. High Quality GaAs Epilayers Grown on Si Substrate Using 100 nm Ge Buffer Layer

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Kuo

    2016-01-01

    Full Text Available We present high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers. The thin Ge buffer layers were modulated by hydrogen flow rate from 60 to 90 sccm to improve crystal quality by electron cyclotron resonance chemical vapor deposition (ECR-CVD at low growth temperature (180°C. The GaAs and Ge epilayers quality was verified by X-ray diffraction (XRD and spectroscopy ellipsometry (SE. The full width at half maximum (FWHM of the Ge and GaAs epilayers in XRD is 406 arcsec and 220 arcsec, respectively. In addition, the GaAs/Ge/Si interface is observed by transmission electron microscopy (TEM to demonstrate the epitaxial growth. The defects at GaAs/Ge interface are localized within a few nanometers. It is clearly showed that the dislocation is well suppressed. The quality of the Ge buffer layer is the key of III–V/Si tandem cell. Therefore, the high quality GaAs epilayers that grow on virtual substrate with 100 nm Ge buffer layers is suitable to develop the low cost and high efficiency III–V/Si tandem solar cells.

  10. Croissance epitaxiale de GaAs sur substrats de Ge par epitaxie par faisceaux chimiques

    Science.gov (United States)

    Belanger, Simon

    La situation energetique et les enjeux environnementaux auxquels la societe est confrontee entrainent un interet grandissant pour la production d'electricite a partir de l'energie solaire. Parmi les technologies actuellement disponibles, la filiere du photovoltaique a concentrateur solaire (CPV pour concentrator photovoltaics) possede un rendement superieur et mi potentiel interessant a condition que ses couts de production soient competitifs. La methode d'epitaxie par faisceaux chimiques (CBE pour chemical beam epitaxy) possede plusieurs caracteristiques qui la rendent interessante pour la production a grande echelle de cellules photovoltaiques a jonctions multiples a base de semi-conducteurs III-V. Ce type de cellule possede la meilleure efficacite atteinte a ce jour et est utilise sur les satellites et les systemes photovoltaiques a concentrateur solaire (CPV) les plus efficaces. Une des principales forces de la technique CBE se trouve dans son potentiel d'efficacite d'utilisation des materiaux source qui est superieur a celui de la technique d'epitaxie qui est couramment utilisee pour la production a grande echelle de ces cellules. Ce memoire de maitrise presente les travaux effectues dans le but d'evaluer le potentiel de la technique CBE pour realiser la croissance de couches de GaAs sur des substrats de Ge. Cette croissance constitue la premiere etape de fabrication de nombreux modeles de cellules solaires a haute performance decrites plus haut. La realisation de ce projet a necessite le developpement d'un procede de preparation de surface pour les substrats de germanium, la realisation de nombreuses sceances de croissance epitaxiale et la caracterisation des materiaux obtenus par microscopie optique, microscopie a force atomique (AFM), diffraction des rayons-X a haute resolution (HRXRD), microscopie electronique a transmission (TEM), photoluminescence a basse temperature (LTPL) et spectrometrie de masse des ions secondaires (SIMS). Les experiences ont permis

  11. New process for high optical quality InAs quantum dots grown on patterned GaAs(001) substrates

    International Nuclear Information System (INIS)

    Alonso-Gonzalez, Pablo; Gonzalez, Luisa; Gonzalez, Yolanda; Fuster, David; Fernandez-Martinez, Ivan; Martin-Sanchez, Javier; Abelmann, Leon

    2007-01-01

    This work presents a selective ultraviolet (UV)-ozone oxidation-chemical etching process that has been used, in combination with laser interference lithography (LIL), for the preparation of GaAs patterned substrates. Further molecular beam epitaxy (MBE) growth of InAs results in ordered InAs/GaAs quantum dot (QD) arrays with high optical quality from the first layer of QDs formed on the patterned substrate. The main result is the development of a patterning technology that allows the engineering of customized geometrical displays of QDs with the same optical quality as those formed spontaneously on flat non-patterned substrates

  12. Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wen, Lei; Gao, Fangliang; Li, Jingling; Guan, Yunfang; Wang, Wenliang; Zhou, Shizhong; Lin, Zhiting; Zhang, Xiaona; Zhang, Shuguang; Li, Guoqiang

    2014-01-01

    High-quality GaAs films have been epitaxially grown on Si (111) substrates by inserting an In x Ga 1−x As interlayer with proper In composition by molecular beam epitaxy (MBE). The effect of In x Ga 1−x As (0 < x < 0.2) interlayers on the properties of GaAs films grown on Si (111) substrates by MBE has been studied in detailed. Due to the high compressive strain between InGaAs and Si, InGaAs undergoes partial strain relaxation. Unstrained InGaAs has a larger lattice constant than GaAs. Therefore, a thin InGaAs layer with proper In composition may adopt a close lattice constant with that of GaAs, which is beneficial to the growth of high-quality GaAs epilayer on top. It is found that the proper In composition in In x Ga 1−x As interlayer of 10% is beneficial to obtaining high-quality GaAs films, which, on the one hand, greatly compensates the misfit stress between GaAs film and Si substrate, and on the other hand, suppresses the formation of multiple twin during the heteroepitaxial growth of GaAs film. However, when the In composition does not reach the proper value (∼10%), the In x Ga 1−x As adopts a lower strain relaxation and undergoes a lattice constant smaller than unstrained GaAs, and therefore introduces compressive stress to GaAs grown on top. When In composition exceeds the proper value, the In x Ga 1−x As will adopt a higher strain relaxation and undergoes a lattice constant larger than unstrained GaAs, and therefore introduces tensile stress to GaAs grown on top. As a result, In x Ga 1−x As interlayers with improper In composition introduces enlarged misfit stress to GaAs epilayers grown on top, and deteriorates the quality of GaAs epilayers. This work demonstrates a simple but effective method to grow high-quality GaAs epilayers and brings up a broad prospect for the application of GaAs-based optoelectronic devices on Si substrates

  13. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Dutta, P.; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-01-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10 7  cm −2 . Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm 2 /V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  14. GaSb and GaSb/AlSb Superlattice Buffer Layers for High-Quality Photodiodes Grown on Commercial GaAs and Si Substrates

    Science.gov (United States)

    Gutiérrez, M.; Lloret, F.; Jurczak, P.; Wu, J.; Liu, H. Y.; Araújo, D.

    2018-05-01

    The objective of this work is the integration of InGaAs/GaSb/GaAs heterostructures, with high indium content, on GaAs and Si commercial wafers. The design of an interfacial misfit dislocation array, either on GaAs or Si substrates, allowed growth of strain-free devices. The growth of purposely designed superlattices with their active region free of extended defects on both GaAs and Si substrates is demonstrated. Transmission electron microscopy technique is used for the structural characterization and plastic relaxation study. In the first case, on GaAs substrates, the presence of dopants was demonstrated to reduce several times the threading dislocation density through a strain-hardening mechanism avoiding dislocation interactions, while in the second case, on Si substrates, similar reduction of dislocation interactions is obtained using an AlSb/GaSb superlattice. The latter is shown to redistribute spatially the interfacial misfit dislocation array to reduce dislocation interactions.

  15. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011){sub B3} single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Higuchi, Jumpei; Yabuhara, Osamu [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011){sub B3} single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar]{sub bcc} || GaAs(011)[011-bar]{sub B3}. The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{l_brace}011{r_brace} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011){sub B3} substrates.

  16. Preparation of metastable bcc permalloy epitaxial thin films on GaAs(011)B3 single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Higuchi, Jumpei; Yabuhara, Osamu; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    Permalloy (Py) single-crystal films with bcc structure were obtained on GaAs(011) B3 single-crystal substrates by ultra high vacuum rf magnetron sputtering. The film growth and the detailed film structures were investigated by refection high energy electron diffraction and pole figure X-ray diffraction. bcc-Py films epitaxially grow on the substrates in the orientation relationship of Py(011)[011-bar] bcc || GaAs(011)[011-bar] B3 . The lattice constant of bcc-Py film is determined to be a = 0.291 nm. With increasing the film thickness, parts of the bcc crystal transform into more stable fcc structure by atomic displacement parallel to the bcc{011} close-packed planes. The resulting film thus consists of a mixture of bcc and fcc crystals. The phase transformation mechanism is discussed based on the experimental results. The in-plane magnetization properties reflecting the magnetocrystalline anisotropy of bcc-Py crystal are observed for the Py films grown on GaAs(011) B3 substrates.

  17. Homogeneous ZnO nanostructure arrays on GaAs substrates by two-step chemical bath synthesis

    International Nuclear Information System (INIS)

    Huang, Chun-Yuan; Wu, Tzung-Han; Cheng, Chiao-Yang; Su, Yan-Kuin

    2012-01-01

    ZnO nanostructures, including nanowires, nanorods, and nanoneedles, have been deposited on GaAs substrates by the two-step chemical bath synthesis. It was demonstrated that the O 2 -plasma treatment of GaAs substrates prior to the sol–gel deposition of seed layers was essential to conformally grow the nanostructures instead of 2D ZnO bunches and grains on the seed layers. Via adjusting the growth time and concentration of precursors, nanostructures with different average diameter (26–225 nm), length (0.98–2.29 μm), and density (1.9–15.3 × 10 9 cm −2 ) can be obtained. To the best of our knowledge, this is the first demonstration of ZnO nanostructure arrays grown on GaAs substrates by the two-step chemical bath synthesis. As an anti-reflection layer on GaAs-based solar cells, the array of ZnO nanoneedles with an average diameter of 125 nm, a moderate length of 2.29 μm, and the distribution density of 9.8 × 10 9 cm −2 has increased the power conversion efficiency from 7.3 to 12.2 %, corresponding to a 67 % improvement.

  18. Influence of substrate on the performances of semi-insulating GaAs detectors

    CERN Document Server

    Baldini, R; Nava, F; Canali, C; Lanzieri, C

    2000-01-01

    A study of the carrier transport mechanism, the charge collection efficiency and the energy resolution has been carried out on semi-insulating GaAs X-ray detectors realised on substrates with concentrations of acceptor dopants N sub a , varying from 10 sup 1 sup 4 to 10 sup 1 sup 7 cm sup - sup 3. The electron collection efficiency (ECE) and the reverse current were found to decrease with increasing N sub a , while the resistivity of the material was found to increase. At room temperature, the best collection efficiency (95%) and the best energy resolution (13.7 keV FWHM) for 59.5 keV X-rays of the sup 2 sup 4 sup 1 Am source, have been achieved with the less doped detectors (N sub a approx 10 sup 1 sup 4 cm sup - sup 3). The concentrations of ionised EL2 sup + , determined by optical measurements in IR regions, was shown to increase with N sub a and to be quasi-inversely proportional to the ECE values. This behaviour strongly supports the hypothesis that the EL2 defects play a main role in the compensation o...

  19. Growth of InAs/InGaAs nanowires on GaAs(111)B substrates

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Sven; Schott, Ruediger; Ludwig, Arne; Wieck, Andreas D. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany); Reuter, Dirk [Arbeitsgruppe fuer optoelektronische Materialien und Bauelemente, Universitaet Paderborn (Germany)

    2013-07-01

    To investigate the structure and behavior of individual 1D-quantum structures, so called nanowires, we have grown single localized Au seeded InAs/InGaAs nanowires on GaAs(111)B substrate by molecular beam epitaxy. The Au-seeds are implanted by focused ion beam (FIB) technology. We developed a AuGa-LMIS to avoid the beam spread induced by using a Wien-Filter, which allows us to reduce the spot size of the focused ion beam and as consequence the number of implanted ions necessary to seed a wire. At present the growth of InAs nanowires is not fully understood and we have been working on optimizing the process. We identified an optimal growth temperature and arsenic to indium ratio for nanowire growth. Further investigations also aim at analyzing the influence of the growth rates and growth directions. We studied the morphology of the nanowires by SEM imaging and the optical properties with photoluminescence spectroscopy.

  20. Electrical and physical characteristics for crystalline atomic layer deposited beryllium oxide thin film on Si and GaAs substrates

    International Nuclear Information System (INIS)

    Yum, J.H.; Akyol, T.; Lei, M.; Ferrer, D.A.; Hudnall, Todd W.; Downer, M.; Bielawski, C.W.; Bersuker, G.; Lee, J.C.; Banerjee, S.K.

    2012-01-01

    In a previous study, atomic layer deposited (ALD) BeO exhibited less interface defect density and hysteresis, as well as less frequency dispersion and leakage current density, at the same equivalent oxide thickness than Al 2 O 3 . Furthermore, its self-cleaning effect was better. In this study, the physical and electrical characteristics of ALD BeO grown on Si and GaAs substrates are further evaluated as a gate dielectric layer in III–V metal-oxide-semiconductor devices using transmission electron microscopy, selective area electron diffraction, second harmonic generation, and electrical analysis. An as-grown ALD BeO thin film was revealed as a layered single crystal structure, unlike the well-known ALD dielectrics that exhibit either poly-crystalline or amorphous structures. Low defect density in highly ordered ALD BeO film, less variability in electrical characteristics, and great stability under electrical stress were demonstrated. - Highlights: ► BeO is an excellent electrical insulator, but good thermal conductor. ► Highly crystalline film of BeO has been grown using atomic layer deposition. ► An ALD BeO precursor, which is not commercially available, has been synthesized. ► Physical and electrical characteristics have been investigated.

  1. Substrate Misorientation Effects On (A1,Ga)As And (Al,Ga)As/GaAs Structures Grown By Molecular Beam Epitaxy

    Science.gov (United States)

    Tsui, Raymond K.; Kramer, Gary D.; Curless, J. A.; Peffley, Marilyn S.

    1987-04-01

    (Al,Ga)As layers have rough surface morphologies when deposited under certain growth conditions in molecular beam epitaxy (MBE). This leads to poor interfaces between (A1,Ga)- As and GaAs and degraded performance in heterojunction devices. We have observed that by misorienting the substrate slightly from (100), in a manner specific to the growth conditions, smooth (Al,Ga)As layers 3-4 μm thick can be grown at a rate of ≍ 1 μm/h for various AlAs mole fractions, x. Similar conditions for nominal (100) result in a rough, textured morphology. Experiments were carried out using flat substrates of specific misorientations as well as lens-shaped substrates. The lenticular substrates allowed all orientations within 14° of (100) [i.e., out to (511)] to be evaluated in one growth run. Deposition conditions that were varied included x, substrate temperature, and V/III beam flux ratio. Smooth layers obtained using optimal misorientations showed superior optical characteris-tics as determined from low-temperature photoluminescence (PL) measurements. The 4.2K PL spectra of smooth layers exhibit well-resolved exciton-related peaks, and do not have the deeper-level defect-related peaks observed in the spectra of rough layers. Single quantum well structures with A10.3Ga0.7As barriers and a 100 A-wide GaAs well deposited on mis-oriented substrates also have superior optical properties compared to a structure grown on nominal (100). Such findings may have significant implications for the performance of heterojunction device structures grown by MBE.

  2. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Buriakov, A. M.; Bilyk, V. R.; Mishina, E. D. [Moscow Technological University “MIREA” (Russian Federation); Klimov, E. A. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation); Vasil’evskii, I. S. [National Research Nuclear University “MEPhI” (Russian Federation); Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh-Frequency Semiconductor Electronics (Russian Federation)

    2017-04-15

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity of the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.

  3. Homo- and heteroepitaxial growth behavior of upright InAs nanowires on InAs and GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Jens; Gottschalch, Volker; Paetzelt, Hendrik [Institut fuer Anorganische Chemie, Universitaet Leipzig, Johannesallee 29, D-04103 Leipzig (Germany); Wagner, Gerald [Institut fuer Kristallographie und Mineralogie, Universitaet Leipzig, Linnestr. 5, D-04103 Leipzig (Germany); Pietsch, Ulrich [Festkoerperphysik, Universitaet Siegen, D-57068 Siegen (Germany)

    2008-07-01

    Semiconductor nanowires (NW) acquire recently attraction because of promising new application fields in electronics and optoelectronic. We applied the vapor-liquid-solid mechanism with gold seeds in combination with low-pressure metal-organic vapor phase epitaxy (LP-MOVPE) to achieve replicable InAs NW growth with high growth rates. Since the initial alloying of the gold seeds with the substrate material plays a deciding role for the inceptive NW growth, InAs free standing nanowires were grown on GaAs(111)B substrate as well as on InAs/GaAs(111)B quasi-substrate. The influence of the MOVPE parameters will be discussed with respect to NW morphology and real-structure. A special focus will be set on the heteroepitaxial InAs NW growth on GaAs substrates. Gracing-incidence X-ray studies and transmission electron microscopy investigations revealed the existence of a thin Ga{sub x}In{sub 1-x}As graduated alloy layer with embedded crystalline gold alloy particles at the NW substrate interface. The effect of droplet composition on the VLS growth will be presented in a thermodynamic model.

  4. Enhancement of conductance of GaAs sub-microwires under external stimuli

    Science.gov (United States)

    Qu, Xianlin; Deng, Qingsong; Zheng, Kun

    2018-03-01

    Semiconductors with one dimension on the micro-nanometer scale have many unique physical properties that are remarkably different from those of their bulk counterparts. Moreover, changes in the external field will further modulate the properties of the semiconductor micro-nanomaterials. In this study, we used focused ion beam technology to prepare freestanding ⟨111⟩-oriented GaAs sub-microwires from a GaAs substrate. The effects of laser irradiation and bending or buckling deformation induced by compression on the electrical transport properties of an individual GaAs sub-microwire were studied. The experimental results indicate that both laser irradiation and bending deformation can enhance their electrical transport properties, the laser irradiation resulted in a conductance enhancement of ˜30% compared to the result with no irradiation, and in addition, bending deformation changed the conductance by as much as ˜180% when the average strain was approximately 1%. The corresponding mechanisms are also discussed. This study provides beneficial insight into the fabrication of electronic and optoelectronic devices based on GaAs micro/nano-wires.

  5. Stimulated emission in heterostructures with double InGaAs/GaAsSb/GaAs quantum wells, grown on GaAs and Ge/Si(001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yablonsky, A. N., E-mail: yablonsk@ipm.sci-nnov.ru; Morozov, S. V.; Gaponova, D. M.; Aleshkin, V. Ya. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Shengurov, V. G.; Zvonkov, B. N.; Vikhrova, O. V.; Baidus’, N. V. [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Krasil’nik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-11-15

    We report the observation of stimulated emission in heterostructures with double InGaAs/GaAsSb/GaAs quantum wells, grown on Si(001) substrates with the application of a relaxed Ge buffer layer. Stimulated emission is observed at 77 K under pulsed optical pumping at a wavelength of 1.11 μm, i.e., in the transparency range of bulk silicon. In similar InGaAs/GaAsSb/GaAs structures grown on GaAs substrates, room-temperature stimulated emission is observed at 1.17 μm. The results obtained are promising for integration of the structures into silicon-based optoelectronics.

  6. The effect of the In concentration on the surface morphology of InGaAs-GaAs heterostructures grown by MBE on GaAs substrate

    International Nuclear Information System (INIS)

    Gómez-Barojas, E; Serrano-Rojas, R M; Rodríguez-Moreno, M A; Santamaría-Juárez, G; Silva-González, R; a. Sección, San Luis Potosí, S. L. P., 78100 (Mexico))" data-affiliation=" (Instituto de Investigación en Comunicación Óptica. Universidad Autónoma de San Luis Potosí, Av. Karakorum 1470, Col. Lomas Altas 4a. Sección, San Luis Potosí, S. L. P., 78100 (Mexico))" >Vidal-Borbolla, M A

    2014-01-01

    A set of 3 heterostructures were formed by 10 periods of InGaAs-GaAs epitaxially grown on GaAs substrate by means of a molecular beam epitaxial system. Scanning electron microscopy (SEM) cross section images at high magnification show that the heterostructures present good periodicity. SEM micrographs of the surface morphology chemically etched show the coalescence effect of In due to an unequal etching rate of In and GaAs. Auger electron spectroscopy (AES) depth profiles show that the first GaAs layers in the 3 samples are off-stoichiometric and that the alloy layers present In square and triangular depth profiles

  7. Enhanced growth of highly lattice-mismatched CdSe on GaAs substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wang, Jyh-Shyang; Tsai, Yu-Hsuan; Wang, Hsiao-Hua; Ke, Han-Xiang; Tong, Shih-Chang; Yang, Chu-Shou; Wu, Chih-Hung; Shen, Ji-Lin

    2013-01-01

    This work demonstrates the improvement of the molecular beam epitaxial growth of zinc-blende CdSe on (0 0 1) GaAs substrate with a large lattice mismatch by introducing a small amount of Te atoms. Exposing the growing surface to Te atoms changes the reflection high-energy electron diffraction pattern from spotty to streaky together with (2 × 1) surface reconstruction, and greatly reduces the full width at half maximum of the X-ray rocking curve and increases the integral intensity of room-temperature photoluminescence by a factor of about nine.

  8. Growth of GaAs-nanowires on GaAs (111)B substrates induced by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Schott, Ruediger; Reuter, Dirk; Wieck, Andreas D. [Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)

    2011-07-01

    Semiconductor nanowires are a promising system for applications in the areas of electronics and photonics and also for exploring phenomena at the nanoscale. There are several approaches to grow nanowires at arbitrary sites on the wafer. We report about growing GaAs-nanowires on GaAs(111)B substrates via the vapour-liquid-solid (VLS) mechanism in an ultra-high-vacuum (UHV)-cluster of a molecular beam epitaxy (MBE) and a focused ion beam (FIB) system. Our idea is to implant metal seeds (especially Au) for the nanowire growth by in situ patterning using FIB. Due to the UHV transfer between the FIB and the MBE chamber, no further cleaning step of the substrate surface is necessary. Formations of organized GaAs-nanowires and high aspect ratios are observed.

  9. Structural characterization of zincblende Ga1-xMnxN epilayers grown by molecular beam epitaxy on (001) GaAs substrates

    International Nuclear Information System (INIS)

    Fay, M.W.; Han, Y.; Brown, P.D.; Novikov, S.V.; Edmonds, K.W.; Campion, R.P.; Gallagher, B.L.; Foxon, C.T.

    2005-01-01

    Zincblende p-type Ga 1-x Mn x N epilayers, grown with and without AlN/GaN buffer layers using plasma-assisted molecular beam epitaxy on (001) oriented GaAs substrates, have been investigated using a variety of complementary transmission electron microscopy techniques. The epilayers were found to contain a high anisotropic density of stacking faults and microtwins. MnAs inclusions were identified at the Ga 1-x Mn x N/(001)GaAs interface extending into the substrate. The use of AlN/GaN buffer layers was found to inhibit the formation of these inclusions

  10. Polarity driven simultaneous growth of free-standing and lateral GaAsP epitaxial nanowires on GaAs (001) substrate

    International Nuclear Information System (INIS)

    Sun, Wen; Xu, Hongyi; Guo, Yanan; Gao, Qiang; Hoe Tan, Hark; Jagadish, Chennupati; Zou, Jin

    2013-01-01

    Simultaneous growth of 〈111〉 B free-standing and ±[110] lateral GaAsP epitaxial nanowires on GaAs (001) substrates were observed and investigated by electron microscopy and crystallographic analysis. It was found that the growth of both free-standing and lateral ternary nanowires via Au catalysts was driven by the fact that Au catalysts prefer to maintain low-energy (111) B interfaces with surrounding GaAs(P) materials: in the case of free-standing nanowires, Au catalysts maintain (111) B interfaces with their underlying GaAsP nanowires; while in the case of lateral nanowires, each Au catalyst remain their side (111) B interfaces with the surrounding GaAs(P) material during the lateral nanowire growth

  11. Interface analysis of Ge ultra thin layers intercalated between GaAs substrates and oxide stacks

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Alessandro, E-mail: alessandro.molle@mdm.infm.i [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (Italy); Lamagna, Luca; Spiga, Sabina [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (Italy); Fanciulli, Marco [Laboratorio Nazionale MDM, CNR-INFM, Via C. Olivetti 2, 20041 Agrate Brianza (MI) (Italy); Dipartimento di Scienza dei Materiali, Universita di Milano Bicocca, Milano (Italy); Brammertz, Guy; Meuris, Marc [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium)

    2010-01-01

    Capping III-V compound surfaces with Ge ultra-thin layer might be a viable pathway to passivate the electrically active interface traps which usually jeopardize the integration of III-V materials in metal-oxide-semiconductor devices. As the physical nature of such traps is intrinsically related to the chemical details of the interface composition, the structural and compositional features of the Ge/GaAs interface were thoroughly investigated in two different configurations, the atomic layer deposition of La-doped ZrO{sub 2} films on Ge-capped GaAs and the ultra-high vacuum based molecular beam deposition of GeO{sub 2}/Ge double stack on in situ prepared GaAs. In the former case, the intercalation of a Ge interface layer is shown to suppress the concentration of interface Ga-O, As-O and elemental As bonding which were significantly detected in case of the direct oxide deposition on GaAs. In the latter case, the incidence of two different in situ surface preparations, the Ar sputtering and the atomic H cleaning, on the interface composition is elucidated and the beneficial role played by the atomic H exposure in reducing the semiconductor-oxygen bonds at the interface level is demonstrated.

  12. Nano-dot and nano-pit fabrication on a GaAs substrate by a pulse applied AFM

    International Nuclear Information System (INIS)

    Kim, H C; Yu, J S; Ryu, S H

    2012-01-01

    The nano-patterning characteristics of GaAs is investigated using a pulse applied atomic force microscope (AFM). Very short range voltage pulses of micro to nano-seconds’ duration are applied to a conductive diamond-coated silicon (Si) tip in contact mode, to regulate the created feature size. The effects of pulse conditions such as pulse voltage, duration, frequency, offset voltage, anodization time, and applied tip pressure on nano-dot generation are characterized, based on the experiments. An interesting phenomenon, nano-pit creation instead of nano-dot creation, is observed when the applied pulse duration is less than 100 μs. Pulse frequency and offset voltage are also involved in nano-pit generation. The electrical spark discharge between the tip and the GaAs's surface is the most probable cause of the nano-pit creation and its generation mechanism is explained by considering the relevant pulse parameters. Nano-pits over 15 nm in depth are acquired on the GaAs substrate by adjusting the pulse conditions. This research facilitates the fabrication of more complex nano-structures on semiconductor materials since nano-dots and nano-pits could be easily made without any additional post-processes. (paper)

  13. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    International Nuclear Information System (INIS)

    Alonso-Álvarez, D.; Thomas, T.; Führer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.

    2014-01-01

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.

  14. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, P., E-mail: pdutta2@central.uh.edu; Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Zheng, N.; Ahrenkiel, P. [Department of Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 (United States); Martinez, J. [Materials Evaluation Laboratory, NASA Johnson Space Center, Houston, Texas 77085 (United States)

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  15. Nucleation and Growth of GaN on GaAs (001) Substrates

    International Nuclear Information System (INIS)

    Drummond, Timothy J.; Hafich, Michael J.; Heller, Edwin J.; Lee, Stephen R.; Liliental-Weber, Zuzanna; Ruvimov, Sergei; Sullivan, John P.

    1999-01-01

    The nucleation of GaN thin films on GaAs is investigated for growth at 620 ''C. An rf plasma cell is used to generate chemically active nitrogen from N 2 . An arsenic flux is used in the first eight monolayer of nitride growth to enhance nucleation of the cubic phase. Subsequent growth does not require an As flux to preserve the cubic phase. The nucleation of smooth interfaces and GaN films with low stacking fault densities is dependent upon relative concentrations of active nitrogen species in the plasma and on the nitrogen to gallium flux ratio

  16. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    bglucosidase and a-mannosidase were abundantly secreted in the growth medium. This research is the first report on mixed polymeric substrate biodegradation under sewer condition by A. niger, and could be considered as an open window on ...

  17. Enhancement of the 2DEG density in AlGaAs/InGaAs/GaAs P-HEMTs structures grown by MBE on (311)A and (111)A GaAs substrates

    International Nuclear Information System (INIS)

    Rekaya, S.; Sfaxi, L.; Bouzaiene, L.; Maaref, H.; Bru-Chevallier, C.

    2008-01-01

    The pseudomorphic high electron mobility transistor (P-HEMT) structure materials Al 0.33 Ga 0.7 As/In 0.1 Ga 0.9 As/GaAs have been grown by molecular beam epitaxy (MBE) on (311)A and (111)A GaAs substrates. The epitaxy of strain heterostructure on high index GaAs substrate has led to new growth phenomena, material properties and device applications. The photoluminescence (PL) spectra of the structures have been measured at low temperature. The dominant emission in the PL spectra is due to the recombination from the first electron (e1) subband to the first heavy-hole (hh1) subband (E 11 : e1-hh1). This feature (E 11 ) is a relatively broad peak and has a typical asymmetric line shape. The transformation of the PL spectra in the close vicinity of the Fermi edge (E F ) under different excitation densities gives strong evidence for the Fermi Edge Singularity (FES) existence. The density of the quasi-two-dimensional electron gas (2DEG) determined by PL study (n s PL ), is in sufficient agreement with the values found from Hall measurements n s Hall at 77 K. The results prove an increase of the electron density in sample grown on GaAs (111)A and (311)A rather than in equivalent sample grown on (001) GaAs substrate. This effect is in good agreement with our theoretical prediction, which is based on a self-consistent solution of the coupled Schroedinger and Poisson equations

  18. Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy

    Science.gov (United States)

    Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo

    2010-04-01

    ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.

  19. Molecular beam epitaxial growth of Bi2Te3 and Sb2Te3 topological insulators on GaAs (111 substrates: a potential route to fabricate topological insulator p-n junction

    Directory of Open Access Journals (Sweden)

    Zhaoquan Zeng

    2013-07-01

    Full Text Available High quality Bi2Te3 and Sb2Te3 topological insulators films were epitaxially grown on GaAs (111 substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111 substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111 substrate is better than a vicinal substrate to provide high quality Bi2Te3 and Sb2Te3 films. Hall and magnetoresistance measurements indicate that p type Sb2Te3 and n type Bi2Te3 topological insulator films can be directly grown on a GaAs (111 substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.

  20. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Englhard, M.; Klemp, C.; Behringer, M.; Rudolph, A. [OSRAM Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Skibitzki, O.; Zaumseil, P. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Institute of Physics and Chemistry, BTU Cottbus-Senftenberg, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2016-07-28

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In{sub 0.5}(Ga{sub 0.45}Al{sub 0.55}){sub 0.5}P (Q{sub 55}) layer was investigated by high resolution x-ray diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.

  1. Transmission electron microscopy and photoluminescence characterization of InGaAs strained quantum wires on GaAs vicinal (110) substrates

    CERN Document Server

    Shim, B R; Ota, T; Kobayashi, K; Maehashi, K; Nakashima, H; Lee, S Y

    1999-01-01

    We have used transmission electron microscopy (TEM) and photoluminescence (PL) to study InGaAs/AlGaAs strained quantum wires (QWRs) grown by molecular beam epitaxy (MBE) on GaAs vicinal (110) substrates. The cross-sectional TEM image reveals that InGaAs QWRs structures are naturally formed on AlGaAs giant steps. In the plan-view TEM images, the fringe pattern in the giant-step region is observed for In sub x Ga sub 1 sub - sub x As layers with x<= 0.4 We measured the separation of the fringe in the plan-view TEM images and compared the result with the calculated fringe separation. From this result, we conclude that the fringes observed in the plan-view TEM images are moire fringes. PL spectra of the InGaAs QWRs samples reveal 80-meV shifts to lower energy with respect to the spectrum of a quantum well (QWL) grown on a (001) substrate under the same conditions. We also measured the polarization anisotropy of the PL spectra from the QWRs. The PL peak shifts systematically toward higher energy with decreasing...

  2. Transmission electron microscopy and photoluminescence characterization of InGaAs strained quantum wires on GaAs vicinal (110) substrates

    International Nuclear Information System (INIS)

    Shim, Byoung Rho; Torii, Satoshi; Ota, Takeshi; Kobayashi, Keisuke; Maehashi, Kenzo; Nakashima, Hisao; Lee, Sang Yun

    1999-01-01

    We have used transmission electron microscopy (TEM) and photoluminescence (PL) to study InGaAs/AlGaAs strained quantum wires (QWRs) grown by molecular beam epitaxy (MBE) on GaAs vicinal (110) substrates. The cross-sectional TEM image reveals that InGaAs QWRs structures are naturally formed on AlGaAs giant steps. In the plan-view TEM images, the fringe pattern in the giant-step region is observed for In x Ga 1-x As layers with x≤ 0.4 We measured the separation of the fringe in the plan-view TEM images and compared the result with the calculated fringe separation. From this result, we conclude that the fringes observed in the plan-view TEM images are moire fringes. PL spectra of the InGaAs QWRs samples reveal 80-meV shifts to lower energy with respect to the spectrum of a quantum well (QWL) grown on a (001) substrate under the same conditions. We also measured the polarization anisotropy of the PL spectra from the QWRs. The PL peak shifts systematically toward higher energy with decreasing InGaAs thickness. The degree of polarization for the InGaAs QWRs was about 0.29. The PL observation evidences the carrier confinement in the QWRs. These results indicate that locally thick InGaAs strained QWRs were successfully formed at the edge of AlGaAs giant steps

  3. Control of threading dislocations by strain engineering in GaInP buffers grown on GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.L., E-mail: klli2010@sinano.ac.cn [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Y.R. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Dong, J.R. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); He, Y.; Zeng, X.L. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Y.M.; Yu, S.Z.; Zhao, C.Y. [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China)

    2015-10-30

    High quality strain-relaxed In0.3Ga0.7As layers with threading dislocation density about 2 × 10{sup 6} cm{sup −2} and root-mean-square surface roughness below 8.0 nm were obtained on GaAs substrates using compositionally undulating step-graded Ga{sub 1−x}In{sub x}P (x = 0.48–0.78) buffers. The transmission electron microscopy results reveal that the conventional step-graded GaInP buffers produce high density dislocation pile-ups, which are induced by the blocking effect of the nonuniform misfit dislocation strain field and crosshatched surface on the gliding of threading dislocations. In contrast, due to strain compensation, insertion of the tensile GaInP layers decreases the surface roughness and promotes dislocation annihilation in the interfaces, and eventually reduces the threading dislocation density. This provides a promising way to achieve a virtual substrate with the desired lattice parameter for metamorphic device applications. - Highlights: • Metamorphic GaInP buffers were grown by metal–organic chemical vapor deposition. • The compositionally undulating buffers effectively reduce the threading dislocation density. • High quality strain-relaxed In{sub 0.3}Ga{sub 0.7}As layers were obtained.

  4. The investigation of alloy formation during InAs nanowires growth on GaAs (111)B substrate

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, Muhammad; Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [Festkoerperphysik, Universitaet Siegen, Walter-Flex-Str. 3, Siegen 57072 (Germany); Rieger, Torsten; Grap, Thomas; Lepsa, Mihail [Peter Gruenberg Institute (PGI-9), Forschungzentrum Juelich, Juelich 52425 (Germany)

    2013-07-01

    A possible way to obtain nanowires is the growth in molecular beam epitaxy (MBE) on the (111) oriented surface of the desired substrate, covered by a thin oxide layer. A crucial parameter in this method is the initial thickness of the oxide layer, often determined by an etching procedure. In this contribution, we report on the structural investigation of two different series (etched and unetched) of NWs samples. Vertically aligned InAs nanowires (NWs) doped with Si were self-assisted grown by molecular beam epitaxy on GaAs [111]B substrates covered with a thin SiO{sub x} layer. Using a combination of symmetric and asymmetric X-ray diffraction we study the influence of Si supply on the growth process and nanostructure formation. We find that the number of parasitic crystallites grown between the NWs increases with increasing Si flux. In addition, we observe the formation of a Ga{sub 0.2}In{sub 0.8}As alloy if the growth is performed on samples covered by a defective (etched) oxide layer. This alloy formation is observed within the crystallites and not within the nanowires. The Gallium concentration is determined from the lattice mismatch of the crystallites relative to the InAs nanowires. No alloy formation is found for samples with faultless oxide layers.

  5. Fabrication of GaAs quantum dots by droplet epitaxy on Si/Ge virtual substrate

    International Nuclear Information System (INIS)

    Bietti, S; Sanguinetti, S; Somaschini, C; Koguchi, N; Isella, G; Chrastina, D; Fedorov, A

    2009-01-01

    We present here the fabrication, via droplet epitaxy, of GaAs/AlGaAs quantum dots with high optical efficiency on Si. The growth substrate lattice parameter was adapted to that of (Al)GaAs via Ge virtual substrates (GeVS). The samples clearly show the presence of quantum dot self-assembly, with the designed shape and density. Photoluminescence measurements, performed at low temperature, show an intense emission band from the quantum dots.

  6. Annealing effects on electrical and optical properties of ZnO thin-film samples deposited by radio frequency-magnetron sputtering on GaAs (001) substrates

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-01-01

    The effects of thermal annealing on Hall-effect measurement and photoluminescence (PL) from undoped n-type ZnO/GaAs thin-film samples have been studied. The evolutions of carrier concentration, electrical resistivity, and PL spectrum at various annealing conditions reveal that the dominant mechanism that affects the electrical and PL properties is dependent on the amount of thermal energy and the ambient pressure applied during the annealing process. At low annealing temperatures, annihilation of native defects is dominant in reducing the carrier concentration and weakening the low-energy tail of the main PL peak, while the GaAs substrate plays only a minor role in carrier compensations. For the higher temperatures, diffusion of Ga atoms from the GaAs substrate into ZnO film leads to a more n-type conduction of the sample. As a result, the PL exhibits a high-energy tail due to the high-level doping

  7. Model experiments on growth modes and interface electronics of CuInS{sub 2}: Ultrathin epitaxial films on GaAs(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Calvet, Wolfram [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin (Germany); Lewerenz, Hans-Joachim [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91101 (United States); Pettenkofer, Christian [Institute Silicon Photovoltaics, Helmholtz-Zentrum Berlin, Kekulestrasse 5, 12489, Berlin (Germany)

    2014-09-15

    The heterojunction formation between GaAs(100) and CuInS{sub 2} is investigated using ultraviolet photoelectron spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). Thin layers of CuInS{sub 2} films were deposited in a step-by-step process on wet chemically pre-treated GaAs(100) surfaces by molecular beam epitaxy (MBE) with a total upper thickness limit of the films of 60 nm. The film growth starts from a sulfur-rich GaAs(100) surface. XPS core level analysis of the substrate and film reveals initially a transitory growth regime with the formation of a Ga containing chalcopyrite phase. With increasing film thickness, a change in stoichiometry from Cu-poor to Cu-rich composition is observed. The evaluation of the LEED data shows the occurrence of a recrystallization process where the film orientation follows that of the substrate with the epitaxial relation GaAs{100} parallel CuInS{sub 2}{001}. On the completed junction with a CuInS{sub 2} film thickness of 60 nm, the band discontinuities of the GaAs(100)/CuInS{sub 2} structure measured with XPS and UPS were determined as ΔE{sub V} = 0.1 ± 0.1 eV and ΔE{sub C} = 0.0 ± 0.1 eV, thus showing a type II band alignment. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Misfit dislocation reduction in InGaAs epilayers grown on porous GaAs substrates

    Czech Academy of Sciences Publication Activity Database

    Dimitrakopulos, G.P.; Bazioti, C.; Grym, Jan; Gladkov, Petar; Hulicius, Eduard; Pangrác, Jiří; Pacherová, Oliva; Komninou, Ph.

    2014-01-01

    Roč. 306, Jul (2014), s. 89-93 ISSN 0169-4332 R&D Projects: GA MŠk 7AMB12GR034 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : compound semiconductors * InGaAs * porous substrate * misfit dislocations * strain Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  9. Abnormal optical behaviour of InAsSb quantum dots grown on GaAs substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Rihani, J.; Ben Sedrine, N.; Sallet, V.; Harmand, J.C.; Oueslati, M.; Chtourou, R.

    2008-01-01

    InAs(Sb) quantum dots (QDs) samples were grown on GaAs (001) substrate by Molecular Beam Epitaxy (MBE). The structural characterization by Atomic Force Microscopy (AFM) of samples shows that InAsSb islands size increases strongly with antimony incorporation in InAs/GaAs QDs and decreases with reducing the growth temperature from 520 deg. C to 490 deg. C. Abnormal optical behaviour was observed in room temperature (RT) photoluminescence (PL) spectra of samples grown at high temperature (520 deg. C). Temperature dependent PL study was investigated and reveals an anomalous evolution of emission peak energy (EPE) of InAsSb islands, well-known as 'S-inverted curve' and attributed to the release of confined carriers from the InAsSb QDs ground states to the InAsSb wetting layer (WL) states. With only decreasing the growth temperature, the S-inverted shape was suppressed indicating a fulfilled 3D-confinement of carriers in the InAsSb/GaAs QD sample

  10. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Waris, A., E-mail: awaris@fi.itb.ac.id; Basar, K. [Nuclear Physics & Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia); Kusumawati, Y.; Alfarobi, A. S.; Aji, I. K. [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40132 (Indonesia)

    2016-03-11

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination of Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.

  11. Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate

    International Nuclear Information System (INIS)

    Waris, A.; Basar, K.; Kusumawati, Y.; Alfarobi, A. S.; Aji, I. K.

    2016-01-01

    Battery is very important for the present daily life, especially for portable devices. The longer utilization time the better performance of battery. Betavoltaic battery is a device that converts energy from beta decays of radioactive nuclide into electric current. One of merits of the later battery is the life time that can be more than ten years without recharging. To develop the betavoltaic battery for energy source of portable devices we have performed a preliminary simulation design of betavoltaic battery using Pm-147 and Co-60 a beta emitter radionuclides with n-GaAs substrate. From the results we found that the combination of Pm-147 with n-GaAs substrate results in 9.0% of efficiency and higher output current compared to references.

  12. The effect of sulphur-terminated GaAs substrates on the MOVPE growth of CuGaS{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, P.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)]. E-mail: pearl.berndt@nmmu.ac.za; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Branch, M.S. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Kirmse, H. [Institute of Physics, Chair of Crystallography, Humboldt University of Berlin, Berlin (Germany); Neumann, W. [Institute of Physics, Chair of Crystallography, Humboldt University of Berlin, Berlin (Germany); Weber, J. [Institute for Applied Physics-Semiconductor Physics, University of Technology, Dresden (Germany)

    2007-05-31

    In this study, various CuGaS{sub 2} layers were grown on GaAs (001) substrates using metalorganic vapour phase epitaxy, for the purpose of studying the effect of sulphur-termination of the substrate on layer quality. The resultant films were investigated using X-ray diffractometry, and transmission electron microscopy, with high-resolution transmission electron microscopy providing additional insights into crystallite growth on the control substrates. This paper will demonstrate that sulphur-termination limits substrate degradation. In the absence of sulphur-termination, atypical three-dimensional MOVPE growth is observed, with epitaxial crystallites varying in size from 10 nm to 200 nm. Substrate degradation inhibits lateral growth at the interface resulting in amorphous regions, cavities, and epitaxial crystallites demonstrating overgrowth into mushroom-like structures.

  13. The effect of sulphur-terminated GaAs substrates on the MOVPE growth of CuGaS2 thin films

    International Nuclear Information System (INIS)

    Berndt, P.R.; Botha, J.R.; Branch, M.S.; Leitch, A.W.R.; Kirmse, H.; Neumann, W.; Weber, J.

    2007-01-01

    In this study, various CuGaS 2 layers were grown on GaAs (001) substrates using metalorganic vapour phase epitaxy, for the purpose of studying the effect of sulphur-termination of the substrate on layer quality. The resultant films were investigated using X-ray diffractometry, and transmission electron microscopy, with high-resolution transmission electron microscopy providing additional insights into crystallite growth on the control substrates. This paper will demonstrate that sulphur-termination limits substrate degradation. In the absence of sulphur-termination, atypical three-dimensional MOVPE growth is observed, with epitaxial crystallites varying in size from 10 nm to 200 nm. Substrate degradation inhibits lateral growth at the interface resulting in amorphous regions, cavities, and epitaxial crystallites demonstrating overgrowth into mushroom-like structures

  14. GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates

    International Nuclear Information System (INIS)

    Klem, J. F.; Blum, O.; Kurtz, S. R.; Fritz, I. J.; Choquette, K. D.

    2000-01-01

    We have investigated the properties of GaAsSb/InGaAs type-II bilayer quantum-well structures grown by molecular-beam epitaxy for use in long-wavelength lasers on GaAs substrates. Structures with layer strains and thicknesses designed to be thermodynamically stable against dislocation formation exhibit room-temperature photoluminescence at wavelengths as long as 1.43 μm. The photoluminescence emission wavelength is significantly affected by growth temperature and the sequence of layer growth (InGaAs/GaAsSb versus GaAsSb/InGaAs), suggesting that Sb and/or In segregation results in nonideal interfaces under certain growth conditions. At low-injection currents, double-heterostructure lasers with GaAsSb/InGaAs bilayer quantum-well active regions display electroluminescence at wavelengths comparable to those obtained in photoluminescence, but at higher currents the electroluminescence shifts to shorter wavelengths. Lasers have been obtained with threshold current densities of 120 A/cm2 at 1.17 μm, and 2.1 kA/cm2 at 1.21 μm. (c) 2000 American Vacuum Society

  15. Peeled film GaAs solar cell development

    International Nuclear Information System (INIS)

    Wilt, D.M.; Thomas, R.D.; Bailey, S.G.; Brinker, D.J.; DeAngelo, F.L.

    1990-01-01

    Thin film, single crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/Kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity (>10 6 ) of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofloric acid (HF). The intent of this work is to demonstrate the feasibility of using the peeled film technique to fabricate high efficiency, low mass GaAs solar cells. We have successfully produced a peeled film GaAs solar cell. The device, although fractured and missing the aluminum gallium arsenide (Al x Ga 1 - x As) window and antireflective (AR) coating, had a Voc of 874 mV and a fill factor of 68% under AMO illumination

  16. Atomic-scale epitaxial aluminum film on GaAs substrate

    Directory of Open Access Journals (Sweden)

    Yen-Ting Fan

    2017-07-01

    Full Text Available Atomic-scale metal films exhibit intriguing size-dependent film stability, electrical conductivity, superconductivity, and chemical reactivity. With advancing methods for preparing ultra-thin and atomically smooth metal films, clear evidences of the quantum size effect have been experimentally collected in the past two decades. However, with the problems of small-area fabrication, film oxidation in air, and highly-sensitive interfaces between the metal, substrate, and capping layer, the uses of the quantized metallic films for further ex-situ investigations and applications have been seriously limited. To this end, we develop a large-area fabrication method for continuous atomic-scale aluminum film. The self-limited oxidation of aluminum protects and quantizes the metallic film and enables ex-situ characterizations and device processing in air. Structure analysis and electrical measurements on the prepared films imply the quantum size effect in the atomic-scale aluminum film. Our work opens the way for further physics studies and device applications using the quantized electronic states in metals.

  17. n- and p-type transport in (110) GaAs substrates, single- and double-cleave structures

    Energy Technology Data Exchange (ETDEWEB)

    Roth, S.F.

    2007-06-06

    In this work low-dimensional systems based on GaAs/AlGaAs are investigated with either holes (p-type) in two-dimensional (2D) systems or electrons (n-type) in one-dimensional (1D) systems as charge carriers. Two-dimensional hole systems (2DHS) are grown with molecular beam epitaxy both on (110) wafers and (1 anti 10) facets with the cleaved-edge overgrowth (CEO) method. We use Si as an acceptor by modulating the growth conditions to fabricate the 2DHS in single-interface heterojunction quantum wells. The mobility of the structures reaches up to 7.0 x 10{sup 5} cm{sup 2}/Vs along the [1 anti 10]-direction and 4.1 x 10{sup 5} cm{sup 2}/Vs along the [001]-direction at a hole density of 1.2 x 10{sup 11} cm{sup -2}. Effective values for anisotropic effective hole masses and scattering times are obtained. Inversion asymmetry induced spin splitting results in different spin densities, which yield beatings of the Shubnikov-de Haas oscillations at low temperatures. In a perpendicular magnetic field the 2DHS is quantized into Landau levels, which depend nonlinearly on B due to a strong mixing of light- and heavy-holes. When the Landau levels anticross on the (110) facet, additional peaks appear within minima of the quantum Hall effect. Thermal activation measurements demonstrate a B-dependent energy gap consistent with such an anticrossing. In the second part of the thesis an electron quantum wire is fabricated with twofold cleaved-edge overgrowth. A variation of the conduction band energy in the substrate layers can directly transfer a potential modulation to the adjacent quantum wire. The concept of a transfer potential applied to a narrow two-dimensional system is demonstrated as a first step. Finally, in narrow quantum well samples a simple vertical quantum wire is successfully demonstrated and contacted at each end with n{sup +}-GaAs layers via two-dimensional (2D) leads. We characterize the 2D lead density and mobility for both cleave facets with four

  18. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    Science.gov (United States)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  19. The dependence of the wavelength on MBE growth parameters of GaAs quantum dot in AlGaAs NWs on Si (111) substrate

    Science.gov (United States)

    Reznik, R. R.; Shtrom, I. V.; Samsonenko, Yu B.; Khrebtov, A. I.; Soshnikov, I. P.; Cirlin, G. E.

    2017-11-01

    The data on the growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on Si (111) substrates by Au-assisted molecular beam epitaxy are presented. It is shown that by varying of the growth parameters it is possible to form structures like quantum dots emitting in a wide wavelengths range for both active and barrier parts. The technology proposed opens new possibilities for the integration of direct-band AIIIBV materials on silicon platform.

  20. Distinctions of the growth and structural-spectroscopic investigations of thin AlN films grown on the GaAs substrates

    Science.gov (United States)

    Seredin, P. V.; Kashkarov, V. M.; Arsentyev, I. N.; Bondarev, A. D.; Tarasov, I. S.

    2016-08-01

    Using X-ray diffraction analysis, atomic force microscopy, IR and UV spectroscopy, the properties of thin aluminium nitride films (4.0 for the wavelength band around 250 nm and an optical band-gap of 5 eV. It was shown that the morphology, surface composition and optical functional characteristics of AlN/GaAs heterophase systems can be controlled owing to the use of misoriented GaAs substrates as well choice of the technological parameters used for the film growth.

  1. Critical size for the generation of misfit dislocations and their effects on electronic properties in GaAs nanosheets on Si substrate

    International Nuclear Information System (INIS)

    Yuan, Zaoshi; Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro

    2013-01-01

    While nanowires and nanosheets (NSs) grown on lattice-mismatched substrates have a number of promising technological applications such as solar cells, generation of misfit dislocations (MFDs) at their interfaces is a major concern for the efficiency of these devices. Here, combined molecular-dynamics and quantum-mechanical simulations are used to study MFDs at the interface between a GaAs NS and a Si substrate. Simulation results show the existence of a critical NS thickness, below which NSs are grown free of MFDs. The calculated critical thickness value is consistent with available experimental observations. Charge transfer at the MFD core is found to modify the electronic band profile at the GaAs/Si interface significantly. These effects should have profound impacts on the efficiency of lattice-mismatched NS devices

  2. Parallel-aligned GaAs nanowires with (110) orientation laterally grown on [311]B substrates via the gold-catalyzed vapor-liquid-solid mode

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Tateno, Kouta; Gotoh, Hideki; Nakano, Hidetoshi

    2010-01-01

    We report parallel aligned GaAs nanowires (NWs) with (110) orientation laterally grown on [311]B substrates via the vapor-liquid-solid mode and demonstrate their controllability and growth mechanism. We control the size, density, and site of the lateral NWs by using size- and density-selective Au colloidal particles and Au dot arrays defined by electron-beam lithography. The lateral NWs grow only along the [110] and [1-bar 1-bar 0] directions and formation of the stable facets of (111)B and (001) on the sides of the lateral NWs is crucial for lateral NW growth. We clarify the growth mechanism by comparing the growth results on [311]B, (311)A, and (001) substrates and the surface energy change of lateral and freestanding NWs.

  3. Growth of InGaAs/GaAsP multiple quantum well solar cells on mis-orientated GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sodabanlu, Hassanet, E-mail: sodabanlu@hotaka.t.u-tokyo.ac.jp; Wang, Yunpeng; Watanabe, Kentaroh [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sugiyama, Masakazu [Department of Electrical Engineering and Information System, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Nakano, Yoshiaki [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Department of Electrical Engineering and Information System, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-06-21

    The effects of growth temperature on the properties of InGaAs/GaAsP multiple quantum well (MQW) solar cells on various mis-orientated GaAs substrates were studied using metalorganic vapor phase epitaxy. Thickness modulation effect caused by mismatch strain of InGaAs/GaAsP could be suppressed by low growth temperature. Consequently, abrupt MQWs with strong light absorption could be deposited on mis-oriented substrates. However, degradation in crystal quality and impurity incorporation are the main drawbacks with low temperature growth because they tend to strongly degraded carrier transport and collection efficiency. MQW solar cells grown at optimized temperature showed the better conversion efficiency. The further investigation should focus on improvement of crystal quality and background impurities.

  4. Performance of Series Connected GaAs Photovoltaic Converters under Multimode Optical Fiber Illumination

    Directory of Open Access Journals (Sweden)

    Tiqiang Shan

    2014-01-01

    Full Text Available In many military and industrial applications, GaAs photovoltaic (PV converters are connected in series in order to generate the required voltage compatible with most common electronics. Multimode optical fibers are usually used to carry high-intensity laser and illuminate the series connected GaAs PV converters in real time. However, multimode optical fiber illumination has a speckled intensity pattern. The series connected PV array is extremely sensitive to nonuniform illumination; its performance is limited severely by the converter that is illuminated the least. This paper quantifies the effects of multimode optical fiber illumination on the performance of series connected GaAs PV converters, analyzes the loss mechanisms due to speckles, and discusses the maximum illumination efficiency. In order to describe the illumination dependent behavior detailedly, modeling of the series connected PV array is accomplished based on the equivalent circuit for PV cells. Finally, a series of experiments are carried out to demonstrate the theory analysis.

  5. Structure, magnetism, and interface properties of epitactical thin Fe and FePt films on GaAs(001) substrates; Struktur, Magnetismus und Grenzflaecheneigenschaften epitaktischer duenner Fe- und FePt-Filme auf GaAs(001)-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Ellen Ursula

    2007-12-17

    The research in this thesis is focused on the study of the Fe spin structure and interface magnetism of thin epitaxial Fe layers or epitaxial FePt alloy films with chemical L1{sub 0} order on GaAs(001) surfaces. The main method of investigation was isotope-specific conversion electron Moessbauer spectroscopy (CEMS) combined with the {sup 57}Fe probe-layer technique in the temperature range of 4.2-300 K. The film structure was studied using electron diffraction (RHEED) and X-ray diffraction (XRD). The chemical order parameter S determined by XRD was found to increase with rising growth temperature, T{sub S}, to a maximum value of 0.71, until long range order is destroyed at T{sub S}>350 C by alloying with the substrate. As an important result a linear correlation between short-range order (revealed by the relative spectral area of the L1{sub 0} phase) and long-range order S was observed. The observed perpendicular Fe spin texture, characterized by the mean tilting angle left angle {theta} right angle of the Fe spins (relative to the film normal direction), was found to correlate with the L1{sub 0} phase content and with S. Furthermore, epitaxial Fe(001) films on GaAs(001)-(4 x 6) and on GaAs(001)-LED surfaces were grown successfully. In the initial stage of Fe film growth non-monotonous behavior of the in-plane lattice parameter was observed by RHEED. The magnetic hyperfine field distributions P(B{sub hf}) at the Fe/GaAs interface extracted from CEMS spectra for T{sub S}=-140 C or room temperature (RT) were found to be very similar. The observed large mean hyperfine fields of left angle B{sub hf} right angle {approx}25-27 T at the interface indicate the presence of high average Fe moments of 1.7-1.8 {mu}{sub B}. Nonmagnetic interface layers either can be excluded (Fe/GaAs) or are very thin (0.5 ML,Fe/GaAs-LED). Owing to its island structure an ultrathin (1.9 ML thick) uncoated Fe(001) film on GaAs(001)-(4 x 6) shows superparamagnetism with a blocking temperature of

  6. Possibility of a quasi-liquid layer of As on GaAs substrate grown by MBE as observed by enhancement of Ga desorption at high As pressure

    Science.gov (United States)

    Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.

    2000-06-01

    The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).

  7. Comparison of different grading schemes in InGaAs metamorphic buffers on GaAs substrate: Tilt dependence on cross-hatch irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul, E-mail: rkp203@gmail.com [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Bag, Ankush [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Mukhopadhyay, Partha [Rajendra Mishra School of Engineering Entrepreneurship, Indian Institute of Technology, Kharagpur 721302 (India); Das, Subhashis [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Biswas, Dhrubes [Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)

    2015-12-01

    Highlights: • InGaAs graded MBs with different grading scheme has been grown by MBE on GaAs. • Continuously graded MB exhibits smoother surface morphology. • Grading scheme has been found to have little impact on lattice relaxation. • Grading schemeaffects the lattice tilt significantly. • Cross-hatch surface irregularities affect the crystallographic tilt. - Abstract: InGaAs graded metamorphic buffers (MBs) with different grading strategies have been grown by molecular beam epitaxy (MBE) on GaAs (0 0 1) substrate. A detailed comparative analysis of surface using atomic force microscopy (AFM), and bulk properties using high resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RTPL) of grown MBs have been presented to comprehend the effectiveness of different grading scheme on InGaAs MBs. Conventional, statistical and fractal analysis on measured AFM data has been performed for in-depth investigation of these surfaces. The grading scheme has been found to have little impact on residual strain while it affects the epitaxial tilt significantly. Moreover, the tilt has been found to depend on growth front irregularities. Tilt magnitude in a graded MB has been found to vary with composition while tilt azimuth has been found to be almost same in the graded layers. PL Intensity and a shift in the PL peaks have been used to study the quality of the MB and residual strain comparatively.

  8. Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer

    Science.gov (United States)

    Li, Qiang; Lai, Billy; Lau, Kei May

    2017-10-01

    We report epitaxial growth of GaSb nano-ridge structures and planar thin films on V-groove patterned Si (001) substrates by leveraging the aspect ratio trapping technique. GaSb was deposited on {111} Si facets of the V-shaped trenches using metal-organic chemical vapor deposition with a 7 nm GaAs growth initiation layer. Transmission electron microscopy analysis reveals the critical role of the GaAs layer in providing a U-shaped surface for subsequent GaSb epitaxy. A network of misfit dislocations was uncovered at the GaSb/GaAs hetero-interface. We studied the evolution of the lattice relaxation as the growth progresses from closely pitched GaSb ridges to coalesced thin films using x-ray diffraction. The omega rocking curve full-width-at-half-maximum of the resultant GaSb thin film is among the lowest values reported by molecular beam epitaxy, substantiating the effectiveness of the defect necking mechanism. These results thus present promising opportunities for the heterogeneous integration of devices based on 6.1 Å family compound semiconductors.

  9. Experimental investigations of atomic ordering effects in the epitaxial Ga{sub x}In{sub 1-x}P, coherently grown on GaAs (100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Seredin, P.V., E-mail: paul@phys.vsu.ru [Voronezh State University, Universitetskaya pl., 1, 394006 Voronezh (Russian Federation); Goloshchapov, D.L.; Khudyakov, Yu.Yu.; Lenshin, A.S.; Lukin, A.N. [Voronezh State University, Universitetskaya pl., 1, 394006 Voronezh (Russian Federation); Arsentyev, I.N., E-mail: arsentyev@mail.ioffe.ru [Ioffe Physical and Technical Institute, Polytekhnicheskaya, 26, 194021 St-Petersburg (Russian Federation); Prutskij, Tatiana, E-mail: prutskij@yahoo.com [Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Privada 17 Norte, No 3417, Col San Miguel Hueyotlipan, 72050 Puebla, Puebla (Mexico)

    2017-03-15

    A range of structural and spectroscopic techniques were used for the study of the properties of epitaxial Ga{sub x}In{sub 1-x}P alloys with an ordered arrangement of atoms in a crystal lattice grown by MOCVD on single-crystalline substrates of GaAs (100). The appearance of atomic ordering in the coherent growth conditions of the ordered Ga{sub x}In{sub 1-x}P alloy on GaAs (100) resulted in cardinal changes of the structural and optical properties of semiconductor in comparison to disordered alloys, including the change of the crystal lattice parameter and, consequently, reduced crystal symmetry, decreased band gap and formation of two different types of surface nanorelief. This is the first report of the calculation of parameters of the crystal lattice in Ga{sub x}In{sub 1-x}P with ordering taking into account the elastic stresses dependent on long-range ordering. Based on the variance analysis data with regard to the IR-reflection spectra as well as the UV-spectroscopy data obtained in the transmission-reflection mode, the main optical characteristics of the ordered Ga{sub x}In{sub 1-x}P alloys were determined for the first time, namely, refractive index dispersion and high-frequency dielectric constant. All of the experimental results were in good agreement with the previously developed theoretical beliefs.

  10. Comparison of different grading schemes in InGaAs metamorphic buffers on GaAs substrate: Tilt dependence on cross-hatch irregularities

    International Nuclear Information System (INIS)

    Kumar, Rahul; Bag, Ankush; Mukhopadhyay, Partha; Das, Subhashis; Biswas, Dhrubes

    2015-01-01

    Highlights: • InGaAs graded MBs with different grading scheme has been grown by MBE on GaAs. • Continuously graded MB exhibits smoother surface morphology. • Grading scheme has been found to have little impact on lattice relaxation. • Grading schemeaffects the lattice tilt significantly. • Cross-hatch surface irregularities affect the crystallographic tilt. - Abstract: InGaAs graded metamorphic buffers (MBs) with different grading strategies have been grown by molecular beam epitaxy (MBE) on GaAs (0 0 1) substrate. A detailed comparative analysis of surface using atomic force microscopy (AFM), and bulk properties using high resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RTPL) of grown MBs have been presented to comprehend the effectiveness of different grading scheme on InGaAs MBs. Conventional, statistical and fractal analysis on measured AFM data has been performed for in-depth investigation of these surfaces. The grading scheme has been found to have little impact on residual strain while it affects the epitaxial tilt significantly. Moreover, the tilt has been found to depend on growth front irregularities. Tilt magnitude in a graded MB has been found to vary with composition while tilt azimuth has been found to be almost same in the graded layers. PL Intensity and a shift in the PL peaks have been used to study the quality of the MB and residual strain comparatively.

  11. Complex laterally ordered InGaAs and InAs quantum dots by guided self-organized anisotropic strain engineering on artificially patterned GaAs (3 1 1)B substrates

    NARCIS (Netherlands)

    Selçuk, E.; Hamhuis, G.J.; Nötzel, R.

    2009-01-01

    Self-organized anisotropic strain engineering is combined with growth on artificially patterned GaAs (3 1 1)B substrates to realize complex lateral ordering of InGaAs and InAs quantum dots (QDs) guided by steps and facets generated along the pattern sidewalls. Depending on the pattern design, size,

  12. GaAs FETs and novel heteroepitaxial quaternary lasers grown on InP substrates by organometallic chemical vapor deposition

    International Nuclear Information System (INIS)

    Lo, Y.H.; Bhat, R.; Chang-Hasnain, C.; Caneau, C.; Zah, C.E.; Lee, T.P.

    1988-01-01

    This paper reports the GaAs MESFETs and 1.3μm buried hetero-structure lasers with AlGaAs/GaAs lateral confinement layers simultaneously grown by OMCVD and fabricated on InP structures. The 1μm recessed gate MESFET has a transconductance of 220 mS/mm and the novel structured laser has a CW threshold current of 45 mA. The heteroepitaxy technology and devices show great promises for long wavelength opto-electronic integrated circuits

  13. Oxidation of GaAs substrates to enable β-Ga2O3 films for sensors and optoelectronic devices

    Science.gov (United States)

    Mao, Howard; Alhalaili, Badriyah; Kaya, Ahmet; Dryden, Daniel M.; Woodall, Jerry M.; Islam, M. Saif

    2017-08-01

    A very simple and inexpensive method for growing β-Ga2O3 films by heating GaAs wafers at high temperature in a furnace was found to contribute to large-area, high-quality β-Ga2O3 nanoscale thin films as well as nanowires depending on the growth conditions. We present the material characterization results including the optical band gap, Schottky barrier height with metal (gold), field ionization and photoconductance of β-Ga2O3 film and nanowires.

  14. Miniaturized bandpass filter using a meandered stepped-impedance resonator with a meandered-line stub-load on a GaAs substrate.

    Science.gov (United States)

    Chuluunbaatar, Z; Wang, C; Kim, N Y

    2014-01-01

    This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  15. Miniaturized Bandpass Filter Using a Meandered Stepped-Impedance Resonator with a Meandered-Line Stub-Load on a GaAs Substrate

    Directory of Open Access Journals (Sweden)

    Z. Chuluunbaatar

    2014-01-01

    Full Text Available This paper reports a compact bandpass filter with improved skirt selectivity using integrated passive device fabrication technology on a GaAs substrate. The structure of the filter consists of electromagnetically coupled meandered-line symmetric stepped-impedance resonators. The strength of the coupling between the resonators is enhanced by using a meandered-line stub-load inside the resonators to improve the selectivity and miniaturize the size of the filter. In addition, the center frequency of the filter can be flexibly controlled by varying degrees of the capacitive coupling between resonator and stub-load. To verify the proposed concept, a protocol bandpass filter with center frequency of 6.53 GHz was designed, fabricated, and measured, with a return loss and insertion loss of 39.1 dB and 1.63 dB.

  16. Longer than 1.9 μm photoluminescence emission from InAs quantum structure on GaAs (001) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ke; Ma, Wenquan, E-mail: wqma@semi.ac.cn; Huang, Jianliang; Zhang, Yanhua; Cao, Yulian; Huang, Wenjun; Luo, Shuai; Yang, Tao [Institute of Semiconductors, Chinese Academy of Sciences, Qinghua East Road A 35, Beijing 100083 (China)

    2015-07-27

    We report on photoluminescence (PL) emission with long wavelength for quantum structure by the sub-monolayer (SML) growth technique on GaAs (001) substrate. It is found that the PL emission wavelength can be controlled by controlling the SML InAs deposition amount. At 12 K, the PL peak position of the grown samples changes from about 1.66 to 1.78 μm. At 120 K, the PL emission of a sample reaches 1.91 μm. The physical mechanism responsible for the measured long wavelength PL emission may be related to strong In segregation and intermixing effects occurred in the structure grown by SML growth technique.

  17. On the optimization of asymmetric barrier layers in InAlGaAs/AlGaAs laser heterostructures on GaAs substrates

    International Nuclear Information System (INIS)

    Zhukov, A. E.; Asryan, L. V.; Semenova, E. S.; Zubov, F. I.; Kryzhanovskaya, N. V.; Maximov, M. V.

    2015-01-01

    Band offsets at the heterointerface are calculated for various combinations of InAlGaAs/AlGaAs heteropairs that can be synthesized on GaAs substrates in the layer-by-layer pseudomorphic growth mode. Patterns which make it possible to obtain an asymmetric barrier layer providing the almost obstruction-free transport of holes and the highest possible barrier height for electrons are found. The optimal compositions of both compounds (In 0.232 Al 0.594 Ga 0.174 As/Al 0.355 Ga 0.645 As) at which the flux of electrons across the barrier is at a minimum are determined with consideration for the critical thickness of the indium-containing quaternary solid solution

  18. Structural characterization of GaAs self-assembled quantum dots grown by Droplet Epitaxy on Ge virtual substrates on Si

    International Nuclear Information System (INIS)

    Frigeri, C.; Bietti, S.; Isella, G.; Sanguinetti, S.

    2013-01-01

    The structure of self-assembled quantum dots (QDs) grown by Droplet Epitaxy on Ge virtual substrates has been investigated by TEM. The QDs have a pyramidal shape with base and height of 50 nm. By (0 0 2) dark field TEM it was seen that the pyramid top is Ga poor and Al rich most likely because of the higher mobility of Ga along the pyramid sides down to the base. The investigated QDs contain defects identified as As precipitates by Moirè fringes. The smallest ones (3–5 nm) are coherent with the GaAs lattice suggesting that they could be a cubic phase of As precipitation. It seems to be a metastable phase since the hexagonal phase is recovered as the precipitate size increases above ∼5 nm.

  19. Investigations of p-type signal for ZnO thin films grown on (100)GaAs substrates by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, D.J. [Nanovation SARL, Orsay (France); Univ. de Technologie de Troyes, Troyes (France); Hosseini Teherani, F. [Nanovation SARL, Orsay (France); Monteiro, T.; Soares, M.; Neves, A.; Carmo, M.; Correia, M.R. [Physics Dept., Univ. of Aveiro (Portugal); Pereira, S. [Physics Dept., Univ. of Aveiro (Portugal); Inst. Tecnologico e Nuclear, Sacavem (Portugal); Lusson, A. [Inst. d' Electronique Fondamentale, Orsay Univ. (France); LPSC - CNRS, Meudon (France); Alves, E.; Barradas, N.P. [Inst. Tecnologico e Nuclear, Sacavem (Portugal); Morrod, J.K.; Prior, K.A. [Physics Dept., Heriot Watt Univ., Edinburgh Scotland (United Kingdom); Kung, P.; Yasan, A.; Razeghi, M. [Center for Quantum Devices, Dept. of Electrical and Computer Engineering, Northwestern Univ., Evanston, IL (United States)

    2006-03-15

    In this work we investigated ZnO films grown on semi-insulating (100)GaAs substrates by pulsed laser deposition. Samples were studied using techniques including X-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, Raman spectroscopy, temperature dependent photoluminescence, C-V profiling and temperature dependent Hall measurements. The Hall measurements showed a clear p-type response with a relatively high mobility ({proportional_to}260 cm{sup 2}/Vs) and a carrier concentration of {proportional_to}1.8 x 10{sup 19} cm{sup -3}. C-V profiling confirmed a p-type response. XRD and Raman spectroscopy indicated the presence of (0002) oriented wurtzite ZnO plus secondary phase(s) including (101) oriented Zn{sub 2}As{sub 2}O{sub 7}. The results suggest that significant atomic mixing was occurring at the film/substrate interface for films grown at substrate temperatures of 450 C (without post-annealing). (orig.)

  20. Epitaxial growth of chalcopyrite CuInS2 films on GaAs (001) substrates by evaporation method with elemental sources

    International Nuclear Information System (INIS)

    Nozomu, Tsuboi; Satoshi, Kobayash; Nozomu, Tsuboi; Takashi, Tamogami

    2010-01-01

    Full text : Ternary chalcopyrite semiconductor CuInS 2 is one of the potential candidates for absorber layers in high-efficiency thin film solar cells due to its direct bandgap Eg of 1.5 eV, which matches with solar spectrum. However, CuInS 2 solar cells face the problem of lower solar conversion efficiency compared with Cu(InGa)Se 2 solar cells. Investigation of fundamental properties of CuInS 2 films is necessary to understand key issues for solar cell performance. Although in bulk CuInS 2 is known to crystallize into chalcopyrite (CH) structure, in thin film other structures such as Cu-Au (CA) and sphalerite (SP) structures may coexist. It was reported epitaxial growth of slightly Cu-rich CuInS 2 films with c-axis orientated CA only and/or with a mixture of a- and c-axes orientated CH structures on GaP (001) at substrate temperature of 500 degrees using the conventional evaporation method with three elemental sources. Successful growth of epitaxial CH structured CuInS 2 were observed for films grown on GaP at 570 degrees with slightly Cu-rich composition. In this paper, CuInS 2 films with various [Cu]/[In] ratios are grown on GaAs(001) substrates, and the composition range in terms of the [Cu]/[In] ratio where epitaxial films with CH structure grow and the structural qualities of the films are discussed in comparison with those on GaP substrates. Films with various ratios of [Cu]/[In]=0.8 ≤1.9 are grown at 500 degrees and 570 degrees using the evaporation system described in our previous reports. Regardless of the substrate temperature, noticeable X-ray diffraction (XRD) peaks of CH structured CuInS 2 phase are observed in slightly Cu-rich films. However, reflection high energy electron diffraction (RHEED) patterns of the slightly Cu-rich films grown at 570 degrees exhibit noticeable spots not only due to the CH structure but also due to the CA structure. The amount of the CA structure is considered to be small because of the absence of the XRD peaks of the CA

  1. Electron transport in nanometer GaAs structure under radiation exposure

    CERN Document Server

    Demarina, N V

    2002-01-01

    One investigates into effect of neutron and proton irradiation on electron transport in nanometer GaAs structures. Mathematical model takes account of radiation defects via introduction of additional mechanisms od scattering of carriers at point defects and disordered regions. To investigate experimentally into volt-ampere and volt-farad characteristics one used a structure based on a field-effect transistor with the Schottky gate and a built-in channel. Calculation results of electron mobility, drift rate of electrons, time of energy relaxation and electron pulse are compared with the experimental data

  2. Exciton states in GaAs δ-doped systems under magnetic fields and hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia)

    2013-04-15

    Excitons in GaAs n-type δ-doped quantum wells are studied taking into account the effects of externally applied magnetic fields as well as of hydrostatic pressure. The one-dimensional potential profile in both the conduction and valence bands is described including Hartree effects via a Thomas–Fermi-based local density approximation. The allowed uncorrelated energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions and a variational method is used to obtain the exciton states. The results are presented as functions of the two-dimensional doping concentration and the magnetic field strength for zero and finite values of the hydrostatic pressure. In general, it is found that the exciton binding energy is a decreasing function of the doping-density and an increasing function of the magnetic field intensity. A comparison with recent experiments on exciton-related photoluminescence in n-type δ-doped GaAs is made.

  3. Facile Five-Step Heteroepitaxial Growth of GaAs Nanowires on Silicon Substrates and the Twin Formation Mechanism.

    Science.gov (United States)

    Yao, Maoqing; Sheng, Chunyang; Ge, Mingyuan; Chi, Chun-Yung; Cong, Sen; Nakano, Aiichiro; Dapkus, P Daniel; Zhou, Chongwu

    2016-02-23

    Monolithic integration of III-V semiconductors with Si has been pursued for some time in the semiconductor industry. However, the mismatch of lattice constants and thermal expansion coefficients represents a large technological challenge for the heteroepitaxial growth. Nanowires, due to their small lateral dimension, can relieve strain and mitigate dislocation formation to allow single-crystal III-V materials to be grown on Si. Here, we report a facile five-step heteroepitaxial growth of GaAs nanowires on Si using selective area growth (SAG) in metalorganic chemical vapor deposition, and we further report an in-depth study on the twin formation mechanism. Rotational twin defects were observed in the nanowire structures and showed strong dependence on the growth condition and nanowire size. We adopt a model of faceted growth to demonstrate the formation of twins during growth, which is well supported by both a transmission electron microscopy study and simulation based on nucleation energetics. Our study has led to twin-free segments in the length up to 80 nm, a significant improvement compared to previous work using SAG. The achievements may open up opportunities for future functional III-V-on-Si heterostructure devices.

  4. Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon

    Science.gov (United States)

    Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.

    1987-01-01

    GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.

  5. Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field

    Science.gov (United States)

    Iqraoun, E.; Sali, A.; Rezzouk, A.; Feddi, E.; Dujardin, F.; Mora-Ramos, M. E.; Duque, C. A.

    2017-06-01

    The donor impurity-related electron states in GaAs cone-like quantum dots under the influence of an externally applied static electric field are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The uncorrelated Schrödinger-like electron states are obtained in quasi-analytical form and the entire electron-impurity correlated states are used to calculate the photoionisation cross section. Results for the electron state energies and the photoionisation cross section are reported as functions of the main geometrical parameters of the cone-like structures as well as of the electric field strength.

  6. Contactless electroreflectance and photoluminescence of InAs quantum dots with GaInNAs barriers grown on GaAs substrate

    International Nuclear Information System (INIS)

    Motyka, M.; Kudrawiec, R.; Misiewicz, J.; Pucicki, D.; Tlaczala, M.; Fischer, M.; Marquardt, B.; Forchel, A.

    2007-01-01

    InAs quantum dots (QDs) with GaInNAs barriers grown on (001) GaAs substrate by molecular beam epitaxy have been studied by contactless electroreflectance (CER) and photoluminescence (PL) spectroscopies. It has been observed that the overgrowth of self-organized InAs QDs with GaInNAs layers effectively tunes the QD emission to the 1.3 μm spectral region. In case of PL spectra only one peak related to QD emission has been observed. In the case of CER spectra, in addition to a CER feature corresponding to the QD ground state, a rich spectrum of CER resonances related to optical transitions in InAs/GaInNAs/GaAs QW has been observed. It has been concluded that the application of GaInNAs instead InGaAs leads to better control of emission wavelength from InAs QDs since strains in GaInNAs can be tuned from compressive to tensile. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Formation and reconstruction of Se nanoislands at the surface of thin epitaxial ZnSe layers grown on GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kozlovskiy, V. I.; Krivobok, V. S., E-mail: krivobok@lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kuznetsov, P. I.; Nikolaev, S. N.; Onistchenko, E. E.; Pruchkina, A. A.; Temiryazev, A. G. [Russian Academy of Sciences, Kotel’nikov Institute of Radio-Engineering and Electronics (Russian Federation)

    2016-05-15

    Strained epitaxial ZnSe layers are grown on GaAs substrates by the method of vapor-phase epitaxy from metal-organic compounds. It is found that Se nanoislands with a density of 10{sup 8} to 10{sup 9} cm{sup –2} are formed at the surface of such layers. It is established that an increase in the size of Se islands and a decrease in their density take place after completion of growth. Annealing in a H{sub 2} atmosphere at a temperature higher than 260°C leads to the disappearance of Se islands and to a decrease in the surface roughness. It is shown that annealing does not lead to deterioration of the structural perfection of the epitaxial ZnSe films; rather, annealing gives rise to a decrease in the intensity of impurity–defect luminescence and to an increase in the intensity of intrinsic radiation near the bottom of the exciton band.

  8. Heterogenous integration of a thin-film GaAs photodetector and a microfluidic device on a silicon substrate

    International Nuclear Information System (INIS)

    Song, Fuchuan; Xiao, Jing; Udawala, Fidaali; Seo, Sang-Woo

    2011-01-01

    In this paper, heterogeneous integration of a III–V semiconductor thin-film photodetector (PD) with a microfluidic device is demonstrated on a SiO 2 –Si substrate. Thin-film format of optical devices provides an intimate integration of optical functions with microfluidic devices. As a demonstration of a multi-material and functional system, the biphasic flow structure in the polymeric microfluidic channels was co-integrated with a III–V semiconductor thin-film PD. The fluorescent drops formed in the microfluidic device are successfully detected with an integrated thin-film PD on a silicon substrate. The proposed three-dimensional integration structure is an alternative approach to combine optical functions with microfluidic functions on silicon-based electronic functions.

  9. Growth and characteristics of p-type doped GaAs nanowire

    Science.gov (United States)

    Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2018-05-01

    The growth of p-type GaAs nanowires (NWs) on GaAs (111) B substrates by metal-organic chemical vapor deposition (MOCVD) has been systematically investigated as a function of diethyl zinc (DEZn) flow. The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow. In addition, the I–V curves of GaAs NWs has been measured and the p-type dope concentration under the II/III ratio of 0.013 and 0.038 approximated to 1019–1020 cm‑3. Project supported by the National Natural Science Foundation of China (Nos. 61376019, 61504010, 61774021) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Nos. IPOC2017ZT02, IPOC2017ZZ01).

  10. Temperature Dependences of the Product of the Differential Resistance by the Area in MIS-Structures Based on Cd x Hg1- x Te Grown by Molecularbeam Epitaxy on Alternative Si and GaAs Substrates

    Science.gov (United States)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Varavin, V. S.; Vasil'ev, V. V.; Dvoretskii, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Sidorov, G. Yu.

    2017-06-01

    In a temperature range of 9-200 K, temperature dependences of the differential resistance of space-charge region in the strong inversion mode are experimentally studied for MIS structures based on CdxHg1-xTe (x = 0.22-0.40) grown by molecular-beam epitaxy. The effect of various parameters of structures: the working layer composition, the type of a substrate, the type of insulator coating, and the presence of a near-surface graded-gap layer on the value of the product of differential resistance by the area is studied. It is shown that the values of the product RSCRA for MIS structures based on n-CdHgTe grown on a Si(013) substrate are smaller than those for structures based on the material grown on a GaAs(013) substrate. The values of the product RSCRA for MIS structures based on p-CdHgTe grown on a Si(013) substrate are comparable with the value of the analogous parameter for MIS structures based on p-CdHgTe grown on a GaAs(013) substrate.

  11. Some Aspects of the RHEED Behavior of Low-Temperature GaAs Growth

    International Nuclear Information System (INIS)

    Nemcsics, A.

    2005-01-01

    The reflection high-energy electron diffraction (RHEED) behavior manifested during MBE growth on a GaAs(001) surface under low-temperature (LT) growth conditions is examined in this study. RHEED and its intensity oscillations during LT GaAs growth exhibit some particular behavior. The intensity, phase, and decay of the oscillations depend on the beam equivalent pressure (BEP) ratio and substrate temperature, etc. Here, the intensity dependence of RHEED behavior on the BEP ratio, substrate temperature, and excess of As content in the layer are examined. The change in the decay constant of the RHEED oscillations is also discussed

  12. Banana peel: A novel substrate for cellulase production under solid ...

    African Journals Online (AJOL)

    These results indicated that banana peel provided necessary nutrients for cell growth and cellulase synthesis. It can be used as a potential substrate for cellulase production by T. viride GIM 3.0010 under solid-state fermentation. To the best of our knowledge, this is the first report on cellulase production using banana peel.

  13. Effect of ion-beam gettering on the GaAs transistor structure parameters under neutron irradiation

    International Nuclear Information System (INIS)

    Obolenskij, S.V.; Skupov, V.D.

    2000-01-01

    It is established that the neutron irradiation negative effect on the parameters of the field transistors with the Schottky shut-off on the basis of the epitaxial gallium arsenide is essentially reduced when the argon ions are preliminary implanted into structure on the substrate side. The above effect is explained through remotely controlled gettering by ion irradiation of admixtures and defects in the transistor active areas related with origination of deep levels under the neutron fluence [ru

  14. Monte Carlo simulation of THz radiation from GaAs p-i-n diodes under high electric fields using an extended valley model

    International Nuclear Information System (INIS)

    Dinh Nhu Thao

    2008-01-01

    We have applied a self-consistent ensemble Monte Carlo simulation procedure using an extended valley model to consider the THz radiation from GaAs p-i-n diodes under high electric fields. The present calculation has shown an important improvement of the numerical results when using this model instead of the usual valley model. It has been shown the importance of the full band-structure in the simulation of processes in semiconductors, especially under the influence of high electric fields. (author)

  15. Structural and electrical properties of high-quality 0.41 μm-thick InSb films grown on GaAs (1 0 0) substrate with InxAl1−xSb continuously graded buffer

    International Nuclear Information System (INIS)

    Shin, Sang Hoon; Song, Jin Dong; Lim, Ju Young; Koo, Hyun Cheol; Kim, Tae Geun

    2012-01-01

    High-quality InSb was grown on a GaAs (1 0 0) substrate with an InAlSb continuously graded buffer (CGB). The temperatures of In, Al K-cells and substrate were modified during the growth of InAlSb CGB. The cross-section TEM image reveals that the defects due to lattice-mismatch disappear near lateral structures in CGB. The measured electron mobility of 0.41 μm-thick InSb was 46,300 cm 2 /Vs at 300 K. These data surpass the electron mobility of state-of-the-art InSb grown by other methods with similar thickness of InSb.

  16. Molecular beam epitaxial growth of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} topological insulators on GaAs (111) substrates: a potential route to fabricate topological insulator p-n junction

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhaoquan; Morgan, Timothy A.; Li, Chen; Hirono, Yusuke; Hu, Xian; Hawkridge, Michael E.; Benamara, Mourad; Salamo, Gregory J. [Arkansas Institute for Nanoscale Material Sciences and Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Fan, Dongsheng; Yu, Shuiqing [Arkansas Institute for Nanoscale Material Sciences and Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Zhao, Yanfei [International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871 (China); Lee, Joon Sue [The Center for Nanoscale Science and Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Wang, Jian [International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871 (China); The Center for Nanoscale Science and Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States); Wang, Zhiming M. [Arkansas Institute for Nanoscale Material Sciences and Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083 (China)

    2013-07-15

    High quality Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} topological insulators films were epitaxially grown on GaAs (111) substrate using solid source molecular beam epitaxy. Their growth and behavior on both vicinal and non-vicinal GaAs (111) substrates were investigated by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and high resolution transmission electron microscopy. It is found that non-vicinal GaAs (111) substrate is better than a vicinal substrate to provide high quality Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} films. Hall and magnetoresistance measurements indicate that p type Sb{sub 2}Te{sub 3} and n type Bi{sub 2}Te{sub 3} topological insulator films can be directly grown on a GaAs (111) substrate, which may pave a way to fabricate topological insulator p-n junction on the same substrate, compatible with the fabrication process of present semiconductor optoelectronic devices.

  17. Singularities of 28Si electrical activation in a single crystal and epitaxial GaAs under radiation annealing

    International Nuclear Information System (INIS)

    Ardyshev, V.M.; Ardyshev, M.V.; Khludkov, S.S.

    2000-01-01

    Using the voltage-capacitance characteristics method, the concentration profiles of 28 Si that is implanted in monocrystal and epitaxial GaAs after fast thermal annealing (FTA) (825, 870, 950 deg C, 12 s) have been studied; using Van-der-Paw method, the electron Hall mobility temperature dependence in the range of 70-400 K has been measured. Unlike thermal annealing (800 deg C, 30 min), the silicon diffusion depth redistribution into GaAs is shown to occur for both types of material. The coefficient of diffusion of Si in the single crystal is 2 times greater, but the electrical activation efficiency is somewhat less than in the epitaxial GaAs for each of the temperatures of FTA. The analysis of the temperature dependence of the electron mobility in ion-implanted layers after FTA gives the evidence about the significantly lower concentration of defects restricting the mobility in comparison with results obtained at thermal annealing during 30 min [ru

  18. Pseudo-Rhombus-Shaped Subwavelength Crossed Gratings of GaAs for Broadband Antireflection

    International Nuclear Information System (INIS)

    Chen Xi; Zhang Jing; Song Guo-Feng; Chen Liang-Hui; Fan Zhong-Chao

    2010-01-01

    Holographic lithography coupled with the nonlinear response of photoresist to the exposure is adopted to fabricate porous photoresist (PR) mask. Conventional dot PR mask is also generated, and both patterns are transferred into a underlying GaAs substrate by the optimal dry etching process to obtain tapered subwavelength crossed gratings (SWCGs) to mimic the moth-eye structure. In comparison of the experiment and simulation, the closely-packed pseudo-rhombus-shaped GaAs SWCGs resulting from the porous mask outperforms the conical counterpart which comes from the dot mask, and achieves a reported lowest mean spectral reflectance of 1.1%. (fundamental areas of phenomenology(including applications))

  19. Modeling and Design of Graphene GaAs Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Yawei Kuang

    2015-01-01

    Full Text Available Graphene based GaAs junction solar cell is modeled and investigated by Silvaco TCAD tools. The photovoltaic behaviors have been investigated considering structure and process parameters such as substrate thickness, dependence between graphene work function and transmittance, and n-type doping concentration in GaAs. The results show that the most effective region for photo photogenerated carriers locates very close to the interface under light illumination. Comprehensive technological design for junction yields a significant improvement of power conversion efficiency from 0.772% to 2.218%. These results are in good agreement with the reported experimental work.

  20. Polarity influence on the indentation punching of thin {111} GaAs foils at elevated temperatures

    International Nuclear Information System (INIS)

    Patriarche, G; Largeau, L; Riviere, J P; Bourhis, E Le

    2005-01-01

    Thin {111} GaAs substrates were deformed by a Vickers indenter at 350 deg. C-370 deg. C under loads ranging between 0.4 and 1.9 N. Optical microscopy and interferometry were used to observe the indented and opposite faces of the thin foils and hence to investigate the plastic flow through the samples. Attention was paid to the polarity (A or B) of the specimen surface, as GaAs is known to show a large difference between α and β dislocations mobilities. A model considering the influence of polarity is proposed to describe the material flow throughout thin samples

  1. Survival of heterotrophic bacteria in water environment under substrate deficiency

    International Nuclear Information System (INIS)

    Toth, D.

    1989-01-01

    The relationship between metabolic changes and survival of bacteria in the water environment under substrate deficiency was studied. The main factors supporting cell survival were cryptic growth, utilization of endogenous reserve substances and reorganization of metabolic activities. Based on the utilization of cell-free extract or lysates from dead bacteria, an Enterobacter aerogenes cell suspension yielded 50% more colonies. Metabolic processes of starved heterotrophic bacteria changed markedly and became stabilized at a lower level depending on species involved. The rate of utilization of endogenous reserve substances as indicated by endogenous respiration was related to the rate of cell mortality. Of the test bacteria, Pseudomonas fluorescens showed the lowest rates of endogenous respiration and mortality while in Enterobacter aerogenes these two rates were the highest. (author). 3 figs., 2 tabs.., 16 refs

  2. Emission of circularly polarized recombination radiation from p-doped GaAs and GaAs0.62P0.38 under the impact of polarized electrons

    International Nuclear Information System (INIS)

    Fromme, B.; Baum, G.; Goeckel, D.; Raith, W.

    1989-01-01

    Circularly polarized light is emitted in radiative transitions of polarized electrons from the conduction to the valence band in GaAs or GaAs 1-x P x crystals. The degree of light polarization is directly related to the polarization of the conduction-band electrons at the instant of recombination and allows conclusions about the depolarization of electrons in the conduction band. The depolarization is caused by spin-relaxation processes. The efficiency of these processes depends on crystal type, crystal temperature, degree of doping, and kinetic energy of the electrons. Highly p-doped GaAs and GaAs 0.62 P 0.38 crystals (N A >1x10 19 atoms/cm 3 ) were bombarded with polarized electrons (initial polarization 38%), and the spectral distribution and the circular polarization of the emitted recombination radiation were measured. The initial kinetic energy of the electrons in the conduction band was varied between 5 and 1000 eV. The measurements of the spectral distribution show that the electrons are thermalized before recombination occurs, independent of their initial energy. An important thermalization process in this energy range is the excitation of crystal electrons by electron-hole pair creation. The circular polarization of the recombination radiation lies below 1% in the whole energy range. It decreases with increasing electron energy but is still of measurable magnitude at 100 eV in the case of GaAs 0.62 P 0.38 . The circular polarization is smaller for GaAs than for GaAs 0.62 P 0.38 , which we attribute to more efficient spin relaxation in GaAs

  3. Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure

    International Nuclear Information System (INIS)

    Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.

    2012-01-01

    The GaAs n-type delta-doped field effect transistor is proposed as a source for nonlinear optical responses such as second order rectification and second and third harmonic generation. Particular attention is paid to the effect of hydrostatic pressure on these properties, related with the pressure-induced modifications of the energy level spectrum. The description of the one-dimensional potential profile is made including Hartree and exchange and correlation effects via a Thomas–Fermi-based local density approximation. The allowed energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions. The results for the coefficients of nonlinear optical rectification and second and third harmonic generation are reported for several values of the hydrostatic pressure. - Highlights: ► GaAs n-type delta-doped field effect transistor. ► NOR and SHG are enhanced as a result of the pressure. ► THG is quenched as a result of the pressure. ► The zero pressure situation is the best scenario for the THG.

  4. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  5. Acclimatization and growth of ornamental pineapple seedlings under organic substrates

    Directory of Open Access Journals (Sweden)

    Ronan Carlos Colombo

    2017-09-01

    Full Text Available The in vitro propagation techniques are commonly used to produce ornamental pineapple seedlings in commercial scale, aiming to attend the growers with genetic and sanitary quality seedlings. However, the choice of the ideal substrate is essential for the acclimatization and growth stage of the seedlings propagated by this technique, since some substrates can increase the seedling mortality and/or limit the seedling growth due to its physical and chemical characteristics. Thus, the aim of this study was to evaluate the acclimatization of ornamental pineapple [Ananas comosus (L. Merr. var. ananassoides (Baker Coppens & Leal] on different substrates. Seedlings with approximately seven centimeters, obtained from in vitro culture, were transplanted into styrofoam trays filled with the following substrates: sphagnum; semi-composed pine bark; carbonized rice husk; sphagnum + semicomposed pine bark; sphagnum + carbonized rice husk; and semi-composed pine bark + carbonized rice husk. Each treatment was replicated five times using 10 plants. At 180 days, there were evaluated the following variables: survival percentage, plant height, number of leaves, leaf area, largest root length, and shoot and root dry matter. The substrate semi-composed pine bark + carbonized rice husk presented the lowest mean (62% for survival percentage. The semi-composed pine bark and semi-composed pine bark + carbonized rice husk treatments presented significant increments in some evaluated biometric characteristics. The semi-composed pine bark is the most favorable substrate for the A. comosus var. ananassoids acclimatization.

  6. Real-time observation of rotational twin formation during molecular-beam epitaxial growth of GaAs on Si (111) by x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hidetoshi, E-mail: hsuzuki@cc.miyazaki-u.ac.jp [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192 (Japan); Nakata, Yuka; Takahasi, Masamitu [Graduate School of Materials Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Hyogo 678-1297 (Japan); Quantum Beam Science Center, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo-cho, Hyogo 679-5148 (Japan); Ikeda, Kazuma [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Ohshita, Yoshio; Morohara, Osamu; Geka, Hirotaka; Moriyasu, Yoshitaka [Advanced Devices and Sensor Systems Development Center, Asahi Kasei Co. Ltd., 2-1 Samejima, Fuji 416-8501 (Japan)

    2016-03-15

    The formation and evolution of rotational twin (TW) domains introduced by a stacking fault during molecular-beam epitaxial growth of GaAs on Si (111) substrates were studied by in situ x-ray diffraction. To modify the volume ratio of TW to total GaAs domains, GaAs was deposited under high and low group V/group III (V/III) flux ratios. For low V/III, there was less nucleation of TW than normal growth (NG) domains, although the NG and TW growth rates were similar. For high V/III, the NG and TW growth rates varied until a few GaAs monolayers were deposited; the mean TW domain size was smaller for all film thicknesses.

  7. Study of a MHEMT heterostructure with an In0.4Ga0.6As channel MBE-grown on a GaAs substrate using reciprocal space mapping

    International Nuclear Information System (INIS)

    Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.

    2015-01-01

    The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In 0.4 Ga 0.6 As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for the (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure

  8. Terahertz radiation in In{sub 0.38}Ga{sub 0.62}As grown on a GaAs wafer with a metamorphic buffer layer under femtosecond laser excitation

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, D. S., E-mail: ponomarev-dmitr@mail.ru; Khabibullin, R. A.; Yachmenev, A. E.; Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation); Grekhov, M. M. [National Research Nuclear University “MEPhI” (Russian Federation); Ilyakov, I. E.; Shishkin, B. V.; Akhmedzhanov, R. A. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2017-04-15

    The results of time-domain spectroscopy of the terahertz (THz) generation in a structure with an In{sub 0.38}Ga{sub 0.62}As photoconductive layer are presented. This structure grown by molecular-beam epitaxy on a GaAs substrate using a metamorphic buffer layer allows THz generation with a wide frequency spectrum (to 6 THz). This is due to the additional contribution of the photo-Dember effect to THz generation. The measured optical-to-terahertz conversion efficiency in this structure is 10{sup –5} at a rather low optical fluence of ~40 μJ/cm{sup 2}, which is higher than that in low-temperature grown GaAs by almost two orders of magnitude.

  9. Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap

    International Nuclear Information System (INIS)

    Babinski, Adam; Jasinski, J.; Bozek, R.; Szepielow, A.; Baranowski, J. M.

    2001-01-01

    The effect of postgrowth rapid thermal annealing (RTA) on GaAs proximity-capped structures with self-assembled InAs/GaAs quantum dots (QDs) is investigated using transmission electron microscopy (TEM) and photoluminescence (PL). As can be seen from the TEM images, QDs increase their lateral sizes with increasing annealing temperature (up to 700 C). QDs cannot be distinguished after RTA at temperature 800 C or higher, and substantial thickening of the wetting layer can be seen instead. The main PL peak blueshifts as a result of RTA. We propose that in the as-grown sample as well, as in samples annealed at temperatures up to 700 C, the peak is due to the QDs. After RTA at 800 C and higher the PL peak is due to a modified wetting layer. Relatively fast dissolution of QDs is explained in terms of strain-induced lateral Ga/In interdiffusion. It is proposed that such a process may be of importance in proximity-capped RTA, when no group-III vacancy formation takes place at the sample/capping interface

  10. Electrodeposition of Metal on GaAs Nanowires

    Science.gov (United States)

    Liu, Chao; Einabad, Omid; Watkins, Simon; Kavanagh, Karen

    2010-10-01

    Copper (Cu) electrical contacts to freestanding gallium arsenide (GaAs) nanowires have been fabricated via electrodeposition. The nanowires are zincblende (111) oriented grown epitaxially on n-type Si-doped GaAs (111)B substrates by gold-catalyzed Vapor Liquid Solid (VLS) growth in a metal organic vapour phase epitaxy (MOVPE) reactor. The epitaxial electrodeposition process, based on previous work with bulk GaAs substrates, consists of a substrate oxide pre-etch in dilute ammonium-hydroxide carried out prior to galvanostatic electrodeposition in a pure Cu sulphate aqueous electrolyte at 20-60^oC. For GaAs nanowires, we find that Cu or Fe has a preference for growth on the gold catalyst avoiding the sidewalls. After removing gold, both metals still prefer to grow only on top of the nanowire, which has the largest potential field.

  11. Structure characterization of MHEMT heterostructure elements with In{sub 0.4}Ga{sub 0.6}As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    Energy Technology Data Exchange (ETDEWEB)

    Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation); Ermakova, M. A. [Federal Agency on Technical Regulating and Metrology, Center for Study of Surface and Vacuum Properties (Russian Federation); Ruban, O. A. [Russian Academy of Sciences, Institute of Ultra High Frequency Semiconductor Electronics (Russian Federation)

    2016-03-15

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In{sub 0.4}Ga{sub 0.6}As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In{sub x}Ga{sub 1–x}As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.

  12. Fermi edge singularity evidence from photoluminescence spectroscopy of AlGaAs/InGaAs/GaAs pseudomorphic HEMTs grown on (3 1 1)A GaAs substrates

    International Nuclear Information System (INIS)

    Rekaya, S.; Sfaxi, L.; Bru-Chevallier, C.; Maaref, H.

    2011-01-01

    InGaAs/AlGaAs/GaAs pseudomorphic high electron mobility transistor (P-HEMT) structures were grown by Molecular Beam Epitaxy (MBE) on (3 1 1)A GaAs substrates with different well widths, and studied by photoluminescence (PL) spectroscopy as a function of temperature and excitation density. The PL spectra are dominated by one or two spectral bands, corresponding, respectively, to one or two populated electron sub-bands in the InGaAs quantum well. An enhancement of PL intensity at the Fermi level energy (E F ) in the high-energy tail of the PL peak is clearly observed and associated with the Fermi edge singularity (FES). This is practically detected at the same energy for all samples, in contrast with energy transitions in the InGaAs channel, which are shifted to lower energy with increasing channel thickness. PL spectra at low temperature and low excitation density are used to optically determine the density of the two-dimensional electron gas (2DEG) in the InGaAs channel for different thicknesses. The results show an enhancement of the 2DEG density when the well width increases, in good agreement with our previous theoretical study.

  13. Structure characterization of MHEMT heterostructure elements with In0.4Ga0.6As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    Science.gov (United States)

    Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.

    2016-03-01

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In0.4Ga0.6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In x Ga1- x As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.

  14. Structure characterization of MHEMT heterostructure elements with In_0_._4Ga_0_._6As quantum well grown by molecular beam epitaxy on GaAs substrate using reciprocal space mapping

    International Nuclear Information System (INIS)

    Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.

    2016-01-01

    The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In_0_._4Ga_0_._6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In_xGa_1_–_xAs ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.

  15. Integration of InGaAs MOSFETs and GaAs/ AlGaAs lasers on Si Substrate for advanced opto-electronic integrated circuits (OEICs).

    Science.gov (United States)

    Kumar, Annie; Lee, Shuh-Ying; Yadav, Sachin; Tan, Kian Hua; Loke, Wan Khai; Dong, Yuan; Lee, Kwang Hong; Wicaksono, Satrio; Liang, Gengchiau; Yoon, Soon-Fatt; Antoniadis, Dimitri; Yeo, Yee-Chia; Gong, Xiao

    2017-12-11

    Lasers monolithically integrated with high speed MOSFETs on the silicon (Si) substrate could be a key to realize low cost, low power, and high speed opto-electronic integrated circuits (OEICs). In this paper, we report the monolithic integration of InGaAs channel transistors with electrically pumped GaAs/AlGaAs lasers on the Si substrate for future advanced OEICs. The laser and transistor layers were grown on the Si substrate by molecular beam epitaxy (MBE) using direct epitaxial growth. InGaAs n-FETs with an I ON /I OFF ratio of more than 10 6 with very low off-state leakage and a low subthreshold swing with a minimum of 82 mV/decade were realized. Electrically pumped GaAs/AlGaAs quantum well (QW) lasers with a lasing wavelength of 795 nm at room temperature were demonstrated. The overall fabrication process has a low thermal budget of no more than 400 °C.

  16. Conductive stability of graphene on PET and glass substrates under blue light irradiation

    Science.gov (United States)

    Cao, Xueying; Liu, Xianming; Li, Xiangdi; Lei, Xiaohua; Chen, Weimin

    2018-01-01

    Electrical properties of graphene transparent conductive film under visible light irradiation are investigated. The CVD-grown graphene on Polyethylene Terephthalate (PET) and glass substrates for flexible and rigid touch screen display application are chosen for research. The resistances of graphene with and without gold trichloride (AuCl3) doping are measured in vacuum and atmosphere environment under blue light irradiation. Results show that the conductivities of all samples change slowly under light irradiation. The change rate and degree are related to the substrate material, doping, environment and lighting power. Graphene on flexible PET substrate is more stable than that on rigid glass substrate. Doping can improve the electrical conductivity but induce instability under light irradiation. Finally, the main reason resulting in the graphene resistance slowly increasing under blue light irradiation is analyzed.

  17. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    Science.gov (United States)

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices.

  18. The role of proximity caps during the annealing of UV-ozone oxidized GaAs

    International Nuclear Information System (INIS)

    Ghosh, S. C.; Biesinger, M. C.; LaPierre, R. R.; Kruse, P.

    2007-01-01

    This study provides a deeper insight into the chemistry and physics of the common engineering practice of using a proximity cap, while annealing compound semiconductors such as GaAs. We have studied the cases of a GaAs proximity cap, a Si proximity cap, and no proximity cap. Using x-ray photoelectron spectroscopy, it has been found that annealing increases the gallium to arsenic ratio in the oxide layer in all cases. During the annealing of UV-ozone oxidized GaAs, it has been observed that GaAs proximity caps also serve as a sacrificial layer to accelerate the desorption of oxide species. In all cases surface deterioration due to pit formation has been observed, and the depth of pits is found to depend on the effective role played by the capping material. Energy dispersive x-ray analysis provides additional evidence that pits mainly consist of elemental As and gallium oxide, with most of the elemental As situated at the pit-substrate interface. Deposition of a thin layer of gold and subsequent annealing to 500 deg. C for 300 s under different capping conditions shows the use of a proximate cap to be practically insignificant in annealing Au deposited films

  19. Modulation of low-frequency oscillations in GaAs MESFETs' channel current by sidegating bias

    Institute of Scientific and Technical Information of China (English)

    DING Yong; LU Shengli; ZHAO Fuchuan

    2005-01-01

    Low-frequency oscillations in channel current are usually observed when measuring the GaAs MESFET's output characteristics. This paper studies the oscillations by testing the MESFET's output characteristics under different sidegate bias conditions. It is shown that the low-frequency oscillations of channel current are directly related to the sidegate bias. In other words, the sidegate bias can modulate the oscillations. Whether the sidegate bias varies positively or negatively, there will inevitably be a threshold voltage after which the low-frequency oscillations disappear. The observation is strongly dependent upon the peculiarities of channel-substrate (C-S) junction and impact ionization of traps-EL2 under high field. This conclusion is of particular pertinence to the design of low-noise GaAs IC's.

  20. Ghrelin and food reward: the story of potential underlying substrates.

    Science.gov (United States)

    Skibicka, Karolina P; Dickson, Suzanne L

    2011-11-01

    The incidence of obesity is increasing at an alarming rate and this worldwide epidemic represents a significant decrease in life span and quality of life of a large part of the affected population. Therefore an understanding of mechanisms underlying food overconsumption and obesity development is urgent and essential to find potential treatments. Research investigating mechanisms underlying obesity and the control of food intake has recently experienced a major shift in focus, from the brain's hypothalamus to additional important neural circuits controlling emotion, cognition and motivated behavior. Among them, the mesolimbic system, and the changes in reward and motivated behavior for food, emerge as new promising treatment targets. Furthermore, there is also growing appreciation of the impact of peripheral hormones that signal nutrition status to the mesolimbic areas, and especially the only known circulating orexigenic hormone, ghrelin. This review article provides a synthesis of recent evidence concerning the impact of manipulation of ghrelin and its receptor on models of food reward/food motivation behavior and the mesolimbic circuitry. Particular attention is given to the potential neurocircuitry and neurotransmitter systems downstream of ghrelin's effects on food reward. Copyright © 2011. Published by Elsevier Inc.

  1. Convergent synaptic and circuit substrates underlying autism genetic risks.

    Science.gov (United States)

    McGee, Aaron; Li, Guohui; Lu, Zhongming; Qiu, Shenfeng

    2014-02-01

    There has been a surge of diagnosis of autism spectrum disorders (ASD) over the past decade. While large, high powered genome screening studies of children with ASD have identified numerous genetic risk factors, research efforts to understanding how each of these risk factors contributes to the development autism has met with limited success. Revealing the mechanisms by which these genetic risk factors affect brain development and predispose a child to autism requires mechanistic understanding of the neurobiological changes underlying this devastating group of developmental disorders at multifaceted molecular, cellular and system levels. It has been increasingly clear that the normal trajectory of neurodevelopment is compromised in autism, in multiple domains as much as aberrant neuronal production, growth, functional maturation, patterned connectivity, and balanced excitation and inhibition of brain networks. Many autism risk factors identified in humans have been now reconstituted in experimental mouse models to allow mechanistic interrogation of the biological role of the risk gene. Studies utilizing these mouse models have revealed that underlying the enormous heterogeneity of perturbed cellular events, mechanisms directing synaptic and circuit assembly may provide a unifying explanation for the pathophysiological changes and behavioral endophenotypes seen in autism, although synaptic perturbations are far from being the only alterations relevant for ASD. In this review, we discuss synaptic and circuit abnormalities obtained from several prevalent mouse models, particularly those reflecting syndromic forms of ASD that are caused by single gene perturbations. These compiled results reveal that ASD risk genes contribute to proper signaling of the developing gene networks that maintain synaptic and circuit homeostasis, which is fundamental to normal brain development.

  2. Anomalous diffusion of Ga and As from semi-insulating GaAs substrate into MOCVD grown ZnO films as a function of annealing temperature and its effect on charge compensation

    Directory of Open Access Journals (Sweden)

    Pranab Biswas

    2014-05-01

    Full Text Available The diffusion behavior of arsenic (As and gallium (Ga atoms from semi-insulating GaAs (SI-GaAs into ZnO films upon post-growth annealing vis-à-vis the resulting charge compensation was investigated with the help of x-ray photoelectron spectroscopy (XPS and secondary ion mass spectroscopy. The films, annealed at 600 ºC and 700 ºC showed p-type conductivity with a hole concentration of 1.1 × 1018 cm−3 and 2.8 × 1019 cm−3 respectively, whereas those annealed at 800 ºC showed n-type conductivity with a carrier concentration of 6.5 × 1016 cm−3. It is observed that at lower temperatures, large fraction of As atoms diffused from the SI-GaAs substrates into ZnO and formed acceptor related complex, (AsZn–2VZn, by substituting Zn atoms (AsZn and thereby creating two zinc vacancies (VZn. Thus as-grown ZnO which was supposed to be n-type due to nonstoichiometric nature showed p-type behavior. On further increasing the annealing temperature to 800 ºC, Ga atoms diffused more than As atoms and substitute Zn atoms thereby forming shallow donor complex, GaZn. Electrons from donor levels then compensate the p-type carriers and the material reverts back to n-type. Thus the conversion of carrier type took place due to charge compensation between the donors and acceptors in ZnO and this compensation is the possible origin of anomalous conduction in wide band gap materials.

  3. Structural, magnetic, and lattice-dynamical interface properties of epitactical iron films on InAs(001) and GaAs(001) substrates; Strukturelle, magnetische und gitterdynamische Grenzflaecheneigenschaften von epitaktischen Eisenfilmen auf InAs(001)- und GaAs(001)-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Robert

    2009-07-14

    In this thesis the structure, magnetism and interface properties of ferromagnet-semiconductor hybrid structures were investigated. The main goal of this thesis was to obtain information on physical properties at the interface between a ferromagnetic metal and a III-V semiconductor (SC). For this purpose Fe films that serve as ferromagnetic contacts were deposited in ultrahigh vacuum (UHV) on InAs(001) and GaAs(001) substrates, respectively, and investigated. Both systems are interesting model systems with respect to electrical spin injection from a ferromagnetic metal into a semiconductor. In order for spin injection to occur, it is known that a Schottky barrier must form at the Fe/SC interface. Film growth and film structure were investigated in-situ in UHV by electron diffraction (RHEED) and ex-situ by X-ray diffraction. For determining the magnetic properties {sup 57}Fe conversion electron Moessbauer spectroscopy (CEMS) combines with {sup 57}Fe probe-layer technique was employed at different temperatures. Further, the partial Fe phonon density of states (PDOS) at the Fe/InAs (001) interface was determined by nuclear resonant inelastic X-ray scattering (NRIXS) from a {sup 57}Fe probe-layer. The CEM spectra (at room temperature) provided relatively high values of the average hyperfine magnetic field of left angle B{sub hf} right angle {proportional_to} 27 T and of the most-probable hyperfine magnetic field of B{sub hf,} {sub peak} {proportional_to} 30 T. This provides evidence for relativ high average Fe magnetic moments of {proportional_to} 1.8 {mu}{sub B}. The partial Fe phonon density of states (PDOS) at the Fe/InAs(001) interface is remarkably modified as compared to that of bulk bcc Fe. Using magnetometry and {sup 57}Fe CEMS, a strong temperature dependent magnetization directions was observed for Fe/Tb multilayers on InAs(001). Furthermore it is shown that such Fe/Tb multilayers on p-InAs(001) with perpendicular spin texture are useful as potential

  4. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    OpenAIRE

    Albano, Francisca G.; Cavalcante, Ítalo H. L.; Machado, Jailson S.; Lacerda, Claudivan F. de; Silva, Esdras R. da; Sousa, Humberto G. de

    2017-01-01

    ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five materials used as...

  5. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    OpenAIRE

    Albano,Francisca G.; Cavalcante,Ítalo H. L.; Machado,Jailson S.; Lacerda,Claudivan F. de; Silva,Esdras R. da; Sousa,Humberto G. de

    2017-01-01

    ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five mater...

  6. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    International Nuclear Information System (INIS)

    Bietti, Sergio; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano; Fedorov, Alexey

    2014-01-01

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E A =1.31±0.15 eV, a diffusivity prefactor of D 0  = 0.53(×2.1±1) cm 2 s −1 that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  7. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    Science.gov (United States)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  8. Evaluating the Atrial Myopathy Underlying Atrial Fibrillation: Identifying the Arrhythmogenic and Thrombogenic Substrate

    Science.gov (United States)

    Goldberger, Jeffrey J.; Arora, Rishi; Green, David; Greenland, Philip; Lee, Daniel C.; Lloyd-Jones, Donald M.; Markl, Michael; Ng, Jason; Shah, Sanjiv J.

    2015-01-01

    Atrial disease or myopathy forms the substrate for atrial fibrillation (AF) and underlies the potential for atrial thrombus formation and subsequent stroke. Current diagnostic approaches in patients with AF focus on identifying clinical predictors with evaluation of left atrial size by echocardiography serving as the sole measure specifically evaluating the atrium. Although the atrial substrate underlying AF is likely developing for years prior to the onset of AF, there is no current evaluation to identify the pre-clinical atrial myopathy. Atrial fibrosis is one component of the atrial substrate that has garnered recent attention based on newer MRI techniques that have been applied to visualize atrial fibrosis in humans with prognostic implications regarding success of treatment. Advanced ECG signal processing, echocardiographic techniques, and MRI imaging of fibrosis and flow provide up-to-date approaches to evaluate the atrial myopathy underlying AF. While thromboembolic risk is currently defined by clinical scores, their predictive value is mediocre. Evaluation of stasis via imaging and biomarkers associated with thrombogenesis may provide enhanced approaches to assess risk for stroke in patients with AF. Better delineation of the atrial myopathy that serves as the substrate for AF and thromboembolic complications might improve treatment outcomes. Furthermore, better delineation of the pathophysiologic mechanisms underlying the development of the atrial substrate for AF, particularly in its earlier stages, could help identify blood and imaging biomarkers that could be useful to assess risk for developing new onset AF and suggest specific pathways that could be targeted for prevention. PMID:26216085

  9. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    International Nuclear Information System (INIS)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-01-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA) 2− and (NH 4 ) 2 HPO 4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method

  10. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, Katarzyna, E-mail: Katarzyna.Suchanek@ifj.edu.pl [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Bartkowiak, Amanda [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Gdowik, Agnieszka [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Perzanowski, Marcin [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Kąc, Sławomir [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewica 30, 30-059 Krakow (Poland); Szaraniec, Barbara [Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Suchanek, Mateusz [Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow (Poland); Marszałek, Marta [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland)

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA){sup 2−} and (NH{sub 4}){sub 2}HPO{sub 4} solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method.

  11. Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range Under Root Growth Exclusion.

    Science.gov (United States)

    Bitterlich, Michael; Franken, Philipp; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT) plants and mycorrhiza resistant (RMC) mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6-1500 kPa) was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.

  12. 8-band and 14-band kp modeling of electronic band structure and material gain in Ga(In)AsBi quantum wells grown on GaAs and InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gladysiewicz, M.; Wartak, M. S. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Kudrawiec, R. [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2015-08-07

    The electronic band structure and material gain have been calculated for GaAsBi/GaAs quantum wells (QWs) with various bismuth concentrations (Bi ≤ 15%) within the 8-band and 14-band kp models. The 14-band kp model was obtained by extending the standard 8-band kp Hamiltonian by the valence band anticrossing (VBAC) Hamiltonian, which is widely used to describe Bi-related changes in the electronic band structure of dilute bismides. It has been shown that in the range of low carrier concentrations n < 5 × 10{sup 18 }cm{sup −3}, material gain spectra calculated within 8- and 14-band kp Hamiltonians are similar. It means that the 8-band kp model can be used to calculate material gain in dilute bismides QWs. Therefore, it can be applied to analyze QWs containing new dilute bismides for which the VBAC parameters are unknown. Thus, the energy gap and electron effective mass for Bi-containing materials are used instead of VBAC parameters. The electronic band structure and material gain have been calculated for 8 nm wide GaInAsBi QWs on GaAs and InP substrates with various compositions. In these QWs, Bi concentration was varied from 0% to 5% and indium concentration was tuned in order to keep the same compressive strain (ε = 2%) in QW region. For GaInAsBi/GaAs QW with 5% Bi, gain peak was determined to be at about 1.5 μm. It means that it can be possible to achieve emission at telecommunication windows (i.e., 1.3 μm and 1.55 μm) for GaAs-based lasers containing GaInAsBi/GaAs QWs. For GaInAsBi/Ga{sub 0.47}In{sub 0.53}As/InP QWs with 5% Bi, gain peak is predicted to be at about 4.0 μm, i.e., at the wavelengths that are not available in current InP-based lasers.

  13. Influence of metformin and insulin on myocardial substrate oxidation under conditions encountered during cardiac surgery.

    Science.gov (United States)

    Holmes, Cyonna; Powell, LaShondra; Clarke, Nicholas S; Jessen, Michael E; Peltz, Matthias

    2018-02-01

    The influence of diabetic therapies on myocardial substrate selection during cardiac surgery is unknown but may be important to ensure optimal surgical outcomes. We hypothesized that metformin and insulin alter myocardial substrate selection during cardiac surgery and may affect reperfusion cardiac function. Rat hearts (n = 8 per group) were evaluated under 3 metabolic conditions: normokalemia, cardioplegia, or bypass. Groups were perfused with Krebs-Henseleit buffer in the presence of no additives, metformin, insulin, or both insulin and metformin. Perfusion buffer containing physiologic concentrations of energetic substrates with different carbon-13 ( 13 C) labeling patterns were used to determine substrate oxidation preferences using 13 C magnetic resonance spectroscopy and glutamate isotopomer analysis. Rate pressure product and oxygen consumption were measured. Myocardial function was not different between groups. For normokalemia, ketone oxidation was reduced in the presence of insulin and the combination of metformin and insulin reduced fatty acid oxidation. Metformin reduced fatty acid and ketone oxidation during cardioplegia. Fatty acid oxidation was increased in the bypass group compared with all other conditions. Metformin and insulin affect substrate utilization and reduce fatty acid oxidation before reperfusion. These alterations in substrate oxidation did not affect myocardial function in otherwise normal hearts. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. First principles study of the electronic and optical properties of GaAs nanoparticles under the influence of external uniform electric field

    International Nuclear Information System (INIS)

    Bezi Javan, Masoud

    2012-01-01

    We present electronic and optical properties of the hydrogen terminated gallium arsenide nanoparticles using time dependent density functional theory (TD-DFT). The electronic and optical properties of the GaAs nanoparticles were calculated at presence of the uniform external electric field in the range from 0 to 0.51 V/Å. The induced electric filed can decrease the HOMO–LUMO gap of the nanoparticles and the mount of these reductions increases with gain of the electric field strength. -- Highlights: ► HOMO–LUMO gap of the nanoparticles is significantly more than GaAs bulk band gap. ► HOMO–LUMO gap of the nanoparticles decreases with increase of the nanoparticles size. ► External electric filed decrease the HOMO–LUMO gap of the nanoparticles. ► Dipole moment of nanoparticles increases with gain of the electric field strength. ► Absorption peaks of GaAs nanoparticles shows red shift with applying electric field.

  15. Pinus sylvestris switches respiration substrates under shading but not during drought

    Science.gov (United States)

    Hartmann, Henrik; Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Poppp, Jürgen; Trumbore, Susan

    2015-04-01

    Reduced carbon assimilation during prolonged drought forces trees to rely on stored carbon to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major carbon storage pool and main respiratory substrate in plants, strongly declines with deceasing plant hydration. Yet, no empirical evidence has been produced to what degree other carbon storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to carbon limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ13C of respired CO2and concentrations of the major storage compounds, i.e. carbohydrates (COH), lipids and amino acids. Generally, respiration was dominated by the most abundant substrate. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees respiration was strongly reduced and fueled with carbohydrates from also strongly reduced carbon assimilation. Initial COH content was maintained during drought probably due to reduced COH mobilization and use and the maintained COH content may have prevented lipid catabolism via sugar signaling. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate change cannot provide an efficient means to counterbalance carbon limitation under natural drought.

  16. Investigation of thin film deposition on stainless steel 304 substrates under different operating conditions

    International Nuclear Information System (INIS)

    Chowdhury, M A; Nuruzzaman, D M

    2016-01-01

    In recent times, friction and wear in relation to the deposited carbon films on the steel substrates are important issues for industrial applications. In this research study, solid thin films were deposited on the stainless steel 304 (SS 304) substrates under different operating conditions. In the experiments, natural gas (97.14% methane) was used as a precursor gas in a hot filament thermal chemical vapor deposition (CVD) reactor. Deposition rates on SS 304 substrates were investigated under gas flow rates 0.5 - 3.0 l/min, pressure 20 - 50 torr, gap between activation heater and substrate 3.0 - 6.0 mm and deposition duration 30 - 120 minutes. The obtained results show that there are significant effects of these parameters on the deposition rates on SS 304 within the observed range. Friction coefficient of SS 304 sliding against SS 314 was also investigated under normal loads 5 - 10 N and sliding velocities 0.5 - m/s before and after deposition. The experimental results reveal that in general, frictional values are lower after deposition than that of before deposition. (paper)

  17. Performances of epitaxial GaAs p/i/n structures for X-ray imaging

    CERN Document Server

    Sun, G C; Haguet, V; Pesant, J C; Montagne, J P; Lenoir, M; Bourgoin, J C

    2002-01-01

    We have realized 150 mu mx150 mu m pixels using ion implantation followed by photolithography, metallic contact evaporation and chemical etching on about 200 mu m thick GaAs epitaxial layers. These layers were grown on n sup + and p sup + substrates by an already described Chemical Reaction technique, which is economical, non-polluting and can attain growth rates of several microns per minute. The mesa p sup + /i/n sup + pixel were characterized using current-voltage and capacitance-voltage measurements. The charge collection efficiency was evaluated by photoconductivity measurements under typical conditions of standard radiological examinations.

  18. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    Science.gov (United States)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The apparent effect of sample surface damage on the dielectric parameters of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, J.A.A. [Physics Department, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)], E-mail: Japie.Engelbrecht@nmmu.ac.za; Hashe, N.G. [Physics Department, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Hillie, K.T. [CSIR-NML Laboratory, P.O. Box 395, Pretoria 0001 (South Africa); Claassens, C.H. [Physics Department, University of the Free State, Bloemfontein 9300 (South Africa)

    2007-12-15

    The dielectric and optical parameters determined by infrared reflectance spectroscopy and computer simulation of a set of GaAs substrates of various surface topologies are reported. The influence of surface damage on the parameters is noted.

  20. The apparent effect of sample surface damage on the dielectric parameters of GaAs

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Hashe, N.G.; Hillie, K.T.; Claassens, C.H.

    2007-01-01

    The dielectric and optical parameters determined by infrared reflectance spectroscopy and computer simulation of a set of GaAs substrates of various surface topologies are reported. The influence of surface damage on the parameters is noted

  1. Electrode pattern design for GaAs betavoltaic batteries

    International Nuclear Information System (INIS)

    Chen Haiyang; Yin Jianhua; Li Darang

    2011-01-01

    The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of 63 Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from 63 Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.

  2. Periodic nanostructures fabricated on GaAs surface by UV pulsed laser interference

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Huo, Dayun; Guo, Xiaoxiang; Rong, Chen; Shi, Zhenwu, E-mail: zwshi@suda.edu.cn; Peng, Changsi, E-mail: changsipeng@suda.edu.cn

    2016-01-01

    Graphical abstract: - Highlights: • Periodic nanostructures were fabricated on GaAs wafers by four-beam laser interference patterning which have potential applications in many fields. • Significant different results were obtained on epi-ready and homo-epitaxial GaAs substrate surfaces. • Two-pulse patterning was carried out on homo-epitaxial GaAs substrate, a noticeable morphology transformation induced by the second pulse was observed. • Temperature distribution on sample surface as a function of time and position was calculated by solving the heat diffusion equations. The calculation agrees well with the experiment results. - Abstract: In this paper, periodic nanostructures were fabricated on GaAs wafers by four-beam UV pulsed laser interference patterning. Significant different results were observed on epi-ready and homo-epitaxial GaAs substrate surfaces, which suggests GaAs oxide layer has an important effect on pulsed laser irradiation process. In the case of two-pulse patterning, a noticeable morphology transformation induced by the second pulse was observed on homo-epitaxial GaAs substrate. Based on photo-thermal mode, temperature distribution on sample surface as a function of time and position was calculated by solving the heat diffusion equations.

  3. Towards low-dimensional hole systems in Be-doped GaAs nanowires

    DEFF Research Database (Denmark)

    Ullah, A. R.; Gluschke, J. G.; Jeppesen, Peter Krogstrup

    2017-01-01

    -gates produced using GaAs nanowires with three different Be-doping densities and various AuBe contact processing recipes. We show that contact annealing only brings small improvements for the moderately doped devices under conditions of lower anneal temperature and short anneal time. We only obtain good......GaAs was central to the development of quantum devices but is rarely used for nanowire-based quantum devices with InAs, InSb and SiGe instead taking the leading role. p-type GaAs nanowires offer a path to studying strongly confined 0D and 1D hole systems with strong spin–orbit effects, motivating...... our development of nanowire transistors featuring Be-doped p-type GaAs nanowires, AuBe alloy contacts and patterned local gate electrodes towards making nanowire-based quantum hole devices. We report on nanowire transistors with traditional substrate back-gates and EBL-defined metal/oxide top...

  4. Ultrafast self-modulation of the optical absorption spectrum under conditions of both the ultrashort optical pumping and superluminescence in GaAs

    International Nuclear Information System (INIS)

    Ageeva, N. N.; Bronevoi, I. L.; Krivonosov, A. N.; Stegantsov, S. V.

    2006-01-01

    Self-modulation of the optical absorption spectrum is observed during the picosecond photogeneration of charge carriers and intense superluminescence in GaAs. As the picosecond delay τ of the probing pulse with respect to the pump pulse is varied in the region of τ < 0, the local points of the absorption intensification (juts) shift along the spectrum (the modulation resembles a running wave). As the value of τ is varied in the vicinity of τ = 0, the juts in the spectrum arise and disappear at approximately fixed photon energies (the modulation resembles a standing wave). At certain photon energies, the dependence of the rate of variation in the absorption coefficient dα/dτ on τ is found to be modulated by pulsations, similarly to the previously observed modulation of the picosecond stimulated emission from GaAs. Presumably, the spectrum self-modulation represents (and, thus, reveals) the modulation of the electron distribution in the conduction band. This modulation is caused by the fact that the evolution of the electron-population depletion at the bottom of the conduction band during superluminescence reflects (due to the electron-phonon interaction) on the population of the upper energy levels in the band

  5. New substrate containing agroindustrial carnauba residue for production of papaya under foliar fertilization

    Directory of Open Access Journals (Sweden)

    Francisca G. Albano

    Full Text Available ABSTRACT The use of organic waste in the composition of substrates for seedlings constitutes an alternative to the recycling of these materials. Thus, an experiment was conducted with the objective to evaluate the production of ‘Formosa’ papaya seedlings in substrate containing carnauba wax residue, under foliar fertilization. The experimental design was completely randomized with five replicates, with treatments distributed in a 5 x 2 factorial scheme, corresponding to five materials used as substrates, in the presence and absence of foliar fertilization. The materials used were: earthworm humus, carnauba residue + fresh rice husk; carnauba residue in powder; carnauba residue semi-decomposed and mixture of carnauba residues: carnauba residue + fresh rice husk + carnauba residue semi-decomposed + carnauba residue in powder, at the proportion 1:1:1. The agroindustrial residue of carnauba wax semi-decomposed can be used as substrates in the production of ‘Formosa’ papaya seedlings. The foliar fertilization increases the quality of papaya seedlings, leading to increment in leaf area, root volume and sulfur content in the leaves, thus becoming a necessary practice.

  6. Wear of tin coating and Al-Si alloy substrate against carburized steel under mixed lubrication

    Science.gov (United States)

    Wang, Q.; Cheng, H. S.; Fine, M. E.

    1994-04-01

    Tin coatings on Al-Si alloys are widely used in the automotive industries. The soft tin coating and the harder substrate alloy form a tribological system with the advantages of low friction and reasonably high load-bearing capacity. Wear tests of tin coated Al-Si Z332 alloy in conformal contact against carburized 1016 steel have been carried out under mixed lubrications with SAE 10W30 oil to study the wear mechanisms. Two major wear mechanisms, uniform wear of the tin coating due to micro-plowing and spall pitting related to the substrate are found to contribute to the bearing material loss when the fluid lubrication film is relatively thick (Lambda about 1.6). Under conditions of thinner films (Lambda approximately = 0.8), some local coating debonding occurs. The pitting and local coating debounding are closely related to fracture in the substrate. The bonding between silicon and tin seems to be weaker than between aluminum and tin. During wear, oxidation occurs.

  7. Diffusion of $^{52}$Mn in GaAs

    CERN Multimedia

    2002-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of Mn in GaAs under intrinsic conditions in a previously un-investigated temperature region. The aim of the presently proposed experiments is twofold. \\begin{itemize} \\item A quantitative study of Mn diffusion in GaAs at low Mn concentrations would be decisive in providing new information on the diffusion mechanism involved. \\item As Ga vacancies are expected to be involved in the Mn diffusion process it can be predicted that also the GaAs material growth technique most likely plays a role. To clarify this assumption diffusion experiments will be conducted for GaAs material grown by two different techniques. \\end{itemize} For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{52}$Mn$^{+}$ ion beam.

  8. Surface chemistry and growth mechanisms studies of homo epitaxial (1 0 0) GaAs by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yan Dawei; Wu Weidong; Zhang Hong; Wang Xuemin; Zhang Hongliang; Zhang Weibin; Xiong Zhengwei; Wang Yuying; Shen Changle; Peng Liping; Han Shangjun; Zhou Minjie

    2011-01-01

    In this paper, GaAs thin film has been deposited on thermally desorbed (1 0 0) GaAs substrate using laser molecular beam epitaxy. Scanning electron microscopy, in situ reflection high energy electron diffraction and in situ X-ray photoelectron spectroscopy are applied for evaluation of the surface morphology and chemistry during growth process. The results show that a high density of pits is formed on the surface of GaAs substrate after thermal treatment and the epitaxial thin film heals itself by a step flow growth, resulting in a smoother surface morphology. Moreover, it is found that the incorporation of As species into GaAs epilayer is more efficient in laser molecular beam epitaxy than conventional molecular beam epitaxy. We suggest the growth process is impacted by surface chemistry and morphology of GaAs substrate after thermal treatment and the growth mechanisms are discussed in details.

  9. Harmonic generations in a lens-shaped GaAs quantum dot: Dresselhaus and Rashba spin-orbit couplings under electric and magnetic fields

    Science.gov (United States)

    Zamani, A.; Azargoshasb, T.; Niknam, E.; Mohammadhosseini, E.

    2017-06-01

    In this work, effects of external electric and magnetic fields in the presence of both Rashba and Dresselhaus spin-orbit couplings on the second and third harmonic generations (SHG and THG) of a lens-shaped GaAs quantum dot are studied. Energy eigenvalues and eigenvectors are calculated numerically and optical properties are obtained using the compact density matrix approach. Our results reveal that, an increase in the magnetic field, leads to both red and blue shifts in resonant peaks of both SHG and THG. On the other hand, augmentation of electric field leads to blue shift in all resonant peaks except the first peak related to lowest transition. Also the dipole moment matrix elements increase by enhancing both electric and magnetic fields. Finally the effect of dot size is studied and results illustrate that increment in size reduces the transition energies except the lowest one and thus leads to red shift in resonant peaks while the first peak remains constant.

  10. Recovery Act : Near-Single-Crystalline Photovoltaic Thin Films on Polycrystalline, Flexible Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Venkat Selvamanickam; Alex Freundlich

    2010-11-29

    between the various layers. The defect density in GaAs was reduced by a factor of five by adding a step of in-situ deposition of Ge by MBE on the sputtered Ge prior to GaAs growth. We have investigated device design strategies that would support development of high-efficiency devices in presence of dislocation densities of 10^8 cm^-2 present in our epitaxial GaAs films. Results from modeling work show that with a proper emitter, base and doping selection, the modeled efficiency of a GaAs cells with dislocation densities of 10^9 and 10^8 cm^-2 could be increased from 1% and 7% to 11% and 17% respectively. Under AM0, this single junction GaAs solar cell, has optimized value of emitter and base thickness of around 0.7 and 1.7 microns respectively, to give a maximum efficiency of 24.2%. We have fabricated complete GaAs solar cells using our Ge films on metal substrates. Pattern resolution of few microns with well-defined grid line of 30 microns has been realized on few cm square flexible templates. The ability to grow single-crystalline-like Ge films on flexible, polycrystalline substrates by reel-to-reel tape processing now provides an immense potential to fabricate high quality III-V photovoltaics on flexible, inexpensive substrates.

  11. Photoacoustic study of the effect of doping concentration on the transport properties of GaAs epitaxial layers

    NARCIS (Netherlands)

    George, S.D.; Dilna, S.; Prasanth, R.; Radhakrishnan, P.; Vallabhan, C.P.G.; Nampoori, V.P.N.

    2003-01-01

    We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho's theory of the PA effect. The

  12. Three-dimensional lattice rotation in GaAs nanowire growth on hydrogen-silsesquioxane covered GaAs (001) using molecular beam epitaxy

    Science.gov (United States)

    Tran, Dat Q.; Pham, Huyen T.; Higashimine, Koichi; Oshima, Yoshifumi; Akabori, Masashi

    2018-05-01

    We report on crystallographic behaviors of inclined GaAs nanowires (NWs) self-crystallized on GaAs (001) substrate. The NWs were grown on hydrogen-silsesquioxane (HSQ) covered substrates using molecular beam epitaxy (MBE). Commonly, the epitaxial growth of GaAs B (B-polar) NWs is prominently observed on GaAs (001); however, we yielded a remarkable number of epitaxially grown GaAs A (A-polar) NWs in addition to the majorly obtained B-polar NWs. Such NW orientations are always accompanied by a typical inclined angle of 35° from (001) plane. NWs with another inclined angle of 74° were additionally observed and attributed to be -oriented, not in direct epitaxial relation with the substrate. Such 74° NWs' existence is related to first-order three-dimensional (3D) lattice rotation taking place at the very beginning of the growth. It turns out that spatially 60° lattice rotation around directions at GaAs seeds is essentially in charge of A- and B-polar 74° NWs. Transmission electron microscope observations reveal a high density of twinning in the B-polar NWs and twin-free characteristic in the A-polar NWs.

  13. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation.

    Science.gov (United States)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S

    2016-01-01

    Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in 4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Sudden cardiac death: the pro-arrhythmic interaction of an acute loading with an underlying substrate.

    Science.gov (United States)

    Sutherland, George R

    2017-10-21

    Sudden cardiac death (SCD) is a complex phenomenon, occurring either in apparently normal individuals or in those where there is a recognized underlying cardiac abnormality. In both groups, the lethal arrhythmia has frequently been related to the physiologic trigger of either exercise or stress. Prior research into SCD has focused mainly on a combination of identifying either vulnerable myocardial substrates; pharmacological approaches to altering electrical activation/repolarisation in substrates; or the suppression of induced lethal arrhythmias with implantable defibrillators. However, it has been suggested that in a significant number of cases, the interaction of a transient induced trigger with a pre-existing electrical or mechanical substrate is the basis for the induction of the sustained lethal arrhythmia. In this manuscript we will discuss the precise mechanisms whereby one of such potential physiologic trigger: an acute change in systolic blood pressure, can induce a sequence of alterations in global and local cardiac mechanics which in turn result in regional left ventricular post-systolic deformation which, mediated (through stretch-induced changes in local mechano-electrical coupling) provokes local electrical after-depolarisations which can spill over into complex runs of premature ventricular beats. These local acute pressure/stretch induced runs of ventricular ectopy originate in either basal or apical normal myocardium and, in combination with a co-existing distal pro-arrhymic substrate, can interact to induce a lethal arrhythmia. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  15. Design optimization of GaAs betavoltaic batteries

    International Nuclear Information System (INIS)

    Chen Haiyanag; Jiang Lan; Chen Xuyuan

    2011-01-01

    GaAs junctions are designed and fabricated for betavoltaic batteries. The design is optimized according to the characteristics of GaAs interface states and the diffusion length in the depletion region of GaAs carriers. Under an illumination of 10 mCi cm -2 63 Ni, the open circuit voltage of the optimized batteries is about ∼0.3 V. It is found that the GaAs interface states induce depletion layers on P-type GaAs surfaces. The depletion layer along the P + PN + junction edge isolates the perimeter surface from the bulk junction, which tends to significantly reduce the battery dark current and leads to a high open circuit voltage. The short circuit current density of the optimized junction is about 28 nA cm -2 , which indicates a carrier diffusion length of less than 1 μm. The overall results show that multi-layer P + PN + junctions are the preferred structures for GaAs betavoltaic battery design.

  16. Structural Evolution During Formation and Filling of Self-patterned Nanoholes on GaAs (100 Surfaces

    Directory of Open Access Journals (Sweden)

    Zhou Lin

    2008-01-01

    Full Text Available Abstract Nanohole formation on an AlAs/GaAs superlattice gives insight to both the “drilling” effect of Ga droplets on AlAs as compared to GaAs and the hole-filling process. The shape and depth of the nanoholes formed on GaAs (100 substrates has been studied by the cross-section transmission electron microscopy. The Ga droplets “drill” through the AlAs layer at a much slower rate than through GaAs due to differences in activation energy. Refill of the nanohole results in elongated GaAs mounds along the [01−1] direction. As a result of capillarity-induced diffusion, GaAs favors growth inside the nanoholes, which provides the possibility to fabricate GaAs and AlAs nanostructures.

  17. Structure and homoepitaxial growth of GaAs(6 3 1)

    International Nuclear Information System (INIS)

    Mendez-Garcia, V.H.; Ramirez-Arenas, F.J.; Lastras-Martinez, A.; Cruz-Hernandez, E.; Pulzara-Mora, A.; Rojas-Ramirez, J.S.; Lopez-Lopez, M.

    2006-01-01

    We have studied the surface atomic structure of GaAs(6 3 1), and the GaAs growth by molecular beam epitaxy (MBE) on this plane. After the oxide desorption process at 585 deg. Creflection high-energy electron diffraction (RHEED) showed along the [-1 2 0] direction a 2x surface reconstruction for GaAs(6 3 1)A, and a 1x pattern was observed for GaAs(6 3 1)B. By annealing the substrates for 60 min, we observed that on the A surface appeared small hilly-like features, while on GaAs(6 3 1)B surface pits were formed. For GaAs(6 3 1)A, 500 nm-thick GaAs layers were grown at 585 deg. C. The atomic force microscopy (AFM) images at the end of growth showed the self-formation of nanoscale structures with a pyramidal shape enlarged along the [5-9-3] direction. Transversal views of the bulk-truncated GaAs(6 3 1) surface model showed arrays of atomic grooves along this direction, which could influence the formation of the pyramidal structures

  18. The effect of the adsorbate layer on the work function reduction of gold substrates under external electric fields

    Science.gov (United States)

    He, Xiang; Cheng, Feng; Chen, Zhao-Xu

    2017-12-01

    The interface interaction between the dimethyl sulfide (DMS) molecule and the gold substrate under external electric fields is investigated by density functional theory method. The polarized DMS adsorbate reduces the work function of the gold substrate while the induced substrate dipole upon the adsorption slightly increases the work function. The DMS layer partially shields the Au(111) substrate from the electric fields and the vacuum level of DMS/Au(111) shifts less than of Au(111) in consequence. Under electric fields pointing outward from the Au(111) surface, both the reduction of work function and the adsorption of DMS molecule are enhanced on the surface. We also suggest the possible application of the field-effect transistor (FET) sensor with gold gate for detecting DMS molecule by utilizing the reduction of substrate work function upon adsorption. The effects of coverage and electric field on the theoretical sensitivity of the sensor are also discussed.

  19. X-ray characterization of Au-free grown GaAs nanowires on Si

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik (Germany); Breuer, Steffen; Geelhaar, Lutz [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2011-07-01

    Semiconductor nanowires (NW) are of particular interest due to the ability to synthesize single-crystalline 1D epitaxial structures and heterostructures in the nanometer range. However, many details of the growth mechanism are not well understood. In this contribution we present a x-ray diffraction study of the early stage of Au-free GaAs nanowire growth on Si(111)-substrates with native oxide using the nano-focus setup available at the ID1 beamline of ESRF. The GaAs NWs were grown by molecular beam epitaxy (MBE), and their formation was induced by Ga droplets. Using a nanometer-sized x-ray beam, size and lattice parameters of individual wires were measured separately. Using asymmetric x-ray diffraction on particular zinc-blende (ZB) and wurtzite (W) sensitive reflections, we show that under the used conditions the NW growth starts with predominantly WZ phases and continues mainly in ZB phase. In addition we can show that the WZ segments of the NWs exhibit a different vertical lattice parameter compared to the zinc-blende segments. A combination of x-ray diffraction from single wires and grazing incidence diffraction shows that the base of the NW is compressively strained along the inplane direction. This strain is released within 20 nm from the substrate-interface.

  20. Growth Interruption Effect on the Fabrication of GaAs Concentric Multiple Rings by Droplet Epitaxy

    Directory of Open Access Journals (Sweden)

    Fedorov A

    2010-01-01

    Full Text Available Abstract We present the molecular beam epitaxy fabrication and optical properties of complex GaAs nanostructures by droplet epitaxy: concentric triple quantum rings. A significant difference was found between the volumes of the original droplets and the final GaAs structures. By means of atomic force microscopy and photoluminescence spectroscopy, we found that a thin GaAs quantum well-like layer is developed all over the substrate during the growth interruption times, caused by the migration of Ga in a low As background.

  1. Structural and electronic properties of Ga{sub 1-x}In{sub x} As{sub 1-y}N{sub y} quaternary semiconductor alloy on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Metin, E-mail: maslan@sakarya.edu.tr [Sakarya University, Art, Science Faculty, Department of Physics, Esentepe Campus, 54187 Sakarya (Turkey); Yalc Latin-Small-Letter-Dotless-I n, Battal G.; Uestuendag, Mehmet [Sakarya University, Art, Science Faculty, Department of Physics, Esentepe Campus, 54187 Sakarya (Turkey)

    2012-04-05

    Highlights: Black-Right-Pointing-Pointer In this study we used DFT in the frame of LDA approach to determine electronic and structural properties of GaInAsN alloy. Black-Right-Pointing-Pointer We calculated lattice parameter and band gap energy of binary (GaAs, InAs, and GaN), ternary (GaInAs, GaAsN) and quaternary (GaInAsN) semiconductor alloys. Black-Right-Pointing-Pointer We formulated lattice parameter of GaInAsN respect to In and N composition. Black-Right-Pointing-Pointer We investigated different In and N composition of GaInAsN/GaAs heterostructure for various device applications. - Abstract: We have presented structural and electronic properties of binary (GaAs, GaN and InAs), ternary (Ga{sub 1-x}In{sub x}As and GaAs{sub 1-y}N{sub y}) and quaternary (Ga{sub 1-x}In{sub x}As{sub 1-y}N{sub y}) semiconductor alloys by using a first-principles pseudopotential technique. The structural and electronic properties of Zinc-Blende phase of these materials have been calculated by using the local density approximation (LDA) of the density-functional theory (DFT). To obtain the lattice parameter and band gap energy of the (GaInAsN) quaternary semiconductor alloy we separately calculated the lattice constant and band gap energies of ternary semiconductor alloys, namely GaAsN and GaInAs. The calculated lattice constant, bulk modulus and the direct band gaps for studied semiconductors showed great parallelism with the previous available theoretical and experimental studies.

  2. GaAs thin film solar cells. Final report; Duennschicht-Solarzellen aus Galliumarsenid; Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bett, A.; Bronner, W.; Cardona, S.; Ehrhardt, A.; Habermann, G.; Habich, A.; Lanyi, P.; Lutz, F.; Nguyen, T.; Schetter, C.; Sulima, O.; Welter, H.; Yavas, O.

    1992-11-01

    This R and D project focused on the development of materials and technologies for the production of GaAs solar cells on GaAs and other substrates. Three subjects were gone into on particular: Material preparation (epitaxy), solar cell technology, characterisation of materials and processes. (orig.) [Deutsch] Das vorliegende Forschungsvorhaben hatte die Material- und Technologieentwickung fuer die Herstellung von GaAs-Solarzellen auf Eigen- und Fremdsubstrat zum Gegenstand. Drei Hauptaufgabenbereiche waren: Materialpraeparation (Epitaxie), Solarzellentechnologie, sowie Material- und Prozesscharakterisierung. (orig.)

  3. Sweet pepper greenhouse production under different depletion levels in substrate humidity

    Directory of Open Access Journals (Sweden)

    Gustavo Quesada Roldán

    2015-06-01

    Full Text Available The effect of 3 substrate humidity levels on the growth and yield of 2 sweet pepper hybrids, established under greenhouse conditions, was evaluated. The experiment was held in the industrial greenhouse of the Fabio Baudrit Moreno Experimental Research Station, in La Garita (Alajuela, and the materials evaluated were the hybrids Villaplants Americano (square yellow fruit, bell type and FBM-9 (triangular red fruit type, both national origin genotypes. The first treatment was to supply water at container capacity (CC to the plant, while the second and third ones were reducing 15 and 30%, respectively, of the plant original water supply. It was demonstrated that there is no effect due to the amount of water supply on the plant´s growth, although it was observed that hydric- stressed plants were the first to begin the flowering and fruiting phase. In both hybrids, a reduction in the amount of first and second one amount quality fruit and an increasing of fruit rejected as the watering was limited. Blossom-end rot was the main rejection cause due to the water loss, associated with low calcium availability. The highest commercial yield was obtained with the Villaplants Americano hibryd (31,8 ton.ha-1, although without statistical difference between substrates at CC and CC–15%, despite a fruit quality reduction with the later treatment. The same was observed with the FBM-9 hybrid. With the CC–30% treatment, both commercial yield and fruit quality were affected, in both hybrids.

  4. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.

    Science.gov (United States)

    Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran

    2016-02-01

    The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. X-ray in-situ study of copper electrodeposition on UHV prepared GaAs(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gruender, Yvonne

    2008-06-02

    For this work a unique setup for in-situ electrochemical studies was employed and improved. This setup permits UHV preparation of the GaAs(001) surface with a defined surface termination (arsenic-rich or gallium-rich) and its characterization by SXRD in UHV, under ambient pressure in inert gas and in electrolyte under potential control without passing through air. The GaAs(001) surfaces were capped by amorphous arsenic. This permitted to ship them through ambient air. Afterwards smooth well defined GaAs(001) surfaces could be recovered by thermal annealing in UHV. A first investigation of the arsenic capped sample was done by atomic force microscopy (AFM) and Surface X-Ray Diffraction (SXRD). The non bulk like termination of the arsenic buried GaAs(001) surface was revealed. For the electrochemical metal deposition, arsenic terminated (2 x 4) reconstructed and gallium terminated (4 x 2) reconstructed GaAs(001) surfaces were employed. These surfaces were characterized by STM, LEED and a first time by SXRD. The surfaces are smooth, however, a higher degree of disorder than for MBE prepared reconstructed GaAs(001) is found. After exposure of the sample to nitrogen, the surfaces were then again studied by SXRD. These two steps characterizing the bare GaAs(001) surfaces permitted us to get a better knowledge of the starting surface and its influence on the later electrodeposited copper. At ambient pressure both reconstructions are lifted, but the surface is not bulk-like terminated as can be deduced from the crystal truncation rods. Epitaxial copper clusters grow upon electrodeposition on the UHV prepared GaAs(001) surface. The copper lattice is rotated and inclined with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains. The influence of the surface termination as well as the nucleation potential on the structure of the electrodeposited copper were investigated. The tilt and rotation angles do not depend on the deposition potential but

  6. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    International Nuclear Information System (INIS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-01-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO 2 ). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer et al. [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kh o o is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface deformation. Hence, surface deformation caused by liquid

  7. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing

    Science.gov (United States)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-11-01

    A mathematical model is developed to analyze the growth/decay rate of surface perturbations of an ultrathin metal film on an amorphous substrate (SiO2). The formulation combines the approach of Mullins [W. W. Mullins, J. Appl. Phys. 30, 77 (1959)] for bulk surfaces, in which curvature-driven mass transport and surface deformation can occur by surface/volume diffusion and evaporation-condensation processes, with that of Spencer etal . [B. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. 67, 26 (1991)] to describe solid-state transport in thin films under epitaxial strain. Modifications of the Mullins model to account for thin-film boundary conditions result in qualitatively different dispersion relationships especially in the limit as kho≪1, where k is the wavenumber of the perturbation and ho is the unperturbed film height. The model is applied to study the relative rate of solid-state mass transport as compared to that of liquid phase dewetting in a thin film subjected to a fast thermal pulse. Specifically, we have recently shown that multiple cycles of nanosecond (ns) pulsed laser melting and resolidification of ultrathin metal films on amorphous substrates can lead to the formation of various types of spatially ordered nanostructures [J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, Phys. Rev. B 75, 235439 (2007)]. The pattern formation has been attributed to the dewetting of the thin film by a hydrodynamic instability. In such experiments the film is in the solid state during a substantial fraction of each thermal cycle. However, results of a linear stability analysis based on the aforementioned model suggest that solid-state mass transport has a negligible effect on morphological changes of the surface. Further, a qualitative analysis of the effect of thermoelastic stress, induced by the rapid temperature changes in the film-substrate bilayer, suggests that stress relaxation does not appreciably contribute to surface

  8. High-efficiency, thin-film- and concentrator solar cells from GaAs. Final report; High-efficiency, Duennschicht- und Konzentrator-Solarzellen aus Galliumarsenid. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wettling, W [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Bett, A W [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Pilkuhn, M [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Scholz, F [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Baldus, A [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Blieske, U [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Blug, A [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Duong, T [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Schetter, C [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Stollwerck, G [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Sulima, O [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Wegener, A [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Doernen, A [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Frankowsky, G [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Haase, D [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Hahn, G [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Hangleiter, A [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Stauss, P [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Tsai, C Y [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4; Zieger, K [Stuttgart Univ. (Germany). Physikalisches Teilinstitut 4

    1996-10-01

    Main topic of the project was the manufacturing of highly efficient GaAs-solar cells and the fabrication of concentrator cells. During this process significant progress was made with the material preparation, the solar cell technology and the material and process characterisation. This succeeded in the following efficiencies: - GaAs solar cell made by MOVPE technology: 22.9% on 4 cm{sup 2} (AM1.5g) - GaAs solar cell made by LPE-ER process: 22.8% on 4 cm{sup 2} (AM1.5g) - GaAs concentrator solar cell made by LPE-ER process: 24.9% at C=100xAM1.5d - GaAs concentrator module with fresnel lenses: Module efficiency 20.1% (under irradiation of 793 W/m{sup 2}). Another main focus was the epitaxy of GaAs on Si substrate. Two different approaches were investigated. Together with the cooperation partner ASE, Heilbronn a selective growth technology was developed that led to a decreased crack formation. By a simultanous optimization of the other epitaxy and process parameters, the efficiency was increased up to 16.6% AM0 on 1 cm{sup 2} solar cells. Furthermore a hybrid epitaxy was investigated. A GaAs layer was deposited onto a Si substrate using MOVPE. The solar cell structure was grown with a low temperature LPE. Unexpected difficulties appeared with this process, so that fundamental experiments needed to be done with the LPE technology. So far, no solar cells could be manufactured with this method. In addition, work was performed on GaInP solar cells on GaAs substrate. An efficiency of 15.7% (AM0) was acchieved. (orig.) [Deutsch] Gegenstand des Projekts war die Herstellung hocheffizienter GaAs-Solarzellen und die Fertigung von Konzentratorsolarzellen. Dazu wurden wesentliche Fortschritte bei der Materialpraeparation, der Solarzellentechnologie und der Material- and Prozesscharakterisierung erzielt. Diese Erfolge druecken sich in den erzielten Wirkungsgraden aus: - GaAs-Solarzelle hergestellt mit MOVPE-Technologie: 22.9% auf 4 cm{sup 2} (AM1.5g) - GaAs-Solarzelle hergestellt

  9. Microwave frequency detector at X-band using GaAs MMIC technology

    International Nuclear Information System (INIS)

    Zhang Jun; Liao Xiaoping; Jiao Yongchang

    2009-01-01

    The design, fabrication, and experimental results of an MEMS microwave frequency detector are presented for the first time. The structure consists of a microwave power divider, two CPW transmission lines, a microwave power combiner, an MEMS capacitive power sensor and a thermopile. The detector has been designed and fabricated on GaAs substrate using the MMIC process at the X-band successfully. The MEMS capacitive power sensor is used for detecting the high power signal, while the thermopile is used for detecting the low power signal. Signals of 17 and 10 dBm are measured over the X-band. The sensitivity is 0.56 MHz/fF under 17 dBm by the capacitive power sensor, and 6.67 MHz/μV under 10 dBm by the thermopile, respectively. The validity of the presented design has been confirmed by the experiment.

  10. Structural and optical properties of vapor-etched porous GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Smida, A.; Laatar, F. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Hassen, M., E-mail: mhdhassen@yahoo.fr [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia); Higher Institute of Applied Science and Technology of Sousse, City Taffala (Ibn Khaldun), 4003 Sousse (Tunisia); Ezzaouia, H. [Photovoltaic Laboratory, Centre for Research and Technology Energy, Tourist Route Soliman, BP 95, 2050 Hammam-Lif (Tunisia)

    2016-08-15

    This paper consists to present first results concerning the structure of porous GaAs layer (por-GaAs-L) prepared by using HF/HNO{sub 3} as acidic solution in vapor etching (VE) method. In order to clarify this method, we detail here its principle and explain how por-GaAs-Ls are formed, taking into account the influencing of the exposure time of the GaAs substrate to the acid vapor. The etched GaAs layers have been investigated by UV–visible and PL analysis. One porous layer was performed to be characterised by Atomic Force Microscopy (AFM), FTIR spectroscopy, and X-Ray Diffraction (XRD). The porous structure was constituted by a nanocrystals with an average size about 6 nm. These nanocrystals were calculated from XRD peak using Scherrer's formula, AFM imaging, and also by using effective mass approximation model from effective band gap. - Highlights: • Porous GaAs layer was prepared by using Vapor etching (VE) method. • Effect of VE duration on the microstructural optical properties of the GaAs substrate • Porous structure of GaAs layer was demonstrated by using SEM and AFM microscopy.

  11. Structural and optical properties of vapor-etched porous GaAs

    International Nuclear Information System (INIS)

    Smida, A.; Laatar, F.; Hassen, M.; Ezzaouia, H.

    2016-01-01

    This paper consists to present first results concerning the structure of porous GaAs layer (por-GaAs-L) prepared by using HF/HNO 3 as acidic solution in vapor etching (VE) method. In order to clarify this method, we detail here its principle and explain how por-GaAs-Ls are formed, taking into account the influencing of the exposure time of the GaAs substrate to the acid vapor. The etched GaAs layers have been investigated by UV–visible and PL analysis. One porous layer was performed to be characterised by Atomic Force Microscopy (AFM), FTIR spectroscopy, and X-Ray Diffraction (XRD). The porous structure was constituted by a nanocrystals with an average size about 6 nm. These nanocrystals were calculated from XRD peak using Scherrer's formula, AFM imaging, and also by using effective mass approximation model from effective band gap. - Highlights: • Porous GaAs layer was prepared by using Vapor etching (VE) method. • Effect of VE duration on the microstructural optical properties of the GaAs substrate • Porous structure of GaAs layer was demonstrated by using SEM and AFM microscopy.

  12. GaAs strip detectors: the Australian production program

    International Nuclear Information System (INIS)

    Butcher, K.S.A.; Alexiev, D.

    1995-01-01

    The Australian High Energy Physics consortium (composed of the University of Melbourne, the University of Sydney and ANSTO) has been investigating the possibility of producing a large area wheel of SI GaAs detectors for the ATLAS detector array. To help assess the extent of Australia's role in this venture a few SI GaAs microstrip detectors are to be manufactured under contract by the CSIRO division of Radiophysics GaAs IC Prototyping Facility. The planned production of the devices is discussed. First, the reasons for producing the detectors here in Australia are examined, then some basic characteristics of the material are considered, and finally details are provided of the design used for the manufacture of the devices. Two sets of detectors will be produced using the standard Glasgow production recipe; SIGaAs and GaN. The Glasgow mask set is being used as a benchmark against which to compare the Australian devices

  13. Status of fully integrated GaAs particle detectors

    International Nuclear Information System (INIS)

    Braunschweig, W.; Breibach, J.; Kubicki, Th.; Luebelsmeyer, K.; Maesing, Th.; Rente, C.; Roeper, Ch.; Siemes, A.

    1999-01-01

    GaAs strip detectors are of interest because of their radiation hardness at room temperature and the high absorption coefficient of GaAs for x-rays. The detectors currently under development will be used in the VLQ-experiment at the H1 experiment at the HERA collider. This will be the first high energy physics experiment where GaAs detectors will be used. The detectors have a sensitive area of 5 x 4 cm with a pitch of 62 μ m. Due to the high density of channels the biasing resistors and coupling capacitors are integrated. For the resistors a resistive layer made of Cermet is used. The properties of the first fully integrated strip detector are presented

  14. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Uehara, Shintaro; Hirose, Satoshi; Yamamoto, Shinji; Naito, Eiichi

    2016-01-01

    Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s) and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC), anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS) experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance.

  15. The insula: a critical neural substrate for craving and drug seeking under conflict and risk.

    Science.gov (United States)

    Naqvi, Nasir H; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-05-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking-the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. © 2014 New York Academy of Sciences.

  16. CMOS compatible route for GaAs based large scale flexible and transparent electronics

    KAUST Repository

    Nour, Maha A.; Ghoneim, Mohamed T.; Droopad, Ravi; Hussain, Muhammad Mustafa

    2014-01-01

    Flexible electronics using gallium arsenide (GaAs) for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. Here we describe a state-of-the-art CMOS compatible batch fabrication process of transforming traditional electronic circuitry into large-area flexible, semitransparent platform. We show a simple release process for peeling off 200 nm of GaAs from 200 nm GaAs/300 nm AlAs stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes which contributes to the better transparency (45 % at 724 nm wavelength) observed.

  17. CMOS compatible route for GaAs based large scale flexible and transparent electronics

    KAUST Repository

    Nour, Maha A.

    2014-08-01

    Flexible electronics using gallium arsenide (GaAs) for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. Here we describe a state-of-the-art CMOS compatible batch fabrication process of transforming traditional electronic circuitry into large-area flexible, semitransparent platform. We show a simple release process for peeling off 200 nm of GaAs from 200 nm GaAs/300 nm AlAs stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes which contributes to the better transparency (45 % at 724 nm wavelength) observed.

  18. Photovoltaic X-ray detectors based on epitaxial GaAs structures

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Artemov, V.V. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, 59 Leninski pr., Moscow B-333, 117333 (Russian Federation); Dvoryankin, V.F. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation)]. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Dikaev, Yu.M. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakov, M.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakova, O.N. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Chmil, V.B. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Holodenko, A.G. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Kudryashov, A.A.; Krikunov, A.I.; Petrov, A.G.; Telegin, A.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Vorobiev, A.P. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation)

    2005-12-01

    A new type of the photovoltaic X-ray detector based on epitaxial p{sup +}-n-n'-n{sup +} GaAs structures which provides a high efficiency of charge collection in the non-bias operation mode at room temperature is proposed. The GaAs epitaxial structures were grown by vapor-phase epitaxy on heavily doped n{sup +}-GaAs(1 0 0) substrates. The absorption efficiency of GaAs X-ray detector is discussed. I-V and C-V characteristics of the photovoltaic X-ray detectors are analyzed. The built-in electric field profiles in the depletion region of epitaxial structures are measured by the EBIC method. Charge collection efficiency to {alpha}-particles and {gamma}-radiation are measured. The application of X-ray detectors is discussed.

  19. Silver endotaxy in silicon under various ambient conditions and their use as surface enhanced Raman spectroscopy substrates

    International Nuclear Information System (INIS)

    Juluri, R.R.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Satyam, P.V.

    2015-01-01

    Search for reliable, robust and efficient substrates for surface enhanced Raman spectroscopy (SERS) leads to the growth of various shapes and nanostructures of noble metals, and in particular, Ag nanostructures for this purpose. Coherently embedded (also known as endotaxial) Ag nanostructures in silicon substrates can be made robust and reusable SERS substrates. In this paper, we show the possibility of the growth of Ag endotaxial structures in Si crystal during Ar and low-vacuum annealing conditions while this is absent in O 2 and ultra high vacuum (UHV) annealing conditions and along with their respective use as SERS substrates. Systems annealed under air-annealing and low-vacuum conditions were found to show larger enhancement factors (typically ≈ 5 × 10 5 in SERS measurement for 0.5 nM Crystal Violet (CV) molecule) while the systems prepared under UHV-annealing conditions (where no endotaxial Ag structures were formed) were found to be not effective as SERS substrates. Extensive electron microscopy, synchrotron X-ray diffraction and Rutherford backscattering spectrometry techniques were used to understand the structural aspects. - Highlights: • Various aspects on the growth of endotaxial Ag nanostructures are presented. • Optimum amount of oxygen is necessary for the growth of endotaxial structures. • Reaction of oxygen with GeOx and SiOx plays a crucial role. • Ag nanostructures prepared under UHV conditions show low SERS activity • SERS enhancement is better for low-vacuum and argon annealing conditions

  20. Superconductivity and its pressure variation in GaAs

    International Nuclear Information System (INIS)

    Nirmala Louis, C.; Jayam, Sr. Gerardin; Amalraj, A.

    2005-01-01

    The electronic band structure, metallization, phase transition and superconducting transition of gallium arsenide under pressure are studied using TB-LMTO method. Metallization occurs via indirect closing of band gap between Γ and X points. GaAs becomes superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The ground state properties are analyzed by fitting the calculated total energies to the Birch-Murnaghan's equation of state. The superconducting transition temperatures (T c ) obtained as a function of pressure for both the ZnS and NaCl structures and GaAs comes under the class of pressure induced superconductor. When pressure is increased T c increases in both the normal and high pressure structures. The dependence of T c on electron-phonon mass enhancement factor λ shows that GaAs is an electron-phonon-mediated superconductor. Also it is found that GaAs retained in their normal structure under high pressure give appreciably high T c . (author)

  1. Surface study of organopalladium molecules on S-terminated GaAs

    International Nuclear Information System (INIS)

    Konishi, Tomoya; Toujyou, Takashi; Ishikawa, Takuma; Teraoka, Teruki; Ueta, Yukiko; Kihara, Yoshifumi; Moritoki, Hideji; Tono, Tatsuo; Musashi, Mio; Tada, Takashi; Tsukamoto, Shiro; Nishiwaki, Nagatoshi; Fujikawa, Seiji; Takahasi, Masamitu; Bell, Gavin; Shimoda, Masahiko

    2011-01-01

    Organopalladium species ({Pd}) immobilized on an S-terminated GaAs substrate (S/GaAs) effectively catalyzes C-C bond formation in the Mizoroki-Heck reaction with cycle durability. However, the immobilizing mechanism of {Pd} is unknown. In this study, we deposited Pd(OCOCH 3 ) 2 on S/GaAs in two different methods, namely dry-physical vapor-deposition and wetchemical deposition, and compared the catalytic activities in the Mizoroki-Heck reaction. Also, S-termination and {Pd}-immobilization on GaAs grains were performed by the wet-chemical method to monitor the change in the surface chemical structure during the preparation process with diffuse reflectance Fourier transform infrared spectroscopy (FT-IR). FT-IR measurements implied that the immobilization of catalytic active {Pd} was related to the OH groups on the S-terminated surface. {Pd}-S/GaAs prepared dryphysically showed poor catalytic activity, because {Pd} was not immobilized under absence of OH groups. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Neural substrates underlying the tendency to accept anger-infused ultimatum offers during dynamic social interactions.

    Science.gov (United States)

    Gilam, Gadi; Lin, Tamar; Raz, Gal; Azrielant, Shir; Fruchter, Eyal; Ariely, Dan; Hendler, Talma

    2015-10-15

    In managing our way through interpersonal conflict, anger might be crucial in determining whether the dispute escalates to aggressive behaviors or resolves cooperatively. The Ultimatum Game (UG) is a social decision-making paradigm that provides a framework for studying interpersonal conflict over division of monetary resources. Unfair monetary UG-offers elicit anger and while accepting them engages regulatory processes, rejecting them is regarded as an aggressive retribution. Ventro-medial prefrontal-cortex (vmPFC) activity has been shown to relate to idiosyncratic tendencies in accepting unfair offers possibly through its role in emotion regulation. Nevertheless, standard UG paradigms lack fundamental aspects of real-life social interactions in which one reacts to other people in a response contingent fashion. To uncover the neural substrates underlying the tendency to accept anger-infused ultimatum offers during dynamic social interactions, we incorporated on-line verbal negotiations with an obnoxious partner in a repeated-UG during fMRI scanning. We hypothesized that vmPFC activity will differentiate between individuals with high or low monetary gains accumulated throughout the game and reflect a divergence in the associated emotional experience. We found that as individuals gained more money, they reported less anger but also more positive feelings and had slower sympathetic response. In addition, high-gain individuals had increased vmPFC activity, but also decreased brainstem activity, which possibly reflected the locus coeruleus. During the more angering unfair offers, these individuals had increased dorsal-posterior Insula (dpI) activity which functionally coupled to the medial-thalamus (mT). Finally, both vmPFC activity and dpI-mT connectivity contributed to increased gain, possibly by modulating the ongoing subjective emotional experience. These ecologically valid findings point towards a neural mechanism that might nurture pro-social interactions by

  3. In-situ x-ray characterization of wurtzite formation in GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Krogstrup, Peter; Hannibal Madsen, Morten; Nygaard, Jesper; Feidenhans' l, Robert [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen (Denmark); Hu Wen [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); Kozu, Miwa; Nakata, Yuka [University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan); Takahasi, Masamitu [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1-1-1 Koto, Sayo, Hyogo 679-5148 (Japan); University of Hyogo, 3-2-1 Koto, Kamigori, Hyogo 678-1297 (Japan)

    2012-02-27

    In-situ monitoring of the crystal structure formation during Ga-assisted GaAs nanowire growth on Si(111) substrates has been performed in a combined molecular beam epitaxy growth and x-ray characterization experiment. Under Ga rich conditions, we show that an increase in the V/III ratio increases the formation rate of the wurtzite structure. Moreover, the response time for changes in the structural phase formation to changes in the beam fluxes is observed to be much longer than predicted time scales of adatom kinetics and liquid diffusion. This suggests that the morphology of the growth interface plays the key role for the relative growth structure formation rates.

  4. GaAs nanocrystals: Structure and vibrational properties

    International Nuclear Information System (INIS)

    Nayak, J.; Sahu, S.N.; Nozaki, S.

    2006-01-01

    GaAs nanocrystals were grown on indium tin oxide substrate by an electrodeposition technique. Atomic force microscopic measurement indicates an increase in the size of the nanocrystal with decrease in the electrolysis current density accompanied by the change in the shape of the crystallite. Transmission electron microscopic measurements identify the crystallite sizes to be in the range of 10-15 nm and the crystal structure to be orthorhombic. On account of the quantum size effect, the first optical transition was blue shifted with respect to the band gap of the bulk GaAs and the excitonic peak appeared prominent. A localized phonon mode ascribed to certain point defect occurred in the room temperature micro-Raman spectrum

  5. Influence of implantation conditions of He+ ions on the structure of a damaged layer in GaAs(001)

    International Nuclear Information System (INIS)

    Shcherbachev, Kirill; Bailey, Melanie J.

    2011-01-01

    An investigation into the influence of implantation conditions (dose, energy, and target temperature) of He + ions on the damage structure of GaAs (100) substrates was performed by HRXRD, scanning electron microscopy, and Nomarski microscopy. Blistering is shown to become apparent as characteristic features of isolines in RSMs. We propose that the formation of the defects yielding a characteristic XRDS is defined by the behavior of implanted atoms in the GaAs matrix, depending on two competing processes: (1) formation of the gas-filled bubbles; (2) diffusion of the He atoms from the bubbles toward the surface and deep into the GaAs substrate. We conclude that the gas-filled bubbles change the structure of the irradiated layer, resulting in the formation of strained crystalline areas of the GaAs matrix. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Mechanical integrity of thin inorganic coatings on polymer substrates under quasi-static, thermal and fatigue loadings

    International Nuclear Information System (INIS)

    Leterrier, Y.; Mottet, A.; Bouquet, N.; Gillieron, D.; Dumont, P.; Pinyol, A.; Lalande, L.; Waller, J.H.; Manson, J.-A.E.

    2010-01-01

    The interplay between residual stress state, cohesive and adhesive properties of coatings on substrates is reviewed in this article. Attention is paid to thin inorganic coatings on polymers, characterized by a very high hygro-thermo-mechanical contrast between the brittle and stiff coating and the compliant and soft substrate. An approach to determine the intrinsic, thermal and hygroscopic contributions to the coating residual stress is detailed. The critical strain for coating failure, coating toughness and coating/substrate interface shear strength are derived from the analysis of progressive coating cracking under strain. Electro-fragmentation and electro-fatigue tests in situ in a microscope are described. These methods enable reproducing the thermo-mechanical loads present during processing and service life, hence identifying and modeling the critical conditions for failure. Several case studies relevant to food and pharmaceutical packaging, flexible electronics and thin film photovoltaic devices are discussed to illustrate the benefits and limits of the present methods and models.

  7. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controlled [correction of controled] environment conditions.

    Science.gov (United States)

    Tikhomirov, A A; Ushakova, S A; Gribovskaya, I A; Tirranen, L S; Manukovsky, N S; Zolotukhin, I G; Karnachuk, R A; Gros, J B; Lasseur, Ch

    2003-01-01

    To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 micromoles m-2 s-1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m2) of the wheat crops was attained at the irradiance of 920 micromoles m-2 s-1. Light intensity of 1150 micromoles m-2 s-1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m2) as compared to 920 micromoles m-2 s-1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 micromoles m-2 s-1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of

  8. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham

  9. A study on the electric properties of single-junction GaAs solar cells under the combined radiation of low-energy protons and electrons

    International Nuclear Information System (INIS)

    Zhao Huijie; Wu Yiyong; Xiao Jingdong; He Shiyu; Yang Dezhuang; Sun Yanzheng; Sun Qiang; Lv Wei; Xiao Zhibin; Huang Caiyong

    2008-01-01

    Displacement damage induced by charged particle radiation is the main cause of degradation of orbital-service solar cells, while the radiation-induced ionization shows no permanent damage effect on their electrical properties. It is reported that in single crystal silicon solar cells, low-energy electron radiation does not exert permanent degradation of their properties, but the fluence of electron radiation exerts an influence on the damage magnitude under the combined radiation of protons and electrons. The electrical properties of the single-junction GaAs/Ge solar cells were investigated after irradiation by sequential and synchronous electron and proton beams. Low-energy electron radiation showed no effects on the change of the solar cell properties during sequential or synchronous irradiation, implying ionization during particle radiation could not exert influence on the displacement damage process to the solar cells under the experimental conditions

  10. Modeling cell-substrate de-adhesion dynamics under fluid shear

    Science.gov (United States)

    Maan, Renu; Rani, Garima; Menon, Gautam I.; Pullarkat, Pramod A.

    2018-07-01

    Changes in cell-substrate adhesion are believed to signal the onset of cancer metastasis, but such changes must be quantified against background levels of intrinsic heterogeneity between cells. Variations in cell-substrate adhesion strengths can be probed through biophysical measurements of cell detachment from substrates upon the application of an external force. Here, we investigate, theoretically and experimentally, the detachment of cells adhered to substrates when these cells are subjected to fluid shear. We present a theoretical framework within which we calculate the fraction of detached cells as a function of shear stress for fast ramps as well as the decay in this fraction at fixed shear stress as a function of time. Using HEK and 3T3 fibroblast cells as experimental model systems, we extract characteristic force scales for cell adhesion as well as characteristic detachment times. We estimate force-scales of  ∼500 pN associated to a single focal contact, and characteristic time-scales of s representing cell-spread-area dependent mean first passage times to the detached state at intermediate values of the shear stress. Variations in adhesion across cell types are especially prominent when cell detachment is probed by applying a time-varying shear stress. These methods can be applied to characterizing changes in cell adhesion in a variety of contexts, including metastasis.

  11. Contribution of exogenous substrates to acetyl coenzyme A: Measurement by 13C NMR under non-steady-state conditions

    International Nuclear Information System (INIS)

    Malloy, C.R.; Jeffrey, F.M.H.; Thompson, J.R.; Sherry, A.D.

    1990-01-01

    A method is presented for the rapid determination of substrate selection in a manner that is not restricted to conditions of metabolic and isotopic steady state. Competition between several substrates can be assessed directly and continuously in a single experiment, allowing the effect of interventions to be studied. It is shown that a single proton-decoupled 13 C NMR spectrum of glutamate provides a direct measure of the contribution of exogenous 13 C-labeled substrates to acetyl-CoA without measurement of oxygen consumption and that steady-state conditions need not apply. Two sets of experiments were performed: one in which a metabolic steady state but a non-steady-state 13 C distribution was achieved and another in which both metabolism and labeling were not at steady state. In the first group, isolated rat hearts were supplied with [1,2- 13 C]acetate, [3- 13 C]lactate, and unlabeled glucose. 13 C NMR spectra of extracts from hearts perfused under identical conditions for 5 or 30 min were compared. In spite of significant differences in the spectra, the measured contributions of acetate, lactate, and unlabeled sources to acetyl-CoA were the same. In the second set of experiments, the same group of labeled substrates was used in a regional ischemia model in isolated rabbit hearts to show regional differences in substrate utilization under both metabolic and isotopic non steady state. The time resolution of these measurements may not be limited by technical contraints but by the rate of carbon flux in the citric acid cycle. Although this technique is demonstrated for the heart, it is applicable to all tissues

  12. Experimental study on surface wrinkling of silicon monoxide film on compliant substrate under thermally induced loads

    Science.gov (United States)

    Li, Chuanwei; Kong, Yingxiao; Jiang, Wenchong; Wang, Zhiyong; Li, Linan; Wang, Shibin

    2017-06-01

    The wrinkling of a silicon monoxide thin film on a compliant poly(dimethylsiloxane) (PDMS) substrate structure was experimentally investigated in this study. The self-expansion effect of PDMS during film deposition was utilized to impose a pretensile strain on the structure through a specially made fixture. A laser scanning confocal microscope (LSCM) system with an in situ heating stage was employed for the real-time measurement. The Young’s modulus of the silicon monoxide thin film as well as the PDMS substrate was measured on the basis of the elasticity theory. Moreover, the effects of temperature variations on geometric parameters in the postbuckling state, such as wavelength and amplitude, were analyzed. It was proved that wavelength is relatively immune to thermal loads, while amplitude is much more sensitive.

  13. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  14. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    International Nuclear Information System (INIS)

    Liu Xuezhang; Wei Qiuping; Yu Zhiming; Yang Taiming; Zhai Hao

    2013-01-01

    Highlights: ► Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. ► The nucleation density was increased to 10 11 cm −2 . ► Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. ► Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp 3 -bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10 11 cm −2 , and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  15. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuezhang [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Wei Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yu Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yang Taiming; Zhai Hao [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. Black-Right-Pointing-Pointer The nucleation density was increased to 10{sup 11} cm{sup -2}. Black-Right-Pointing-Pointer Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. Black-Right-Pointing-Pointer Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp{sup 3}-bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10{sup 11} cm{sup -2}, and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  16. Lithium compensation of GaAs

    International Nuclear Information System (INIS)

    Alexiev, D.; Tavendale, A.J.

    1988-08-01

    Defects generated following Li diffusion into GaAs were studied by optical deep level transient spectroscopy (ODLTS) and deep level transient spectroscopy (DLTS). In an exploratory series of experiments, the effect of Li diffusion on existing trap spectra, defect generation and as a means for the compensation of GaAs was studied. The variables included diffusion temperature, initial trap spectra of GaAs and annealing periods. Detailed measurements of trap energies were made

  17. Polaron binding energy and effective mass in the GaAs film

    International Nuclear Information System (INIS)

    Wu Zhenhua; Yan Liangxing; Tian Qiang; Li Hua; Liu Bingcan

    2012-01-01

    The binding energy and effective mass of a polaron in a GaAs film deposited on the Al 0.3 Ga 0.7 As substrate are studied theoretically by using the fractional-dimensional space approach. Our calculations show that the polaron binding energy and mass shift decrease monotonously with increasing the film thickness. For the film thicknesses with L w ≤ 70Å and the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness influence the polaron binding energy and mass shift in the GaAs film. The polaron binding energy and mass shift increase monotonously with increasing the substrate thickness. For the film thickness with L w ≥ 70Å or the substrate thicknesses with L b ≤ 200Å, the different values of the substrate thickness have no significant influence on the polaron binding energy and mass shift in the GaAs film deposited on the Al 0.3 Ga 0.7 As substrate.

  18. Weak interaction between germanene and GaAs(0001) by H intercalation: A route to exfoliation

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-11-13

    Epitaxial germanene on a semiconducting GaAs(0001) substrate is studied by ab initio calculations. The germanene-substrate interaction is found to be strong for direct contact but can be substantially reduced by H intercalation at the interface. Our results indicate that it is energetically possible to take the germanene off the GaAs(0001) substrate. While mounted on the substrate, the electronic structure shows a distinct Dirac cone shift above the Fermi energy with a splitting of 175 meV. On the other hand, we find for a free standing sheet a band gap of 24 meV, which is due to the intrinsic spin orbit coupling.

  19. Weak interaction between germanene and GaAs(0001) by H intercalation: A route to exfoliation

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    Epitaxial germanene on a semiconducting GaAs(0001) substrate is studied by ab initio calculations. The germanene-substrate interaction is found to be strong for direct contact but can be substantially reduced by H intercalation at the interface. Our results indicate that it is energetically possible to take the germanene off the GaAs(0001) substrate. While mounted on the substrate, the electronic structure shows a distinct Dirac cone shift above the Fermi energy with a splitting of 175 meV. On the other hand, we find for a free standing sheet a band gap of 24 meV, which is due to the intrinsic spin orbit coupling.

  20. TEM study of the indentation behaviour of thin Au film on GaAs

    International Nuclear Information System (INIS)

    Patriarche, G.; Le Bourhis, E.; Faurie, D.; Renault, P.O.

    2004-01-01

    Au films of 8.9 nm thickness have been sputter deposited onto a (001) GaAs substrate at room temperature. An average grain size of 10 nm and no texture were obtained. Subsequent, nanoindentation tests were performed on the coated specimens and the mechanical response was compared to that of a bulk GaAs sample with the same crystallographic orientation. Furthermore, the loading-unloading curves were analysed in view of transmission electron microscopy plan-view images obtained on the deformed substrate-film specimens and compared to results previously reported in the literature for bulk sample. Constrained plasticity of the films was observed to occur for residual depth to thickness ratio below 0.67. Further, plastic deformation of the substrate happened on coated specimens at loads less than those required to plastically deform bare substrate

  1. Effect of substrate mis-orientation on GaN thin films grown by MOCVD under different carrier gas condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Woo; Suzuki, Toshimasa [Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Saitama, 345-8501 (Japan); Aida, Hideo [NAMIKI Precision Jewel Co. Ltd., 3-8-22 Shinden, Adachi-ku, Tokyo, 123-8511 (Japan)

    2005-05-01

    We have studied the effect of a slight mis-orientation angle on surface and crystal quality of GaN thin films grown under different carrier gas conditions. Two types of carrier gas conditions were applied to the growth. One was pure H{sub 2} and the other was mixed N{sub 2}/H{sub 2}. As the result, we found dependence of surface and crystal quality of GaN thin films on the substrate mis-orientation angle, and they indicated almost the same tendency under both growth conditions. Therefore, it was confirmed that mis-orientation angle of sapphire substrate was one of the most critical factors for GaN thin films. Then, the effect of the additional N{sub 2} into the conventional H{sub 2} carrier gas was studied, and we found that the conversion of carrier gas from the conventional H{sub 2} to N{sub 2}/H{sub 2} mixture was effective against degradation of GaN crystallinity at any mis-orientation angle. Considering that the crystal quality of GaN thin films became insensitive to mis-orientation angle as the condition became more suitable for GaN growth, the optimal substrate mis-orientation angle was consequently decided to be approximately 0.15 from the morphological aspect. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Defect characterization in compositionally graded InGaAs layers on GaAs(001) grown by MBE

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Takahasi, Masamitu; Norman, Andrew G.; Romero, Manuel J.; Al-Jassim, Mowafak M.; Kojima, Nobuaki; Ohshita, Yoshio; Yamaguchi, Masafumi

    2013-01-01

    Defect characterization in molecular beam epitaxial (MBE) compositionally-graded In x Ga 1-x As layers on GaAs substrates consisting different thickness of overshooting (OS) layers was carried out using cathodoluminescence (CL) and transmission electron microscopy (TEM). We found that the thickness of the OS layer influences not only stress but also lattice defects generated in a top InGaAs layer. While the top InGaAs layer with a thin OS layer is under compression and has mainly threading dislocations, the top layer with a thick OS layer is under tension and exhibits inhomogeneous strain associating with phase separation. We will discuss the mechanisms of defect generation and their in-plane distribution based on strain relaxation at the top and OS layers. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    Science.gov (United States)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  4. Chitooligomers preparation by chitosanase produced under solid state fermentation using shrimp by-products as substrate.

    Science.gov (United States)

    Nidheesh, T; Pal, Gaurav Kumar; Suresh, P V

    2015-05-05

    Solid state fermentation (SSF) conditions were statistically optimized for the production of chitosanase by Purpureocillium lilacinum CFRNT12 using shrimp by-products as substrate. Central composite design and response surface methodology were applied to evaluate the effect of variables and their optimization. Incubation temperature, incubation time, concentration of inoculum and yeast extract were found to influence the chitosanase production significantly. The R(2) value of 0.94 indicates the aptness of the model. The level of variables for optimal production of chitosanase was 32 ± 1°C temperature, 96 h incubation, 10.5% (w/v) inoculum, 1.05% (w/w) yeast extract and 65% (w/w) moisture content. The chitosanase production was found to increase from 2.34 ± 0.07 to 41.78 ± 0.73 units/g initial dry substrate after optimization. The crude chitosanase produced 4.43 mM of chitooligomers as exclusive end product from colloidal chitosan hydrolysis. These results indicate the potential of P. lilacinum CFRNT12 for the chitosanase production employing cost effective SSF using shrimp by-products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Gold Nanoparticles on Functionalized Silicon Substrate under Coulomb Blockade Regime: An Experimental and Theoretical Investigation.

    Science.gov (United States)

    Pluchery, Olivier; Caillard, Louis; Dollfus, Philippe; Chabal, Yves J

    2018-01-18

    Single charge electronics offer a way for disruptive technology in nanoelectronics. Coulomb blockade is a realistic way for controlling the electric current through a device with the accuracy of one electron. In such devices the current exhibits a step-like increase upon bias which reflects the discrete nature of the fundamental charge. We have assembled a double tunnel junction on an oxide-free silicon substrate that exhibits Coulomb staircase characteristics using gold nanoparticles (AuNPs) as Coulomb islands. The first tunnel junction is an insulating layer made of a grafted organic monolayer (GOM) developed for this purpose. The GOM also serves for attaching AuNPs covalently. The second tunnel junction is made by the tip of an STM. We show that this device exhibits reproducible Coulomb blockade I-V curves at 40 K in vacuum. We also show that depending on the doping of the silicon substrate, the whole Coulomb staircase can be adjusted. We have developed a simulation approach based on the orthodox theory that was completed by calculating the bias dependent tunnel barriers and by including an accurate calculation of the band bending. This model accounts for the experimental data and the doping dependence of Coulomb oscillations. This study opens new perspectives toward designing new kind of single electron transistors (SET) based on this dependence of the Coulomb staircase with the charge carrier concentration.

  6. Rayleigh-Taylor instability under curved substrates: An optimal transient growth analysis

    Science.gov (United States)

    Balestra, Gioele; Brun, P.-T.; Gallaire, François

    2016-12-01

    We investigate the stability of thin viscous films coated on the inside of a horizontal cylindrical substrate. In such a case, gravity acts both as a stabilizing force through the progressive drainage of the film and as a destabilizing force prone to form droplets via the Rayleigh-Taylor instability. The drainage solution, derived from lubrication equations, is found asymptotically stable with respect to infinitesimally small perturbations, although in reality, droplets often form. To resolve this paradox, we perform an optimal transient growth analysis for the first-order perturbations of the liquid's interface, generalizing the results of Trinh et al. [Phys. Fluids 26, 051704 (2014), 10.1063/1.4876476]. We find that the system displays a linear transient growth potential that gives rise to two different scenarios depending on the value of the Bond number (prescribing the relative importance of gravity and surface tension forces). At low Bond numbers, the optimal perturbation of the interface does not generate droplets. In contrast, for higher Bond numbers, perturbations on the upper hemicircle yield gains large enough to potentially form droplets. The gain increases exponentially with the Bond number. In particular, depending on the amplitude of the initial perturbation, we find a critical Bond number above which the short-time linear growth is sufficient to trigger the nonlinear effects required to form dripping droplets. We conclude that the transition to droplets detaching from the substrate is noise and perturbation dependent.

  7. Monolayer Boron Nitride Substrate Interactions with Graphene Under In-Plane and Perpendicular Strains: A First-Principles Study

    Science.gov (United States)

    Behzad, Somayeh

    2018-04-01

    Effects of strain on the electronic and optical properties of graphene on monolayer boron nitride (BN) substrate are investigated using first-principle calculations based on density functional theory. Strain-free graphene/BN has a small band gap of 97 meV at the K point. The magnitude of band gap increases with in-plane biaxial strain while it decreases with the perpendicular uniaxial strain. The ɛ2 (ω ) spectrum of graphene/BN bilayer for parallel polarization shows red and blue shifts by applying the in-plane tensile and compressive strains, respectively. Also the positions of peaks in the ɛ2 (ω ) spectrum are not significantly changed under perpendicular strain. The calculated results indicate that graphene on the BN substrate has great potential in microelectronic and optoelectronic applications.

  8. Substrate optimization for integrated circuit antennas

    OpenAIRE

    Alexopoulos, N. G.; Katehi, P. B.; Rutledge, D. B.

    1982-01-01

    Imaging systems in microwaves, millimeter and submillimeter wave applications employ printed circuit antenna elements. The effect of substrate properties is analyzed in this paper by both reciprocity theorem as well as integral equation approach for infinitesimally short as well as finite length dipole and slot elements. Radiation efficiency and substrate surface wave guidance is studied for practical substrate materials as GaAs, Silicon, Quartz and Duroid.

  9. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer

    Science.gov (United States)

    Zhou, Xu-Liang; Pan, Jiao-Qing; Yu, Hong-Yan; Li, Shi-Yan; Wang, Bao-Jun; Bian, Jing; Wang, Wei

    2014-12-01

    High-quality GaAs thin films grown on miscut Ge substrates are crucial for GaAs-based devices on silicon. We investigate the effect of different thicknesses and temperatures of GaAs buffer layers on the crystal quality and surface morphology of GaAs on Ge by metal-organic chemical vapor deposition. Through high resolution x-ray diffraction measurements, it is demonstrated that the full width at half maximum for the GaAs epilayer (Ge substrate) peak could achieve 19.3 (11.0) arcsec. The value of etch pit density could be 4×104 cm-2. At the same time, GaAs surfaces with no pyramid-shaped pits are obtained when the buffer layer growth temperature is lower than 360°C, due to effective inhibition of initial nucleation at terraces of the Ge surface. In addition, it is shown that large island formation at the initial stage of epitaxial growth is a significant factor for the final rough surface and that this initial stage should be carefully controlled when a device quality GaAs surface is desired.

  10. Requirements of Saccharomyces Cerevisiae,Y 10 for Bioconversion of Lignocellulose Substrates to Ethanol under Simultaneous Saccharification and Fermentation Processes

    International Nuclear Information System (INIS)

    Rady, A.H.; Younis, N.A.; Sidkey, N.M.; Ouda, S.M.

    2006-01-01

    Ethanol production increased gradually with increasing the incubation period to a maximum value at 72 hrs for rice straw, bagasse and CHW (Cellulosic hospital wastes) under simultaneous saccharification and fermentation technique (SSF). bagasse was the best substrate for maximum production . maximum Values of ethanol were recorded when crude cellulses were 1.79, 0.597 and 1.19 (FPU /ml fermentation medium) for substrates respectively. the optimum inoculum number of yeast was (9x10 8 free cells / ml for rice straw, (1.2x10 9 cells/ml) of immobilized and free yeast for bagasse and CHW respectively. Maximum yield was recorded with ph 5 at 30 degree C for the three substrates. Fe SO 4 .7H 2 O(0.05%) increased ethanol production from pretreated bagasse and CHW .L-Iysine increased the productivity for both bagasse and CHW. molasses (9 g/l) achieved the highest productivity from treated rice straw, while thiamine B1 (100 and 200 ppm) for treated bagsse and CHW respectively. Gamma rays at doses 0.05 and 0.8 K.Gy increased ethanol yield 7.5 and 2 % for treated bagasse and CHW respectively. Highest values recorded at 300,200 and 100 rpm. for treated rice straw, bagasse and CHW, respectively

  11. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    International Nuclear Information System (INIS)

    Lajnef, M.; Chtourou, R.; Ezzaouia, H.

    2010-01-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height φ b0 parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  12. Electric characterization of GaAs deposited on porous silicon by electrodeposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lajnef, M., E-mail: Mohamed.lajnef@yahoo.fr [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia); Chtourou, R.; Ezzaouia, H. [Laboratoire de Photovoltaique et de Semi-conducteurs, Centre de Recherche et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2010-03-01

    GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Schottky junctions. The electric analysis allowed us to determine the n factor and the barrier height {phi}{sub b0} parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.

  13. Self-assisted GaAs nanowires with selectable number density on Silicon without oxide layer

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Esposito, L; Sanguinetti, S; Frigeri, C; Fedorov, A; Geelhaar, L

    2014-01-01

    We present the growth of self-assisted GaAs nanowires (NWs) with selectable number density on bare Si(1 1 1), not covered by the silicon oxide. We determine the number density of the NWs by initially self-assembling GaAs islands on whose top a single NW is nucleated. The number density of the initial GaAs base islands can be tuned by droplet epitaxy and the same degree of control is then transferred to the NWs. This procedure is completely performed during a single growth in an ultra-high vacuum environment and requires neither an oxide layer covering the substrate, nor any pre-patterning technique. (paper)

  14. Mercury in wild mushrooms and underlying soil substrate from Koszalin, North-central Poland.

    Science.gov (United States)

    Falandysz, Jerzy; Jedrusiak, Aneta; Lipka, Krzysztof; Kannan, Kurunthachalam; Kawano, Masahide; Gucia, Magdalena; Brzostowski, Andrzej; Dadej, Monika

    2004-01-01

    Concentrations of total mercury were determined by cold-vapour atomic absorption spectroscopy (CV-AAS) in 221 caps and 221 stalks of 15 species of wild growing higher fungi/mushrooms and 221 samples of corresponding soil substrate collected in 1997-98 in Manowo County, near the city of Koszalin in North-central Poland. Mean mercury concentrations in caps and stalks of the mushroom species examined and soils varied between 30+/-31 and 920+/-280, 17+/-11 and 560+/-220, and 10+/-9 and 170+/-110 ng/g dry matter, respectively. Cap to stalk mercury concentration quotients were from 1.0+/-0.4 in poison pax (Paxillus involutus) to 2.8+/-0.7 in slippery jack (Suillus luteus). Brown cort (Cortinarius malicorius), fly agaric (Amanita muscaria), orange-brown ringless amanita (A. fulva), red-aspen bolete (Leccinum rufum) and mutagen milk cap (Lactarius necator) contained the highest concentrations of mercury both in caps and stalks, and mean concentrations varied between 600+/-750 and 920+/-280 and 370+/-470 and 560+/-220 ng/g dry matter, respectively. An estimate of daily intake of mercury from mushroom consumption indicated that the flesh of edible species of mushrooms may not pose hazards to human health even at a maximum consumption rate of 28 g/day. However, it should be noted that mercury intake from other foods will augment the daily intake rates. Species such as the sickener (Russula emetica), Geranium-scented russula (R. fellea) and poison pax (P. involutus) did not concentrate mercury as evidenced from the bioconcentration factors (BCFs: concentrations in mushroom/concentration in soil substrate), which were less than 1. Similarly, red-hot milk cap (L. rufus), rickstone funnel cap (Clitocybe geotropa) and European cow bolete (S. bovinus) were observed to be weak accumulators of mercury. Fly agaric (A. muscaria) accumulated great concentrations of mercury with BCFs reaching 73+/-42 and 38+/-22 in caps and stalks, respectively. Mercury BCFs of between 4.0+/-2.3 and 23

  15. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions.

    Science.gov (United States)

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2012-05-01

    Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N(2)O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH(4)(+)) and nitrite (NO(2)(-)) led to increased N(2)O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N(2)O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis.

    Science.gov (United States)

    Xiao, Zheng; Lin, Manhong; Fan, Jinlin; Chen, Yixuan; Zhao, Chao; Liu, Bin

    2018-01-01

    Spent mushroom substrate (SMS) is the residue of edible mushroom production occurring in huge amounts. The SMS residue can be digested for biogas production in the mesophilic anaerobic digestion. In the present study, performance of batch thermophilic anaerobic digestion (TAD) of SMS was investigated as well as the interconnected microbial population structure changes. The analyzed batch TAD process lasted for 12 days with the cumulative methane yields of 177.69 mL/g volatile solid (VS). Hydrolytic activities of soluble sugar, crude protein, and crude fat in SMS were conducted mainly in the initial phase, accompanied by the excessive accumulation of volatile fatty acids and low methane yield. Biogas production increased dramatically from days 4 to 6. The degradation rates of cellulose and hemicellulose were 47.53 and 55.08%, respectively. The high-throughput sequencing of 16S rRNA gene amplicons revealed that Proteobacteria (56.7%-62.8%) was the dominant phylum in different fermentative stages, which was highly specific compared with other anaerobic processes of lignocellulosic materials reported in the literature. Crenarchaeota was abundant in the archaea. The most dominant genera of archaea were retrieved as Methanothermobacter and Methanobacterium, but the latter decreased sharply with time. This study shows that TAD is a feasible method to handle the waste SMS.

  17. Pump-probe studies of travelling coherent longitudinal acoustic phonon oscillations in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Qi, J.; Tolk, Norman [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235 (United States); Miller, J. [Naval air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Cho, Y.J.; Liu, X.; Furdyna, J.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shahbazyan, T.V. [Department of Physics, Jackson State University, MS 39217 (United States)

    2008-07-01

    We report comprehensive studies of long-lived oscillations in femtosecond optical pump-probe measurements on GaAs based systems. The oscillations arise from a photo-generated coherent longitudinal acoustic phonon wave at the sample surface, which subsequently travels from the surface into the GaAs substrate, thus providing information on the optical properties of the material as a function of time/depth. Wavelength-dependent studies of the oscillations near the bandgap of GaAs indicate strong correlations to the optical properties of GaAs. We also use the coherent longitudinal acoustic phonon waves to probe a thin buried Ga{sub 0.1}In{sub 0.9}As layers non-invasively. The observed phonon oscillations experience a reduction in amplitude and a phase change at wavelengths near the bandgap of the GaAs, when it passes through the thin Ga{sub x}In{sub 1-x}As layer. The layer depth and thicknesses can be extracted from the oscillation responses. A model has been developed that satisfactorily characterizes the experimental results. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Temperature conditions for GaAs nanowire formation by Au-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Tchernycheva, M; Harmand, J C; Patriarche, G; Travers, L; Cirlin, G E

    2006-01-01

    Molecular beam epitaxial growth of GaAs nanowires using Au particles as a catalyst was investigated. Prior to the growth during annealing, Au alloyed with Ga coming from the GaAs substrate, and melted. Phase transitions of the resulting particles were observed in situ by reflection high-energy electron diffraction (RHEED). The temperature domain in which GaAs nanowire growth is possible was determined. The lower limit of this domain (320 deg. C) is close to the observed catalyst solidification temperature. Below this temperature, the catalyst is buried by GaAs growth. Above the higher limit (620 deg. C), the catalyst segregates on the surface with no significant nanowire formation. Inside this domain, the influence of growth temperature on the nanowire morphology and crystalline structure was investigated in detail by scanning electron microscopy and transmission electron microscopy. The correlation of the nanowire morphology with the RHEED patterns observed during the growth was established. Wurtzite GaAs was found to be the dominant crystal structure of the wires

  19. Organic matter composition and substrate diversity under elevated CO2 in the Mojave Desert

    Science.gov (United States)

    Tfaily, M. M.; Hess, N. J.; Koyama, A.; Evans, R. D.

    2016-12-01

    Little is known about how rising atmospheric CO2 concentration will impact long-term plant biomass or the dynamics of soil organic matter (SOM) in arid ecosystems. In this study, we investigated the change in the molecular composition of SOM by high resolution mass spectrometry after 10 years exposure to elevated atmospheric CO2 concentrations at the Nevada Desert FACE Facility. Samples were collected from soil profiles from 0 to 1m in 0.2m increments under the dominant evergreen shrub (Larrea tridentata). The differences in the composition of SOM were more evident in soils close to the surface and consistent with higher bulk soil organic carbon (C) and total nitrogen (N) concentrations under elevated than ambient CO2, reflecting increased net productivity of shrubs under elevated CO2, which could be attributed to increased litter input from above-ground biomass and/or shallow roots, root exudation and/or microbial residues. This was further supported by the significant increase in the abundance of amino sugars-, protein- and carbohydrate-like compounds. These compounds are involved in diverse pathways ranging from sugars and amino-acid metabolism to lipid biosynthesis. This indicates increased activity and metabolism under elevated CO2 and suggests that elevated CO2 have altered microbial C use patterns, reflecting changes in the quality and quantity of soil C inputs. A significant increase in the mineral-bound soil organic C was also observed in the surface soils under elevated CO2. This was accompanied by increased microbial residues as identified by mass spectrometry that supports microbial lipid analysis, and reflecting accelerated microbial turnover under elevated CO2. Fungal neutral lipid fatty acids (NLFA) abundance doubled under elevated CO2. When provided with excess labile compounds, such as root exudates, and with limited supply of nutrients, fungi assimilate the excess labile C and store it as NLFA likely contributing to increased total N

  20. In situ electron backscattered diffraction of individual GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodko, S.V. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)], E-mail: sergey@seas.ucla.edu; Sitzman, S. [Oxford Instruments America, Concord, MA 01742 (United States); Gambin, V. [Northrop Grumman Space Technology, Redondo Beach, CA 90278 (United States); Kodambaka, S. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2008-12-15

    We suggest and demonstrate that electron backscattered diffraction, a scanning electron microscope-based technique, can be used for non-destructive structural and morphological characterization of statistically significant number of nanowires in situ on their growth substrate. We obtain morphological, crystal phase, and crystal orientation information of individual GaAs nanowires in situ on the growth substrate GaAs(1 1 1) B. Our results, verified using transmission electron microscopy and selected area electron diffraction analyses of the same set of wires, indicate that most wires possess a wurtzite structure with a high density of thin structural defects aligned normal to the wire growth axis, while others grow defect-free with a zincblende structure. The demonstrated approach is general, applicable to other material systems, and is expected to provide important insights into the role of substrate structure on nanowire structure on nanowire crystallinity and growth orientation.

  1. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  2. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  3. Neural substrates of cognitive control under the belief of getting neurofeedback training

    Directory of Open Access Journals (Sweden)

    Manuel eNinaus

    2013-12-01

    Full Text Available Learning to modulate one’s own brain activity is the fundament of neurofeedback (NF applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal area were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  4. Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior.

    Science.gov (United States)

    Baldo, Brian A; Pratt, Wayne E; Will, Matthew J; Hanlon, Erin C; Bakshi, Vaishali P; Cador, Martine

    2013-11-01

    Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing

  5. Cellular, Molecular, and Genetic Substrates Underlying the Impact of Nicotine on Learning

    Science.gov (United States)

    Gould, Thomas J.; Leach, Prescott T.

    2013-01-01

    Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: 1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, 2) how nicotine usurps the cellular mechanisms of synaptic plasticity, 3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal

  6. Near-field microwave detection of corrosion precursor pitting under thin dielectric coatings in metallic substrate

    International Nuclear Information System (INIS)

    Hughes, D.; Zoughi, R.; Austin, R.; Wood, N.; Engelbart, R.

    2003-01-01

    Detection of corrosion precursor pitting on metallic surfaces under various coatings and on bare metal is of keen interest in evaluation of aircraft fuselage. Near-field microwave nondestructive testing methods, utilizing open-ended rectangular waveguides and coaxial probes, have been used extensively for detection of surface flaws in metals, both on bare metal and under a dielectric coating. This paper presents the preliminary results of using microwave techniques to detect corrosion precursor pitting under paint and primer, applique and on bare metal. Machined pits of 500 μm diameter were detected using open-ended rectangular waveguides at V-Band under paint and primer and applique, and on bare metal. Using coaxial probes, machined pits with diameters down to 150 μm on bare metal were also detected. Relative pit size and density were shown on a corrosion-pitted sample using open-ended rectangular waveguides at frequencies of 35 GHz to 70 GHz. The use of Boeing's MAUS TM scanning systems provided improved results by alleviating standoff variation and scanning artifact. Typical results of this investigation are also presented

  7. Spin transport anisotropy in (110)GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Odilon, D.D.C. Jr.; Rudolph, Joerg; Hey, Rudolf; Santos, Paulo V. [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany); Iikawa, Fernando [Universidade Estadual de Campinas, IFGW, Campinas SP (Brazil)

    2007-07-01

    Mobile piezoelectric potentials are used to coherently transport electron spins in GaAs(110) quantum wells (QW) over distances exceeding 60{mu}m. We demonstrate that the dynamics of mobile spins under external magnetic fields depends on the direction of motion in the QW plane. The weak piezoelectric fields impart a non-vanishing average velocity to the carriers, allowing for the direct observation of the carrier momentum dependence of the spin polarization dynamics. While transport along [001] direction presents high in-plane spin relaxation rates, transport along [ anti 110] shows a much weaker external field dependence due to the non-vanishing internal magnetic field. We show that the anisotropy is an intrinsic property of the underling GaAs matrix, associated with the bulk inversion asymmetry contribution to the LS-coupling.

  8. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum.

    Science.gov (United States)

    Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas

    2015-12-19

    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  9. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum

    Directory of Open Access Journals (Sweden)

    Marietta Seifert

    2015-12-01

    Full Text Available Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  10. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    Science.gov (United States)

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  11. Effects produced in GaAs by MeV ion bombardment

    International Nuclear Information System (INIS)

    Wie, C.R.

    1985-01-01

    The first part of this thesis presents work performed on the ionizing energy beam induced adhesion enhancement of thin (approx.500 A) Au films on GaAs substrates. The ionizing beam, employed in the present thesis, is the MeV ions (i.e., 16 O, 19 F, and 35 Cl), with energies between 1 and 20 MeV. Using the Scratch test for adhesion measurement, and ESCA for chemical analysis of the film substrate interface, the native oxide layer at the interface is shown to play an important role in the adhesion enhancement by the ionizing radiation. A model is discussed that explains the experimental data on the dependence of adhesion enhancement on the energy which was deposited into electronic processes at the interface. The second part of the thesis presents research results on the radiation damage in GaAs crystals produced by MeV ions. Lattice parameter dilatation in the surface layers of the GaAs crystals becomes saturated after a high dose bombardment at room temperature. The strain produced by nuclear collisions is shown to relax partially due to electronic excitation (with a functional dependence on the nuclear and electronic stopping power of bombarding ions. Data on the GaAs and GaP crystals suggest that low temperature recovery stage defects produce major crystal distortion

  12. Twins and strain relaxation in zinc-blende GaAs nanowires grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Araújo, D.; Pastore, C.E.; Gutierrez, M. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Frigeri, C. [Istituto CNR-IMEM Parco Area delle Scienze 37/A, Fontanini, 43010, Parma (Italy); Benali, A.; Lelièvre, J.F.; Gendry, M. [INL-Institut des Nanotechnologies de Lyon, UMR 5270 Ecole Centrale de Lyon 36, Avenue Guy de Collongue, 69134, Ecully Cedex (France)

    2017-02-15

    Highlights: • A TEM-HREM study of GaAs nanowires, growth over Si, is presented. • Misfit dislocations are detected in the Si/GaAs magma interface. • The study demonstrates strain relaxation through twin formation in some nanowires. - Abstract: To integrate materials with large lattice mismatch as GaAs on silicon (Si) substrate, one possible approach, to improve the GaAs crystalline quality, is to use nanowires (NWs) technology. In the present contribution, NWs are grown on <111> oriented Si substrates by molecular beam epitaxy (MBE) using vapor-liquid-solid (VLS) method. Transmission electron microscopy (TEM) analyses show that NWs are mainly grown alternating wurtzite and zinc blend (ZB) phases, and only few are purely ZB. On the latter, High Resolution Electron Microscopy (HREM) evidences the presence of twins near the surface of the NW showing limited concordance with the calculations of Yuan (2013) [1], where {111} twin planes in a <111>-oriented GaAs NW attain attractive interactions mediated by surface strain. In addition, such twins allow slight strain relaxation and are probably induced by the local huge elastic strain observed by HREM in the lattice between the twin and the surface. The latter is attributed to some slight bending of the NW as shown by the inversion of the strain from one side to the other side of the NW.

  13. Spin dynamics in GaAs and (110)-GaAs heterostructures; Spindynamik in GaAs und (110)-GaAs-Heterostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Oertel, Stefan

    2012-07-01

    This thesis investigates the spin dynamics in both bulk GaAs and (llO)GaAs heterostructures using time- and polarization-resolved photoluminescence spectroscopy. In bulk GaAs the spin relaxation t ime is measured for the first time in the high temperature regime from 280 K to 400 K and is compared to numerical calculations. The numerical calculations are based on the spin relaxation theory of the Dyakonov-Perel mechanism effected by momentum scattering with polar optical phonons and electron-electron scattering and are in good agreement with the experimental results. Measurements of the dependence on the electron density serve to determine the energy dependent proportional factor between the electron density and the effective electron-electron scattering time. Also in bulk GaAs the interaction between the electron spin system and the nuclear spin system is investigated. The measured electron Lande g-factor under the influence of the nuclear magnetic field is used as an indicator to monitor the temporal evolution of the nuclear magnetic field under sustained dynamic nuclear polarization. Measurements with polarization modulated excitation enable the determination of the relevant time scale at which dynamic nuclear polarization takes place. Furthermore, the temporal evolution of the measured electron Lande g-factor shows the complex interplay of the dynamic nuclear polarization, the nuclear spin diffusion and the nuclear spin relaxation. In symmetric (110)-GaAs quantum wells the dependence of the inplane anisotropy of the electron Lande g-factor on the quantum well thickness is determined experimentally. The measurements are in very good agreement with calculations based upon k . p-theory and reveal a maximum of the anisotropy at maximum carrier localization in the quantum well. The origin of the anisotropy that is not present in symmetric (001) quantum wells is qualitatively described by means of a simplified model based on fourth-order perturbation theory. A

  14. Fabrication of GaAs nanowire devices with self-aligning W-gate electrodes using selective-area MOVPE

    International Nuclear Information System (INIS)

    Ooike, N.; Motohisa, J.; Fukui, T.

    2004-01-01

    We propose and demonstrate a novel self-aligning process for fabricating the tungsten (W) gate electrode of GaAs nanowire FETs by using selective-area metalorganic vapor phase epitaxy (SA-MOVPE) where SiO 2 /W composite films are used to mask the substrates. First, to study the growth process and its dependence on mask materials, GaAs wire structures were grown on masked substrates partially covered with a single W layer or SiO 2 /W composite films. We found that lateral growth over the masked regions could be suppressed when a wire along the [110] direction and a SiO 2 /W composite mask were used. Using this composite mask, we fabricated GaAs narrow channel FETs using W as a Schottky gate electrode, and we were able to observe FET characteristics at room temperature

  15. Magnetic Properties of Fe(001) Thin Films on GaAs(001) Deposited by RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ikeya, Hirokazu; Takahashi, Yutaka; Inaba, Nobuyuki; Kirino, Fumiyoshi; Ohtake, Mitsuru; Futamoto, Masaaki

    2011-01-01

    Fe thin films, down to 6 nm thick, were prepared on GaAs(001) substrates by RF magnetron sputtering. The x-ray diffraction (XRD) analyses show that the epitaxial thin films of Fe(001) were grown with cube-on-cube orientation on GaAs(001). Magnetic properties were investigated by vibrating sample magnetometry (VSM) and ferromagnetic resonance (FMR) spectroscopy. The magnetization curves obtained by applying in-plane magnetic fields indicate that easy (hard) direction is along [100] ([110]) and the saturation magnetization is close to the bulk values. The in-plane magnetic anisotropy measured by FMR shows four-fold symmetry, as expected for bcc Fe. We did not observe the in-plane uniaxial magnetic anisotropy reported on the MBE-grown Fe films on GaAs substrates.

  16. Spreading of Non-Newtonian and Newtonian Fluids on a Solid Substrate under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Moutushi Dutta; Chandra, Subrata; Nag, Soma; Tarafdar, Sujata [Condensed Matter Physics Research Centre, Physics Department, Jadavpur University, Kolkata 700032 (India); Das, Shantanu, E-mail: mou15july@gmail.com [Reactor Control Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085 (India)

    2011-09-15

    Strongly non-Newtonian fluids namely, aqueous gels of starch, are shown to exhibit visco-elastic behavior, when subjected to a load. We study arrowroot and potato starch gels. When a droplet of the fluid is sandwiched between two glass plates and compressed, the area of contact between the fluid and plates increases in an oscillatory manner. This is unlike Newtonian fluids, where the area increases monotonically in a similar situation. The periphery moreover, develops an instability, which looks similar to Saffman Taylor fingers. This is not normally seen under compression. The loading history is also found to affect the manner of spreading. We attempt to describe the non-Newtonian nature of the fluid through a visco-elastic model incorporating generalized calculus. This is shown to reproduce qualitatively the oscillatory variation in the surface strain.

  17. Superconducting NbN single-photon detectors on GaAs with an AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Ekkehart; Merker, Michael; Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie, Hertzstrasse 16, 76187 Karlsruhe (Germany)

    2015-07-01

    GaAs is the material of choice for photonic integrated circuits. It allows the monolithic integration of single-photon sources like quantum dots, waveguide based optical circuits and detectors like superconducting nanowire single-photon detectors (SNSPDs) onto one chip. The growth of high quality NbN films on GaAs is challenging, due to natural occurring surface oxides and the large lattice mismatch of about 27%. In this work, we try to overcome these problems by the introduction of a 10 nm AlN buffer layer. Due to the buffer layer, the critical temperature of 6 nm thick NbN films was increased by about 1.5 K. Furthermore, the critical current density at 4.2 K of NbN flim deposited onto GaAs with AlN buffer is 50% higher than of NbN film deposited directly onto GaAs substrate. We successfully fabricated NbN SNSPDs on GaAs with a AlN buffer layer. SNSPDs were patterned using electron-beam lithography and reactive-ion etching techniques. Results on the study of detection efficiency and jitter of a NbN SNSPD on GaAs, with and without AlN buffer layer will be presented and discussed.

  18. The influence of γ-irradiation cobalt 60 on electrical properties of undoped GaAs treated with hydrogen plasma

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Kurilovich, N.F.; Prokhorenko, T.A.; Bumaj, Yu.A.; Ul'yashin, A.G.

    1999-01-01

    The influence of exposition to a hydrogen plasma (hydrogenation) on the electrical properties alteration under gamma-irradiation in bulk GaAs have been investigated. It is shown that crystals hydrogenation before irradiation leads to particularly passivation of electrically active defects that are responsible for carriers scattering and removing processes in irradiated crystals. Radiation defects thermostability in hydrogenated GaAs crystals is lower than that in non hydrogenated ones. The energetic levels position of main defect that effects on electrical properties alteration after irradiation in GaAs crystals was detected. It is equal to E D =E C -0,125±0,0005 eV

  19. Numerical study of the spreading and solidification of a molten particle impacting onto a rigid substrate under plasma spraying conditions

    Directory of Open Access Journals (Sweden)

    Oukach Soufiane

    2015-01-01

    Full Text Available This paper deals with simulation of the spreading and solidification of a fully molten particle impacting onto a preheated substrate under traditional plasma spraying conditions. The multiphase problem governing equations of mass, momentum and energy conservation taking into account heat transfer by conduction, convection and phase change are solved by using a Finite Element approach. The interface between molten particle and surrounding air, is tracked using the Level Set method. The effect of the Reynolds number on the droplet spreading and solidification, using a wide range of impact velocities (40-250m/s, is reported. A new correlation that predicts the final spread factor of splat as a function of Reynolds number is obtained. Thermal contact resistance, viscous dissipation, wettability and surface tension forces effects are taken into account.

  20. Testing a GaAs cathode in SRF gun

    International Nuclear Information System (INIS)

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-01-01

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10 -12 Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to ∼10 -9 Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high accelerating

  1. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  2. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy

    Science.gov (United States)

    Li, Lixia; Pan, Dong; Yu, Xuezhe; So, Hyok; Zhao, Jianhua

    2017-10-01

    Self-catalyzed GaAs nanowires (NWs) are grown on Si (111) substrates by molecular-beam epitaxy. The effect of different closing sequences of the Ga and As cell shutters on the morphology and structural phase of GaAs NWs is investigated. For the sequences of closing the Ga and As cell shutters simultaneously or closing the As cell shutter 1 min after closing the Ga cell shutter, the NWs grow vertically to the substrate surface. In contrast, when the As cell shutter is closed first, maintaining the Ga flux is found to be critical for the following growth of GaAs NWs, which can change the growth direction from [111] to . The evolution of the morphology and structural phase transition at the tips of these GaAs NWs confirm that the triple-phase-line shift mode is at work even for the growth with different cell shutter closing sequences. Our work will provide new insights for better understanding of the growth mechanism and realizing of the morphology and structure control of the GaAs NWs. Project supported partly by the MOST of China (No. 2015CB921503), the National Natural Science Foundation of China (Nos. 61504133, 61334006, 61404127), and Youth Innovation Promotion Association, CAS (No. 2017156).

  3. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions

    Science.gov (United States)

    Tikhomirov, A.; Ushakova, S.; Gribovskaya, I.; Tirranen, L.; Manukovsky, N.; Zolotukhin, I.

    To investigate feasibility of enhancing closedness in a new generation of biological life support systems (LSS) to involve the inedible phytomass into intrasystem mass exchange the vermicomposting method we have chosen made possible to produce soil-like substrate (SLS) suitable for growing plants. However, to use the SLS in life support systems call for investigation of its physical, chemical and other parameters. Of special importance among them is the capacity of SLS to provide the LSS photosynthesizing component with required mineral elements in selected cultivation conditions. In this connection the aim of this work was to study opportunities of enhancing pr4oduction activity of wheat and radish cenoses by varying the intensity of photosynthetically active radiation (PAR) without decreasing the harvest index. Increase of light intensity to 250 W/m 2 PAR decreased the intensity of visible photosynthesis of wheat cenosi and slightly increased visible photosynthesis of radish cenosis as compared to 200 W/m 2 PAR. The maximum productivity of wheat cenosis both total and seeds corresponded to the irradiance of 200 W/m 2 PAR. The light intensity of 250 W/m2 PAR decreased productivity of wheat plants and had no significant effect of the productivity of radish cenosis as compared to 200 W/m 2 PAR. Qualitative and quantitative composition of microflora of the watering solution and SLS was determined by the condition of plants, development phase and PAR intensity. By the end of wheat vegetation under 250 W/m 2 there were an order more bacteria of the colon rod group and phytopathogenic bacteria in the watering solution and SLS than under other illumination conditions. Investigation of the mineral composition of SLS and the watering solution demonstrated that one of the reasons of inadequate response of the cenosis under study to elevated PAR intensity may be deficiency of accessible forms of some mineral elements, e.g. nitrogen. The above said materials evidence that

  4. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices.

    Science.gov (United States)

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T; Durrant, James R

    2015-10-15

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  5. Ex situ protection of the European mudminnow (Umbra krameri Walbaum, 1792: Spawning substrate preference for larvae rearing under controlled conditions

    Directory of Open Access Journals (Sweden)

    Kucska Balázs

    2016-01-01

    Full Text Available Captive breeding programs of endangered fish species, such as the European mudminnow Umbra krameri, are essential for population restoration. To improve captive spawning and larvae rearing under controlled conditions, two experiments were carried out. In the first, the spawning substrate preference was tested in triplicate, where five different types of artificial surface were provided for mudminnow pairs:(isand, (iiartificial plants, (iiigravel, (ivsand + artificial plants and(vgravel + artificial plants. All fish preferred the gravel + artificial plant combination, which indicates that this type of surface could be the most appropriate for spawning in captivity. In the second trial, three feeding protocols were tested in triplicate under controlled conditions. In the first treatment fish were fed exclusively with Artemia nauplii; in the second treatment fish were fed with Artemiafor the first ten days then Artemia was gradually replaced with dry feed; for the third group the transition period started after 5 days of Artemia feeding. Although the survival rate of larvae could be maintained at a high level in some of the feeding protocols, a strong decrease in the growth rate was obvious in all diets containing dry food, which means that live food is essential for the first three weeks of mudminnow larvae rearing.

  6. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions

    OpenAIRE

    Tomer, D.; Rajput, S.; Hudy, L. J.; Li, C. H.; Li, L.

    2015-01-01

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer graphene onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decr...

  7. Growth-temperature- and thermal-anneal-induced crystalline reorientation of aluminum on GaAs (100) grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Xiang, N.

    2007-01-01

    The authors investigated the growth of Al thin films on GaAs (100) substrates by molecular beam epitaxy. It is found that the growth at 550 degree sign C results in a texture that consists of (100)Al[010](parallel sign)(100)GaAs[011] and (100)Al[010](parallel sign)(100)GaAs[010] rotated 45 degree sign with respect to each other, while the growth at 300 degree sign C leads to a mixture phase of (100)Al[010](parallel sign)(100)GaAs[011] and (110)Al[001](parallel sign)(100)GaAs[011]. In situ annealing of the Al film grown at 300 degree sign C causes a reorientation of the crystalline from (100)Al[010](parallel sign)(100)GaAs[011] to (110)Al[001](parallel sign)(100)GaAs[011]. The grain sizes of the Al film are increased by the increased growth temperature and in situ annealing; the ratio of the exposed to the covered surface is not changed significantly by changing the growth temperature but decreased by annealing; and the small islands in between the large ones are removed by annealing. These observations are explained based on island migration and coalescence

  8. In situ transmission electron microscopy analyses of thermally annealed self catalyzed GaAs nanowires grown by molecular beam epitaxy

    DEFF Research Database (Denmark)

    Ambrosini, S.; Wagner, Jakob Birkedal; Booth, Tim

    2011-01-01

    Self catalyzed GaAs nanowires grown on Si-treated GaAs substrates were studied with a transmission electron microscope before and after annealing at 600◦C. At room temperature the nanowires have a zincblende structure and are locally characterized by a high density of rotational twins and stacking...... faults. Selected area diffraction patterns and high-resolution transmission electron microscopy images show that nanowires undergo structural modifications upon annealing, suggesting a decrease of defect density following the thermal treatment....

  9. Terahertz emission from semi-insulating GaAs with octadecanthiol-passivated surface

    International Nuclear Information System (INIS)

    Wu, Xiaojun; Xu, Xinlong; Lu, Xinchao; Wang, Li

    2013-01-01

    Terahertz (THz) emission from octadecanthiol (ODT) passivated (1 0 0) surface of the semi-insulating GaAs was measured, and compared with those from the native oxidized and the fresh surfaces. It was shown that the self-assembled ODT monolayer can stabilize the GaAs (1 0 0) surface, and maintain a THz surface emission 1.4 times as efficient as the native oxidized surface under equal conditions. Surface passivation can reduce the built-in electric field in the depletion region of the GaAs (1 0 0), resulting in the suppression of the THz radiation to a different extent. Oxidation of GaAs surface reduces the THz amplitude mainly in the low-frequency region. These results indicate that GaAs can be made a more effective THz source by choosing molecular passivation technique. Conversely, the THz emission features such as polarity, amplitude, and phase from molecule-passivated surfaces may be used to characterize the attached molecules.

  10. Effects of surface passivation on twin-free GaAs nanosheets.

    Science.gov (United States)

    Arab, Shermin; Chi, Chun-Yung; Shi, Teng; Wang, Yuda; Dapkus, Daniel P; Jackson, Howard E; Smith, Leigh M; Cronin, Stephen B

    2015-02-24

    Unlike nanowires, GaAs nanosheets exhibit no twin defects, stacking faults, or dislocations even when grown on lattice mismatched substrates. As such, they are excellent candidates for optoelectronic applications, including LEDs and solar cells. We report substantial enhancements in the photoluminescence efficiency and the lifetime of passivated GaAs nanosheets produced using the selected area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). Measurements are performed on individual GaAs nanosheets with and without an AlGaAs passivation layer. Both steady-state photoluminescence and time-resolved photoluminescence spectroscopy are performed to study the optoelectronic performance of these nanostructures. Our results show that AlGaAs passivation of GaAs nanosheets leads to a 30- to 40-fold enhancement in the photoluminescence intensity. The photoluminescence lifetime increases from less than 30 to 300 ps with passivation, indicating an order of magnitude improvement in the minority carrier lifetime. We attribute these enhancements to the reduction of nonradiative recombination due to the compensation of surface states after passivation. The surface recombination velocity decreases from an initial value of 2.5 × 10(5) to 2.7 × 10(4) cm/s with passivation.

  11. Improvements of MCT MBE Growth on GaAs

    Science.gov (United States)

    Ziegler, J.; Wenisch, J.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Lutz, H.; Wollrab, R.

    2014-08-01

    In recent years, continuous progress has been published in the development of HgCdTe (MCT) infrared (IR) focal plane arrays (FPAs) fabricated by molecular beam epitaxy on GaAs substrates. In this publication, further characterization of the state-of-the art 1280 × 1024 pixel, 15- μm pitch detector fabricated from this material in both the mid-wavelength (MWIR) and long-wavelength (LWIR) IR region will be presented. For MWIR FPAs, the percentage of defective pixel remains below 0.5% up to an operating temperature ( T OP) of around 100 K. For the LWIR FPA, an operability of 99.25% was achieved for a T OP of 76 K. Additionally, the beneficial effect of the inclusion of MCT layers with a graded composition region was investigated and demonstrated on current-voltage ( IV) characteristics on test diodes in a MWIR FPA.

  12. Nitride surface passivation of GaAs nanowires: impact on surface state density.

    Science.gov (United States)

    Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L

    2015-01-14

    Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.

  13. Substrate structures for InP-based devices

    International Nuclear Information System (INIS)

    Wanlass, M.W.; Sheldon, P.

    1990-01-01

    A substrate structure for an InP-based semiconductor device having an InP based film is described. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at the opposite end to the InP=based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device

  14. Lifetime measurements by open circuit voltage decay in GaAs and InP diodes

    International Nuclear Information System (INIS)

    Bhimnathwala, H.G.; Tyagi, S.D.; Bothra, S.; Ghandhi, S.K.; Borrego, J.M.

    1990-01-01

    Minority carrier lifetimes in the base of solar cells made in GaAs and InP are measured by open circuit voltage decay method. This paper describes the measurement technique and the conditions under which the minority carrier lifetimes can be measured. Minority carrier lifetimes ranging from 1.6 to 34 ns in InP of different doping concentrations are measured. A minority carrier lifetime of 6 ns was measured in n-type GaAs which agrees well with the lifetime of 5.7 ns measured by transient microwave reflection

  15. Inducer-independent production of pectinases in Aspergillus niger by overexpression of the D-galacturonic acid-responsive transcription factor gaaR.

    Science.gov (United States)

    Alazi, Ebru; Knetsch, Tim; Di Falco, Marcos; Reid, Ian D; Arentshorst, Mark; Visser, Jaap; Tsang, Adrian; Ram, Arthur F J

    2018-03-01

    The transcription factor GaaR is needed for the expression of genes required for pectin degradation and transport and catabolism of the main degradation product, D-galacturonic acid (GA) in Aspergillus niger. In this study, we used the strong constitutive gpdA promoter of Aspergillus nidulans to overexpress gaaR in A. niger. Overexpression of gaaR resulted in an increased transcription of the genes encoding pectinases, (putative) GA transporters, and catabolic pathway enzymes even under non-inducing conditions, i.e., in the absence of GA. Exoproteome analysis of a strain overexpressing gaaR showed that this strain secretes highly elevated levels of pectinases when grown in fructose. The genes encoding exo-polygalacturonases were found to be subjected to CreA-mediated carbon catabolite repression, even in the presence of fructose. Deletion of creA in the strain overexpressing gaaR resulted in a further increase in pectinase production in fructose. We showed that GaaR localizes mainly in the nucleus regardless of the presence of an inducer, and that overexpression of gaaR leads to an increased concentration of GaaR in the nucleus.

  16. Diffraction anomalous fine-structure study of strained Ga1-xInxAs on GaAs(001)

    International Nuclear Information System (INIS)

    Woicik, J.C.; Cross, J.O.; Bouldin, C.E.; Ravel, B.; Pellegrino, J.G.; Steiner, B.; Bompadre, S.G.; Sorensen, L.B.; Miyano, K.E.; Kirkland, J.P.

    1998-01-01

    Diffraction anomalous fine-structure measurements performed at both the Ga and As K edges have determined the Ga-As bond length to be 2.442±0.005thinsp Angstrom in a buried, 213-Angstrom-thick Ga 0.785 In 0.215 As layer grown coherently on GaAs(001). This bond length corresponds to a strain-induced contraction of 0.013±0.005thinsp Angstrom relative to the Ga-As bond length in bulk Ga 1-x In x As of the same composition. Together with recent extended x-ray-absorption fine-structure measurements performed at the In K edge [Woicik et al., Phys. Rev. Lett. 79, 5026 (1997)], excellent agreement is found with the uniform bond-length distortion model for strained-layer semiconductors on (001) substrates. copyright 1998 The American Physical Society

  17. Scanning tunneling spectroscopy of CdSe nanocrystals covalently bound to GaAs

    DEFF Research Database (Denmark)

    Walzer, K.; Marx, E.; Greenham, N.C.

    2003-01-01

    We present scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements of CdSe nanocrystals covalently attached to doped GaAs substrates using monolayers of 1,6-hexanedithiol. STM measurements showed the formation of stable, densely packed, homogeneous monolayers...... of nanocrystals. STS measurements showed rectifying behaviour, with high currents at the opposite sample bias to that previously observed for CdSe nanocrystals adsorbed on Si substrates. We explain the rectifying behaviour by considering the interaction between the electronic states of the nanocrystals...

  18. Antisites and anisotropic diffusion in GaAs and GaSb

    KAUST Repository

    Tahini, H. A.; Bracht, H.; Chroneos, Alexander; Grimes, R. W.; Murphy, S. T.; Schwingenschlö gl, Udo

    2013-01-01

    The significant diffusion of Ga under Ga-rich conditions in GaAs and GaSb is counter intuitive as the concentration of Ga vacancies should be depressed although Ga vacancies are necessary to interpret the experimental evidence for Ga transport

  19. Temperature and 8 MeV electron irradiation effects on GaAs solar cells

    Indian Academy of Sciences (India)

    GaAs solar cells hold the record for the highest single band-gap cell efficiency. Successful application of these cells in advanced space-borne systems demand characterization of cell properties like dark current under different ambient conditions and the stability of the cells against particle irradiation in space. In this paper ...

  20. Mechanical response of wall-patterned GaAs surface

    International Nuclear Information System (INIS)

    Le Bourhis, E.; Patriarche, G.

    2005-01-01

    Wall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 1-25 mN depending on the aspect ratio of the walls. A central plastic zone criterion is proposed in view of transmission electron microscopy images of indented walls and allows the prediction of the response deviation of a given wall if its width is known. The mechanical response of the different types of walls is further investigated in terms of stiffness, total penetration of indenter and apparent hardness, and is scanned in relation to the proximity of a wall side. Overall results show that contact stiffness remains almost unaffected by aspect ratio, while penetration drastically increases because of the free sides of the wall as compared to a flat surface (bulk substrate). The application of substrate patterning for optoelectronic devices is discussed in the perspective of eliminating residual dislocations appearing in mismatched structures

  1. Lateral n-p-n bipolar transistors by ion implantation into semi-insulating GaAs

    International Nuclear Information System (INIS)

    Canfield, P.; Forbes, L.

    1988-01-01

    GaAs bipolar transistors have not seen the major development effort that GaAs MESFETs have due primarily to the short minority carrier lifetimes in GaAs. The short minority carrier lifetimes require that the base region be very thin which, if done by implantation, requires that the doping be high to obtain a well defined base profile. These requirements are very difficult to achieve in GaAs and typically, if high current gain and high speed are desired for a bipolar technology, then heterostructure bipolars are the appropriate technology, although the cost of heterostructure devices will be prohibitive for some time to come. For applications requiring low current gain, more modest fabrication rules can be followed. Lateral bipolars are particularly attractive since they would be easier to fabricate than a planar bipolar or a heterojunction bipolar. Lateral bipolars do not require steps or deep contacts to make contact with the subcollector or highly doped very thin epilayers for the base region and they can draw upon the semi-insulating properties of the GaAs substrates for device isolation. Bipolar transistors are described and shown to work successfully. (author)

  2. Solvent-mediated self-assembly of hexadecanethiol on GaAs (0 0 1)

    International Nuclear Information System (INIS)

    Huang, Xiaohuan; Dubowski, Jan J.

    2014-01-01

    Graphical abstract: - Highlights: • Outstanding quality hexadecanethiol self-assembled monolayers (HDT SAM) produced on GaAs (0 0 1) due to the mediated role of water in an alcoholic environment. • HDT SAM formed in chloroform exhibit excellent electronic passivation properties in contrast to their structural characteristics. • Low dielectric constant solvents do not necessary provide conditions advantageous for the formation of high quality alkanethiol SAM. • Photoluminescence emitting materials allow to investigate the mechanisms of both electronic and chemical passivation and, thus, they are an excellent platform for studying the mechanisms of SAM formation on solid substrates. - Abstract: We have investigated the influence of solvents on the quality of hexadecanethiol (HDT) self-assembled monolayers (SAM) formed on GaAs (0 0 1) in chloroform, ethanol and ethanol/water 1:1 characterized by their increasing dielectric constants from 4.8 (chloroform) to 24.5 (ethanol) and water (80.1). Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) data show that the incubation in ethanol/water 1:1 solution creates conditions favouring inter-molecular interaction leading to the formation of an outstanding quality HDT SAM on GaAs (0 0 1). Incubation in low-dielectric constant solvents is not offering advantageous conditions for growing HDT SAM on GaAs. The chloroform environment, while weakening the thiol–thiol interaction, induces the oxidation of the GaAs surface and, in particular, formation of Ga 2 O 3 . This reduces the concentration of surface defects responsible for non-radiative recombination and leads to an enhanced photoluminescence emission, despite the fact that HDT SAM formed in chloroform are highly disordered, exhibiting the worst chemical passivation among the investigated samples

  3. Heterojunction Diodes and Solar Cells Fabricated by Sputtering of GaAs on Single Crystalline Si

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2015-04-01

    Full Text Available This work reports fabrication details of heterojunction diodes and solar cells obtained by sputter deposition of amorphous GaAs on p-doped single crystalline Si. The effects of two additional process steps were investigated: A hydrofluoric acid (HF etching treatment of the Si substrate prior to the GaAs sputter deposition and a subsequent annealing treatment of the complete layered system. A transmission electron microscopy (TEM exploration of the interface reveals the formation of a few nanometer thick SiO2 interface layer and some crystallinity degree of the GaAs layer close to the interface. It was shown that an additional HF etching treatment of the Si substrate improves the short circuit current and degrades the open circuit voltage of the solar cells. Furthermore, an additional thermal annealing step was performed on some selected samples before and after the deposition of an indium tin oxide (ITO film on top of the a-GaAs layer. It was found that the occurrence of surface related defects is reduced in case of a heat treatment performed after the deposition of the ITO layer, which also results in a reduction of the dark saturation current density and resistive losses.

  4. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies.

    Science.gov (United States)

    Yoon, Jongseung; Jo, Sungjin; Chun, Ik Su; Jung, Inhwa; Kim, Hoon-Sik; Meitl, Matthew; Menard, Etienne; Li, Xiuling; Coleman, James J; Paik, Ungyu; Rogers, John A

    2010-05-20

    Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.

  5. Analysis of GAA/TTC DNA triplexes using nuclear magnetic resonance and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Mariappan, S V Santhana; Cheng, Xun; van Breemen, Richard B; Silks, Louis A; Gupta, Goutam

    2004-11-15

    The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.

  6. Doping assessment in GaAs nanowires

    DEFF Research Database (Denmark)

    Goktas, N. Isik; Fiordaliso, Elisabetta Maria; LaPierre, R. R.

    2018-01-01

    Semiconductor nanowires (NWs) are a candidate technology for future optoelectronic devices. One of the critical issues in NWs is the control of impurity doping for the formation of p-n junctions. In this study, beryllium (p-type dopant) and tellurium (n-type dopant) in self-assisted GaAs NWs...

  7. GaAs optoelectronic neuron arrays

    Science.gov (United States)

    Lin, Steven; Grot, Annette; Luo, Jiafu; Psaltis, Demetri

    1993-01-01

    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10,000/sq cm are discussed.

  8. GaAs Solar Cells on V-Grooved Silicon via Selective Area Growth: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vaisman, Michelle [Yale University; Li, Qiang [Hong Kong University of Science and Technology; Lau, Kei May [Hong Kong University of Science and Technology

    2017-08-31

    Interest in integrating III-Vs onto Si has recently resurged as a promising pathway towards high-efficiency, low-cost tandem photovoltaics. Here, we present a single junction GaAs solar cell grown monolithically on polished Si (001) substrates using V-grooves, selective area growth, and aspect ratio trapping to mitigate defect formation without the use of expensive, thick graded buffers. The GaAs is free of antiphase domains and maintains a relatively low TDD of 4x107 cm-2, despite the lack of a graded buffer. This 6.25 percent-efficient demonstration solar cell shows promise for further improvements to III-V/Si tandems to enable cost-competitive photovoltaics.

  9. Formation of columnar (In,Ga)As quantum dots on GaAs(100)

    International Nuclear Information System (INIS)

    He, J.; Noetzel, R.; Offermans, P.; Koenraad, P.M.; Gong, Q.; Hamhuis, G.J.; Eijkemans, T.J.; Wolter, J.H.

    2004-01-01

    Columnar (In,Ga)As quantum dots (QDs) with homogeneous composition and shape in the growth direction are realized by molecular-beam epitaxy on GaAs(100) substrates. The columnar (In,Ga)As QDs are formed on InAs seed QDs by alternating deposition of thin GaAs intermediate layers and monolayers of InAs with extended growth interruptions after each layer. The height of the columnar (In,Ga)As QDs is controlled by varying the number of stacked GaAs/InAs layers. The structural and optical properties are studied by cross-sectional scanning tunneling microscopy, atomic force microscopy, and photoluminescence spectroscopy. With increase of the aspect ratio of the columnar QDs, the emission wavelength is redshifted and the linewidth is reduced

  10. Annealing of low-temperature GaAs studied using a variable energy positron beam

    International Nuclear Information System (INIS)

    Keeble, D.J.; Umlor, M.T.; Asoka-Kumar, P.; Lynn, K.G.; Cooke, P.W.

    1993-01-01

    The annihilation characteristics of monoenergetic positrons implanted in a molecular beam epitaxy layer of low-temperature (LT) GaAs annealed at temperatures from 300 to 600 degree C were measured. A gallium vacancy concentration of approximately 3x10 17 cm -3 is inferred for the as-grown material. The S parameter increased significantly upon anneal to 500 degree C. The dominant positron traps in samples annealed at and below 400 degree C are distinct from those acting for samples annealed to 500 or 600 degree C. The change in S parameter for the 600 degree C annealed sample compared to the GaAs substrate, S LT,600 =1.047S sub , is consistent with divacancies or larger open volume defects

  11. Potential use of the facultative halophyte Chenopodium quinoa Willd. as substrate for biogas production cultivated with different concentrations of sodium chloride under hydroponic conditions.

    Science.gov (United States)

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-03-01

    This project analyses the biogas potential of the halophyte Chenopodium quinoa Willd. In a first approach C. quinoa was grown with different concentrations of NaCl (0, 10 and 20 ppt NaCl) and the crop residues were used as substrate for biogas production. In a second approach, C. quinoa was grown with 0, 10, 20 and 30 ppt NaCl under hydroponic conditions and the fresh biomass was used as substrate. The more NaCl is in the culture medium, the higher the sodium, potassium, crude ash and hemicellulose content in the plant tissue whereas the calcium, sulfur, nitrogen and carbon content in the biomass decrease. According to this study, it is possible to produce high yields of methane using biomass of C. quinoa. The highest specific methane yields were obtained using the substrate from the plants cultivated at 10 and 20 ppt NaCl in both experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. High-resolution X-ray diffraction characterisation of piezoelectric InGaAs / GaAs multiquantum wells and superlattices on (111)B GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Hervas, A.; Aguilar, M. [Madrid, Univ. (Spain). Dept. Tecnologia Electronica. E.T.S.I. Telecomunicacion; Lopez, M.; Llorente, C.; Lorenzo, R.; Abril, E. J. [Valladolid, Real de Burgos Univ. (Spain). Dept. Teoria de la Senal u Comunicaciones e Ingegneria Telematica. E.T.S.I. Telecomunicacion; Sacedon, A.; Sanchez, J. L.; Calleja, E.; Munoz, E. [Madrid, Univ. (Spain). Dept. Ingegnieria Electronica. E.T.S.I. Telecomunicacion

    1997-02-01

    In this paper the authors show some examples of strained InGaAs / GaAs multilayers on (111)B GaAs substrates studied by high-resolution X-ray diffractometry. The samples consisted of a multiquantum well or superlattice embedded in the intrinsic region of a p-i-n photodiode. They have analysed piezoelectric (111)B structures with 3, 7, 10, and 40 periods and different indium contents and compared the results with identical structures simultaneously grown on (001) substrates. The interpretation of the diffraction profiles has been carried out with a computer simulation model developed in our labs, which allows the calculation of symmetric and asymmetric reflections regardless of the substrate orientation or miscut angle. The agreement between the experimental scans and the theory was very satisfactory in all the samples, which has enabled us to determine the main structural parameters of the diodes, Asymmetric 224{+-} reflections on (111)B structures have been simulated for the first time. They have also compared the structural parameters obtained by high-resolution X-ray diffractometry with the results deduced from photoluminescence and photocurrent spectroscopies.

  13. High-resolution X-ray diffraction characterisation of piezoelectric InGaAs / GaAs multiquantum wells and superlattices on (111)B GaAs

    International Nuclear Information System (INIS)

    Sanz-Hervas, A.; Aguilar, M.; Lopez, M.; Llorente, C.; Lorenzo, R.; Abril, E. J.; Sacedon, A.; Sanchez, J. L.; Calleja, E.; Munoz, E.

    1997-01-01

    In this paper the authors show some examples of strained InGaAs / GaAs multilayers on (111)B GaAs substrates studied by high-resolution X-ray diffractometry. The samples consisted of a multiquantum well or superlattice embedded in the intrinsic region of a p-i-n photodiode. They have analysed piezoelectric (111)B structures with 3, 7, 10, and 40 periods and different indium contents and compared the results with identical structures simultaneously grown on (001) substrates. The interpretation of the diffraction profiles has been carried out with a computer simulation model developed in our labs, which allows the calculation of symmetric and asymmetric reflections regardless of the substrate orientation or miscut angle. The agreement between the experimental scans and the theory was very satisfactory in all the samples, which has enabled us to determine the main structural parameters of the diodes, Asymmetric 224± reflections on (111)B structures have been simulated for the first time. They have also compared the structural parameters obtained by high-resolution X-ray diffractometry with the results deduced from photoluminescence and photocurrent spectroscopies

  14. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in ``avalanche`` mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into ``avalanche`` mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  15. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  16. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1990-01-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential of GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into an avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large are (1 sq cm) and small area (<1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs., 11 figs.

  17. Subnanosecond photoconductive switching in GaAs

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in 'avalanche' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into 'avalanche' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (less than 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300-1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on, and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation.

  18. Design and characterisation of high electron mobility transistors for use in a monolithic GaAs X-ray imaging sensor

    International Nuclear Information System (INIS)

    Boardman, D.A.; Sellin, P.J.

    2001-01-01

    A new design of monolithic GaAs pixel detector is proposed for medical and synchrotron applications. In this device a semi-insulating GaAs wafer will be used as both the detector element and the substrate for the integrated charge readout matrix. The charge readout matrix consists of High Electron Mobility Transistors (HEMTs), which are grown epitaxially onto the GaAs substrate. Experimental characterisation of HEMTs has been carried out and their suitability for the proposed imaging device is assessed. Temperature measurements on initial devices showed the threshold voltage to be stable from room temperature down to -15 degree sign C. HEMT designs with lower leakage current that operate in enhancement mode have been fabricated and modelled using the Silvaco simulation package. These optimised devices have been fabricated using a gate recess, and exhibit enhancement mode operation and significantly reduced gate leakage currents

  19. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  20. Experimental and Simulated Investigations of Thin Polymer Substrates with an Indium Tin Oxide Coating under Fatigue Bending Loadings

    Directory of Open Access Journals (Sweden)

    Jiong-Shiun Hsu

    2016-08-01

    Full Text Available Stress-induced failure is a critical concern that influences the mechanical reliability of an indium tin oxide (ITO film deposited on a transparently flexible polyethylene terephthalate (PET substrate. In this study, a cycling bending mechanism was proposed and used to experimentally investigate the influences of compressive and tensile stresses on the mechanical stability of an ITO film deposited on PET substrates. The sheet resistance of the ITO film, optical transmittance of the ITO-coated PET substrates, and failure scheme within the ITO film were measured to evaluate the mechanical stability of the concerned thin films. The results indicated that compressive and tensile stresses generated distinct failure schemes within an ITO film and both led to increased sheet resistance and optical transmittance. In addition, tensile stress increased the sheet resistance of an ITO film more easily than compressive stress did. However, the influences of both compressive and tensile stress on increased optical transmittance were demonstrated to be highly similar. Increasing the thickness of a PET substrate resulted in increased sheet resistance and optical transmittance regardless of the presence of compressive or tensile stress. Moreover, J-Integral, a method based on strain energy, was used to estimate the interfacial adhesion strength of the ITO-PET film through the simulation approach enabled by a finite element analysis.

  1. Adaptation of continuous biogas reactors operating under wet fermentation conditions to dry conditions with corn stover as substrate.

    Science.gov (United States)

    Kakuk, Balázs; Kovács, Kornél L; Szuhaj, Márk; Rákhely, Gábor; Bagi, Zoltán

    2017-08-01

    Corn stover (CS) is the agricultural by-product of maize cultivation. Due to its high abundance and high energy content it is a promising substrate for the bioenergy sector. However, it is currently neglected in industrial scale biogas plants, because of its slow decomposition and hydrophobic character. To assess the maximum biomethane potential of CS, long-term batch fermentations were carried out with various substrate concentrations and particle sizes for 72 days. In separate experiments we adapted the biogas producing microbial community in wet fermentation arrangement first to the lignocellulosic substrate, in Continuous Stirred Tank Reactor (CSTR), then subsequently, by continuously elevating the feed-in concentration, to dry conditions in solid state fermenters (SS-AD). In the batch tests, the CSTR experiment, the daily substrate loading was gradually increased from 1 to 2 g vs /L/day until the system produced signs of overloading. Then the biomass was transferred to SS-AD reactors and the adaptation process was studied. Although the specific methane yields were lower in the SS-AD arrangement (177 mL CH 4 /g vs in CSTR vs. 105 mL in SS-AD), the benefits of process operational parameters, i.e. lower energy consumption, smaller reactor volume, digestate amount generated and simpler configuration, may compensate the somewhat lower yield. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Sn nanothreads in GaAs: experiment and simulation

    Science.gov (United States)

    Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.

    2016-12-01

    The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.

  3. EFFECT OF DIFFERENT SUBSTRATES ON THE GROWTH AND YIELD OF TOMATO (Lycopersicum esculentum Mill UNDER GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Luis Daniel Ortega-Martínez

    2010-09-01

    Full Text Available The tomato (Lycopersicum esculentum Mill is the world's second most important vegetable. In Mexico, the crop gains economic and social relevance by the generation of foreign exchange and jobs, the production systems of this vegetable have been diversified in order to increase performance, incorporating innovative technologies such as plastic covers, drop irrigation and hydroponics. One of the main factors determining the success of the crop is the substrate, being the medium in which roots were developed which have great influence on the growth and development. In thisstudy, we evaluated during the crop season 2008-2009, the effect of substrate: pine sawdust, compost of sheep manure, agricultural land and red volcanic rock, on growth and yield of tomato. The experimental design used was randomized complete block with four repetitions and ten treatments were evaluated results from a combination of substrates in a volume of 1:1, each experimental unit consisted of four plants, the studied variables were subjected to an analysis of variance (ANOVA using the statistical package Statistical Package for the Social Sciences (SPSS. The genotype used was Sun 7705. Significant differences between substrates, composting with sawdust mixing affected to a greater response for the variables height 4.61 m, 2.1 cm thick of stem, the fruits of greater weight 107.8 g, yield per plant and 4 kg and 25 kg/m-2. However, the number of flowers and clusters was higher in the sawdust substrate, so the composting with sawdust mixture may be a viable option for greenhouse tomato production.

  4. The TDDB Characteristics of Ultra-Thin Gate Oxide MOS Capacitors under Constant Voltage Stress and Substrate Hot-Carrier Injection

    Directory of Open Access Journals (Sweden)

    Jingyu Shen

    2018-01-01

    Full Text Available The breakdown characteristics of ultra-thin gate oxide MOS capacitors fabricated in 65 nm CMOS technology under constant voltage stress and substrate hot-carrier injection are investigated. Compared to normal thick gate oxide, the degradation mechanism of time-dependent dielectric breakdown (TDDB of ultra-thin gate oxide is found to be different. It is found that the gate current (Ig of ultra-thin gate oxide MOS capacitor is more likely to be induced not only by Fowler-Nordheim (F-N tunneling electrons, but also by electrons surmounting barrier and penetrating electrons in the condition of constant voltage stress. Moreover it is shown that the time to breakdown (tbd under substrate hot-carrier injection is far less than that under constant voltage stress when the failure criterion is defined as a hard breakdown according to the experimental results. The TDDB mechanism of ultra-thin gate oxide will be detailed. The differences in TDDB characteristics of MOS capacitors induced by constant voltage stress and substrate hot-carrier injection will be also discussed.

  5. Electric field effect of GaAs monolayer from first principles

    Directory of Open Access Journals (Sweden)

    Jiongyao Wu

    2017-03-01

    Full Text Available Using first-principle calculations, we investigate two-dimensional (2D honeycomb monolayer structures composed of group III-V binary elements. It is found that such compound like GaAs should have a buckled structure which is more stable than graphene-like flat structure. This results a polar system with out-of-plane dipoles arising from the non-planar structure. Here, we optimized GaAs monolayer structure, then calculated the electronic band structure and the change of buckling height under external electric field within density functional theory using generalized gradient approximation method. We found that the band gap would change proportionally with the electric field magnitude. When the spin-orbit coupling (SOC is considered, we revealed fine spin-splitting at different points in the reciprocal space. Furthermore, the valence and conduction bands spin-splitting energies due to SOC at the K point of buckled GaAs monolayers are found to be weakly dependent on the electric field strength. Finally electric field effects on the spin texture and second harmonic generation are discussed. The present work sheds light on the control of physical properties of GaAs monolayer by the applied electric field.

  6. Heat load of a GaAs photocathode in an SRF electron gun

    International Nuclear Information System (INIS)

    Wang Erdong; Zhao Kui; Jorg Kewisch; Ilan Ben-Zvi; Andrew Burrill; Trivini Rao; Wu Qiong; Animesh Jain; Ramesh Gupta; Doug Holmes

    2011-01-01

    A great deal of effort has been made over the last decades to develop a better polarized electron source for high energy physics. Several laboratories operate DC guns with a gallium arsenide photocathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved by using a superconducting radio frequency (SRF) electron gun, which delivers beams of a higher brightness than that from DC guns because the field gradient at the cathode is higher. SRF guns with metal and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since a bulk gallium arsenide (GaAs) photocathode is normal conducting, a problem arises from the heat load stemming from the cathode. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and verification by measuring the quality factor of the gun with and without the cathode at 2 K. We simulate heat generation and flow from the GaAs cathode using the ANSYS program. By following the findings with the heat load model, we designed and fabricated a new cathode holder (plug) to decrease the heat load from GaAs. (authors)

  7. Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope

    Science.gov (United States)

    Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2015-12-01

    In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.

  8. HgCdTe photovoltaic detectors on Si substrates

    International Nuclear Information System (INIS)

    Zanio, K.R.; Bean, R.C.

    1988-01-01

    HgCdTe photovoltaic detectors have been fabricated on Si substrates through intermediate CdTe/GaAs layers. Encapsulation of the GaAs between the CdTe and Si prevents unintentional doping of the HgCdTe by Ga and As. Uniform epitaxial GaAs is grown on three inch diameter Si substrates. Detectors on such large area Si substrates will offer hybrid focal plane arrays whose dimensions are not limited by the difference between the coefficients of thermal expansion of the Si signal processor and the substrate for the HgCdTe detector array. The growth of HgCdTe detectors on the Si signal processors for monolithic focal plane arrays is also considered. 40 references

  9. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation.

    Science.gov (United States)

    Vieira, Fabricio Rocha; Pecchia, John Andrew

    2018-02-01

    Substrate preparation (i.e., composting) for Agaricus bisporus cultivation is the most critical point of mushroom production. Among many factors involved in the composting process, the microbial ecology of the system is the underlying drive of composting and can be influenced by composting management techniques. Pasteurization temperature at the beginning of phase II, in theory, may influence the bacterial community and subsequently the "selectivity" and nutrition of the final substrate. Therefore, this hypothesis was tested by simulation in bioreactors under different pasteurization conditions (57 °C/6 h, 60 °C/2 h, and 68 °C/2 h), simulating conditions adopted by many producers. Bacterial diversity, based on 16S ribosomal RNA obtained by high-throughput sequencing and classified in operational taxonomic units (OTUs), was greater than previously reported using culture-dependent methods. Alpha diversity estimators show a lower diversity of OTUs under a high-temperature pasteurization condition. Bacillales order shows a relatively higher OTU abundance under a high-pasteurization temperature, which also was related to high ammonia emission measurements. On the other hand, beta diversity analysis showed no significantly changes in the bacterial community structure under different conditions. Agaricus bisporus mycelium growth during a standard spawn run period was significantly slower in the compost pasteurized at high temperature. Since the bacterial community structure was not greatly affected by different pasteurization conditions but by-products left (e.g., ammonia) at the end of compost conditioning varied, further studies need to be conducted to determine the functional role of the microbial communities found during substrate preparation for Agaricus bisporus cultivation.

  10. Novel optical and structural properties of porous GaAs formed by anodic etching of n±GaAs in a HF:C_2H_5OH:HCl:H_2O_2:H_2O electrolyte: effect of etching time

    International Nuclear Information System (INIS)

    Naddaf, M.; Saad, M.

    2014-01-01

    Porous GaAs layers have been formed by anodic etching of n±type GaAs (10.0) substrates in a HF:C_2H_5OH:HCl:H_2O_2:H_2O electrolyte. A dramatic impact of etching time on the optical and structural properties of porous GaAs layer is demonstrated. The nano/micro-features of porous GaAs layers are revealed by scanning electron microscopy (SEM) imaging. Two-peak room temperature photoluminescence (PL), "blue-green"and "green-yellow", is obtained in all prepared porous GaAs samples. Proper adjustment of etching time is found to produce a white color layer, instead of the usual dark gray color of porous GaAs. This is found to cause vast enhancement in the intensity of the visible PL in porous GaAs layer. Chemical composition and structural characterization by means of X-ray photoelectron spectroscopic (XPS), X-ray diffraction (XRD), and micro-Raman spectroscopy, confirm that this layer is characterized with monoclinic β-Ga_2O_3 rich surface. Etching time induced-modification of structural and chemical properties of porous GaAs layer is discussed and correlated to its PL behavior. It is inferred that the "blue-green"PL in porous GaAs can be ascribed to different degrees of quantum confinement in GaAs nano crystallites, whereas, the "green-yellow"PL is highly influenced by the As_2O_3 and Ga_2O_3, content in the porous GaAs layer. In addition, the reflectance measurements reveal an anti-refection trend of behavior of porous GaAs layers in the spectral range (500-1,100 nm). (author)

  11. Alloy formation during InAs nanowire growth on GaAs(111)

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, Anton; Saqib, Muhammad; Biermanns, Andreas; Pietsch, Ullrich [Festkoerperphysik, Universitaet Siegen (Germany); Rieger, Torsten; Grap, Thomas; Lepsa, Mihail [Peter Gruenberg Institut 9, Forschungszentrum Juelich (Germany); JARA - Fundamentals of Future Information Technology (Germany)

    2012-07-01

    The growth of semiconductor nanowires has attracted significant interest in recent years due to the possible fabrication of novel semiconductor devices for future electronic and opto-electronic applications. A possible way to obtain nanowires is the growth in molecular beam epitaxy on the (111)B oriented surface of the desired substrate, covered by a thin oxide layer. A crucial parameter in this method is the initial thickness of the oxide layer, often determined by an etching procedure. In this contribution, we report on the structural investigation of InAs nanowires grown on GaAs substrates covered by different oxide-layers using X-ray diffraction. In this contribution, we report on the structural investigation of InAs nanowires grown via an In droplet on GaAs substrates covered by different oxide layers using X-ray diffraction. Using a combination of symmetric and asymmetric X-ray diffraction, we observe that for growth on a defective oxide layer, alloy formation takes place and a large amount of InGaAs is formed, whereas for growth on an initially smooth oxide layer, only pure InAs is formed.

  12. Photovoltaic x-ray detectors based on the GaAs epitaxial structures

    CERN Document Server

    Akhmadullin, R A; Dvoryankina, G G; Dikaev, Y M; Ermakov, M G; Ermakova, O N; Krikunov, A I; Kudryashov, A A; Petrov, A G; Telegin, A A

    2002-01-01

    The new photovoltaic detector of the X-ray radiation is proposed on the basis of the GaAs epitaxial structures, which operates with high efficiency of the charge carriers collection without shift voltage and at the room temperature. The structures are grown by the method of the gas-phase epitaxy on the n sup + -type highly-alloyed substrates. The range of sensitivity to the X-ray radiation is within the range of effective energies from 8 up to 120 keV. The detector maximum response in the current short circuit mode is determined

  13. Stretchable GaAs photovoltaics with designs that enable high areal coverage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongho; Yoon, Jongseung; Park, Sang-Il [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana-Champaign, IL (United States); Wu, Jian [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL (United States); Shi, Mingxing; Liu, Zhuangjian [Institute of High Performance Computing, Singapore (Singapore); Li, Ming [Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL (United States); Department of Engineering Mechanics, Dalian University of Technology, Dalian (China); Huang, Yonggang [Departments of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University, Evanston, IL (United States); Rogers, John A. [Department of Materials Science and Engineering, Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL (United States)

    2011-02-22

    Strategies are presented for achieving, simultaneously, both large areal coverage and high stretchability by using elastomeric substrates with surface relief in geometries that confine strains at the locations of the interconnections, and away from the devices. The studies involve a combination of theory and experiment to reveal the essential mechanics, and include demonstrations of the ideas in stretchable solar modules that use ultrathin, single junction GaAs solar cells. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. The neuronal substrate of risky choice: an insight into the contributions of neuroimaging to the understanding of theories on decision making under risk.

    Science.gov (United States)

    Vorhold, Verena

    2008-04-01

    This chapter provides an overview of studies in the field of neuroscience that investigate some of the processes and concepts of risk perception, risky choice, and decision making under risk. First, early studies in the field of neuroscience addressing the diminished decision-making abilities in lesion patients are presented. A classical task in this research field is described along with its neural implications. After this, the underlying model, its hypotheses, and neuronal implications are discussed. Different aspects within risky decision making, such as the influence of memory, inhibition, motivation, and personality, on risky choice and the respective underlying neuronal substrate are described. After this, studies of risky decision making in healthy subjects are reviewed. A selection of studies shows that theories focusing on cognitive aspects only have to be enriched in order to allow for additional aspects within risky decision making (e.g., emotion). Next, the classical economic approaches and the development of theories incorporating further aspects within economical decision making and the underlying neuronal substrate will be presented. Finally, research in the field of neuroeconomics, focusing on the role of social decision making and evaluative judgment within risky decision making, is reviewed.

  15. Growth of GaAs “nano ice cream cones” by dual wavelength pulsed laser ablation

    Science.gov (United States)

    Schamp, C. T.; Jesser, W. A.; Shivaram, B. S.

    2007-05-01

    Harmonic generation crystals inherently offer the possibility of using multiple wavelengths of light in a single laser pulse. In the present experiment, the fundamental (1064 nm) and second harmonic (532 nm) wavelengths from an Nd:YAG laser are focused together on GaAs and GaSb targets for ablation. Incident energy densities up to about 45 J/cm 2 at 10 Hz with substrate temperatures between 25 and 600 °C for durations of about 60 s have been used in an ambient gas pressure of about 10 -6 Torr. The ablated material was collected on electron-transparent amorphous carbon films for TEM analysis. Apart from a high density of isolated nanocrystals, the most common morphology observed consists of a crystalline GaAs cone-like structure in contact with a sphere of liquid Ga, resembling an "ice cream cone", typically 50-100 nm in length. For all of the heterostuctures of this type, the liquid/solid/vacuum triple junction is found to correspond to the widest point on the cone. These heterostructures likely form by preferential evaporation of As from molten GaAs drops ablated from the target. The resulting morphology minimizes the interfacial and surface energies of the liquid Ga and solid GaAs.

  16. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions.

    Science.gov (United States)

    Lima, M X; Carvalho, K Q; Passig, F H; Borges, A C; Filippe, T C; Azevedo, J C R; Nagalli, A

    2018-07-15

    The present study aimed to assess removal potential of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total ammonia nitrogen (TAN), total phosphorus (TP) and acetylsalicylic acid (ASA) in synthetic wastewater simulating low-strength sewage by sequencing-batch mode constructed wetlands (CWs). Six CWs with three substrates (gravel, light expanded clay and clay bricks) and one CW of each substrate was planted with E. crassipes to verify the feasibility of using a floating macrophyte in CWs and verify the best optimized substrate. Results showed that the presence of E. crassipes enhanced the removal of COD for systems with gravel, increasing the removal efficiency from 37% in the unplanted system (CW G-U ) to 60% in the planted system (CW G-P ). The vegetated CW with clay bricks (CW B-P ) presented the best performance for both TKN and TAN removal, with maximum removal efficiencies of 68% and 35%, respectively. Phosphorus was observed to be efficiently removed in systems with clay bricks, both planted (CW B-U ) and unplanted (CW B-P ), with mean removal efficiencies of 82% and 87%, respectively, probably via adsorption. It was also observed that after 296days of operation, no desorption or increase on phosphorus in effluent samples were observed, thus indicating that the material was not yet saturated and phosphorus probably presents a strong binding to the media. ASA removal efficiency varied from 34% to 92% in CWs, probably due to plant uptake through roots and microbial biodegradation. Plant direct uptake varied from 4 to 74% of the total nitrogen and from 26 to 71% of the total phosphorus removed in CW G-P , CW C-P and CW B-P . E. crassipes was able to uptake up to 4.19g of phosphorus in CW C-P and 11.84g of nitrogen in CW B-P . The findings on this study suggest that E. crassipes could be used in CWs and clay bricks could significantly enhance phosphorus removal capacity in CWs. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The composition and depth of green roof substrates affect the growth of Silene vulgaris and Lagurus ovatus species and the C and N sequestration under two irrigation conditions.

    Science.gov (United States)

    Ondoño, S; Martínez-Sánchez, J J; Moreno, J L

    2016-01-15

    Extensive green roofs are used to increase the surface area covered by vegetation in big cities, thereby reducing the urban heat-island effect, promoting CO2 sequestration, and increasing biodiversity and urban-wildlife habitats. In Mediterranean semi-arid regions, the deficiency of water necessitates the use in these roofs of overall native plants which are more adapted to drought than other species. However, such endemic plants have been used scarcely in green roofs. For this purpose, we tested two different substrates with two depths (5 and 10 cm), in order to study their suitability with regard to adequate plant development under Mediterranean conditions. A compost-soil-bricks (CSB) (1:1:3; v:v:v) mixture and another made up of compost and bricks (CB) (1:4; v:v) were arranged in two depths (5 and 10 cm), in cultivation tables. Silene vulgaris (Moench) Garcke and Lagurus ovatus L. seeds were sown in each substrate. These experimental units were subjected, on the one hand, to irrigation at 40% of the registered evapotranspiration values (ET0) and, on the other, to drought conditions, during a nine-month trial. Physichochemical and microbiological substrate characteristics were studied, along with the physiological and nutritional status of the plants. We obtained significantly greater plant coverage in CSB at 10 cm, especially for L. ovatus (80-90%), as well as a better physiological status, especially in S. vulgaris (SPAD values of 50-60), under irrigation, whereas neither species could grow in the absence of water. The carbon and nitrogen fixation by the substrate and the aboveground biomass were also higher in CSB at 10 cm, especially under L. ovatus - in which 1.32 kg C m(-2) and 209 g N m(-2) were fixed throughout the experiment. Besides, the enzymatic and biochemical parameters assayed showed that microbial activity and nutrient cycling, which fulfill a key role for plant development, were higher in CSB. Therefore, irrigation of 40% can

  18. Panel fabrication utilizing GaAs solar cells

    Science.gov (United States)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  19. Optical pumping of hot phonons in GaAs

    International Nuclear Information System (INIS)

    Collins, C.L.; Yu, P.Y.

    1982-01-01

    Optical pumping of hot LO phonons in GaAs has been studied as a function of the excitation photon frequency. The experimental results are in good agreement with a model calculation which includes both inter- and intra-valley electron-phonon scatterings. The GAMMA-L and GAMMA-X intervalley electron-phonon interactions in GaAs have been estimated

  20. Linearity of photoconductive GaAs detectors to pulsed electrons

    International Nuclear Information System (INIS)

    Ziegler, L.H.

    1995-01-01

    The response of neutron damaged GaAs photoconductor detectors to intense, fast (50 psec fwhm) pulses of 16 MeV electrons has been measured. Detectors made from neutron damaged GaAs are known to have reduced gain, but significantly improved bandwidth. An empirical relationship between the observed signal and the incident electron fluence has been determined

  1. Closure of mass exchange under use of a vegetable conveyer cultivated on a neutral and soil-like substrates as applied to BLSS

    Science.gov (United States)

    Velitchko, Vladimir; Tikhomirov, Alexander; Ushakova, Sofya

    To increase a closure level of mass exchange processes in bioregenerative life support systems (BLSS) including a human a technology of plants cultivation on a soil-like substrate (SLS) consisting in a gradual decomposition of inedible plants biomass under its addition in the SLS was developed at the Institute of Biophysics SB RAS (Russia). In the given work the effect of periodical introduction of inedible plant biomass in the SLS on plants photosynthetic productivity and on the closure of mass exchange has been analyzed. Thereupon CO2 gas exchange and the certain vegetables' productivity under their cultivation in a conveyor regime on the SLS and on a neutral substrate with reference to the closure of mass exchange processes in BLSS have been studied in this work. The vegetables Raphanus sativus L., Brassica caulorapa L. Daucus carota L. and Beta vulgaris L. being prospective plantsrepresentatives of the BLSS phototrophic unit were taken as the research objects. The SLS was taken as an experiment substrate and an expanded clay aggregate as the control. The changeable Knop solution was used for the control, and an irrigation solution with the SLS extract was used for the experiment. Rapidity dynamics of CO2 consumption showed sharp distinctions of the ‘plants-SLS' system from the ‘plantsexpanded clay aggregate' system connected with the oxidation processes coursing in the SLS. The intensity of CO2 evolution from the SLS on average was 70% of the total plants conveyor's respiration. Thus a balance between the system's respiration and photosynthesis was often determined by the processes coursing in the SLS. Here the sharp CO2 evolution was recorded after introduction of the plants inedible biomass in the SLS. That peak was gradually coming down during 10-14 days after the beginning of every cycle of plants cultivation that was connected with intensification of plants photosynthesis and drop of decomposition intensity of the biomass introduced. Comparative

  2. Charge movement in a GaN-based hetero-structure field effect transistor structure with carbon doped buffer under applied substrate bias

    International Nuclear Information System (INIS)

    Pooth, Alexander; Uren, Michael J.; Cäsar, Markus; Kuball, Martin; Martin, Trevor

    2015-01-01

    Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs

  3. A study of the profile of the E3 electron trap in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Kourkoutas, C.D. (TEI Athens (Greece). Dept. of Physics Chemistry and Material Technology); Kovacs, B.; Szentpali, B.; Somogyi, K. (Research Inst. for Technical Physics, Budapest (Hungary)); Euthymiou, P.C. (Athens Univ. (Greece)); Giakoumakis, G.E. (Ioannina Univ. (Greece). Dept. of Physics)

    1994-01-01

    Electron irradiation at room temperature introduces in GaAs a donor type electronic state Tx at 0.18 eV, which is associated with the E3 electron trap. The presence of Tx is observed at depths d > 1.5 [mu]m, which correspond to the limits of the depletion region under the highest applied reverse bias voltage, while the E3 trap concentration drops off into the same region. (author).

  4. A study of the profile of the E3 electron trap in GaAs

    International Nuclear Information System (INIS)

    Kourkoutas, C.D.; Euthymiou, P.C.; Giakoumakis, G.E.

    1994-01-01

    Electron irradiation at room temperature introduces in GaAs a donor type electronic state Tx at 0.18 eV, which is associated with the E3 electron trap. The presence of Tx is observed at depths d > 1.5 μm, which correspond to the limits of the depletion region under the highest applied reverse bias voltage, while the E3 trap concentration drops off into the same region. (author)

  5. Parameters study on the growth of GaAs nanowires on indium tin oxide by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan; Tang, Xiaohong, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn; Li, Xianqiang [OPTIMUS, Photonics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wang, Kai, E-mail: exhtang@ntu.edu.sg, E-mail: wangk@sustc.edu.cn [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, 1088 Xueyuan Avenue, Shenzhen 518055 (China); Olivier, Aurelien [CINTRA UMI 3288, School of Electrical and Electronic Engineering, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, 637553 Singapore (Singapore)

    2016-03-07

    After successful demonstration of GaAs nanowire (NW) epitaxial growth on indium tin oxide (ITO) by metal organic chemical vapor deposition, we systematically investigate the effect of growth parameters' effect on the GaAs NW, including temperature, precursor molar flow rates, growth time, and Au catalyst size. 40 nm induced GaAs NWs are observed with zinc-blende structure. Based on vapor-liquid-solid mechanism, a kinetic model is used to deepen our understanding of the incorporation of growth species and the role of various growth parameters in tuning the GaAs NW growth rate. Thermally activated behavior has been investigated by variation of growth temperature. Activation energies of 40 nm Au catalyst induced NWs are calculated at different trimethylgallium (TMGa) molar flow rates about 65 kJ/mol. The GaAs NWs growth rates increase with TMGa molar flow rates whereas the growth rates are almost independent of growth time. Due to Gibbs-Thomson effect, the GaAs NW growth rates increase with Au nanoparticle size at different temperatures. Critical radius is calculated as 2.14 nm at the growth condition of 430 °C and 1.36 μmol/s TMGa flow rate. It is also proved experimentally that Au nanoparticle below the critical radius such as 2 nm cannot initiate the growth of NWs on ITO. This theoretical and experimental growth parameters investigation enables great controllability over GaAs NWs grown on transparent conductive substrate where the methodology can be expanded to other III–V material NWs and is critical for potential hybrid solar cell application.

  6. Conductive atomic force microscopy study of InAs growth kinetics on vicinal GaAs (110)

    International Nuclear Information System (INIS)

    Tejedor, Paloma; Diez-Merino, Laura; Beinik, Igor; Teichert, Christian

    2009-01-01

    Conductive atomic force microscopy has been used to investigate the effect of atomic hydrogen and step orientation on the growth behavior of InAs on GaAs (110) misoriented substrates. Samples grown by conventional molecular beam epitaxy exhibit higher conductivity on [110]-multiatomic step edges, where preferential nucleation of InAs nanowires takes place by step decoration. On H-terminated substrates with triangular terraces bounded by [115]-type steps, three-dimensional InAs clusters grow selectively at the terrace apices as a result of a kinetically driven enhancement in upward mass transport via AsH x intermediate species and a reduction in the surface free energy.

  7. Molecular beam epitaxial growth mechanism of ZnSe epilayers on (100) GaAs as determined by reflection high-energy electron diffraction, transmission electron microscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, P.; Hommel, D.; Behr, T.; Heinke, H.; Waag, A.; Landwehr, G. (Physikalisches Inst., Univ. Wuerzburg (Germany))

    1994-04-14

    The properties of molecular beam epitaxial growth of ZnSe epilayers deposited directly on a GaAs substrate are compared to those grown on a GaAs buffer layer. The superior quality of the latter is confirmed by RHEED, TEM and X-ray diffraction. Based on RHEED oscillation studies, a model explaining the dependence of the ZnSe growth rate on Zn and Se fluxes and the substrate temperature is developed taking into account physisorbed and chemisorbed states. For partially relaxed epilayers, the correlation between the relaxation state and the crystalline mosaicity, as found by high resolution X-ray diffraction, is discussed

  8. LEC- and VGF-growth of SI GaAs single crystals—recent developments and current issues

    Science.gov (United States)

    Jurisch, M.; Börner, F.; Bünger, Th.; Eichler, St.; Flade, T.; Kretzer, U.; Köhler, A.; Stenzenberger, J.; Weinert, B.

    2005-02-01

    The paper reviews the progress made in crystal growth of semi-insulating GaAs by liquid encapsulation Czochralski and vertical gradient freeze techniques during the last few years under the continuous need for cost reduction of the production process.

  9. Strong coupling between bi-dimensional electron gas and nitrogen localized states in heavily doped GaAs1-xN x structures

    International Nuclear Information System (INIS)

    Hamdouni, A.; Bousbih, F.; Ben Bouzid, S.; Oueslati, M.; Chtourou, R.; Harmand, J.C.

    2005-01-01

    We report a low-temperature photoluminescence spectra (LTPL) of GaAs 1-x N x layers and two-dimension electron gas (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure grown on GaAs substrates by molecular beam epitaxy (MBE) with low nitrogen content [N] = 2 x 10 18 cm -3 . At low temperature, PL spectra of GaAs 1-x N x layers are governed by several features associate to the excitons bound to nitrogen complexes, these features disappear in (2DEG) GaAs 1-x N x /AlGaAs modulation doped heterostructure and the PL peak energy decrease with the laser power excitation. This effect is explained by the strongly coupling of the (2DEG) fundamental state with the nitrogen localized states. An activated energy of about 55 meV is deduced by photoluminescence measurements in the 10-300 K range for a laser power excitation P = 6 W/cm 2

  10. Neural substrates underlying balanced time perspective: A combined voxel-based morphometry and resting-state functional connectivity study.

    Science.gov (United States)

    Guo, Yiqun; Chen, Zhiyi; Feng, Tingyong

    2017-08-14

    Balanced time perspective (BTP), which is defined as a mental ability to switch flexibly among different time perspectives Zimbardo and Boyd (1999), has been suggested to be a central component of positive psychology Boniwell and Zimbardo (2004). BTP reflects individual's cognitive flexibility towards different time frames, which leads to many positive outcomes, including positive mood, subjective wellbeing, emotional intelligence, fluid intelligence, and executive control. However, the neural basis of BTP is still unclear. To address this question, we quantified individual's deviation from the BTP (DBTP), and investigated the neural substrates of DBTP using both voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods VBM analysis found that DBTP scores were positively correlated with gray matter volume (GMV) in the ventral precuneus. We further found that DBTP scores were negatively associated with RSFCs between the ventral precuneus seed region and medial prefrontal cortex (mPFC), bilateral temporoparietal junction (TPJ), parahippocampa gyrus (PHG), and middle frontal gyrus (MFG). These brain regions found in both VBM and RSFC analyses are commonly considered as core nodes of the default mode network (DMN) that is known to be involved in many functions, including episodic and autobiographical memory, self-related processing, theory of mind, and imagining the future. These functions of the DMN are also essential to individuals with BTP. Taken together, we provide the first evidence for the structural and functional neural basis of BTP, and highlight the crucial role of the DMN in cultivating an individual's BTP. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Efficiency of a bagasse substrate in a biological bed system for the degradation of glyphosate, malathion and lambda-cyhalothrin under tropical climate conditions.

    Science.gov (United States)

    de Roffignac, Laure; Cattan, Philippe; Mailloux, Julie; Herzog, David; Le Bellec, Fabrice

    2008-12-01

    After the rinsing of spray equipment, the rinsing water contains polluting products. One way to avoid pollution is to bring the rinsing water over a purification system, a biological bed. The system consists of an impermeable tub filled with a biomix substrate that facilitates biodegradation of pesticides. Usually, straw is one component of the biomix. The objective of this study was to assess the efficiency of an unusual substrate, bagasse, a residue of sugar cane, for the degradation of three pesticides, glyphosate, malathion and lambda-cyhalothrin. Results showed that more than 99% of malathion and glyphosate were degraded in 6 months. In the biological bed, the DT(50) value for malathion was 17 days, for glyphosate 33 days and for lambda-cyhalothrin 43 days. The degradation rate of aminomethylphosphonic acid (AMPA) residues from the degradation of glyphosate was slower than that of the other pesticides (DT(50) 69 days). Finally, the innocuousness of the biomix after 6 months of degradation was confirmed by biological tests. Although the degradation rates of the three pesticides in the present bagasse-based system were similar to those under temperate conditions, the degradation conditions were improved by comparison with those in soil under the given tropical conditions. Further benefits of this system are pesticide confinement, to avoid their dispersion in the environment by liquids or solids, and a lower overall cost. Finally, possibilities for optimising the bagasse-based system (e.g. management of the water content and nature of the biomix) are discussed.

  12. Computational study of GaAs1-xNx and GaN1-yAsy alloys and arsenic impurities in GaN

    International Nuclear Information System (INIS)

    Laaksonen, K; Komsa, H-P; Arola, E; Rantala, T T; Nieminen, R M

    2006-01-01

    We have studied the structural and electronic properties of As-rich GaAs 1-x N x and N-rich GaN 1-y As y alloys in a large composition range using first-principles methods. We have systematically investigated the effect of the impurity atom configuration near both GaAs and GaN sides of the concentration range on the total energies, lattice constants and bandgaps. The N (As) atoms, replacing substitutionally As (N) atoms in GaAs (GaN), cause the surrounding Ga atoms to relax inwards (outwards), making the Ga-N (Ga-As) bond length about 15% shorter (longer) than the corresponding Ga-As (Ga-N) bond length in GaAs (GaN). The total energies of the relaxed alloy supercells and the bandgaps experience large fluctuations within different configurations and these fluctuations grow stronger if the impurity concentration is increased. Substituting As atoms with N in GaAs induces modifications near the conduction band minimum, while substituting N atoms with As in GaN modifies the states near the valence band maximum. Both lead to bandgap reduction, which is at first rapid but later slows down. The relative size of the fluctuations is much larger in the case of GaAs 1-x N x alloys. We have also looked into the question of which substitutional site (Ga or N) As occupies in GaN. We find that under Ga-rich conditions arsenic prefers the substitutional N site over the Ga site within a large range of Fermi level values

  13. Compositional analysis of silicon nitride films on Si and GaAs by backscattering spectrometry and nuclear resonance reaction analysis

    International Nuclear Information System (INIS)

    Kumar, Sanjiv; Raju, V.S.

    2004-01-01

    This paper describes the application of proton and α-backscattering spectrometry for the determination of atomic ratio of Si to N in 1100-5000 A silicon nitride films on Si and GaAs. The conventional α-Rutherford backscattering spectrometry is suitable for the analysis of films on Si; it is rather inadequate for films on GaAs due to higher background from the substrate. It is shown that these films can be analysed by 14 N(α,α) 14 N scattering with 3.5 MeV α-particles. Proton elastic scattering with enhanced cross sections for 28 Si(p,p) 28 Si and 14 N(p,p) 14 N scatterings, is also suitable for analysing films on GaAs. However, the analysis of films on Si by this technique is difficult due to interferences between the signals of Si from the film and the substrate. In addition, the hydrogen content in films is determined by 1 H( 19 F,αγ) 16 O nuclear reaction analysis using the resonance at 6.4 MeV. The combination of backscattering spectrometry with nuclear reaction analysis provides compositional analysis of ternary Si 1-(x+y) N x H y films

  14. Damage related deep electron levels in ion implanted GaAs

    International Nuclear Information System (INIS)

    Allsopp, D.W.E.; Peaker, A.R.

    1986-01-01

    A study has been made of the deep electron levels in semi-insulating GaAs implanted with either 78 Se + or 29 Si + ions and rendered n-type by subsequent annealing without encapsulation in partial pressures of arsenic or arsine. Three implantation related deep states were detected with concentration profiles approximating to the type of Gaussian distributions expected for point defects related to ion implantation damage. Further heat treatment of the samples at 500 0 C in a gas ambient of U 2 /H 2 substantially reduced concentration of these deep levels. Two of these states were thought to be related to displacements of the substrate atoms. The third, at Esubc -0.67 eV, was found in only 78 Se + ion implanted GaAs substrates and was thought to be a defect involving both Se and As atoms, rather than intrinsic lattice disorder. It is proposed that the annealing rate of these implantation related deep levels depends crucially on the in-diffusion of arsenic vacancies during heat treatments. (author)

  15. Design of a GaAs X-ray imaging sensor with integrated HEMT readout circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, D

    2002-01-01

    A new monolithic semi-insulating (SI) GaAs sensor design for X-ray imaging applications between 10-100keV has been proposed. Monolithic pixel detectors offer a number of advantages over hybrid bump-bonded detectors, such as high device yield, low costs and are easier to produce large scale arrays. In this thesis, an investigation is made of the use of a SI GaAs wafer as both a detector element and substrate for the epitaxially grown High Electron Mobility Transistors (HEMTs). The design of the HEMT transistors, optimised for this application, were produced with the aid of the Silvaco 'Virtual Wafer Fab' simulation package. It was determined that the device characteristics would consist of a small positive threshold voltage, a low off-state drain current and high transconductance. The final HEMT transistor design, that would be integrated to a pixel detector, had a threshold voltage of 0.17V, an off-state leakage current of {approx}1nA and a transconductance of 7.4mS. A number of test detectors were characterised using an ion beam induced charge technique. Charge collection efficiency maps of the test detectors were produced to determine their quality as a X-ray detection material. From the results, the inhomogeneity of SI GaAs, homogeneity of epitaxial GaAs and granular nature of polycrystalline GaAs, were observed. The best of these detectors was used in conjunction with a commercial field effect transistor to produce a hybrid device. The charge switching nature of the hybrid device was shown and a sensitivity of 0.44pC/{mu}Gy mm{sup 2}, for a detector bias of 60V, was found. The functionality of the hybrid sensor was the same to that proposed for the monolithic sensor. The fabrication of the monolithic sensor, with an integrated HEMT transistor and external capacitor, was achieved. To reach the next stage of producing a monolithic sensor that integrates charge, requires further work in the design and the fabrication process. (author)

  16. Design of a GaAs X-ray imaging sensor with integrated HEMT readout circuitry

    International Nuclear Information System (INIS)

    Boardman, D.

    2002-01-01

    A new monolithic semi-insulating (SI) GaAs sensor design for X-ray imaging applications between 10-100keV has been proposed. Monolithic pixel detectors offer a number of advantages over hybrid bump-bonded detectors, such as high device yield, low costs and are easier to produce large scale arrays. In this thesis, an investigation is made of the use of a SI GaAs wafer as both a detector element and substrate for the epitaxially grown High Electron Mobility Transistors (HEMTs). The design of the HEMT transistors, optimised for this application, were produced with the aid of the Silvaco 'Virtual Wafer Fab' simulation package. It was determined that the device characteristics would consist of a small positive threshold voltage, a low off-state drain current and high transconductance. The final HEMT transistor design, that would be integrated to a pixel detector, had a threshold voltage of 0.17V, an off-state leakage current of ∼1nA and a transconductance of 7.4mS. A number of test detectors were characterised using an ion beam induced charge technique. Charge collection efficiency maps of the test detectors were produced to determine their quality as a X-ray detection material. From the results, the inhomogeneity of SI GaAs, homogeneity of epitaxial GaAs and granular nature of polycrystalline GaAs, were observed. The best of these detectors was used in conjunction with a commercial field effect transistor to produce a hybrid device. The charge switching nature of the hybrid device was shown and a sensitivity of 0.44pC/μGy mm 2 , for a detector bias of 60V, was found. The functionality of the hybrid sensor was the same to that proposed for the monolithic sensor. The fabrication of the monolithic sensor, with an integrated HEMT transistor and external capacitor, was achieved. To reach the next stage of producing a monolithic sensor that integrates charge, requires further work in the design and the fabrication process. (author)

  17. Optical anisotropy induced by mechanical strain around the fundamental gap of GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Gallegos, J.; Lastras-Martinez, A.; Lastras-Martinez, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Balderas-Navarro, R.E. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico); Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi (Mexico)

    2008-07-01

    We report on a theoretical-experimental study of reflectance anisotropy spectroscopy (RAS) of GaAs (001) crystals under uniaxial stress. The study was carried out in the energy region around the fundamental transition. RAS spectra in the energy range from 1.2-1.7 eV were measured with a photoelastic-modulator-based spectrometer. To induce an optical anisotropy, the GaAs crystals were thinned down to 400 {mu}m and an calibrated uniaxial stress was applied by deflection. RAS showed a line shape consisting of an oscillation at around E{sub 0}. On the basis of a perturbative approach employing the Pikus-Bir Hamiltonian, we calculated the RAS line shape and found a close agreement with the experimental spectra. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Diffusion of $^{56}$Co in GaAs and SiGe alloys

    CERN Multimedia

    Koskelo, O K

    2007-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of cobalt in GaAs and SiGe alloys under intrinsic conditions. In the literature only three previous studies for Co diffusion in GaAs may be found and the results differ by over four orders of magnitude from each other. For Co diffusion in SiGe alloys no previous data is available in the literature. For Co diffusion in Ge one study may be found but the results have been obtained with material having increased dislocation density. For dislocation-free material no previous measurements are available. For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{56}$Co$^{+}$ ion beam.

  19. GaAs nanowire array solar cells with axial p-i-n junctions.

    Science.gov (United States)

    Yao, Maoqing; Huang, Ningfeng; Cong, Sen; Chi, Chun-Yung; Seyedi, M Ashkan; Lin, Yen-Ting; Cao, Yu; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2014-06-11

    Because of unique structural, optical, and electrical properties, solar cells based on semiconductor nanowires are a rapidly evolving scientific enterprise. Various approaches employing III-V nanowires have emerged, among which GaAs, especially, is under intense research and development. Most reported GaAs nanowire solar cells form p-n junctions in the radial direction; however, nanowires using axial junction may enable the attainment of high open circuit voltage (Voc) and integration into multijunction solar cells. Here, we report GaAs nanowire solar cells with axial p-i-n junctions that achieve 7.58% efficiency. Simulations show that axial junctions are more tolerant to doping variation than radial junctions and lead to higher Voc under certain conditions. We further study the effect of wire diameter and junction depth using electrical characterization and cathodoluminescence. The results show that large diameter and shallow junctions are essential for a high extraction efficiency. Our approach opens up great opportunity for future low-cost, high-efficiency photovoltaics.

  20. Produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos Production of yellow melon seedlings in different substrates under protected cultivation

    Directory of Open Access Journals (Sweden)

    Tânia Regina Pelizza

    2013-04-01

    Full Text Available Mudas mal formadas e debilitadas comprometem o desenvolvimento das culturas. O objetivo deste trabalho foi avaliar a produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos. Este trabalho foi conduzido em telado, na Universidade Federal de Pelotas (RS, nos meses de novembro e dezembro. Testaram-se os seguintes substratos: T1 (vermicomposto bovino puro; T2 (substrato comercial Plantmax®; T3 (substrato comercial Húmus Fértil®; T4 (vermicomposto bovino 75% + casca de arroz carbonizada 25% e T5 (solo 75% + vermicomposto bovino 25%. Foram avaliados o índice de velocidade e a percentagem de emergência do 6º ao 9º dia; a altura, o comprimento da raiz principal, a massa seca das raízes e da parte aérea das mudas de meloeiro, aos 27 dias. Os substratos que proporcionaram maior índice de velocidade de emergência das mudas de meloeiro amarelo foram Húmus Fértil®, vermicomposto bovino puro e vermicomposto bovino 75% mais casca de arroz carbonizada 25%. Maior altura da muda é obtida com o substrato Húmus Fértil®. O comprimento da raiz principal foi maior com o uso de vermicomposto bovino puro, Húmus Fértil®, vermicomposto bovino puro mais casca de arroz carbonizada (VB75+CAC25, em comparação com solo 75% mais vermicomposto bovino 25%. A massa seca de raiz foi maior quando utilizado Húmus Fértil®, em comparação com solo 75% mais vermicomposto bovino 25%. É possível utilizar substratos isolados ou em combinação para a produção de mudas de meloeiro amarelo sob cultivo protegido. Porém, deve-se evitar o uso de solo 75% em combinação com vermicomposto bovino 25%.Weak and malformed seedlings compromise the development of the crop. The objective of this study was to evaluate the production of yellow melon seedlings in different substrates under protected cultivation. The experiment was conducted in a greenhouse during November and December, at the Federal University of Pelotas (RS. The following

  1. GaSb solar cells grown on GaAs via interfacial misfit arrays for use in the III-Sb multi-junction cell

    Science.gov (United States)

    Nelson, George T.; Juang, Bor-Chau; Slocum, Michael A.; Bittner, Zachary S.; Laghumavarapu, Ramesh B.; Huffaker, Diana L.; Hubbard, Seth M.

    2017-12-01

    Growth of GaSb with low threading dislocation density directly on GaAs may be possible with the strategic strain relaxation of interfacial misfit arrays. This creates an opportunity for a multi-junction solar cell with access to a wide range of well-developed direct bandgap materials. Multi-junction cells with a single layer of GaSb/GaAs interfacial misfit arrays could achieve higher efficiency than state-of-the-art inverted metamorphic multi-junction cells while forgoing the need for costly compositionally graded buffer layers. To develop this technology, GaSb single junction cells were grown via molecular beam epitaxy on both GaSb and GaAs substrates to compare homoepitaxial and heteroepitaxial GaSb device results. The GaSb-on-GaSb cell had an AM1.5g efficiency of 5.5% and a 44-sun AM1.5d efficiency of 8.9%. The GaSb-on-GaAs cell was 1.0% efficient under AM1.5g and 4.5% at 44 suns. The lower performance of the heteroepitaxial cell was due to low minority carrier Shockley-Read-Hall lifetimes and bulk shunting caused by defects related to the mismatched growth. A physics-based device simulator was used to create an inverted triple-junction GaInP/GaAs/GaSb model. The model predicted that, with current GaSb-on-GaAs material quality, the not-current-matched, proof-of-concept cell would provide 0.5% absolute efficiency gain over a tandem GaInP/GaAs cell at 1 sun and 2.5% gain at 44 suns, indicating that the effectiveness of the GaSb junction was a function of concentration.

  2. Shear deformation and relaxed lattice constant of (Ga,Mn)As layers on GaAs(113)A

    Energy Technology Data Exchange (ETDEWEB)

    Dreher, Lukas; Daeubler, Joachim; Glunk, Michael; Schoch, Wladimir; Limmer, Wolfgang; Sauer, Rolf [Institut fuer Halbleiterphysik, Universitaet Ulm, D-89069 Ulm (Germany)

    2008-07-01

    The shear deformation and the relaxed lattice constant of compressively strained (Ga,Mn)As layers with Mn concentrations of up to 5%, pseudomorphically grown on GaAs(113)A and GaAs(001) substrates by low-temperature molecular-beam epitaxy, have been studied by high resolution X-ray diffraction (HRXRD) measurements. Rocking curves reveal a triclinic distortion of the (113)A layers with a shear direction towards the [001] crystallographic axis, whereas the (001) layers are tetragonally distorted along [001]. The relaxed lattice constants were derived from {omega}-2{theta} scans for the symmetric (113) and (004) Bragg reflections, taking the elastic anisotropy of the cubic system into account. The increase of the lattice constant with Mn content has been found to be smaller for the (113)A layers than for the (001) layers, presumably due to the enhanced amount of excess As in the (113)A layers.

  3. Annealing-induced Fe oxide nanostructures on GaAs

    OpenAIRE

    Lu, Y X; Ahmad, E; Xu, Y B; Thompson, S M

    2005-01-01

    We report the evolution of Fe oxide nanostructures on GaAs(100) upon pre- and post-growth annealing conditions. GaAs nanoscale pyramids were formed on the GaAs surface due to wet etching and thermal annealing. An 8.0-nm epitaxial Fe film was grown, oxidized, and annealed using a gradient temperature method. During the process the nanostripes were formed, and the evolution has been demonstrated using transmission and reflection high energy electron diffraction, and scanning electron microscopy...

  4. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    Science.gov (United States)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  5. Initial Stages of GaAs/Au Eutectic Alloy Formation for the Growth of GaAs Nano wires

    International Nuclear Information System (INIS)

    Rosnita, M.; Yussof, W.; Zuhairi, I.; Zulkafli, O.; Samsudi, S.

    2012-01-01

    Annealing temperature plays an important role in the formation of an Au-Ga eutectic alloy. The effects of the annealing temperature on gold nanoparticles colloid and substrate surface were studied using AFM, FE-SEM and TEM. At 600 degree Celsius, the layer of gold colloids particle formed an island in the state of molten eutectic alloy and absorbed evaporated metal-organics to formed nano wire (NW) underneath the alloy. Pit formed on the substrate surface due to the chemical reactions during the annealing process have an impact on the direction of growth of the NW. Without annealing, the NW formed vertically on the GaAs (100) surface. The growth direction depends on the original nucleation facets and surface energy when annealed. When annealed, the wire base is large and curved due to the migration of Ga atoms on the substrate surface towards the tip of the wire and the line tension between the substrate surface and gold particle. (author)

  6. Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates.

    Science.gov (United States)

    Chakraborty, Subhojit; Gupta, Rishi; Jain, Kavish Kumar; Kuhad, Ramesh Chander

    2016-11-01

    Trichoderma sp. is a potential cellulase producing mesophilic fungi which grow under mild acidic condition. In this study, growth and nutritional conditions were manipulated for the maximum and cost-effective production of cellulase using lab strain Trichoderma sp. RCK65 and checked for its efficiency in hydrolysis of Prosopis juliflora (a woody substrate). Preliminary studies suggested that when 48 h old secondary fungal culture (20 % v/w) was inoculated in wheat bran moistened with mineral salt solution (pH 4.5 and 1:3 solid to moisture ratio), incubated at 30 °C and after 72 h, it produced maximum cellulase (CMCase 145 U/gds, FPase 38 U/gds and β-glucosidase 105 U/gds). However, using statistical approach a S:L ratio (1:1) was surprisingly found to be optimum that improved cellulase that is CMCase activity by 6.21 %, FPase activity by 23.68 % and β-glucosidase activity by 37.28 %. The estimated cost of crude enzyme (Rs. 5.311/1000 FPase units) seems to be economically feasible which may be due to high enzyme titre, less cultivation time and low media cost. Moreover, when the crude enzyme was used to saccharify pretreated Prosopis juliflora (a woody substrate), it resulted up to 83 % (w/w) saccharification.

  7. Spin injection into GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Bernhard

    2013-11-01

    In this work spin injection into GaAs from Fe and (Ga,Mn)As was investigated. For the realization of any spintronic device the detailed knowledge about the spin lifetime, the spatial distribution of spin-polarized carriers and the influence of electric fields is essential. In the present work all these aspects have been analyzed by optical measurements of the polar magneto-optic Kerr effect (pMOKE) at the cleaved edge of the samples. Besides the attempt to observe spin pumping and thermal spin injection into n-GaAs the spin solar cell effect is demonstrated, a novel mechanism for the optical generation of spins in semiconductors with potential for future spintronic applications. Also important for spin-based devices as transistors is the presented realization of electrical spin injection into a two-dimensional electron gas.

  8. Optical properties of GaAs

    International Nuclear Information System (INIS)

    Akinlami, J. O.; Ashamu, A. O.

    2013-01-01

    We have investigated the optical properties of gallium arsenide (GaAs) in the photon energy range 0.6–6.0 eV. We obtained a refractive index which has a maximum value of 5.0 at a photon energy of 3.1 eV; an extinction coefficient which has a maximum value of 4.2 at a photon energy of 5.0 eV; the dielectric constant, the real part of the complex dielectric constant has a maximum value of 24 at a photon energy of 2.8 eV and the imaginary part of the complex dielectric constant has a maximum value of 26.0 at a photon energy of 4.8 eV; the transmittance which has a maximum value of 0.22 at a photon energy of 4.0 eV; the absorption coefficient which has a maximum value of 0.22 × 10 8 m −1 at a photon energy of 4.8 eV, the reflectance which has a maximum value of 0.68 at 5.2eV; the reflection coefficient which has a maximum value of 0.82 at a photon energy of 5.2 eV; the real part of optical conductivity has a maximum value of 14.2 × 10 15 at 4.8 eV and the imaginary part of the optical conductivity has a maximum value of 6.8 × 10 15 at 5.0 eV. The values obtained for the optical properties of GaAs are in good agreement with other results. (semiconductor physics)

  9. Preparation of GaAs photocathodes at low temperature

    International Nuclear Information System (INIS)

    Mulhollan, G.; Clendenin, J.; Tang, H.

    1996-10-01

    The preparation of an atomically clean surface is a necessary step in the formation of negative electron affinity (NEA) GaAs. Traditional methods to this end include cleaving, heat cleaning and epitaxial growth. Cleaving has the advantage of yielding a fresh surface after each cleave, but is limited to small areas and is not suitable for specialized structures. Heat cleaning is both simple and highly successful, so it is used as a preparation method in virtually all laboratories employing a NEA source on a regular basis. Due to its high cost and complexity, epitaxial growth of GaAs with subsequent in vacuo transfer is not a practical solution for most end users of GaAs as a NEA electron source. While simple, the heating cleaning process has a number of disadvantages. Here, a variety of cleaning techniques related to preparation of an atomically clean GaAs surface without heating to 600 C are discussed and evaluated

  10. Comparisons of single event vulnerability of GaAs SRAMS

    Science.gov (United States)

    Weatherford, T. R.; Hauser, J. R.; Diehl, S. E.

    1986-12-01

    A GaAs MESFET/JFET model incorporated into SPICE has been used to accurately describe C-EJFET, E/D MESFET and D MESFET/resistor GaAs memory technologies. These cells have been evaluated for critical charges due to gate-to-drain and drain-to-source charge collection. Low gate-to-drain critical charges limit conventional GaAs SRAM soft error rates to approximately 1E-6 errors/bit-day. SEU hardening approaches including decoupling resistors, diodes, and FETs have been investigated. Results predict GaAs RAM cell critical charges can be increased to over 0.1 pC. Soft error rates in such hardened memories may approach 1E-7 errors/bit-day without significantly reducing memory speed. Tradeoffs between hardening level, performance and fabrication complexity are discussed.

  11. Implantation annealing in GaAs by incoherent light

    International Nuclear Information System (INIS)

    Davies, D.E.; Ryan, T.G.; Soda, K.J.; Comer, J.J.

    1983-01-01

    Implanted GaAs has been successfully activated through concentrating the output of quartz halogen lamps to anneal in times of the order of 1 sec. The resulting layers are not restricted by the reduced mobilities and thermal instabilities of laser annealed GaAs. Better activation can be obtained than with furnace annealing but this generally requires maximum temperatures >= 1050degC. (author)

  12. Growth and electronic properties of two-dimensional systems on (110) oriented GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.

    2005-07-01

    As the only non-polar plane the (110) surface has a unique role in GaAs. Together with Silicon as a dopant it is an important substrate orientation for the growth of n-type or p-type heterostructures. As a consequence, this thesis will concentrate on growth and research on that surface. In the course of this work we were able to realize two-dimensional electron systems with the highest mobilities reported so far on this orientation. Therefore, we review the necessary growth conditions and the accompanying molecular process. The two-dimensional electron systems allowed the study of a new, intriguing transport anisotropy not explained by current theory. Moreover, we were the first growing a two-dimensional hole gas on (110) GaAs with Si as dopant. For this purpose we invented a new growth modulation technique necessary to retrieve high mobility systems. In addition, we discovered and studied the metal-insulator transition in thin bulk p-type layers on (110) GaAs. Besides we investigated the activation process related to the conduction in the valence band and a parallelly conducting hopping band. The new two-dimensional hole gases revealed interesting physics. We studied the zero B-field spin splitting in these systems and compared it with the known theory. Furthermore, we investigated the anisotropy of the mobility. As opposed to the expectations we observed a strong persistent photoconductivity in our samples. Landau levels for two dimensional hole systems are non-linear and can show anticrossings. For the first time we were able to resolve anticrossings in a transport experiment and study the corresponding activation process. Finally, we compared these striking results with theoretical calculations. (orig.)

  13. Subnanosecond linear GaAs photoconductive switching: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.; Hofer, W.W.

    1989-01-01

    We are conducting research in photoconductive switching for the purpose of generating subnanosecond pulses in the 25--50kV range. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as a closing and opening switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). The closing time of a linear GaAs switch is theoretically limited by the characteristics of the laser pulse used to activate the switch (the carrier generation time in GaAs is /approximately/10/sup /minus/14/ sec) while the opening time is theoretically limited by the recombination time of the carriers. The recombination time is several ns for commercially available semi-insulating GaAs. Doping or neutron irradiation can reduce the recombination time to less than 100 ps. We have observed switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps with neutron irradiated GaAs at fields of tens of kV/cm. The illumination source was a Nd:YAG laser operating at 1.06 /mu/m. 4 refs., 11 figs.

  14. Subnanosecond linear GaAs photoconductive switching, revision 1

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.; Hofer, W. W.

    Research was conducted in photoconductive switching for the purpose of generating subnanosecond pulses in the 25 to 50kV range. The very fast recombination rates of Gallium Arsenide (GaAs) was exploited to explore the potential of GaAs as a closing and opening switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). The closing time of a linear GaAs switch is theoretically limited by the characteristics of the laser pulse used to activate the switch (the carrier generation time in GaAs is (approx. 10(-14) sec) while the opening time is theoretically limited by the recombination time of the carriers. The recombination time is several ns for commercially available semi-insulating GaAs. Doping or neutron irradiation can reduce the recombination time to less than 100 ps. Switch closing times of less than 200 ps with a 100 ps duration laser pulse and opening times of less than 400 ps with neutron irradiated GaAs at fields of tens of kV/cm was observed. The illumination source was a Nd:YAG laser operating at 1.06 microns.

  15. Antisites and anisotropic diffusion in GaAs and GaSb

    KAUST Repository

    Tahini, H. A.

    2013-10-02

    The significant diffusion of Ga under Ga-rich conditions in GaAs and GaSb is counter intuitive as the concentration of Ga vacancies should be depressed although Ga vacancies are necessary to interpret the experimental evidence for Ga transport. To reconcile the existence of Ga vacancies under Ga-rich conditions, transformation reactions have been proposed. Here, density functional theory is employed to calculate the formation energies of vacancies on both sublattices and the migration energy barriers to overcome the formation of the vacancy-antisite defect. Transformation reactions enhance the vacancy concentration in both materials and migration energy barriers indicate that Ga vacancies will dominate.

  16. MOCVD growth of CdTe and HgTe on GaAs in a vertical, high-speed, rotating-disc reactor

    International Nuclear Information System (INIS)

    Tompa, G.S.; Nelson, C.R.; Reinert, P.D.; Saracino, M.A.; Terrill, L.A.; Colter, P.C.

    1989-01-01

    The metalorganic chemical vapor deposition (MOCVD) growth of CdTe and HgTe on GaAs (111) and (100) substrates in a vertical, high-speed, rotating-disc reactor was investigated. A range of total reactor pressure, carrier gas flow rate, chemical concentrations, deposition temperature, and rotation rate have been investigated in an attempt to optimize growth conditions. Diisopropyltelluride (DIPTe) and Dimethylcadmium (DMCd) were used as growth precursors. Thickness uniformity varies less than +/- 1.5% over 50 mm diameter wafers. Films having FWHM X-ray rocking curves less than 90 arcsec were obtained on GaAs (111) substrates. The films have excellent surface morphology, exhibiting less than 5 x 10 4 cm - 2 orange peel dents which are much-lt 1 μm in size. An elemental mercury source was added to the growth system. Initial results for the growth of HgTe and HgCdTe are discussed

  17. Shallow Levels Characterization in Epitaxial GaAs by Acousto-Optic Reflectance Shallow Levels Characterization in Epitaxial GaAs by Acousto-Optic Reflectance

    Directory of Open Access Journals (Sweden)

    O. G. Ibarra-Manzano

    2012-02-01

    Full Text Available Optical spectra of light reflection are detected under an influence of ultrasonic wave (UWon a GaAs wafer. The differential spectrum is calculated as a difference between those taken under UW and without that influence on a sample. This acousto-optic differential reflectance(AODR spectrum contains some bands that represent the energetic levels of the shallow centers in a sample. A physical basis of this technique is related to a perturbation of local states by UW. Here, a method is developed for characterization of local states at the surfaces and interfaces in crystals and low-dimensional epitaxial structures based on microelectronics materials. A theoretical model is presented to explain AODR spectra. Also, experiments using epitaxial GaAs structures doped by Te were made. Finally, theoretical and experimental results show that acousto-optic reflectance is an effective tool for characterization of shallow trapping centers in epitaxial semiconductor structures.En este trabajo, utilizamos el espectro de la luz reflejada en una muestra de Arsenuro de Galio (GaAs bajo la influencia de una onda ultrasónica. El diferencial espectral es calculado como una diferencia entre el espectro del material obtenido bajo la influencia del ultrasonido y aquél obtenido sin dicha influencia. Este diferencial de reflectancia espectral acusto-óptico (AODR contiene algunas bandas que representan los niveles energéticos de los centros en la superficie de la muestra. Esta técnica está basada en la perturbación de los estados locales generada por el ultrasonido. Particularmente, este trabajo presenta un método para caracterizar los estados locales en la superficie y las interfaces en los cristales, así como estructuras epiteliales de baja dimensión basadas en materiales semiconductores. Para ello, se presenta un modelo teórico para explicar dicho espectro de reflectancia diferencial (AODR. También se realizaron experimentos con estructuras de GaAs epitelial

  18. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    Science.gov (United States)

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

  19. Ni-Cr thin film resistor fabrication for GaAs monolithic microwave integrated circuits

    International Nuclear Information System (INIS)

    Vinayak, Seema; Vyas, H.P.; Muraleedharan, K.; Vankar, V.D.

    2006-01-01

    Different Ni-Cr alloys were sputter-deposited on silicon nitride-coated GaAs substrates and covered with a spin-coated polyimide layer to develop thin film metal resistors for GaAs monolithic microwave integrated circuits (MMICs). The contact to the resistors was made through vias in the polyimide layer by sputter-deposited Ti/Au interconnect metal. The variation of contact resistance, sheet resistance (R S ) and temperature coefficient of resistance (TCR) of the Ni-Cr resistors with fabrication process parameters such as polyimide curing thermal cycles and surface treatment given to the wafer prior to interconnect metal deposition has been studied. The Ni-Cr thin film resistors exhibited lower R S and higher TCR compared to the as-deposited Ni-Cr film that was not subjected to thermal cycles involved in the MMIC fabrication process. The change in resistivity and TCR values of Ni-Cr films during the MMIC fabrication process was found to be dependent on the Ni-Cr alloy composition

  20. Offshore Substrate

    Data.gov (United States)

    California Natural Resource Agency — This shapefile displays the distribution of substrate types from Pt. Arena to Pt. Sal in central/northern California. Originally this data consisted of seven paper...

  1. GaAs integrated circuits and heterojunction devices

    Science.gov (United States)

    Fowlis, Colin

    1986-06-01

    The state of the art of GaAs technology in the U.S. as it applies to digital and analog integrated circuits is examined. In a market projection, it is noted that whereas analog ICs now largely dominate the market, in 1994 they will amount to only 39 percent vs. 57 percent for digital ICs. The military segment of the market will remain the largest (42 percent in 1994 vs. 70 percent today). ICs using depletion-mode-only FETs can be constructed in various forms, the closest to production being BFL or buffered FET logic. Schottky diode FET logic - a lower power approach - can reach higher complexities and strong efforts are being made in this direction. Enhancement type devices appear essential to reach LSI and VLSI complexity, but process control is still very difficult; strong efforts are under way, both in the U.S. and in Japan. Heterojunction devices appear very promising, although structures are fairly complex, and special fabrication techniques, such as molecular beam epitaxy and MOCVD, are necessary. High-electron-mobility-transistor (HEMT) devices show significant performance advantages over MESFETs at low temperatures. Initial results of heterojunction bipolar transistor devices show promise for high speed A/D converter applications.

  2. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    International Nuclear Information System (INIS)

    Taboada, A. G.; Kreiliger, T.; Falub, C. V.; Känel, H. von; Meduňa, M.; Salvalaglio, M.; Miglio, L.; Isa, F.; Barthazy Meier, E.; Müller, E.; Isella, G.

    2016-01-01

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images

  3. Electrochemical formation of GaAs honeycomb structure using a fluoride-containing (NH{sub 4}){sub 2}SO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yoshitaka, E-mail: morisita@cc.tuat.ac.jp; Yamamoto, Hitoshi; Yokobori, Kuniyuki

    2014-04-01

    GaAs substrates were anodized in the (NH{sub 4}){sub 2}SO{sub 4} electrolyte with various fluoride concentrations. Scanning electron microscope (SEM) observation showed that highly regular honeycomb hollows were formed on the substrates anodized in the (NH{sub 4}){sub 2}SO{sub 4} electrolyte with a small amount of HF concentration. The regularity of hollows decreased with the increase of HF concentration. The average diameter of hollows increased with increasing anodizing voltage. The regularity of hollow diameters increased with the increase of anodizing time, irrespective of the anodizing voltage. Cross-sectional SEM image showed that the average depth of regular hollows was about 5 nm. In addition to the peak in the region of fundamental adsorption of GaAs with the peak wavelength at about 870 nm, photoluminescence spectra of samples anodized in the (NH{sub 4}){sub 2}SO{sub 4} electrolyte with HF concentration of 0.5 ml showed several peaks at about 610, 635, 670 and 720 nm. - Highlights: • We report on the electrochemical formation of GaAs honeycomb structure. • High regular hollows were formed by anodization in HF-containing (NH{sub 4}){sub 2}SO{sub 4} solution. • A thin porous layer was formed by anodization in HF-containing (NH{sub 4}){sub 2}SO{sub 4} solution. • This process is useful for preparing patterned substrate with a thin porous layer.

  4. Infrared reflection spectra of multilayer epitaxial heterostructures with embedded InAs and GaAs layers

    International Nuclear Information System (INIS)

    Seredin, P. V.; Domashevskaya, E. P.; Lukin, A. N.; Arsent'ev, I. N.; Vinokurov, D. A.; Tarasov, I. S.

    2008-01-01

    The effect of the thickness of embedded InAs and GaAs layers on the infrared reflection spectra of lattice vibrations for AlInAs/InAs/AlInAs, InGaAs/GaAs/InGaAs, and AlInAs/InGaAs/GaAs/InGaAs/AlInAs multilayer epitaxial heterostructures grown by MOC hydride epitaxy on InP (100) substrates is studied. Relative stresses emerging in the layers surrounding the embedded layers with variation in the number of monolayers from which the quantum dots are formed and with variation the thickness of the layers themselves surrounding the embedded layers are evaluated.

  5. X-ray diffraction study of rare earth epitaxial structures grown by MBE onto (111) GaAs

    International Nuclear Information System (INIS)

    Bennett, W.R.; Farrow, R.F.C.; Parkin, S.S.P.; Marinero, E.E.; Segmuller, A.P.

    1989-01-01

    The authors report on the new epitaxial system LaF 3 /Er/Dy/Er/LaF 3 /GaAs(111) grown by molecular beam epitaxy. X-ray diffraction studies have been used to determine the epitaxial relationships between the rare earths, the LaF 3 and the substrate. Further studies of symmetric and asymmetric reflections yielded the in-plane and perpendicular strain components of the rare earth layers. Such systems may be used to probe the effects of magnetoelastic interactions and dimensionality on magnetic ordering in rare earth metal films

  6. 3-D GaAs radiation detectors

    International Nuclear Information System (INIS)

    Meikle, A.R.; Bates, R.L.; Ledingham, K.; Marsh, J.H.; Mathieson, K.; O'Shea, V.; Smith, K.M.

    2002-01-01

    A novel type of GaAs radiation detector featuring a 3-D array of electrodes that penetrate through the detector bulk is described. The development of the technology to fabricate such a detector is presented along with electrical and radiation source tests. Simulations of the electrical characteristics are given for detectors of various dimensions. Laser drilling, wet chemical etching and metal evaporation were used to create a cell array of nine electrodes, each with a diameter of 60 μm and a pitch of 210 μm. Electrical measurements showed I-V characteristics with low leakage currents and high breakdown voltages. The forward and reverse I-V measurements showed asymmetrical characteristics, which are not seen in planar diodes. Spectra were obtained using alpha particle illumination. A charge collection efficiency of 50% and a S/N ratio of 3 : 1 were obtained. Simulations using the MEDICI software package were performed on cells with various dimensions and were comparable with experimental results. Simulations of a nine-electrode cell with 10 μm electrodes with a 25 μm pitch were also performed. The I-V characteristics again showed a high breakdown voltage with a low leakage current but also showed a full depletion voltage of just 8 V

  7. Spectroscopy of GaAs quantum wells

    International Nuclear Information System (INIS)

    West, L.C.

    1985-07-01

    A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs

  8. Spectroscopy of GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    West, L.C.

    1985-07-01

    A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs.

  9. Enhanced Efficiency of GaAs Single-Junction Solar Cells with Inverted-Cone-Shaped Nanoholes Fabricated Using Anodic Aluminum Oxide Masks

    Directory of Open Access Journals (Sweden)

    Kangho Kim

    2013-01-01

    Full Text Available The GaAs solar cells are grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD and fabricated by photolithography, metal evaporation, annealing, and wet chemical etch processes. Anodized aluminum oxide (AAO masks are prepared from an aluminum foil by a two-step anodization method. Inductively coupled plasma dry etching is used to etch and define the nanoarray structures on top of an InGaP window layer of the GaAs solar cells. The inverted-cone-shaped nanoholes with a surface diameter of about 50 nm are formed on the top surface of the solar cells after the AAO mask removal. Photovoltaic and optical characteristics of the GaAs solar cells with and without the nanohole arrays are investigated. The reflectance of the AAO nanopatterned samples is lower than that of the planar GaAs solar cell in the measured range. The short-circuit current density increased up to 11.63% and the conversion efficiency improved from 10.53 to 11.57% under 1-sun AM 1.5 G conditions by using the nanohole arrays. Dependence of the efficiency enhancement on the etching depth of the nanohole arrays is also investigated. These results show that the nanohole arrays fabricated with an AAO technique may be employed to improve the light absorption and, in turn, the conversion efficiency of the GaAs solar cell.

  10. Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

    International Nuclear Information System (INIS)

    Ishiyama, Chiemi

    2012-01-01

    Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and 75 μm) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter

  11. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation.

    Science.gov (United States)

    Rodríguez-Zúñiga, Ursula Fabiola; Bertucci Neto, Victor; Couri, Sonia; Crestana, Silvio; Farinas, Cristiane Sanchez

    2014-03-01

    The enzymatic cocktail of cellulases is one of the most costly inputs affecting the economic viability of the biochemical route for biomass conversion into biofuels and other chemicals. Here, the influence of liquid hot water, dilute acid, alkali, and combined acid/alkali pretreatments on sugarcane bagasse (SCB) used for cellulase production was investigated by means of spectroscopic and imaging techniques. Chemical composition and structural characteristics, such as crystallinity (determined by X-ray diffraction), functional groups (Fourier transform infrared spectroscopy), and microstructure (scanning electron microscopy), were used to correlate SCB pretreatments with enzymatic biosynthesis by a strain of the filamentous fungus Aspergillus niger under solid-state fermentation. The combined acid/alkali pretreatment resulted in a SCB with higher cellulose content (86.7%). However, the high crystallinity (74%) of the resulting biomass was detrimental to microbial uptake and enzyme production. SCB pretreated with liquid hot water yielded the highest filter paper cellulase (FPase), carboxymethyl cellulase (CMCase), and xylanase activities (0.4, 14.9, and 26.1 U g(-1), respectively). The results showed that a suitable pretreatment for SCB to be used as a substrate for cellulase production should avoid severe conditions in order to preserve amorphous cellulose and to enhance the physical properties that assist microbial access.

  12. 2-Nitrobenzoate 2-Nitroreductase (NbaA) Switches Its Substrate Specificity from 2-Nitrobenzoic Acid to 2,4-Dinitrobenzoic Acid under Oxidizing Conditions

    Science.gov (United States)

    Song, Woo-Seok; Go, Hayoung; Cha, Chang-Jun; Lee, Cheolju; Yu, Myeong-Hee; Lau, Peter C. K.

    2013-01-01

    2-Nitrobenzoate 2-nitroreductase (NbaA) of Pseudomonas fluorescens strain KU-7 is a unique enzyme, transforming 2-nitrobenzoic acid (2-NBA) and 2,4-dinitrobenzoic acid (2,4-DNBA) to the 2-hydroxylamine compounds. Sequence comparison reveals that NbaA contains a conserved cysteine residue at position 141 and two variable regions at amino acids 65 to 74 and 193 to 216. The truncated mutant Δ65-74 exhibited markedly reduced activity toward 2,4-DNBA, but its 2-NBA reduction activity was unaffected; however, both activities were abolished in the Δ193-216 mutant, suggesting that these regions are necessary for the catalysis and specificity of NbaA. NbaA showed different lag times for the reduction of 2-NBA and 2,4-DNBA with NADPH, and the reduction of 2,4-DNBA, but not 2-NBA, failed in the presence of 1 mM dithiothreitol or under anaerobic conditions, indicating oxidative modification of the enzyme for 2,4-DNBA. The enzyme was irreversibly inhibited by 5,5′-dithio-bis-(2-nitrobenzoic acid) and ZnCl2, which bind to reactive thiol/thiolate groups, and was eventually inactivated during the formation of higher-order oligomers at high pH, high temperature, or in the presence of H2O2. SDS-PAGE and mass spectrometry revealed the formation of intermolecular disulfide bonds by involvement of the two cysteines at positions 141 and 194. Site-directed mutagenesis indicated that the cysteines at positions 39, 103, 141, and 194 played a role in changing the enzyme activity and specificity toward 2-NBA and 2,4-DNBA. This study suggests that oxidative modifications of NbaA are responsible for the differential specificity for the two substrates and further enzyme inactivation through the formation of disulfide bonds under oxidizing conditions. PMID:23123905

  13. GaAs Schottky versus p/i/n diodes for pixellated X-ray detectors

    CERN Document Server

    Bourgoin, J C

    2002-01-01

    We discuss the performances of GaAs p/i/n structures and Schottky barriers for application as photodetectors for high-energy photons. We compare the magnitude of the leakage current and the width of the depleted region for a given reverse bias. We mention the effect of states present at the metal-semiconductor interface on the extension of the space charge region in Schottky barriers. We illustrate this effect by a description of the capacitance behaviour of a Au-GaAs barrier under gamma irradiation.

  14. Millimeter-wave generation and characterization of a GaAs FET by optical mixing

    Science.gov (United States)

    Ni, David C.; Fetterman, Harold R.; Chew, Wilbert

    1990-01-01

    Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.

  15. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juho; Song, Kwangsun; Kim, Namyun; Lee, Jongho, E-mail: jong@gist.ac.kr [School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Hwang, Jeongwoo [Photonic Bio Research Center, Korea Photonics Technology Institute (KOPTI), 9 Cheomdanventure-ro 108beon-gil, Gwangju 61007 (Korea, Republic of); Shin, Jae Cheol [Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2016-06-20

    Wearable flexible electronics often require sustainable power sources that are also mechanically flexible to survive the extreme bending that accompanies their general use. In general, thinner microelectronic devices are under less strain when bent. This paper describes strategies to realize ultra-thin GaAs photovoltaics through the interlayer adhesiveless transfer-printing of vertical-type devices onto metal surfaces. The vertical-type GaAs photovoltaic devices recycle reflected photons by means of bottom electrodes. Systematic studies with four different types of solar microcells indicate that the vertical-type solar microcells, at only a quarter of the thickness of similarly designed lateral-type cells, generate a level of electric power similar to that of thicker cells. The experimental results along with the theoretical analysis conducted here show that the ultra-thin vertical-type solar microcells are durable under extreme bending and thus suitable for use in the manufacturing of wearable flexible electronics.

  16. The nuclear reaction analysis (NRA) as a means for detecting carbon in GaAs and in source materials and additives

    International Nuclear Information System (INIS)

    Bethge, K.; Mader, A.; Michelmann, R.; Krauskopf, J.; Thee, P.; Meyer, J.D.

    1991-01-01

    The nuclear reaction ananlysis (NRA) on the basis of the reaction 12 C (d,p) 13 C is a method allowing the detection and description of both lateral and depth profiles of the presence of carbon in GaAs and in the source materials and additives. The NRA is an absolute method with a detection limit for C of approx. 4x10 15 cm 3 . The achievable detection range in depth under the experimental conditions goes from the surface down to 6 μm. Combined with channeling measurements, NRA is capable of identifying the position of carbon in the GaAs crystal lattice, and thus permits to examine the mobility of C in GaAs. (BBR) With 11 refs [de

  17. Effects of surface states on device and interconnect isolation in GaAs MESFET and InP MISFET integrated circuits

    International Nuclear Information System (INIS)

    Hasegawa, H.; Kitagawa, T.; Masuda, H.; Yano, H.; Ohno, H.

    1985-01-01

    Surface electrical breakdown and side-gating which cause failure of device and interconnect isolation are investigated for GaAs MESFET and InP MISFET integrated circuit structures. Striking differences in behavior are observed between GaAs and InP as regards to the surface conduction, surface breakdown and side-gating. These differences are shown to be related to the surface state properties of the insulator-semiconductor interface. In GaAs, high density of surface states rather than bulk trap states control the surface I-V characteristics and side-gating, causing serious premature avalanche breakdown and triggering side-gating at a low nominal field intensity of 1-3 kV/cm. On the other hand, InP MISFET integrated circuits are virtually free from these premature breakdown and side-gating effect under normal dark operating condition because of very low surface state density

  18. Low Thermal Budget Fabrication of III-V Quantum Nanostructures on Si Substrates

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Sanguinetti, S; Koguchi, N; Isella, G; Chrastina, D; Fedorov, A

    2010-01-01

    We show the possibility to integrate high quality III-V quantum nanostructures tunable in shape and emission energy on Si-Ge Virtual Substrate. Strong photoemission is observed, also at room temperature, from two different kind of GaAs quantum nanostructures fabricated on Silicon substrate. Due to the low thermal budget of the procedure used for the fabrication of the active layer, Droplet Epitaxy is to be considered an excellent candidate for implementation of optoelectronic devices on CMOS circuits.

  19. Properties of ZrN films as substrate masks in liquid phase epitaxial lateral overgrowth of compound semiconductors

    International Nuclear Information System (INIS)

    Dobosz, D.; Zytkiewicz, Z.R.; Jakiela, R.; Golaszewska, K.; Kaminska, E.; Piotrowska, A.; Piotrowski, T.T.; Barcz, A.

    2005-01-01

    The usefulness of ZrN films as masks for epitaxial lateral overgrowth of GaAs and GaSb by liquid phase epitaxy is studied. It was observed that during the growth process ZrN masks are mechanically stable, they adhere strongly to the substrate and do not show any signs of degradation even at the growth temperature as high as 750 C. Moreover, perfect selectivity of GaAs and GaSb epitaxy was obtained on ZrN masked substrates ensuring the growth wide and thin layers. To study the influence of growth conditions on electrical resistivity of the mask, ZrN films deposited on GaAs substrates were annealed in various atmospheres. It was found that at temperatures higher than about 580 C the ZrN masks become highly resistive when heat-treated in hydrogen flow employed during growth. Usually, LPE growth temperature for GaAs is higher. Thus, ELO growth of GaAs by LPE becomes more difficult, though still possible, if ZrN masks are to be applied as buried electrical contacts. For GaSb ELO layers however, typical LPE growth temperature is about 480 C. This allows us to grow high quality GaSb ELO layers by LPE still preserving high electrical conductivity of ZrN mask. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Produtividade do tomateiro em diferentes substratos e modelos de casas de vegetação Tomato crop production under different substrates and greenhouse models

    Directory of Open Access Journals (Sweden)

    Osmar A. Carrijo

    2004-03-01

    Full Text Available Um experimento com a cultura do tomate, foi instalado na Embrapa Hortaliças em Brasília, durante os anos de 2000 e 2001, para avaliar a produção do tomateiro em diferentes substratos e casas de vegetação. Os substratos utilizados foram casca de arroz, casca de arroz parcialmente carbonizada, fibra de coco verde, lã de rocha, maravalha, serragem e substrato para produção de mudas utilizado na Embrapa Hortaliças (150 L de terra de subsolo, 50 L de casca de arroz parcialmente carbonizada e 17 L de esterco de galinha. Os modelos de casas de vegetação utilizados foram teto em arco, arco com teto convectivo e capela. Não foi verificada diferença estatística significativa quanto a produção de frutos comerciais entre os substratos fibra de coco (10,4 kg m-2, serragem (9,3 kg m-2, casca de arroz carbonizada (9,3 kg m-2 e maravalha (9,0 kg m-2. A menor produção foi obtida com o substrato lã de rocha (6,4 kg m-2. Houve redução da produção entre os anos de cultivo, em torno de 33%, em decorrência de um intenso ataque de traça do tomateiro (Tuta absoluta em todas as casas de vegetação, prejudicando a produtividade. O maior peso médio dos frutos foi obtido sobre a fibra de coco (128 g m-2 e casca de arroz carbonizada (123 g m-2, independente do modelo de casa de vegetação utilizado.The trial was carried out at Embrapa Hortaliças, in Brasilia, Brazil, to evaluate the performance of tomato crop production during two years (2000 and 2001, under three greenhouse models and different types of substrates. The greenhouse models were arch roof; even span and an arch roof with upper convective aperture. The substrates were rice husk, carbonized rice husk, coconut fiber, sawdust, coarsed sawdust, rockwool and a substrate for seedling production used at Embrapa Hortaliças. No significant statistical difference was verified for tomatoes cultivated in coconut fiber (10,4 kg m-2, sawdust (9,9 kg m-2, carbonized rice husk (9,3 kg m-2 and

  1. Atomic hydrogen cleaning of GaAs photocathodes

    International Nuclear Information System (INIS)

    Poelker, M.; Price, J.; Sinclair, C.

    1997-01-01

    It is well known that surface contaminants on semiconductors can be removed when samples are exposed to atomic hydrogen. Atomic H reacts with oxides and carbides on the surface, forming compounds that are liberated and subsequently pumped away. Experiments at Jefferson lab with bulk GaAs in a low-voltage ultra-high vacuum H cleaning chamber have resulted in the production of photocathodes with high photoelectron yield (i.e., quantum efficiency) and long lifetime. A small, portable H cleaning apparatus also has been constructed to successfully clean GaAs samples that are later removed from the vacuum apparatus, transported through air and installed in a high-voltage laser-driven spin-polarized electron source. These results indicate that this method is a versatile and robust alternative to conventional wet chemical etching procedures usually employed to clean bulk GaAs

  2. 35-kV GaAs subnanosecond photoconductive switches

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L. (Lawrence Livermore National Lab., CA (United States))

    1990-12-01

    Photoconductive switches are one of the few devices that allow the generation of high-voltage electrical pulses with subnanosecond rise time. The authors are exploring high-voltage, fast-pulse generation using GaAs photoconductive switches. They have been able to generate 35-kV pulses with rise times as short as 135 ps using 5-mm gap switches and have achieved electric field hold-off of greater than 100 kV/cm. They have also been able to generate an approximately 500-ps FWHM on/off electrical pulse with an amplitude of approximately 3 kV using neutron-irradiated GaAs having short carrier life times. This paper describes the experimental results and discusses fabrication of switches and the diagnostics used to measure these fast signals. They also describe the experience with the nonlinear lock-on and avalanche modes of operation observed in GaAs.

  3. 35-kV GaAs subnanosecond photoconductive switches

    Science.gov (United States)

    Pocha, Michael D.; Druce, Robert L.

    1990-12-01

    High-voltage, fast-pulse generation using GaAs photoconductive switches is investigated. It is possible to to generate 35-kV pulses with risetimes as short as 135 ps using 5-mm gap switches, and electric field hold-off of greater than 100 kV/cm is achieved. An approximately 500-ps FWHM on/off electrical pulse is generated with an amplitude of approximately 3 kV using neutron-irradiated GaAs having short carrier lifetimes. Experimental results are described, and fabrication of switches and the diagnostics used to measure these fast signals are discussed. Experience with the nonlinear lock-on and avalanche modes of operation observed in GaAs is also described.

  4. Donor level of interstitial hydrogen in GaAs

    International Nuclear Information System (INIS)

    Dobaczewski, L.; Bonde Nielsen, K.; Nylandsted Larsen, A.; Peaker, A.R.

    2006-01-01

    The first data evidencing the existence of the donor level of the interstitial hydrogen in GaAs are presented. The abundant formation of the (0/+) donor level after in situ low-temperature implantation of hydrogen into the depletion layer of GaAs Schottky diodes has been observed and the activation energy and annealing properties have been determined by Laplace DLTS. The activation energy for electron emission of this donor state is 0.14eV. Above 100K the hydrogen deep donor state is unstable, converting to a more stable form when there are electrons available for the capture process. A slightly perturbed form of the hydrogen donor in its neutral charge state can be recovered by illuminating the sample. This process releases twice as many electrons as the ionisation process of the hydrogen donor state itself. This fact, by analogy with the silicon case, evidences the negative-U behaviour of hydrogen in GaAs

  5. Rapid capless annealing of28Si,64Zn, and9Be implants in GaAs

    Science.gov (United States)

    Liu, S. G.; Narayan, S. Y.

    1984-11-01

    We report the use of tungsten-halogen lamps for rapid (-10 s) thermal annealing of ion-implanted (100) GaAs under AsH3/Ar and N2 atmospheres. Annealing under flowing AsH3/Ar was carried out without wafer encapsulation. Rapid capless annealing activated implants in GaAs with good mobility and surface morphology. Typical mobilities were 3700 4500 cm2/V-s for n-layers with about 2×1017cm-3 carrier concentration and 50 150 cm2/v-s for 0.1 5xl019 cm-3 doped p-layers. Rapid thermal annealing was performed in a vertical quartz tube where different gases (N2, AsH3/H2, AsH3/Ar) can be introduced. Samples were encapsulated with SiO when N2 was used. Tungsten-halogen lamps of 600 or 1000 W were utilized for annealing GaAs wafers ranging from 1 to 10 cm2 in area and 0.025 to 0.040 cm in thickness. The transient temperature at the wafer position was monitored using a fine thermocouple. We carried out experiments for energies of 30 to 200 keV, doses of 2×1012 to 1×1015 cm-2, and peak temperatures ranging from 600 to 1000‡C. Most results quoted are in the 700 to 870‡C temperature range. Data on implant conditions, optimum anneal conditions, electrical characteristics, carrier concentration profiles, and atomic profiles of the implanted layers are described.

  6. The unexpected beneficial effect of the L-valley population on the electron mobility of GaAs nanowires

    International Nuclear Information System (INIS)

    Marin, E. G.; Ruiz, F. G.; Godoy, A.; Tienda-Luna, I. M.; Gámiz, F.

    2015-01-01

    The impact of the L-valley population on the transport properties of GaAs cylindrical nanowires (NWs) is analyzed by numerically calculating the electron mobility under the momentum relaxation time approximation. In spite of its low contribution to the electron mobility (even for high electron populations in small NWs), it is demonstrated to have a beneficial effect, since it significantly favours the Γ-valley mobility by screening the higher Γ-valley energy subbands

  7. Scanning microwave microscopy applied to semiconducting GaAs structures

    Science.gov (United States)

    Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry

    2018-02-01

    A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.

  8. Nuclear spin warm up in bulk n -GaAs

    Science.gov (United States)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Jouault, B.; Korenev, V. L.; Kavokin, K. V.

    2016-08-01

    We show that the spin-lattice relaxation in n -type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, which cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, which governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping, can be studied and harnessed in the much simpler model environment of n -GaAs bulk crystal.

  9. The GaAs electron source: simulations and experiments

    International Nuclear Information System (INIS)

    Aleksandrov, A.V.; Ciullo, G.; Guidi, V.; Kudelainen, V.I.; Lamanna, G.; Lenisa, P.; Logachov, P.V.; Maciga, B.; Novokhatsky, A.; Tecchio, L.; Yang, B.

    1994-01-01

    In this paper we calculate electron emission from GaAs photocathodes using the Monte Carlo technique. Typical data of energy spread of the electron beam are presented. For photoenergy ranging from 1.6 to 2.1 eV, the calculated longitudinal and transverse energy spreads are 14.4-78 and 4-14.7 meV respectively. Temporal measurement of GaAs photocathodes has been performed. The preliminary results show that the temporal response is faster than 200 ps. (orig.)

  10. Performance of a GaAs electron source

    International Nuclear Information System (INIS)

    Calabrese, R.; Ciullo, G.; Della Mea, G.; Egeni, G.P.; Guidi, V.; Lamanna, G.; Lenisa, P.; Maciga, B.; Rigato, V.; Rudello, V.; Tecchio, L.; Yang, B.; Zandolin, S.

    1994-01-01

    We discuss the performance improvement of a GaAs electron source. High quantum yield (14%) and constant current extraction (1 mA for more than four weeks) are achieved after a little initial decay. These parameters meet the requirements for application of the GaAs photocathode as a source for electron cooling devices. We also present the preliminary results of a surface analysis experiment, carried out by means of the RBS technique to check the hypothesis of cesium evaporation from the surface when the photocathode is in operation. (orig.)

  11. Transient radiation effects in GaAs semiconductor devices

    International Nuclear Information System (INIS)

    Chang, J.Y.; Stauber, M.; Ezzeddine, A.; Howard, J.W.; Constantine, A.G.; Becker, M.; Block, R.C.

    1988-01-01

    This paper describes an ongoing program to identify the response of GaAs devices to intense pulses of ionizing radiation. The program consists of experimental measurements at the Rensselaer Polytechnic Institute's RPI electron linear accelerator (Linac) on generic GaAs devices built by Grumman Tachonics Corporation and the analysis of these results through computer simulation with the circuit model code SPICE (including radiation effects incorporated in the variations TRISPICE and TRIGSPICE and the device model code PISCES IIB). The objective of this program is the observation of the basic response phenomena and the development of accurate simulation tools so that results of Linac irradiations tests can be understood and predicted

  12. Photoluminescence of highly compensated GaAs doped with high concentration of Ge

    Science.gov (United States)

    Watanabe, Masaru; Watanabe, Akira; Suezawa, Masashi

    1999-12-01

    We have studied the photoluminescence (PL) properties of Ge-doped GaAs crystals to confirm the validity of a theory developed by Shklovskii and Efros to explain the donor-acceptor pair (DAP) recombination in potential fluctuation. GaAs crystals doped with Ge of various concentrations were grown by a liquid-encapsulated Czochralski method. They were homogenized by annealing at 1200°C for 20 h under the optimum As vapor pressure. Both quasi-continuous and time-resolved PL spectra were measured at 4.2 K. The quasi-continuous PL spectra showed that the peak position shifted to lower energy as the Ge concentration increased, which was consistent with the Shklovskii and Efros's theory. Under very strong excitation in time-resolved measurements, the exciton peak appeared within short periods after excitation and then the peak shifted to that of DAP recombination. This clearly showed that the potential fluctuation disappeared under strong excitation and then recovered as the recombination proceeded.

  13. Radiation effects in pigtailed GaAs and GaA1As LEDs

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1981-06-01

    Permanent and transient radiation effects have been studied in Plessey pigtailed, high radiance GaAs and GaAlAs LEDs using neutron, gamma ray and X-ray sources. The radiation-induced source of degradation in these devices was determined by also examining both bare, unpigtailed LEDs and separate samples of the Corning fibers used as pigtails. No transient effects were observed in the unpigtailed LEDs during either pulsed neutron or X-ray exposure. In contrast, the Corning doped silica fibers exhibited strong transient attenuation following pulsed X-ray bombardment. Permanent neutron damage in these pigtailed LEDs consisted essentially of light output degradation in the LED itself. Permanent gamma ray effects due to a Co-60 irradiation of 1 megarad were restricted to a small increase in attenuation in the fiber. The two primary radiation effects were then transient attenuation in the fiber pigtail and permanent neutron-induced degradation of the LED

  14. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.; Känel, H. von [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Isa, F.; Isella, G. [L-NESS, Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Salvalaglio, M.; Miglio, L. [L-NESS, Department of Materials Science, Università di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Wewior, L.; Fuster, D.; Alén, B. [IMM, Instituto de Microelectrónica de Madrid (CNM, CSIC), C/Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Richter, M.; Uccelli, E. [Functional Materials Group, IBM Research-Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Niedermann, P.; Neels, A.; Dommann, A. [Centre Suisse d' Electronique et Microtechnique, Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Mancarella, F. [CNR-IMM of Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2014-01-13

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images.

  15. Strain relaxation of GaAs/Ge crystals on patterned Si substrates

    International Nuclear Information System (INIS)

    Taboada, A. G.; Kreiliger, T.; Falub, C. V.; Känel, H. von; Isa, F.; Isella, G.; Salvalaglio, M.; Miglio, L.; Wewior, L.; Fuster, D.; Alén, B.; Richter, M.; Uccelli, E.; Niedermann, P.; Neels, A.; Dommann, A.; Mancarella, F.

    2014-01-01

    We report on the mask-less integration of GaAs crystals several microns in size on patterned Si substrates by metal organic vapor phase epitaxy. The lattice parameter mismatch is bridged by first growing 2-μm-tall intermediate Ge mesas on 8-μm-tall Si pillars by low-energy plasma enhanced chemical vapor deposition. We investigate the morphological evolution of the GaAs crystals towards full pyramids exhibiting energetically stable (111) facets with decreasing Si pillar size. The release of the strain induced by the mismatch of thermal expansion coefficients in the GaAs crystals has been studied by X-ray diffraction and photoluminescence measurements. The strain release mechanism is discussed within the framework of linear elasticity theory by Finite Element Method simulations, based on realistic geometries extracted from scanning electron microscopy images

  16. A polarized photoluminescence study of strained layer GaAs photocathodes

    International Nuclear Information System (INIS)

    Mair, R.A.

    1996-07-01

    Photoluminescence measurements have been made on a set of epitaxially grown strained GaAs photocathode structures. The photocathodes are designed to exhibit a strain-induced enhancement of the electron spin polarization obtainable by optical pumping with circularly polarized radiation of near band gap energy. For the case of non-strained GaAs, the degree of spin polarization is limited to 50% by crystal symmetry. Under an appropriate uniaxial compression or tension, however, the valence band structure near the gap minimum is modified such that a spin polarization of 100% is theoretically possible. A total of nine samples with biaxial compressive strains ranging from zero to ∼0.8% are studied. X-ray diffraction analysis, utilizing Bragg reflections, is used to determine the crystal lattice structure of the samples. Luminescence spectra and luminescence circular polarization data are obtained at room temperature, ∼78 K and ∼12 K. The degree of luminescence circular polarization is used as a relative measure of the photo-excited electron spin polarization. The room temperature luminescence circular polarization data is compared with the measured electron spin polarization when the samples are used as electron photo-emitters with a negative electron affinity surface preparation. The luminescence data is also analyzed in conjunction with the crystal structure data with the goal of understanding the strain dependent valence band structure, optical pumping characteristics and spin depolarization mechanisms of the photocathode structures. A simple model is used to describe the luminescence data, obtained for the set of samples. Within the assumptions of the model, the deformation potentials a, b and d for GaAs are determined. The measured values are a = -10.16±.21 eV, b = -2.00±.05 eV and d = -4.87±.29 eV. Good agreement with published values of the deformation potentials provides support for the model used to describe the data

  17. Photoelectric characteristics of metal-Ga{sub 2}O{sub 3}-GaAs structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalygina, V. M., E-mail: Kalygina@ngs.ru; Vishnikina, V. V.; Petrova, Yu. S.; Prudaev, I. A.; Yaskevich, T. M. [National Research Tomsk State University (Russian Federation)

    2015-03-15

    We investigate the effect of thermal annealing in argon and of oxygen plasma processing on the photoelectric properties of GaAs-Ga{sub 2}O{sub 3}-Me structures. Gallium-oxide films are fabricated by photostimulated electrochemical oxidation of epitaxial gallium-arsenide layers with n-type conductivity. The as-deposited films were amorphous, but their processing in oxygen plasma led to the nucleation of β-Ga{sub 2}O{sub 3} crystallites. The unannealed films are nontransparent in the visible and ultraviolet (UV) ranges and there is no photocurrent in structures based on them. After annealing at 900°C for 30 min, the gallium-oxide films contain only β-Ga{sub 2}O{sub 3} crystallites and become transparent. Under illumination of the Ga{sub 2}O{sub 3}-GaAs structures with visible light, the photocurrent appears. This effect can be attributed to radiation absorption in GaAs. The photocurrent and its voltage dependence are determined by the time of exposure to the oxygen plasma. In the UV range, the sensitivity of the structures increases with decreasing radiation wavelength, starting at λ ≤ 230 nm. This is due to absorption in the Ga{sub 2}O{sub 3} film. Reduction in the structure sensitivity with an increase in the time of exposure to oxygen plasma can be caused by the incorporation of defects both at the Ga{sub 2}O{sub 3}-GaAs interface and in the Ga{sub 2}O{sub 3} film.

  18. Submicron resolution X-ray diffraction from periodically patterned GaAs nanorods grown onto Ge[111

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, Anton; Biermanns, Andreas; Pietsch, Ullrich [Solid State Physics, Siegen University (Germany); Grenzer, Joerg [FZ-Dresden Rossendorf, Dresden (Germany); Paetzelt, Hendrik; Gottschalch, Volker; Bauer, Jens [Solid State Chemistry, University of Leipzig (Germany)

    2009-08-15

    We present high-resolution X-ray diffraction pattern of periodic GaAs nanorods (NRs) ensembles and individual GaAs NRs grown catalyst-free throughout a pre-patterned amorphous SiN{sub x} mask onto Ge[111]B surfaces by selective-area MOVPE method. To the best of our knowledge this is the first report about nano-structure X-ray characterization growth on non-polar substrate. The experiment has been performed at home laboratory and using synchrotron radiation using a micro-sized beam prepared by compound refractive lenses. Due to the non-polar character of the substrate the shapes of NRs appear not uniform and vary between deformed hexagonal and trigonal in symmetry. Because the average diameter of NRs equals the experimental resolution certain cuts through slightly inclined edges or corners of individual NRs with lateral size of about 225 nm could be selected using spatially resolved reciprocal space mapping. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Electrical transport in n-type ZnMgSSe grown by molecular beam epitaxy on GaAs

    International Nuclear Information System (INIS)

    Marshall, T.; Petruzzello, J.A.; Herko, S.P.

    1994-01-01

    Significant progress in improving the Performance of blue-green II-VI semiconductor injection lasers has come about from advances in the epitaxial growth and doping of ZnMgSSe on GaAs substrates. This paper investigates electrical transport and its relation to structural quality in n-type Zn 1-y Mg y S x Se 1-x epilayers doped with Cl, grown by molecular beam epitaxy. The composition parameters x and y vary from about 0.12-0.18 and 0.08-0.15, respectively. The quaternary epilayers studied are lattice-matched (or nearly so) to the GaAs substrate. Temperature-dependent Hall-effect measurements are performed on seven n-type ZnMgSSe:Cl epilayers, and a technique is presented whereby the resulting mobility-vs-temperature data is compared with data for ZnSe to obtain a structural figure of merit that is useful in characterizing the quaternary epilayer. 29 refs., 4 figs

  20. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    Science.gov (United States)

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-04

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  1. GaAs low-energy X-ray radioluminescence nuclear battery

    Science.gov (United States)

    Zhang, Zheng-Rong; Liu, Yun-Peng; Tang, Xiao-Bin; Xu, Zhi-Heng; Yuan, Zi-Cheng; Liu, Kai; Chen, Wang

    2018-01-01

    The output properties of X-ray radioluminescence (RL) nuclear batteries with different phosphor layers were investigated by using low-energy X-ray. Results indicated that the values of electrical parameters increased as the X-ray energy increased, and the output power of nuclear battery with ZnS:Cu phosphor layer was greater than those of batteries with ZnS:Ag, (Zn,Cd)S:Cu or Y2O3:Eu phosphor layers under the same excitation conditions. To analyze the RL effects of the phosphor layers under X-ray excitation, we measured the RL spectra of the different phosphor layers. Their fluorescence emissions were absorbed by the GaAs device. In addition, considering luminescence utilization in batteries, we introduced an aluminum (Al) film between the X-ray emitter and phosphor layer. Al film is a high performance reflective material and can increase the fluorescence reaching the GaAs photovoltaic device. This approach significantly improved the output power of the battery.

  2. Static and dynamical valence-charge-density properties of GaAs

    International Nuclear Information System (INIS)

    Pietsch, U.

    1993-01-01

    Owing to the close neighbourhood of Ga and As in Mendeleev's table, GaAs shows two fundamental classes of X-ray structure amplitudes distinguished by their extremely different scattering power. They are differently sensitive to the valence electron density (VED) redistribution caused by the chemical bond and must be measured by different experimental methods. Using such data, both the VED and the difference electron densities (DED) are calculated here. Comparison with theoretical densities shows that the VED is characterized by covalent, ionic and metallic contributions. The DED constructed from GaAs and Ge data demonstrates the electronic response caused by a ''protonic'' charge transfer between both f.c.c. sublattices as well as the transition from a purely covalent to a mixed covalent-ionic bond. Especially the charge-density accumulation between nearest neighbours (bond charge (BC)) depends on the distance between the bonding atoms and changes under the influence of any lattice deformation. This phenomenon is described by a BC-transfer model. Its direct experimental proof is given by measuring the variation of the scattering power of weak reflections under the influence of an external electric field. This experiment demonstrates that the ionicity of the bond changes in addition to the BC variation. (orig.)

  3. Femtosecond coherent emission from GaAs bulk microcavities

    Science.gov (United States)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello; Beltram, Fabio; Sorba, Lucia

    1999-02-01

    The emission from a λ/2 GaAs bulk microcavity resonantly excited by femtosecond pulses has been characterized by using an interferometric correlation technique. It is found that the emission is dominated by the coherent signal due to light elastically scattered by disorder, and that scattering is predominantly originated from the lower polariton branch.

  4. Density-dependent electron scattering in photoexcited GaAs

    DEFF Research Database (Denmark)

    Mics, Zoltán; D'’Angio, Andrea; Jensen, Søren A.

    2013-01-01

    —In a series of systematic optical pump - terahertz probe experiments we study the density-dependent electron scattering rate in photoexcited GaAs in a large range of carrier densities. The electron scattering time decreases by as much as a factor of 4, from 320 to 60 fs, as the electron density...

  5. Picosecond relaxation of X-ray excited GaAs

    Czech Academy of Sciences Publication Activity Database

    Tkachenko, V.; Medvedev, Nikita; Lipp, V.; Ziaja, B.

    2017-01-01

    Roč. 24, Sep (2017), s. 15-21 ISSN 1574-1818 Institutional support: RVO:68378271 Keywords : GaAS * X-ray excitation * picosecond relaxation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  6. Atomic structures of a monolayer of AlAs, GaAs, and InAs on Si(111)

    International Nuclear Information System (INIS)

    Lee, Geunjung; Yoon, Younggui

    2010-01-01

    We study atomic structures of a monolayer of AlAs, GaAs, and InAs on a Si(111) substrate from first-principles. The surface with the stacking sequence of ...SiSiMAsSiAs is energetically more stable than the surface with the stacking sequence of ...SiSiSiAsMAs, where M is Al, Ga, or In. The atomic structure of the three top layers of the low-energy surfaces are quite robust, irrespective of M, and the atomic structure of the AlAsSiAs terminated surface and that of the GaAsSiAs terminated surface are very similar. For the high-energy AsMAs terminated surfaces, the broken local tetrahedral symmetry plays an important role in the atomic structures. The calculated atomic structures of InAs on the Si(111) substrate depart most from the structure of crystalline Si.

  7. Heteroepitaxial Growth of Ferromagnetic MnSb(0001) Films on Ge/Si(111) Virtual Substrates.

    Science.gov (United States)

    Burrows, Christopher W; Dobbie, Andrew; Myronov, Maksym; Hase, Thomas P A; Wilkins, Stuart B; Walker, Marc; Mudd, James J; Maskery, Ian; Lees, Martin R; McConville, Christopher F; Leadley, David R; Bell, Gavin R

    2013-11-06

    Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent.

  8. Electrical properties of GaAs metal–oxide–semiconductor structure comprising Al2O3 gate oxide and AlN passivation layer fabricated in situ using a metal–organic vapor deposition/atomic layer deposition hybrid system

    Directory of Open Access Journals (Sweden)

    Takeshi Aoki

    2015-08-01

    Full Text Available This paper presents a compressive study on the fabrication and optimization of GaAs metal–oxide–semiconductor (MOS structures comprising a Al2O3 gate oxide, deposited via atomic layer deposition (ALD, with an AlN interfacial passivation layer prepared in situ via metal–organic chemical vapor deposition (MOCVD. The established protocol afforded self-limiting growth of Al2O3 in the atmospheric MOCVD reactor. Consequently, this enabled successive growth of MOCVD-formed AlN and ALD-formed Al2O3 layers on the GaAs substrate. The effects of AlN thickness, post-deposition anneal (PDA conditions, and crystal orientation of the GaAs substrate on the electrical properties of the resulting MOS capacitors were investigated. Thin AlN passivation layers afforded incorporation of optimum amounts of nitrogen, leading to good capacitance–voltage (C–V characteristics with reduced frequency dispersion. In contrast, excessively thick AlN passivation layers degraded the interface, thereby increasing the interfacial density of states (Dit near the midgap and reducing the conduction band offset. To further improve the interface with the thin AlN passivation layers, the PDA conditions were optimized. Using wet nitrogen at 600 °C was effective to reduce Dit to below 2 × 1012 cm−2 eV−1. Using a (111A substrate was also effective in reducing the frequency dispersion of accumulation capacitance, thus suggesting the suppression of traps in GaAs located near the dielectric/GaAs interface. The current findings suggest that using an atmosphere ALD process with in situ AlN passivation using the current MOCVD system could be an efficient solution to improving GaAs MOS interfaces.

  9. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Alexander P. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Kirk, Wiley P. [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2013-11-07

    Direct bandgap InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga{sub 0.5}In{sub 0.5}P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  10. Hydrogenated amorphous silicon p–i–n solar cells deposited under well controlled ion bombardment using pulse-shaped substrate biasing

    NARCIS (Netherlands)

    Wank, M.A.; Swaaij, van R.A.C.M.M.; Sanden, van de M.C.M.; Zeman, M.

    2012-01-01

    We applied pulse-shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200¿°C and growth rates of about 1¿nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with increasing

  11. Hydrogenated amorphous silicon p-i-n solar cells deposited under well controlled ion bombardment using pulse-shaped substrate biasing

    NARCIS (Netherlands)

    Wank, M. A.; van Swaaij, R.; R. van de Sanden,; Zeman, M.

    2012-01-01

    We applied pulse-shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200 degrees C and growth rates of about 1?nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with

  12. Optical gain tuning within IR region in type-II In0.5Ga0.5As0.8P0.2/GaAs0.5Sb0.5 nano-scale heterostructure under external uniaxial strain

    Science.gov (United States)

    Singh, A. K.; Rathi, Amit; Riyaj, Md.; Bhardwaj, Garima; Alvi, P. A.

    2017-11-01

    Quaternary and ternary alloy semiconductors offer an extra degree of flexibility in terms of bandgap tuning. Modifications in the wave functions and alterations in optical transitions in quaternary and ternary QW (quantum well) heterostructures due to external uniaxial strain provide valuable insights on the characteristics of the heterostructure. This paper reports the optical gain in strained InGaAsP/GaAsSb type-II QW heterostructure (well width = 20 Å) under external uniaxial strain at room temperature (300 K). The entire heterostructure is supposed to be grown on InP substrate pseudomorphically. Band structure, wave functions, energy dispersion and momentum matrix elements of the heterostructure have been computed. 6 × 6 diagonalised k → ·p → Hamiltonian matrix of the system is evaluated and Luttinger-Kohn model has been applied for the band structure and wavefunction calculations. TE mode optical gain spectrum in the QW-heterostructure under uniaxial strain along [110] is calculated. Optical gain of the heterostructure as a function of 2D carrier density and temperature variation is investigated. The variation of the peak optical gain as a function of As and Sb fractions in InGaAsP as a barrier and GaAsSb as a well respectively is exhibited. For a charge carrier injection of 5 ×1012 /cm2 , the TE optical gain is 3952 cm-1 at room temperature under no external uniaxial strain. Significant increase in TE mode optical gain is observed under high external uniaxial strain (1, 5 and 10 GPa) along [110] within IR (Infrared region) region.

  13. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    Science.gov (United States)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  14. Transient photoluminescence decay investigations of LPE GaAs heteroface solar cells

    International Nuclear Information System (INIS)

    Wettling, W.; Ehrhardt, A.; Brett, A.; Lutz, F.

    1990-01-01

    The transient photoluminescence decay (PLD) is investigated as a technique for the quality control of GaAs solar cells. An analytic expression for the PL intensity is derived from the time dependent continuity equation for minority carrier concentration in the emitter by the Fourier transform method. On both sides of the emitter, i.e. at the interface to the window layer and to the space charge region, surface recombination velocities that can vary between 0 and ∞ are allowed as boundary conditions. Experiments were performed using a mode-locked and cavity dumped laser as excitation source and an optical sampling oscilloscope as detector for the transient PL. PLD from GaAs wafers and solar cells was measured with time resolution of down to 20 ps for various intensities of laser excitation and (for the cells) under open-circuit and short-circuit condition. The results are discussed in respect to the theory together with a model of local internal boundary conditions at the junction near the exciting laser beam

  15. Optical orientation of Mn{sup 2+} ions in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Lukas; Bayer, Manfred [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); Akimov, Ilya A.; Yakovlev, Dmitri R. [Experimentelle Physik 2, Technische Universitaet Dortmund, 44221 Dortmund (Germany); A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Dzhioev, Roslan I.; Korenev, Vladimir L.; Kusrayev, Yuri G.; Sapega, Victor F. [A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2011-07-01

    We report on optical orientation of Mn{sup 2+} ions in bulk GaAs under application of weak longitudinal magnetic fields (B {<=}150 mT). The studied samples were grown by liquid phase epitaxy and Czochralski method and were doped with a low Mn acceptor concentration of 8 x 10{sup 18} cm{sup -3}. Time resolved measurements of circular polarization for donor-acceptor photoluminescence in Faraday geometry reveal nontrivial spin dynamics of donor localized electrons. Initially the degree of polarization of the electron spins is 40%. It then decays within some tens of ns to reach a plateau. The plateau is absent at B=0 T and saturates at B=150 mT reaching the value of 35%. It's sign changes with the helicity of incident light. It follows that the s-d exchange interaction with optically oriented electrons induces a steady state non-equilibrium polarization of the Mn{sup 2+} ions. The latter maintain their spin and return part of the polarization back to the electron spin system, resulting in the plateau. This provides a long-lived electron spin memory in GaAs doped with Mn. The dynamical polarization of ionized Mn acceptors was also directly monitored using spin flip Raman scattering spectroscopy, in agreement with time-resolved data.

  16. Surface photovoltage spectroscopy of real n-type GaAs(110) surfaces

    International Nuclear Information System (INIS)

    El-Dessouki, M.S.; El-Guiziri, S.B.; Gobrial, F.Z.

    1989-10-01

    N-type GaAs single crystals cut parallel to the (110) plane and doped with phosphorus by ion beam implantation were used in the present study. Temperature dependence of the bulk electrical conductivity showed two distinct activated regions with activation energies Et 1 =0.75±0.04eV, and Et 2 =0.12±0.04eV. The first activation energy is probably that of deep phosphorous impurities, while the second was related to long range disorder in the sample near room temperature. Surface photovoltage studies at room temperature were carried out at atmospheric pressure and in vacuum for etched and unetched samples. For n-type GaAs etched surface, the experimentally observed surface states were not found to change their positions by changing the pressure. But in the case of etched samples the surface states showed some redistribution under vacuum. The time constants for the initial rise and fall of CPD by illumination and after switching it off, τ 1 and τ 2 , respectively, were found to depend on the illumination intensity and photon energy. Their values range between 4 and 15 s. (author). 31 refs, 6 figs, 1 tab

  17. Angular dependence of Auger signals from a GaAs (111) surface

    International Nuclear Information System (INIS)

    Barnard, W.O.

    1984-03-01

    This dissertation is concerned with the angular dependence of the L 3 M 4 M 4 1067 eV Ga and L 3 M 4 M 4 1228 eV As Auger electron signals from a (111) GaAs surface, using a system which is equipped with a cylindrical mirror analyser. Following a detailed discussion of the Auger process, a review is given of angular effects in the emission excitation and detection of Auger signals. Present theories are discussed and an empirical theory is developed to test the experimental results obtained in this study. The experimental procedures and equipment used are presented. It was found that the Auger signals show a strong variation with the angle of rotation about the normal of a GaAs surface. Furthermore, the nature of the angular spectra of the Ga and As signals are interchanged when the electron beam incident surface is changed from (111) to (111). The main features of the angular variation of the quasi-elastic backscattered signal is reflected in the corresponding Ga and As Auger angular spectra. The angular dependence of the quasi-elastic backscattered signal can be explained semi-quantitatively in terms of the empirical theory. Theoretical arguments are presented which suggest that the Auger signals should show an angular dependence similar to the quasi-elastic backscattered signal. Evidence was found that geometric screening-off of underlying atoms by surface and near surface atoms influence the Auger yield

  18. Preferential adsorption of gallium on GaAs(111)B surfaces during the initial growth of Au-assisted GaAs nanowires

    International Nuclear Information System (INIS)

    Shu Haibo; Chen Xiaoshuang; Ding Zongling; Dong Ruibin; Lu Wei

    2010-01-01

    The mechanism of the preferential adsorption of Ga on GaAs(111)B surfaces during the initial growth of Au-assisted GaAs nanowires is studied by using first-principles calculations within density functional theory. The calculated results show that Au preadsorption on GaAs(111)B surface significantly enhances the stability of the Ga adatom in comparison with the adsorption of Ga on clean GaAs(111)B surface. The stabilization of the Ga adatom is due to charge transfers from the Ga 4p and 4s states to the Au 6s and As 4p states. The number of Ga adatoms stabilized on GaAs(111)B surfaces depends on the size of surface Au cluster. The reason is that Au acted as an electron acceptor on GaAs(111)B surface assists the charge transfer of Ga adatoms for filling the partial unoccupied bands of GaAs(111)B surface. Our results are helpful to understand the growth of Au-assisted GaAs nanowires.

  19. X-ray characterisation of single GaAs nanorods grown on Si

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Davydok, A.; Pietsch, Ullrich [Universitaet Siegen (Germany). Festkoerperphysik; Breuer, Steffen; Geelhaar, Lutz [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2010-07-01

    Semiconductor nanorods are of particular interest for new semiconductor devices. The nanorod approach can be used to form radial or axial heterostructures of materials with a large lattice mismatch. For the inspection of average structural parameters of the nanorods, typically X-ray or electron diffraction techniques are used. Alternatively, transmission electron microscopy can be used to inspect few individual nanorods after respective sample preparation. Complementary, recent developments in X-ray optics allow to focus a synchrotron beam down to the nanometer scale and to perform nondestructive diffraction studies at several individual nano-objects grown the same substrate. In this contribution we report on X-ray diffraction studies at individual GaAs nanorods grown Au seed-free on a Si[111] substrate. Due to the nanometer-sized x-ray beam, size and lattice parameters of individual nanorods could be measured and compared to the value obtained from the whole ensemble. Using the coherence properties of the focused beam we could observe speckle-like interference fringes in the surrounding of particular sensitive Bragg reflections which are a measure for the appearance of stacking faults within the nanorods. The separation of the speckles could be used to estimate the number of stacking faults and the size of the coherently scattering nanorod-segments.

  20. Femtosecond pulsed laser ablation of GaAs

    International Nuclear Information System (INIS)

    Trelenberg, T.W.; Dinh, L.N.; Saw, C.K.; Stuart, B.C.; Balooch, M.

    2004-01-01

    The properties of femtosecond-pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or in a buffer gas using a Ti-sapphire laser with a 150 fs minimum pulse length. For in-vacuum deposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the average cluster size was approximately 7 nm for laser pulse lengths between 150 fs and 25 ps. The average cluster size dropped to approximately 1.5 nm at a pulse length of 500 ps. It was also observed that film thickness decreased with increasing laser pulse length. A reflective coating, which accumulated on the laser admission window during ablation, reduced the amount of laser energy reaching the target for subsequent laser shots and developed more rapidly at longer pulse lengths. This observation indicates that non-stoichiometric (metallic) ablatants were produced more readily at longer pulse lengths. The angular distribution of ejected material about the target normal was well fitted to a bi-cosine distribution of cos 47 θ+ cos 4 θ for ablation in vacuum using 150 fs pulses. XPS and AES revealed that the vacuum-deposited films contained excess amorphous Ga or As in addition to the stoichiometric GaAs nanocrystals seen with XRD. However, films containing only the GaAs nanocrystals were produced when ablation was carried out in the presence of a buffer gas with a pressure in excess of 6.67 Pa. At buffer gas pressure on the order of 1 Torr, it was found that the stoichiometry of the ablated target was also preserved. These experiments indicate that both laser pulse length and buffer gas pressure play important roles in the formation of multi-element nanocrystals by laser ablation. The effects of gas pressure on the target's morphology and the size of the GaAs nanocrystals formed will also be discussed

  1. Photo-irradiation effects on GaAs atomic layer epitaxial growth. GaAs no genshiso epitaxial seicho ni okeru hikari reiki koka

    Energy Technology Data Exchange (ETDEWEB)

    Mashita, M.; Kawakyu, Y.; Sasaki, M.; Ishikawa, H. (Toshiba Corp., Kawasaki (Japan). Research and Development Center)

    1990-08-10

    Single atomic layer epitaxy (ALE) aims at controlling a growing film at a precision of single molecular layer. In this article, it is reported that the growth temperature range of ALE was expanded by the vertical irradiation of KrF exima laser (248 nm) onto the substrate for the ALE growth of GaAs using the metalorganic chemical vapor deposition (MOCVD) method. Thanks for the results of the above experiment, it was demonstrated that the irradiation effect was not thermal, but photochemical. In addition, this article studies the possibility of adsorption layer irradiation and surface irradiation as the photo-irradiation mechanism, and points out that coexistence of both irradiation mechanisms can be considered and, in case of exima laser, strong possibility of direct irradiation of the adsorption layer because of its high power density. Hereinafter, by using both optical growth ALE and thermal growth ALE jointly, the degree of freedom of combination of hetero ALE increases and its application to various material systems becomes possible. 16 refs., 6 figs.

  2. ZnSe MSM photodetectors prepared on GaAs and ZnSe substrates

    International Nuclear Information System (INIS)

    Lin, T.K.; Chang, S.J.; Su, Y.K.; Chiou, Y.Z.; Wang, C.K.; Chang, S.P.; Chang, C.M.; Tang, J.J.; Huang, B.R.

    2005-01-01

    Homoepitaxial and heteroepitaxial ZnSe metal-semiconductor-metal (MSM) photodetectors were both fabricated and characterized. It was found that homoepitaxial ZnSe MSM photodetector could provide us smaller dark current and large photocurrent. With an incident wavelength of 448 nm, it was found that the maximum responsivities for the homoepitaxial and heteroepitaxial ZnSe photodetectors were 0.128 and 0.045 A/W, which corresponds to a quantum efficiency of 36 and 12%, respectively. Furthermore, it was found that we achieved the minimum noise equivalent power (NEP) of 7.6 x 10 -13 W and the maximum normalized detectivity (D *) of 9.3 x 10 11 cm Hz 0.5 W -1 from our homoepitaxial ZnSe photodetector. In contrast, NEP and D * of the heteroepitaxial ZnSe photodetector were 2.9 x 10 -12 W and 2.44 x 10 11 cm Hz 0.5 W -1 , respectively

  3. Real-time observation of FIB-created dots and ripples on GaAs

    International Nuclear Information System (INIS)

    Rose, F; Fujita, H; Kawakatsu, H

    2008-01-01

    We report a phenomenological study of Ga dots and ripples created by a focused ion beam (FIB) on the GaAs(001) surface. Real-time observation of dot diffusion and ripple formation was made possible by recording FIB movies. In the case of FIB irradiation with a 40 nA current of Ga + ions accelerated under 40 kV with an incidence angle of θ = 30 0 , increasing ion dose gives rise to three different regimes. In Regime 1, dots with lateral sizes in the range 50-460 nm are formed. Dots diffuse under continuous sputtering. In Regime 2, dots self-assemble into Bradley and Harper (BH) type ripples with a pseudo-period of λ = 1150 ± 25 nm. In Regime 3, ripples are eroded and the surface topology evolves into microplanes. In the case of normal incidence, FIB sputtering leads only to the formation of dots, without surface rippling

  4. Computational analysis of the maximum power point for GaAs sub-cells in InGaP/GaAs/Ge triple-junction space solar cells

    International Nuclear Information System (INIS)

    Cappelletti, M A; Cédola, A P; Peltzer y Blancá, E L

    2014-01-01

    The radiation resistance in InGaP/GaAs/Ge triple-junction solar cells is limited by that of the middle GaAs sub-cell. In this work, the electrical performance degradation of different GaAs sub-cells under 1 MeV electron irradiation at fluences below 4 × 10 15 cm −2 has been analyzed by means of a computer simulation. The numerical simulations have been carried out using the one-dimensional device modeling program PC1D. The effects of the base and emitter carrier concentrations of the p- and n-type GaAs structures on the maximum power point have been researched using a radiative recombination lifetime, a damage constant for the minority carrier lifetime and carrier removal rate models. An analytical model has been proposed, which is useful to either determine the maximum exposure time or select the appropriate device in order to ensure that the electrical parameters of different GaAs sub-cells will have a satisfactory response to radiation since they will be kept above 80% with respect to the non-irradiated values. (paper)

  5. Magnetic properties of Fe3O4 thin films grown on different substrates by laser ablation

    International Nuclear Information System (INIS)

    Parames, M.L.; Viskadourakis, Z.; Rogalski, M.S.; Mariano, J.; Popovici, N.; Giapintzakis, J.; Conde, O.

    2007-01-01

    Magnetite thin films have been grown onto (1 0 0)Si (1 0 0)GaAs and (0 0 0 1)Al 2 O 3 , at substrate temperatures varying from 473 to 673 K, by UV pulsed laser ablation of Fe 3 O 4 targets in reactive atmospheres of O 2 and Ar, at working pressure of 8 x 10 -2 Pa. The influence of the substrate on stoichiometry, microstructure and the magnetic properties has been studied by X-ray diffraction (XRD), conversion electron Moessbauer spectroscopy (CEMS) and magnetic measurements. Magnetite crystallites, with stoichiometry varying from Fe 2.95 O 4 to Fe 2.99 O 4 , are randomly oriented for (1 0 0)GaAs and (1 0 0)Si substrates and exhibit (1 1 1) texture if grown onto (0 0 0 1)Al 2 O 3 . Interfacial Fe 3+ diffusion, which is virtually absent for (1 0 0)Si substrates, was found for both (0 0 0 1)Al 2 O 3 and (1 0 0)GaAs, with some deleterious effect on the subsequent microstructure and magnetic behaviour

  6. Resistance Fluctuations in GaAs Nanowire Grids

    Directory of Open Access Journals (Sweden)

    Ivan Marasović

    2014-01-01

    Full Text Available We present a numerical study on resistance fluctuations in a series of nanowire-based grids. Each grid is made of GaAs nanowires arranged in parallel with metallic contacts crossing all nanowires perpendicularly. Electrical properties of GaAs nanowires known from previous experimental research are used as input parameters in the simulation procedure. Due to the nonhomogeneous doping, the resistivity changes along nanowire. Allowing two possible nanowire orientations (“upwards” or “downwards”, the resulting grid is partially disordered in vertical direction which causes resistance fluctuations. The system is modeled using a two-dimensional random resistor network. Transfer-matrix computation algorithm is used to calculate the total network resistance. It is found that probability density function (PDF of resistance fluctuations for a series of nanowire grids changes from Gaussian behavior towards the Bramwell-Holdsworth-Pinton distribution when both nanowire orientations are equally represented in the grid.

  7. X-ray electron density distribution of GaAs

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    Using ten X-ray structure amplitudes of strong reflections and nine weak reflections both, the valence electron and the difference electron density distribution of GaAs, are calculated. The experimental data are corrected for anomalous dispersion using a bond charge model. The calculated plots are compared with up to now published band structure-based and semiempirically calculated density plots. Taking into account the experimental data of germanium, measured on the same absolute scale, the difference density between GaAs and Ge is calculated. This exhibits the charge transfer between both the f.c.c.-sublattices as well as both, the shift and the decrease of the bond charge, quite closely connected to the theoretical results published by Baur et al. (author)

  8. Change of the work function and potential barrier transparency of W(100) and GaAs(110) single crystals during removing the inherent surface oxide layer

    International Nuclear Information System (INIS)

    Asalkhanov, Yu.I.; Saneev, Eh.L.

    2002-01-01

    Changes of current voltage characteristics of slow monoenergetic electron beam through the surfaces of W(100) and GaAs(100) single crystals have been measured in the process of surface oxide layers elimination. It is shown that work function is decreased and transparency coefficient of surface potential barrier is increased under increasing the temperature of vacuum annealing. Peculiarities of surface potential change under oxide layer elimination in metals and semiconductors are discussed [ru

  9. Vacancies and negative ions in GaAs

    International Nuclear Information System (INIS)

    Corbel, C.

    1991-01-01

    We use positron lifetime studies performed in GaAs materials to show the defect properties which can be investigated by implanting positive positrons in semiconductors. The studies concern native and electron irradiation induced defects. These studies show that vacancy charge state and vacancy ionization levels can be determined from positron annihilation. They show also that positrons are trapped by negative ions and give information on their concentration

  10. Ion induced charge collection in GaAs MESFETs

    International Nuclear Information System (INIS)

    Campbell, A.; Knudson, A.; McMorrow, D.; Anderson, W.; Roussos, J.; Espy, S.; Buchner, S.; Kang, K.; Kerns, D.; Kerns, S.

    1989-01-01

    Charge collection measurements on GaAs MESFET test structures demonstrate that more charge can be collected at the gate than is deposited in the active layer and more charge can be collected at the drain than the total amount of charge produced by the ion. Enhanced charge collection at the gate edge is also observed. The current transients produced by the energetic ions have been measured directly with about 20 picosecond resolution

  11. Fast GaAs photoconductor responses to subnanosecond proton pulses

    International Nuclear Information System (INIS)

    Pochet, T.

    1993-01-01

    GaAs photoconductors have been tailored to detect ultrafast proton pulses having energies ranging between 4 and 9 MeV. The sensitivity, the linearity and the speed of response of the devices are analyzed as a function of their neutron pre-irradiation treatment. The dependence of the sensitivity on the proton energy and the applied polarization is also studied. Finally, the experimental results are compared with a simple theoretical model

  12. Semi-insulating GaAs detectors of fast neutrons

    International Nuclear Information System (INIS)

    Sagatova, A.; Sedlackova, K.; Necas, V.; Zatko, B.; Dubecky, F.; Bohacek, P.

    2012-01-01

    The present work deals with the technology of HDPE neutron conversion layer application on the surface of semi-insulating (SI) GaAs detectors via developed polypropylene (PP) based glue. The influence of glue deposition on the electric properties of the detectors was studied as well as the ability of the detectors to register the fast neutrons from "2"3"9Pu-Be neutron source. (authors)

  13. Solar heating of GaAs nanowire solar cells.

    Science.gov (United States)

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

  14. Gaas Displacement Damage Dosimeter Based on Diode Dark Currents

    Directory of Open Access Journals (Sweden)

    Warner Jeffrey H.

    2017-01-01

    Full Text Available GaAs diode dark currents are correlated over a very large proton energy range as a function of displacement damage dose (DDD. The linearity of the dark current increase with DDD over a wide range of applied voltage bias deems this device an excellent candidate for a displacement damage dosimeter. Additional proton testing performed in situ enabled error estimate determination to within 10% for simulated space use.

  15. Ab initio study of hot electrons in GaAs

    OpenAIRE

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation...

  16. Burst annealing of high temperature GaAs solar cells

    Science.gov (United States)

    Brothers, P. R.; Horne, W. E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles.

  17. Burst annealing of high temperature GaAs solar cells

    International Nuclear Information System (INIS)

    Brothers, P.R.; Horne, W.E.

    1991-01-01

    One of the major limitations of solar cells in space power systems is their vulnerability to radiation damage. One solution to this problem is to periodically heat the cells to anneal the radiation damage. Annealing was demonstrated with silicon cells. The obstacle to annealing of GaAs cells was their susceptibility to thermal damage at the temperatures required to completely anneal the radiation damage. GaAs cells with high temperature contacts and encapsulation were developed. The cells tested are designed for concentrator use at 30 suns AMO. The circular active area is 2.5 mm in diameter for an area of 0.05 sq cm. Typical one sun AMO efficiency of these cells is over 18 percent. The cells were demonstrated to be resistant to damage after thermal excursions in excess of 600 degree C. This high temperature tolerance should allow these cells to survive the annealing of radiation damage. A limited set of experiments were devised to investigate the feasibility of annealing these high temperature cells. The effect of repeated cycles of electron and proton irradiation was tested. The damage mechanisms were analyzed. Limitations in annealing recovery suggested improvements in cell design for more complete recovery. These preliminary experiments also indicate the need for further study to isolate damage mechanisms. The primary objective of the experiments was to demonstrate and quantify the annealing behavior of high temperature GaAs cells. Secondary objectives were to measure the radiation degradation and to determine the effect of repeated irradiation and anneal cycles

  18. Metallization systems for stable ohmic contacts to GaAs

    International Nuclear Information System (INIS)

    Tandon, J.L.; Douglas, K.D.; Vendura, G.; Kolawa, E.; So, F.C.T.; Nicolet, M.A.

    1986-01-01

    A metallization scheme to form reproducible and stable ohmic contacts to GaAs is described. The approach is based on the configuration: GaAs/X/Y/Z; where X is a thin metal film (e.g. Pt, Ti, Pd, Ru), Y is an electrically conducting diffusion barrier layer (TiN, W or W/sub 0.7/N/sub 0.3/), and Z is a thick metal layer (e.g. Ag) typically required for bonding or soldering purposes. The value and reproducibility of the contact resistance in these metallization systems results from the uniform steady-state solid-phase reaction of the metal X with GaAs. The stability of the contacts is achieved by the diffusion barrier layer Y, which not only confines the reaction of X with GaAs, but also prevents the top metal layer Z from interfering with this reaction. Applications of such contacts in fabricating stable solar cells are also discussed

  19. Nitridation of porous GaAs by an ECR ammonia plasma

    International Nuclear Information System (INIS)

    Naddaf, M; Hullavarad, S S; Ganesan, V; Bhoraskar, S V

    2006-01-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy

  20. Nitridation of porous GaAs by an ECR ammonia plasma

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India); Department of Physics, Atomic Energy Commission of Syria, PO Box 6091, Damascus (Syrian Arab Republic); Hullavarad, S S [Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ganesan, V [Inter University Consortium, Indore (India); Bhoraskar, S V [Center for Advanced Studies in Material Science and Solid State Physics, University of Pune, Pune 411 007 (India)

    2006-02-15

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 deg. C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 deg. C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  1. Nitridation of porous GaAs by an ECR ammonia plasma

    Science.gov (United States)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  2. Molecular beam epitaxy of GaAs nanowires and their sustainability for optoelectronic applications. Comparing Au- and self-assisted growth methods

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Steffen

    2011-09-28

    In this work the synthesis of GaAs nanowires by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) mechanism is investigated. A comparison between Au- and self-assisted VLS growth is at the centre of this thesis. While the Au-assisted method is established as a versatile tool for nanowire growth, the recently developed self-assisted variation results from the exchange of Au by Ga droplets and thus eliminates any possibility of Au incorporation. By both methods, we achieve nanowires with epitaxial alignment to the Si(111) substrates. Caused by differences during nanowire nucleation, a parasitic planar layer grows between the nanowires by the Au-assisted method, but can be avoided by the self-assisted method. Au-assisted nanowires grow predominantly in the metastable wurtzite crystal structure, while their self-assisted counterparts have the zincblende structure. All GaAs nanowires are fully relaxed and the strain arising from the lattice mismatch between GaAs and Si of 4.1 % is accommodated by misfit dislocations at the interface. Self-assisted GaAs nanowires are generally found to have vertical and non-polar side facets, while tilted and polar nanofacets were described for Au-assisted GaAs nanowires. We employ VLS nucleation theory to understand the effect of the droplet material on the lateral facets. Optoelectronic applications require long minority carrier lifetimes at room temperature. We fabricate GaAs/(Al,Ga)As core-shell nanowires and analyse them by transient photoluminescence (PL) spectroscopy. The results are 2.5 ns for the self-assisted nanowires as well as 9 ps for the Au-assisted nanowires. By temperature-dependent PL measurements we find a characteristic activation energy of 77 meV that is present only in the Au-assisted nanowires. We conclude that most likely Au is incorporated from the droplets into the GaAs nanowires and acts as a deep, non-radiative recombination centre.

  3. Germinação de sementes de urucu em diferentes temperaturas e substratos Germination of annatto seeds under different temperatures and substrates

    Directory of Open Access Journals (Sweden)

    Renata Vianna Lima

    2007-08-01

    Full Text Available Objetivou-se, neste trabalho, analisar o comportamento germinativo das sementes de urucu cultivar Casca Verde, com e sem escarificação, sob regime de diferentes temperaturas e substratos. O trabalho foi realizado no Laboratório de Tecnologia e Análise de Sementes do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES. O delineamento experimental utilizado foi o inteiramente casualizado, num esquema fatorial 2x6x4 (dois tratamentos físicos nas sementes, seis substratos e quatro temperaturas, totalizando 48 tratamentos, com quatro repetições de 50 sementes. Os tratamentos físicos foram: as sementes intactas e as sementes escarificadas; os substratos foram: a areia, a vermiculita, a fibra de coco, o pó de serra, o Plantmax e o rolo de papel Germitest ; e, as temperaturas testadas foram constantes de 20, 25 e 30ºC e alternada de 20-30ºC. Os dados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey. Os resultados obtidos evidenciaram maior porcentagem de germinação das sementes de urucu, semeadas nos substratos areia, vermiculita e rolo de papel; as temperaturas de 25, 30 e 20-30ºC foram mais adequadas para testes de germinação dessas sementes.This work was carried out with the objective to verify the effect of temperature and substrate on germinative capacity of annatto seeds. This study was developed in the Laboratories of Seed Analysis of Agrarian Science Center that belongs to the Universidade Federal do Espirito Santo (CCA-UFES, located in Alegre ES, Brazil. The experimental design was 2x6x4 factorial involving: (i two treatments in the seeds, (ii six substrates, and (iii four temperatures. Four replications were realized using 50 seeds at each experimental unit. Treatments refer to intact and scarified seeds. Substrates utilized were sand, vermiculite, coconut fiber, wood fiber, Plantmax and paper roll. Temperatures employed were 20, 25, 30 and 20-30ºC. Average

  4. Interface structure and composition of MoO3/GaAs(0 0 1)

    Science.gov (United States)

    Sarkar, Anirban; Ashraf, Tanveer; Grafeneder, Wolfgang; Koch, Reinhold

    2018-04-01

    We studied growth, structure, stress, oxidation state as well as surface and interface structure and composition of thermally-evaporated thin MoO3 films on the technologically important III/V-semiconductor substrate GaAs(0 0 1). The MoO3 films grow with Mo in the 6+  oxidation state. The electrical resistance is tunable by the oxygen partial pressure during deposition from transparent insulating to semi-transparant halfmetallic. In the investigated growth temperature range (room temperature to 200 °C) no diffraction spots are detected by x-ray diffraction. However, high resolution transmission electron microscopy reveals the formation of MoO3 nanocrystal grains with diameters of 5–8 nm. At the interface a  ≈3 nm-thick intermediate layer has formed, where the single-crystal lattice of GaAs gradually transforms to the nanocrystalline MoO3 structure. This interpretation is corroborated by our in situ and real-time stress measurements evidencing a two-stage growth process as well as by elemental interface analysis revealing coexistance of Ga, As, Mo, and oxygen in a intermediate layer of 3–4 nm.

  5. Examining Wetting and Dewetting Processes in Thin-films on Crystalline Substrates at the Nanoscale

    Science.gov (United States)

    Hihath, Sahar

    Controlling the wetting and dewetting of ultra-thin films on solid substrates is important for a variety of technological and fundamental research applications. These applications include film deposition for semiconductor manufacturing, the growth of nanowires through nanoparticle-based catalysis sites, to making ordered arrays of nanoscale particles for electronic and optical devices. However, despite the importance of these processes, the underlying mechanisms by which a film wets a surface or dewets from it is still often unclear and widely debated. In this dissertation we examine wetting and dewetting processes in three materials systems that are relevant for device applications with the ultimate goal of understanding what mechanisms drive the wetting (or dewetting) process in each case. First, we examine the formation of wetting layers between nanoparticle films and highly conductive GaAs substrates for spintronic applications. In this case, the formation of a wetting layer is important for nanoparticle adhesion on the substrate surface. Wetting layers can be made by annealing these systems, which causes elemental diffusion from nanoparticles into the substrate, thereby adhesion between the nanoparticles and the substrate. Here we investigate the feasibility of forming a wetting layer underneath nanoparticles post-annealing in a system of Fe3O4 nanoparticles on a (100) GaAs substrate by studying the interface structure and composition via Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray Spectroscopy (EDXS). Electron Energy-Loss fine structures of the Fe-L 3,2 and O-K absorption edges were quantitatively analyzed to gain insight about the compositional gradient of the interface between the nanoparticles and the GaAs substrate. Additionally, real-space density functional theory calculations of the dynamical form factor was performed to confirm the

  6. Growth initiation processes for GaAs and AlGaAs in CBE

    International Nuclear Information System (INIS)

    Hill, D.

    2002-01-01

    The aim of this work was to investigate the nature of the transient period found in reflectance anisotropy (RA) measurements of high III:V BEP ratio growth of gallium arsenide (GaAs) and aluminium gallium arsenide (AIGaAs) by chemical beam epitaxy (CBE). Growth at substrate temperatures between 510-610 deg C with arsine (AsH 3 ) thermally cracked to As 2 , triethylgallium (TEGa), trimethylgallium (TMGa), trimethylaminealane (TMAA) and diethylmethylaminealane (DEMAA) at high III:V BEP ratios reveals that the transition from 'pre-growth' to 'in-growth' reconstructions is not as straightforward as that for lower III:V BEP ratio growth. Instead of the reconstruction changing directly to the usual 2x4 'in-growth' reconstruction over 1-2 seconds it passes through several other transient reconstructions over a period of up to and greater than 60s, firstly the Ga rich 4x2 then several other 2x4 As-stable reconstructions. It has been shown that at the III:V BEP ratios and substrate temperatures used in this work growth is taking place in a transitional area of the phase diagram for 'in-growth' reconstructions. At higher III:V BEP ratio growth the transition is believed to be direct, from the 'pre-growth' reconstruction to a 4x2 Ga-rich 'in-growth' reconstruction. The surfaces grown with any of the precursors are initially saturated with Ga and then as the As coverage gradually increases the reconstructions change until enough As is present on the surface for usual 2x4 'in-growth' reconstruction to stabilise. However unlike for TMGa, GaAs growth with TEGa proceeds by a non-self limiting growth mode and TEGa rapidly dissociates. The result of this is that TEGa decomposes on top of other TEGa molecules, or their fragments and due to the high flux rate this leads to a 'stacking-up' of Ga on the surface. The presence of excess Ga provides a rapid increase of surface reflectance and then its subsequent decay as the excess Ga is incorporated by the increasing As content of the

  7. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates

    International Nuclear Information System (INIS)

    Bollani, M; Bietti, S; Sanguinetti, S; Frigeri, C; Chrastina, D; Reyes, K; Smereka, P; Millunchick, J M; Vanacore, G M; Tagliaferri, A; Burghammer, M

    2014-01-01

    We fabricate site-controlled, ordered arrays of embedded Ga nanoparticles on Si, using a combination of substrate patterning and molecular-beam epitaxial growth. The fabrication process consists of two steps. Ga droplets are initially nucleated in an ordered array of inverted pyramidal pits, and then partially crystallized by exposure to an As flux, which promotes the formation of a GaAs shell that seals the Ga nanoparticle within two semiconductor layers. The nanoparticle formation process has been investigated through a combination of extensive chemical and structural characterization and theoretical kinetic Monte Carlo simulations. (papers)

  8. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol.

    Science.gov (United States)

    Feng, Xiaoyu; Walker, Terry H; Bridges, William C; Thornton, Charles; Gopalakrishnan, Karthik

    2014-08-01

    Biomass and lipid accumulation of heterotrophic microalgae Chlorella protothecoides by supplying mixed waste substrate of brewer fermentation and crude glycerol were investigated. The biomass concentrations of the old and the new C. protothecoides strains on day 6 reached 14.07 and 12.73 g/L, respectively, which were comparable to those in basal medium with supplement of glucose and yeast extract (BM-GY) (14.47 g/L for old strains and 11.43 g/L for new strains) (P>0.05). Approximately 81.5% of total organic carbon and 65.1% of total nitrogen in the mixed waste were effectively removed. The accumulated lipid productivities of the old and the new C. protothecoides strains in BM-GY were 2.07 and 1.61 g/L/day, respectively, whereas in the mixed waste, lipid productivities could reach 2.12 and 1.81 g/L/day, respectively. Our result highlights a new approach of mixing carbon-rich and nitrogen-rich wastes as economical and practical alternative substrates for biofuel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. X-ray diffraction from single GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas

    2012-11-12

    In recent years, developments in X-ray focussing optics have allowed to produce highly intense, coherent X-ray beams with spot sizes in the range of 100 nm and below. Together with the development of new experimental stations, X-ray diffraction techniques can now be applied to study single nanometer-sized objects. In the present work, X-ray diffraction is applied to study different aspects of the epitaxial growth of GaAs nanowires. Besides conventional diffraction methods, which employ X-ray beams with dimensions of several tens of {mu}m, special emphasis lies on the use of nanodiffraction methods which allow to study single nanowires in their as-grown state without further preparation. In particular, coherent X-ray diffraction is applied to measure simultaneously the 3-dimensional shape and lattice parameters of GaAs nanowires grown by metal-organic vapor phase epitaxy. It is observed that due to a high density of zinc-blende rotational twins within the nanowires, their lattice parameter deviates systematically from the bulk zinc-blende phase. In a second step, the initial stage in the growth of GaAs nanowires on Si (1 1 1) surfaces is studied. This nanowires, obtained by Ga-assisted growth in molecular beam epitaxy, grow predominantly in the cubic zinc-blende structure, but contain inclusions of the hexagonal wurtzite phase close to their bottom interface. Using nanodiffraction methods, the position of the different structural units along the growth axis is determined. Because the GaAs lattice is 4% larger than silicon, these nanowires release their lattice mismatch by the inclusion of dislocations at the interface. Whereas NWs with diameters below 50 nm are free of strain, a rough interface structure in nanowires with diameters above 100 nm prevents a complete plastic relaxation, leading to a residual strain at the interface that decays elastically along the growth direction. Finally, measurements on GaAs-core/InAs-shell nanowire heterostructures are presented

  10. Properties of InSbN grown on GaAs by radio frequency nitrogen plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lim, K P; Yoon, S F; Pham, H T

    2009-01-01

    We report the growth of InSbN on a lattice-mismatched GaAs substrate using radio frequency nitrogen plasma-assisted molecular beam epitaxy. The effects of a two-step thin InSb buffer layer grown at 330 and 380 deg. C and substrate temperature (270-380 deg. C) on the properties of the InSbN are studied. The crystalline quality of the InSbN is significantly improved by the two-step buffer layer due to defect suppression. The shifting in the absorption edge of the InSbN from ∼5 to 8 μm following an increase in the substrate temperature is correlated with the reduction in free carrier concentration from ∼10 18 to 10 16 cm -3 and increase in concentration of N substituting Sb from ∼0.2 to 1%. These results will be beneficial to those working on the pseudo-monolithic integration of InSbN detectors on a GaAs platform.

  11. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henegar, A.J., E-mail: henegar1@umbc.edu; Gougousi, T., E-mail: gougousi@umbc.edu

    2016-12-30

    Graphical abstract: The interaction of the native oxides of GaAs(100) and InAs(100) with alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition (ALD) of Al{sub 2}O{sub 3} and TiO{sub 2} is compared. Al{sub 2}O{sub 3} if found to be a significantly better barrier against the transport of the surface native oxide during the film deposition as well as after post-deposition heat treatment. This superior blocking ability also limits the removal of the native oxides during the Al{sub 2}O{sub 3} ALD process. - Highlights: • Native oxide diffusion is required for continuous native oxide removal. • The diffusion barrier capabilities of Al{sub 2}O{sub 3} limits native oxide removal during ALD. • Arsenic oxide exhibits higher mobility from InAs compared to GaAs substrates. • Oxygen scavenging from the surface by trimethyl aluminum is confirmed. - Abstract: In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al{sub 2}O{sub 3} and TiO{sub 2}, using H{sub 2}O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al{sub 2}O{sub 3} ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO{sub 2} and the native oxides continues well after the surface has been covered with 2 nm of TiO{sub 2}. This difference is traced to the superior properties of Al{sub 2}O{sub 3} as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to

  12. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    International Nuclear Information System (INIS)

    Henegar, A.J.; Gougousi, T.

    2016-01-01

    Graphical abstract: The interaction of the native oxides of GaAs(100) and InAs(100) with alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition (ALD) of Al_2O_3 and TiO_2 is compared. Al_2O_3 if found to be a significantly better barrier against the transport of the surface native oxide during the film deposition as well as after post-deposition heat treatment. This superior blocking ability also limits the removal of the native oxides during the Al_2O_3 ALD process. - Highlights: • Native oxide diffusion is required for continuous native oxide removal. • The diffusion barrier capabilities of Al_2O_3 limits native oxide removal during ALD. • Arsenic oxide exhibits higher mobility from InAs compared to GaAs substrates. • Oxygen scavenging from the surface by trimethyl aluminum is confirmed. - Abstract: In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al_2O_3 and TiO_2, using H_2O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al_2O_3 ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO_2 and the native oxides continues well after the surface has been covered with 2 nm of TiO_2. This difference is traced to the superior properties of Al_2O_3 as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to lower native oxide stability as well as an initial diffusion path formation by the indium oxides.

  13. PERFORMANCE ANALYSIS OF RECTANGULAR MPA USING DIFFERENT SUBSTRATE MATERIALS FOR WLAN APPLICATION

    Directory of Open Access Journals (Sweden)

    E Aravindraj

    2017-03-01

    Full Text Available In this paper, a rectangular microstrip patch antenna (MPA is designed using different substrate materials for analyzing the performance of the MPA. Alumina (Al2O3, Bakelite, Beryllium oxide (BeO, Gallium Arsenide (GaAs, RT-Duroid and Flame Retardant 4 (FR-4 are the six different substrate used in the design. The size of the rectangular microstrip patch antenna varies according to the dielectric constant of substrate materials used. The operating frequency taken for this analysis is 5.8 GHz. The proposed design provides the study on the performance of rectangular microstrip patch antenna for different substrate materials using the same frequency. This study conveys that which substrate material provides better performance. Moreover, this comparative study conveys that which substrate material provides better performance. The simulation parameters are investigated using HFSS.

  14. Growth of metastable fcc Mn thin film on GaAs(001) and its electronic structure studied by photoemission with synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Yan; Dong Guosheng; Zhang Ming

    1995-01-01

    The epitaxial growth of metastable fcc Mn thin films on GaAs(001) surface has been achieved at a substrate temperature of 400 K. The development of the fcc Mn thin films as a function of coverage is studied by photoemission with synchrotron radiation. The electron density of states below the Fermi edge of the fcc Mn phase is measured. A significant difference of the electronic structures is observed between the metastable fcc Mn phase and the thermodynamically stable α-Mn phase. Possible mechanisms are proposed to interpret the experimental result

  15. Dinâmica do potencial matricial em substratos de pinus e coco sob ação da capilaridade Dynamics of matric potential on substrates of pine and coconut under the action of capillarity

    Directory of Open Access Journals (Sweden)

    Carlos Vinícius G Barreto

    2012-03-01

    Full Text Available O tamanho médio de partículas e a porosidade dos substratos condicionam as propriedades matriciais, interferindo na capacidade de retenção e de transmissão da ��gua no meio. O conhecimento desses atributos é fundamental em processos de irrigação por capilaridade, para que o molhamento atinja as camadas superiores dos recipientes com níveis de tensão de água facilmente disponível. O presente trabalho teve como objetivo estudar a ascensão de água por capilaridade para determinar a posição mais apropriada do nível de saturação na ascensão capilar em recipientes com substratos de coco e pinus, de textura grossa e fina. Foram efetuados experimentos avaliando a ascensão de água por capilaridade em colunas segmentadas preenchidas com os substratos. Os valores de umidade em cada segmento foram calculados gravimetricamente e relacionados aos de tensão estimados pela curva de tensão dos substratos. Os substratos com textura fina apresentaram melhor elevação de água por capilaridade, com melhor elevação da umidade em níveis de tensão de água disponível. O substrato de coco fino apresentou água disponível em todo o perfil do recipiente, enquanto o de pinus apresentou as camadas superiores do recipiente com água retida em tensões abaixo do ponto de murcha permanente. O substrato fino de coco apresentou os melhores resultados para aplicação na irrigação por capilaridade, permitindo recomendar o seu uso com o nível de saturação posicionado a cinco centímetros do fundo do recipiente por quinze minutos.The average particle size and porosity of substrates affects the matrix properties of root growth media, interfering in water holding and water conductivity capacity through substrates. The knowledge of these attributes is essential in capillary irrigation processes to allow the wetting front reaches upper layers under easily available water tension. The present work had the objective to study the water rise by

  16. Light controlled prebreakdown characteristics of a semi-insulating GaAs photoconductive switch

    International Nuclear Information System (INIS)

    Ma Xiangrong; Shi Wei; Ji Weili; Xue Hong

    2011-01-01

    A 4 mm gap semi-insulating (SI) GaAs photoconductive switch (PCSS) was triggered by a pulse laser with a wavelength of 1064 nm and a pulse energy of 0.5 mJ. In the experiment, when the bias field was 4 kV, the switch did not induce self-maintained discharge but worked in nonlinear (lock-on) mode. The phenomenon is analyzed as follows: an exciton effect contributes to photoconduction in the generation and dissociation of excitons. Collision ionization, avalanche multiplication and the exciton effect can supply carrier concentration and energy when an outside light source was removed. Under the combined influence of these factors, the SI-GaAs PCSS develops into self-maintained discharge rather than just in the light-controlled prebreakdown status. The characteristics of the filament affect the degree of damage to the switch. (semiconductor devices)

  17. Structural evolution of self-assisted GaAs nanowires grown on Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [University of Siegen, Solid State Physics Group, Walter-Flex-Str. 3, 57072 Siegen (Germany); Breuer, Steffen; Geelhaar, Lutz [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2011-04-15

    GaAs nanowires are grown on Si(111) by self-assisted molecular beam epitaxy, and the ratio between wurtzite and zinc-blende phases is determined as function of nanowire length using asymmetric X-ray diffraction. We show that under the applied growth conditions, nanowires grow in both phases during the initial stage of growth, whereas the zinc-blende content increases with growth time and dominates in long nanowires. Compared to the zinc-blende units, the vertical lattice parameter of the wurtzite segments is 0.7% larger, as measured by the positions of respective diffraction peaks. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Light controlled prebreakdown characteristics of a semi-insulating GaAs photoconductive switch

    Science.gov (United States)

    Xiangrong, Ma; Wei, Shi; Weili, Ji; Hong, Xue

    2011-12-01

    A 4 mm gap semi-insulating (SI) GaAs photoconductive switch (PCSS) was triggered by a pulse laser with a wavelength of 1064 nm and a pulse energy of 0.5 mJ. In the experiment, when the bias field was 4 kV, the switch did not induce self-maintained discharge but worked in nonlinear (lock-on) mode. The phenomenon is analyzed as follows: an exciton effect contributes to photoconduction in the generation and dissociation of excitons. Collision ionization, avalanche multiplication and the exciton effect can supply carrier concentration and energy when an outside light source was removed. Under the combined influence of these factors, the SI-GaAs PCSS develops into self-maintained discharge rather than just in the light-controlled prebreakdown status. The characteristics of the filament affect the degree of damage to the switch.

  19. Electron spin dynamics and optical orientation of Mn2+ ions in GaAs

    Science.gov (United States)

    Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.

    2013-04-01

    We present an overview of spin-related phenomena in GaAs doped with low concentration of Mn-acceptors (below 1018 cm-3). We use the combination of different experimental techniques such as spin-flip Raman scattering and time-resolved photoluminescence. This allows to evaluate the time evolution of both electron and Mn spins. We show that optical orientation of Mn ions is possible under application of weak magnetic field, which is required to suppress the manganese spin relaxation. The optically oriented Mn2+ ions maintain the spin and return part of the polarization back to the electron spin system providing a long-lived electron spin memory. This leads to a bunch of spectacular effects such as non-exponential electron spin decay and spin precession in the effective exchange fields.

  20. Development of clonal matrices of australian red cedar in different substrates under fertilizer doses Desenvolvimento de matrizes clonais de cedro Australiano em diferentes substratos sob doses de fertilizantes

    Directory of Open Access Journals (Sweden)

    Bruno Peres Benatti

    2012-06-01

    Full Text Available In order to evaluate fertilizers doses in different substrates for growth and development of clonal matrices of Australian Red Cedar [Toona ciliata var. australis (F. Muell. Bahadur], an experiment was conducted in a greenhouse. Five substrates were evaluate, with proportions by volume, the first consisting of 100% of Multiplant florestal®, the second of 50% vermiculite, 20% carbonized rice hulls, 20% soil and 10% coconut fiber, the third with 50% soil and 50% sand, the fourth was composed by 50% Multiplant florestal®, 10% soil and 40% coconut fiber and the fifth with 65% of Multiplant florestal®, 25% vermiculite and 10% carbonized rice hulls. The fertilizers doses applied were 0.0; 0.3; 0.6; 1.2; 2.4 of fertilization suggested by Malavolta (1980 for vases. The characteristics evaluated were: collar diameter of the matrices, production of dry mater by shoots, root system and total and accumulation of nutrients by shoot at the end of the experimental period of 150 days. The Australian Red Cedar plants have high nutritional requirements, as showed by the better development obtained with higher fertilizer doses than those suggested by Malavolta (1980. The substrate three provided the worst development to clonal matrices while the substrates 1, 4 and 5 provided the best environment for the development considering all the fertilizer doses and all variables.Com o objetivo de avaliar diferentes substratos com taxas de fertilizantes para o crescimento e desenvolvimento de matrizes clonais de cedro australiano [Toona ciliata var. australis (F. Muell. Bahadur], foi realizado um experimento em casa de vegetação. Foram avaliados cinco substratos, com as proporções em volume, sendo o primeiro composto por 100% Multiplant florestal®, o segundo de 50% Vermiculita, 20% casca de arroz carbonizada, 20% terra e 10% fibra de coco, o terceiro com 50% terra e 50% areia, o quarto com proporção de 50% Multiplant florestal®, 10% terra e 40% de fibra de coco e

  1. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    Science.gov (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Atomic scale characterization of ion-induced amorphization of GaAs and InAs using PAC spectroscopy

    International Nuclear Information System (INIS)

    Dogra, R.; Byrne, A.P.; Ridgway, M.C.

    2005-01-01

    Single crystals of GaAs (100) and InAs (100) were implanted with 1-7 MeV 74 Ge ions over a wide dose range at liquid nitrogen temperature. The implanted substrates were investigated with respect to the damage production by means of perturbed angular correlation spectroscopy based upon hyperfine interactions of nuclear electromagnetic moments of probe nuclei with extra-nuclear fields. The perturbed angular correlation measurements were performed at room temperature utilizing the 111 In/Cd radioisotope probe nuclei. The crystalline, disordered and amorphous probe environments were identified from the measurements. The defect production is described within the framework of different amorphization models. (author). 6 refs., 2 figs

  3. Reflectance-difference spectroscopy as an optical probe for in situ determination of doping levels in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martinez, A.; Lara-Velazquez, I.; Balderas-Navarro, R.E.; Ortega-Gallegos, J.; Guel-Sandoval, S.; Lastras-Martinez, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, San Luis Potosi, SLP 78000 (Mexico)

    2008-07-01

    We report on in situ Reflectance Difference Spectroscopy measurements carried out on GaAs(001). Measurements were performed at temperatures of 580 C and 430 C, in both n and p-type doped films and for both (2 x 4) and c(4 x 4) reconstructions. Samples employed were grown by Molecular Beam Epitaxy with doping levels in the range from 10{sup 16}-10{sup 19} cm{sup -3}. We demonstrate the potential of Reflectance Difference Spectroscopy for impurity level determinations under growth conditions. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  5. Bates GaAs polarized electron source

    International Nuclear Information System (INIS)

    Schaefer, H.R.; Cates, G.; Michaels, R.; Hughes, V.W.; Lubell, M.S.; Souder, P.A.

    1983-05-01

    In order to pursue measurements of parity violating effects of the neutral weak current, we have developed a polarized electron source suitable for installation at the MIT-Bates Linear Accelerator. The source is designed to provide a high peak-current pulsed beam that has a approx. 1% duty factor and that is extremely stable under helicity reversal. 34 references, 6 figures, 1 table

  6. AlGaAs and AlGaAs/GaAs/AlGaAs nanowires grown by molecular beam epitaxy on silicon substrates

    DEFF Research Database (Denmark)

    Cirlin, G E; Reznik, R R; Shtrom, I V

    2017-01-01

    The data on growth peculiarities and physical properties of GaAs insertions embedded in AlGaAs nanowires grown on different (1 1 1) substrates by Au-assisted molecular beam epitaxy are presented. The influence of nanowires growth conditions on structural and optical properties is studied in detail...

  7. Amateurism in an Age of Professionalism: An Empirical Examination of an Irish Sporting Culture: The GAA

    Directory of Open Access Journals (Sweden)

    Ian Keeler

    2013-07-01

    This research study recommends that the GAA adopt an innovative approach, through strategic decision-making, to allow the GAA to maintain its amateur ethos, and, yet, successfully compete in the professional sporting market. The strong links with the community must be both nurtured and enhanced. The GAA and Gaelic games must embrace the challenges that the branding success of foreign sports has brought. Player welfare issues for the elite players must be addressed while continuing to protect the club and its amateur structures. The study looks at the key metrics that are required to evolve the GAA. This entails not only focusing on the perceived importance of the amateur ethos to the GAA, but also developing the marketing, branding and profiling of Gaelic games to enhance the performance of an amateur sporting organization in an era of increased professionalism in sport.

  8. Magnetic properties of epitaxial MnAs thin films on GaAs (001)

    CERN Document Server

    Park, Y S

    2000-01-01

    The magnetic properties of two types of epitaxial MnAs films on GaAs (001) substrates in the thickness range of 20 approx 200 nm were studied. Using longitudinal a magneto-optical Kerr-effect(MOKE) apparatus at lambda=632.8 nm, we determined the Curie temperatures of the 100-nm thick films to be 54.0+-0.5 .deg. C and 63.7+-0.5 .deg. C for type A films and type B films, respectively. The observed Curie temperatures corresponded to increases of 36.8 .deg. C and 33.9 .deg. C per one percent increase in the unit cell volume for type A and B, respectively. The normalized maximum MOKE signal from the type A film exhibited a first-order-like magnetic transition while that of type B underwent a second-order-like transition. These different behaviors between types A and B stem from different residual stresses being exerted on the hexagonal phase. Utilizing a Foner-type vibrating sample magnetometer at room temperature, we examined the thickness dependence of the coercive force and the saturation magnetization of the f...

  9. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions.

    Science.gov (United States)

    Tomer, D; Rajput, S; Hudy, L J; Li, C H; Li, L

    2015-05-29

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions.

  10. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions

    International Nuclear Information System (INIS)

    Tomer, D; Rajput, S; Hudy, L J; Li, L; Li, C H

    2015-01-01

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current–voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions. (paper)

  11. X-ray characterization Si-doped InAs nanowires grown on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, Muhammad; Biermanns, Andreas; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik (Germany); Grap, Thomas; Lepsa, Mihail [Forschungszentrum Juelich, Institut fuer Bio- und Nanosysteme (Germany)

    2011-07-01

    Semiconductor nanowires (NW) are of particular interest due to the ability to synthesize single-crystalline 1D epitaxial structures and heterostructures in the nanometer range. However, many details of the growth mechanism are not well understood. In particular, understanding and control of doping mechanisms during NW growth are important issues for technological applications. In this contribution we present a x-ray diffraction study of the influence of Si-doping in InAs NWs grown on GaAs(111) substrates using In-assisted MBE growth. With the help of coplanar and asymmetric x-ray diffraction, we monitor the evolution of the lattice constants and structure of the InAs NWs as function of doping concentration. We observe that increasing the nominal doping concentration leads to the appearance of additional diffraction maxima corresponding to material whose vertical lattice parameter is 1% smaller than that of the undoped nanowires. Those lattice parameters can be attributed with alloy formation in the form of island like crystallites.

  12. Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates

    International Nuclear Information System (INIS)

    Rusop, M.; Uma, K.; Soga, T.; Jimbo, T.

    2006-01-01

    Zinc oxide (ZnO) thin films have been prepared by pulsed laser deposition (PLD) technique at room temperature on quartz and single crystal silicon (1 0 0) substrates. The oxygen ambient gas pressure was attained at 6 Torr during the deposition. The deposited films were post-growth annealed in air at various annealing temperatures for 30 min. The X-ray diffraction (XRD), optical and electrical properties have been measured to study the properties of the films as a function of annealing temperatures. XRD has shown the strength of (0 0 2) peak increases and FWHM value decreases as the annealing temperatures increases from 200 to 600 deg. C. The post-growth annealed at 600 deg. C show dominant c-axis oriented hexagonal wurtize crystal structure and exhibit high average transmittance about 85% in the visible region and very sharp absorption edge at 376 nm with energy band gap of approximately 3.46 eV. Electrical measurement indicates the resistivity decreases with the annealing temperatures up to 600 deg. C, after which it increases with higher annealing temperatures at 800 deg. C. The complex of oxygen vacancy in the ZnO films may be the source of low conductivity in undoped ZnO films

  13. Magnetic domain-wall motion study under an electric field in a Finemet{sup ®} thin film on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ngo Thi [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Mercone, Silvana, E-mail: silvana.mercone@univ-paris13.fr [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Moulin, Johan [Institut d' Electronique Fondamentale, UMR 8622 Université Paris Sud/CNRS, Orsay (France); Bahoui, Anouar El; Faurie, Damien; Zighem, Fatih; Belmeguenai, Mohamed; Haddadi, Halim [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France)

    2015-01-01

    We study the influence of applied in-plane elastic strains on the static magnetic configuration of a 530 nm magnetostrictive FeCuNbSiB (Finemet{sup ®}) thin film. The in-plane strains are induced via the application of a voltage to a piezoelectric actuator on which the film/substrate system was glued. A quantitative characterization of the voltage dependence of the induced-strain at the surface of the film was performed using a digital image correlation technique. Magnetic Force Microscopy (MFM) images at remanence (H=0 Oe and U=0 V) clearly reveal the presence of weak stripe domains. The effect of the voltage-induced strain shows the existence of a voltage threshold value for the strike configuration break. For a maximum strain of ε{sub XX}∼0.5×10{sup −3} we succeed in destabilizing the stripes configuration helping the setting up of a complete homogeneous magnetic pattern. - Highlights: • Elastic strain effect on the magnetic domain structure of a Finemet/Kapton is investigated. • External loading is applied thanks to a piezo-actuator on which the sample is glued. • The amount of strains was measured by the Digital Image Correlation technique. • Magnetic Force Microscopy showed high mobility of magnetic stripes domains. • Bending, curving and branching of domains go into maze-like pattern.

  14. Laser-induced bandgap collapse in GaAs

    Science.gov (United States)

    Siegal, Y.; Glezer, Eli N.; Huang, Li; Mazur, Eric

    1994-05-01

    We present recent time-resolved measurements of the linear dielectric constant of GaAs at 2.2 eV and 4.4 eV following femtosecond laser pulse excitation. In sharp contrast to predictions based on the widely used Drude model, the data show an interband absorption peak coming into resonance first with the 4.4 eV probe photon energy and then with the 2.2 eV probe photon energy, indicating major changes in the band structure. The time scale for these changes ranges from within 100 fs to a few picoseconds, depending on the incident pump pulse fluence.

  15. Investigation of Optically Induced Avalanching in GaAs

    Science.gov (United States)

    1989-06-01

    by Bovino , et al 4 to increase the hold off voltage. The button switch design of Fig. 4c has been used by several researchers5 ’ 7 to obtain the...ul Long flashover palh Figure 3b. 434 Optical Jlatlern a. Mourou Switch b. Bovino Switch c. Button Switch Figure 4. Photoconductive Switches...Technology and Devices Laboratory, ERADCOM (by L. Bovino , et. all) 4 • The deposition recipe for the contacts is 1) 50 ANi (provides contact to GaAs

  16. Study of irradiation defects in GaAs

    International Nuclear Information System (INIS)

    Loualiche, S.

    1982-11-01

    Characterization techniques: C(V) differential capacity, DLTS deep level transient spectroscopy, DDLTS double deep level transient spectroscopy and DLOS deep level optical spectroscopy are studied and theoretical and experimental fundamentals are re-examined. In particular the centres created by ionic or electronic bombardment of p-type GaAs. New quantitative theoretical bases for the C(V) method are obtained. Study of the optical properties of traps due to irradiation using DLOS. The nature of irradiation defects are discussed [fr

  17. Surface passivation of liquid phase epitaxial GaAs

    International Nuclear Information System (INIS)

    Alexiev, D.; Butcher, K.S.A.; Mo, L.; Edmondson, M.

    1995-10-01

    Passivation of the liquid phase epitaxial GaAs surface was attempted using aqueous P 2 S 5 -NH 4 OH, (NH 4 ) 2 S x and plasma nitrogenation and hydrogenation. Results indicate that plasma nitrogenation with pretreatment of plasma hydrogenation produced consistent reduction in reverse leakage current at room temperature for all p and n type Schottky diodes. Some diodes showed an order of magnitude improvement in current density. (NH 4 ) 2 S x passivation also results in improved I-V characteristics, though the long term stability of this passivation is questionable. 26 refs., 6 figs

  18. High resolution resonant Raman scattering in InP and GaAs

    International Nuclear Information System (INIS)

    Kernohan, E.T.M.

    1996-04-01

    Previous studies of III-V semiconductors using resonant Raman scattering have concentrated on measuring the variations in scattering intensity under different excitation conditions. The shape of the Raman line also contains important information, but this has usually been lost because the low signal strengths mean that resolution has been sacrificed for sensitivity. It might therefore be expected that further insights into the processes involved in Raman scattering could be obtained by using high resolution methods. In this thesis I have measured single- and multiple- phonon scattering from bulk GaAs and InP with a spectral resolution better than the intrinsic widths of the Raman lines. For scattering in the region of one longitudinal optic (LO) phonon energy, it is found that in InP the scattering in the allowed and forbidden configurations occur at different Raman shifts, above and below the zone-centre phonon energy respectively. These shifts are used to determine the scattering processes involved, and how they differ between InP and GaAs. The lineshapes obtained in multiple-phonon scattering are found to depend strongly on the excitation energy used, providing evidence for the presence of intermediate resonances. The measured spectra are used to provide information about the phonon dispersion of InP, whose dispersion it is difficult to measure in any other way, and the first evidence is found for an upward dispersion of the LO mode. Raman lineshapes are measured for InP in a magnetic field. The field alters the electronic bandstructure, leading to a series of strong resonances in the Raman efficiency due to interband magneto-optical transitions between Landau levels. This allows multiphonon processes up to sixth-order to be investigated. (author)

  19. Nitrogenated compounds' biofiltration under alternative bacterium fixation substrates Biofiltración de compuestos nitrogenados bajo medios de fijación bacteriana alternativos

    Directory of Open Access Journals (Sweden)

    Carlos Carroza

    2012-09-01

    Full Text Available This study compares the behavior of nitrification (NH4+, NO2- and NO3-, and performance, in terms of the surface TAN conversion rate (STR, volumetric TAN conversion rate (VTR and removal percentage of TAN (PTR among three fixation media of nitrifying bacteria (two alternatives (S1, S2 and one commercial (Co. The experiment was performed in two tests of 42 days each. Three isolated biofiltration systems were built for the experience, to which were added media colonized by bacteria as a "seed" to start the process of nitrification. Ammonium chloride (NH4Cl was attached as source of ammonium in reconditioned freshwater, also gradually adding inorganic carbon (HCO3- to maintain moderate water hardness. The average results for both tests indicate that the substrates S1 and S2 show a statistically similar behavior to the substrate Co (P > 0.05 during the first 33 days (until steady state. For the second test in terms of performance, STR values were 0.40, 0.39, 0.39 g TAN m-2 d-1 recorded for S2 and Co respectively; in terms of PRN, values were 92(3 9־/ and 93% for S1, S2 and Co, respectively. Regarding VTR, values of 72.31, 114.94, and 39.02 g TAN m-3 d-1 were recorded for S2 and Co respectively. Statistical analysis provided that for STR and PRN, no significant differences, were found. But for VTR, statistically significant differences between means were evaluated, registering for the S2 media the highest value of VTR.Se compara el comportamiento del proceso de nitrificación (NH4+, NO2- y NO3-, y el rendimiento, en términos de la tasa superficial de conversión de NAT, tasa volumétrica de conversión de NAT y porcentaje de remoción de NAT (PRN entre tres medios de fijación de bacterias nitrificantes, dos alternativos (S1, S2 y uno comercial (Co. La experiencia se realizó en dos pruebas de 42 días cada una. Se construyeron tres sistemas aislados para la experiencia, a los cuales se adicionaron medios colonizados por bacterias a modo de

  20. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H.

    2014-01-01

    We demonstrate Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures grown by molecular-beam epitaxy and characterized by transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. The bottom Fe 3 Si epitaxial film on GaAs is always single crystalline. The structural properties of the Ge film and the top Fe 3 Si layer depend on the substrate temperature during Ge deposition. Different orientation distributions of the grains in the Ge and the upper Fe 3 Si film were found. The low substrate temperature T s of 150 °C during Ge deposition ensures sharp interfaces, however, results in predominantly amorphous films. We find that the intermediate T s (225 °C) leads to a largely [111] oriented upper Fe 3 Si layer and polycrystal films. The high T s of 325 °C stabilizes the [001] oriented epitaxial layer structure, i.e., delivers smooth interfaces and single crystal films over as much as 80% of the surface area. - Highlights: • Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures are grown by MBE. • The bottom Fe 3 Si film is always single crystalline. • The properties of the Ge film depend on the substrate temperature during deposition. • Optimum growth conditions lead to almost perfect epitaxy of Ge on Fe 3 Si