Sample records for underlying functional mechanisms

  1. Stress analysis in a functionally graded disc under mechanical loads ...

    Indian Academy of Sciences (India)

    Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution. HASAN ÇALLIO ˘GLU. Department of Mechanical Engineering, Pamukkale University, 20070,. Denizli, Turkey e-mail: MS received 25 November 2009; revised 12 August 2010; accepted.

  2. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms. (United States)

    Habibi, Meisam K; Samaei, Arash T; Gheshlaghi, Behnam; Lu, Jian; Lu, Yang


    As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during "elastic bending" and "fracture failure" stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension-compression asymmetry, for further understanding of the microstructure evolution of bamboo's outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Mechanisms underlying local functional and phylogenetic beta diversity in two temperate forests. (United States)

    Wang, Xugao; Wiegand, Thorsten; Swenson, Nathan G; Wolf, Amy T; Howe, Robert W; Hao, Zhanqing; Lin, Fei; Ye, Ji; Yuan, Zuoqiang


    Although trait information has been widely used to explore underlying mechanisms of forest community structure, most studies have focused on local patterns of phylogenetic or functional alpha diversity. Investigations of functional beta diversity, on the other hand, have not been conducted at local scales in a spatially explicit way. In this study, we provide a powerful methodology based on recent advances in spatial point pattern analysis using fully mapped data of large and small trees in two large temperate forest plots. This approach allowed us to assess the relative importance of different ecological processes and mechanisms for explaining patterns of local phylogenetic and functional beta diversity. For both forests and size classes, we found a clear hierarchy of scales: habitat filtering accounted for patterns of phylogenetic and functional beta diversity at larger distances (150-250 m), dispersal limitation accounted for the observed decline in beta diversity at distances below 150 m, and species interactions explained small departures from functional and phylogenetic beta diversity at the immediate plant-neighborhood scale (below 20 m). Thus, both habitat filtering and dispersal limitation influenced the observed patterns in phylogenetic and functional beta diversity at local scales. This result contrasts with a previous study from the same forests, where dispersal limitation alone approximated the observed species beta diversity for distances up to 250 m. In addition, species interactions were relatively unimportant for predicting phylogenetic and functional beta diversity. Our analysis suggests that phylogenetic and functional beta diversity can provide insights into the mechanisms of local community assembly that are missed by studies focusing exclusively on species beta diversity.

  4. Underlying Mechanisms of Pituitary-Thyroid Axis Function Disruption by Chronic Iodine Excess in Rats. (United States)

    Calil-Silveira, Jamile; Serrano-Nascimento, Caroline; Laconca, Raquel Cardoso; Schmiedecke, Letícia; Salgueiro, Rafael Barrera; Kondo, Ayrton Kimidi; Nunes, Maria Tereza


    Iodine is essential for thyroid hormone synthesis and is an important regulator of thyroid function. Chronic iodine deficiency leads to hypothyroidism, but iodine excess also impairs thyroid function causing hyperthyroidism, hypothyroidism, and/or thyroiditis. This study aimed to investigate the underlying mechanisms by which exposure to chronic iodine excess impairs pituitary-thyroid axis function. Male Wistar rats were treated for two months with NaI (0.05% and 0.005%) or NaI+NaClO 4 (0.05%) dissolved in drinking water. Hormone levels, gene expression, and thyroid morphology were analyzed later. NaI-treated rats presented high levels of iodine in urine, increased serum thyrotropin levels, slightly decreased serum thyroxine/triiodothyronine levels, and a decreased expression of the sodium-iodide symporter, thyrotropin receptor, and thyroperoxidase mRNA and protein, suggesting a primary thyroid dysfunction. In contrast, thyroglobulin and pendrin mRNA and protein content were increased. Kidney and liver deiodinase type 1 mRNA expression was decreased in iodine-treated rats. Morphological studies showed larger thyroid follicles with higher amounts of colloid and increased amounts of connective tissue in the thyroid of iodine-treated animals. All these effects were prevented when perchlorate treatment was combined with iodine excess. The present data reinforce and add novel findings about the disruption of thyroid gland function and the compensatory action of increased thyrotropin levels in iodine-exposed animals. Moreover, they draw attention to the fact that iodine intake should be carefully monitored, since both deficient and excessive ingestion of this trace element may induce pituitary-thyroid axis dysfunction.

  5. Modulation of Protein Quality Control Systems as Novel Mechanisms Underlying Functionality of Food Phytochemicals

    Directory of Open Access Journals (Sweden)

    Kohta Ohnishi


    phytochemicals, such as curcumin, phenethyl isothiocyanate, ursolic acid, and lycopene, were significantly active, whereas most nutrients were virtually inactive. These results may be associated with the fact that phytochemicals, but not nutrients, are foreign chemicals to animals, as noted above.Functional Foods in Health and Disease 2013; 3(10:400-415 Page 402 of 415 Conclusion: Up-regulation of antioxidant and xenobiotics-metabolizing enzymes has been reported to be an adaptive response in animals exposed to phytochemicals. Our present results imply that the process also increases the capacity to counteract proteo-stresses through activation of PQC systems. This putative phenomenon, representing the concept of hormesis[5], may be associated with mechanisms underlying the physiological functions of phytochemicals. Therefore, chronic ingestion of this class of chemicals may result in ‘chemical training’, in which self-defense systems are continuously activated for adaptation to phytochemical-driven stresses.

  6. Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Jian Hao


    Full Text Available Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of NeuN-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery.

  7. [Interaction between functional nano-hydroxyapatite and cells and the underlying mechanisms]. (United States)

    Yang, Min; Zhao, Yanzhong; Wang, Guohui; Tan, Juan; Zhu, Shaihong


    To explore the interaction between arginine functionalized hydroxyapatite (HAP/Arg) nanoparticles and endothelial cells, and to investigate mechanisms for endocytosis kinetics and endocytosis.
 Human umbilical vein endothelial cells (HUVECs) were selected as the research model.Cellular uptake of HAP/Arg nanoparticles were observed by laser scanning confocal microscopy.Average fluorescence intensity of cells after ingestion with different concentrations of HAP/Arg nanoparticles were determined by flow cytometer and atomic force microscopy.
 The HAP/Arg nanoparticles with doped terbium existed in cytoplasm, and most of them distributed around the nucleus area after cellular uptake by HUVECs. Cellular uptake process of HAP/Arg nanoparticles in HUVECs was in a time and concentration dependent manner. 4 h and 50 mg/L was the best condition for uptake. HAP/Arg nanoparticles were easier to be up-taken into the cells than HAP nanoparticles without arginine functionalized.
 HAP/Arg nanoparticles are internalized by HUVECs cells through an active transport and energy-dependent endocytosis process, and it is up-taken by cells mainly through caveolin-mediated endocytosis, but the clathrin-dependent endocytic pathway is also involved..

  8. Using stable isotopes and functional wood anatomy to identify underlying mechanisms of drought tolerance in different provenances of lodgepole pine (United States)

    Isaac-Renton, Miriam; Montwé, David; Hamann, Andreas; Spiecker, Heinrich; Cherubini, Paolo; Treydte, Kerstin


    Choosing drought-tolerant seed sources for reforestation may help adapt forests to climate change. By combining dendroecological growth analysis with a long-term provenance trial, we assessed growth and drought tolerance of different populations of a wide-ranging conifer, lodgepole pine (Pinus contorta). This experimental design simulated a climate warming scenario through southward seed transfer, and an exceptional drought also occurred in 2002. We felled over 500 trees, representing 23 seed sources, which were grown for 32 years at three warm, dry sites in southern British Columbia, Canada. Northern populations showed poor growth and drought tolerance. These seed sources therefore appear to be especially at risk under climate change. Before recommending assisted migration of southern seeds towards the north, however, it is important to understand the physiological mechanisms underlying these responses. We combine functional wood anatomy with a dual-isotope approach to evaluate these mechanisms to drought response.

  9. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function

    Directory of Open Access Journals (Sweden)

    Martins Amanda R


    Full Text Available Abstract Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms.

  10. Multi-objective optimization of a functionally graded sandwich panel under mechanical loading in the presence of stress constraint (United States)

    Ashjari, Mohammad; Khoshravan, Mohammad Reza


    A method was presented for multi-objective optimization of material distribution of simply supported functionally graded (FG) sandwich panel, and sensitivity analyses of optimal designs were also conducted based on design variables and objective functions. The material composition was assumed to vary only in the thickness direction. Piecewise cubic interpolation of volume fractions was used to calculate volume fractions of constituent material phases at a point; these fractions were defined at a limited number of evenly spaced control points. The effective material properties of the panel were obtained by applying the linear rule of mixtures. The behavior of FG sandwich panel was predicted by Reddy's assumptions of third-order shear deformation theory. Exact solutions for deflections and stresses of simply supported sandwich panel were presented using the Navier-type solution technique. The volume fractions at control points, material, and thickness of the faces which were selected as decision variables were optimized by a multi-objective evolutionary algorithm known as the fast and elitist multi-objective genetic algorithm (NSGA-II). The mass and deflection of the model were considered the objective functions to be minimized with stress constraints. This model was optimized to verify the capability and efficiency of the proposed model under mechanical loading. The framework proposed for designing FG sandwich panel under pure mechanical conditions was furnished by the results.

  11. Child abuse: underlying mechanisms


    Martínez, Gladys S.


    Exposure to traumatic stress during childhood, in the form of abuse or neglect, is related to an increased vulnerability resulting in the development of several pathologies, this relation has been confi rmed by epidemiological studies; however, the neural mechanisms underlying such abnormalities are still unknown. Most of the research done has focused on the effects in the infant, and only recently it has begun to focus on the neurobiological changes in the abusive parents. In this article, I...

  12. Forces of Change: Mechanics Underlying Formation of Functional 3D Organ Buds


    Wrighton, Paul J.; Kiessling, Laura L.


    3D organ buds that can recapitulate organ function have myriad applications for regenerative and personalized medicine. Here, Takebe et al. (2015) describe a generalized method for organ bud formation, demonstrating that mechanosensitive mesenchymal stem cells drive condensation of heterotypic cell mixtures to create buds from diverse organs.

  13. Forces of Change: Mechanics Underlying Formation of Functional 3D Organ Buds. (United States)

    Wrighton, Paul J; Kiessling, Laura L


    3D organ buds that can recapitulate organ function have myriad applications for regenerative and personalized medicine. Here, Takebe et al. (2015) describe a generalized method for organ bud formation, demonstrating that mechanosensitive mesenchymal stem cells drive condensation of heterotypic cell mixtures to create buds from diverse organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Reward functioning in PTSD: a systematic review exploring the mechanisms underlying anhedonia

    NARCIS (Netherlands)

    Nawijn, Laura; van Zuiden, Mirjam; Frijling, Jessie L.; Koch, Saskia B. J.; Veltman, Dick J.; Olff, Miranda


    Post-traumatic stress disorder (PTSD) is a debilitating psychiatric disorder. An important diagnostic feature of PTSD is anhedonia, which may result from deficits in reward functioning. This has however never been studied systematically in PTSD. To determine if PTSD is associated with reward

  15. Exploring Mechanisms Underlying Impaired Brain Function in Gulf War Illness through Advanced Network Analysis (United States)


    networks of the brain responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased...GWI Syndromes 1, 2, and 3; neurologic symptoms, neurocognitive; affective; pain; sensory ; resting state functional MRI; independent components analysis...neuropathic pain, memory and concentration deficits, vestibular disturbances, and depression. The objective/goal of this project titled, “Exploring

  16. Nutritional Proteomics: Investigating molecular mechanisms underlying the health beneficial effect of functional foods

    Directory of Open Access Journals (Sweden)

    Yusuke Kawashima


    Full Text Available ABSTRACTObjective: We introduce a new technical and conceptual term “nutritional proteomics” by identifying and quantifying the proteins and their changes in a certain organ or tissue dependent on the food intake by utilizing a mass spectrometry-based proteomics technique.Purpose: Food intake is essentially important for every life on earth to sustain the physical as well as mental functions. The outcome of food intake will be manifested in the health state and its dysfunction. The molecular information about the protein expression change caused by diets will assist us to understand the significance of functional foods. We wish to develop nutritional proteomics to promote a new area in functional food studies for a better understanding of the role of functional foods in health and disease.Methods: We chose two classes of food ingredients to show the feasibility of nutritional proteomics, omega-3 polyunsaturated fatty acids and omega-6 polyunsaturated fatty acids both of which are involved in the inflammation/anti-inflammation axis. Each class of the polyunsaturated fatty acids was mixed in mouse chow respectively. The liver tissue of mice fed with omega-3 diet or omega-3 diet was analyzed by the state-of-the-art shotgun proteomics using nano-HPLC-ESI-MS/MS. The data were analyzed by the number of differentially expressed proteins that were guaranteed by 1% false discovery rate for protein identification and by the statistical significance of variance evaluated by p-value in two-tailed distribution analysis better than 0.05 (n=4. The differential pattern of protein expression was characterized with Gene Ontology designation.Results: The data analysis of the shotgun nutritional proteomics identified 2,810 proteins that are validated with 1% FDR. Among these 2,810 proteins, 125 were characterized with statistical significance of variance (p<0.05; n=4 between the omega-3 diet and the omega-6 diet by twotailed distribution analysis. The results

  17. Differential expression of EWI-2 in endometriosis, its functional role and underlying molecular mechanisms. (United States)

    Zheng, Tingting; Yang, Jing


    We aimed to investigate EWI-2 expression in endometrium tissues collected from women with endometriosis at mRNA and protein levels, to evaluate its potential as a biomarker for endometriosis and to study its functional role via possible regulation of the PI3K/Akt signaling pathway. Endometrium tissues were collected from patients with endometriosis and healthy individuals. EWI-2 mRNA expression was evaluated using quantitative real-time PCR (qRT-PCR) while EWI-2 protein levels were determined by western blotting. For functional studies, EWI-2 shRNA was transfected in endometrial epithelial cells and the in vitro migration and invasion assays were performed using the Transwell chambers. EWI-2 was significantly downregulated in tissues obtained from patients with endometriosis compared with healthy individuals (P endometriosis diagnosis was 0.8942 (P = 0.003), 0.9643 (P = 0.0001), 0.9912 (P endometriosis in matched comparisons of data originated from the proliferative, early, middle, and late secretory phases. Over the menstrual cycle, the expression of EWI-2 was significantly decreased in the eutopic tissues compared to the ectopic tissues. Further cellular and molecular analyses showed that EWI-2 inhibited cell migration and invasion via the Akt signaling. Our findings suggested that downregulation of EWI-2 may contribute to endometriosis physiopathology and potentiate EWI-2 as a valuable diagnostic biomarker and therapeutic target for endometriosis. © 2017 Japan Society of Obstetrics and Gynecology.

  18. Molecular Mechanisms Underlying the Link between Nuclear Receptor Function and Cholesterol Gallstone Formation

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez


    Full Text Available Cholesterol gallstone disease is highly prevalent in western countries, particularly in women and some specific ethnic groups. The formation of water-insoluble cholesterol crystals is due to a misbalance between the three major lipids present in the bile: cholesterol, bile salts, and phospholipids. Many proteins implicated in biliary lipid secretion in the liver are regulated by several transcription factors, including nuclear receptors LXR and FXR. Human and murine genetic, physiological, pathophysiological, and pharmacological evidence is consistent with the relevance of these nuclear receptors in gallstone formation. In addition, there is emerging data that also suggests a role for estrogen receptor ESR1 in abnormal cholesterol metabolism leading to gallstone disease. A better comprehension of the role of nuclear receptor function in gallstone formation may help to design new and more effective therapeutic strategies for this highly prevalent disease condition.

  19. A randomised-controlled trial investigating potential underlying mechanisms of a functionality-based approach to improving women's body image. (United States)

    Alleva, Jessica M; Diedrichs, Phillippa C; Halliwell, Emma; Martijn, Carolien; Stuijfzand, Bobby G; Treneman-Evans, Georgia; Rumsey, Nichola


    Focusing on body functionality is a promising technique for improving women's body image. This study replicates prior research in a large novel sample, tests longer-term follow-up effects, and investigates underlying mechanisms of these effects (body complexity and body-self integration). British women (N = 261) aged 18-30 who wanted to improve their body image were randomised to Expand Your Horizon (three online body functionality writing exercises) or an active control. Trait body image was assessed at Pretest, Posttest, 1-week, and 1-month Follow-Up. To explore whether changes in body complexity and body-self integration 'buffer' the impact of negative body-related experiences, participants also completed beauty-ideal media exposure. Relative to the control, intervention participants experienced improved appearance satisfaction, functionality satisfaction, body appreciation, and body complexity at Posttest, and at both Follow-Ups. Neither body complexity nor body-self integration mediated intervention effects. Media exposure decreased state body satisfaction among intervention and control participants, but neither body complexity nor body-self integration moderated these effects. The findings underscore the value of focusing on body functionality for improving body image and show that effects persist one month post-intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Elsevier Trophoblast Research Award lecture: Molecular mechanisms underlying estrogen functions in trophoblastic cells--focus on leptin expression. (United States)

    Gambino, Y P; Maymó, J L; Pérez Pérez, A; Calvo, J C; Sánchez-Margalet, V; Varone, C L


    The steroid hormone 17β-estradiol is an estrogen that influences multiple aspects of placental function and fetal development in humans. During early pregnancy it plays a role in the regulation of blastocyst implantation, trophoblast differentiation and invasiveness, remodeling of uterine arteries, immunology and trophoblast production of hormones such as leptin. Estradiol exerts some effects through the action of classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors and regulate gene expression. In addition, estradiol can elicit rapid responses from membrane-associated receptors, like activation of protein-kinase pathways. Thus, the cellular effects of estradiol will depend on the specific receptors expressed and the integration of their signaling events. Leptin, the 16,000MW protein product of the obese gene, was originally considered an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy. The leptin gene is expressed in placenta, where leptin promotes proliferation and survival of trophoblastic cells. Expression of leptin in placenta is highly regulated by key pregnancy molecules as hCG and estradiol. The aim of this paper is to review the molecular mechanisms underlying estrogen functions in trophoblastic cells; focusing on mechanisms involved in estradiol regulation of placental leptin expression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. [An overview of researches on underlying mechanisms of acupuncture therapy by functional magnetic resonance imaging in recent 5 years]. (United States)

    Zhong, Hai-Zhen; Chang, Jing-Ling; Zhu, Dan; Gao, Ying


    In the present paper, the authors review the development of researches on acupuncture therapy with functional magnetic resonance imaging (fMRI) in recent 5 years in both China and foreign countries. The current researches mainly involve 1) specificity of efficacies of acupoints, 2) mechanisms of acupuncture intervention underlying improvement of various clinical conditions or illnesses, 3) individual difference of the subjects, and 4) sustained efficacies of acupuncture. In the early stage, researches on acupuncture therapy mostly focus on the immediate efficacy and the specificity of efficacies of acupoints. Along with the actuality of sustained effect of acupuncture, new test design paradigms agreeable with clinical practice are necessary in the future. In addition, more attentions about the stability of the tested results should be paid.

  2. Long Non-Coding RNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Regulation, Functions, and Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Lipeng Qiu


    Full Text Available Hepatocellular carcinoma (HCC is the fifth most common cancer and the third leading cause of cancer death in the world. Hepatitis B virus (HBV and its X gene-encoded protein (HBx play important roles in the progression of HCC. Although long non-coding RNAs (lncRNAs cannot encode proteins, growing evidence indicates that they play essential roles in HCC progression, and contribute to cell proliferation, invasion and metastasis, autophagy, and apoptosis by targeting a large number of pivotal protein-coding genes, miRNAs, and signaling pathways. In this review, we briefly outline recent findings of differentially expressed lncRNAs in HBV-related HCC, with particular focus on several key lncRNAs, and discuss their regulation by HBV/HBx, their functions, and their underlying molecular mechanisms in the progression of HCC.

  3. Function and underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them changing in a warming world? (United States)

    Zimova, Marketa; Hackländer, Klaus; Good, Jeffrey M; Melo-Ferreira, José; Alves, Paulo Célio; Mills, L Scott


    Animals that occupy temperate and polar regions have specialized traits that help them survive in harsh, highly seasonal environments. One particularly important adaptation is seasonal coat colour (SCC) moulting. Over 20 species of birds and mammals distributed across the northern hemisphere undergo complete, biannual colour change from brown in the summer to completely white in the winter. But as climate change decreases duration of snow cover, seasonally winter white species (including the snowshoe hare Lepus americanus, Arctic fox Vulpes lagopus and willow ptarmigan Lagopus lagopus) become highly contrasted against dark snowless backgrounds. The negative consequences of camouflage mismatch and adaptive potential is of high interest for conservation. Here we provide the first comprehensive review across birds and mammals of the adaptive value and mechanisms underpinning SCC moulting. We found that across species, the main function of SCC moults is seasonal camouflage against snow, and photoperiod is the main driver of the moult phenology. Next, although many underlying mechanisms remain unclear, mammalian species share similarities in some aspects of hair growth, neuroendocrine control, and the effects of intrinsic and extrinsic factors on moult phenology. The underlying basis of SCC moults in birds is less understood and differs from mammals in several aspects. Lastly, our synthesis suggests that due to limited plasticity in SCC moulting, evolutionary adaptation will be necessary to mediate future camouflage mismatch and a detailed understanding of the SCC moulting will be needed to manage populations effectively under climate change. © 2018 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  4. Mechanism of platelet functional changes and effects of anti-platelet agents on in vivo hemostasis under different gravity conditions. (United States)

    Li, Suping; Shi, Quanwei; Liu, Guanglei; Zhang, Weilin; Wang, Zhicheng; Wang, Yuedan; Dai, Kesheng


    Serious thrombotic and hemorrhagic problems or even fatalities evoked by either microgravity or hypergravity occur commonly in the world. We recently reported that platelet functions are inhibited in microgravity environments and activated under high-G conditions, which reveals the pathogenesis for gravity change-related hemorrhagic and thrombotic diseases. However, the mechanisms of platelet functional variations under different gravity conditions remain unclear. In this study we show that the amount of filamin A coimmunoprecipitated with GPIbalpha was enhanced in platelets exposed to modeled microgravity and, in contrast, was reduced in 8 G-exposed platelets. Hypergravity induced actin filament formation and redistribution, whereas actin filaments were reduced in platelets treated with modeled microgravity. Furthermore, intracellular Ca2+ levels were elevated by hypergravity. Pretreatment of platelets with the cell-permeable Ca2+ chelator BAPTA-AM had no effect on cytoskeleton reorganization induced by hypergravity but significantly reduced platelet aggregation induced by ristocetin/hypergravity. Two anti-platelet agents, aspirin and tirofiban, effectively reversed the shortened tail bleeding time and reduced the death rate of mice exposed to hypergravity. Furthermore, the increased P-selectin surface expression was obviously reduced in platelets from mice treated with aspirin/hypergravity compared with those from mice treated with hypergravity alone. These data suggest that the actin cytoskeleton reorganization and intracellular Ca2+ level play key roles in the regulation of platelet functions in different gravitational environments. The results with anti-platelet agents not only further confirm the activation of platelets in vivo but also suggest a therapeutic potential for hypergravity-induced thrombotic diseases.

  5. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus (United States)

    Lawrenson, Kate; Kar, Siddhartha; McCue, Karen; Kuchenbaeker, Karoline; Michailidou, Kyriaki; Tyrer, Jonathan; Beesley, Jonathan; Ramus, Susan J.; Li, Qiyuan; Delgado, Melissa K.; Lee, Janet M.; Aittomäki, Kristiina; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Arun, Banu K.; Arver, Brita; Bandera, Elisa V.; Barile, Monica; Barkardottir, Rosa B.; Barrowdale, Daniel; Beckmann, Matthias W.; Benitez, Javier; Berchuck, Andrew; Bisogna, Maria; Bjorge, Line; Blomqvist, Carl; Blot, William; Bogdanova, Natalia; Bojesen, Anders; Bojesen, Stig E.; Bolla, Manjeet K.; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Bruinsma, Fiona; Brunet, Joan; Buhari, Shaik Ahmad; Burwinkel, Barbara; Butzow, Ralf; Buys, Saundra S.; Cai, Qiuyin; Caldes, Trinidad; Campbell, Ian; Canniotto, Rikki; Chang-Claude, Jenny; Chiquette, Jocelyne; Choi, Ji-Yeob; Claes, Kathleen B. M.; Collonge-Rame, Marie- Agnès; Damette, Alexandre; Barouk-Simonet, Emmanuelle; Bonnet, Françoise; Bubien, Virginie; Sevenet, Nicolas; Longy, Michel; Berthet, Pascaline; Vaur, Dominique; Castera, Laurent; Ferrer, Sandra Fert; Bignon, Yves-Jean; Uhrhammer, Nancy; Coron, Fanny; Faivre, Laurence; Baurand, Amandine; Jacquot, Caroline; Bertolone, Geoffrey; Lizard, Sarab; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Peysselon, Magalie; Peyrat, Jean-Philippe; Fournier, Joëlle; Révillion, Françoise; Adenis, Claude; Vénat-Bouvet, Laurence; Léone, Mélanie; Boutry-Kryza, Nadia; Calender, Alain; Giraud, Sophie; Verny-Pierre, Carole; Lasset, Christine; Bonadona, Valérie; Barjhoux, Laure; Sobol, Hagay; Bourdon, Violaine; Noguchi, Tetsuro; Remenieras, Audrey; Coupier, Isabelle; Pujol, Pascal; Sokolowska, Johanna; Bronner, Myriam; Delnatte, Capucine; Bézieau, Stéphane; Mari, Véronique; Gauthier-Villars, Marion; Buecher, Bruno; Rouleau, Etienne; Golmard, Lisa; Moncoutier, Virginie; Belotti, Muriel; de Pauw, Antoine; Elan, Camille; Fourme, Emmanuelle; Birot, Anne-Marie; Saule, Claire; Laurent, Maïté; Houdayer, Claude; Lesueur, Fabienne; Mebirouk, Noura; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Warcoin, Mathilde; Prieur, Fabienne; Lebrun, Marine; Kientz, Caroline; Muller, Danièle; Fricker, Jean-Pierre; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Mortemousque, Isabelle; Bressac-de-Paillerets, Brigitte; Caron, Olivier; Guillaud-Bataille, Marine; Cook, Linda S.; Cox, Angela; Cramer, Daniel W.; Cross, Simon S.; Cybulski, Cezary; Czene, Kamila; Daly, Mary B.; Damiola, Francesca; Dansonka-Mieszkowska, Agnieszka; Darabi, Hatef; Dennis, Joe; Devilee, Peter; Diez, Orland; Doherty, Jennifer A.; Domchek, Susan M.; Dorfling, Cecilia M.; Dörk, Thilo; Dumont, Martine; Ehrencrona, Hans; Ejlertsen, Bent; Ellis, Steve; Gregory, Helen; Miedzybrodzka, Zosia; Morrison, Patrick J.; Donaldson, Alan; Rogers, Mark T.; Kennedy, M. John; Porteous, Mary E.; Brady, Angela; Barwell, Julian; Foo, Claire; Lalloo, Fiona; Side, Lucy E.; Eason, Jacqueline; Henderson, Alex; Walker, Lisa; Cook, Jackie; Snape, Katie; Murray, Alex; McCann, Emma; Engel, Christoph; Lee, Eunjung; Evans, D. Gareth; Fasching, Peter A.; Feliubadalo, Lidia; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Foretova, Lenka; Fostira, Florentia; Foulkes, William D.; Fridley, Brooke L.; Friedman, Eitan; Frost, Debra; Gambino, Gaetana; Ganz, Patricia A.; Garber, Judy; García-Closas, Montserrat; Gentry-Maharaj, Aleksandra; Ghoussaini, Maya; Giles, Graham G.; Glasspool, Rosalind; Godwin, Andrew K.; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Goode, Ellen L.; Goodman, Marc T.; Greene, Mark H.; Gronwald, Jacek; Guénel, Pascal; Haiman, Christopher A.; Hall, Per; Hallberg, Emily; Hamann, Ute; Hansen, Thomas V. O.; Harrington, Patricia A.; Hartman, Mikael; Hassan, Norhashimah; Healey, Sue; Rookus, M. A.; van Leeuwen, F. E.; van der Kolk, L. E.; Schmidt, M. K.; Russell, N. S.; de Lange, J. L.; Wijnands, R.; Collée, J. M.; Hooning, M. J.; Seynaeve, C.; van Deurzen, C. H. M.; Obdeijn, I. M.; van Asperen, C. J.; Tollenaar, R. A. E. M.; van Cronenburg, T. C. T. E. F.; Kets, C. M.; Ausems, M. G. E. M.; van der Pol, C. C.; van Os, T. A. M.; Waisfisz, Q.; Meijers-Heijboer, H. E. J.; Gómez-Garcia, E. B.; Oosterwijk, J. C.; Mourits, M. J.; de Bock, G. H.; Vasen, H. F.; Siesling, S.; Verloop, J.; Overbeek, L. I. H.; Heitz, Florian; Herzog, Josef; Høgdall, Estrid; Høgdall, Claus K.; Hogervorst, Frans B. L.; Hollestelle, Antoinette; Hopper, John L.; Hulick, Peter J.; Huzarski, Tomasz; Imyanitov, Evgeny N.; Fox, Stephen; Kirk, Judy; Lindeman, Geoff; Price, Melanie; Bowtell, David; deFazio, Anna; Webb, Penny; Isaacs, Claudine; Ito, Hidemi; Jakubowska, Anna; Janavicius, Ramunas; Jensen, Allan; John, Esther M.; Johnson, Nichola; Kabisch, Maria; Kang, Daehee; Kapuscinski, Miroslav; Karlan, Beth Y.; Khan, Sofia; Kiemeney, Lambertus A.; Kjaer, Susanne Kruger; Knight, Julia A.; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela; Kupryjanczyk, Jolanta; Kwong, Ava; de la Hoya, Miguel; Laitman, Yael; Lambrechts, Diether; Le, Nhu; De Leeneer, Kim; Lester, Jenny; Levine, Douglas A.; Li, Jingmei; Lindblom, Annika; Long, Jirong; Lophatananon, Artitaya; Loud, Jennifer T.; Lu, Karen; Lubinski, Jan; Mannermaa, Arto; Manoukian, Siranoush; Le Marchand, Loic; Margolin, Sara; Marme, Frederik; Massuger, Leon F. A. G.; Matsuo, Keitaro; Mazoyer, Sylvie; McGuffog, Lesley; McLean, Catriona; McNeish, Iain; Meindl, Alfons; Menon, Usha; Mensenkamp, Arjen R.; Milne, Roger L.; Montagna, Marco; Moysich, Kirsten B.; Muir, Kenneth; Mulligan, Anna Marie; Nathanson, Katherine L.; Ness, Roberta B.; Neuhausen, Susan L.; Nevanlinna, Heli; Nord, Silje; Nussbaum, Robert L.; Odunsi, Kunle; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I.; Olson, Janet E.; Olswold, Curtis; O'Malley, David; Orlow, Irene; Orr, Nick; Osorio, Ana; Park, Sue Kyung; Pearce, Celeste L.; Pejovic, Tanja; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M.; Poole, Elizabeth M.; Pylkäs, Katri; Radice, Paolo; Rantala, Johanna; Rashid, Muhammad Usman; Rennert, Gad; Rhenius, Valerie; Rhiem, Kerstin; Risch, Harvey A.; Rodriguez, Gus; Rossing, Mary Anne; Rudolph, Anja; Salvesen, Helga B.; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schildkraut, Joellen M.; Schmidt, Marjanka K.; Schmutzler, Rita K.; Sellers, Thomas A.; Seynaeve, Caroline; Shah, Mitul; Shen, Chen-Yang; Shu, Xiao-Ou; Sieh, Weiva; Singer, Christian F.; Sinilnikova, Olga M.; Slager, Susan; Song, Honglin; Soucy, Penny; Southey, Melissa C.; Stenmark-Askmalm, Marie; Stoppa-Lyonnet, Dominique; Sutter, Christian; Swerdlow, Anthony; Tchatchou, Sandrine; Teixeira, Manuel R.; Teo, Soo H.; Terry, Kathryn L.; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; Toland, Amanda Ewart; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Tseng, Chiu-chen; Tung, Nadine; Tworoger, Shelley S.; Vachon, Celine; van den Ouweland, Ans M. W.; van Doorn, Helena C.; van Rensburg, Elizabeth J.; Van't Veer, Laura J.; Vanderstichele, Adriaan; Vergote, Ignace; Vijai, Joseph; Wang, Qin; Wang-Gohrke, Shan; Weitzel, Jeffrey N.; Wentzensen, Nicolas; Whittemore, Alice S.; Wildiers, Hans; Winqvist, Robert; Wu, Anna H.; Yannoukakos, Drakoulis; Yoon, Sook-Yee; Yu, Jyh-Cherng; Zheng, Wei; Zheng, Ying; Khanna, Kum Kum; Simard, Jacques; Monteiro, Alvaro N.; French, Juliet D.; Couch, Fergus J.; Freedman, Matthew L.; Easton, Douglas F.; Dunning, Alison M.; Pharoah, Paul D.; Edwards, Stacey L.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Gayther, Simon A.


    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10−20), ER-negative BC (P=1.1 × 10−13), BRCA1-associated BC (P=7.7 × 10−16) and triple negative BC (P-diff=2 × 10−5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10−3) and ABHD8 (P<2 × 10−3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk. PMID:27601076

  6. Nonlinear dynamic response of a simply supported rectangular functionally graded material plate under the time-dependent thermal mechanical loads

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. X. [Beijing Information Science and Technology University, Beijing (China); Zhang, W. [Beijing University of Technology, Beijing (China); Yang, J. [RMIT University, Bundoora (Australia); Li, S. Y. [Ttianjin University of Technology and Education, Tianjin (China)


    An analysis on nonlinear dynamic characteristics of a simply supported functionally graded materials (FGMs) rectangular plate subjected to the transversal and in-plane excitations is presented in the time dependent thermal environment. Here we look the FGM Plates as isotropic materials which is assumed to be temperature dependent and graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents. The geometrical nonlinearity using Von Karman's assumption is introduced. The formulation also includes in-plane and rotary inertia effects. In the framework of Reddy's third-order shear deformation plate theory, the governing equations of motion for the FGM plate are derived by the Hamilton's principle. Then the equations of motion with two degree- of-freedom under combined the time-dependent thermomechanical loads can be obtained by using Galerkin's method. Using numerical method, the control equations are analyzed to obtain the response curves. Under certain conditions the periodic and chaotic motions of the FGM plate are found. It is found that because of the existence of the temperature which relate to the time the motions of the FGM plate show the great difference. A period motion can be changed into the chaotic motions which are affected by the time dependent temperature.

  7. Underlying Mechanisms Affecting Institutionalisation of ...

    African Journals Online (AJOL)

    This paper discusses the underlying causal mechanisms that enabled or constrained institutionalisation of environmental education in 12 institutions in eight countries in southern Africa. The study was carried out in the context of the Southern Africa Development Community Regional Environmental Education Support ...

  8. Underlying Mechanisms Affecting Institutionalisation of ...

    African Journals Online (AJOL)

    doctoral study and draws on critical realism as the ontological lens. Data analysis was done by means of a retroductive mode of inference, as articulated by Danermark, Ekström, Jakosben and Karlsson (2002). The paper demonstrates that there are a number of underlying causal mechanisms, which may enable or.

  9. Molecular mechanisms underlying bacterial persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn


    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...

  10. Biomolecular Cell-Signaling Mechanisms and Dental Implants: A Review on the Regulatory Molecular Biologic Patterns Under Functional and Immediate Loading. (United States)

    Romanos, Georgios E


    Bone tissue adapts its structure and mass to the stresses of mechanical loading. The purpose of this review article was to summarize recent advances on cell signaling relating to the phenomenon of bone remodeling, focused on bone ossification and healing at the interface of dental implants and bone under loading conditions. When a dental implant is placed within an osteotomy, osteocytes, osteoblasts, and osteoclasts are all present. As functional loads are imposed, the remodeling processes adapt the peri-implant bony tissues to mechanical stimuli over time and reestablish a steady state. Based on the current literature, this article demonstrates fundamental information to these remodeling processes, such as the conversion of mechanical cues to electrical or biochemical signals. Multiple intracellular signals are involved in cellular mechanotransduction; the two Wnt signaling pathways (the canonical, β-catenin-dependent and the noncanonical, β-catenin-independent Wnt pathway) are particularly significant. Knowledge of how these molecular signaling pathways are translated into intracellular signals that regulate cell behavior may provide new therapeutic approaches to enhancing osteogenesis, especially around implants with immediate function or placed in areas of poor bone quality. New knowledge about the primary cilia as an organelle and bone cellular mechanosensor is critical for endochondral ossification and proper signal transduction. Other mechanisms, such as the expression of sclerostin as a negative regulator of bone formation (due to deactivation of the Wnt receptor) and downregulation of sclerostin under loading conditions, also present new understanding of the cellular and pericellular mechanics of bone. The complexity of the cell signaling pathways and the mechanisms involved in the mechanoregulation of the bone formation provide new technologies and perspectives for mechanically induced cellular response. Future novel therapeutic approaches based on the

  11. Insights into the Molecular Mechanisms Underlying Mammalian P2X7 Receptor Functions and Contributions in Diseases, Revealed by Structural Modeling and Single Nucleotide Polymorphisms (United States)

    Jiang, Lin-Hua; Baldwin, Jocelyn M.; Roger, Sebastien; Baldwin, Stephen A.


    The mammalian P2X7 receptors (P2X7Rs), a member of the ionotropic P2X receptor family with distinctive functional properties, play an important part in mediating extracellular ATP signaling in health and disease. A clear delineation of the molecular mechanisms underlying the key receptor properties, such as ATP-binding, ion permeation, and large pore formation of the mammalian P2X7Rs, is still lacking, but such knowledge is crucial for a better understanding of their physiological functions and contributions in diseases and for development of therapeutics. The recent breakthroughs in determining the atomic structures of the zebrafish P2X4.1R in the closed and ATP-bound open states have provided the long-awaited structural information. The human P2RX7 gene is abundant with non-synonymous single nucleotide polymorphisms (NS-SNPs), which generate a repertoire of human P2X7Rs with point mutations. Characterizations of the NS-SNPs identified in patients of various disease conditions and the resulting mutations have informed previously unknown molecular mechanisms determining the mammalian P2X7R functions and diseases. In this review, we will discuss the new insights into such mechanisms provided by structural modeling and recent functional and genetic linkage studies of NS-SNPs. PMID:23675347

  12. Insights into the molecular mechanisms underlying mammalian P2X7 receptor functions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms

    Directory of Open Access Journals (Sweden)

    Lin-Hua eJiang


    Full Text Available The mammalian P2X7 receptors (P2X7Rs, a member of the ionotropic P2X receptor family with distinctive functional properties, play an important part in mediating extracellular ATP signaling in health and disease. A clear delineation of the molecular mechanisms underlying the key receptor properties, such as ATP-binding, ion permeation, and large pore formation of the mammalian P2X7Rs, is still lacking, but such knowledge is crucial for a better understanding of their physiological functions and contributions in diseases and for development of therapeutics. The recent breakthroughs in determining the atomic structures of the zebrafish P2X4.1R in the closed and ATP-bound open states have provided the long-awaited structural information. The human P2RX7 gene is abundant with non-synonymous single nucleotide polymorphisms (NS-SNPs, which generate a repertoire of human P2X7Rs with point mutations. Characterizations of the NS-SNPs identified in patients of various disease conditions and the resulting mutations have informed previously unknown molecular mechanisms determining the mammalian P2X7R functions and diseases. In this review, we will discuss the new insights into such mechanisms provided by structural modeling and recent functional and genetic linkage studies of NS-SNPs.


    Directory of Open Access Journals (Sweden)

    Giulia Gentile


    Full Text Available We have recently generated a novel medulloblastoma (MB mouse model with activation of the Shh pathway and lacking the MB suppressor Tis21 (Patched1+-Tis21KO.ts main phenotype is a defect of migration of the cerebellar granule precursor cells (GCPs. By genomic analysis of GCPs in vivo, we identified as drug target and major responsible of this defect the down-regulation of the promigratory chemokine Cxcl3. Consequently, the GCPs remain longer in the cerebellum proliferative area, and the MB frequency is enhanced. Here, we further analyzed the genes deregulated in a Tis21-dependent manner (Patched1+-is21 wild-type versus Ptch1+-Tis21 knockout, among which are a number of down-regulated tumor inhibitors and up-regulated tumor facilitators, focusing on pathways potentially involved in the tumorigenesis and on putative new drug targets.The data analysis using bioinformatic tools revealed: i a link between the Shh signaling and the Tis21-dependent impairment of the GCPs migration, through a Shh-dependent deregulation of the clathrin-mediated chemotaxis operating in the primary cilium through the Cxcl3-Cxcr2 axis; ii a possible lineage shift of Shh-type GCPs toward retinal precursor phenotype the neural cell type involved in group 3 MB; iii the identification of a subset of putative drug targets for MB, involved, among the others, in the regulation of Hippo signaling and centrosome assembly. Finally, our findings define also the role of Tis21 in the regulation of gene expression, through epigenetic and RNA processing mechanisms, influencing the fate of the GCPs.

  14. Metacognitive mechanisms underlying lucid dreaming. (United States)

    Filevich, Elisa; Dresler, Martin; Brick, Timothy R; Kühn, Simone


    Lucid dreaming is a state of awareness that one is dreaming, without leaving the sleep state. Dream reports show that self-reflection and volitional control are more pronounced in lucid compared with nonlucid dreams. Mostly on these grounds, lucid dreaming has been associated with metacognition. However, the link to lucid dreaming at the neural level has not yet been explored. We sought for relationships between the neural correlates of lucid dreaming and thought monitoring. Human participants completed a questionnaire assessing lucid dreaming ability, and underwent structural and functional MRI. We split participants based on their reported dream lucidity. Participants in the high-lucidity group showed greater gray matter volume in the frontopolar cortex (BA9/10) compared with those in the low-lucidity group. Further, differences in brain structure were mirrored by differences in brain function. The BA9/10 regions identified through structural analyses showed increases in blood oxygen level-dependent signal during thought monitoring in both groups, and more strongly in the high-lucidity group. Our results reveal shared neural systems between lucid dreaming and metacognitive function, in particular in the domain of thought monitoring. This finding contributes to our understanding of the mechanisms enabling higher-order consciousness in dreams. Copyright © 2015 the authors 0270-6474/15/351082-07$15.00/0.

  15. Mechanics of advanced functional materials

    CERN Document Server

    Wang, Biao


    Mechanics of Advanced Functional Materials emphasizes the coupling effect between the electric and mechanical field in the piezoelectric, ferroelectric and other functional materials. It also discusses the size effect on the ferroelectric domain instability and phase transition behaviors using the continuum micro-structural evolution models. Functional materials usually have a very wide application in engineering due to their unique thermal, electric, magnetic, optoelectronic, etc., functions. Almost all the applications demand that the material should have reasonable stiffness, strength, fracture toughness and the other mechanical properties. Furthermore, usually the stress and strain fields on the functional materials and devices have some important coupling effect on the functionality of the materials. Much progress has been made concerning the coupling electric and mechanical behaviors such as the coupled electric and stress field distribution in piezoelectric solids, ferroelectric domain patterns in ferr...

  16. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li


    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  17. Assessing Respiratory System Mechanical Function. (United States)

    Restrepo, Ruben D; Serrato, Diana M; Adasme, Rodrigo


    The main goals of assessing respiratory system mechanical function are to evaluate the lung function through a variety of methods and to detect early signs of abnormalities that could affect the patient's outcomes. In ventilated patients, it has become increasingly important to recognize whether respiratory function has improved or deteriorated, whether the ventilator settings match the patient's demand, and whether the selection of ventilator parameters follows a lung-protective strategy. Ventilator graphics, esophageal pressure, intra-abdominal pressure, and electric impedance tomography are some of the best-known monitoring tools to obtain measurements and adequately evaluate the respiratory system mechanical function. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Two distinct neural mechanisms underlying indirect reciprocity. (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki


    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  19. Molecular Mechanisms Underlying Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Christian Trepo


    Full Text Available Hepatocarcinogenesis is a complex process that remains still partly understood. That might be explained by the multiplicity of etiologic factors, the genetic/epigenetic heterogeneity of tumors bulks and the ignorance of the liver cell types that give rise to tumorigenic cells that have stem cell-like properties. The DNA stress induced by hepatocyte turnover, inflammation and maybe early oncogenic pathway activation and sometimes viral factors, leads to DNA damage response which activates the key tumor suppressive checkpoints p53/p21Cip1 and p16INK4a/pRb responsible of cell cycle arrest and cellular senescence as reflected by the cirrhosis stage. Still obscure mechanisms, but maybe involving the Wnt signaling and Twist proteins, would allow pre-senescent hepatocytes to bypass senescence, acquire immortality by telomerase reactivation and get the last genetic/epigenetic hits necessary for cancerous transformation. Among some of the oncogenic pathways that might play key driving roles in hepatocarcinogenesis, c-myc and the Wnt/β-catenin signaling seem of particular interest. Finally, antiproliferative and apoptosis deficiencies involving TGF-β, Akt/PTEN, IGF2 pathways for instance are prerequisite for cancerous transformation. Of evidence, not only the transformed liver cell per se but the facilitating microenvironment is of fundamental importance for tumor bulk growth and metastasis.

  20. [Conversion disorder : functional neuroimaging and neurobiological mechanisms]. (United States)

    Lejeune, J; Piette, C; Salmon, E; Scantamburlo, G


    Conversion disorder is a psychiatric disorder often encountered in neurology services. This condition without organic lesions was and still is sometimes referred as an imaginary illness or feigning. However, the absence of organic lesions does not exclude the possibility of cerebral dysfunction. The etiologic mechanisms underlying this disorder remain uncertain even today.The advent of cognitive and functional imaging opens up a field of exploration for psychiatry in understanding the neurobiological mechanisms underlying mental disorders and especially the conversion disorder. This article reports several neuroimaging studies of conversion disorder and attempts to generate hypotheses about neurobiological mechanisms.


    Rupprecht, Laura E.; Smith, Tracy T.; Schassburger, Rachel L.; Buffalari, Deanne M.; Sved, Alan F.; Donny, Eric C.


    Cigarette smoking is the leading cause of preventable deaths worldwide and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus, predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a conditioned stimulus, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness. PMID:25638333

  2. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf


    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...

  3. Underlying Mechanisms of Improving Physical Activity Behavior after Rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P.; Streppel, Kitty R.M.; van der Beek, Allard J.; Woude, Luc H.V.; van Harten, Willem H.; Vollenbroek-Hutten, Miriam Marie Rosé; van Mechelen, Willem


    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  4. Functions and Mechanisms of Sleep

    Directory of Open Access Journals (Sweden)

    Mark R. Zielinski


    Full Text Available Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader’s understanding of the functions of sleep.

  5. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. (United States)

    Theocharis, Achilleas D; Karamanos, Nikos K


    Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  7. Fluctuation of Dynamic Diastolic Function Relative to Static Cardiac Structure - New Insights Into the Underlying Mechanism of Heart Failure With Preserved Ejection Fraction in Elderly Patients. (United States)

    Hoshida, Shiro; Shinoda, Yukinori; Ikeoka, Kuniyasu; Minamisaka, Tomoko; Fukuoka, Hidetada; Inui, Hirooki; Watanabe, Tetsuya


    The mechanisms of heart failure with preserved ejection fraction (HFpEF) need to be clarified immediately.Methods and Results:We examined diastolic function relative to arterial elasticity among hypertensive patients with preserved EF. Diastolic elastance (EdI)/effective arterial elastance (EaI), EdI/EaI=E/e'/(0.9×systolic blood pressure [SBP]) was significantly more impaired in women than in men among patients ≥75 years. The higher EdI/EaI value in elderly women implies they are intermittently exposed to higher left ventricular filling pressure relative to SBP during daily life. Highly fluctuating impairment of diastolic function relative to arterial elasticity may predispose elderly women to pulmonary edema.

  8. Mechanical buckling of artery under pulsatile pressure. (United States)

    Liu, Qin; Han, Hai-Chao


    Tortuosity that often occurs in carotid and other arteries has been shown to be associated with high blood pressure, atherosclerosis, and other diseases. However the mechanisms of tortuosity development are not clear. Our previous studies have suggested that arteries buckling could be a possible mechanism for the initiation of tortuous shape but artery buckling under pulsatile flow condition has not been fully studied. The objectives of this study were to determine the artery critical buckling pressure under pulsatile pressure both experimentally and theoretically, and to elucidate the relationship of critical pressures under pulsatile flow, steady flow, and static pressure. We first tested the buckling pressures of porcine carotid arteries under these loading conditions, and then proposed a nonlinear elastic artery model to examine the buckling pressures under pulsatile pressure conditions. Experimental results showed that under pulsatile pressure arteries buckled when the peak pressures were approximately equal to the critical buckling pressures under static pressure. This was also confirmed by model simulations at low pulse frequencies. Our results provide an effective tool to predict artery buckling pressure under pulsatile pressure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Amorphization of ice under mechanical stresses (United States)

    Bordonskii, G. S.; Krylov, S. D.


    The dielectric parameters of freshly produced freshwater ice in the microwave range are investigated. It is established that this kind of ice contains a noticeable amount of amorphous ice. Its production is associated with plastic deformation under mechanical stresses. An assessment of the dielectric-permeability change caused by amorphous ice in the state of a slowly flowing medium is given.

  10. Gas Bubble Dynamics under Mechanical Vibrations (United States)

    Mohagheghian, Shahrouz; Elbing, Brian


    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  11. Epigenetic mechanisms underlying nervous system diseases. (United States)

    Qureshi, Irfan A; Mehler, Mark F


    Epigenetic mechanisms act as control systems for modulating genomic structure and activity in response to evolving profiles of cell-extrinsic, cell-cell, and cell-intrinsic signals. These dynamic processes are responsible for mediating cell- and tissue-specific gene expression and function and gene-gene and gene-environmental interactions. The major epigenetic mechanisms include DNA methylation and hydroxymethylation; histone protein posttranslational modifications, nucleosome remodeling/repositioning, and higher-order chromatin reorganization; noncoding RNA regulation; and RNA editing. These mechanisms are intimately involved in executing fundamental genomic programs, including gene transcription, posttranscriptional RNA processing and transport, translation, X-chromosome inactivation, genomic imprinting, retrotransposon regulation, DNA replication, and DNA repair and the maintenance of genomic stability. For the nervous system, epigenetics offers a novel and robust framework for explaining how brain development and aging occur, neural cellular diversity is generated, synaptic and neural network connectivity and plasticity are mediated, and complex cognitive and behavioral phenotypes are inherited transgenerationally. Epigenetic factors and processes are, not surprisingly, implicated in nervous system disease pathophysiology through several emerging paradigms - mutations and genetic variation in genes encoding epigenetic factors; impairments in epigenetic factor expression, localization, and function; epigenetic mechanisms modulating disease-associated factors and pathways; and the presence of deregulated epigenetic profiles in central and peripheral tissues. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Mechanical Property Analysis of Circular Polymer Membrane under Uniform Pressure


    Jianbing, Sang; Xiang, Li; Sufang, Xing; Wenjia, Wang


    Mechanical property analysis of circular hyperelastic polymer membrane under uniform pressure has been researched in this work. The polymer membrane material is assumed to be homogeneous and isotropic and incompressibility of materials has been considered. Based on the modified stain energy function from Gao and nonmomental theory of axial symmetry thin shell, finite deformation analysis of polymer membrane under uniform pressure has been proposed in current configuration and governing equati...

  13. Common Mechanisms Underlying Refractive Error Identified in Functional Analysis of Gene Lists From Genome-Wide Association Study Results in 2 European British Cohorts (United States)

    Hysi, Pirro G.; Mahroo, Omar A.; Cumberland, Phillippa; Wojciechowski, Robert; Williams, Katie M.; Young, Terri L.; Mackey, David A.; Rahi, Jugnoo S.; Hammond, Christopher J.


    IMPORTANCE To date, relatively few genes responsible for a fraction of heritability have been identified by means of large genetic association studies of refractive error. OBJECTIVE To explore the genetic mechanisms that lead to refractive error in the general population. DESIGN, SETTING, AND PARTICIPANTS Genome-wide association studies were carried out in 2 British population-based independent cohorts (N = 5928 participants) to identify genes moderately associated with refractive error. MAIN OUTCOMES AND MEASURES Enrichment analyses were used to identify sets of genes overrepresented in both cohorts. Enriched groups of genes were compared between both participating cohorts as a further measure against random noise. RESULTS Groups of genes enriched at highly significant statistical levels were remarkably consistent in both cohorts. In particular, these results indicated that plasma membrane (P = 7.64 × 10−30), cell-cell adhesion (P = 2.42 × 10−18), synaptic transmission (P = 2.70 × 10−14), calcium ion binding (P = 3.55 × 10−15), and cation channel activity (P = 2.77 × 10−14) were significantly overrepresented in relation to refractive error. CONCLUSIONS AND RELEVANCE These findings provide evidence that development of refractive error in the general population is related to the intensity of photosignal transduced from the retina, which may have implications for future interventions to minimize this disorder. Pathways connected to the procession of the nerve impulse are major mechanisms involved in the development of refractive error in populations of European origin. PMID:24264139

  14. Evolved Mechanisms Versus Underlying Conditional Relations

    Directory of Open Access Journals (Sweden)

    Astorga Miguel López


    Full Text Available The social contracts theory claims that, in social exchange circumstances, human reasoning is not necessarily led by logic, but by certain evolved mental mechanisms that are useful for catching offenders. An emblematic experiment carried out with the intention to prove this thesis is the first experiment described by Fiddick, Cosmides, and Tooby in their paper of 2000. Lopez Astorga has questioned that experiment claiming that its results depend on an underlying conditional logical form not taken into account by Fiddick, Cosmides, and Tooby. In this paper, I propose an explanation alternative to that of Lopez Astorga, which does not depend on logical forms and is based on the mental models theory. Thus, I conclude that this other alternative explanation is one more proof that the experiment in question does not demonstrate the fundamental thesis of the social contracts theory.

  15. Mechanisms underlying UV-induced immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Stephen E. [Department of Immunology, University of Texas, MD Anderson Cancer Center, South Campus Research Building 1, 7455 Fannin St., P.O. Box 301402, Houston, TX 77030-1903 (United States)]. E-mail:


    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States ( Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually ( Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression.

  16. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.


    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States ( Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually ( Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  17. Mechanisms Underlying Sex Differences in Cannabis Use. (United States)

    Calakos, Katina C; Bhatt, Shivani; Foster, Dawn W; Cosgrove, Kelly P


    Cannabis is the most commonly used illicit substance worldwide. In recent decades, highly concentrated products have flooded the market, and prevalence rates have increased. Gender differences exist in cannabis use, as men have higher prevalence of both cannabis use and cannabis use disorder (CUD), while women progress more rapidly from first use to CUD. This paper reviews findings from preclinical and human studies examining the sex-specific neurobiological underpinnings of cannabis use and CUD, and associations with psychiatric symptoms. Sex differences exist in the endocannabinoid system, in cannabis exposure effects on brain structure and function, and in the co-occurrence of cannabis use with symptoms of anxiety, depression and schizophrenia. In female cannabis users, anxiety symptoms correlate with larger amygdala volume and social anxiety disorder symptoms correlate with CUD symptoms. Female cannabis users are reported to be especially vulnerable to earlier onset of schizophrenia, and mixed trends emerge in the correlation of depressive symptoms with cannabis exposure in females and males. As prevalence of cannabis use may continue to increase given the shifting policy landscape regarding marijuana laws, understanding the neurobiological mechanisms of cannabis exposure in females and males is key. Examining these mechanisms may help inform future research on sex-specific pharmacological and behavioral interventions for women and men with high-risk cannabis use, comorbid psychiatric disease, and CUD.

  18. BIM-23A760 influences key functional endpoints in pituitary adenomas and normal pituitaries: molecular mechanisms underlying the differential response in adenomas. (United States)

    Ibáñez-Costa, Alejandro; López-Sánchez, Laura M; Gahete, Manuel D; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gálvez, María A; de la Riva, Andrés; Venegas-Moreno, Eva; Jiménez-Reina, Luis; Moreno-Carazo, Alberto; Tinahones, Francisco J; Maraver-Selfa, Silvia; Japón, Miguel A; García-Arnés, Juan A; Soto-Moreno, Alfonso; Webb, Susan M; Kineman, Rhonda D; Culler, Michael D; Castaño, Justo P; Luque, Raúl M


    Chimeric somatostatin/dopamine compounds such as BIM-23A760, an sst2/sst5/D 2 receptors-agonist, have emerged as promising new approaches to treat pituitary adenomas. However, information on direct in vitro effects of BIM-23A760 in normal and tumoral pituitaries remains incomplete. The objective of this study was to analyze BIM-23A760 effects on functional parameters (Ca 2+ signaling, hormone expression/secretion, cell viability and apoptosis) in pituitary adenomas (n = 74), and to compare with the responses of normal primate and human pituitaries (n = 3-5). Primate and human normal pituitaries exhibited similar sst2/sst5/D2 expression patterns, wherein BIM-23A760 inhibited the expression/secretion of several pituitary hormones (specially GH/PRL), which was accompanied by increased sst2/sst5/D2 expression in primates and decreased Ca 2+ concentration in human cells. In tumoral pituitaries, BIM-23A760 also inhibited Ca 2+ concentration, hormone secretion/expression and proliferation. However, BIM-23A760 elicited stimulatory effects in a subset of GHomas, ACTHomas and NFPAs in terms of Ca 2+ signaling and/or hormone secretion, which was associated with the relative somatostatin/dopamine-receptors levels, especially sst5 and sst5TMD4. The chimeric sst2/sst5/D 2 compound BIM-23A760 affects multiple, clinically relevant parameters on pituitary adenomas and may represent a valuable therapeutic tool. The relative ssts/D 2 expression profile, particularly sst5 and/or sst5TMD4 levels, might represent useful molecular markers to predict the ultimate response of pituitary adenomas to BIM-23A760.

  19. The Relationships between Weight Functions, Geometric Functions,and Compliance Functions in Linear Elastic Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Rong [Univ. of California, Berkeley, CA (United States)


    Linear elastic fracture mechanics is widely used in industry because it established simple and explicit relationships between the permissible loading conditions and the critical crack size that is allowed in a structure. Stress intensity factors are the above-mentioned functional expressions that relate load with crack size through geometric functions or weight functions. Compliance functions are to determine the crack/flaw size in a structure when optical inspection is inconvenient. As a result, geometric functions, weight functions and compliance functions have been intensively studied to determine the stress intensity factor expressions for different geometries. However, the relations between these functions have received less attention. This work is therefore to investigate the intrinsic relationships between these functions. Theoretical derivation was carried out and the results were verified on single-edge cracked plate under tension and bending. It is found out that the geometric function is essentially the non-dimensional weight function at the loading point. The compliance function is composed of two parts: a varying part due to crack extension and a constant part from the intact structure if no crack exists. The derivative of the compliance function at any location is the product of the geometric function and the weight function at the evaluation point. Inversely, the compliance function can be acquired by the integration of the product of the geometric function and the weight function with respect to the crack size. The integral constant is just the unchanging compliance from the intact structure. Consequently, a special application of the relations is to obtain the compliance functions along a crack once the geometric function and weight functions are known. Any of the three special functions can be derived once the other two functions are known. These relations may greatly simplify the numerical process in obtaining either geometric functions, weight

  20. Dissociable cognitive mechanisms underlying human path integration. (United States)

    Wiener, Jan M; Berthoz, Alain; Wolbers, Thomas


    Path integration is a fundamental mechanism of spatial navigation. In non-human species, it is assumed to be an online process in which a homing vector is updated continuously during an outward journey. In contrast, human path integration has been conceptualized as a configural process in which travelers store working memory representations of path segments, with the computation of a homing vector only occurring when required. To resolve this apparent discrepancy, we tested whether humans can employ different path integration strategies in the same task. Using a triangle completion paradigm, participants were instructed either to continuously update the start position during locomotion (continuous strategy) or to remember the shape of the outbound path and to calculate home vectors on basis of this representation (configural strategy). While overall homing accuracy was superior in the configural condition, participants were quicker to respond during continuous updating, strongly suggesting that homing vectors were computed online. Corroborating these findings, we observed reliable differences in head orientation during the outbound path: when participants applied the continuous updating strategy, the head deviated significantly from straight ahead in direction of the start place, which can be interpreted as a continuous motor expression of the homing vector. Head orientation-a novel online measure for path integration-can thus inform about the underlying updating mechanism already during locomotion. In addition to demonstrating that humans can employ different cognitive strategies during path integration, our two-systems view helps to resolve recent controversies regarding the role of the medial temporal lobe in human path integration.

  1. Mechanics of carbon nanotube scission under sonication. (United States)

    Stegen, J


    As-produced carbon nanotubes come in bundles that must be exfoliated for practical applications in nanocomposites. Sonication not only causes the exfoliation of nanotube bundles but also unwanted scission. An understanding of how precisely sonication induces the scission and exfoliation of nanotubes will help maximising the degree of exfoliation while minimising scission. We present a theoretical study of the mechanics of carbon nanotube scission under sonicaton, based on the accepted view that it is caused by strong gradients in the fluid velocity near a transiently collapsing bubble. We calculate the length-dependent scission rate by taking the actual movement of the nanotube during the collapse of a bubble into account, allowing for the prediction of the temporal evolution of the length distribution of the nanotubes. We show that the dependence of the scission rate on the sonication settings and the nanotube properties results in non-universal, experiment-dependent scission kinetics potentially explaining the variety in experimentally observed scission kinetics. The non-universality arises from the dependence of the maximum strain rate of the fluid experienced by a nanotube on its length. The maximum strain rate that a nanotube experiences increases with decreasing distance to the bubble. As short nanotubes are dragged along more easily by the fluid flow they experience a higher maximum strain rate than longer nanotubes. This dependence of the maximum strain rate on nanotube length affects the scaling of tensile strength with terminal length. We find that the terminal length scales with tensile strength to the power of 1/1.16 instead of with an exponent of 1/2 as found when nanotube motion is neglected. Finally, we show that the mechanism we propose responsible for scission can also explain the exfoliation of carbon nanotube bundles.

  2. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  3. Mechanical behaviour of nuclear fuel under irradiation

    International Nuclear Information System (INIS)

    Guerin, Y.


    The main mechanical properties (fracture, thermal and irradiation creep) of oxide and carbide fuels are summarised and discussed. Some examples are given of the influence of these mechanical properties on the in-pile behaviour of fuel pins [fr

  4. How Wigner functions transform under symplectic maps

    International Nuclear Information System (INIS)

    Dragt, A.J.; Habib, S.


    It is shown that, while Wigner and Liouville functions transform in an identical way under linear symplectic maps, in general they do not transform identically for nonlinear symplectic maps. Instead there are quantum corrections whose ℎ → 0 limit may be very complicated. Examples of the behavior of Wigner functions in the ℎ → 0 limit are given in order to examine to what extent the corresponding Liouville densities are recovered

  5. How Wigner functions transform under symplectic maps

    Energy Technology Data Exchange (ETDEWEB)

    Dragt, A.J. [Univ. of Maryland, College Park, MD (United States). Center for Theoretical Physics; Habib, S. [Los Alamos National Lab., NM (United States). Theoretical Div.


    It is shown that, while Wigner and Liouville functions transform in an identical way under linear symplectic maps, in general they do not transform identically for nonlinear symplectic maps. Instead there are quantum corrections whose {Dirac_h} {r_arrow} 0 limit may be very complicated. Examples of the behavior of Wigner functions in the {Dirac_h} {r_arrow} 0 limit are given in order to examine to what extent the corresponding Liouville densities are recovered.

  6. Physiological mechanisms underlying animal social behaviour. (United States)

    Seebacher, Frank; Krause, Jens


    Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  7. Stereopsis in animals: evolution, function and mechanisms (United States)

    Read, Jenny C. A.


    ABSTRACT Stereopsis is the computation of depth information from views acquired simultaneously from different points in space. For many years, stereopsis was thought to be confined to primates and other mammals with front-facing eyes. However, stereopsis has now been demonstrated in many other animals, including lateral-eyed prey mammals, birds, amphibians and invertebrates. The diversity of animals known to have stereo vision allows us to begin to investigate ideas about its evolution and the underlying selective pressures in different animals. It also further prompts the question of whether all animals have evolved essentially the same algorithms to implement stereopsis. If so, this must be the best way to do stereo vision, and should be implemented by engineers in machine stereopsis. Conversely, if animals have evolved a range of stereo algorithms in response to different pressures, that could inspire novel forms of machine stereopsis appropriate for distinct environments, tasks or constraints. As a first step towards addressing these ideas, we here review our current knowledge of stereo vision in animals, with a view towards outlining common principles about the evolution, function and mechanisms of stereo vision across the animal kingdom. We conclude by outlining avenues for future work, including research into possible new mechanisms of stereo vision, with implications for machine vision and the role of stereopsis in the evolution of camouflage. PMID:28724702

  8. Neuroimmune mechanisms in functional bowel disorders

    NARCIS (Netherlands)

    Wouters, M. M.; Boeckxstaens, G. E.


    The enteric nervous system regulates diverse functions including gastrointestinal motility and nociception. The sensory neurons detect mechanical and chemical stimuli while motor neurons control peristalsis and secretion. In addition to this extensive neuronal network, the gut also houses a highly

  9. Mechanical properties of graphene nanoribbons under uniaxial tensile strain (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu


    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  10. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  11. Epigenetic mechanisms in memory and synaptic function (United States)

    Sultan, Faraz A; Day, Jeremy J


    Although the term ‘epigenetics’ was coined nearly seventy years ago, its critical function in memory processing by the adult CNS has only recently been appreciated. The hypothesis that epigenetic mechanisms regulate memory and behavior was motivated by the need for stable molecular processes that evade turnover of the neuronal proteome. In this article, we discuss evidence that supports a role for neural epigenetic modifications in the formation, consolidation and storage of memory. In addition, we will review the evidence that epigenetic mechanisms regulate synaptic plasticity, a cellular correlate of memory. We will also examine how the concerted action of multiple epigenetic mechanisms with varying spatiotemporal profiles influence selective gene expression in response to behavioral experience. Finally, we will suggest key areas for future research that will help elucidate the complex, vital and still mysterious, role of epigenetic mechanisms in neural function and behavior. PMID:22122279

  12. An investigation into the mechanism underlying enhanced ...

    African Journals Online (AJOL)

    The solubilisation of primary sewage sludge under sulphate reducing conditions was conducted in controlled flask studies and previously reported findings of enhanced hydrolysis were confirmed. The maximum percentage solubilisation obtained in this study over a 10-day period was 31% and 64% for the methanogenic ...

  13. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi


    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  14. Polymers under mechanical stress- an NMR investigation

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, Ute; Scheler, Ulrich [Leibniz Institute of Polymer Research Dresden (Germany); Xu, Bo; Leisen, Johannes; Beckham, Haskell W. [Georgia Institute of Technology, Atlanta, Georgia (United States)


    Low-field NMR using permanent magnets in Halbach arrangements permit NMR investigation without the limits present in high-field NMR. The lower field in conjunction with confined stray field permit the application of NMR, in particular relaxation NMR in a stretching apparatus and a rheometer. Crystalline and amorphous fraction of semi-crystalline polymers are distinguished by their transverse relaxation times. Upon mechanical load the relaxation times of the amorphous fraction changes as seen in in-situ measurements on polypropylene rods. During the formation of a neck the crystalline fraction becomes more prominent.

  15. Habitats under Mechanical and Herbicide Management Regimes

    Directory of Open Access Journals (Sweden)

    Wendy-Ann P. Isaac


    Full Text Available Commelina diffusa is a colonising species of banana orchard habitats in St. Vincent in the Windward Islands of the Caribbean. In the present study, the population dynamics of C. diffusa were investigated in response to mechanical weed management with either a rotary string trimmer or glufosinate in ruderal and banana habitats. The study focused on density and size distribution of the weed over time and their response to two weed management strategies. The population dynamics of C. diffusa differed between the two habitats. Seedling establishment appeared to be an important factor influencing the dynamics of C. diffusa in banana orchards as there was little recruitment of seeds with less flower production compared with ruderal habitats where plants produced more flowers. Plants of C. diffusa in the banana orchard habitat had a longer growth cycle. In the banana orchard habitat, the C. diffusa population was greater and the plants were shorter with mechanical management than in areas treated with glufosinate. The results suggest that it is possible to manipulate the dynamics of C. diffusa in banana orchards as there is less chance of seed recruitment. Further research is necessary to refine an IPM approach for the management of C. diffusa.

  16. Physical and chemical mechanisms underlying hematoma evolution

    International Nuclear Information System (INIS)

    Cho, K.J.; Fanders, B.L.; Smid, A.R.; McLaughlin, P.


    Angiostat, a new collagen embolic material supplied at a concentration of 35 mg/ml (Target Therapeutics, Los Angeles) was used for flow-directed hepatic artery embolization in a series of rabbits to examine its acute effects on hepatic microcirculation. Arteriograms were obtained both before and after embolization. The aorta and portal vein were perfused with two different colors of Microfil after the animals were killed,. Cleared liver specimens were examined under a dissection microscope. Extent of dearterialization, status of portal sinusoidal perfusion, and collateral formation after embolization with Angiostat were evaluated. Results will be compared with results achieved using other liquid and particulate embolic agents

  17. Spread of Epidemic on Complex Networks Under Voluntary Vaccination Mechanism (United States)

    Xue, Shengjun; Ruan, Feng; Yin, Chuanyang; Zhang, Haifeng; Wang, Binghong

    Under the assumption that the decision of vaccination is a voluntary behavior, in this paper, we use two forms of risk functions to characterize how susceptible individuals estimate the perceived risk of infection. One is uniform case, where each susceptible individual estimates the perceived risk of infection only based on the density of infection at each time step, so the risk function is only a function of the density of infection; another is preferential case, where each susceptible individual estimates the perceived risk of infection not only based on the density of infection but only related to its own activities/immediate neighbors (in network terminology, the activity or the number of immediate neighbors is the degree of node), so the risk function is a function of the density of infection and the degree of individuals. By investigating two different ways of estimating the risk of infection for susceptible individuals on complex network, we find that, for the preferential case, the spread of epidemic can be effectively controlled; yet, for the uniform case, voluntary vaccination mechanism is almost invalid in controlling the spread of epidemic on networks. Furthermore, given the temporality of some vaccines, the waves of epidemic for two cases are also different. Therefore, our work insight that the way of estimating the perceived risk of infection determines the decision on vaccination options, and then determines the success or failure of control strategy.

  18. Environmental genotoxicity: Probing the underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L. [Oak Ridge National Lab., TN (United States); Theodorakis, C. [Tennessee Univ., Knoxville, TN (United States)


    Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organismal levels. Past studies in genetic toxicology at the Oak Ridge National Laboratory have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort to predict effects at the population, community and ecosystem levels, current studies in genetic ecotoxicology are attempting to characterize the biological mechanisms at the gene level that regulate and limit the response of an individual organism to genotoxic factors in their environment.

  19. Mechanical modeling of skeletal muscle functioning

    NARCIS (Netherlands)

    van der Linden, B.J.J.J.


    For movement of body or body segments is combined effort needed of the central nervous system and the muscular-skeletal system. This thesis deals with the mechanical functioning of skeletal muscle. That muscles come in a large variety of geometries, suggest the existence of a relation between muscle

  20. Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study. (United States)

    Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P; Crewther, Sheila G


    Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network.

  1. Mechanical properties of functionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Z Q; Liu, B; Chen, Y L; Hwang, K C; Jiang, H; Huang, Y


    Carbon nanotubes (CNTs) used to reinforce polymer matrix composites are functionalized to form covalent bonds with the polymer in order to enhance the CNT/polymer interfaces. These bonds destroy the perfect atomic structures of a CNT and degrade its mechanical properties. We use atomistic simulations to study the effect of hydrogenization on the mechanical properties of single-wall carbon nanotubes. The elastic modulus of CNTs gradually decreases with the increasing functionalization (percentage of C-H bonds). However, both the strength and ductility drop sharply at a small percentage of functionalization, reflecting their sensitivity to C-H bonds. The cluster C-H bonds forming two rings leads to a significant reduction in the strength and ductility. The effect of carbonization has essentially the same effect as hydrogenization

  2. Neural mechanisms and models underlying joint action. (United States)

    Chersi, Fabian


    Humans, in particular, and to a lesser extent also other species of animals, possess the impressive capability of smoothly coordinating their actions with those of others. The great amount of work done in recent years in neuroscience has provided new insights into the processes involved in joint action, intention understanding, and task sharing. In particular, the discovery of mirror neurons, which fire both when animals execute actions and when they observe the same actions done by other individuals, has shed light on the intimate relationship between perception and action elucidating the direct contribution of motor knowledge to action understanding. Up to date, however, a detailed description of the neural processes involved in these phenomena is still mostly lacking. Building upon data from single neuron recordings in monkeys observing the actions of a demonstrator and then executing the same or a complementary action, this paper describes the functioning of a biologically constraint neural network model of the motor and mirror systems during joint action. In this model, motor sequences are encoded as independent neuronal chains that represent concatenations of elementary motor acts leading to a specific goal. Action execution and recognition are achieved through the propagation of activity within specific chains. Due to the dual property of mirror neurons, the same architecture is capable of smoothly integrating and switching between observed and self-generated action sequences, thus allowing to evaluate multiple hypotheses simultaneously, understand actions done by others, and to respond in an appropriate way.

  3. [Neurophysiologic mechanisms of arterial hypertension under experimental chronic emotional stress]. (United States)

    Baumann, H; Martin, G; Urmantscheeva, T G; Degen, G; Wolter, F; Chasabova, W A; Gurk, C; Hinays, I; Läuter, J


    Neurophysiological studies were conducted with subhuman primates (macaca mulatta) in order to obtain an estimate of central nervous effects of socio-emotional stress. This was combined with continuously aggravated conditioning procedures in view of the possible significance of chronic environmental stress escalation for etiology and pathogenesis of an arterial hypertension model. Our conclusions are based on evoked potentials (EP) as integrative characteristics of cerebral information processing. The EPs were recorded by means of electrodes chronically implanted in brain structures of emotional and cardio-vascular relevance. Multivariate mathematico-statistical analyses of average EPs (AEP) provide an objective measure of stress sensibility of the individual, particularly of the effects of acute and chronic environmental stress factors upon the functional organization of the CNS. By means of a quantitative approach to AEP we were able to demonstrate a disjunction between distinct limbic and hypothalamic structures starting under stress conditions of subchronic character. We assume that the constancy of functionally antagonistic hyperactive excitation foci at diencephalic and supradiencephalic levels and their specific interaction with the equally stress related neocortical functional insufficiency constitutes a decisive pathogenetic central mechanism of neurotic behaviour. Long-term changes of amplification of external and internal afferences could be demonstrated on the basis of hypo- and hyperreactive neuroelectric functional patterns. These processes cause cerebro-visceral regulatory diseases as, e. g., a primary arterial hypertension by restriction of neocortical control and the corresponding efferent reactions for re-establishment of the dynamic homeostasis.

  4. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa


    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  5. Functional Toxicogenomics: Mechanism-Centered Toxicology

    Directory of Open Access Journals (Sweden)

    Chris D. Vulpe


    Full Text Available Traditional toxicity testing using animal models is slow, low capacity, expensive and assesses a limited number of endpoints. Such approaches are inadequate to deal with the increasingly large number of compounds found in the environment for which there are no toxicity data. Mechanism-centered high-throughput testing represents an alternative approach to meet this pressing need but is limited by our current understanding of toxicity pathways. Functional toxicogenomics, the global study of the biological function of genes on the modulation of the toxic effect of a compound, can play an important role in identifying the essential cellular components and pathways involved in toxicity response. The combination of the identification of fundamental toxicity pathways and mechanism-centered targeted assays represents an integrated approach to advance molecular toxicology to meet the challenges of toxicity testing in the 21st century.

  6. Coupling functions: Universal insights into dynamical interaction mechanisms (United States)

    Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta


    The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.

  7. Effects of manual hyperinflation in preterm newborns under mechanical ventilation. (United States)

    Viana, Camila Chaves; Nicolau, Carla Marques; Juliani, Regina Celia Turola Passos; Carvalho, Werther Brunow de; Krebs, Vera Lucia Jornada


    To assess the effects of manual hyperinflation, performed with a manual resuscitator with and without the positive end-expiratory pressure valve, on the respiratory function of preterm newborns under mechanical ventilation. Cross-sectional study of hemodynamically stable preterm newborns with gestational age of less than 32 weeks, under mechanical ventilation and dependent on it at 28 days of life. Manual hyperinflation was applied randomly, alternating the use or not of the positive end-expiratory pressure valve, followed by tracheal aspiration for ending the maneuver. For nominal data, the two-tailed Wilcoxon test was applied at the 5% significance level and 80% power. Twenty-eight preterm newborns, with an average birth weight of 1,005.71 ± 372.16g, an average gestational age of 28.90 ± 1.79 weeks, an average corrected age of 33.26 ± 1.78 weeks, and an average mechanical ventilation time of 29.5 (15 - 53) days, were studied. Increases in inspiratory and expiratory volumes occurred between time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in both the maneuver with the valve (p = 0.001 and p = 0.009) and without the valve (p = 0.026 and p = 0.001), respectively. There was also an increase in expiratory resistance between time-points A5 and C1 (p = 0.044). Lung volumes increased when performing the maneuver with and without the valve, with a significant difference in the first minute after aspiration. There was a significant difference in expiratory resistance between the time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in the first minute after aspiration within each maneuver.

  8. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Directory of Open Access Journals (Sweden)

    Ruth De Diego Balaguer

    Full Text Available The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400 in the central electrodes is related to word-learning and development of a frontal positivity (P2 is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity and clear lexical effects when presented in isolation (N400 modulation. The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  9. Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study


    Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P.; Crewther, Sheila G.


    Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial st...

  10. Neuroimmune mechanisms in functional bowel disorders. (United States)

    Wouters, M M; Boeckxstaens, G E


    The enteric nervous system regulates diverse functions including gastrointestinal motility and nociception. The sensory neurons detect mechanical and chemical stimuli while motor neurons control peristalsis and secretion. In addition to this extensive neuronal network, the gut also houses a highly specialised immune system which plays an important role in the induction and maintenance of tolerance to food and other luminal antigens and in the protection of the epithelial barrier against pathogenic invasion. It is now increasingly recognised that the gastrointestinal immune system and the enteric nervous system closely interact. This review will focus on two common functional gastrointestinal disorders in which neuroimmune interaction is involved in the pathophysiology: i.e. postoperative ileus and irritable bowel syndrome. Postoperative ileus arises after almost every abdominal surgical procedure. Handling of the bowel results in local inflammation and activation of inhibitory neuronal pathways resulting in a generalised impairment of gastrointestinal motor function or ileus. On the other hand, postinfectious irritable bowel syndrome (PI-IBS) occurs in 10 to 30% of patients who suffer from infectious gastroenteritis. PI -IBS patients develop abnormal gastrointestinal sensitivity, motility and secretion which contribute to abdominal pain and discomfort, bloating and abnormal bowel function (diarrhoea and/or constipation). Biopsy studies revealed persistent low-grade inflammation and altered immunological function which may lead to abnormal pain perception and motor activity within the gastrointestinal tract.

  11. Clathrin-independent endocytosis: mechanisms and function

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Pust, Sascha; Skotland, Tore


    having several functions of their own. This article aims at providing a brief update on the importance of clathrin-independent endocytic mechanisms, how the processes are regulated differentially, for instance on the poles of polarized cells, and the challenges in studying them.......It is now about 20 years since we first wrote reviews about clathrin-independent endocytosis. The challenge at the time was to convince the reader about its existence. Then the suggestion came up that caveolae might be responsible for the uptake. However, clearly this could not be the case since...... a large fraction of the clathrin-independent uptake is dynamin-independent. Today, two decades later, the field has developed considerably. New techniques have enabled a detailed analysis of several clathrin-independent endocytic mechanisms, and caveolae have been found to be mostly stable structures...

  12. Neural Mechanisms Underlying Hyperphagia in Prader-Willi Syndrome (United States)

    Holsen, Laura M.; Zarcone, Jennifer R.; Brooks, William M.; Butler, Merlin G.; Thompson, Travis I.; Ahluwalia, Jasjit S.; Nollen, Nicole L.; Savage, Cary R.


    Objective Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Research Methods and Procedures Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Results Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Discussion Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and para-limbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC). PMID:16861608

  13. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. (United States)

    Holsen, Laura M; Zarcone, Jennifer R; Brooks, William M; Butler, Merlin G; Thompson, Travis I; Ahluwalia, Jasjit S; Nollen, Nicole L; Savage, Cary R


    Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and paralimbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC).

  14. Evaluation of Language Function under Awake Craniotomy. (United States)

    Kanno, Aya; Mikuni, Nobuhiro


    Awake craniotomy is the only established way to assess patients' language functions intraoperatively and to contribute to their preservation, if necessary. Recent guidelines have enabled the approach to be used widely, effectively, and safely. Non-invasive brain functional imaging techniques, including functional magnetic resonance imaging and diffusion tensor imaging, have been used preoperatively to identify brain functional regions corresponding to language, and their accuracy has increased year by year. In addition, the use of neuronavigation that incorporates this preoperative information has made it possible to identify the positional relationships between the lesion and functional regions involved in language, conduct functional brain mapping in the awake state with electrical stimulation, and intraoperatively assess nerve function in real time when resecting the lesion. This article outlines the history of awake craniotomy, the current state of pre- and intraoperative evaluation of language function, and the clinical usefulness of such functional evaluation. When evaluating patients' language functions during awake craniotomy, given the various intraoperative stresses involved, it is necessary to carefully select the tasks to be undertaken, quickly perform all examinations, and promptly evaluate the results. As language functions involve both input and output, they are strongly affected by patients' preoperative cognitive function, degree of intraoperative wakefulness and fatigue, the ability to produce verbal articulations and utterances, as well as perform synergic movement. Therefore, it is essential to appropriately assess the reproducibility of language function evaluation using awake craniotomy techniques.

  15. Molecular Mechanics: The Method and Its Underlying Philosophy. (United States)

    Boyd, Donald B.; Lipkowitz, Kenny B.


    Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…

  16. Evaluation of Language Function under Awake Craniotomy


    KANNO, Aya; MIKUNI, Nobuhiro


    Awake craniotomy is the only established way to assess patients’ language functions intraoperatively and to contribute to their preservation, if necessary. Recent guidelines have enabled the approach to be used widely, effectively, and safely. Non-invasive brain functional imaging techniques, including functional magnetic resonance imaging and diffusion tensor imaging, have been used preoperatively to identify brain functional regions corresponding to language, and their accuracy has increase...

  17. Integral inequalities under beta function and preinvex type functions. (United States)

    Ahmad, Izhar


    In the present paper, the notion of P-preinvex function is introduced and new integral inequalities for this kind of function along with beta function are establised. The work extends the results appeared in the literature.

  18. Microcracking in composite laminates under thermal and mechanical loading. Thesis (United States)

    Maddocks, Jason R.


    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  19. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid


    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  20. Transcatheter Mitral Valve Devices - Functional Mechanical Designs. (United States)

    Kliger, Chad


    Mitral regurgitation is a complex disorder involving a multitude of components of the mitral apparatus. With the desire for less invasive treatment approaches, transcatheter mitral valve therapies (TMVT) are directed at these components and available at varying stages of development. Therapeutic advancements and the potential to combine technologies may further improve their efficacy and safety. Transcatheter mitral valve replacement, while preserving the mitral apparatus, may emerge as an alternative or even a more suitable treatment option. In addition, early data on transcatheter mitral valve-in-valve and valve-in-ring implantation are encouraging and this approach may be an alternative to reoperation in the high-risk patient. This review details the expanding functional mechanical designs of current active TMVT.

  1. Amount of fear extinction changes its underlying mechanisms. (United States)

    An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo


    There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.

  2. Underlying Mechanisms of Tinnitus: Review and Clinical Implications (United States)

    Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.


    Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858

  3. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  4. Fatigue life prediction of mechanical structures under stochastic loading

    Directory of Open Access Journals (Sweden)

    Leitner Bohuš


    Full Text Available Problems of fatigue life prediction of materials and structures are discussed in the paper. Service loading is assumed as a continuous loading process with possible discontinuous events, which are caused by various operating conditions. The damage in a material is due to a cumulative degradation process. The damaging process is then represented either by rain-flow matrices or by a fatigue damage function which is derived using some hypothesis of a fatigue failure criterion. Presented theoretical procedure enables a very effective estimation of a service life and/or reliable evaluation of residual life of any structures under various types of loading and environmental conditions. This approach creates a good basis for powerful expert systems in structural and mechanical engineering. The aim of the paper is to present briefly some results of analysis of load-bearing steel structure loads of special railway crane PKP 25/20i which was utilized in some specific ad relatively hard operating conditions. Virtual models of the structure were being used in an analysis of acting working dynamics loads influence to be able to forecast fatigue life of load-bearing of the crane jib.

  5. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma


    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  6. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro


    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  7. Emotional responses to music: the need to consider underlying mechanisms. (United States)

    Juslin, Patrik N; Västfjäll, Daniel


    Research indicates that people value music primarily because of the emotions it evokes. Yet, the notion of musical emotions remains controversial, and researchers have so far been unable to offer a satisfactory account of such emotions. We argue that the study of musical emotions has suffered from a neglect of underlying mechanisms. Specifically, researchers have studied musical emotions without regard to how they were evoked, or have assumed that the emotions must be based on the "default" mechanism for emotion induction, a cognitive appraisal. Here, we present a novel theoretical framework featuring six additional mechanisms through which music listening may induce emotions: (1) brain stem reflexes, (2) evaluative conditioning, (3) emotional contagion, (4) visual imagery, (5) episodic memory, and (6) musical expectancy. We propose that these mechanisms differ regarding such characteristics as their information focus, ontogenetic development, key brain regions, cultural impact, induction speed, degree of volitional influence, modularity, and dependence on musical structure. By synthesizing theory and findings from different domains, we are able to provide the first set of hypotheses that can help researchers to distinguish among the mechanisms. We show that failure to control for the underlying mechanism may lead to inconsistent or non-interpretable findings. Thus, we argue that the new framework may guide future research and help to resolve previous disagreements in the field. We conclude that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction.

  8. Study on Mechanical Properties of Barite Concrete under Impact Load (United States)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.


    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  9. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    International Nuclear Information System (INIS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.


    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology

  10. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning (United States)

    Freeman, John H.; Steinmetz, Adam B.


    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  11. Functional dyspepsia. Different mechanisms, comprehensive treatment

    Directory of Open Access Journals (Sweden)

    A.E. Dorofeyev


    Full Text Available Functional dyspepsia (FD is a disease with different prevailing pathogenetic mechanisms. The prevalence of FD varies widely from 10 to 30 % of the population, depending on the country and the surveyed cohort. There are two forms of FD: postprandial distress syndrome manifested by a fullness/early satiety after eating, and epigastric pain syndrome — pain/burning in the epigastrium, which may worsen after eating. In a significant part of patients with FD, there are manifestations of both syndromes, the so-called overlap, or a mixed type. In the Ukrainian population, all patients with dyspepsia should be diagnosed and, if found, — undergo mandatory eradication of H.pylori. In patients with persistent symptoms or in those initially not infected with H.pylori, in our opinion, it is advisable to use the combination of proton pomp inhibitor and prokinetic as starting treatment. In our country, a fixed combination of omeprazole and domperidone is available in two dosages. This is Omez D containing 10 mg of both components and a more highly dosed Omez DSR containing 20 mg of omeprazole and 30 mg of domperidone in the form of sustained-release pellets.

  12. Peer influence: neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    Stallen, M.; Smidts, A.; Sanfey, A.G.


    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed

  13. Peer influence: Neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    M. Stallen (Mirre); A. Smidts (Ale); A.G. Sanfey (Alan)


    textabstractPeople often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI).

  14. Sex differences in intrinsic brain functional connectivity underlying human shyness. (United States)

    Yang, Xun; Wang, Siqi; Kendrick, Keith Maurice; Wu, Xi; Yao, Li; Lei, Du; Kuang, Weihong; Bi, Feng; Huang, Xiaoqi; He, Yong; Gong, Qiyong


    Shyness is a fundamental trait associated with social-emotional maladaptive behaviors, including many forms of psychopathology. Neuroimaging studies have demonstrated that hyper-responsivity to social and emotional stimuli occurs in the frontal cortex and limbic system in shy individuals, but the relationship between shyness and brain-wide functional connectivity remains incompletely understood. Using resting-state functional magnetic resonance imaging, we addressed this issue by exploring the relationship between regional functional connectivity strength (rFCS) and scores of shyness in a cohort of 61 healthy young adults and controlling for the effects of social and trait anxiety scores. We observed that the rFCS of the insula positively correlated with shyness scores regardless of sex. Furthermore, we found that there were significant sex-by-shyness interactions in the dorsal anterior cingulate cortex and insula (two core nodes of the salience network) as well as the subgenual anterior cingulate cortex: the rFCS values of these regions positively correlated with shyness scores in females but negatively correlated in males. Taken together, we provide evidence for intrinsic functional connectivity differences in individuals with different degrees of shyness and that these differences are sex-dependent. These findings might have important implications on the understanding of biological mechanisms underlying emotional and cognitive processing associated with shyness. © The Author (2015). Published by Oxford University Press. For Permissions, please email:

  15. Technical diagnostics functioning machines and mechanisms (United States)

    Kiselev, M. I.; Pronyakin, V. I.; Tulekbaeva, A. K.


    Article discusses the machines and mechanisms technical state monitoring problem. Approaches for estimating mechanical systems current technical state, defects detection and evaluation of mechanical elements degradation levels are considered. The paper analyzes the traditional methods offered in international and national standards, especially vibrodiagnostics. An advanced phase method is presented which is based on registration the kinematic parameters of the mechanism running cycle. The result of coupling the phase method and mathematical modeling is shown, and simulation comparison with the experimental data is presented.

  16. Functional Brain Network Mechanism of Hypersensitivity in Chronic Pain. (United States)

    Lee, UnCheol; Kim, Minkyung; Lee, KyoungEun; Kaplan, Chelsea M; Clauw, Daniel J; Kim, Seunghwan; Mashour, George A; Harris, Richard E


    Fibromyalgia (FM) is a chronic widespread pain condition characterized by augmented multi-modal sensory sensitivity. Although the mechanisms underlying this sensitivity are thought to involve an imbalance in excitatory and inhibitory activity throughout the brain, the underlying neural network properties associated with hypersensitivity to pain stimuli are largely unknown. In network science, explosive synchronization (ES) was introduced as a mechanism of hypersensitivity in diverse biological and physical systems that display explosive and global propagations with small perturbations. We hypothesized that ES may also be a mechanism of the hypersensitivity in FM brains. To test this hypothesis, we analyzed resting state electroencephalogram (EEG) of 10 FM patients. First, we examined theoretically well-known ES conditions within functional brain networks reconstructed from EEG, then tested whether a brain network model with ES conditions identified in the EEG data is sensitive to an external perturbation. We demonstrate for the first time that the FM brain displays characteristics of ES conditions, and that these factors significantly correlate with chronic pain intensity. The simulation data support the conclusion that networks with ES conditions are more sensitive to perturbation compared to non-ES network. The model and empirical data analysis provide convergent evidence that ES may be a network mechanism of FM hypersensitivity.

  17. Preserving neural function under extreme scaling.

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    Full Text Available Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora with its exact counterpart in the fruit fly (Drosophila which is about four times smaller in each dimension. Anatomical features of the HS cell scale isometrically and minimise wiring costs but, by themselves, do not scale to preserve the electrotonic behaviour. However, the membrane properties are set to conserve dendritic as well as axonal delays and attenuation as well as dendritic integration of visual information. In conclusion, the electrotonic structure of a neuron, the HS cell in this case, is surprisingly stable over a wide range of morphological scales.

  18. On the Correspondence Between Newtonian and Functional Mechanics (United States)

    Piskovskiy, E. V.; Volovich, I. V.


    The world view underlying traditional science is based on reductionism and determinism when there is an empty space (vacuum) and material points which move along the Newtonian trajectories. This approach may be called "mechanistic" or "Newtonian". Quantum mechanics, in its Copenhagen interpretation, also adopts this world view. However this world view is not satisfactory by at least two reasons. First, there is uncertainty in the derivation of the position and velocity of the material point and second, it can not solve the time irreversibility problem. Moreover, the Newtonian approach is not well suited for applications of mathematics and physics to life science. Recently a new approach to classical mechanics was proposed in which the basic notion is not the trajectory but a probability distribution. In this functional mechanics approach one deals with the mean trajectories and one has corrections to the Newtonian equation of motion. In this note we consider correspondence between the Newtonian trajectories for an anharmonic oscillator and the averaged trajectories in the functional mechanics and compute the dependence of the characteristic time from the dispersion.

  19. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. (United States)

    Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G; Müller, Henry; Berg, Gabriele


    Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria. © 2014 John Wiley & Sons Ltd.

  20. Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Olivia C. Eller-Smith


    Full Text Available Centralized pain syndromes are associated with changes within the central nervous system that amplify peripheral input and/or generate the perception of pain in the absence of a noxious stimulus. Examples of idiopathic functional disorders that are often categorized as centralized pain syndromes include fibromyalgia, chronic pelvic pain syndromes, migraine, and temporomandibular disorder. Patients often suffer from widespread pain, associated with more than one specific syndrome, and report fatigue, mood and sleep disturbances, and poor quality of life. The high degree of symptom comorbidity and a lack of definitive underlying etiology make these syndromes notoriously difficult to treat. The main purpose of this review article is to discuss potential mechanisms of centrally-driven pain amplification and how they may contribute to increased comorbidity, poorer pain outcomes, and decreased quality of life in patients diagnosed with centralized pain syndromes, as well as discuss emerging non-pharmacological therapies that improve symptomology associated with these syndromes. Abnormal regulation and output of the hypothalamic-pituitary-adrenal (HPA axis is commonly associated with centralized pain disorders. The HPA axis is the primary stress response system and its activation results in downstream production of cortisol and a dampening of the immune response. Patients with centralized pain syndromes often present with hyper- or hypocortisolism and evidence of altered downstream signaling from the HPA axis including increased Mast cell (MC infiltration and activation, which can lead to sensitization of nearby nociceptive afferents. Increased peripheral input via nociceptor activation can lead to “hyperalgesic priming” and/or “wind-up” and eventually to central sensitization through long term potentiation in the central nervous system. Other evidence of central modifications has been observed through brain imaging studies of functional

  1. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.


    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  2. Permeability and mechanical properties of cracked glass under pressure

    International Nuclear Information System (INIS)

    Ougier-Simonin, A.


    Crack initiation and growth in brittle solids under tension have been extensively studied by various experimental, theoretical and numerical approaches. If has been established that dynamic brittle fracture is related to fundamental physical parameters and processes, such as crack speed, crack branching, surface roughening, and dynamic instabilities. On the other hand, less studies have been done in the area of compressive fracture despite its vital importance in geology, material science and engineering applications (such as the improvement and the insurance of the nuclear wastes storage). The present work aims to investigate thermo-mechanical cracking effects on elastic wave velocities, mechanical strength and permeability und r pressure to evaluate damage evolution, brittle failure and transport properties on a synthetic glass (SON 68), and to highlight the very different behavior of the glass amorphous structure compared to any rock structure. The original glass, produced in ideal conditions of slow cooling that prevent from any crack formation, exhibits a linear and reversible mechanical behavior and isotropic elastic velocities, as expected. It also presents a high strength as it fails at about 700 MPa of deviatoric stress for a confining pressure of 15 MPa. We choose to apply to some original glass samples a reproducible method (thermal treatment with a thermal shock of T=100,200 and 300 C) which creates cracks with a homogeneous distribution. The impact of the thermal treatment is clearly visible through the elastic wave velocity measurements as we observe crack closure under hydrostatic conditions (at about 30 MPa). For T ≥ 200 C, the glass mechanical behavior becomes non linear and records an irreversible damage. The total damage observed with the acoustic emissions in these samples underlines the combination of the thermal and the mechanical cracks which drive to the sample failure. The results obtained with pore fluid pressure show a very small

  3. Frictional behaviour of polymer films under mechanical and electrostatic loads

    International Nuclear Information System (INIS)

    Ginés, R; Christen, R; Motavalli, M; Bergamini, A; Ermanni, P


    Different polymer foils, namely polyimide, FEP, PFA and PVDF were tested on a setup designed to measure the static coefficient of friction between them. The setup was designed according to the requirements of a damping device based on electrostatically tunable friction. The foils were tested under different mechanically applied forces and showed reproducible results for the static coefficient of friction. With the same setup the measurements were performed under an electric field as the source of the normal force. Up to a certain electric field the values were in good agreement. Beyond this field discrepancies were found. (paper)

  4. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin


    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  5. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang


    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  6. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia


    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  7. Electronic, mechanical and dielectric properties of silicane under tensile strain

    Energy Technology Data Exchange (ETDEWEB)

    Jamdagni, Pooja, E-mail:; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Physics Department, Panjab University, Chandigarh, India, 160014 (India); Thakur, Anil [Physics Department, Govt. Collage Solan, Himachal Pradesh, India,173212 (India)


    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  8. Electronic, mechanical and dielectric properties of silicane under tensile strain

    International Nuclear Information System (INIS)

    Jamdagni, Pooja; Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil


    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices

  9. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar


    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  10. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu


    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  11. On the order of magnitude of some arithmetical functions under ...

    Indian Academy of Sciences (India)

    460. Karam Aloui results about the average of some additive functions (namely, the number of distinct prime factors ω and the total number of prime factors of a positive integer n) under digital constraints. We will follow a similar path in order to study the multiplicative functions under digital constraints on the sum of the digits.

  12. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation. (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F


    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Enhanced mechanical properties of single-walled carbon nanotubes due to chemical functionalization. (United States)

    He, X Q; Kuang, Y D; Chen, C Y; Li, G Q


    Recent studies have shown that the chemical functionalization of carbon nanotubes weakens most of their mechanical properties such as the critical buckling force under compression and the critical buckling moment under torsion. However, the mechanical properties including the critical bending curvature and the critical bending moment of single-walled carbon nanotubes can be improved after functionalization as shown in this paper. The molecular mechanics simulations reveal that there exists an optimum functionalization degree at which the critical curvatures of the functionalized carbon nanotubes reaches its maximum value. The critical curvatures of the carbon nanotubes increase with increasing functionalization degree below the optimum value, while the critical curvatures change little as the functionalization degree is beyond the optimum value. The influences of the bending directions and the aspect ratios of the functionalized carbon nanotubes are also examined via molecular mechanics simulations.

  14. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.


    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  15. Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. (United States)

    Sun, Yong; Wang, Qingguo; Li, Zhen; Hou, Lei; Dai, Shaojun; Liu, Wei


    Peanut (Arachis hypogaea. L) is an important leguminous crop and source of proteins and lipids. It has attracted widespread attention of researchers due to its unique growth habit of geocarpy, which is regulated by geotropism, negative phototropism, and haptotropism. However, the protein expression pattern and molecular regulatory mechanism underlying the physiological processes of peanut remain unknown. In this study, the peanut gynophores under five treatment conditions were used for proteomic analysis, including aerial growth of the gynophores, the gynophores penetrated into the soil, as well as aerial growth of the gynophores under mechanical stimulation, dark, and mechanical stimulation combined with dark. The analysis of protein abundances in peanut gynophores under these conditions were conducted using comparative proteomic approaches. A total of 27 differentially expressed proteins were identified and further classified into nine biological functional groups of stress and defense, carbohydrate and energy metabolism, metabolism, photosynthesis, cell structure, signaling, transcription, protein folding and degradation, and function unknown. By searching gene functions against peanut database, 10 genes with similar annotations were selected as corresponding changed proteins, and their variation trends in gynophores under such growth conditions were further verified using quantitative real-time PCR. Overall, the investigation will benefit to enrich our understanding of the internal mechanisms of peanut gynophore development and lay a foundation for breeding and improving crop varieties and qualities.

  16. Mechanical properties of a collagen fibril under simulated degradation. (United States)

    Malaspina, David C; Szleifer, Igal; Dhaher, Yasin


    Collagen fibrils are a very important component in most of the connective tissue in humans. An important process associated with several physiological and pathological states is the degradation of collagen. Collagen degradation is usually mediated by enzymatic and non-enzymatic processes. In this work we use molecular dynamics simulations to study the influence of simulated degradation on the mechanical properties of the collagen fibril. We applied tensile stress to the collagen fiber at different stages of degradation. We compared the difference in the fibril mechanical priorities due the removal of enzymatic crosslink, surface degradation and volumetric degradation. As anticipated, our results indicated that, regardless of the degradation scenario, fibril mechanical properties is reduced. The type of degradation mechanism (crosslink, surface or volumetric) expressed differential effect on the change in the fibril stiffness. Our simulation results showed dramatic change in the fibril stiffness with a small amount of degradation. This suggests that the hierarchical structure of the fibril is a key component for the toughness and is very sensitive to changes in the organization of the fibril. The overall results are intended to provide a theoretical framework for the understanding the mechanical behavior of collagen fibrils under degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Tensile mechanical behavior of hollow and filled carbon nanotubes under tension or combined tension-torsion (United States)

    Jeong, Byeong-Woo; Lim, Jang-Keun; Sinnott, Susan B.


    The tensile mechanical behavior of hollow and filled single-walled carbon nanotubes under tension or combined tension-torsion is examined using classical molecular dynamics simulations. These simulations indicate that the tensile strength under combined tension-torsion can be increased by filling the carbon nanotubes, and the amount of this increase depends on the kind of filling material. They also predict that the tensile strength under combined tension-torsion decreases linearly under applied torsion. The tensile strength can be modified by adjusting the system temperature and through chemical functionalization to the carbon nanotube walls.

  18. ROS Regulate Cardiac Function via a Distinct Paracrine Mechanism

    Directory of Open Access Journals (Sweden)

    Hui-Ying Lim


    Full Text Available Reactive oxygen species (ROS can act cell autonomously and in a paracrine manner by diffusing into nearby cells. Here, we reveal a ROS-mediated paracrine signaling mechanism that does not require entry of ROS into target cells. We found that under physiological conditions, nonmyocytic pericardial cells (PCs of the Drosophila heart contain elevated levels of ROS compared to the neighboring cardiomyocytes (CMs. We show that ROS in PCs act in a paracrine manner to regulate normal cardiac function, not by diffusing into the CMs to exert their function, but by eliciting a downstream D-MKK3-D-p38 MAPK signaling cascade in PCs that acts on the CMs to regulate their function. We find that ROS-D-p38 signaling in PCs during development is also important for establishing normal adult cardiac function. Our results provide evidence for a previously unrecognized role of ROS in mediating PC/CM interactions that significantly modulates heart function.

  19. Non extensive Statistical Mechanics. Asymptotic Functions

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.


    We introduce the 2 function with n degrees of freedom as a Tsallis distribution. We take the probability function for two 2 independent variables X and Y of degree n and m , respectively, and we obtain the explicit expressions for the limits n and m . Integrating these expressions as weight functions and the usual Boltzmann-Gibbs factor over the inverse temperature we obtain the canonical distribution for a system with Hamiltonian H. Finally, we deduce the probability distributions for the generalized velocity when H = u2/2 . (Author) 40 refs

  20. Temporomandibular disorders and painful comorbidities: clinical association and underlying mechanisms. (United States)

    Costa, Yuri Martins; Conti, Paulo César Rodrigues; de Faria, Flavio Augusto Cardoso; Bonjardim, Leonardo Rigoldi


    The association between temporomandibular disorders (TMDs) and headaches, cervical spine dysfunction, and fibromyalgia is not artefactual. The aim of this review is to describe the comorbid relationship between TMD and these three major painful conditions and to discuss the clinical implications and the underlying pain mechanisms involved in these relationships. Common neuronal pathways and central sensitization processes are acknowledged as the main factors for the association between TMD and primary headaches, although the establishment of cause-effect mechanisms requires further clarification and characterization. The biomechanical aspects are not the main factors involved in the comorbid relationship between TMD and cervical spine dysfunction, which can be better explained by the neuronal convergence of the trigeminal and cervical spine sensory pathways as well as by central sensitization processes. The association between TMD and fibromyalgia also has supporting evidence in the literature, and the proposed main mechanism underlying this relationship is the impairment of the descending pain inhibitory system. In this particular scenario, a cause-effect relationship is more likely to occur in one direction, that is, fibromyalgia as a risk factor for TMD. Therefore, clinical awareness of the association between TMD and painful comorbidities and the support of multidisciplinary approaches are required to recognize these related conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Liu Taoying


    Full Text Available The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  2. The mechanism underlying fast germination of tomato cultivar LA2711. (United States)

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong


    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Mechanisms underlying HIV-1 Vpu-mediated viral egress

    Directory of Open Access Journals (Sweden)

    Nicolas eRoy


    Full Text Available Viruses such as lentiviruses that are responsible for long lasting infections, have to evade several level of cellular immune mechanisms to persist and efficiently disseminate in the host. Over the past decades, many evidences have emerged regarding the major role of accessory proteins of primate lentiviruses (Human (HIV and simian immunodeficiency viruses (SIV in viral evasion from the host immune defense. This short review will provide an overview of the mechanism whereby the accessory protein Vpu contributes to this escape. Vpu is a multifunctional protein that was shown to contribute to viral egress by down-regulating several mediators of the immune system such as CD4, CD1d, NTB-A and the restriction factor BST2. The mechanisms underlying its activity are not fully characterized but rely on its ability to interfere with the host machinery regulating proteins turnover and vesicular trafficking. This review will focus on our current understanding of the mechanisms whereby Vpu down-regulates CD4 and BST2 expression level to favour viral egress.

  4. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.


    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  5. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. (United States)

    Wei, Min; Li, Song; Le, Weidong


    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  6. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. (United States)

    Chiang, Jyh-Min; Spasojevic, Marko J; Muller-Landau, Helene C; Sun, I-Fang; Lin, Yiching; Su, Sheng-Hsin; Chen, Zueng-Sang; Chen, Chien-Teh; Swenson, Nathan G; McEwan, Ryan W


    Understanding the role of biodiversity (B) in maintaining ecosystem function (EF) is a foundational scientific goal with applications for resource management and conservation. Two main hypotheses have emerged that address B-EF relationships: niche complementarity (NC) and the mass-ratio (MR) effect. We tested the relative importance of these hypotheses in a subtropical old-growth forest on the island nation of Taiwan for two EFs: aboveground biomass (ABG) and coarse woody productivity (CWP). Functional dispersion (FDis) of eight plant functional traits was used to evaluate complementarity of resource use. Under the NC hypothesis, EF will be positively correlated with FDis. Under the MR hypothesis, EF will be negatively correlated with FDis and will be significantly influenced by community-weighted mean (CWM) trait values. We used path analysis to assess how these two processes (NC and MR) directly influence EF and may contribute indirectly to EF via their influence on canopy packing (stem density). Our results indicate that decreasing functional diversity and a significant influence of CWM traits were linked to increasing AGB for all eight traits in this forest supporting the MR hypothesis. Interestingly, CWP was primarily influenced by NC and MR indirectly via their influence on canopy packing. Maximum height explained more of the variation in both AGB and CWP than any of the other plant functional traits. Together, our results suggest that multiple mechanisms operate simultaneously to influence EF, and understanding their relative importance will help to elucidate the role of biodiversity in maintaining ecosystem function.

  7. Peer influence: Neural mechanisms underlying in-group conformity

    Directory of Open Access Journals (Sweden)

    Mirre eStallen


    Full Text Available People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI. Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  8. Peer influence: neural mechanisms underlying in-group conformity. (United States)

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G


    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  9. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao


    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  10. Mechanical regulation of T-cell functions


    Chen, Wei; Zhu, Cheng


    T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycles, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force but display variable substrate rigidities, to the blood and lymphatic circulation systems where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they...

  11. Age differences in the underlying mechanisms of stereotype threat effects. (United States)

    Popham, Lauren E; Hess, Thomas M


    The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Older adults' performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail:

  12. Studies on Molecular Mechanisms Underlying Spinocerebellar Ataxia Type 3

    DEFF Research Database (Denmark)

    Kristensen, Line Vildbrad

    The polyglutamine (polyQ) disorders comprise nine diseases characterized by an expanded polyQ tract within the respective proteins. These disorders are rare but include the well-known Huntington’s disease, and several spinocerebellar ataxias (SCAs). The diseases usually strike midlife and progress....... Even though a range of mechanisms contributing to polyQ diseases have been uncovered, there is still no treatment available. One of the more common polyQ diseases is SCA3, which is caused by a polyQ expansion in the ataxin-3 protein that normally functions as a deubiquitinating enzyme involved...

  13. Molecular mechanisms of androgen receptor functions

    NARCIS (Netherlands)

    K. Steketee (Karine)


    textabstractThe androgens testosterone (T) and dihydrotestosterone (DHT) are steroid hormones, which are necessary for development and maintenance of the functions of the male sex organs, including the prostate. Androgens also play an important role in benign abnormalities of the prostate and in the

  14. Music and Memory in Alzheimer's Disease and The Potential Underlying Mechanisms. (United States)

    Peck, Katlyn J; Girard, Todd A; Russo, Frank A; Fiocco, Alexandra J


    With population aging and a projected exponential expansion of persons diagnosed with Alzheimer's disease (AD), the development of treatment and prevention programs has become a fervent area of research and discovery. A growing body of evidence suggests that music exposure can enhance memory and emotional function in persons with AD. However, there is a paucity of research that aims to identify specific underlying neural mechanisms associated with music's beneficial effects in this particular population. As such, this paper reviews existing anecdotal and empirical evidence related to the enhancing effects of music exposure on cognitive function and further provides a discussion on the potential underlying mechanisms that may explain music's beneficial effect. Specifically, this paper will outline the potential role of the dopaminergic system, the autonomic nervous system, and the default network in explaining how music may enhance memory function in persons with AD.

  15. Underlying mechanisms of transient luminous events: a review

    Directory of Open Access Journals (Sweden)

    V. V. Surkov


    Full Text Available Transient luminous events (TLEs occasionally observed above a strong thunderstorm system have been the subject of a great deal of research during recent years. The main goal of this review is to introduce readers to recent theories of electrodynamics processes associated with TLEs. We examine the simplest versions of these theories in order to make their physics as transparent as possible. The study is begun with the conventional mechanism for air breakdown at stratospheric and mesospheric altitudes. An electron impact ionization and dissociative attachment to neutrals are discussed. A streamer size and mobility of electrons as a function of altitude in the atmosphere are estimated on the basis of similarity law. An alternative mechanism of air breakdown, runaway electron mechanism, is discussed. In this section we focus on a runaway breakdown field, characteristic length to increase avalanche of runaway electrons and on the role played by fast seed electrons in generation of the runaway breakdown. An effect of thunderclouds charge distribution on initiation of blue jets and gigantic jets is examined. A model in which the blue jet is treated as upward-propagating positive leader with a streamer zone/corona on the top is discussed. Sprite models based on streamer-like mechanism of air breakdown in the presence of atmospheric conductivity are reviewed. To analyze conditions for sprite generation, thunderstorm electric field arising just after positive cloud-to-ground stroke is compared with the thresholds for propagation of positively/negatively charged streamers and with runway breakdown. Our own estimate of tendril's length at the bottom of sprite is obtained to demonstrate that the runaway breakdown can trigger the streamer formation. In conclusion we discuss physical mechanisms of VLF (very low frequency and ELF (extremely low frequency phenomena associated with sprites.

  16. Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves. (United States)

    Nan, Tianxiang; Yang, Jianguang; Chen, Bing


    Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H + concentration 3.5 mol·L -1 , temperature 35 °C and ultrasonic power 100 W. The coupling ultrasonic field played a role in refining the grain in this process. The growth of tin crystals showed no orientation preferential, and the tin deposition showed a tendency to form a regular network structure after ultrasonic coupling. While in the absence of ultrasonic coupling, the growth of tin crystals has a high preferential orientation, and the tin deposition showed a tendency to form tin whiskers. Ultrasonic coupling was more favorable for obtaining a more compact and smoother cathode tin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein


    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  18. Adaptive defense mechanisms: function and transcendence. (United States)

    Metzger, Jesse A


    This article reviews the high-adaptive (mature) defense mechanisms, along with case material illustrating each. These defenses are described in terms of not only the specific means by which they serve to ward off anxiety and manage conflict, but also how they often transcend their role as defenses by contributing to the creation of new "products" of value, such as new meanings, perspectives, modes of relating, and works of art or science. This report also discusses the implications of the use of adaptive defenses, especially humor, in the context of psychotherapy. © 2014 Wiley Periodicals, Inc.

  19. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac


    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  20. Phosphorene under strain:electronic, mechanical and piezoelectric responses (United States)

    Drissi, L. B.; Sadki, S.; Sadki, K.


    Structural, electronic, elastic and piezoelectric properties of pure phosphorene under in-plane strain are investigated using first-principles calculations based on density functional theory. The two critical yielding points are determined along armchair and zigzag directions. It is shown that the buckling, the band gap and the charge transfer can be controlled under strains. A semiconductor to metallic transition is observed in metastable region. Polar plots of Young's modulus, Poisson ratio, sound velocities and Debye temperature exhibit evident anisotropic feature of phosphorene and indicate auxetic behavior for some angles θ. Our calculations show also that phosphorene has both in-plane and out-of-plane piezoelectric responses comparable to known 2D materials. The findings of this work reveal the great potential of pure phosphorene in nanomechanical applications.

  1. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)


    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  2. The Survival Advantage: Underlying Mechanisms and Extant Limitations

    Directory of Open Access Journals (Sweden)

    Stephanie A. Kazanas


    Full Text Available Recently, researchers have begun to investigate the function of memory in our evolutionary history. According to Nairne and colleagues (e.g., Nairne, Pandeirada, and Thompson, 2008; Nairne, Thompson, and Pandeirada, 2007, the best mnemonic strategy for learning lists of unrelated words may be one that addresses the same problems that our Pleistocene ancestors faced: fitness-relevant problems including securing food and water, as well as protecting themselves from predators. Survival processing has been shown to promote better recall and recognition memory than many well-known mnemonic strategies (e.g., pleasantness ratings, imagery, generation, etc.. However, the survival advantage does not extend to all types of stimuli and tasks. The current review presents research that has replicated Nairne et al.'s (2007 original findings, in addition to the research designs that fail to replicate the survival advantage. In other words, there are specific manipulations in which survival processing does not appear to benefit memory any more than other strategies. Potential mechanisms for the survival advantage are described, with an emphasis on those that are the most plausible. These proximate mechanisms outline the memory processes that may contribute to the advantage, although the ultimate mechanism may be the congruity between the survival scenario and Pleistocene problem-solving.

  3. Functional traits explain ecosystem function through opposing mechanisms. (United States)

    Cadotte, Marc W


    The ability to explain why multispecies assemblages produce greater biomass compared to monocultures, has been a central goal in the quest to understand biodiversity effects on ecosystem function. Species contributions to ecosystem function can be driven by two processes: niche complementarity and a selection effect that is influenced by fitness (competitive) differences, and both can be approximated with measures of species' traits. It has been hypothesised that fitness differences are associated with few, singular traits while complementarity requires multidimensional trait measures. Here, using experimental data from plant assemblages, I show that the selection effect was strongest when trait dissimilarity was low, while complementarity was greatest with high trait dissimilarity. Selection effects were best explained by a single trait, plant height. Complementarity was correlated with dissimilarity across multiple traits, representing above and below ground processes. By identifying the relevant traits linked to ecosystem function, we obtain the ability to predict combinations of species that will maximise ecosystem function. © 2017 John Wiley & Sons Ltd/CNRS.

  4. [Functional and mechanical anatomy of arm elevation]. (United States)

    Gagey, O; Bonfait, H; Gillot, C; Mazas, F


    Experimental work on the functional anatomy of the shoulder has involved a study of the conditions involved in elevation of the arm. Movements of the upper limb are organised round a very special alignment of the scapulo-humeral joint whose geometric features and exact position have been determined. The ligaments of the joint play a major role in the controlling the attainment of this alignment. The value of this alignment in the physiology of the shoulder is demonstrated. A new terminology of shoulder movement is suggested.

  5. A Hybrid Imperative and Functional Molecular Mechanics Application

    Directory of Open Access Journals (Sweden)

    Thomas Deboni


    Full Text Available Molecular mechanics applications model the interactions among large ensembles of discrete particles. They are used where probabilistic methods are inadequate, such as drug chemistry. This methodology is difficult to parallelize with good performance, due to its poor locality, uneven partitions, and dynamic behavior. Imperative programs have been written that attempt this on shared and distributed memory machines. Given such a program, the computational kernel can be rewritten in Sisal, a functional programming language, and integrated with the rest of the imperative program under the Sisal Foreign Language Interface. This allows minimal effort and maximal return from parallelization work, and leaves the work appropriate to imperative implementation in its original form. We describe such an effort, focusing on the parts of the application that are appropriate for Sisal implementation, the specifics of mixed-language programming, and the complex performance behavior of the resulting hybrid code.

  6. On the order of magnitude of some arithmetical functions under ...

    Indian Academy of Sciences (India)

    Let q ≥ 2 be an integer and let Sq(n) denote the sum of the digits in base q of the positive integer n. We look for an estimate of the average of some multiplicative arithmetical functions under constraints on the arithmetical congruence of the integers and the sum of their digits. Keywords. Sum of digits function; multiplicative ...

  7. Mental Imagery: Functional Mechanisms and Clinical Applications. (United States)

    Pearson, Joel; Naselaris, Thomas; Holmes, Emily A; Kosslyn, Stephen M


    Mental imagery research has weathered both disbelief of the phenomenon and inherent methodological limitations. Here we review recent behavioral, brain imaging, and clinical research that has reshaped our understanding of mental imagery. Research supports the claim that visual mental imagery is a depictive internal representation that functions like a weak form of perception. Brain imaging work has demonstrated that neural representations of mental and perceptual images resemble one another as early as the primary visual cortex (V1). Activity patterns in V1 encode mental images and perceptual images via a common set of low-level depictive visual features. Recent translational and clinical research reveals the pivotal role that imagery plays in many mental disorders and suggests how clinicians can utilize imagery in treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Biomarkers and Mechanisms of FANCD2 Function

    Directory of Open Access Journals (Sweden)

    Henning Willers


    Full Text Available Genetic or epigenetic inactivation of the pathway formed by the Fanconi anemia (FA and BRCA1 proteins occurs in several cancer types, making the affected tumors potentially hypersensitive to DNA cross-linkers and other chemotherapeutic agents. It has been proposed that the inability of FA/BRCA-defective cells to form subnuclear foci of effector proteins, such as FANCD2, can be used as a biomarker to aid individualization of chemotherapy. We show that FANCD2 inactivation not only renders cells sensitive to cross-links, but also oxidative stress, a common effect of cancer therapeutics. Oxidative stress sensitivity does not correlate with FANCD2 or RAD51 foci formation, but associates with increased γH2AX foci levels and apoptosis. Therefore, FANCD2 may protect cells against cross-links and oxidative stress through distinct mechanisms, consistent with the growing notion that the pathway is not linear. Our data emphasize the need for multiple biomarkers, such as γH2AX, FANCD2, and RAD51, to capture all pathway activities.

  9. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease (United States)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  10. The mechanisms underlying fructose-induced hypertension: a review (United States)

    Klein, Alice Victoria; Kiat, Hosen


    We are currently in the midst of an epidemic of metabolic disorders, which may, in part, be explained by excess fructose intake. This theory is supported by epidemiological observations as well as experimental studies in animals and humans. Rising consumption of fructose has been matched with growing rates of hypertension, leading to concern from public health experts. At this stage, the mechanisms underlying fructose-induced hypertension have not been fully characterized and the bulk of our knowledge is derived from animal models. Animal studies have shown that high-fructose diets up-regulate sodium and chloride transporters, resulting in a state of salt overload that increases blood pressure. Excess fructose has also been found to activate vasoconstrictors, inactivate vasodilators, and over-stimulate the sympathetic nervous system. Further work is required to determine the relevance of these findings to humans and to establish the level at which dietary fructose increases the risk of developing hypertension PMID:25715094

  11. Degradation Mechanisms of Transparent Polyurethane Interlayer under UV Irradiation

    Directory of Open Access Journals (Sweden)

    OU Yingchun


    Full Text Available According to the ageing problem of laminated transparency, the trasparent polyurethane film used as interlayer had been irradiated by fluorescent ultraviolet lamp for 0 h, 200 h, 300 h, and 500 h respectively. With the aid of ultraviolet/visible spectrophotometer, FTIR and SEM etc., the color, structure and morphology of the materials were studied. SEM shows that when the irradiation time is increased to 500 h, the film surface cracks. The UV degradation mechanisms are that -CH2- of the position connecting the O and N from hard segment and the soft segment are easy to oxidize and produce hydrogen peroxide under UV and oxygen, which is furtherly oxidized to CO, and some part of the C-O and C-N bonds is cracked through β scission, and then the materials are fractured.

  12. Nonlinear mechanical response of supercooled melts under applied forces (United States)

    Cárdenas, Heliana; Frahsa, Fabian; Fritschi, Sebastian; Nicolas, Alexandre; Papenkort, Simon; Voigtmann, Thomas; Fuchs, Matthias


    We review recent progress on a microscopic theoretical approach to describe the nonlinear response of glass-forming colloidal dispersions under strong external forcing leading to homogeneous and inhomogeneous flow. Using mode-coupling theory (MCT), constitutive equations for the rheology of viscoelastic shear-thinning fluids are obtained. These are, in suitably simplified form, employed in continuum fluid dynamics, solved by a hybrid-Lattice Boltzmann (LB) algorithm that was developed to deal with long-lasting memory effects. The combined microscopic theoretical and mesoscopic numerical approach captures a number of phenomena far from equilibrium, including the yielding of metastable states, process-dependent mechanical properties, and inhomogeneous pressure-driven channel flow.

  13. Electronic and Mechanical Properties of Hydrogen Functionalized Carbon Nanotubes (United States)

    Yang, Liu; Han, Jie; Jaffe, Richard L.; Arnold, Jim (Technical Monitor)


    We examined the electronic and mechanical properties of hydrogen functionalized carbon nanotubes. The functionalization pattern covers two extreme groups. One group has randomly selected functionalization sites including one to twenty percent of the carbon atoms. The other group has regularly patterned functional sites parallel to the tube axis. Metallic, small-gap semiconducting and large-gap semiconducting carbon nanotubes are studied. The results reveal that the electronic properties of the tubes are very sensitive to the degree of functionalization, with even one percent functionalization being enough to render metallic tubes semiconducting. On the other hand, the mechanical properties, like tensile modulus, are much less sensitive to functionalization. For carbon nanotubes functionalized with specific patterns, the electric properties depends strongly on the nature of the functionalization pattern.

  14. Apraxia: neural mechanisms and functional recovery. (United States)

    Foundas, Anne L


    Apraxia is a cognitive-motor disorder that impacts the performance of learned, skilled movements. Limb apraxia, which is the topic of this chapter, is specific to disordered movements of the upper limb that cannot be explained by weakness, sensory loss, abnormalities of posture/tone/movement, or a lack of understanding/cooperation. Patients with limb apraxia have deficits in the control or programming of the spatial-temporal organization and sequencing of goal-directed movements. People with limb apraxia can have difficulty manipulating and using tools including cutting with scissors or making a cup of coffee. Two praxis systems have been identified including a production system (action plan and production) and a conceptual system (action knowledge). Dysfunction of the former produces ideomotor apraxia (e.g., difficulty using scissors), and dysfunction of the latter induces ideational apraxia (e.g., difficulty making a cup of coffee). Neural mechanisms, including how to evaluate apraxia, will be presented in the context of these two praxis systems. Information about these praxis systems, including the nature of the disordered limb movement, is important for rehabilitation clinicians to understand for several reasons. First, limb apraxia is a common disorder. It is common in patients who have had a stroke, in neurodegenerative disorders like Alzheimer disease, in traumatic brain injury, and in developmental disorders. Second, limb apraxia has real world consequences. Patients with limb apraxia have difficulty managing activities of daily living. This factor impacts healthcare costs and contributes to increased caregiver burden. Unfortunately, very few treatments have been systematically studied in large numbers of patients with limb apraxia. This overview of limb apraxia should help rehabilitation clinicians to educate patients and caregivers about this debilitating problem, and should facilitate the development of better treatments that could benefit many people in

  15. Simulated airplane headache: a proxy towards identification of underlying mechanisms. (United States)

    Bui, Sebastian Bao Dinh; Petersen, Torben; Poulsen, Jeppe Nørgaard; Gazerani, Parisa


    Airplane Headache (AH) occurs during flights and often appears as an intense, short lasting headache during take-off or landing. Reports are limited on pathological mechanisms underlying the occurrence of this headache. Proper diagnosis and treatments would benefit from identification of potential pathways involved in AH pathogenesis. This study aimed at providing a simulated airplane headache condition as a proxy towards identification of its underlying mechanisms. Fourteen participants including 7 volunteers suffering from AH and 7 healthy matched controls were recruited after meeting the diagnostic and safety criteria based on an approved study protocol. Simulation of AH was achieved by entering a pressure chamber with similar characteristics of an airplane flight. Selected potential biomarkers including salivary prostaglandin E 2 (PGE 2 ), cortisol, facial thermo-images, blood pressure, pulse, and saturation pulse oxygen (SPO) were defined and values were collected before, during and after flight simulation in the pressure chamber. Salivary samples were analyzed with ELISA techniques, while data analysis and statistical tests were handled with SPSS version 22.0. All participants in the AH-group experienced a headache attack similar to AH experience during flight. The non-AH-group did not experience any headaches. Our data showed that the values for PGE 2 , cortisol and SPO were significantly different in the AH-group in comparison with the non-AH-group during the flight simulation in the pressure chamber. The pressure chamber proved useful not only to provoke AH-like attack but also to study potential biomarkers for AH in this study. PGE 2 , and cortisol levels together with SPO presented dysregulation during the simulated AH-attack in affected individuals compared with healthy controls. Based on these findings we propose to use pressure chamber as a model to induce AH, and thus assess new potential biomarkers for AH in future studies.


    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov


    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  17. Mirror neurons: functions, mechanisms and models. (United States)

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A


    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Mechanisms underlying the social enhancement of vocal learning in songbirds. (United States)

    Chen, Yining; Matheson, Laura E; Sakata, Jon T


    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.

  19. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Vuong Tran


    Full Text Available The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD and attention deficit hyperactivity disorder (ADHD, calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates, persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  20. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M.; Struis, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  1. Structure-function relations in physiology education: Where's the mechanism? (United States)

    Lira, Matthew E; Gardner, Stephanie M


    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such as structure-function relations, selectively neglect mechanisms by not mentioning this term explicitly. We explored how students characterized mechanisms and functions to shed light on how students make sense of these terms. Students characterized mechanisms as 1 ) processes that occur at levels of organization lower than that of functions; and 2 ) as detailed events with many steps involved. We also found that students produced more variability in how they characterized functions compared with mechanisms: students characterized functions in relation to multiple levels of organization and multiple definitions. We interpret these results as evidence that students see mechanisms as holding a more narrow definition than used in the biological sciences, and that students struggle to coordinate and distinguish mechanisms from functions due to cognitive processes germane to learning in many domains. We offer the instructional suggestion that we scaffold student learning by affording students opportunities to relate and also distinguish between these terms so central to understanding physiology. Copyright © 2017 the American Physiological Society.

  2. Mechanisms underlying temperature extremes in Iberia: a Lagrangian perspective

    Directory of Open Access Journals (Sweden)

    João A. Santos


    Full Text Available The mechanisms underlying the occurrence of temperature extremes in Iberia are analysed considering a Lagrangian perspective of the atmospheric flow, using 6-hourly ERA-Interim reanalysis data for the years 1979–2012. Daily 2-m minimum temperatures below the 1st percentile and 2-m maximum temperatures above the 99th percentile at each grid point over Iberia are selected separately for winter and summer. Four categories of extremes are analysed using 10-d backward trajectories initialized at the extreme temperature grid points close to the surface: winter cold (WCE and warm extremes (WWE, and summer cold (SCE and warm extremes (SWE. Air masses leading to temperature extremes are first transported from the North Atlantic towards Europe for all categories. While there is a clear relation to large-scale circulation patterns in winter, the Iberian thermal low is important in summer. Along the trajectories, air mass characteristics are significantly modified through adiabatic warming (air parcel descent, upper-air radiative cooling and near-surface warming (surface heat fluxes and radiation. High residence times over continental areas, such as over northern-central Europe for WCE and, to a lesser extent, over Iberia for SWE, significantly enhance these air mass modifications. Near-surface diabatic warming is particularly striking for SWE. WCE and SWE are responsible for the most extreme conditions in a given year. For WWE and SCE, strong temperature advection associated with important meridional air mass transports are the main driving mechanisms, accompanied by comparatively minor changes in the air mass properties. These results permit a better understanding of mechanisms leading to temperature extremes in Iberia.

  3. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  4. Brainstem mechanisms underlying the cough reflex and its regulation. (United States)

    Mutolo, Donatella


    Cough is a very important airway protective reflex. Cough-related inputs are conveyed to the caudal nucleus tractus solitarii (cNTS) that projects to the brainstem respiratory network. The latter is reconfigured to generate the cough motor pattern. A high degree of modulation is exerted on second-order neurons and the brainstem respiratory network by sensory inputs and higher brain areas. Two medullary structures proved to have key functions in cough production and to be strategic sites of action for centrally active drugs: the cNTS and the caudal ventral respiratory group (cVRG). Drugs microinjected into these medullary structures caused downregulation or upregulation of the cough reflex. The results suggest that inhibition and disinhibition are prominent regulatory mechanisms of this reflex and that both the cNTS and the cVRG are essential in the generation of the entire cough motor pattern. Studies on the basic neural mechanisms subserving the cough reflex may provide hints for novel therapeutic approaches. Different proposals for further investigations are advanced. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanical properties and failure mechanisms of graphene under a central load. (United States)

    Wang, Shuaiwei; Yang, Baocheng; Zhang, Shouren; Yuan, Jinyun; Si, Yubing; Chen, Houyang


    By employing molecular dynamics simulations, the evolution of deformation of a monolayer graphene sheet under a central transverse loading are investigated. Dependence of mechanical responses on the symmetry (shape) of the loading domain, on the size of the graphene sheet, and on temperature, is determined. It is found that the symmetry of the loading domain plays a central role in fracture strength and strain. By increasing the size of the graphene sheet or increasing temperature, the tensile strength and fracture strain decrease. The results have demonstrated that the breaking force and breaking displacement are sensitive to both temperature and the symmetry of the loading domain. In addition, we find that the intrinsic strength of graphene under a central load is much smaller than that of graphene under a uniaxial load. By examining the deformation processes, two failure mechanisms are identified namely, brittle bond breaking and plastic relaxation. In the second mechanism, the Stone-Wales transformation occurs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction. (United States)

    Ikegami, Keisuke; Yoshimura, Takashi


    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)


    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  8. Mechanical and Thermal Analysis of Classical Functionally Graded Coated Beam

    Directory of Open Access Journals (Sweden)

    Toudehdehghan Abdolreza


    Full Text Available The governing equation of a classical rectangular coated beam made of two layers subjected to thermal and uniformly distributed mechanical loads are derived by using the principle of virtual displacements and based on Euler-Bernoulli deformation beam theory (EBT. The aim of this paper was to analyze the static behavior of clamped-clamped thin coated beam under thermo-mechanical load using MATLAB. Two models were considered for composite coated. The first model was consisting of ceramic layer as a coated and substrate which was metal (HC model. The second model was consisting of Functionally Graded Material (FGM as a coated layer and metal substrate (FGC model. From the result it was apparent that the superiority of the FGC composite against conventional coated composite has been demonstrated. From the analysis, the stress level throughout the thickness at the interface of the coated beam for the FGC was reduced. Yet, the deflection in return was observed to increase. Therefore, this could cater to various new engineering applications where warrant the utilization of material that has properties that are well-beyond the capabilities of the conventional or yesteryears materials.

  9. [Pathophysiology of neuropathic pain: molecular mechanisms underlying central sensitization in the dorsal horn in neuropathic pain]. (United States)

    Yamanaka, Hiroki; Noguchi, Koichi


    Neuropathic pain syndromes are clinically characterized by spontaneous pain and evoked pain (hyperalgesia and allodynia). The optimal treatment approach for neuropathic pain is still under development because of the complex pathological mechanisms underlying this type of pain. The spinal cord is an important gateway thorough which peripheral pain signals are transmitted to the brain, and sensitization of the spinal neurons is one of the important mechanisms underlying neuropathic pain. Central sensitization represents enhancement of the function of neuronal circuits in nociceptive pathways and is a manifestation of the remarkable plasticity of the somatosensory nervous system after nerve injury. This review highlights the pathological features of central sensitization, which develops because of (1) injury-induced abnormal inputs from primary afferents, (2) increase in the excitability of dorsal horn neurons, and (3) activated glial cell-derived signals.

  10. Thermal and mechanical stresses in a functionally graded thick sphere

    International Nuclear Information System (INIS)

    Eslami, M.R.; Babaei, M.H.; Poultangari, R.


    In this paper, a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material is presented. The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. The material properties, except Poisson's ratio, are assumed to vary along the radius r according to a power law function. The analytical solution of the heat conduction equation and the Navier equation lead to the temperature profile, radial displacement, radial stress, and hoop stress as a function of radial direction

  11. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun


    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  12. Bayesian inverse problems for functions and applications to fluid mechanics

    International Nuclear Information System (INIS)

    Cotter, S L; Dashti, M; Robinson, J C; Stuart, A M


    In this paper we establish a mathematical framework for a range of inverse problems for functions, given a finite set of noisy observations. The problems are hence underdetermined and are often ill-posed. We study these problems from the viewpoint of Bayesian statistics, with the resulting posterior probability measure being defined on a space of functions. We develop an abstract framework for such problems which facilitates application of an infinite-dimensional version of Bayes theorem, leads to a well-posedness result for the posterior measure (continuity in a suitable probability metric with respect to changes in data), and also leads to a theory for the existence of maximizing the posterior probability (MAP) estimators for such Bayesian inverse problems on function space. A central idea underlying these results is that continuity properties and bounds on the forward model guide the choice of the prior measure for the inverse problem, leading to the desired results on well-posedness and MAP estimators; the PDE analysis and probability theory required are thus clearly dileneated, allowing a straightforward derivation of results. We show that the abstract theory applies to some concrete applications of interest by studying problems arising from data assimilation in fluid mechanics. The objective is to make inference about the underlying velocity field, on the basis of either Eulerian or Lagrangian observations. We study problems without model error, in which case the inference is on the initial condition, and problems with model error in which case the inference is on the initial condition and on the driving noise process or, equivalently, on the entire time-dependent velocity field. In order to undertake a relatively uncluttered mathematical analysis we consider the two-dimensional Navier–Stokes equation on a torus. The case of Eulerian observations—direct observations of the velocity field itself—is then a model for weather forecasting. The case of

  13. Video analysis of concussion injury mechanism in under-18 rugby (United States)

    Hendricks, Sharief; O'Connor, Sam; Lambert, Michael; Brown, James C; Burger, Nicholas; Mc Fie, Sarah; Readhead, Clint; Viljoen, Wayne


    Background Understanding the mechanism of injury is necessary for the development of effective injury prevention strategies. Video analysis of injuries provides valuable information on the playing situation and athlete-movement patterns, which can be used to formulate these strategies. Therefore, we conducted a video analysis of the mechanism of concussion injury in junior-level rugby union and compared it with a representative and matched non-injury sample. Methods Injury reports for 18 concussion events were collected from the 2011 to 2013 under-18 Craven Week tournaments. Also, video footage was recorded for all 3 years. On the basis of the injury events, a representative ‘control’ sample of matched non-injury events in the same players was identified. The video footage, which had been recorded at each tournament, was then retrospectively analysed and coded. 10 injury events (5 tackle, 4 ruck, 1 aerial collision) and 83 non-injury events were analysed. Results All concussions were a result of contact with an opponent and 60% of players were unaware of the impending contact. For the measurement of head position on contact, 43% had a ‘down’ position, 29% the ‘up and forward’ and 29% the ‘away’ position (n=7). The speed of the injured tackler was observed as ‘slow’ in 60% of injurious tackles (n=5). In 3 of the 4 rucks in which injury occurred (75%), the concussed player was acting defensively either in the capacity of ‘support’ (n=2) or as the ‘jackal’ (n=1). Conclusions Training interventions aimed at improving peripheral vision, strengthening of the cervical muscles, targeted conditioning programmes to reduce the effects of fatigue, and emphasising safe and effective playing techniques have the potential to reduce the risk of sustaining a concussion injury. PMID:27900149

  14. Video analysis of concussion injury mechanism in under-18 rugby. (United States)

    Hendricks, Sharief; O'Connor, Sam; Lambert, Michael; Brown, James C; Burger, Nicholas; Mc Fie, Sarah; Readhead, Clint; Viljoen, Wayne


    Understanding the mechanism of injury is necessary for the development of effective injury prevention strategies. Video analysis of injuries provides valuable information on the playing situation and athlete-movement patterns, which can be used to formulate these strategies. Therefore, we conducted a video analysis of the mechanism of concussion injury in junior-level rugby union and compared it with a representative and matched non-injury sample. Injury reports for 18 concussion events were collected from the 2011 to 2013 under-18 Craven Week tournaments. Also, video footage was recorded for all 3 years. On the basis of the injury events, a representative 'control' sample of matched non-injury events in the same players was identified. The video footage, which had been recorded at each tournament, was then retrospectively analysed and coded. 10 injury events (5 tackle, 4 ruck, 1 aerial collision) and 83 non-injury events were analysed. All concussions were a result of contact with an opponent and 60% of players were unaware of the impending contact. For the measurement of head position on contact , 43% had a 'down' position, 29% the 'up and forward' and 29% the 'away' position (n=7). The speed of the injured tackler was observed as 'slow' in 60% of injurious tackles (n=5). In 3 of the 4 rucks in which injury occurred (75%), the concussed player was acting defensively either in the capacity of 'support' (n=2) or as the 'jackal' (n=1). Training interventions aimed at improving peripheral vision, strengthening of the cervical muscles, targeted conditioning programmes to reduce the effects of fatigue, and emphasising safe and effective playing techniques have the potential to reduce the risk of sustaining a concussion injury.

  15. Mechanisms underlying recovery of zooplankton in Lake Orta after liming

    Directory of Open Access Journals (Sweden)

    Roberta Piscia


    Full Text Available The goal of this study was to improve the understanding of the large-scale mechanisms underlying the recovery of the zooplankton of Lake Orta from historical contamination, following reduced input of ammonia and metals and the subsequent 1989/90 liming intervention. The industrial pollution had been severe and long-lasting (1929-1990. Zooplankton biodiversity has improved, but most of the new taxa appearing in our counts are rotifers, while many calanoids and the large cladoceran predators (Bythotrephes and Leptodora that are common in the nearby Lake Maggiore, were still absent from Lake Orta 17 years after liming. To aid understanding of the large-scale mechanisms controlling changes in annual richness, we assessed the annual persistence (P of Crustacea and Rotifera taxa as an estimator of whether propagules that survived introduction, as result of the natural recolonization process, also thrived. We found that the rate of introduction of zooplankton colonists and their persistence in the water column of Lake Orta changed from 1971 to 2007. New rotifer taxa appeared in the lake after the mid-1980s, when discharge of toxic substances decreased, but their annual persistence was low (P<0.5 until the turn of the century. The numerical values of rotifer and crustacean persistence in Lake Orta were unexpectedly high in 2001 and 2007 (0.55 and 0.72 for rotifers, 0.85 and 0.86 for crustacean, respectively, much higher than in limed lakes in Sudbury, Canada, and in adjacent Lake Maggiore. We hypothesize this could be related to the lack of Cladoceran predators and zooplanktivorous fish in the pelagic waters of Lake Orta.

  16. The behavior of the planetary rings under the Kozai Mechanism (United States)

    Sucerquia, M. A.; Ramírez, C. V.; Zuluaga, J. I.


    Rings are one of the main feature of almost all giant planets in the Solar System. Even though thousands of exoplanets have been discovered to date, no evidence of exoplanetary rings have been found despite the effort made in the development and enhancing of techniques and methods for direct or indirect detection. In the transit of a ringed planet, the dynamic of the ring itself could play a meaningful role due to the so called Kozai Mechanism (KM) acting on each particle of it. When some specific initial conditions of the ring are fulfilled (as a ring inclination greater than ˜ 39°), KM generates short periodic changes in the inclination and eccentricity of each particle, leading to a meaningful characteristic collective behavior of the ring: it changes its width, inclination and optical depth. These changes induce periodic variations on the eclipsed area of the parent star, generating slight changes in the observed transit signal. Under this mechanism, light curves depths and shapes oscillate according to the fluctuations of the ring. To show this effect we have performed numerical simulations of the dynamic of a system of particles to asses the ring inclination and width variations over time. We have calculated the expected variations in the transit depth and finally, we have estimated the effect on the light curve of a hypothetical ringed exoplanet affected by the KM. The detection of this effect could be used as an alternative method to detect/confirm exoplanetary rings, and also it could be considered as a way to explain anomalous light curves patterns of exoplanets, as the case of KIC 8462852 star.

  17. Neural mechanisms underlying neurooptometric rehabilitation following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hudac CM


    Full Text Available Caitlin M Hudac1, Srinivas Kota1, James L Nedrow2, Dennis L Molfese1,31Department of Psychology, University of Nebraska-Lincoln, 2Oculi Vision Rehabilitation, 3Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NEAbstract: Mild to severe traumatic brain injuries have lasting effects on everyday functioning. Issues relating to sensory problems are often overlooked or not addressed until well after the onset of the injury. In particular, vision problems related to ambient vision and the magnocellular pathway often result in posttrauma vision syndrome or visual midline shift syndrome. Symptoms from these syndromes are not restricted to the visual domain. Patients commonly experience proprioceptive, kinesthetic, vestibular, cognitive, and language problems. Neurooptometric rehabilitation often entails the use of corrective lenses, prisms, and binasal occlusion to accommodate the unstable magnocellular system. However, little is known regarding the neural mechanisms engaged during neurooptometric rehabilitation, nor how these mechanisms impact other domains. Event-related potentials from noninvasive electrophysiological recordings can be used to assess rehabilitation progress in patients. In this case report, high-density visual event-related potentials were recorded from one patient with posttrauma vision syndrome and secondary visual midline shift syndrome during a pattern reversal task, both with and without prisms. Results indicate that two factors occurring during the end portion of the P148 component (168–256 milliseconds poststimulus onset map onto two separate neural systems that were engaged with and without neurooptometric rehabilitation. Without prisms, neural sources within somatosensory, language, and executive brain regions engage inefficient magnocellular system processing. However, when corrective prisms were worn, primary visual areas were appropriately engaged. The impact of using early

  18. Mechanical characterization of stomach tissue under uniaxial tensile action. (United States)

    Jia, Z G; Li, W; Zhou, Z R


    In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease. (United States)

    Presti, Rachel M; Flores, Sonia C; Palmer, Brent E; Atkinson, Jeffrey J; Lesko, Catherine R; Lau, Bryan; Fontenot, Andrew P; Roman, Jesse; McDyer, John F; Twigg, Homer L


    Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  20. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han


    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  1. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. (United States)

    Zhang, Zhaoliang; Liao, Hong; Lucas, William J


    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies. © 2014 Institute of Botany, Chinese Academy of Sciences.

  2. Mechanisms underlying the antihypertensive effects of garlic bioactives. (United States)

    Shouk, Reem; Abdou, Aya; Shetty, Kalidas; Sarkar, Dipayan; Eid, Ali H


    Cardiovascular disease remains the leading cause of death worldwide with hypertension being a major contributing factor to cardiovascular disease-associated mortality. On a population level, non-pharmacological approaches, such as alternative/complementary medicine, including phytochemicals, have the potential to ameliorate cardiovascular risk factors, including high blood pressure. Several epidemiological studies suggest an antihypertensive effect of garlic (Allium sativum) and of many its bioactive components. The aim of this review is to present an in-depth discussion regarding the molecular, biochemical and cellular rationale underlying the antihypertensive properties of garlic and its bioactive constituents with a primary focus on S-allyl cysteine and allicin. Key studies, largely from PubMed, were selected and screened to develop a comprehensive understanding of the specific role of garlic and its bioactive constituents in the management of hypertension. We also reviewed recent advances focusing on the role of garlic bioactives, S-allyl cysteine and allicin, in modulating various parameters implicated in the pathogenesis of hypertension. These parameters include oxidative stress, nitric oxide bioavailability, hydrogen sulfide production, angiotensin converting enzyme activity, expression of nuclear factor-κB and the proliferation of vascular smooth muscle cells. This review suggests that garlic and garlic derived bioactives have significant medicinal properties with the potential for ameliorating hypertension and associated morbidity; however, further clinical and epidemiological studies are required to determine completely the specific physiological and biochemical mechanisms involved in disease prevention and management. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Raynaud's Phenomenon: A Brief Review of the Underlying Mechanisms. (United States)

    Fardoun, Manal M; Nassif, Joseph; Issa, Khodr; Baydoun, Elias; Eid, Ali H


    Raynaud's phenomenon (RP) is characterized by exaggerated cold-induced vasoconstriction. This augmented vasoconstriction occurs by virtue of a reflex response to cooling via the sympathetic nervous system as well as by local activation of α 2C adrenoceptors (α 2C -AR). In a cold-initiated, mitochondrion-mediated mechanism involving reactive oxygen species and the Rho/ROCK pathway, cytoskeletal rearrangement in vascular smooth muscle cells orchestrates the translocation of α 2C -AR to the cell membrane, where this receptor readily interacts with its ligand. Different parameters are involved in this spatial and functional rescue of α 2C -AR. Of notable relevance is the female hormone, 17β-estradiol, or estrogen. This is consistent with the high prevalence of RP in premenopausal women compared to age-matched males. In addition to dissecting the role of these various players, the contribution of pollution as well as genetic background to the onset and prevalence of RP are also discussed. Different therapeutic approaches employed as treatment modalities for this disease are also highlighted and analyzed. The lack of an appropriate animal model for RP mandates that more efforts be undertaken in order to better understand and eventually treat this disease. Although several lines of treatment are utilized, it is important to note that precaution is often effective in reducing severity or frequency of RP attacks.

  4. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei


    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  5. Raynaud's Phenomenon: a Brief Review of the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Manal Fardoun


    Full Text Available Raynaud's phenomenon (RP is characterized by exaggerated cold-induced vasoconstriction. This augmented vasoconstriction occurs by virtue of a reflex response to cooling via the sympathetic nervous system as well as by local activation of α2C adrenoceptors (α2C-AR. In a cold-initiated, mitochondrion-mediated mechanism involving reactive oxygen species and the Rho/ROCK pathway, cytoskeletal rearrangement in vascular smooth muscle cells (VSMCs orchestrates the translocation of α2C-AR to the cell membrane, where this receptor readily interacts with its ligand. Different parameters are involved in this spatial and functional rescue of α2C-AR. Of notable relevance is the female hormone, 17β-estradiol, or estrogen. This is consistent with the high prevalence of RP in pre-menopausal women compared to age-matched males. In addition to dissecting the role of these various players, the contribution of pollution as well as genetic background to the onset and prevalence of RP are also discussed. Different therapeutic approaches employed as treatment modalities for this disease are also highlighted and analyzed. The lack of an appropriate animal model for RP mandates that more efforts be undertaken in order to better understand and eventually treat this disease. Although several lines of treatment are utilized, it is important to note that precaution is often effective in reducing severity or frequency of RP attacks.

  6. Separable mechanisms underlying global feature-based attention. (United States)

    Bondarenko, Rowena; Boehler, Carsten N; Stoppel, Christian M; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Hopf, Jens-Max


    Feature-based attention is known to operate in a spatially global manner, in that the selection of attended features is not bound to the spatial focus of attention. Here we used electromagnetic recordings in human observers to characterize the spatiotemporal signature of such global selection of an orientation feature. Observers performed a simple orientation-discrimination task while ignoring task-irrelevant orientation probes outside the focus of attention. We observed that global feature-based selection, indexed by the brain response to unattended orientation probes, is composed of separable functional components. One such component reflects global selection based on the similarity of the probe with task-relevant orientation values ("template matching"), which is followed by a component reflecting selection based on the similarity of the probe with the orientation value under discrimination in the focus of attention ("discrimination matching"). Importantly, template matching occurs at ∼150 ms after stimulus onset, ∼80 ms before the onset of discrimination matching. Moreover, source activity underlying template matching and discrimination matching was found to originate from ventral extrastriate cortex, with the former being generated in more anterolateral and the latter in more posteromedial parts, suggesting template matching to occur in visual cortex higher up in the visual processing hierarchy than discrimination matching. We take these observations to indicate that the population-level signature of global feature-based selection reflects a sequence of hierarchically ordered operations in extrastriate visual cortex, in which the selection based on task relevance has temporal priority over the selection based on the sensory similarity between input representations.

  7. Neural mechanisms underlying melodic perception and memory for pitch. (United States)

    Zatorre, R J; Evans, A C; Meyer, E


    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  8. Ketamine inhibits human sperm function by Ca(2+)-related mechanism. (United States)

    He, Yuanqiao; Zou, Qianxing; Li, Bingda; Chen, Houyang; Du, Xiaohong; Weng, Shiqi; Luo, Tao; Zeng, Xuhui


    Ketamine, a dissociative anesthetic, which was widely used in human and animal medicine, has become a popular recreational drug, as it can induce hallucinatory effects. Ketamine abuse can cause serious damage to many aspects of the organism, mainly reflected in the nervous system and urinary system. It has also been reported that ketamine can impair the male genital system. However, the detailed effect of ketamine on human spermatozoa remains unclear. Thus, we investigated the in vitro effects of ketamine on human sperm functions, to elucidate the underlying mechanism. Human sperm were treated in vitro with different concentrations of ketamine (0, 0.125, 0.25, 0.5, 1 g/L). The results showed that 0.25-1 g/L ketamine inhibited sperm total motility, progressive motility and linear velocity, in a dose-dependent manner. In addition, the sperm's ability to penetrate viscous medium and the progesterone-induced acrosome reaction were significantly inhibited by ketamine. Ketamine did not affect sperm viability, capacitation and spontaneous acrosome reaction. The intracellular calcium concentration ([Ca(2+)]i), which is a central factor in the regulation of human sperm function, was decreased by ketamine (0.125-1 g/L) in a dose-dependent manner. Furthermore, the currents of the sperm-specific Ca(2+) channel, CatSper, which modulates Ca(2+) influx in sperm, were inhibited by ketamine (0.125-1 g/L) in a dose-dependent manner. Our findings suggest that ketamine induces its toxic effects on human sperm functions by reducing sperm [Ca(2+)]i through inhibition of CatSper channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. On quantum mechanical phase-space wave functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim J.


    An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...

  10. On the order of magnitude of some arithmetical functions under ...

    Indian Academy of Sciences (India)

    Let ≥ 2 be an integer and let () denote the sum of the digits in base of the positive integer . We look for an estimate of the average of some multiplicative arithmetical functions under constraints on the arithmetical congruence of the integers and the sum of their digits.

  11. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.


    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  12. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.


    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  13. Revealing the Neural Mechanisms Underlying the Beneficial Effects of Tai Chi: A Neuroimaging Perspective. (United States)

    Yu, Angus P; Tam, Bjorn T; Lai, Christopher W; Yu, Doris S; Woo, Jean; Chung, Ka-Fai; Hui, Stanley S; Liu, Justina Y; Wei, Gao X; Siu, Parco M


    Tai Chi Chuan (TCC), a traditional Chinese martial art, is well-documented to result in beneficial consequences in physical and mental health. TCC is regarded as a mind-body exercise that is comprised of physical exercise and meditation. Favorable effects of TCC on body balance, gait, bone mineral density, metabolic parameters, anxiety, depression, cognitive function, and sleep have been previously reported. However, the underlying mechanisms explaining the effects of TCC remain largely unclear. Recently, advances in neuroimaging technology have offered new investigative opportunities to reveal the effects of TCC on anatomical morphologies and neurological activities in different regions of the brain. These neuroimaging findings have provided new clues for revealing the mechanisms behind the observed effects of TCC. In this review paper, we discussed the possible effects of TCC-induced modulation of brain morphology, functional homogeneity and connectivity, regional activity and macro-scale network activity on health. Moreover, we identified possible links between the alterations in brain and beneficial effects of TCC, such as improved motor functions, pain perception, metabolic profile, cognitive functions, mental health and sleep quality. This paper aimed to stimulate further mechanistic neuroimaging studies in TCC and its effects on brain morphology, functional homogeneity and connectivity, regional activity and macro-scale network activity, which ultimately lead to a better understanding of the mechanisms responsible for the beneficial effects of TCC on human health.

  14. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying


    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  15. Mechanisms underlying the antihypertensive properties of Urtica dioica. (United States)

    Qayyum, Rahila; Qamar, Hafiz Misbah-Ud-Din; Khan, Shamim; Salma, Umme; Khan, Taous; Shah, Abdul Jabbar


    Urtica dioica has traditionally been used in the management of cardiovascular disorders especially hypertension. The aim of this study was to explore pharmacological base of its use in hypertension. Crude methanolic extract of U. dioica (Ud.Cr) and its fractions (Ud.EtAc, Ud.nHex, Ud.Chl and Ud.Aq) were tested in vivo on normotensive and hypertensive rats under anesthesia for blood pressure lowering effect. In-vitro experiments on rat and rabbit aortae were employed to probe the vasorelaxation mechanism(s). The responses were measured using pressure and force transducers connected to PowerLab Data Acquisition System. Ud.Cr and fractions were found more effective antihypertensive in hypertensive rats than normotensive with remarkable potency exhibited by the ethyl acetate fraction. The effect was same in the presence of atropine. In isolated rat aortic rings, Ud.Cr and all its fractions exhibited L-NAME sensitive endothelium-dependent vasodilator effect and also inhibit K(+) (80 mM)-induced pre-contractions. In isolated rabbit thoracic aortic rings Ud.Cr and its fractions induced relaxation with more potency against K(+) (80 mM) than phenylephrine (1 µM) like verapamil, showing Ud.EtAc fraction the most potent one. Pre-incubation of aortic rings with Ud.Cr and its fractions exhibited Ca(2+) channel blocking activity comparable with verapamil by shifting Ca(2+) concentration response curves to the right. Ud.Cr and its fractions also ablated the intracellular Ca(2+) release by suppressing PE peak formation in Ca(2+) free medium. When tested on basal tension, the crude extract and all fractions were devoid of any vasoconstrictor effect. These data indicate that crude methanolic extract and its fractions possess antihypertensive effect. Identification of NO-mediated vasorelaxation and calcium channel blocking effects explain the antihypertensive potential of U. dioica and provide a potential pharmacological base to its medicinal use in the management of hypertension.

  16. Bronchopulmonary dysplasia: understanding of the underlying pathological mechanisms

    Directory of Open Access Journals (Sweden)

    Daniela Fanni


    better understanding of the underlying pathological mechanisms of BPD might provide insight into development of new therapeutic and preventive strategies.  Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken

  17. Molecular Mechanism of hTERT Function in Mitochondria (United States)


    that nuclear and mitochondrial telomerases have different cellular functions . (a) Papers published in peer-reviewed journals (N/A for none) Enter List...Molecular mechanism of hTERT function in mitochondria (x) Material has been given an OPSEC review and it has been determined to be non sensitive and...transcriptase (hTERT) is localized to mitochondria, as well as the nucleus, but details about its biology and function in the organelle remain largely

  18. Alteration mechanisms of UOX spent fuel under water

    International Nuclear Information System (INIS)

    Muzeau, B.


    The mechanisms of spent fuel alteration in aqueous media need to be understood on the assumption of a direct disposal of the assemblies in a geological formation or for long duration storage in pool. This work is a contribution to the study of the effects of the alpha and/or beta/gamma radiolysis of water on the oxidation and the dissolution of the UO 2 matrix of UOX spent fuel. The effects of the alpha radiolysis, predominant in geological disposal conditions, were quantified by using samples of UO 2 doped with plutonium. The leaching experiments highlighted two types of control for the matrix alteration according to the alpha activity. The first is based on the radiolytic oxidation of the surface and leads to a continuous release of uranium in solution whereas the second is based on a control by the solubility of uranium. An activity threshold, between 18 MBq.g -1 and 33 MBq.g -1 , was defined in a carbonated water. The value of this threshold is dependent on the experimental conditions and the presence or not of electro-active species such as hydrogen in the system. The effects of the alpha/beta/gamma radiolysis in relation with the storage conditions were also quantified. The experimental data obtained on spent fuel indicate that the alteration rate of the matrix based on the behaviour of tracer elements (caesium and strontium) reached a maximum value of some mg.m -2 .d -1 , even under very oxidizing conditions. The solubility of uranium and the nature of the secondary phases depend however on the extent of the oxidizing conditions. (author)

  19. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters


    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  20. Cognitive mechanisms underlying instructed choice exploration of small city maps

    Directory of Open Access Journals (Sweden)

    Sofia eSakellaridi


    Full Text Available We investigated the cognitive mechanisms underlying the exploration and decision-making in realistic and novel environments. Twelve human subjects were shown small circular U.S. city maps with two locations highlighted on the circumference, as possible choices for a post office (targets. At the beginning of a trial, subjects fixated a spot at the center of the map and ultimately chose one of the two locations. A space syntax analysis of the map paths (from the center to each target revealed that the chosen location was associated with the less convoluted path, as if subjects navigated mentally the paths in an ant’s way, i.e. by staying within street boundaries, and ultimately choosing the target that could be reached from the center in the shortest way, and the fewest turns and intersections. The subjects’ strategy for map exploration and decision making was investigated by monitoring eye position during the task. This revealed a restricted exploration of the map delimited by the location of the two alternative options and the center of the map. Specifically, subjects explored the areas around the two target options by repeatedly looking at them before deciding which one to choose, presumably implementing an evaluation and decision-making process. The ultimate selection of a specific target was significantly associated with the time spent exploring the area around that target. Finally, an analysis of the sequence of eye fixations revealed that subjects tended to look systematically towards the target ultimately chosen even from the beginning of the trial. This finding indicates an early cognitive selection bias for the ensuing decision process.

  1. Compression under a mechanical counter pressure space suit glove (United States)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.


    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, pglove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  2. Acclimation of mechanical and hydraulic functions in trees:Impact of the thigmomorphogenetic process

    Directory of Open Access Journals (Sweden)

    Eric eBadel


    Full Text Available The secondary xylem (wood of trees mediates several functions including water transport and storage, mechanical support and storage of photosynthates. The optimal structures for each of these functions will most likely differ. The complex structure and function of xylem could lead to trade-offs between conductive efficiency, resistance to embolism and mechanical strength needed to count for mechanical loading due to gravity and wind. This has been referred to as the trade-off triangle, with the different optimal solutions to the structure/function problems depending on the environmental constraints as well as taxonomic histories. Thus, the optimisation of each function will lead to drastically different anatomical structures. Trees are able to acclimate the internal structure of their trunk and branches according to the stress they experience. These acclimations lead to specific structures that favour the efficiency or the safety of one function but can be antagonistic with other functions. Currently, there are no means to predict the way a tree will acclimate or optimize its internal structure in support of its various functions under differing environmental conditions. In this review, we will focus on the acclimation of xylem anatomy and its resulting mechanical and hydraulic functions to recurrent mechanical strain that usually result from wind-induced thigmomorphogenesis with a special focus on the construction cost and the possible trade-off between wood functions.

  3. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms. (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe


    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  4. Stress analysis in a functionally graded disc under mechanical loads ...

    Indian Academy of Sciences (India)

    Some relative results for the stress and displacement components along the radius are presented due to internal pressure, external pressure, centrifugal force and steady state temperature. From the results, it is found that the grading indexes play an important role in determining the thermomechanical responses of FG disc ...

  5. The wave function essays on the metaphysics of quantum mechanics

    CERN Document Server

    Albert, David Z


    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, chairs, and persons? This collection includes a comprehensive introduction with a history of quantum mechanics and the debate over its metaphysical interpretation focusing especially on the main realist alternatives.

  6. New application of functional integrals to classical mechanics

    International Nuclear Information System (INIS)

    Zherebtsov, Anton; Ilinski, Kirill


    In this Letter a new functional integral representation for classical dynamics is introduced. It is achieved by rewriting the Liouville picture in terms of bosonic creation-annihilation operators and utilizing the standard derivation of functional integrals for dynamical quantities in the coherent states representation. This results in a new class of functional integrals which are exactly solvable and can be found explicitly when the underlying classical systems are integrable

  7. [Study on main pharmacodynamics and underlying mechanisms of 999 Ganmaoling]. (United States)

    Xu, Qi-Hua; He, Rong; Peng, Bo; Ye, Zu-Guang; Li, Jian-Rong; Zhang, Yue-Fei; Dai, Zhi


    To observe synergistic effects of 999 Ganmaoling (GML) and its Chinese/Western materia medica (CMM and WMM) on pharmacodynamic action and to study underlying mechanisms, their anti-inflammatory, antipyretic effects were compared by assaying the increased capillary permeability induced by glacial acetic acid in mice, ear swelling induced by Xylene in mice, non-specific pleurisy induced by carrageenan in rats, and yeast induced fever in rats. Crystal violet (CV) and microbial activity (XTT) assay were used to evaluate the inhibition of GML and its CMM and WMM on KPN biofilm formation, and scanning electron microscopy (SEM) was applied for observing KPN biofilm morphology changes. The results showed that compared with control group, GML could reduce exudation amount of Evans-Blue and the degree of Ear swelling significantly, and CMM and WMM have no significant effects. The concentration of TNF-α and IL-1β of rat pleural effusion in GML, CMM and WMM group decreased significantly. The concentration of TNF-α, IL-1β and IL-8 in GML group, TNF-α, IL-8 in WMM group and IL-8 in CMM in rats serum decreased significantly. The body temperature in rats decreased significantly in GML and WMM group after 4-8 h of administration. CMM group showed no significant difference in rat body temperature compare with control. Compared with control group, GML (55-13.75 g•L⁻¹) could inhibit KPN biofilm formation and reduce number of viable cells in the KPN biofilm. CMM (45-22.5 g•L⁻¹) and WMM (10 g•L⁻¹) could also inhibit KPN biofilm formation and reduce number of viable cells (P<0.01). Result of SEM also showed that GML (55 g•L⁻¹) and its CMM (45 g•L⁻¹) and WMM (10 g•L⁻¹) could interfere the bacterial arrangement of KPN biofilm and extracellular matrix. GML and its CMM & WMM could inhibit the formation of KPN biofilm, CMM & WMM in GML showed synergism and complementation in inhibit KPN biofilm. Results showed that GML had obvious anti-inflammatory and

  8. Acupuncture Mechanisms: Anesthesia, Analgesia and Protection on Organ Functions

    Directory of Open Access Journals (Sweden)

    Jing Wang


    Full Text Available Acupuncture, as a healing art in traditional Chinese medicine, has been widely used to treat various diseases. In the history of acupuncture anesthesia, in the past decades, mechanisms of acupuncture analgesia has been widely investigated, and in recent years, acupuncture protection on organ functions has attracted great interest. This review summarized the research progress on mechanisms of acupuncture for analgesia and its protection against organ function injury in anesthesia, and its perspective of analgesia, immunomodulation, neuroendocrine regulation and multiple organ protection. The current evidence supports that acupuncture analgesia and its organ protection in anesthesia is associated with the integration of neuroendocrine-immune networks in the level of neurotransmitters, cytokines, hormones, neuronal ensembles, lymphocytes, and endocrine cells. Although the mechanisms of acupuncture analgesia and its organ protection are still not completely understood, basic as well as clinic researches on the mechanisms and applications of acupuncture and related techniques are being carried out.

  9. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response. (United States)

    Shahin, Mohamed H; Johnson, Julie A


    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  10. First-principles calculations of mechanical and electronic properties of silicene under strain

    Directory of Open Access Journals (Sweden)

    Rui Qin


    Full Text Available We perform first-principles calculations of mechanical and electronic properties of silicene under strains. The in-plane stiffness of silicene is much smaller than that of graphene. The yielding strain of silicene under uniform expansion in the ideal conditions is about 20%. The homogeneous strain can introduce a semimetal-metal transition. The semimetal state of silicene, in which the Dirac cone locates at the Fermi level, can only persist up to tensile strain of 7% with nearly invariant Fermi velocity. For larger strains, silicene changes into a conventional metal. The work function is found to change significantly under biaxial strain. Our calculations show that strain tuning is important for applications of silicene in nanoelectronics.

  11. Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis. (United States)

    Suggett, David J; Warner, Mark E; Leggat, William


    Coral reefs have entered an era of 'ecological crisis' as climate change drives catastrophic reef loss worldwide. Coral growth and stress susceptibility are regulated by their endosymbiotic dinoflagellates (genus Symbiodinium). The phylogenetic diversity of Symbiodinium frequently corresponds to patterns of coral health and survival, but knowledge of functional diversity is ultimately necessary to reconcile broader ecological success over space and time. We explore here functional traits underpinning the complex biology of Symbiodinium that spans free-living algae to coral endosymbionts. In doing so we propose a mechanistic framework integrating the primary traits of resource acquisition and utilisation as a means to explain Symbiodinium functional diversity and to resolve the role of Symbiodinium in driving the stability of coral reefs under an uncertain future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mechanical Characterization of Anion Exchange Membranes Under Controlled Environmental Conditions (United States)


    supporting textiles and test the mechanical properties. Even though their films were only 10 microns, the SER fixture was used by applying double stick tape...aramid and stainless steel. The authors conclude that supporting textile has a large impact on mechanical properties due to the difference in...Elongation) are depicted. 2.2 Conductivity Ionic conductivity was measured by electrochemical impedance spectroscopy using a four- electrode in-plane

  13. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко


    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  14. Synthetic oligorotaxanes exert high forces when folding under mechanical load (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie


    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  15. Psychogenic non-epileptic seizures: so-called psychiatric comorbidity and underlying defense mechanisms. (United States)

    Beghi, Massimiliano; Negrini, Paola Beffa; Perin, Cecilia; Peroni, Federica; Magaudda, Adriana; Cerri, Cesare; Cornaggia, Cesare Maria


    In Diagnostic and Statistical Manual of Mental Disorders, fifth edition, psychogenic non-epileptic seizures (PNES) do not have a unique classification as they can be found within different categories: conversion, dissociative, and somatization disorders. The ICD-10, instead, considers PNES within dissociative disorders, merging the dissociative disorders and conversion disorders, although the underlying defense mechanisms are different. The literature data show that PNES are associated with cluster B (mainly borderline) personality disorders and/or to people with depressive or anxiety disorders. Defense mechanisms in patients with PNES with a prevalence of anxious/depressive symptoms are of "neurotic" type; their goal is to lead to a "split", either vertical (dissociation) or horizontal (repression). The majority of patients with this type of PNES have alexithymia traits, meaning that they had difficulties in feeling or perceiving emotions. In subjects where PNES are associated with a borderline personality, in which the symbolic function is lost, the defense mechanisms are of a more archaic nature (denial). PNES with different underlying defense mechanisms have different prognoses (despite similar severity of PNES) and need usually a different treatment (pharmacological or psychological). Thus, it appears superfluous to talk about psychiatric comorbidity, since PNES are a different symptomatic expression of specific psychiatric disorders.

  16. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation. (United States)

    Bar-Eyal, Leeat; Eisenberg, Ido; Faust, Adam; Raanan, Hagai; Nevo, Reinat; Rappaport, Fabrice; Krieger-Liszkay, Anja; Sétif, Pierre; Thurotte, Adrien; Reich, Ziv; Kaplan, Aaron; Ohad, Itzhak; Paltiel, Yossi; Keren, Nir


    Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm


    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  18. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.


    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  19. Operating Systems-Functions, Protection and Security Mechanisms

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 4. Operating Systems - Functions, Protection and Security Mechanisms. M Suresh Babu. General Article Volume 7 Issue 4 April 2002 pp 60-66. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Gravity induced corrections to quantum mechanical wave functions

    International Nuclear Information System (INIS)

    Singh, T.P.


    We perform a semiclassical expansion in the Wheeler-DeWitt equation, in powers of the gravitational constant. We then show that quantum gravitational fluctuations can provide a correction to the wave-functions which are solutions of the Schroedinger equation for matter. This also implies a correction to the expectation values of quantum mechanical observables. (author). 6 refs

  1. Structure-Function Relations in Physiology Education: Where's the Mechanism? (United States)

    Lira, Matthew E.; Gardner, Stephanie M.


    Physiology demands systems thinking: reasoning within and between levels of biological organization and across different organ systems. Many physiological mechanisms explain how structures and their properties interact at one level of organization to produce emergent functions at a higher level of organization. Current physiology principles, such…

  2. Performance of multifilamentary Nb3Sn under mechanical load

    International Nuclear Information System (INIS)

    Easton, D.S.; Schwall, R.E.


    The critical current of a commercial multifilamentary Nb 3 Sn conductor has been measured under the application of uniaxial tension at 4.2 K and following bending at room temperature. Significant reductions in J/subc/ are observed under uniaxial loading. Results are presented for a monolithic conductor manufactured by the bronze diffusion technique and for cable conductors formed by the tin-dip technique

  3. Decentralized control mechanism underlying interlimb coordination of millipedes. (United States)

    Kano, Takeshi; Sakai, Kazuhiko; Yasui, Kotaro; Owaki, Dai; Ishiguro, Akio


    Legged animals exhibit adaptive and resilient locomotion through interlimb coordination. The long-term goal of this study is to clarify the relationship between the number of legs and the inherent decentralized control mechanism for interlimb coordination. As a preliminary step, the study focuses on millipedes as they represent the species with the greatest number of legs among various animal species. A decentralized control mechanism involving local force feedback was proposed based on the qualitative findings of behavioural experiments in which responses to the removal of part of the terrain and leg amputation were observed. The proposed mechanism was implemented in a developed millipede-like robot to demonstrate that the robot can adapt to the removal of the part of the terrain and leg amputation in a manner similar to that in behavioural experiments.

  4. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan


    Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recove...... of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies.......Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recovery...

  5. Epigenetic mechanisms underlying the pathogenesis of neurogenetic diseases. (United States)

    Qureshi, Irfan A; Mehler, Mark F


    There have been considerable advances in uncovering the complex genetic mechanisms that underlie nervous system disease pathogenesis, particularly with the advent of exome and whole genome sequencing techniques. The emerging field of epigenetics is also providing further insights into these mechanisms. Here, we discuss our understanding of the interplay that exists between genetic and epigenetic mechanisms in these disorders, highlighting the nascent field of epigenetic epidemiology-which focuses on analyzing relationships between the epigenome and environmental exposures, development and aging, other health-related phenotypes, and disease states-and next-generation research tools (i.e., those leveraging synthetic and chemical biology and optogenetics) for examining precisely how epigenetic modifications at specific genomic sites affect disease processes.

  6. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function (United States)

    Kosan, Christian; Godmann, Maren


    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  7. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van


    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are

  8. Survival under stress: molecular mechanisms of metabolic rate ...

    African Journals Online (AJOL)

    Studies in my laboratory are analysing the molecular mechanisms and regulatory events that underlie transitions to and from hypometabolic states In systems including anoxia-tolerant turtles and molluscs, estivating snails and toads, hibernating small mammals, and freeze tolerant frogs and insects. Our newest research ...

  9. Mechanisms underlying the nociceptive responses induced by platelet-activating factor (PAF) in the rat paw. (United States)

    Marotta, Denise M; Costa, Robson; Motta, Emerson M; Fernandes, Elizabeth S; Medeiros, Rodrigo; Quintão, Nara L M; Campos, Maria M; Calixto, João B


    Platelet-activating factor (PAF) is an inflammatory mediator widely known to exert relevant pathophysiological functions. However, the relevance of PAF in nociception has received much less attention. Herein, we have investigated the mechanisms underlying PAF-induced spontaneous nociception and mechanical hypersensitivity in the rat paw. PAF injection (1- 30 nmol/paw) resulted in a dose-related overt nociception, whilst only the dose of 10 nmol/ paw produced a significant and time-related mechanical hypersensitivity. Local coinjection of PAF antagonist WEB2086 significantly inhibited both spontaneous nociception and mechanical hypersensitivity. Moreover, the coinjection of the natural IL-1beta receptor antagonist (IRA) notably prevented both PAF-induced nociceptive responses, whilst these responses were not altered by anti-TNFalpha coinjection. Interestingly, pretreatment with the ultrapotent vaniloid agonist resiniferotoxin, coinjection of the TRPV1 receptor antagonist SB366791, or mast cell depletion with compound 48/80 markedly prevented PAF-induced spontaneous nociception. Conversely, PAF-elicited mechanical hypersensitivity was strikingly susceptible to distinct antineutrophil-related strategies, namely the antineutrophil antibody, the selectin blocker fucoidin, the chemokine CXCR2 receptor antagonist SB225002, and the C5a receptor antibody anti-CD88. Notably, the same antineutrophil migration strategies significantly prevented the increase of myeloperoxidase activity induced by PAF. The mechanical hypersensitivity caused by PAF was also prevented by the cyclooxygenase inhibitors indomethacin or celecoxib, and by the selective beta(1) adrenergic receptor antagonist atenolol. Collectively, the present results provide consistent evidence indicating that distinct mechanisms are involved in the spontaneous nociception and mechanical hypersensitivity caused by PAF. They also support the concept that selective PAF receptor antagonists might constitute interesting

  10. Mechanisms underlying social inequality in post-menopausal breast cancer. (United States)

    Hvidtfeldt, Ulla Arthur


    This thesis is based on studies conducted in the period 2010-2014 at Department of Public Health, University of Copenhagen and at Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York. The results are presented in three scientific papers and a synopsis. The main objective of the thesis was to determine mechanisms underlying social inequality (defined by educational level) in postmenopausal breast cancer (BC) by addressing mediating effects through hormone therapy (HT) use, BMI, lifestyle and reproductive factors. The results of previous studies suggest that the higher risk of postmenopausal BC among women of high socioeconomic position (SEP) may be explained by reproductive factors and health behaviors. Women of higher SEP generally have fewer children and give birth at older ages than women of low SEP, and these factors have been found to affect the risk of BC - probably through altered hormone levels. Adverse effects on BC risk have also been documented for modifiable health behaviors that may affect hormone levels, such as alcohol consumption, high BMI, physical inactivity, and HT use. Alcohol consumption and HT use are likewise more common among women of higher SEP. The analyses were based on the Social Inequality in Cancer (SIC) cohort and a subsample of the Women's Health Initiative Observational Study (WHI-OS). The SIC cohort was derived by pooling 6 individual studies from the Copenhagen area including 33,562 women (1,733 BC cases) aged 50-70 years at baseline. The subsample of WHI-OS consisted of two case-cohort studies with measurements of endogenous estradiol (N = 1,601) and insulin (N = 791). Assessment of mediation often relies on comparing multiplicative models with and without the potential mediator. Such approaches provide potentially biased results, because they do not account for mediator-outcome confounding, exposure-dependent mediator-outcome confounding, exposure-mediator interaction and interactions

  11. Stochastic optimization under risk constraint and utility functions

    International Nuclear Information System (INIS)

    Seck, B.


    In a context of concurrence and emergence of energy markets, the production of electricity is affected by the new sources of risks which are the price variations on the energy markets. These new sources of risks generate a new risk: the market risk. In this research, the author explores the possibility of introducing constraints, expressed by measurements of risk, into the process of optimization of electricity production when financial contracts are signed on the energy market. The author makes the distinction between the engineering approach (taking the risk into account by risk measurements) and the economist approach (taking the risk into account by utility functions). After an overview of these both approaches in a static framework, he gives an economical formulation (a Maccheroni type one) for a static optimization problem under a risk constraint when the risk measurement is written under the form of an expected infimum like the variance, the 'conditional value at risk', and so on. The obtained results are then extended to a dynamic optimization framework under risk constraints. A numerical application of this approach is presented to solve a problem of electricity production management under a constraint of 'conditional value at risk' on a middle term

  12. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity. (United States)

    Fukuchi, Mamoru


    The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.

  13. Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange

    NARCIS (Netherlands)

    Loparo, Joseph J.; Kulczyk, Arkadiusz W.; Richardson, Charles C.; Oijen, Antoine M. van


    A complete understanding of the molecular mechanisms underlying the functioning of large, multiprotein complexes requires experimental tools capable of simultaneously visualizing molecular architecture and enzymatic activity in real time. We developed a novel single-molecule assay that combines the

  14. Mechanical response of human female breast skin under uniaxial stretching. (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy


    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Mental imagery in music performance: underlying mechanisms and potential benefits. (United States)

    Keller, Peter E


    This paper examines the role of mental imagery in music performance. Self-reports by musicians, and various other sources of anecdotal evidence, suggest that covert auditory, motor, and/or visual imagery facilitate multiple aspects of music performance. The cognitive and motor mechanisms that underlie such imagery include working memory, action simulation, and internal models. Together these mechanisms support the generation of anticipatory images that enable thorough action planning and movement execution that is characterized by efficiency, temporal precision, and biomechanical economy. In ensemble performance, anticipatory imagery may facilitate interpersonal coordination by enhancing online predictions about others' action timing. Overlap in brain regions subserving auditory imagery and temporal prediction is consistent with this view. It is concluded that individual differences in anticipatory imagery may be a source of variation in expressive performance excellence and the quality of ensemble cohesion. Engaging in effortful musical imagery is therefore justified when artistic perfection is the goal. © 2012 New York Academy of Sciences.

  16. Neural mechanisms underlying context-dependent shifts in risk preferences

    NARCIS (Netherlands)

    Losecaat Vermeer, A.B.; Boksem, M.A.S.; Sanfey, A.G.


    Studies of risky decision-making have demonstrated that humans typically prefer risky options after incurring a financial loss, while generally preferring safer options after a monetary gain. Here, we examined the neural processes underlying these inconsistent risk preferences by investigating the

  17. Functional differentiability in time-dependent quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Penz, Markus, E-mail:; Ruggenthaler, Michael, E-mail: [Institut für Theoretische Physik, Universität Innsbruck, 6020 Innsbruck (Austria)


    In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.

  18. [Mechanisms underlying glucocorticoid resistance in chronic rhinosinusitis with nasal polyps]. (United States)

    Zhang, Y Y; Lou, H F; Wang, C S; Zhang, L


    Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease that occurs in the nasal and sinus mucosa, which is a common disease in otorhinolaryngology. At present, CRSwNP can be effectively treated by glucocorticoids (GC). GC binds to GC receptors in the nasal mucosa, affects the expression of inflammatory genes, inhibits the activation and action of eosinophils, T cell-associated inflammatory responses in nasal polyps, as well as tissue remodeling. However, there are some patients fall reponse to GC, so called GC resistance. The study suggests that the possible mechanism of CRSwNP GC resistance is mainly related to GC receptor abnormal, the role of cytokines and transcription factors, such as Th cells and IL-8. In addition, MAPK-related kinases and histone deacetylase in the GC signaling pathway also play important roles in the GC resistance process. This paper reviews the mechanism of GC treatment of CRSwNP, the mechanism of GC resistance and alternative treatment of GC.

  19. Passive and active response of bacteria under mechanical compression (United States)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration

    Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.

  20. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions. (United States)

    Fusco, Sabato; Panzetta, Valeria; Embrione, Valerio; Netti, Paolo A


    Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Mechanical modeling of creep, swelling and damage under irradiation for polycrystalline metals

    International Nuclear Information System (INIS)

    Murakami, S.; Mizuno, M.; Okamoto, T.


    A constitutive equation of creep, swelling and damage under irradiation for polycrystalline metals applicable to structural analyses in multiaxial state of stress is developed. After reviewing microscopic mechanisms of irradiation creep and swelling, the relevant theories proposed so far from the view point of metallurgical physics and their applicability are discussed first. Then a constitutive model is developed by assuming that creep under irradiation can be decomposed into irradiation-affected thermal creep and irradiation-induced creep. By taking account of the Stress-Induced Preferential Absorption (SIPA) mechanism, the irradiation-induced creep is represented by an isotropic tensor function of order one and zero with respect to stress, which is, at the same time, the function of neutron flux and neutron fluence. The volumetric part of the irradiation-induced creep is identified with swelling. The irradiation-affected thermal creep is described by modifying Kachanov-Rabotnov theory for stress-controlled creep and creep damage by incorporating the effect of irradiation. Finally irradiation creep and swelling of 20% cold-worked type 316 stainless steel at elevated temperature are predicted by the proposed constitutive equations, and the numerical results are compared with the corresponding experimental results. (orig.)

  2. The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading. (United States)

    Taylor, DeCarlos E; McCauley, James W; Wright, T W


    The effects of stoichiometry on the atomic structure and the related mechanical properties of boron carbide (B(4)C) have been studied using density functional theory and quantum molecular dynamics simulations. Computational cells of boron carbide containing up to 960 atoms and spanning compositions ranging from 6.7% to 26.7% carbon were used to determine the effects of stoichiometry on the atomic structure, elastic properties, and stress-strain response as a function of hydrostatic, uniaxial, and shear loading paths. It was found that different stoichiometries, as well as variable atomic arrangements within a fixed stoichiometry, can have a significant impact on the yield stress of boron carbide when compressed uniaxially (by as much as 70% in some cases); the significantly reduced strength of boron carbide under shear loading is also demonstrated.

  3. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    Directory of Open Access Journals (Sweden)

    Julián A García-Grajales

    Full Text Available With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon

  4. Neural mechanisms underlying social conformity in an ultimatum game


    Wei, Zhenyu; Zhao, Zhiying; Zheng, Yong


    When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as “social conformity.” In the present study, we used event-related functional magnetic resonance imaging (fMRI) to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of...

  5. Linear Analytical Solutions of Mechanical Sensitivity in Large Deflection of Unsymmetrically Layered Piezoelectric Plate under Pretension

    Directory of Open Access Journals (Sweden)

    Chun-Fu Chen


    Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.

  6. Cellular and deafness mechanisms underlying connexin mutation induced hearing loss – A common hereditary deafness

    Directory of Open Access Journals (Sweden)

    Jeffrey C Wingard


    Full Text Available Hearing loss due to mutations in the connexin gene family which encodes gap junctional proteins is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2 mutations are responsible for ~50% of nonsyndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential (EP reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Additionally, there is no clear relationship between specific changes in connexin (channel functions and the phenotypes of mutation-induced hearing loss. Cx30, Cx29, Cx31, and Cx43 mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes and pathogeneses of specific-mutation induced hearing loss remain unclear. Finally, little information is available for humans. Further studies to address these deficiencies are urgently required.

  7. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Directory of Open Access Journals (Sweden)

    Guodong Jia

    Full Text Available Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined.

  8. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar


    Full Text Available Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF, insulin-like growth factor 1 (IGF-I, and basic fibroblast growth factor (bFGF. In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.

  9. Topological defect clustering and plastic deformation mechanisms in functionalized graphene (United States)

    Nunes, Ricardo; Araujo, Joice; Chacham, Helio


    We present ab initio results suggesting that strain plays a central role in the clustering of topological defects in strained and functionalized graphene models. We apply strain onto the topological-defect graphene networks from our previous work, and obtain topological-defect clustering patterns which are in excellent agreement with recent observations in samples of reduced graphene oxide. In our models, the graphene layer, containing an initial concentration of isolated topological defects, is covered by hydrogen or hydroxyl groups. Our results also suggest a rich variety of plastic deformation mechanism in functionalized graphene systems. We acknowledge support from the Brazilian agencies: CNPq, Fapemig, and INCT-Materiais de Carbono.

  10. Functional mapping imprinted quantitative trait loci underlying developmental characteristics

    Directory of Open Access Journals (Sweden)

    Li Gengxin


    Full Text Available Abstract Background Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology. Results Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight. Conclusion The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.

  11. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision. (United States)

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel


    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway.

  12. Mechanisms of weight maintenance under high- and low-protein, low-glycaemic index diets. (United States)

    Rubio-Aliaga, Isabel; Marvin-Guy, Laure F; Wang, Ping; Wagniere, Sandrine; Mansourian, Robert; Fuerholz, Andreas; Saris, Wim H M; Astrup, Arne; Mariman, Edwin C M; Kussmann, Martin


    Weight maintenance after intended weight loss is a challenge in an obesogenic environment. In a large multicentre dietary intervention study (DiOGenes), it has recently been demonstrated that a high-protein/low-glycaemic index (HP/LGI) diet was slightly more efficient in maintaining weight loss than low-protein/LGI or high-GI (LP/LGI or HGI) diets. Here, we use a proteomic approach to assess the molecular mechanisms behind this positive effect. A subset of the most successful (weight loser, n=12) and unsuccessful (weight re-gainer, n=12) individuals consuming the LGI diets with either high- or low-protein content (HP or LP/LGI), following an initial calorie deficit run-in weight loss phase, were analyzed at the plasma protein level. Proteomic analysis revealed 18 proteins regulated after 6 months of the dietary weight maintenance phase. Furthermore, 12 proteins were significantly regulated as a function of success rate under an HP diet, arising as candidate biomarkers of mechanisms of successful weight maintenance under an HP/LGI diet. Pregnancy-zone protein (PZP) and protein S (PROS1) were revealed as novel biomarkers of weight maintenance showing opposite effects. Semantic network analysis of the 12 regulated proteins revealed that under an HP/LGI an anti-atherogenic effect and alterations of fat metabolism were associated with the success of maintaining the initial weight loss. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Startup mechanism of moxibustion warming and dredging function]. (United States)

    Huang, Kaiyu; Liang, Shuang; Sun, Zheng; Zhang, Jianbin


    With "moxibustion" and "warm stimulation" as the keywords, the literature on moxibustion mechanism of warming and dredging from June 1st, 1995 to June 1st, 2016 was collected from PubMed, China National Knowledge Infrastructure (CNKI) and Wanfang database. The startup mechanism of moxibustion warming and dredging function was analyzed in terms of moxibustion warming stimulation. The results were found that moxibustion was based on local rising temperature of acupoint. It activated local specific receptors, heat sensitive immune cells, heat shock proteins and so on to start the warming and dredging function and produce various local effects. The warming stimulation signals as well as subsequent effects through nerve and body fluid pathways induced the effects of further specific target organs and body systems.

  14. Internal insulation failure mechanisms of HV equipment under service conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lokhanin, A.K.; Morozova, T.I. [All-Russian Electrochemical Inst. (Russian Federation); Shneider, G.Y. [Electrozavod Holding Company (Russian Federation); Sokolov, V.V. [Scientific and Engineering Centre, ZTZ Service Research Inst. (Russian Federation); Chornogotsky, V.M. [Ukrainian Transformer Research Inst. (Ukraine)


    Failure mechanisms in oil-barrier transformer insulation and oil-paper condenser type insulation of transformers and HV bushing were discussed with reference to typical defects and failure modes of oil-barrier insulation of transformers, shunt reactor, condenser type bushing and instrument current transformers. It was noted that insulation problems predominantly involve the impairment of insulation, and that the relative rate of major failures in shunt reactors is about 1 per cent. It was suggested that bushings can cause about 45 per cent of major transformer failures, with aged mode failure occurring most frequently. The failure rate of 220-500 kV CTs accounts for more than 60 per cent of total instrument transformer failures. Two failure modes were observed: ionisation-mode and aging-mode failures. The reduction of switching surge breakdown voltage due to deposit of insoluble aging products was discussed. A long-term dielectric strength test revealed the following 2 mechanisms of insulation breakdown: accidental breakdown during the first period of aging and wearing mode breakdown due to degradation of materials at the last stage of the calculated terms of aging. Issues concerning the mechanism of the incipient irreversible failure in oil-barrier insulation were discussed, as well as issues concerning creeping discharge and large failures during normal operating conditions. It was suggested that the occurrence of surface discharge is associated with increased voltage due to oil breakdown progressing into insulation destruction and surface discharge as a self-firing phenomenon. Failure modes induced by peculiar oil and staining of internal porcelain were reviewed. It was noted that the discharges across the inner part of the transformer and porcelain were the out-come of a typical aging-mode phenomenon in the bushing. In addition, failure modes induced by staining the outer surface of bottom porcelain were discussed, as well as failure of oil-filled paper

  15. Parametric study of control mechanism of cortical bone remodeling under mechanical stimulus (United States)

    Wang, Yanan; Qin, Qing-Hua


    The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.

  16. Mechanisms underlying early rapid increases in creatinine in paraquat poisoning.

    Directory of Open Access Journals (Sweden)

    Fahim Mohamed

    Full Text Available Acute kidney injury (AKI is common after severe paraquat poisoning and usually heralds a fatal outcome. The rapid large increases in serum creatinine (Cr exceed that which can be explained by creatinine kinetics based on loss of glomerular filtration rate (GFR.This prospective multi-centre study compared the kinetics of two surrogate markers of GFR, serum creatinine and serum cystatin C (CysC, following paraquat poisoning to understand and assess renal functional loss after paraquat poisoning. Sixty-six acute paraquat poisoning patients admitted to medical units of five hospitals were included. Relative changes in creatinine and CysC were monitored in serial blood and urine samples, and influences of non-renal factors were also studied.Forty-eight of 66 patients developed AKI (AKIN criteria, with 37 (56% developing moderate to severe AKI (AKIN stage 2 or 3. The 37 patients showed rapid increases in creatinine of >100% within 24 hours, >200% within 48 hours and >300% by 72 hours and 17 of the 37 died. CysC concentration increased by 50% at 24 hours in the same 37 patients and then remained constant. The creatinine/CysC ratio increased 8 fold over 72 hours. There was a modest fall in urinary creatinine and serum/urine creatinine ratios and a moderate increase in urinary paraquat during first three days.Loss of renal function contributes modestly to the large increases in creatinine following paraquat poisoning. The rapid rise in serum creatinine most probably represents increased production of creatine and creatinine to meet the energy demand following severe oxidative stress. Minor contributions include increased cyclisation of creatine to creatinine because of acidosis and competitive or non-competitive inhibition of creatinine secretion. Creatinine is not a good marker of renal functional loss after paraquat poisoning and renal injury should be evaluated using more specific biomarkers of renal injury.

  17. Mechanisms Underlying Early Rapid Increases in Creatinine in Paraquat Poisoning (United States)

    Mohamed, Fahim; Endre, Zoltan; Jayamanne, Shaluka; Pianta, Timothy; Peake, Philip; Palangasinghe, Chathura; Chathuranga, Umesh; Jayasekera, Kithsiri; Wunnapuk, Klintean; Shihana, Fathima; Shahmy, Seyed; Buckley, Nicholas


    Background Acute kidney injury (AKI) is common after severe paraquat poisoning and usually heralds a fatal outcome. The rapid large increases in serum creatinine (Cr) exceed that which can be explained by creatinine kinetics based on loss of glomerular filtration rate (GFR). Methods and Findings This prospective multi-centre study compared the kinetics of two surrogate markers of GFR, serum creatinine and serum cystatin C (CysC), following paraquat poisoning to understand and assess renal functional loss after paraquat poisoning. Sixty-six acute paraquat poisoning patients admitted to medical units of five hospitals were included. Relative changes in creatinine and CysC were monitored in serial blood and urine samples, and influences of non-renal factors were also studied. Results Forty-eight of 66 patients developed AKI (AKIN criteria), with 37 (56%) developing moderate to severe AKI (AKIN stage 2 or 3). The 37 patients showed rapid increases in creatinine of >100% within 24 hours, >200% within 48 hours and >300% by 72 hours and 17 of the 37 died. CysC concentration increased by 50% at 24 hours in the same 37 patients and then remained constant. The creatinine/CysC ratio increased 8 fold over 72 hours. There was a modest fall in urinary creatinine and serum/urine creatinine ratios and a moderate increase in urinary paraquat during first three days. Conclusion Loss of renal function contributes modestly to the large increases in creatinine following paraquat poisoning. The rapid rise in serum creatinine most probably represents increased production of creatine and creatinine to meet the energy demand following severe oxidative stress. Minor contributions include increased cyclisation of creatine to creatinine because of acidosis and competitive or non-competitive inhibition of creatinine secretion. Creatinine is not a good marker of renal functional loss after paraquat poisoning and renal injury should be evaluated using more specific biomarkers of renal injury

  18. [Functional state of adolescents with high and low stress reactivity under informational load]. (United States)

    Krivolapchuk, I A


    The analysis of a complex psycho-physiological set of changes of 13-14 year-old adolescents with high and low stress reactivity under the circumstances of informational loads of different complex levels showed that the test tasks rise their level of CNS activity, the autonomic balance shift to the predominance of the sympathetic part of ANS and system circulatory dynamics stimulation. It is stated that at the beginning the rise of psycho-physiological reactivity under a tense informational load of boys' sexual maturation levels (SML) of a particular typological groups is coming up. It shows a high physiological cost of adaptation and low functional capabilities of adolescents' organisms who are under II and III SML. It is also stated that there are some valuable differences between the adolescents with high and low stress reactivity on the considering SML which are conditioned by the specific of cortical-stem and limbic-reticulated mechanisms of functional state regulation.

  19. Utility function under decision theory: A construction arbitration application (United States)

    Alozn, Ahmad E.; Galadari, Abdulla


    While a wide range of dispute resolution mechanisms exist, practitioners favor legally binding ones such as litigation and arbitration. Since initiating a litigation or arbitration case against a business partner may dissolve the business relationship between them, predicting the arbitrator's decision becomes valuable to the arbitrating parties. This paper proposes a construction-specific utility framework for the arbitrating party through decision theory, and based on expected utility theory. The proposed framework preserves the industry practicality and most importantly, considers direct short-term factors and indirect long-term factors as well. It is suggested that the arbitrating parties' utility functions could be then used to identify equilibrium points among them when interact via game theory principles, which would serve the purpose of predicting the arbitration outcome.

  20. From mechanisms to function: an integrated framework of animal innovation (United States)

    Tebbich, Sabine; Griffin, Andrea S.; Peschl, Markus F.; Sterelny, Kim


    Animal innovations range from the discovery of novel food types to the invention of completely novel behaviours. Innovations can give access to new opportunities, and thus enable innovating agents to invade and create novel niches. This in turn can pave the way for morphological adaptation and adaptive radiation. The mechanisms that make innovations possible are probably as diverse as the innovations themselves. So too are their evolutionary consequences. Perhaps because of this diversity, we lack a unifying framework that links mechanism to function. We propose a framework for animal innovation that describes the interactions between mechanism, fitness benefit and evolutionary significance, and which suggests an expanded range of experimental approaches. In doing so, we split innovation into factors (components and phases) that can be manipulated systematically, and which can be investigated both experimentally and with correlational studies. We apply this framework to a selection of cases, showing how it helps us ask more precise questions and design more revealing experiments. PMID:26926285

  1. Flexibility in the structure of spiral flowers and its underlying mechanisms. (United States)

    Wang, Peipei; Liao, Hong; Zhang, Wengen; Yu, Xianxian; Zhang, Rui; Shan, Hongyan; Duan, Xiaoshan; Yao, Xu; Kong, Hongzhi


    Spiral flowers usually bear a variable number of organs, suggestive of the flexibility in structure. The mechanisms underlying the flexibility, however, remain unclear. Here we show that in Nigella damascena, a species with spiral flowers, different types of floral organs show different ranges of variation in number. We also show that the total number of organs per flower is largely dependent on the initial size of the floral meristem, whereas the respective numbers of different types of floral organs are determined by the functional domains of corresponding genetic programmes. By conducting extensive expression and functional studies, we further elucidate the genetic programmes that specify the identities of different types of floral organs. Notably, the AGL6-lineage member NdAGL6, rather than the AP1-lineage members NdFL1/2, is an A-function gene, whereas petaloidy of sepals is not controlled by AP3- or PI-lineage members. Moreover, owing to the formation of a regulatory network, some floral organ identity genes also regulate the boundaries between different types of floral organs. On the basis of these results, we propose that the floral organ identity determination programme is highly dynamic and shows considerable flexibility. Transitions from spiral to whorled flowers, therefore, may be explained by evolution of the mechanisms that reduce the flexibility.

  2. Mechanisms Underlying Profibrotic Epithelial Phenotype and Epithelial-Mesenchymal Crosstalk

    DEFF Research Database (Denmark)

    Bialik, Janne Folke

    , their roles in epithelial reprogramming are unclear. The aim of this thesis was to elucidate (i) the mechanism of TGFβ-induced TAZ expression in kidney fibrosis, (ii) the roles of MRTF and TAZ in PEP, (iii) how MRTF and TAZ regulate the oxidative state of the epithelium, and (iv) if the ensuing ROS production...... and TAZ prevented this, linking the cytoskeleton to the oxidative state of the cell. In Paper II TGFβ-induced increase in TAZ expression was investigated. Using pharmacological inhibition we show that non-canonical signaling via p38 and its downstream target MK2 mediates this upregulation. Furthermore......, MRTF regulates TAZ expression in a translocation-independent manner. Pharmacological inhibition of Nox4, a known activator of p38, resulted in decreased TAZ, suggesting a feedback loop in which Nox4 regulates TAZ and MRTF, which in turn regulates Nox4. In Paper III we investigated cytokine expression...

  3. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren


    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  4. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren


    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  5. Molecular mechanisms underlying the development of hepatocellular carcinoma. (United States)

    Bergsland, E K


    Hepatocellular carcinoma (HCC) is a disease that is extremely difficult to manage and is markedly increasing in incidence. Malignant transformation generally occurs in the setting of liver dysfunction related to a number of different diseases, including viral hepatitis, alcoholic liver disease, and aflatoxin exposure. Short of surgical or ablative approaches, no standard therapy exists for HCC and the prognosis is poor. Perhaps our best hope is that further elucidation of the specific molecular features underlying the disease will translate into innovative, and potentially disease-specific strategies to manage this difficult cancer. Exposure to aflatoxin is associated with a specific mutation in the tumor-suppressor gene p53. The exact molecular events underlying hepatocarcinogenesis in the setting of viral infection have yet to be elucidated, although there is evidence to suggest that virus-encoded proteins contribute to malignant transformation. Both hepatitis B X antigen and hepatitis C core protein appear to interact with a variety of cellular proteins leading to alterations in signal transduction and transcriptional activity. These events presumably cooperate to facilitate malignant progression by promoting extended hepatocyte survival, evasion of the immune response, and acquisition of mutations through genomic instability. Copyright 2001 by W.B. Saunders Company.

  6. Mechanisms underlying probucol-induced hERG-channel deficiency

    Directory of Open Access Journals (Sweden)

    Shi YQ


    Full Text Available Yuan-Qi Shi,1,* Cai-Chuan Yan,1,* Xiao Zhang,1 Meng Yan,1 Li-Rong Liu,1 Huai-Ze Geng,1 Lin Lv,1 Bao-Xin Li1,21Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (IKr, which is important for cardiac repolarization. Reduction of IhERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on IhERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.Keywords: long QT, hERG potassium channels, probucol, SGK1, Nedd4-2

  7. The anatomical scaffold underlying the functional centrality of known cortical hubs. (United States)

    de Pasquale, Francesco; Della Penna, Stefania; Sabatini, Umberto; Caravasso Falletta, Chiara; Peran, Patrice


    Cortical hubs play a fundamental role in the functional architecture of brain connectivity at rest. However, the anatomical scaffold underlying their centrality is still under debate. Certainly, the brain function and anatomy are significantly entwined through synaptogenesis and pruning mechanisms that continuously reshape structural and functional connections. Thus, if hubs are expected to exhibit a large number of direct anatomical connections with the rest of the brain, such a dense wiring is extremely inefficient in energetic terms. In this work, we investigate these aspects on fMRI and DTI data from a set of know resting-state networks, starting from the hypothesis that to promote integration, functional, and anatomical connections link different areas at different scales or hierarchies. Thus, we focused on the role of functional hubs in this hierarchical organization of functional and anatomical architectures. We found that these regions, from a structural point of view, are first linked to each other and successively to the rest of the brain. Thus, functionally central nodes seem to show few strong anatomical connections. These findings suggest an efficient strategy of the investigated cortical hubs in exploiting few direct anatomical connections to link functional hubs among each other that eventually reach the rest of the considered nodes through local indirect tracts. Hum Brain Mapp 38:5141-5160, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. (United States)

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous


    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.

  9. Algorithmic mechanisms for reliable crowdsourcing computation under collusion. (United States)

    Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A; Pareja, Daniel


    We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers' decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.

  10. Mechanisms of microstructural changes of fuel under irradiation

    International Nuclear Information System (INIS)

    Garcia, P.; Carlot, G.; Dorado, B.; Maillard, S.; Sabathier, C.; Martin, G.; Oh, J.Y.; Welland, M.J.


    Nuclear fuels are subjected to high levels of radiation damage mainly due to the slowing of fission fragments, which results in substantial modifications of the initial fuel microstructure. Microstructure changes alter practically all engineering fuel properties such as atomic transport or thermomechanical properties so understanding these changes is essential to predicting the performance of fuel elements. Also, with increasing burn-up, the fuel drifts away from its initial composition as the fission process produces new chemical elements. Because nuclear fuels operate at high temperature and usually under high-temperature gradients, damage annealing, foreign atom or defect clustering and migration occur on multiple time and length scales, which make long-term predictions difficult. The end result is a fuel microstructure which may show extensive differences on the scale of a single fuel pellet. The main challenge we are faced with is, therefore, to identify the phenomena occurring on the atom scale that are liable to have macroscopic effects that will determine the microstructure changes and ultimately the life-span of a fuel element. One step towards meeting this challenge is to develop and apply experimental or modelling methods capable of connecting events that occur over very short length and timescales to changes in the fuel microstructure over engineering length and timescales. In the first part of this chapter, we provide an overview of some of the more important microstructure modifications observed in nuclear fuels. The emphasis is placed on oxide fuels because of the extensive amount of data available in relation to these materials under neutron or ion irradiation. When possible and relevant, the specifics of other types of fuels such as metallic or carbide fuels are alluded to. Throughout this chapter but more specifically in the latter part, we attempt to give examples of how modelling and experimentation at various scales can provide us with

  11. Basal ganglia mechanisms underlying precision grip force control. (United States)

    Prodoehl, Janey; Corcos, Daniel M; Vaillancourt, David E


    The classic grasping network has been well studied but thus far the focus has been on cortical regions in the control of grasping. Sub-cortically, specific nuclei of the basal ganglia have been shown to be important in different aspects of precision grip force control but these findings have not been well integrated. In this review, we outline the evidence to support the hypothesis that key basal ganglia nuclei are involved in parameterizing specific properties of precision grip force. We review literature from different areas of human and animal work that converges to build a case for basal ganglia involvement in the control of precision gripping. Following on from literature showing anatomical connectivity between the basal ganglia nuclei and key nodes in the cortical grasping network, we suggest a conceptual framework for how the basal ganglia could function within the grasping network, particularly as it relates to the control of precision grip force.

  12. NOX Activation by Subunit Interaction and Underlying Mechanisms in Disease. (United States)

    Rastogi, Radhika; Geng, Xiaokun; Li, Fengwu; Ding, Yuchuan


    Nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase (NOX) is an enzyme complex with the sole function of producing superoxide anion and reactive oxygen species (ROS) at the expense of NADPH. Vital to the immune system as well as cellular signaling, NOX is also involved in the pathologies of a wide variety of disease states. Particularly, it is an integral player in many neurological diseases, including stroke, TBI, and neurodegenerative diseases. Pathologically, NOX produces an excessive amount of ROS that exceed the body's antioxidant ability to neutralize them, leading to oxidative stress and aberrant signaling. This prevalence makes it an attractive therapeutic target and as such, NOX inhibitors have been studied and developed to counter NOX's deleterious effects. However, recent studies of NOX have created a better understanding of the NOX complex. Comprised of independent cytosolic subunits, p47- phox , p67- phox , p40- phox and Rac , and membrane subunits, gp91- phox and p22- phox , the NOX complex requires a unique activation process through subunit interaction. Of these subunits, p47- phox plays the most important role in activation, binding and translocating the cytosolic subunits to the membrane and anchoring to p22- phox to organize the complex for NOX activation and function. Moreover, these interactions, particularly that between p47- phox and p22- phox , are dependent on phosphorylation initiated by upstream processes involving protein kinase C (PKC). This review will look at these interactions between subunits and with PKC. It will focus on the interaction involving p47- phox with p22- phox , key in bringing the cytosolic subunits to the membrane. Furthermore, the implication of these interactions as a target for NOX inhibitors such as apocynin will be discussed as a potential avenue for further investigation, in order to develop more specific NOX inhibitors based on the inhibition of NOX assembly and activation.

  13. Mechanisms underlying the formation of induced pluripotent stem cells (United States)

    González, Federico; Huangfu, Danwei


    Human pluripotent stem cells (hPSCs) offer unique opportunities for studying human biology, modeling diseases and for therapeutic applications. The simplest approach so far to generate human PSCs lines is through reprogramming of somatic cells from an individual by defined factors, referred to simply as reprogramming. Reprogramming circumvents the ethical issues associated with human embryonic stem cells (hESCs) and nuclear transfer hESCs (nt-hESCs), and the resulting induced pluripotent stem cells (hiPSCs) retain the same basic genetic makeup as the somatic cell used for reprogramming. Since the first report of iPSCs by Takahashi and Yamanaka, the molecular mechanisms of reprogramming have been extensively investigated. A better mechanistic understanding of reprogramming is fundamental not only to iPSC biology and improving the quality of iPSCs for therapeutic use, but also to our understanding of the molecular basis of cell identity, pluripotency and plasticity. Here we summarize the genetic, epigenetic and cellular events during reprogramming, and the roles of various factors identified thus far in the reprogramming process. PMID:26383234

  14. The neural sociometer: brain mechanisms underlying state self-esteem. (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R


    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  15. Adhesive wear mechanism under combined electric diamond grinding

    Directory of Open Access Journals (Sweden)

    Popov Vyacheslav


    Full Text Available The article provides a scientific substantiation of loading of metal-bond diamond grinding wheels and describes the mechanism of contact interaction (interlocking of wheels with tool steel as well as its general properties having an influence on combined electric diamond grinding efficiency. The study concluded that a loaded layer can be formed in a few stages different by nature. It is known, that one of the causes of grinding degradation is a continuous loading of active grits (abrasive grinding tool by workpiece chips. It all affects the diamond grinding wheels efficiency and grinding ability with a result in increase of tool pressure, contact temperature and wheels specific removal rate. Science has partially identified some various methods to minimize grinding wheel loading, however, as to loading of metal-bond diamond grinding wheels the search is still in progress. Therefore, research people have to state, that in spite of the fact that the wheels made of cubic boron nitride are of little use as applied to ceramic, ultrahard, hard-alloyed hard-to-machine and nano-materials of the time, but manufactures have to apply cubic boron nitride wheels wherein diamond ones preferable.

  16. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms. (United States)

    Hernández, Antonio F; Menéndez, Pablo


    Leukemia is the most common cancer in children, representing 30% of all childhood cancers. The disease arises from recurrent genetic insults that block differentiation of hematopoietic stem and/or progenitor cells (HSPCs) and drives uncontrolled proliferation and survival of the differentiation-blocked clone. Pediatric leukemia is phenotypically and genetically heterogeneous with an obscure etiology. The interaction between genetic factors and environmental agents represents a potential etiological driver. Although information is limited, the principal toxic mechanisms of potential leukemogenic agents (e.g., etoposide, benzene metabolites, bioflavonoids and some pesticides) include topoisomerase II inhibition and/or excessive generation of free radicals, which may induce DNA single- and double-strand breaks (DNA-DSBs) in early HSPCs. Chromosomal rearrangements (duplications, deletions and translocations) may occur if these lesions are not properly repaired. The initiating hit usually occurs in utero and commonly leads to the expression of oncogenic fusion proteins. Subsequent cooperating hits define the disease latency and occur after birth and may be of a genetic, epigenetic or immune nature (i.e., delayed infection-mediated immune deregulation). Here, we review the available experimental and epidemiological evidence linking pesticide exposure to infant and childhood leukemia and provide a mechanistic basis to support the association, focusing on early initiating molecular events.

  17. Assessing mechanical vulnerability in water distribution networks under multiple failures (United States)

    Berardi, Luigi; Ugarelli, Rita; Røstum, Jon; Giustolisi, Orazio


    Understanding mechanical vulnerability of water distribution networks (WDN) is of direct relevance for water utilities since it entails two different purposes. On the one hand, it might support the identification of severe failure scenarios due to external causes (e.g., natural or intentional events) which result into the most critical consequences on WDN supply capacity. On the other hand, it aims at figure out the WDN portions which are more prone to be affected by asset disruptions. The complexity of such analysis stems from the number of possible scenarios with single and multiple simultaneous shutdowns of asset elements leading to modifications of network topology and insufficient water supply to customers. In this work, the search for the most disruptive combinations of multiple asset failure events is formulated and solved as a multiobjective optimization problem. The higher vulnerability failure scenarios are detected as those causing the lower supplied demand due to the lower number of simultaneous failures. The automatic detection of WDN topology, subsequent to the detachments of failed elements, is combined with pressure-driven analysis. The methodology is demonstrated on a real water distribution network. Results show that, besides the failures causing the detachment of reservoirs, tanks, or pumps, there are other different topological modifications which may cause severe WDN service disruptions. Such information is of direct relevance to support planning asset enhancement works and improve the preparedness to extreme events.

  18. Obstructive sleep apnea and dyslipidemia: evidence and underlying mechanism. (United States)

    Adedayo, Ajibola Monsur; Olafiranye, Oladipupo; Smith, David; Hill, Alethea; Zizi, Ferdinand; Brown, Clinton; Jean-Louis, Girardin


    Over the past half century, evidence has been accumulating on the emergence of obstructive sleep apnea (OSA), the most prevalent sleep-disordered breathing, as a major risk factor for cardiovascular disease. A significant body of research has been focused on elucidating the complex interplay between OSA and cardiovascular risk factors, including dyslipidemia, obesity, hypertension, and diabetes mellitus that portend increased morbidity and mortality in susceptible individuals. Although a clear causal relationship of OSA and dyslipidemia is yet to be demonstrated, there is increasing evidence that chronic intermittent hypoxia, a major component of OSA, is independently associated and possibly the root cause of the dyslipidemia via the generation of stearoyl-coenzyme A desaturase-1 and reactive oxygen species, peroxidation of lipids, and sympathetic system dysfunction. The aim of this review is to highlight the relationship between OSA and dyslipidemia in the development of atherosclerosis and present the pathophysiologic mechanisms linking its association to clinical disease. Issues relating to epidemiology, confounding factors, significant gaps in research and future directions are also discussed.

  19. Molecular Mechanisms Underlying Origin and Diversification of the Angiosperm Flower (United States)

    Theissen, Guenter; Melzer, Rainer


    Background Understanding the mode and mechanisms of the evolution of the angiosperm flower is a long-standing and central problem of evolutionary biology and botany. It has essentially remained unsolved, however. In contrast, considerable progress has recently been made in our understanding of the genetic basis of flower development in some extant model species. The knowledge that accumulated this way has been pulled together in two major hypotheses, termed the ‘ABC model’ and the ‘floral quartet model’. These models explain how the identity of the different types of floral organs is specified during flower development by homeotic selector genes encoding transcription factors. Scope We intend to explain how the ‘ABC model’ and the ‘floral quartet model’ are now guiding investigations that help to understand the origin and diversification of the angiosperm flower. Conclusions Investigation of orthologues of class B and class C floral homeotic genes in gymnosperms suggest that bisexuality was one of the first innovations during the origin of the flower. The transition from dimer to tetramer formation of floral homeotic proteins after establishment of class E proteins may have increased cooperativity of DNA binding of the transcription factors controlling reproductive growth. That way, we hypothesize, better ‘developmental switches’ originated that facilitated the early evolution of the flower. Expression studies of ABC genes in basally diverging angiosperm lineages, monocots and basal eudicots suggest that the ‘classical’ ABC system known from core eudicots originated from a more fuzzy system with fading borders of gene expression and gradual transitions in organ identity, by sharpening of ABC gene expression domains and organ borders. Shifting boundaries of ABC gene expression may have contributed to the diversification of the angiosperm flower many times independently, as may have changes in interactions between ABC genes and their target

  20. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi


    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  1. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.


    To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram

  2. Possible mechanisms underlying the development of cachexia in COPD. (United States)

    Wagner, P D


    About 25% of patients with chronic obstructive pulmonary disease (COPD) will develop cachexia (fat-free body mass index imbalance; 2) disuse atrophy; 3) tissue hypoxia from arterial hypoxaemia; 4) systemic inflammation; and 5) anabolic hormonal insufficiency. Genetic polymorphisms implicate inflammatory cytokines, especially interleukin (IL)-1beta, but IL-6 and tumour necrosis factor (TNF)-alpha do not show polymorphisms in these patients. Early reports of elevated TNF-alpha levels suggested a role for inflammation, but recent studies have not shown elevated levels of either IL-6 or TNF-alpha. Therapeutic trials of nutritional support, hormonal supplementation, anti-TNF-alpha immunotherapy, ghrelin and antioxidants have been conducted, but only a few have shown any benefits in muscle structure and function. Considerably more mechanistic knowledge is needed before therapeutic recommendations can be made. At this time, it is not possible to attribute cachexia in COPD unequivocally to inflammation or any other cause, and much more research is needed. To date, studies have been predominantly cross-sectional, with measurements made only after cachexia has developed. Future research should target prospective observation, studying patients as cachexia progresses, since once cachexia is established, inflammatory cytokine levels may not be abnormal.

  3. Mechanisms underlying post-inflammatory hyperpigmentation: lessons from solar lentigo. (United States)

    Cardinali, G; Kovacs, D; Picardo, M


    Hyperpigmentation of the skin is a common dermatologic condition in all skin types but most prominent in brown-skinned population. In skin of color any inflammation or injury can be accompanied by alterations in pigmentation (hyper/hypo-pigmentation). Postinflammatory hyperpigmentation (PIH) can be observed in many skin conditions including acne, eczema, and contact dermatitis. In the control of skin pigmentation, parallel to the cross-talk between keratinocytes and melanocytes, increasing evidence has underlined the crucial role exerted by the interactions between mesenchymal and epithelial cells through the release of fibroblast-derived growth factors. Among these factors, the keratinocyte growth factor (KGF), alone or in combination with interleukin-1α, induces melanin deposition in vitro and hyperpigmented lesions in vivo. Furthermore, a moderate increase of KGF and a high induction of its receptor have been shown in solar lentigo lesions, suggesting the involvement of this growth factor in the onset of the hyperpigmented spots. Several studies highlight the possible contribution of the fibroblast-derived melanogenic growth factors to the hyperpigmentated lesions, in the context of the mesenchymal - epithelial interactions modulating melanocyte functions. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. [Mechanisms underlying post-inflammatory hyperpigmentation: lessons from solar lentigo]. (United States)

    Cardinali, G; Kovacs, D; Picardo, M


    Hyperpigmentation of the skin is a common dermatologic condition in all skin types but most prominent in brown-skinned population. In skin of color any inflammation or injury can be accompanied by alterations in pigmentation (hyper/hypo-pigmentation). Postinflammatory hyperpigmentation (PIH) can be observed in many skin conditions including acne, eczema, and contact dermatitis. In the control of skin pigmentation, parallel to the cross-talk between keratinocytes and melanocytes, increasing evidence has underlined the crucial role exerted by the interactions between mesenchymal and epithelial cells through the release of fibroblast-derived growth factors. Among these factors, the keratinocyte growth factor (KGF), alone or in combination with interleukin-1α, induces melanin deposition in vitro and hyperpigmented lesions in vivo. Furthermore, a moderate increase of KGF and a high induction of its receptor have been shown in solar lentigo lesions, suggesting the involvement of this growth factor in the onset of the hyperpigmented spots. Several studies highlight the possible contribution of the fibroblast-derived melanogenic growth factors to the hyperpigmentated lesions, in the context of the mesenchymal - epithelial interactions modulating melanocyte functions. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. A novel approach to mechanical foot stimulation during human locomotion under body weight support. (United States)

    Gravano, S; Ivanenko, Y P; Maccioni, G; Macellari, V; Poppele, R E; Lacquaniti, F


    Input from the foot plays an essential part in perceiving support surfaces and determining kinematic events in human walking. To simulate adequate tactile pressure inputs under body weight support (BWS) conditions that represent an effective form of locomotion training, we here developed a new method of phasic mechanical foot stimulation using light-weight pneumatic insoles placed inside the shoes (under the heel and metatarsus). To test the system, we asked healthy participants to walk on a treadmill with different levels of BWS. The pressure under the stimulated areas of the feet and subjective sensations were higher at high levels of BWS and when applied to the ball and toes rather than heels. Foot stimulation did not disturb significantly the normal motor pattern, and in all participants we evoked a reliable step-synchronized triggering of stimuli for each leg separately. This approach has been performed in a general framework looking for "afferent templates" of human locomotion that could be used for functional sensory stimulation. The proposed technique can be used to imitate or partially restore surrogate contact forces under body weight support conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Mechanical and non-mechanical functions of Dystrophin can prevent cardiac abnormalities in Drosophila. (United States)

    Taghli-Lamallem, Ouarda; Jagla, Krzysztof; Chamberlain, Jeffrey S; Bodmer, Rolf


    Dystrophin-deficiency causes cardiomyopathies and shortens the life expectancy of Duchenne and Becker muscular dystrophy patients. Restoring Dystrophin expression in the heart by gene transfer is a promising avenue to explore as a therapy. Truncated Dystrophin gene constructs have been engineered and shown to alleviate dystrophic skeletal muscle disease, but their potential in preventing the development of cardiomyopathy is not fully understood. In the present study, we found that either the mechanical or the signaling functions of Dystrophin were able to reduce the dilated heart phenotype of Dystrophin mutants in a Drosophila model. Our data suggest that Dystrophin retains some function in fly cardiomyocytes in the absence of a predicted mechanical link to the cytoskeleton. Interestingly, cardiac-specific manipulation of nitric oxide synthase expression also modulates cardiac function, which can in part be reversed by loss of Dystrophin function, further implying a signaling role of Dystrophin in the heart. These findings suggest that the signaling functions of Dystrophin protein are able to ameliorate the dilated cardiomyopathy, and thus might help to improve heart muscle function in micro-Dystrophin-based gene therapy approaches. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Mechanisms by Which Different Functional States of Mitochondria Define Yeast Longevity (United States)

    Beach, Adam; Leonov, Anna; Arlia-Ciommo, Anthony; Svistkova, Veronika; Lutchman, Vicky; Titorenko, Vladimir I.


    Mitochondrial functionality is vital to organismal physiology. A body of evidence supports the notion that an age-related progressive decline in mitochondrial function is a hallmark of cellular and organismal aging in evolutionarily distant eukaryotes. Studies of the baker’s yeast Saccharomyces cerevisiae, a unicellular eukaryote, have led to discoveries of genes, signaling pathways and chemical compounds that modulate longevity-defining cellular processes in eukaryotic organisms across phyla. These studies have provided deep insights into mechanistic links that exist between different traits of mitochondrial functionality and cellular aging. The molecular mechanisms underlying the essential role of mitochondria as signaling organelles in yeast aging have begun to emerge. In this review, we discuss recent progress in understanding mechanisms by which different functional states of mitochondria define yeast longevity, outline the most important unanswered questions and suggest directions for future research. PMID:25768339

  8. Neural mechanisms underlying cognitive inflexibility in Parkinson's disease. (United States)

    Lange, Florian; Seer, Caroline; Loens, Sebastian; Wegner, Florian; Schrader, Christoph; Dressler, Dirk; Dengler, Reinhard; Kopp, Bruno


    Cognitive inflexibility is a hallmark of executive dysfunction in Parkinson's disease (PD). This deficit consistently manifests itself in a PD-related increase in the number of perseverative errors committed on the Wisconsin Card Sorting Test (WCST). However, the neural processes underlying perseverative WCST performance in PD are still largely unknown. The present study is the first to investigate the event-related potential (ERP) correlates of cognitive inflexibility on the WCST in PD patients. Thirty-two PD patients and 35 matched control participants completed a computerized version of the WCST while the electroencephalogram (EEG) was recorded. Behavioral results revealed the expected increase in perseverative errors in patients with PD. ERP analysis focused on two established indicators of executive processes: the fronto-central P3a as an index of attentional orienting and the sustained parietal positivity (SPP) as an index of set-shifting processes. In comparison to controls, P3a amplitudes were significantly attenuated in PD patients. Regression analysis further revealed that P3a and SPP amplitudes interactively contributed to the prediction of perseverative errors in PD patients: The number of perseverative errors was only increased when both ERP amplitudes were attenuated. Notably, the two ERP markers of executive processes accounted for more than 40% of the variance in perseverative errors in PD patients. We conclude that cognitive inflexibility in PD occurs when the neural bases of multiple executive processes are affected by the pathophysiology of PD. The combined measurement of P3a and SPP might yield an electrophysiological marker of cognitive inflexibility in PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Design principles and developmental mechanisms underlying retinal mosaics. (United States)

    Reese, Benjamin E; Keeley, Patrick W


    Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  10. Mechanism of attenuation of leptin signaling under chronic ligand stimulation

    Directory of Open Access Journals (Sweden)

    Bamberg-Lemper Simone


    Full Text Available Abstract Background Leptin is an adipocyte-derived hormone that acts via its hypothalamic receptor (LEPRb to regulate energy balance. A downstream effect essential for the weight-regulatory action of leptin is the phosphorylation and activation of the latent transcription factor STAT3 by LEPRb-associated Janus kinases (JAKs. Obesity is typically associated with chronically elevated leptin levels and a decreased ability of LEPRb to activate intracellular signal transduction pathways (leptin resistance. Here we have studied the roles of the intracellular tyrosine residues in the negative feedback regulation of LEPRb-signaling under chronic leptin stimulation. Results Mutational analysis showed that the presence of either Tyr985 and Tyr1077 in the intracellular domain of LEPRb was sufficient for the attenuation of STAT3 phosphorylation, whereas mutation of both tyrosines rendered LEPRb resistant to feedback regulation. Overexpression and RNA interference-mediated downregulation of suppressor of cytokine signaling 3 (SOCS3 revealed that both Tyr985 and Tyr1077 were capable of supporting the negative modulatory effect of SOCS3 in reporter gene assays. In contrast, the inhibitory effect of SOCS1 was enhanced by the presence of Tyr985 but not Tyr1077. Finally, the reduction of the STAT-phosphorylating activity of the LEPRb complex after 2 h of leptin stimulation was not accompanied by the dephosphorylation or degradation of LEPRb or the receptor-associated JAK molecule, but depended on Tyr985 and/or Tyr1077. Conclusions Both Tyr985 and Tyr1077 contribute to the negative regulation of LEPRb signaling. The inhibitory effects of SOCS1 and SOCS3 differ in the dependence on the tyrosine residues in the intracellular domain of LEPRb.

  11. Photodegradation kinetics, products and mechanism of timolol under simulated sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong, E-mail: [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Liang, Qi; Zhou, Danna [College of Material Science and Chemical Engineering, China University of Geosciences, Wuhan 430074 (China); Wang, Zongping, E-mail: [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tao, Tao [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zuo, Yuegang [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747 (United States)


    Highlights: ► The indirect degradation of timolol is first investigated in fulvic acid solution. ► {sup 3}FA{sup *} and {sup 1}O{sub 2} accounted for the degradation of timolol in the aerated FA solutions. ► The presence of halides inhibited the degradation in the order of Cl{sup −} < Br{sup −} < I{sup −}. ► The role of I{sup −} in the degradation was first found to be concentration-dependent. ► The photoproducts of timolol were identified by LC-DAD/ESI-MS/MS analysis. -- Abstract: The photodegradation of β-blocker timolol in fulvic acid (FA) solution was investigated under simulated sunlight. The triplet excited state of FA ({sup 3}FA{sup *}) and singlet oxygen ({sup 1}O{sub 2}) were the main reactive species responsible for the degradation of timolol in the aerated FA solutions. Both dissolved oxygen and iodide ions (I{sup −}) are the efficient quenchers of {sup 3}FA{sup *}. The photodegradation was drastically accelerated after removing the dissolved oxygen. The presence of I{sup −} inhibited the photosensitized degradation of timolol in the deoxygenated FA solutions, whereas the role of I{sup −} in the reaction was concentration-dependent in the aerated solutions. The other halide ions such as chloride (Cl{sup −}) and bromide (Br{sup −}) exhibited less effect on the photodegradation of timolol in both aerated and deoxygenated solutions. By LC-DAD/ESI-MS/MS analysis, the photoproducts of timolol in both aerated and deoxygenated FA solutions were identified. Electron transfer interaction occurred between {sup 3}FA{sup *} and amine moiety of timolol, leading to the cleavage of C–O bond in the side chain and oxidation of the hexatomic ring. These findings suggest the photosensitized degradation was a significant pathway for the elimination of timolol in natural waters.

  12. Mechanical properties of the human spinal cord under the compressive loading. (United States)

    Karimi, Alireza; Shojaei, Ahmad; Tehrani, Pedram


    The spinal cord as the most complex and critical part of the human body is responsible for the transmission of both motor and sensory impulses between the body and the brain. Due to its pivotal role any types of physical injury in that disrupts its function following by shortfalls, including the minor motor and sensory malfunctions as well as complicate quadriplegia and lifelong ventilator dependency. In order to shed light on the injuries to the spinal cord, the application of the computational models to simulate the trauma impact loading to that are deemed required. Nonetheless, it has not been fulfilled since there is a paucity of knowledge about the mechanical properties of the spinal cord, especially the cervical one, under the compressive loading on the grounds of the difficulty in obtaining this tissue from the human body. This study was aimed at experimentally measuring the mechanical properties of the human cervical spinal cord of 24 isolated fresh samples under the unconfined compressive loading at a relatively low strain rate. The stress-strain data revealed the elastic modulus and maximum/failure stress of 40.12±6.90 and 62.26±5.02kPa, respectively. Owing to the nonlinear response of the spinal cord, the Yeoh, Ogden, and Mooney-Rivlin hyperelastic material models have also been employed. The results may have implications not only for understanding the linear elastic and nonlinear hyperelastic mechanical properties of the cervical spinal cord under the compressive loading, but also for providing a raw data for investigating the injury as a result of the trauma thru the numerical simulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Pet Face: Mechanisms Underlying Human-Animal Relationships. (United States)

    Borgi, Marta; Cirulli, Francesca


    Accumulating behavioral and neurophysiological studies support the idea of infantile (cute) faces as highly biologically relevant stimuli rapidly and unconsciously capturing attention and eliciting positive/affectionate behaviors, including willingness to care. It has been hypothesized that the presence of infantile physical and behavioral features in companion (or pet) animals (i.e., dogs and cats) might form the basis of our attraction to these species. Preliminary evidence has indeed shown that the human attentional bias toward the baby schema may extend to animal facial configurations. In this review, the role of facial cues, specifically of infantile traits and facial signals (i.e., eyes gaze) as emotional and communicative signals is highlighted and discussed as regulating the human-animal bond, similarly to what can be observed in the adult-infant interaction context. Particular emphasis is given to the neuroendocrine regulation of the social bond between humans and animals through oxytocin secretion. Instead of considering companion animals as mere baby substitutes for their owners, in this review we highlight the central role of cats and dogs in human lives. Specifically, we consider the ability of companion animals to bond with humans as fulfilling the need for attention and emotional intimacy, thus serving similar psychological and adaptive functions as human-human friendships. In this context, facial cuteness is viewed not just as a releaser of care/parental behavior, but, more in general, as a trait motivating social engagement. To conclude, the impact of this information for applied disciplines is briefly described, particularly in consideration of the increasing evidence of the beneficial effects of contacts with animals for human health and wellbeing.


    Directory of Open Access Journals (Sweden)

    Marta eBorgi


    Full Text Available Accumulating behavioral and neurophysiological studies support the idea of infantile (cute faces as highly biologically relevant stimuli rapidly and unconsciously capturing attention and eliciting positive/affectionate behaviors, including willingness to care. It has been hypothesized that the presence of infantile physical and behavioral features in companion (or pet animals (i.e. dogs and cats might form the basis of our attraction to these species. Preliminary evidence has indeed shown that the human attentional bias toward the baby schema may extend to animal facial configurations. In this review, the role of facial cues, specifically of infantile traits and facial signals (i.e. eyes gaze as emotional and communicative signals is highlighted and discussed as regulating human-animal bond, similarly to what can be observed in the adult-infant interaction context. Particular emphasis is given to the neuroendocrine regulation of social bond between humans and animals through oxytocin secretion. Instead of considering companion animals as mere baby substitutes for their owners, in this review we highlight the central role of cats and dogs in human lives. Specifically, we consider the ability of companion animals to bond with humans as fulfilling the need for attention and emotional intimacy, thus serving similar psychological and adaptive functions as human-human friendships. In this context, facial cuteness is viewed not just as a releaser of care/parental behavior, but more in general as a trait motivating social engagement. To conclude, the impact of this information for applied disciplines is briefly described, particularly in consideration of the increasing evidence of the beneficial effects of contacts with animals for human health and wellbeing.

  15. Oriented scanning is the leading mechanism underlying 5' splice site selection in mammals.

    Directory of Open Access Journals (Sweden)

    Keren Borensztajn


    Full Text Available Splice site selection is a key element of pre-mRNA splicing. Although it is known to involve specific recognition of short consensus sequences by the splicing machinery, the mechanisms by which 5' splice sites are accurately identified remain controversial and incompletely resolved. The human F7 gene contains in its seventh intron (IVS7 a 37-bp VNTR minisatellite whose first element spans the exon7-IVS7 boundary. As a consequence, the IVS7 authentic donor splice site is followed by several cryptic splice sites identical in sequence, referred to as 5' pseudo-sites, which normally remain silent. This region, therefore, provides a remarkable model to decipher the mechanism underlying 5' splice site selection in mammals. We previously suggested a model for splice site selection that, in the presence of consecutive splice consensus sequences, would stimulate exclusively the selection of the most upstream 5' splice site, rather than repressing the 3' following pseudo-sites. In the present study, we provide experimental support to this hypothesis by using a mutational approach involving a panel of 50 mutant and wild-type F7 constructs expressed in various cell types. We demonstrate that the F7 IVS7 5' pseudo-sites are functional, but do not compete with the authentic donor splice site. Moreover, we show that the selection of the 5' splice site follows a scanning-type mechanism, precluding competition with other functional 5' pseudo-sites available on immediate sequence context downstream of the activated one. In addition, 5' pseudo-sites with an increased complementarity to U1snRNA up to 91% do not compete with the identified scanning mechanism. Altogether, these findings, which unveil a cell type-independent 5'-3'-oriented scanning process for accurate recognition of the authentic 5' splice site, reconciliate apparently contradictory observations by establishing a hierarchy of competitiveness among the determinants involved in 5' splice site selection.

  16. Skin transcriptome reveals the intrinsic molecular mechanisms underlying hair follicle cycling in Cashmere goats under natural and shortened photoperiod conditions. (United States)

    Yang, Min; Song, Shen; Dong, Kunzhe; Chen, XiaoFei; Liu, Xuexue; Rouzi, Marhaba; Zhao, Qianjun; He, Xiaohong; Pu, Yabin; Guan, Weijun; Ma, Yuehui; Jiang, Lin


    The growth of cashmere exhibits a seasonal pattern arising from photoperiod change. However, the underlying molecular mechanism remains unclear. We profiled the skin transcriptome of six goats at seven time points during hair follicle cycling via RNA-seq. The six goats comprised three goats exposed to a natural photoperiod and three exposed to a shortened photoperiod. During hair cycle transition, 1713 genes showed differential expression, and 332 genes showed a pattern of periodic expression. Moreover, a short photoperiod induced the hair follicle to enter anagen early, and 246 genes overlapped with the periodic genes. Among these key genes, cold-shock domain containing C2 (CSDC2) was highly expressed in the epidermis and dermis of Cashmere goat skin, although its function in hair-follicle development remains unknown. CSDC2 silencing in mouse fibroblasts resulted in the decreased mRNA expression of two key hair-follicle factors, leading to reduced cell numbers and a lower cell density. Cashmere growth or molting might be controlled by a set of periodic regulatory genes. The appropriate management of short light exposure can induce hair follicles to enter full anagen early through the activation of these regulators. The CSDC2 gene is a potentially important transcription factor in the hair growth cycle.

  17. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan


    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  18. Curcumin and Endothelial Function: Evidence and Mechanisms of Protective Effects. (United States)

    Karimian, Maryam S; Pirro, Matteo; Johnston, Thomas P; Majeed, Muhammed; Sahebkar, Amirhossein


    The endothelium is a large paracrine organ regulating cell growth, vascular tone and thrombogenicity as well as platelet and leukocyte interactions. Endothelial function can be assessed by noninvasive techniques [e.g. flow-mediated vasodilation, nitroglycerin-mediated dilation and pulse wave velocity] and measuring specific circulating biomarkers [cell adhesion molecules, endothelial microparticles and endothelial progenitor cells]. Impaired endothelial function plays a key role in the development of atherosclerosis, arterial hypertension, heart failure, ischemia-reperfusion injury, Alzheimer's disease and other conditions. Endothelial function is also involved in growth and proliferation of tumor cells. We performed a literature review and assessed the role of the natural polyphenol, curcumin, as a potential inexpensive, well-tolerated, and safe agent for improving endothelial function. Curcumin exerts several positive pharmacological effects; these include anti-inflammatory, antioxidant, anti-hypertensive, anti-cancer, antiviral, anti-infective and wound-healing properties. Specifically, curcumin's anti-inflammatory effects are thought to be caused by reducing trans-endothelial monocyte migration by reduction of mRNA and protein expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and P-selectin and by modulating NFκB, JNK, p38 and STAT-3 in endothelial cells. Dietary curcumin supplementation can also increase antioxidant activity through the induction of heme oxygenase-1, a scavenger of free radicals, and by reduction of reactive oxygen species and Nox-2. Curcumin appears to improve endothelial function but additional research is needed to determine the precise mechanism(s) and biomarkers involved in curcumin's therapeutic effects on endothelial dysfunction. Copyright© Bentham Science Publishers; For any queries, please email at

  19. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    Directory of Open Access Journals (Sweden)

    Liying Jiang


    Full Text Available In this work, the problem of a curved functionally graded piezoelectric (FGP actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  20. Mechanical Behavior of Red Sandstone under Incremental Uniaxial Cyclical Compressive and Tensile Loading

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao


    Full Text Available Uniaxial experiments were carried out on red sandstone specimens to investigate their short-term and creep mechanical behavior under incremental cyclic compressive and tensile loading. First, based on the results of short-term uniaxial incremental cyclic compressive and tensile loading experiments, deformation characteristics and energy dissipation were analyzed. The results show that the stress-strain curve of red sandstone has an obvious memory effect in the compressive and tensile loading stages. The strains at peak stresses and residual strains increase with the cycle number. Energy dissipation, defined as the area of the hysteresis loop in the stress-strain curves, increases nearly in a power function with the cycle number. Creep test of the red sandstone was also conducted. Results show that the creep curve under each compressive or tensile stress level can be divided into decay and steady stages, which cannot be described by the conventional Burgers model. Therefore, an improved Burgers creep model of rock material is constructed through viscoplastic mechanics, which agrees very well with the experimental results and can describe the creep behavior of red sandstone better than the Burgers creep model.

  1. Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. (United States)

    Calvieri, Camilla; Rubattu, Speranza; Volpe, Massimo


    Natriuretic peptides (NPs) exert well-characterized protective effects on the cardiovascular system, such as vasorelaxation, natri- and diuresis, increase of endothelial permeability, and inhibition of renin-angiotensin-aldosterone system. It has been reported that they also possess antihypertrophic and antifibrotic properties and contribute actively to cardiac remodeling. As a consequence, they are involved in several aspects of cardiovascular diseases. Antihypertrophic and antifibrotic actions of NPs appear to be mediated by specific signaling pathways within a more complex cellular network. Elucidation of the molecular mechanisms underlying the effects of NPs on cardiac remodeling represents an important research objective in order to gain more insights on the complex network leading to cardiac hypertrophy, ventricular dysfunction, and transition to heart failure, and in the attempt to develop novel therapeutic agents. The aim of the present article is to review well-characterized molecular mechanisms underlying the antihypertrophic and antifibrotic effects of NPs in the heart that appear to be mainly mediated by guanylyl cyclase type A receptor. In particular, we discuss the calcineurin/NFAT, the sodium exchanger NHE-1, and the TGFβ1/Smad signaling pathways. The role of guanylyl cyclase type B receptor, along with the emerging functional significance of natriuretic peptide receptor type C as mediators of CNP antihypertrophic and antifibrotic actions in the heart are also considered.

  2. Groups as units of functional analysis, individuals as proximate mechanisms. (United States)

    Wilson, David Sloan


    Whenever selection operates at a given level of a multitier hierarchy, units at that level should become the object of functional analysis, and units at lower levels should be studied as proximate mechanisms. This intuition already exists for the study of genes in individuals, when individuals are the unit of selection. It is only beginning to be applied for the study of individuals in groups, when groups are the unit of selection. Smaldino's target article is an important step in this direction with an emphasis on human cultural evolution, but the same algorithm applies to all multilevel evolutionary processes.

  3. Generalized generating functional for mixed-representation Green's functions: A quantum-mechanical approach (United States)

    Blasone, Massimo; Jizba, Petr; Smaldone, Luca


    When one tries to take into account the nontrivial vacuum structure of quantum field theory, the standard functional-integral tools, such as generating functionals or transitional amplitudes, are often quite inadequate for such purposes. Here we propose a generalized generating functional for Green's functions which allows one to easily distinguish among a continuous set of vacua that are mutually connected via unitary canonical transformations. In order to keep our discussion as simple as possible, we limit ourselves to quantum mechanics where the generating functional of Green's functions is constructed by means of phase-space path integrals. The quantum-mechanical setting allows us to accentuate the main logical steps involved without embarking on technical complications such as renormalization or inequivalent representations that should otherwise be addressed in the full-fledged quantum field theory. We illustrate the inner workings of the generating functional obtained by discussing Green's functions among vacua that are mutually connected via translations and dilatations. Salient issues, including connection with quantum field theory, vacuum-to-vacuum transition amplitudes, and perturbation expansion in the vacuum parameter, are also briefly discussed.

  4. A noise level prediction method based on electro-mechanical frequency response function for capacitors. (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao


    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  5. Modulation of MicroRNAs by Phytochemicals in Cancer: Underlying Mechanisms and Translational Significance (United States)

    Srivastava, Sanjeev K.; Arora, Sumit; Averett, Courey; Singh, Ajay P.


    MicroRNAs (miRNAs) are small, endogenous noncoding RNAs that regulate a variety of biological processes such as differentiation, development, and survival. Recent studies suggest that miRNAs are dysregulated in cancer and play critical roles in cancer initiation, progression, and chemoresistance. Therefore, exploitation of miRNAs as targets for cancer prevention and therapy could be a promising approach. Extensive evidence suggests that many naturally occurring phytochemicals regulate the expression of numerous miRNAs involved in the pathobiology of cancer. Therefore, an understanding of the regulation of miRNAs by phytochemicals in cancer, their underlying molecular mechanisms, and functional consequences on tumor pathophysiology may be useful in formulating novel strategies to combat this devastating disease. These aspects are discussed in this review paper with an objective of highlighting the significance of these observations from the translational standpoint. PMID:25853141

  6. Electronic and mechanical properties of chemically functionalized nanowires (United States)

    Bidasaria, Sanjay K.


    Organic and inorganic nanostructured materials, nano- and mesoscale objects and devices, and their integration into existing microelectronic technologies have been at the center of recent fundamental and applied research in nanotechnology. One of the critical needs is to develop an enhanced predictive capability of structure-property correlations and enable robust high performance systems by design. My thesis work was concerned with the theoretical and experimental studies of electronic and mechanical properties of chemically functionalized nanowires. I will first describe a theoretical approach for investigating structure-property correlations in atomic-sized metallic wires based on the Density Functional Theory (DFT) for structure calculations and the Non-equilibrium Green's Function (NEGF) technique for electronic transport properties simulations. This synergistic approach is shown to yield the atomic structure of the smallest niobium nanowires. Furthermore, the method was applied to simulate electronic properties of chemically functionalized graphene nanoribbons. Further, I will demonstrate an experimental technique for simultaneous measurements of force and conductance in atomic-size objects based on quartz tuning fork piezoelectric sensors. A peculiar scaling effect, relevant for a broad range of test and measurement applications, namely the squeeze film effect, was observed during the development of the sensors. Using theoretical analysis based on finite element simulations of the hydrodynamic behavior of the sensors in a broad range of ambient conditions, I explain the observed phenomenon.

  7. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille


    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  8. Mechanism underlying the effects of doxepin on β-amyloid -induced memory impairment in rats

    Directory of Open Access Journals (Sweden)

    Jimei Bu


    Full Text Available Objective(s: In previous studies, researchers observed that doxepin could improve cognitive processes and has protective effectson the central nervous system. Thus, this study was designed to analyze the effects of doxepin on β-amyloid (Aβ-induced memory impairment and neuronal toxicity in ratand to explore the underlying mechanism. Materials and Methods: Rats were treated with Aβ1-42 and doxepin was injected to validate its effects on cognitive function. The Morris water maze test was performed to detect memory function.  Aβ1-42-treated SH-SY5Y human neuroblastoma cell line was also used to detect the effects of doxepin and to explore the underlying mechanism. Western blotting analysis was used to detect the protein expression levels of PSD-95, synapsin 1, p-AKT and p-mTOR in rats. Results: After treated with 1 mg/kg of doxepin, Aβ1-42-treated rats showed markedly lower escape latency and higher platform-finding strategy score. Low doses of doxepin significantly reversed the effects of Aβ1-42 on the protein expression levels of PSD-95, synapsin 1, p-AKT and p-mTOR in rats.   In vitro experiment showed the consistent results. Besides, PI3K inhibitor (LY294002 treatment could markedly reversed the effects of doxepin on Aβ1-42-treated SH-SY5Y cells. Conclusion: Our results demonstrated that doxepin could protect against the Aβ1-42-induced memory impairment in rats. The protective effect of doxepin was associated with the enhancement of PSD-95 and synapsin 1 expression via PI3K/AKT/mTOR signaling pathway.

  9. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.


    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper

  10. Correlation between videogame mechanics and executive functions through EEG analysis. (United States)

    Mondéjar, Tania; Hervás, Ramón; Johnson, Esperanza; Gutierrez, Carlos; Latorre, José Miguel


    This paper addresses a different point of view of videogames, specifically serious games for health. This paper contributes to that area with a multidisciplinary perspective focus on neurosciences and computation. The experiment population has been pre-adolescents between the ages of 8 and 12 without any cognitive issues. The experiment consisted in users playing videogames as well as performing traditional psychological assessments; during these tasks the frontal brain activity was evaluated. The main goal was to analyse how the frontal lobe of the brain (executive function) works in terms of prominent cognitive skills during five types of game mechanics widely used in commercial videogames. The analysis was made by collecting brain signals during the two phases of the experiment, where the signals were analysed with an electroencephalogram neuroheadset. The validated hypotheses were whether videogames can develop executive functioning and if it was possible to identify which kind of cognitive skills are developed during each kind of typical videogame mechanic. The results contribute to the design of serious games for health purposes on a conceptual level, particularly in support of the diagnosis and treatment of cognitive-related pathologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Antifatigue Functions and Mechanisms of Edible and Medicinal Mushrooms

    Directory of Open Access Journals (Sweden)

    Ping Geng


    Full Text Available Fatigue is the symptom of tiredness caused by physical and/or psychological stresses. As fatigue is becoming a serious problem in the modern society affecting human health, work efficiency, and quality of life, effective antifatigue remedies other than pharmacological drugs or therapies are highly needed. Mushrooms have been widely used as health foods, because of their various bioactive constituents such as polysaccharides, proteins, vitamins, minerals, and dietary fiber. This paper reviews the major findings from previous studies on the antifatigue effects, the active components of mushrooms, and the possible mechanisms. Many studies have demonstrated the antifatigue effects of edible and medicinal mushrooms. These mushrooms probably mitigate human fatigue through effects on the functional systems, including the muscular, cardiovascular, hormone, and immune system. The bioactive constituents that contribute to the antifatigue effects of mushrooms may include polysaccharides, peptides, nucleosides, phenolic compounds, and triterpenoids. Further research is still needed to identify the active ingredients and to investigate their mechanism of action on the antifatigue effects. Since most previous studies have been carried out in animal models, more human trials should be performed to verify the antifatigue function of edible and medicinal mushrooms.

  12. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad


    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  13. Cognitive mechanisms underlying Armoni: a computer-assisted cognitive training programme for individuals with intellectual disabilities

    Directory of Open Access Journals (Sweden)

    Claudia Peñaloza


    Full Text Available Although a number of cognitive deficits have been described in individuals with intellectual disabilities (ID, few studies have examined the use of computer-assisted cognitive training programmes in this group of people. This study sought to determine the cognitive mechanisms underlying 16 activities included in Armoni, a computerized cognitive training programme for individuals with ID, in order to validate its use with this population. Fifty adults with ID from four residential care centres in Spain underwent neuropsychological testing tapping attention, verbal memory, visual memory, comprehension, visuoperception, visuoconstruction, naming ability, verbal fluency, verbal reasoning and motor function. In addition, they performed 16 activities included in the Armoni programme. The relationships between cognitive function and the computer-based activities were assessed using Spearman correlations. Stepwise multiple regression analyses were then used to explore how cognitive function predicted the performance of individuals with ID on the programme activities. Most programme activities correlated with visuoconstruction, comprehension and naming ability. Naming ability, visual memory, comprehension and visuoconstruction contributed the most to the predictive models regarding performance on the Armoni activities. Our findings support the validity of Armoni for cognitive training in individuals with ID.

  14. The Brain Mechanisms Underlying the Cognitive Benefits of Bilingualism may be Extraordinarily Difficult to Discover

    Directory of Open Access Journals (Sweden)

    Kenneth R. Paap


    Full Text Available The hypothesis that coordinating two or more languages leads to an enhancement in executive functioning has been intensely studied for the past decade with very mixed results. The purpose of this review and analysis is to consider why it has been (and will continue to be difficult to discover the brain mechanisms underlying any cognitive benefits to bilingualism. Six reasons are discussed: 1 the phenomenon may not actually exist; 2 the cognitive neuroscientists investigating bilingual advantages may have been studying the wrong component of executive functioning; 3 most experiments use risky small numbers of participants and are underpowered; 4 the neural differences between groups do not align with the behavioral differences; 5 neural differences sometimes suffer from valence ambiguity, that is, disagreements whether “more” implies better or worse functioning and 6 neural differences often suffer from kind ambiguity, that is, disagreements regarding what type of mental events the pattern of activation in a region-of-interest actually reflects.

  15. Biogenetic mechanisms predisposing to complex phenotypes in parents may function differently in their children

    DEFF Research Database (Denmark)

    Kulminski, Alexander M; Arbeev, Konstantin G; Christensen, Kaare


    This study focuses on the participants of the Long Life Family Study to elucidate whether biogenetic mechanisms underlying relationships among heritable complex phenotypes in parents function in the same way for the same phenotypes in their children. Our results reveal 3 characteristic groups...... of relationships among phenotypes in parents and children. One group composed of 3 pairs of phenotypes confirms that associations among some phenotypes can be explained by the same biogenetic mechanisms working in parents and children. Two other groups including 9 phenotype pairs show that this is not a common......-related processes in changing environment may be conceptually underestimated in current genetic association studies using genome wide resources....

  16. Ubiquitination-dependent mechanisms regulate synaptic growth and function. (United States)

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S


    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  17. Putative molecular mechanism underlying sperm chromatin remodelling is regulated by reproductive hormones

    Directory of Open Access Journals (Sweden)

    Gill-Sharma Manjeet Kaur


    Full Text Available Abstract Background The putative regulatory role of the male reproductive hormones in the molecular mechanism underlying chromatin condensation remains poorly understood. In the past decade, we developed two adult male rat models wherein functional deficits of testosterone or FSH, produced after treatments with 20 mg/Kg/d of cyproterone acetate (CPA per os, for a period of 15 days or 3 mg/Kg/d of fluphenazine decanoate (FD subcutaneously, for a period of 60 days, respectively, affected the rate of sperm chromatin decondensation in vitro. These rat models have been used in the current study in order to delineate the putative roles of testosterone and FSH in the molecular mechanism underlying remodelling of sperm chromatin. Results We report that deficits of both testosterone and FSH affected the turnover of polyubiquitylated histones and led to their accumulation in the testis. Functional deficits of testosterone reduced expression of MIWI, the 5-methyl cap binding RNA-binding protein (PIWIlike murine homologue of the Drosophila protein PIWI/P-element induced wimpy testis containing a PAZ/Piwi-Argonaut-Zwille domain and levels of histone deacetylase1 (HDAC1, ubiquitin ligating enzyme (URE-B1/E3, 20S proteasome α1 concomitant with reduced expression of ubiquitin activating enzyme (ube1, conjugating enzyme (ube2d2, chromodomain Y like protein (cdyl, bromodomain testis specific protein (brdt, hdac6 (histone deacetylase6, androgen-dependent homeobox placentae embryonic protein (pem/RhoX5, histones h2b and th3 (testis-specific h3. Functional deficits of FSH reduced the expression of cdyl and brdt genes in the testis, affected turnover of ubiquitylated histones, stalled the physiological DNA repair mechanism and culminated in spermiation of DNA damaged sperm. Conclusions We aver that deficits of both testosterone and FSH differentially affected the process of sperm chromatin remodelling through subtle changes in the ‘chromatin condensation

  18. Mechanical and Fatigue Properties of Functionally Graded Aluminium Silicon Alloys = (United States)

    Maricel, Chirita Georgel

    Many structural components encounter service conditions and, hence, required materials performance, which vary with location within the component. It is well known that abrupt transitions in materials composition and properties within a component often result in sharp local concentrations of stress, whether the stress is internal or applied externally. It is also known that these stress concentrations are greatly reduced if the transition from one material to the other is made gradual. By definition, functionally graded materials are used to produce components featuring engineered gradual transitions in microstructure and/or composition, the presence of which is motivated by functional performance requirements that vary with location within a part. With functionally graded materials, these requirements are met in a manner that optimizes the overall performance of the component. The research on functionally graded materials (FGMs) is encouraged by the need for properties that are unavailable in any single material and the need for graded properties to offset adverse effects of discontinuities for layered materials. Centrifugal casting is a very common method for obtaining functionally graded materials, mainly composite materials or metallic materials which has high differences of density and low solubility on different phases or different materials of the same alloy. The present work is emphasizing the fact that the centrifugal process could be successfully used for obtaining functionally graded materials also for metallic materials (alloys) with moderate solubility and small differences of density of the different phases, as is the case of most aluminum alloys. The first approach of the problem was to isolate the effects of the centrifugal casting technique (the centrifugal pressure effect, the fluid dynamics and the inherent vibration effects) in order to identify the reason of mechanical properties improving. To have a reference for comparison, castings obtained

  19. Additive impairment of the barrier function by mechanical irritation, occlusion and sodium lauryl sulphate in vivo. (United States)

    Fluhr, J W; Akengin, A; Bornkessel, A; Fuchs, S; Praessler, J; Norgauer, J; Grieshaber, R; Kleesz, P; Elsner, P


    The interaction between potential irritants in the workplace might be important because workers are not usually exposed to a single irritant, but to multiple potentially harmful substances. Physical irritant contact dermatitis caused by friction or mechanical abrasion is a common occupational dermatosis. Prolonged water exposure by occlusion is also common in the workplace. Several studies have revealed the negative effect of the common anionic detergent sodium lauryl sulphate (SLS) on permeability barrier function. To study the additive impairment of permeability barrier function by mechanical irritation combined with 0.5% SLS or prolonged water exposure by occlusion, as models of mild irritation. The volar forearms of 20 healthy volunteers were exposed to mechanical irritation and occlusion with water or 0.5% SLS for four consecutive days in a combined tandem repeated irritation test (TRIT). Permeability barrier function was measured with a Tewameter TM 210. Irritation was assessed with a Chromameter CR 300 and a visual score. Barrier disruption in our model was rated as follows: occlusion with SLS and mechanical irritation > occlusion with SLS > occlusion with water and mechanical irritation > mechanical irritation and occlusion with water > occlusion with a glove and mechanical irritation > mechanical irritation > occlusion with water. Barrier disruption caused by occlusion or mechanical irritation was enhanced by the tandem application. The choice of irritant under occlusion, time of occlusion and order of tandem application all affected the degree of barrier disruption. Evaporimetry was able to detect early stages in the development of an irritant reaction before it became visible. Chromametry was not able to detect this early response. Physical irritants (friction, abrasive grains, occlusion) and detergents such as SLS represent a significant irritation risk and should be minimized, especially when acting together, as shown in our TRIT model.

  20. Mechanisms underlying the production of false memories for famous people's names in aging and Alzheimer's disease. (United States)

    Plancher, Gaën; Guyard, Anne; Nicolas, Serge; Piolino, Pascale


    It is well known that the occurrence of false memories increases with aging, but the results remain inconsistent concerning Alzheimer's disease (AD). Moreover, the mechanisms underlying the production of false memories are still unclear. Using an experimental episodic memory test with material based on the names of famous people in a procedure derived from the DRM paradigm [Roediger, H. L., III, & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory & Cognition, 21, 803-814], we examined correct and false recall and recognition in 30 young adults, 40 healthy older adults, and 30 patients with AD. Moreover, we evaluated the relationships between false memory performance, correct episodic memory performance, and a set of neuropsychological assessments evaluating the semantic memory and executive functions. The results clearly indicated that correct recall and recognition performance decreased with the subjects' age, but it decreased even more with AD. In addition, semantically related false recalls and false recognitions increased with age but not with dementia. On the contrary, non-semantically related false recalls and false recognitions increased with AD. Finally, the regression analyses showed that executive functions mediated related false memories and episodic memory mediated related and unrelated false memories in aging. Moreover, executive functions predicted related and unrelated false memories in AD, and episodic and semantic memory predicted semantically related and unrelated false memories in AD. In conclusion, the results obtained are consistent with the current constructive models of memory suggesting that false memory creation depends on different cognitive functions and, consequently, that the impairments of these functions influence the production of false memories.

  1. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering. (United States)

    Wei, Xin; Li, Dao-bing; Xu, Feng; Wang, Yan; Zhu, Yu-chun; Li, Hong; Wang, Kun-jie


    Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study. This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells. We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition. The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90 ± 1.22)% vs. (93.14 ± 1.78)%, P > 0.05) and bladder smooth muscle cells ((93.41 ± 1.49)% vs. (92.61 ± 1.34)%, P > 0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane. This bioreactor can effectively simulate the physiological and mechanical properties of the bladder. Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth muscle cells, resulting in

  2. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. (United States)

    Jansson, Thomas; Powell, Theresa L


    Adverse influences during fetal life alter the structure and function of distinct cells, organ systems or homoeostatic pathways, thereby 'programming' the individual for an increased risk of developing cardiovascular disease and diabetes in adult life. Fetal programming can be caused by a number of different perturbations in the maternal compartment, such as altered maternal nutrition and reduced utero-placental blood flow; however, the underlying mechanisms remain to be fully established. Perturbations in the maternal environment must be transmitted across the placenta in order to affect the fetus. Here, we review recent insights into how the placenta responds to changes in the maternal environment and discuss possible mechanisms by which the placenta mediates fetal programming. In IUGR (intrauterine growth restriction) pregnancies, the increased placental vascular resistance subjects the fetal heart to increased work load, representing a possible direct link between altered placental structure and fetal programming of cardiovascular disease. A decreased activity of placental 11beta-HSD-2 (type 2 isoform of 11beta-hydroxysteroid dehydrogenase) activity can increase fetal exposure to maternal cortisol, which programmes the fetus for later hypertension and metabolic disease. The placenta appears to function as a nutrient sensor regulating nutrient transport according to the ability of the maternal supply line to deliver nutrients. By directly regulating fetal nutrient supply and fetal growth, the placenta plays a central role in fetal programming. Furthermore, perturbations in the maternal compartment may affect the methylation status of placental genes and increase placental oxidative/nitrative stress, resulting in changes in placental function. Intervention strategies targeting the placenta in order to prevent or alleviate altered fetal growth and/or fetal programming include altering placental growth and nutrient transport by maternally administered IGFs (insulin

  3. Microstructural stress relaxation mechanics in functionally different tendons. (United States)

    Screen, H R C; Toorani, S; Shelton, J C


    Tendons experience widely varying loading conditions in vivo. They may be categorised by their function as either positional tendons, which are used for intricate movements and experience lower stress, or as energy storage tendons which act as highly stressed springs during locomotion. Structural and compositional differences between tendons are thought to enable an optimisation of their properties to suit their functional environment. However, little is known about structure-function relationships in tendon. This study adopts porcine flexor and extensor tendon fascicles as examples of high stress and low stress tendons, comparing their mechanical behaviour at the micro-level in order to understand their stress relaxation response. Stress-relaxation was shown to occur predominantly through sliding between collagen fibres. However, in the more highly stressed flexor tendon fascicles, more fibre reorganisation was evident when the tissue was exposed to low strains. By contrast, the low load extensor tendon fascicles appears to have less capacity for fibre reorganisation or shearing than the energy storage tendon, relying more heavily on fibril level relaxation. The extensor fascicles were also unable to sustain loads without rapid and complete stress relaxation. These findings highlight the need to optimise tendon repair solutions for specific tendons, and match tendon properties when using grafts in tendon repairs. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Potential Mechanisms and Functions of Intermittent Neural Synchronization

    Directory of Open Access Journals (Sweden)

    Sungwoo Ahn


    Full Text Available Neural synchronization is believed to play an important role in different brain functions. Synchrony in cortical and subcortical circuits is frequently variable in time and not perfect. Few long intervals of desynchronized dynamics may be functionally different from many short desynchronized intervals although the average synchrony may be the same. Recent analysis of imperfect synchrony in different neural systems reported one common feature: neural oscillations may go out of synchrony frequently, but primarily for a short time interval. This study explores potential mechanisms and functional advantages of this short desynchronizations dynamics using computational neuroscience techniques. We show that short desynchronizations are exhibited in coupled neurons if their delayed rectifier potassium current has relatively large values of the voltage-dependent activation time-constant. The delayed activation of potassium current is associated with generation of quickly-rising action potential. This “spikiness” is a very general property of neurons. This may explain why very different neural systems exhibit short desynchronization dynamics. We also show how the distribution of desynchronization durations may be independent of the synchronization strength. Finally, we show that short desynchronization dynamics requires weaker synaptic input to reach a pre-set synchrony level. Thus, this dynamics allows for efficient regulation of synchrony and may promote efficient formation of synchronous neural assemblies.

  5. Mechanisms and Functions within a National Innovation System

    Directory of Open Access Journals (Sweden)

    Joseph Gogodze


    Full Text Available In modern society, the competitive success of countries is increasingly dependent on the effective management of their national innovation system (NIS. Therefore, understanding the mechanisms behind NISs has become essential. After reviewing the current understanding of the NIS concept and the existing measurement models, this study proposes to consider the NIS as an intangible (underlying asset of a specific kind and identifies its seven fundamental components, which are extracted with a new measurement model, the Global Innovation Index (GII. This study employs the Structural Equation Modeling (SEM techniques to analyze the relationships among the components of an NIS. Our results support the existence of a causal link between the constituents of an NIS and provide several perspectives regarding NIS management opportunities. In particular, we find that the efficient management of institutional capital is a key determinant of innovation success for non-high-income countries.

  6. Biochemical mechanisms determine the functional compatibility of heterologous genes

    DEFF Research Database (Denmark)

    Porse, Andreas; Schou, Thea S.; Munck, Christian


    Elucidating the factors governing the functional compatibility of horizontally transferred genes is important to understand bacterial evolution, including the emergence and spread of antibiotic resistance, and to successfully engineer biological systems. In silico efforts and work using single-gene...... libraries have suggested that sequence composition is a strong barrier for the successful integration of heterologous genes. Here we sample 200 diverse genes, representing >80% of sequenced antibiotic resistance genes, to interrogate the factors governing genetic compatibility in new hosts. In contrast...... to previous work, we find that GC content, codon usage, and mRNA-folding energy are of minor importance for the compatibility of mechanistically diverse gene products at moderate expression. Instead, we identify the phylogenetic origin, and the dependence of a resistance mechanism on host physiology, as major...

  7. MD 382: Beam Transfer Function and diffusion mechanisms

    CERN Document Server

    Tambasco, Claudia; Buffat, Xavier; Crouch, Matthew; Pieloni, Tatiana; Boccardi, Andrea; Fuchsberger, Kajetan; Gasior, Marek; Kotzian, Gerd; Lefevre, Thibaut; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Giachino, Rossano; CERN. Geneva. ATS Department


    The Beam Transfer Function (BTF) measurements have been previously tested in the LHC during MD block 1 and 2. Different machine configurations (i.e. energy, beam intensity, emittance etc...) have been tested to determine a safe set-up (excitation amplitude) of the system to be completely transparent to the beam (no emittance blow-up neither losses). The aim of this experiment in MD block 3 was to characterize the Stability Diagram (SD) in the presence of diffusion mechanisms induced by excited resonances due to beam-beam long range and Landau octupole interplay. During the experiment, BTF measurements have been acquired at flat top for different settings of Landau octupole current, different chromaticity values and transverse feedback gains. In this note the description of the experiment is presented together with some preliminary results.

  8. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies (United States)

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar


    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  9. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.


    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign

  10. Hsp100/ClpB Chaperone Function and Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Vierling, Elizabeth [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Biochemistry and Molecular Biology


    The supported research investigated the mechanism of action of a unique class of molecular chaperones in higher plants, the Hsp100/ClpB proteins, with the ultimate goal of defining how these chaperones influence plant growth, development, stress tolerance and productivity. Molecular chaperones are essential effectors of cellular “protein quality control”, which comprises processes that ensure the proper folding, localization, activation and turnover of proteins. Hsp100/ClpB proteins are required for temperature acclimation in plants, optimal seed yield, and proper chloroplast development. The model plant Arabidopsis thaliana and genetic and molecular approaches were used to investigate two of the three members of the Hsp100/ClpB proteins in plants, cytosolic AtHsp101 and chloroplast-localized AtClpB-p. Investigating the chaperone activity of the Hsp100/ClpB proteins addresses DOE goals in that this activity impacts how “plants generate and assemble components” as well as “allowing for their self repair”. Additionally, Hsp100/ClpB protein function in plants is directly required for optimal “utilization of biological energy” and is involved in “mechanisms that control the architecture of energy transduction systems”.

  11. Structure, function, and mechanism of cytosolic quinone reductases. (United States)

    Bianchet, Mario A; Erdemli, Sabri Bora; Amzel, L Mario


    Quinone reductases type 1 (QR1) are FAD-containing enzymes that catalyze the reduction of many quinones, including menadione (Vit K3), to hydroquinones using reducing equivalents provided by NAD(P)H. The reaction proceeds with a ping-pong mechanism in which the NAD(P)H and the substrate occupy alternatively overlapping regions of the same binding site and participate in a double hydride transfer: one from NAD(P)H to the FAD of the enzyme, and one from the FADH(2) of the enzyme to the quinone substrate. The main function of QR1 is probably the detoxification of dietary quinones but it may also contribute to the reduction of vitamin K for its involvement in blood coagulation. In addition, the same reaction that QR1 uses in the detoxification of quinones, activates some compounds making them cytotoxic. Since QR1 is elevated in many tumors, this property has encouraged the development of chemotherapeutic compounds that become cytotoxic after reduction by QR1. The structures of QR1 alone, and in complexes with substrates, inhibitors, and chemotherapeutic prodrugs, combined with biochemical and mechanistic studies have provided invaluable insight into the mechanism of the enzyme as well as suggestions for the improvements of the chemotherapeutic prodrugs. Similar information is beginning to accumulate about another related enzyme, QR2.

  12. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure (United States)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.


    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  13. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, L.


    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  14. Dissecting the signaling mechanisms underlying recognition and preference of food odors. (United States)

    Harris, Gareth; Shen, Yu; Ha, Heonick; Donato, Alessandra; Wallis, Samuel; Zhang, Xiaodong; Zhang, Yun


    Food is critical for survival. Many animals, including the nematode Caenorhabditis elegans, use sensorimotor systems to detect and locate preferred food sources. However, the signaling mechanisms underlying food-choice behaviors are poorly understood. Here, we characterize the molecular signaling that regulates recognition and preference between different food odors in C. elegans. We show that the major olfactory sensory neurons, AWB and AWC, play essential roles in this behavior. A canonical Gα-protein, together with guanylate cyclases and cGMP-gated channels, is needed for the recognition of food odors. The food-odor-evoked signal is transmitted via glutamatergic neurotransmission from AWC and through AMPA and kainate-like glutamate receptor subunits. In contrast, peptidergic signaling is required to generate preference between different food odors while being dispensable for the recognition of the odors. We show that this regulation is achieved by the neuropeptide NLP-9 produced in AWB, which acts with its putative receptor NPR-18, and by the neuropeptide NLP-1 produced in AWC. In addition, another set of sensory neurons inhibits food-odor preference. These mechanistic logics, together with a previously mapped neural circuit underlying food-odor preference, provide a functional network linking sensory response, transduction, and downstream receptors to process complex olfactory information and generate the appropriate behavioral decision essential for survival. Copyright © 2014 the authors 0270-6474/14/339389-15$15.00/0.

  15. Microbial Mechanisms Underlying Acidity-induced Reduction in Soil Respiration Under Nitrogen Fertilization (United States)

    Niu, S.; Li, Y.


    Terrestrial ecosystems are receiving increasing amounts of reactive nitrogen (N) due to anthropogenic activities, which largely changes soil respiration and its feedback to climate change. N enrichment can not only increase N availability but also induce soil acidification, both may affect soil microbial activity and root growth with a consequent impact on soil respiration. However, it remains unclear whether elevated N availability or soil acidity has greater impact on soil respiration (Rs). We conducted a manipulative experiment to simulate N enrichment (10 g m-2 yr-1 NH4NO3) and soil acidity (0.552 mol H+ m-2 yr-1 sulfuric acid) and studied their effects on Rs and its components in a temperate forest. Our results showed that soil pH was reduced by 0.2 under N addition or acid addition treatment. Acid addition significantly decreased autotrophic respiration (Ra) and heterotrophic respiration (Rh) by 21.5% and 22.7% in 2014, 34.8% and 21.9% in 2015, respectively, resulting in a reduction of Rs by 22.2% in 2014 and 26.1% in 2015. Nitrogen enrichment reduced Ra, Rh, Rs by 21.9%, 16.2%, 18.6% in 2014 and 22.1%, 5.9%, 11.7% in 2015, respectively. The reductions of Rs and its components were attributable to decrease of fine root biomass, microbial biomass, and cellulose degrading enzymes. N addition did not change microbial community but acid addition increased both fungal and arbuscular mycorrhiza fungi PLFAs, and N plus acid addition significantly enhanced fungal to bacterial ratio. All the hydrolase enzymes were reduced more by soil acidity (43-50%) than nitrogen addition (30-39%). Structural equation model showed that soil acidity played more important role than N availability in reducing soil respiration mainly by changing microbial extracellular enzymes. We therefore suggest that N deposition induced indirect effect of soil acidification on microbial properties is critical and should be taken into account to better understand and predict ecosystem C cycling in

  16. Mechanisms of regulation and diversification of deubiquitylating enzyme function. (United States)

    Leznicki, Pawel; Kulathu, Yogesh


    Deubiquitylating (or deubiquitinating) enzymes (DUBs) are proteases that reverse protein ubiquitylation and therefore modulate the outcome of this post-translational modification. DUBs regulate a variety of intracellular processes, including protein turnover, signalling pathways and the DNA damage response. They have also been linked to a number of human diseases, such as cancer, and inflammatory and neurodegenerative disorders. Although we are beginning to better appreciate the role of DUBs in basic cell biology and their importance for human health, there are still many unknowns. Central among these is the conundrum of how the small number of ∼100 DUBs encoded in the human genome is capable of regulating the thousands of ubiquitin modification sites detected in human cells. This Commentary addresses the biological mechanisms employed to modulate and expand the functions of DUBs, and sets directions for future research aimed at elucidating the details of these fascinating processes.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Exploitation of the host cell ubiquitin machinery by microbial effector proteins' by Yi-Han Lin and Matthias P. Machner ( J. Cell Sci. 130 , 1985-1996). 'Cell scientist to watch - Mads Gyrd-Hansen' ( J. Cell Sci. 130 , 1981-1983). © 2017. Published by The Company of Biologists Ltd.

  17. Titanium dioxide nanoparticle-induced cytotoxicity and the underlying mechanism in mouse myocardial cells (United States)

    Zhou, Yingjun; Hong, Fashui; Wang, Ling


    Exposure to fine particulate matter (PM) is known to cause cardiovascular disease. While extensive research has focused on the risk of atmospheric PM to public health, particularly heart disease, limited studies to date have attempted to clarify the molecular mechanisms underlying myocardial cell damage caused by exposure to titanium dioxide nanoparticles (TiO2 NPs). Data from the current investigation showed that TiO2 NPs are deposited in myocardial mitochondria via the blood circulation accompanied by obvious ultrastructural changes and impairment of mitochondrial structure and function in mouse myocardial cells, including reduction in mitochondrial membrane potential and ATP production, aggravation of oxidative stress along with increased levels of reactive oxygen species, malondialdehyde and protein carbonyl, and decreased glutathione content and enzymatic activities, including superoxide dismutase and glutathione peroxidase. Furthermore, TiO2 NPs induced a significant decrease in the activities of complex I, complex II, complex III, complex IV, succinate dehydrogenase, NADH oxidase, Ca2+-ATPase, Na+/K+-ATPase, and Ca2+/Mg2+-ATPase, and upregulation of cytokine expression (including cytochrome c, caspase-3, and p-JNK) in mitochondria-mediated apoptosis while downregulating Bcl-2 expression in mouse myocardial cells. Our results collectively indicate that chronic exposure to TiO2 NPs induces damage in mitochondrial structure and function as well as mitochondria-mediated apoptosis in mouse myocardial cells, which may be closely associated with heart disease in animals and humans.

  18. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Directory of Open Access Journals (Sweden)

    Tambutte Sylvie


    Full Text Available Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C. The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching and the non stressed states (control were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich. Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress

  19. Pollination ecology of two species of Elleanthus (Orchidaceae): novel mechanisms and underlying adaptations to hummingbird pollination. (United States)

    Nunes, C E P; Amorim, F W; Mayer, J L S; Sazima, M


    Relationships among floral biology, floral micromorphology and pollinator behaviour in bird-pollinated orchids are important issues to understand the evolution of the huge flower diversity within Orchidaceae. We aimed to investigate floral mechanisms underlying the interaction with pollinators in two hummingbird-pollinated orchids occurring in the Atlantic forest. We assessed floral biology, nectar traits, nectary and column micromorphologies, breeding systems and pollinators. In both species, nectar is secreted by lip calli through spaces between the medial lamellar surfaces of epidermal cells. Such a form of floral nectar secretion has not been previously described. Both species present functional protandry and are self-compatible yet pollinator-dependent. Fruit set in hand-pollination experiments was more than twice that under natural conditions, evidencing pollen limitation. The absence of fruit set in interspecific crosses suggests the existence of post-pollination barriers between these sympatric co-flowering species. In Elleanthus brasiliensis, fruits resulting from cross-pollination and natural conditions were heavier than those resulting from self-pollination, suggesting advantages to cross-pollination. Hummingbirds pollinated both species, which share at least one pollinator species. Species differences in floral morphologies led to distinct pollination mechanisms. In E. brasiliensis, attachment of pollinarium to the hummingbird bill occurs through a lever apparatus formed by an appendage in the column, another novelty to our knowledge of orchid pollination. In E. crinipes, pollinarium attachment occurs by simple contact with the bill during insertion into the flower tube, which fits tightly around it. The novelties described here illustrate the overlooked richness in ecology and morphophysiology in Orchidaceae. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may

  1. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions (United States)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan


    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.


    Directory of Open Access Journals (Sweden)

    Iosif TEMPEA


    Full Text Available The paper presents a synthesis of the Double SCARA Robot modelling, leading to an optimal solution, from workspace point of view, as well as precision and stability of the endeffector in performing the planned trajectory. For the design of the final mechanism CATIA software has been used, as well as NASTRAN/PATRAN software, for the mechanism analysis under mechanical and thermal loads.

  3. Left Atrial Mechanical Function and Global Strain in Hypertrophic Cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Kyung-Jin Kim

    Full Text Available Atrial fibrillation is the most common arrhythmia and is associated with adverse outcomes in hypertrophic cardiomyopathy (HCM. Although left atrial (LA remodeling and dysfunction are known to associate with the development of atrial fibrillation in HCM, the changes of the LA in HCM patients remain unclear. This study aimed to evaluate the changes in LA size and mechanical function in HCM patients compared to control subjects and to determine the characteristics of HCM associated with LA remodeling and dysfunction.Seventy-nine HCM patients (mean age, 54 ± 11 years; 76% were men were compared to 79 age- and sex-matched controls (mean age, 54 ± 11 years; 76% were men and 20 young healthy controls (mean age, 33 ± 5 years; 45% were men. The LA diameter, volume, and mechanical function, including global strain (ε, were evaluated by 2D-speckle tracking echocardiography. The phenotype of HCM, maximal left ventricular (LV wall thickness, LV mass, and presence and extent of late gadolinium enhancement (LGE were evaluated with cardiac magnetic resonance imaging.HCM patients showed increased LA volume index, impaired reservoir function, and decreased LA ε compared to the control subjects. When we divided the HCM group according to a maximal LA volume index (LAVImax of 38.7 ml/m2 or LA ε of 21%, no significant differences in the HCM phenotype and maximal LV wall thickness were observed for patients with LAVImax >38.7 ml/m2 or LA ε ≤21%. Conversely, the LV mass index was significantly higher both in patients with maximal LA volume index >38.7 ml/m2 and with LA ε ≤21% and was independently associated with LAVImax and LA ε. Although the LGE extent was increased in patients with LA ε ≤21%, it was not independently associated with either LAVImax or LA ε.HCM patients showed progressed LA remodeling and dysfunction; the determinant of LA remodeling and dysfunction was LV mass index rather than LV myocardial fibrosis by LGE-magnetic resonance

  4. The effects of different size gold nanoparticles on mechanical properties of vascular smooth muscle cells under mechanical stretching (United States)

    Kieu, Tri Minh

    Nanotechnology is an emerging and promising frontier for medicine and biomedical research due to its potential for applications such as drug delivery, imaging enhancement, and cancer treatment. While these materials may possess significant possibilities, the effects of these particles in the body and how the particles affect the cells is not fully understood. In this study, vascular smooth muscle cells (VSMCs) will be exposed to 5 and 20 nm diameter citrate AuNPs under mechanical conditions. The cytotoxicity properties of these particles will be investigated using LDH and MTT assays. Atomic force microscopy will be used to study how the size of the nanoparticles affect the mechanical properties of the VSMCs. Immunofluorescence staining for alpha actin will also be performed to enhance understanding of the phenotypic shift. The LDH and MTT cytotoxicity assay results demonstrated that neither 5 nor 20 nm diameter nanoparticles are cytotoxic to the cells. However, the mechanical properties and cell morphology of the VSMCs was altered. Under static conditions, both AuNP treatments decreased the mechanical properties of the cells. The size of the nanoparticles had a softening effect on elastic modulus of the cell and sign of a synthetic phenotype was observed. The VSMCs subjected to mechanical stretching exhibited higher elastic modulus compared to the static experimental groups. Again, both AuNPs treatments decreased the mechanical properties of the cells and signs of more synthetic phenotype was seen. However, the size of the nanoparticles did not have any influence on cell's elastic modulus unlike the static treated cells. The mechanical testing condition provided a better look at how these particles would affect the cells in vivo. While the nanoparticles are not cytotoxic to the VSMCs, they are altering the mechanical properties and phenotype of the cell.

  5. Pipeline for inferring protein function from dynamics using coarse-grained molecular mechanics forcefield. (United States)

    Bhadra, Pratiti; Pal, Debnath


    Dynamics is integral to the function of proteins, yet the use of molecular dynamics (MD) simulation as a technique remains under-explored for molecular function inference. This is more important in the context of genomics projects where novel proteins are determined with limited evolutionary information. Recently we developed a method to match the query protein's flexible segments to infer function using a novel approach combining analysis of residue fluctuation-graphs and auto-correlation vectors derived from coarse-grained (CG) MD trajectory. The method was validated on a diverse dataset with sequence identity between proteins as low as 3%, with high function-recall rates. Here we share its implementation as a publicly accessible web service, named DynFunc (Dynamics Match for Function) to query protein function from ≥1 µs long CG dynamics trajectory information of protein subunits. Users are provided with the custom-developed coarse-grained molecular mechanics (CGMM) forcefield to generate the MD trajectories for their protein of interest. On upload of trajectory information, the DynFunc web server identifies specific flexible regions of the protein linked to putative molecular function. Our unique application does not use evolutionary information to infer molecular function from MD information and can, therefore, work for all proteins, including moonlighting and the novel ones, whenever structural information is available. Our pipeline is expected to be of utility to all structural biologists working with novel proteins and interested in moonlighting functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Power System Stabilizer Design Based on a Particle Swarm Optimization Multiobjective Function Implemented Under Graphical Interface

    Directory of Open Access Journals (Sweden)

    Ghouraf Djamel Eddine


    Full Text Available Power system stability considered a necessary condition for normal functioning of an electrical network. The role of regulation and control systems is to ensure that stability by determining the essential elements that influence it. This paper proposes a Particle Swarm Optimization (PSO based multiobjective function to tuning optimal parameters of Power System Stabilizer (PSS; this later is used as auxiliary to generator excitation system in order to damp electro mechanicals oscillations of the rotor and consequently improve Power system stability. The computer simulation results obtained by developed graphical user interface (GUI have proved the efficiency of PSS optimized by a Particle Swarm Optimization, in comparison with a conventional PSS, showing stable   system   responses   almost   insensitive   to   large parameter variations.Our present study was performed using a GUI realized under MATLAB in our work.

  7. Functional activity of the rats’ hepatocytes under cancerogenesis

    Directory of Open Access Journals (Sweden)

    V. V. Ivchuk


    Full Text Available Enzymatic activity in rat’s hepatocytes under carcinoma Geuren T8 development as well as after introduction of rhenium compounds and cis-platin were studied. It has been determined that the decrease of enzymatic activity contrary to the control animals has been observed under simultaneous injection of cis-platin and cluster rhenium compounds in a liposome form. That confirms possible hepatoprotective properties of the rhenium compounds.

  8. Volume Fraction Optimization of Functionally Graded Composite Plates for Stress Reduction and Thermo-Mechanical Buckling (United States)

    Na, Kyung-Su; Kim, Ji-Hwan


    The volume fraction optimization of Functionally Graded Material (FGM) composite plate is investigated for stress reduction and thermo-mechanical buckling. Material properties are assumed to be temperature dependent and varied continuously in the thickness direction. The 3-D finite element is adopted using an 18-node solid element to analyze the plate model more accurately for the variation of material properties and temperature field in the thickness direction. Tensile and compressive stress ratios of the structure under mechanical load are evaluated for stress analysis. Temperature at each node is obtained by solving the steady-state heat transfer problem in the thermo-mechanical buckling analysis, and Newton-Raphson method is used for nonlinear analysis. Tensile stress ratios, compressive stress ratios and critical temperatures are analyzed for various thickness ratios and volume fraction distributions in the numerical study. Finally, the optimal design of FGM composite plate is investigated by considering the stress and the critical temperature.

  9. Comparison of mechanical and thermodynamic properties of fcc and bcc titanium under high pressure (United States)

    Zhang, Yongmei; Zhao, Yuhong; Hou, Hua; Wen, Zhiqin; Duan, Meiling


    The mechanical and thermodynamic properties of fcc and bcc Ti have been discussed based on the first-principles calculation combined with the quasi-harmonic Debye model. We find that the bulk modulus B, shear modulus G, Young’s modulus E of fcc Ti are larger, while Poisson’s ratio σ is smaller than that of bcc Ti under the same pressure, which indicates the better mechanical performance of fcc Ti compared with bcc Ti. The values of B/G and σ indicate that mechanically stable fcc structure is much less ductile than the bcc structure, while mechanically metastable fcc structure has better ductility than stable bcc structure under high pressure. The normalized volume, isothermal bulk modulus, heat capacity, volume thermal expansion coefficient and Debye temperature under pressure and temperature for fcc and bcc Ti are predicted.

  10. Microstructure, mechanical and functional properties of NiTi-based shape memory ribbons

    International Nuclear Information System (INIS)

    Mehrabi, K.; Bruncko, M.; Kneissl, A.C.


    Highlights: ► Melt-spun samples exhibited martensite structure and shape memory effects immediately after processing at room temperature. ► Using a new etchant and interference contrast, it is possible to reveal the fine microstructures and grain boundaries. ► The martensite structure in NiTi is very fine, and nano-sized twin boundaries could be revealed using TEM only. ► Two-way effects have been successfully introduced by different thermomechanical training methods in NiTi, NiTiCu and NiTiW alloys, which can be used for several applications, e.g. microsensors and microactuators. - Abstract: The present work has been aimed to study the microstructures, functional properties and the influence of different thermomechanical training methods on the two-way shape memory effect in NiTi-based melt-spun ribbons. In order to get small-dimensioned shape memory alloys (SMAs) with good functional and mechanical properties, a rapid solidification technique was employed. Their fracture and elasticity characteristics have been determined, as well as shape memory properties by thermomechanical cycling. The ribbons were trained under tensile and bending deformation by thermal cycling through the phase transformation temperature range. The results displayed that all different training methods were effective in developing a two-way shape memory effect (TWSME). The influence of copper (5–25 at.% Cu) and tungsten (2 at.% W) on the microstructure, and the functional and mechanical behavior of NiTi thin ribbons was also investigated. All samples show a shape memory effect immediately after processing without further heat treatment. The melt-spun ribbons were trained under constant strain (bending and tensile deformation) by thermal cycling through the phase transformation temperature range. The addition of copper was effective to narrow the transformation hysteresis. The W addition has improved the TWSME stability of the NiTi alloys and mechanical properties. Results about

  11. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties. (United States)

    Shepherd, Jessica G; Joseph, Stephen; Sohi, Saran P; Heal, Kate V


    A multi-technique analysis was performed on a range of biochar materials derived from secondary organic resources and aimed at sustainable recovery and re-use of wastewater phosphorus (P). Our purpose was to identify mechanisms of P capture in biochar and thereby inform its future optimisation as a sustainable P fertiliser. The biochar feedstock comprised pellets of anaerobically digested sewage sludge (PAD) or pellets of the same blended in the ratio 9:1 with ochre sourced from minewater treatment (POCAD), components which have limited alternative economic value. In the present study the feedstocks were pyrolysed at two highest treatment temperatures of 450 and 550 °C. Each of the resulting biochars were repeatedly exposed to a 20 mg l -1 PO 4 -P solution, to produce a parallel set of P-exposed biochars. Biochar exterior and/or interior surfaces were quantitatively characterised using laser-ablation (LA)-ICP-MS, X-ray diffraction, X-ray photo-electron spectroscopy (XPS) and scanning electron microscopy coupled with energy dispersive X-ray. The results highlighted the general importance of Fe minerals in P capture. XPS analysis of POCAD550 indicated lower oxidation state Fe2p3 bonding compared to POCAD450, and LA-ICP-MS indicated stronger covariation of Fe and S, even after P exposure. This suggests that low-solubility Fe/S compounds are formed during pyrolysis, are affected by process parameters and impact on P capture. Other data suggested capture roles for aluminium, calcium and silicon. Overall, our analyses suggest that a range of mechanisms for P capture are concurrently active in biochar. We highlighted the potential to manipulate these through choice of form and composition of feedstock as well as pyrolysis processing, so that biochar may be increasingly tailored towards specific functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Declining resilience of ecosystem functions under biodiversity loss. (United States)

    Oliver, Tom H; Isaac, Nick J B; August, Tom A; Woodcock, Ben A; Roy, David B; Bullock, James M


    The composition of species communities is changing rapidly through drivers such as habitat loss and climate change, with potentially serious consequences for the resilience of ecosystem functions on which humans depend. To assess such changes in resilience, we analyse trends in the frequency of species in Great Britain that provide key ecosystem functions--specifically decomposition, carbon sequestration, pollination, pest control and cultural values. For 4,424 species over four decades, there have been significant net declines among animal species that provide pollination, pest control and cultural values. Groups providing decomposition and carbon sequestration remain relatively stable, as fewer species are in decline and these are offset by large numbers of new arrivals into Great Britain. While there is general concern about degradation of a wide range of ecosystem functions, our results suggest actions should focus on particular functions for which there is evidence of substantial erosion of their resilience.

  13. Functional richness: Overview of indices and underlying concepts (United States)

    Legras, G.; Loiseau, N.; Gaertner, J.-C.


    Functional richness, currently defined as the amount of niche space occupied by the species within a community, is one of the three major components of functional diversity. Different indices have been developed in order to quantify this component. However, the range of indices available for assessing functional richness, often mathematically complex and based on different rationales, can cause confusion for field ecologists and lead to misinterpretation of the results obtained. In this context, we have provided the first study exclusively focused on the comparison of the definitions, advantages and drawbacks of a large set of functional richness indices. The first part of this work is focused on four indices (FDP&G, FRic, TOP and N-hypervolumes indices) that are currently the most commonly used for assessing functional richness. We have completed our study by including recently developed indices that enable us to take into account the intraspecific trait variability (i.e. FRim index and TDP framework), because there is currently a growing scientific consensus regarding the necessity of including this aspect in the assessment of the functional diversity of communities. We demonstrate that although authors have argued that their index describes the functional richness, each of them describes only part of it, and this part may strongly differ from one index to another. Rather than advocating the general use of a single index and/or systematically avoiding others, our study highlights the need for selecting indices in close relation with the context, the available data and the aims of each study. Such a strategy is an essential preliminary step for preventing misunderstanding and artefactual controversies. Along these lines, we propose some guidelines to help users in selecting the most appropriate indices according both to the facet of functional richness on which they wish to focus and to the characteristics of the available data.

  14. Prediction study on mechanical and thermodynamic properties of orthorhombic Mg2SiO4 under high temperature

    International Nuclear Information System (INIS)

    Zhou, Jianting; Zhang, Hong; Chen, Yue; Shong, Jun; Chen, Zhuo; Yang, Juan; Zheng, Zhou; Wang, Feng


    In this work, based on density functional theory and quasi-harmonic Debye model, mechanical and thermodynamic properties of orthorhombic Mg 2 SiO 4 under high temperature are predicted. We found out that α-Mg 2 SiO 4 is mechanically stable under the condition from about 0 to 74 GPa. Results indicate that the main cause of mechanical instability is high pressure, and the effect caused by high temperature is small. C 11 , C 22 , C 33 , B and v p reduce with temperature just a little and increase with pressure obviously. Mg 2 SiO 4 has excellent resistance to strong compression; however the resistance to shear is unsatisfactory. The C v tends to the Petit and Dulong limit at high temperature under any pressure, and it is proportional to T 3 at extremely low temperature. Pressure has an opposite effect on C v than temperature. The suppressed effect on C v caused by pressure is not obvious under low and very high temperature. Mg 2 SiO 4 has three different thermal expansion coefficients (α) along a-, b- and c-axes, and α a <α c <α b . α increases rapidly at low temperature (about <300 K), and slows down at high temperature. High pressure would greatly suppress expansion caused by temperature. Nevertheless, increasing tendency of α b and α c is still obvious under high pressure, especially α b . All the properties are mainly due to Si–O covalent bonds and their directions

  15. Testing functional trait-based mechanisms underpinning plant responses to grazing and linkages to ecosystem functioning in grasslands (United States)

    Zheng, S. X.; Li, W. H.; Lan, Z. C.; Ren, H. Y.; Wang, K. B.; Bai, Y. F.


    Abundant evidence has shown that grazing alters plant functional traits, ecological strategies, community structure, and ecosystem functioning of grasslands. Few studies, however, have examined how plant responses to grazing are mediated by resource availability and functional group identity. We test functional trait-based mechanisms underlying the responses of different life forms to grazing and linkages to ecosystem functioning along a soil moisture gradient in the Inner Mongolia grassland. A principal component analysis (PCA) based on 9 traits × 276 species matrix showed that the plant size spectrum (i.e., individual biomass), leaf economics spectrum (leaf N content and leaf density), and light competition spectrum (height and stem-leaf biomass ratio) distinguished plant species responses to grazing. The three life forms exhibited differential strategies as indicated by trait responses to grazing. The annuals and biennials adopted grazing-tolerant strategies associated with high growth rate, reflected by high leaf N content and specific leaf area. The perennial grasses exhibited grazing-tolerant strategies associated with great regrowth capacity and high palatability scores, whereas perennial forbs showed grazing-avoidant strategies with short stature and low palatability scores. In addition, the dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization. Grazing increased the relative abundance of perennial forbs with low palatability in the wet and fertile meadow, but it promoted perennial grasses with high palatability in the dry and infertile typical steppe. Our findings suggest that the effects of grazing on plant functional traits are dependent on both the abiotic (e.g., soil moisture) and biotic (e.g., plant functional group identity and composition) factors. Grazing-induced shifts in functional group composition are largely dependent on resource

  16. Mechanical, Thermal and Functional Properties of Green Lightweight Foamcrete

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin


    Full Text Available In recent times, the construction industry has revealed noteworthy attention in the use of lightweight foamcrete as a building material due to its many favourable characteristics such as lighter weight, easy to fabricate, durable and cost effective. Foamcrete is a material consisting of Portland cement paste or cement filler matrix (mortar with a homogeneous pore structure created by introducing air in the form of small bubbles. With a proper control in dosage of foam and methods of production, a wide range of densities (400 – 1600 kg/m 3 of foamcrete can be produced thus providing flexibility for application such as structural elements, partition, insulating materials and filling grades. Foamcrete has so far been applied primarily as a filler material in civil engineering works. However, its good thermal and acoustic performance indicates its strong potential as a material in building construction. The focus of this paper is to classify literature on foamcrete in terms of its mechanical, thermal and functional properties.

  17. Theory of brain function, quantum mechanics and superstrings

    CERN Document Server

    Nanopoulos, Dimitri V.


    Recent developments/efforts to understand aspects of the brain function at the {\\em sub-neural} level are discussed. MicroTubules (MTs) participate in a wide variety of dynamical processes in the cell especially in bioinformation processes such as learning and memory, by possessing a well-known binary error-correcting code with 64 words. In fact, MTs and DNA/RNA are unique cell structures that possess a code system. It seems that the MTs' code system is strongly related to a kind of ``Mental Code" in the following sense. The MTs' periodic paracrystalline structure make them able to support a superposition of coherent quantum states, as it has been recently conjectured by Hameroff and Penrose, representing an external or mental order, for sufficient time needed for efficient quantum computing. Then the quantum superposition collapses spontaneously/dynamically through a new, string-derived mechanism for collapse proposed recently by Ellis, Mavromatos, and myself. At the moment of collapse, organized quantum exo...

  18. Multi-function magnetic jack control drive mechanism

    International Nuclear Information System (INIS)

    Bollinger, L.R.; Crawford, D.C.


    A multi-function magnetic jack control drive mechanism is described for controlling a nuclear reactor comprising: an elongate pressure housing; closely-spaced drive rods located in the pressure housing, the drive rod being connected to a reactor rod which is insertable in a reactor core; electrochemical stationary latch means which are selectively actuatable for holding a respective one of the drive rods stationary with respect to the pressure housing, the plurality of stationary latch means including at least one coil located about the pressure housing; longitudinally spaced electromechanical movable latch means, individually associated with one of the drive rods and each including a base for the drive rod associated therewith, for, when actuated, holding the associated drive rod stationary with respect to the base associated therewith, the movable latch means including an associated coil located about the pressure housing; and longitudinally spaced electromechanical lift means, individually associated with the base, for, when actuated, moving an associated base longitudinally along the pressure housing from a first position to a second position to thereby enable movement of one or more of the other drive rods longitudinally independently of the other drive rods in response to sequential and repeated operation of the electromechanical means, the lift means including an associated coil located about the pressure housing

  19. Mechanical behaviour and microstructural evolution of alloy 800H under biaxial cyclic loading

    International Nuclear Information System (INIS)

    Dolabella Portella, P.; Feng Jiao; Oesterle, W.; Ziebs, J.


    The mechanical behaviour of alloy 800H under biaxial cyclic loading was investigated at room temperature and at 800 C. The low-cycle fatigue experiments were carried out using tubular specimens under axial and torsional loading with constant total equivalent strain amplitude following either proportional or nonproportional loading paths. The cyclic hardening observed under nonproportional loading was clearly higher than that under proportional loading. The extra hardening due to the nonproportional loading path was more pronounced at room temperature. The evolution of the dislocation structure was characterized by transmission electron microscopy of specimens after interrupted fatigue tests. The changes in the dislocation structure and the precipitation phenomena are in accordance with the observed mechanical behaviour of the specimens. Twinning was observed in very few grains of some specimens and does not influence the extra hardening under nonproportional loading, martensite was not detected in any specimen. (orig.)

  20. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death

    KAUST Repository

    Martinez Banderas, Aldo Isaac


    Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects.

  1. Functionalized magnetic nanowires for chemical and magneto-mechanical induction of cancer cell death. (United States)

    Martínez-Banderas, Aldo Isaac; Aires, Antonio; Teran, Francisco J; Perez, Jose Efrain; Cadenas, Jael F; Alsharif, Nouf; Ravasi, Timothy; Cortajarena, Aitziber L; Kosel, Jürgen


    Exploiting and combining different properties of nanomaterials is considered a potential route for next generation cancer therapies. Magnetic nanowires (NWs) have shown good biocompatibility and a high level of cellular internalization. We induced cancer cell death by combining the chemotherapeutic effect of doxorubicin (DOX)-functionalized iron NWs with the mechanical disturbance under a low frequency alternating magnetic field. (3-aminopropyl)triethoxysilane (APTES) and bovine serum albumin (BSA) were separately used for coating NWs allowing further functionalization with DOX. Internalization was assessed for both formulations by confocal reflection microscopy and inductively coupled plasma-mass spectrometry. From confocal analysis, BSA formulations demonstrated higher internalization and less agglomeration. The functionalized NWs generated a comparable cytotoxic effect in breast cancer cells in a DOX concentration-dependent manner, (~60% at the highest concentration tested) that was significantly different from the effect produced by free DOX and non-functionalized NWs formulations. A synergistic cytotoxic effect is obtained when a magnetic field (1 mT, 10 Hz) is applied to cells treated with DOX-functionalized BSA or APTES-coated NWs, (~70% at the highest concentration). In summary, a bimodal method for cancer cell destruction was developed by the conjugation of the magneto-mechanical properties of iron NWs with the effect of DOX producing better results than the individual effects.

  2. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton. (United States)

    Mooney, Luke M; Herr, Hugh M


    Ankle exoskeletons can now reduce the metabolic cost of walking in humans without leg disability, but the biomechanical mechanisms that underlie this augmentation are not fully understood. In this study, we analyze the energetics and lower limb mechanics of human study participants walking with and without an active autonomous ankle exoskeleton previously shown to reduce the metabolic cost of walking. We measured the metabolic, kinetic and kinematic effects of wearing a battery powered bilateral ankle exoskeleton. Six participants walked on a level treadmill at 1.4 m/s under three conditions: exoskeleton not worn, exoskeleton worn in a powered-on state, and exoskeleton worn in a powered-off state. Metabolic rates were measured with a portable pulmonary gas exchange unit, body marker positions with a motion capture system, and ground reaction forces with a force-plate instrumented treadmill. Inverse dynamics were then used to estimate ankle, knee and hip torques and mechanical powers. The active ankle exoskeleton provided a mean positive power of 0.105 ± 0.008 W/kg per leg during the push-off region of stance phase. The net metabolic cost of walking with the active exoskeleton (3.28 ± 0.10 W/kg) was an 11 ± 4 % (p = 0.019) reduction compared to the cost of walking without the exoskeleton (3.71 ± 0.14 W/kg). Wearing the ankle exoskeleton significantly reduced the mean positive power of the ankle joint by 0.033 ± 0.006 W/kg (p = 0.007), the knee joint by 0.042 ± 0.015 W/kg (p = 0.020), and the hip joint by 0.034 ± 0.009 W/kg (p = 0.006). This study shows that the ankle exoskeleton does not exclusively reduce positive mechanical power at the ankle joint, but also mitigates positive power at the knee and hip. Furthermore, the active ankle exoskeleton did not simply replace biological ankle function in walking, but rather augmented the total (biological + exoskeletal) ankle moment and power. This study


    NARCIS (Netherlands)


    This paper examines the extent to which atmospheric CO2 enrichment may influence growth of plant roots and function in terms of uptake of water and nutrients, and carbon allocation towards symbionts. It is concluded that changes in dry matter allocation greatly depend on the experimental conditions

  4. Observations on some renal function indices in dogs under ...

    African Journals Online (AJOL)

    This study was done to evaluate the effect of an increased dose of ketamine on some renal function indices of Ketamine−Xylazine anaesthetised dogs. Five adult female mongrel dogs assigned to two different treatment groups in a randomized cross over design were used for this study. Each of the dogs received either ...

  5. European seaweeds under pressure: Consequences for communities and ecosystem functioning (United States)

    Mineur, Frédéric; Arenas, Francisco; Assis, Jorge; Davies, Andrew J.; Engelen, Aschwin H.; Fernandes, Francisco; Malta, Erik-jan; Thibaut, Thierry; Van Nguyen, Tu; Vaz-Pinto, Fátima; Vranken, Sofie; Serrão, Ester A.; De Clerck, Olivier


    Seaweed assemblages represent the dominant autotrophic biomass in many coastal environments, playing a central structural and functional role in several ecosystems. In Europe, seaweed assemblages are highly diverse systems. The combined seaweed flora of different European regions hold around 1550 species (belonging to nearly 500 genera), with new species continuously uncovered, thanks to the emergence of molecular tools. In this manuscript we review the effects of global and local stressors on European seaweeds, their communities, and ecosystem functioning. Following a brief review on the present knowledge on European seaweed diversity and distribution, and the role of seaweed communities in biodiversity and ecosystem functioning, we discuss the effects of biotic homogenization (invasive species) and global climate change (shifts in bioclimatic zones and ocean acidification) on the distribution of individual species and their effect on the structure and functioning of seaweed communities. The arrival of new introduced species (that already account for 5-10% of the European seaweeds) and the regional extirpation of native species resulting from oceans' climate change are creating new diversity scenarios with undetermined functional consequences. Anthropogenic local stressors create additional disruption often altering dramatically assemblage's structure. Hence, we discuss ecosystem level effects of such stressors like harvesting, trampling, habitat modification, overgrazing and eutrophication that impact coastal communities at local scales. Last, we conclude by highlighting significant knowledge gaps that need to be addressed to anticipate the combined effects of global and local stressors on seaweed communities. With physical and biological changes occurring at unexpected pace, marine phycologists should now integrate and join their research efforts to be able to contribute efficiently for the conservation and management of coastal systems.

  6. The structural, mechanical, and electronic properties of LiAlB{sub 4} under pressure from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Tayran, Ceren; Aydin, Sezgin [Department of Physics, Sciences Faculty, Gazi University, 06500, Ankara (Turkey)


    The structural, elastic, mechanical, and electronic properties of lithium aluminum tetraboride (LiAlB{sub 4}) under hydrostatic pressure have been investigated by using first-principles density functional theory calculations. The effects of pressure on the lattice parameters, volume, and bond lengths are studied. It is indicated from the calculated elastic constants that LiAlB{sub 4} compound is mechanically stable on 0-40 GPa pressure range. And, by means of these elastic constants set, some mechanical properties such as bulk, shear and Young's moduli, and then Poisson's ratio are determined as a function of pressure. Also, the ductile or brittle nature of LiAlB{sub 4} is examined. Additionally, using the first-principles data obtained from the geometry optimizations, the hardness of LiAlB{sub 4} is calculated, and its nature is investigated under pressure. Furthermore, in order to reveal the effects of pressure on the electronic and binding behavior of the compound, band structures, total and partial density of states, charge densities, Mulliken atomic charges, and bond overlap populations are searched as a function of pressure. To check the stability of the compound, phonon dispersion curves are calculated. And, the results are compared with the other convenient borides. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. An investigation of the mechanism underlying teacher aggression : Testing I3 theory and the General Aggression Model

    NARCIS (Netherlands)

    Montuoro, Paul; Mainhard, Tim


    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression

  8. Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke. (United States)

    Bae, Jaehyun; Awad, Louis N; Long, Andrew; O'Donnell, Kathleen; Hendron, Katy; Holt, Kenneth G; Ellis, Terry D; Walsh, Conor J


    Stroke-induced hemiparetic gait is characteristically asymmetric and metabolically expensive. Weakness and impaired control of the paretic ankle contribute to reduced forward propulsion and ground clearance - walking subtasks critical for safe and efficient locomotion. Targeted gait interventions that improve paretic ankle function after stroke are therefore warranted. We have developed textile-based, soft wearable robots that transmit mechanical power generated by off-board or body-worn actuators to the paretic ankle using Bowden cables (soft exosuits) and have demonstrated the exosuits can overcome deficits in paretic limb forward propulsion and ground clearance, ultimately reducing the metabolic cost of hemiparetic walking. This study elucidates the biomechanical mechanisms underlying exosuit-induced reductions in metabolic power. We evaluated the relationships between exosuit-induced changes in the body center of mass (COM) power generated by each limb, individual joint power and metabolic power. Compared with walking with an exosuit unpowered, exosuit assistance produced more symmetrical COM power generation during the critical period of the step-to-step transition (22.4±6.4% more symmetric). Changes in individual limb COM power were related to changes in paretic ( R 2 =0.83, P= 0.004) and non-paretic ( R 2 = 0.73, P= 0.014) ankle power. Interestingly, despite the exosuit providing direct assistance to only the paretic limb, changes in metabolic power were related to changes in non-paretic limb COM power ( R 2 =0.80, P= 0.007), not paretic limb COM power ( P> 0.05). These findings contribute to a fundamental understanding of how individuals post-stroke interact with an exosuit to reduce the metabolic cost of hemiparetic walking. © 2018. Published by The Company of Biologists Ltd.

  9. Do horizontal saccadic eye movements increase interhemispheric coherence? Investigation of a hypothesized neural mechanism underlying EMDR

    Directory of Open Access Journals (Sweden)

    Zoe eSamara


    Full Text Available Series of horizontal saccadic eye movements (EMs are known to improve episodic memory retrieval in healthy adults and to facilitate the processing of traumatic memories in eye-movement desensitization and reprocessing (EMDR therapy. Several authors have proposed that EMs achieve these effects by increasing the functional connectivity of the two brain hemispheres, but direct evidence for this proposal is lacking. The aim of this study was to investigate whether memory enhancement following bilateral EMs is associated with increased interhemispheric coherence in the electroencephalogram (EEG. Fourteen healthy young adults were asked to freely recall lists of studied neutral and emotional words after a series of bilateral EMs and a control procedure. Baseline EEG activity was recorded before and after the EM and control procedures. Phase and amplitude coherence between bilaterally homologous brain areas were calculated for six frequency bands and electrode pairs across the entire scalp. Behavioral analyses showed that participants recalled more emotional (but not neutral words following the EM procedure than following the control procedure. However, the EEG analyses indicated no evidence that the EMs altered participants’ interhemispheric coherence or that improvements in recall were correlated with such changes in coherence. These findings cast doubt on the interhemispheric interaction hypothesis, and therefore may have important implications for future research on the neurobiological mechanism underlying EMDR.

  10. ARHGEF9 mutations in epileptic encephalopathy/intellectual disability: toward understanding the mechanism underlying phenotypic variation. (United States)

    Wang, Jing-Yang; Zhou, Peng; Wang, Jie; Tang, Bin; Su, Tao; Liu, Xiao-Rong; Li, Bing-Mei; Meng, Heng; Shi, Yi-Wu; Yi, Yong-Hong; He, Na; Liao, Wei-Ping


    ARHGEF9 resides on Xq11.1 and encodes collybistin, which is crucial in gephyrin clustering and GABA A receptor localization. ARHGEF9 mutations have been identified in patients with heterogeneous phenotypes, including epilepsy of variable severity and intellectual disability. However, the mechanism underlying phenotype variation is unknown. Using next-generation sequencing, we identified a novel mutation, c.868C > T/p.R290C, which co-segregated with epileptic encephalopathy, and validated its association with epileptic encephalopathy. Further analysis revealed that all ARHGEF9 mutations were associated with intellectual disability, suggesting its critical role in psychomotor development. Three missense mutations in the PH domain were not associated with epilepsy, suggesting that the co-occurrence of epilepsy depends on the affected functional domains. Missense mutations with severe molecular alteration in the DH domain, or located in the DH-gephyrin binding region, or adjacent to the SH3-NL2 binding site were associated with severe epilepsy, implying that the clinical severity was potentially determined by alteration of molecular structure and location of mutations. Male patients with ARHGEF9 mutations presented more severe phenotypes than female patients, which suggests a gene-dose effect and supports the pathogenic role of ARHGEF9 mutations. This study highlights the role of molecular alteration in phenotype expression and facilitates evaluation of the pathogenicity of ARHGEF9 mutations in clinical practice.

  11. Circulatory mechanisms underlying adaptive increases in thermogenic capacity in high-altitude deer mice. (United States)

    Tate, Kevin B; Ivy, Catherine M; Velotta, Jonathan P; Storz, Jay F; McClelland, Grant B; Cheviron, Zachary A; Scott, Graham R


    We examined the circulatory mechanisms underlying adaptive increases in thermogenic capacity in deer mice ( Peromyscus maniculatus ) native to the cold hypoxic environment at high altitudes. Deer mice from high- and low-altitude populations were born and raised in captivity to adulthood, and then acclimated to normoxia or hypobaric hypoxia (simulating hypoxia at ∼4300 m). Thermogenic capacity [maximal O 2 consumption ( V̇ O 2 ,max ), during cold exposure] was measured in hypoxia, along with arterial O 2 saturation ( S a O 2 ) and heart rate ( f H ). Hypoxia acclimation increased V̇ O 2 ,max by a greater magnitude in highlanders than in lowlanders. Highlanders also had higher S a O 2  and extracted more O 2 from the blood per heartbeat (O 2 pulse= V̇ O 2 ,max / f H ). Hypoxia acclimation increased f H , O 2 pulse and capillary density in the left ventricle of the heart. Our results suggest that adaptive increases in thermogenic capacity involve integrated functional changes across the O 2 cascade that augment O 2 circulation and extraction from the blood. © 2017. Published by The Company of Biologists Ltd.

  12. Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations

    KAUST Repository

    Flynn, Cormac


    Determining the mechanical properties of an individual\\'s skin is important in the fields of pathology, biomedical device design, and plastic surgery. To address this need, we present a finite element model that simulates the skin of the anterior forearm and posterior upper arm under a rich set of three-dimensional deformations. We investigated the suitability of the Ogden and Tong and Fung strain energy functions along with a quasi-linear viscoelastic law. Using non-linear optimization techniques, we found material parameters and in vivo pre-stresses for different volunteers. The model simulated the experiments with errors-of-fit ranging from 13.7 to 21.5%. Pre-stresses ranging from 28 to 92 kPa were estimated. We show that using only in-plane experimental data in the parameter optimization results in a poor prediction of the out-of-plane response. The identifiability of the model parameters, which are evaluated using different determinability criteria, improves by increasing the number of deformation orientations in the experiments. © 2011 Biomedical Engineering Society.

  13. Dysautonomia and its underlying mechanisms in the hypermobility type of Ehlers-Danlos syndrome. (United States)

    De Wandele, Inge; Rombaut, Lies; Leybaert, Luc; Van de Borne, Philippe; De Backer, Tine; Malfait, Fransiska; De Paepe, Anne; Calders, Patrick


    Many non-musculoskeletal complaints in EDS-HT may be related to dysautonomia. This study therefore aims to investigate whether dysautonomia is present and to explore the underlying mechanisms. A total of 39 females with EDS-HT and 35 age-matched controls underwent autonomic function testing. Resting autonomic tone was assessed using heart rate variability (frequency domain) and baroreflex sensitivity analysis (cross correlation). Autonomic reactivity was assessed using the Autonomic Reflex Screen test battery. Factors suspected to contribute to dysautonomia, e.g., neuropathy, medication use, decreased physical activity, depression, pain-induced sympathetic arousal, and connective tissue laxity, were quantified using validated questionnaires, the Beighton score, and measurement of skin extensibility. The EDS-HT group showed autonomic deregulation with increased sympathetic activity at rest and reduced sympathetic reactivity to stimuli. Increased resting activity was indicated by a higher LF/HF ratio compared to controls (1.7 ± 1.23 vs 0.9 ± 0.75, p = 0.002); decreased reactivity by a greater BP fall during valsalva (-19 ± 12 vs -8 ± 10, p dysautonomia in EDS-HT. Further, connective tissue laxity and vasoactive medication use were identified as important factors in aggravating dysautonomia (p Dysautonomia consisting of cardiovascular and sudomotor dysfunction is present in EDS-HT. Neuropathy, connective tissue laxity, and vasoactive medication probably play a role in its development. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. GABAergic effect on resting-state functional connectivity: Dynamics under pharmacological antagonism. (United States)

    Nasrallah, Fatima A; Singh, Kavita Kaur D/O Ranjit; Yeow, Ling Yun; Chuang, Kai-Hsiang


    Resting state functional connectivity MRI measures synchronous activity among brain regions although the mechanisms governing the temporally coherent BOLD signals remain unclear. Recent studies suggest that γ-amino butyric acid (GABA) levels are correlated with functional connectivity. To understand whether changes in GABA transmission alter functional connectivity, we modulated the GABAergic activity by a GABA A receptor antagonist, bicuculline. Resting and evoked electrophysiology and BOLD signals were measured in isoflurane-anesthetized rats under infusion of low-dose bicuculline or vehicle individually. Both somatosensory BOLD activations and evoked potentials induced by forepaw stimulation were increased significantly under bicuculline compared to vehicle, indicating increased excitability. Gradually elevated resting BOLD correlation within and between the somatosensory and visual cortices, as well as between somatosensory and caudate putamen but not within subcortical areas were found with the infusion of bicuculline. Increased cerebral blood flow was observed throughout the cortical and subcortical areas where the receptor density is high, but it didn't correlate with BOLD connectivity except in the primary somatosensory cortex. Furthermore, resting EEG coherence in the alpha and beta bands exhibited consistent change with the BOLD correlation. The increased cortico-cortical and cortico-striatal connectivity without dependence on the receptor distribution indicate that the functional connectivity may be mediated by long-range projection via the cortical and striatal GABAergic inter-neurons. Our results indicate an important role of the GABAergic system on neural and hemodynamic oscillations, which further supports the neuronal basis of functional connectivity MRI and its correlation with neurotransmission. Copyright © 2017 Elsevier Inc. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Grabelnych O.I.


    Full Text Available This article reviews the involvement of the mitochondrial systems, which maintain the balance of cell energy at different stress conditions. It is shown the functioning of the alternative oxidase, free fatty acids, uncoupling proteins, the rotenone-insensitive NAD(PH dehydrogenases, the ADP/ATP-antiporter, the permeability transition pore and ATP-sensitive potassium channel (К+ATP. It is discussed data about physiological role of these systems in plant cell.

  16. How diagnostic tests help to disentangle the mechanisms underlying neuropathic pain symptoms in painful neuropathies. (United States)

    Truini, Andrea; Cruccu, Giorgio


    Neuropathic pain, ie, pain arising directly from a lesion or disease affecting the somatosensory afferent pathway, manifests with various symptoms, the commonest being ongoing burning pain, electrical shock-like sensations, and dynamic mechanical allodynia. Reliable insights into the mechanisms underlying neuropathic pain symptoms come from diagnostic tests documenting and quantifying somatosensory afferent pathway damage in patients with painful neuropathies. Neurophysiological investigation and skin biopsy studies suggest that ongoing burning pain primarily reflects spontaneous activity in nociceptive-fiber pathways. Electrical shock-like sensations presumably arise from high-frequency ectopic bursts generated in demyelinated, nonnociceptive, Aβ fibers. Although the mechanisms underlying dynamic mechanical allodynia remain debatable, normally innocuous stimuli might cause pain by activating spared and sensitized nociceptive afferents. Extending the mechanistic approach to neuropathic pain symptoms might advance targeted therapy for the individual patient and improve testing for new drugs.

  17. Visualization of hot spot formation in energetic materials under periodic mechanical excitation using phosphor thermography (United States)

    Casey, Alex; Fenoglio, Gabriel; Detrinidad, Humberto


    Under mechanical excitation, energy is known to localize within an energetic material resulting in `hot spot' formation. While many formation mechanisms have been proposed, additional insight to heat generation mechanisms, the effect of binder/crystal interfaces, and predication capabilities can be gained by quantifying the initiation and growth of the hot spots. Phosphor thermography is a well established temperature sensing technique wherein an object's temperature is obtained by collecting the temperature dependent luminescence of an optically excited phosphor. Herein, the phosphor thermography technique has been applied to Dow Corning Sylgard® 184/octahydro 1,3,5,7 tetranitro 1,3,5,7 tetrazocine (HMX) composite materials under mechanical excitation in order to visualize the evolution of the temperature field, and thus hot spot formation, within the binder. Funded by AFOSR. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  18. Exercise promotes motor functional recovery in rats with corticospinal tract injury: anti-apoptosis mechanism

    Directory of Open Access Journals (Sweden)

    Ting-ting Hou


    Full Text Available Studies have shown that exercise interventions can improve functional recovery after spinal cord injury, but the mechanism of action remains unclear. To investigate the mechanism, we established a unilateral corticospinal tract injury model in rats by pyramidotomy, and used a single pellet reaching task and horizontal ladder walking task as exercise interventions postoperatively. Functional recovery of forelimbs and forepaws in the rat models was noticeably enhanced after the exercises. Furthermore, TUNEL staining revealed significantly fewer apoptotic cells in the spinal cord of exercised rats, and western blot analysis showed that spinal cord expression of the apoptosis-related protein caspase-3 was significantly lower, and the expression of Bcl-2 was significantly higher, while the expression of Bax was not signifiantly changed after exercise, compared with the non-exercised group. Expression of these proteins decreased with time after injury, towards the levels observed in sham-operated rats, however at 4 weeks postoperatively, caspase-3 expression remained significantly greater than in sham-operated rats. The present findings indicate that a reduction in apoptosis is one of the mechanisms underlying the improvement of functional recovery by exercise interventions after corticospinal tract injury.

  19. A Cross-Cultural Approach to Psychological Mechanisms Underlying Emotional Reactions to Music


    Barradas, Gonçalo


    Music plays a crucial role in everyday life by enabling listeners to seek individual emotional experiences. To explain why such emotions occur, we must understand the underlying process that mediates between surface-level features of the music and aroused emotions. This thesis aimed to investigate how musical emotions are mediated by psychological mechanisms from a cross-cultural perspective. Study I manipulated four mechanisms by selecting ecologically valid pieces of music that featured inf...


    Directory of Open Access Journals (Sweden)

    Василий Вячеславович Рябев


    Full Text Available This article discusses the functions of the civil society in contemporary Russian realias. The purpose is to identify and classify the most important functions of the civil society under the conditions of comprehensive modern Russian modernization. The article presents the author's classification of the functions of the civil society, based on the analysis of significant studies of foreign and Russian researchers. Here is a detailed analysis of each function focused on the most relevant to a modern Russian society, the potential of Russian civil society is revealed dealing with following issues: the institutionalization of the civic activity, the anti-corruption policy, the consolidation of democratic forces, the formation of the legal culture. The conclusions can be used in studies related to the civil society, the specific mechanisms for dealing with current social issues by means of civic participation, presented in this article, may be the object of interest for government institutions.DOI:

  1. Elucidation of the molecular mechanisms underlying adverse reactions associated with a kinase inhibitor using systems toxicology. (United States)

    Amemiya, Takahiro; Honma, Masashi; Kariya, Yoshiaki; Ghosh, Samik; Kitano, Hiroaki; Kurachi, Yoshihisa; Fujita, Ken-Ichi; Sasaki, Yasutsuna; Homma, Yukio; Abernethy, Darrel R; Kume, Haruki; Suzuki, Hiroshi


    Targeted kinase inhibitors are an important class of agents in anticancer therapeutics, but their limited tolerability hampers their clinical performance. Identification of the molecular mechanisms underlying the development of adverse reactions will be helpful in establishing a rational method for the management of clinically adverse reactions. Here, we selected sunitinib as a model and demonstrated that the molecular mechanisms underlying the adverse reactions associated with kinase inhibitors can efficiently be identified using a systems toxicological approach. First, toxicological target candidates were short-listed by comparing the human kinase occupancy profiles of sunitinib and sorafenib, and the molecular mechanisms underlying adverse reactions were predicted by sequential simulations using publicly available mathematical models. Next, to evaluate the probability of these predictions, a clinical observation study was conducted in six patients treated with sunitinib. Finally, mouse experiments were performed for detailed confirmation of the hypothesized molecular mechanisms and to evaluate the efficacy of a proposed countermeasure against adverse reactions to sunitinib. In silico simulations indicated the possibility that sunitinib-mediated off-target inhibition of phosphorylase kinase leads to the generation of oxidative stress in various tissues. Clinical observations of patients and mouse experiments confirmed the validity of this prediction. The simulation further suggested that concomitant use of an antioxidant may prevent sunitinib-mediated adverse reactions, which was confirmed in mouse experiments. A systems toxicological approach successfully predicted the molecular mechanisms underlying clinically adverse reactions associated with sunitinib and was used to plan a rational method for the management of these adverse reactions.

  2. Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity (United States)


    AWARD NUMBER: W81XWH-16-1-0652 TITLE: Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER W81XWH-16-1-0652 Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity 5b. GRANT NUMBER W81XWH...Email addresses:;; ; E-Mail: 5f. WORK UNIT NUMBER 7

  3. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida

    International Nuclear Information System (INIS)

    Novo, Marta; Lahive, Elma; Díez-Ortiz, María; Matzke, Marianne; Morgan, Andrew J.; Spurgeon, David J.; Svendsen, Claus; Kille, Peter


    Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms. - Highlights: • Molecular effects underlying Ag ions and NPs exposure were studied in Eisenia fetida. • Full transcriptomic study of a genetically characterised lineage. • NPs and ions presented a similar toxicodynamic response. • Internalisation of the two Ag forms by different toxicokinetic mechanisms. - Transcriptomic analyses after exposure of earthworms to silver NPs or ions showed a final common toxicodynamic response, but internalisation by different toxicokinetic mechanisms

  4. Identifying serotonergic mechanisms underlying the corticolimbic response to threat in humans

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Hariri, Ahmad R


    A corticolimbic circuit including the amygdala and medial prefrontal cortex (mPFC) plays an important role in regulating sensitivity to threat, which is heightened in mood and anxiety disorders. Serotonin is a potent neuromodulator of this circuit; however, specific serotonergic mechanisms....... Integrating these methodological approaches offers novel opportunities to identify mechanisms through which serotonin signalling contributes to differences in brain function and behaviour, which in turn can illuminate factors that confer risk for illness and inform the development of more effective treatment...

  5. Cannabinoids: reward, dependence, and underlying neurochemical mechanisms--a review of recent preclinical data. (United States)

    Tanda, Gianluigi; Goldberg, Steven R


    Starting with the discovery of an endogenous brain cannabinoid system with specific receptors and endogenous ligands, research in the cannabinoid field has accelerated dramatically over the last 15 years. Cannabis is the most used illicit psychotropic substance in the world but only recently have reliable preclinical models become available for investigating the rewarding and dependence-producing actions of its psychoactive constituent, delta9-tetrahydrocannabinol (THC). The goal of this review is to examine the various animal models currently available that are being used to facilitate our understanding of the rewarding and dependence-producing actions of cannabinoids, which are central to their abuse liability, and of the neurochemical mechanisms that may underlie these actions of cannabinoids. Recent demonstrations that strong and persistent intravenous self-administration behavior can be obtained in squirrel monkeys using a range of THC doses that are in agreement with the total intake and the single doses of THC normally self-administered by humans smoking marijuana cigarettes provides a reliable and direct tool for assessing the reinforcing effects of THC that are central to its abuse liability. In addition, recent demonstrations of persistent intravenous self-administration of synthetic cannabinoid CB1 receptor agonists by rats and mice and the development of genetically modified mice lacking specific cannabinoid receptors provide convenient rodent models for exploring underlying neurochemical mechanisms. Repeated demonstrations in rats that THC and synthetic CB1 agonists can induce conditioned place preferences or aversions, depending on details of dose and spacing, can reduce the threshold for intracranial self-stimulation behavior under certain conditions, and can serve as effective discriminative stimuli for operant behavior provide less direct, but more rapidly established, measures for investigating the rewarding effects of cannabinoids. Finally, there

  6. Model test study of evaporation mechanism of sand under constant atmospheric condition


    CUI, Yu Jun; DING, Wenqi; SONG, Weikang


    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  7. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading


    Khairallah, Fouad


    While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC) under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC), its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC und...

  8. Hippocampal-neocortical functional reorganization underlies children's cognitive development. (United States)

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod


    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  9. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying its Anti-amnesic Activity in Rodents

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro


    Full Text Available Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. This investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities. Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice.  The effect of JB on acetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.  Results: JB was found to produce a signi.cant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a signi.cant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property.  In addition, it increased the defense armory of the brain tissues, as it signi.cantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and hippocampus

  10. The Relationship between Left Atrial Mechanical Function and Functional Capacity in Mitral Stenosis

    Directory of Open Access Journals (Sweden)

    Mücahit Yetim


    correlation with symptomatology is poor.  These findings suggest that there is such a mechanism like Frank Starling in the left atrium. The mild increase in preload ( volume and pressure provides the contiuation of left atrial functions while the additional increase in preload causes destruction of correspondance of contraction between  left atrial myofibrils and thus left atrial disfunction occurs. For this reason  the value of left atrial ejection as a parameter reflecting clinical sypmtomatology   is decreased.  Key words: Mitral stenosis; left atrial function; functional capacity

  11. Biological pathways and genetic mechanisms involved in social functioning

    NARCIS (Netherlands)

    Ordonana, J.R.; Bartels, M.; Boomsma, D.I.; Cella, D.; Mosing, M.; Oliveira, J.R.; Patrick, D.L.; Veenhoven, R.; Wagner, G.G.; Sprangers, M.A.G.


    Purpose: To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants

  12. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.


    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  13. Evolution of fuel rod support under irradiation consequences on the mechanical behavior of fuel assembly

    International Nuclear Information System (INIS)

    Billerey, A.; Bouffioux, P.


    The complete paper follows. According to the fuel management policy in French PWR with respect to high burn-up, the prediction of the mechanical behavior of the irradiated fuel assembly is required as far as excessive deformations of fuel assembly might lead to incomplete Rod Cluster Control Assembly insertion (safety problems) and fretting wear lead to leaking rods (plant operation problems). One of the most important parameter is the evolution of the fuel rod support in the grid cell as it directly governs the mechanical behavior of the fuel assembly and consequently allows to predict the behavior of irradiated structure in terms of (i) axial and lateral deformation (global behavior of the assembly) and (ii) fretting wear (local behavior of the rod). Fuel rod support is provided by a spring-dimple system fixed on the grid. During irradiation, the spring force decreases and a gap between the rod and the spring might open. This phenomenon is due to (i) irradiation-induced stress relaxation for the spring and for the dimples, (ii) grid growth and (iii) reduction of rod diameter. Two models have been developed to predict the behavior of the rod in the grid cell. The first model is able to evaluate the spring force relaxation during irradiation. The second one is able to evaluate the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (i) the creep laws of the grid materials, (ii) the growth law of the grid, (iii) the evolution of rod diameter and (iv) the design of the fuel rod support. The objectives of this paper are to: (i) evaluate the consequences of grid support design modifications on the fretting sensitivity in terms of predicted maximum gap during irradiation and operational time to gap appearance; (ii) evaluate, using a non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the mechanical behavior of the full assembly in terms of axial and

  14. Evolution of fuel rod support under irradiation impact on the mechanical behaviour of fuel assemblies

    International Nuclear Information System (INIS)

    Billerey, Antoine; Waeckel, Nicolas


    New fuel management targets imply to increase fuel assembly discharge burnup. Therefore, the prediction of the mechanical behaviour of the irradiated fuel assembly is essential such as excessive fuel assembly distortion induce incomplete Rod Cluster Control Assembly insertion problems (safety issue) or fuel rod vibration induced wear leading to leaking rods (plant operation problems). Within this framework, one of the most important parameter is the knowledge of the fuel rod support in the grid cell because it directly governs the mechanical behaviour of the fuel assembly and consequently allows to predict the behaviour of irradiated structures in terms of (1) axial and lateral deformation (global behaviour of the assembly) and (2) rod vibration induced wear (local behaviour of the rod). Generally, fuel rod support is provided by a spring-dimple system fixed to the grid. During irradiation, the spring force decreases and a gap between the rod and the spring may occur. This phenomenon is due to (1) stress relieving in the spring and in the dimples, (2) grid growth and (3) reduction of the rod diameter. Two models have been developed to predict the behaviour of the rod in the cell. The first model is dedicated to the evaluation of the spring force relaxation during irradiation. The second one can assess the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (1) the creep laws of the grid materials, (2) the growth law of the grid, (3) the evolution of rod diameter and (4) the design of the fuel rod support. The aim of this paper is to: (1) evaluate the consequences of grid support design modifications on the rod vibration sensitivity in terms of predicted rod to grid maximum gap during irradiation and time in operation with an open rod to grid gap, (2) evaluate, using a linear or non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the overall mechanical

  15. Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats (United States)

    Zhang, Xiao-Yang; Yu, Lei; Zhuang, Qian-Xing; Peng, Shi-Yu; Zhu, Jing-Ning; Wang, Jian-Jun


    Background and Purpose Anti-histaminergic drugs have been widely used in the clinical treatment of vestibular disorders and most studies concentrate on their presynaptic actions. The present study investigated the postsynaptic effect of histamine on medial vestibular nucleus (MVN) neurons and the underlying mechanisms. Experimental Approach Histamine-induced postsynaptic actions on MVN neurons and the corresponding receptor and ionic mechanisms were detected by whole-cell patch-clamp recordings on rat brain slices. The distribution of postsynaptic histamine H1, H2 and H4 receptors was mapped by double and single immunostaining. Furthermore, the expression of mRNAs for H1, H2 and H4 receptors and for subtypes of Na+–Ca2+ exchangers (NCXs) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels was assessed by quantitative real-time RT-PCR. Key Results A marked postsynaptic excitatory effect, co-mediated by histamine H1 and H2 receptors, was involved in the histamine-induced depolarization of MVN neurons. Postsynaptic H1 and H2 rather than H4 receptors were co-localized in the same MVN neurons. NCXs contributed to the inward current mediated by H1 receptors, whereas HCN channels were responsible for excitation induced by activation of H2 receptors. Moreover, NCX1 and NCX3 rather than NCX2, and HCN1 rather than HCN2-4 mRNAs, were abundantly expressed in MVN. Conclusion and Implications NCXs coupled to H1 receptors and HCN channels linked to H2 receptors co-mediate the strong postsynaptic excitatory action of histamine on MVN neurons. These results highlight an active role of postsynaptic mechanisms in the modulation by central histaminergic systems of vestibular functions and suggest potential targets for clinical treatment of vestibular disorders. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit PMID:23713466

  16. Testing of newly developed functional surfaces under pure sliding conditions

    DEFF Research Database (Denmark)

    Godi, Alessandro; Mohaghegh, Kamran; Grønbæk, J.


    -polished counterpart. A number of experiments were carried out at different normal pressures employing for all specimens the same reciprocating movement and the same lubrication. The measured friction forces were plotted against the incremental normal pressure, and the friction coefficients were calculated....... The results comparison showed clearly how employing multifunctional surfaces can reduce friction forces up to 50 % at high normal loads compared to regularly ground or turned surfaces. Friction coefficients approximately equal to 0.12 were found for classically machined surfaces, whereas the values were 0...... the surfaces in an industrial context. In this paper, a number of experimental tests were performed using a novel test rig, called axial sliding test, simulating the contact of surfaces under pure sliding conditions. The aim of the experiments is to evaluate the frictional behavior of a new typology...

  17. A Reversible Photoacid Functioning in PBS Buffer under Visible Light. (United States)

    Abeyrathna, Nawodi; Liao, Yi


    A metastable-state photoacid that can reversibly release a proton in PBS buffer (pH = 7.4) under visible light is reported. The design is based on the dual acid-base property and tautomerization of indazole. The quantum yield was as high as 0.73, and moderate light intensity (10(2) μmol·m(2)·s(-1)) is sufficient for the photoreaction. Reversible pH change of 1.7 units was demonstrated using a 0.1 mM aqueous solution. This type of photoacid is promising for control of proton-transfer processes in physiological conditions and may find applications in biomedical areas.

  18. Smooth conditional distribution function and quantiles under random censorship. (United States)

    Leconte, Eve; Poiraud-Casanova, Sandrine; Thomas-Agnan, Christine


    We consider a nonparametric random design regression model in which the response variable is possibly right censored. The aim of this paper is to estimate the conditional distribution function and the conditional alpha-quantile of the response variable. We restrict attention to the case where the response variable as well as the explanatory variable are unidimensional and continuous. We propose and discuss two classes of estimators which are smooth with respect to the response variable as well as to the covariate. Some simulations demonstrate that the new methods have better mean square error performances than the generalized Kaplan-Meier estimator introduced by Beran (1981) and considered in the literature by Dabrowska (1989, 1992) and Gonzalez-Manteiga and Cadarso-Suarez (1994).

  19. Mechanisms of mechanosensing - mechanosensitive channels, function and re-engineering

    NARCIS (Netherlands)

    Kocer, Armagan


    Sensing and responding to mechanical stimuli is an ancient behavior and ubiquitous to all forms of life. One of its players 'mechanosensitive ion channels' are involved in processes from osmosensing in bacteria to pain in humans. However, the mechanism of mechanosensing is yet to be elucidated. This

  20. Thyroid functional disease: an under-recognized cardiovascular risk factor in kidney disease patients (United States)

    Rhee, Connie M.; Brent, Gregory A.; Kovesdy, Csaba P.; Soldin, Offie P.; Nguyen, Danh; Budoff, Matthew J.; Brunelli, Steven M.; Kalantar-Zadeh, Kamyar


    Thyroid functional disease, and in particular hypothyroidism, is highly prevalent among chronic kidney disease (CKD) and end-stage renal disease (ESRD) patients. In the general population, hypothyroidism is associated with impaired cardiac contractility, endothelial dysfunction, atherosclerosis and possibly higher cardiovascular mortality. It has been hypothesized that hypothyroidism is an under-recognized, modifiable risk factor for the enormous burden of cardiovascular disease and death in CKD and ESRD, but this has been difficult to test due to the challenge of accurate thyroid functional assessment in uremia. Low thyroid hormone levels (i.e. triiodothyronine) have been associated with adverse cardiovascular sequelae in CKD and ESRD patients, but these metrics are confounded by malnutrition, inflammation and comorbid states, and hence may signify nonthyroidal illness (i.e. thyroid functional test derangements associated with underlying ill health in the absence of thyroid pathology). Thyrotropin is considered a sensitive and specific thyroid function measure that may more accurately classify hypothyroidism, but few studies have examined the clinical significance of thyrotropin-defined hypothyroidism in CKD and ESRD. Of even greater uncertainty are the risks and benefits of thyroid hormone replacement, which bear a narrow therapeutic-to-toxic window and are frequently prescribed to CKD and ESRD patients. In this review, we discuss mechanisms by which hypothyroidism adversely affects cardiovascular health; examine the prognostic implications of hypothyroidism, thyroid hormone alterations and exogenous thyroid hormone replacement in CKD and ESRD; and identify areas of uncertainty related to the interplay between hypothyroidism, cardiovascular disease and kidney disease requiring further investigation. PMID:24574542

  1. Functional abnormalities underlying pathological gambling in Parkinson disease. (United States)

    Cilia, Roberto; Siri, Chiara; Marotta, Giorgio; Isaias, Ioannis U; De Gaspari, Danilo; Canesi, Margherita; Pezzoli, Gianni; Antonini, Angelo


    Pathological gambling (PG) may develop in patients with Parkinson disease (PD) during dopamine replacement therapy, but the underlying neural correlates are still unclear. To investigate resting state brain perfusion in PD patients with active PG compared with matched PD controls and healthy controls. Case-control study. Outpatient tertiary clinic. Eleven right-handed PD patients with active PG according to Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) criteria, 40 matched PD controls, and 29 age-matched healthy controls. All the participants underwent resting state brain perfusion single-photon emission computed tomography using technetium TC 99m ethylcysteinate dimer bicisate. All PD subjects were taking dopaminergic medication. Statistical Parametric Mapping was used for data analysis (P<.005, false discovery rate corrected). PD patients with PG showed resting state overactivity in a right hemisphere network that included the orbitofrontal cortex, the hippocampus, the amygdala, the insula, and the ventral pallidum. No areas of perfusion reduction were detected. We found that PD patients with PG have abnormal resting state dysfunction of the mesocorticolimbic network possibly associated with a drug-induced overstimulation of relatively preserved reward-related neuronal systems. These findings support the concept that PG is a "behavioral" addictive disorder.

  2. The maternal brain under stress: Consequences for adaptive peripartum plasticity and its potential functional implications. (United States)

    Slattery, David A; Hillerer, Katharina M


    The peripartum period represents a time during which all mammalian species undergo substantial physiological and behavioural changes, which prepare the female for the demands of motherhood. In addition to behavioural and physiological alterations, numerous brain regions, such as the medial prefrontal cortex, olfactory bulb, medial amygdala and hippocampus are subject to substantial peripartum-associated neuronal, dendritic and synaptic plasticity. These changes, which are temporally- and spatially-distinct, are strongly influenced by gonadal and adrenal hormones, such as estrogen and cortisol/corticosterone, which undergo dramatic fluctuations across this period. In this review, we describe our current knowledge regarding these plasticity changes and describe how stress affects such normal adaptations. Finally, we discuss the mechanisms potentially underlying these neuronal, dendritic and synaptic changes and their functional relevance for the mother and her offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  4. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra


    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  5. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography

    NARCIS (Netherlands)

    Nonnekes, J.H.; Kam, D. de; Geurts, A.C.; Weerdesteijn, V.G.M.; Bloem, B.R.


    Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also

  6. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    Energy Technology Data Exchange (ETDEWEB)

    K. Linga (KL) Murty


    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  7. Cementogenesis is inhibited under a mechanical static compressive force via Piezo1. (United States)

    Zhang, Ying-Ying; Huang, Yi-Ping; Zhao, Hua-Xiang; Zhang, Ting; Chen, Feng; Liu, Yan


    To investigate whether Piezo1, a mechanotransduction gene mediates the cementogenic activity of cementoblasts under a static mechanical compressive force. Murine cementoblasts (OCCM-30) were exposed to a 2.0 g/cm 2 static compressive force for 3, 6, 12, and 24 hours. Then the expression profile of Piezo1 and the cementogenic activity markers osteoprotegerin (Opg), osteopontin (Opn), osteocalcin (Oc), and protein tyrosine phosphataselike member A (Ptpla) were analyzed. Opg, Opn, Oc, and Ptpla expression was further measured after using siRNA to knock down Piezo1. Real-time PCR, Western blot, and cell proliferation assays were performed according to standard procedures. After mechanical stimulation, cell morphology and proliferation did not change significantly. The expression of Piezo1, Opg, Opn, Oc, and Ptpla was significantly decreased, with a high positive correlation between Opg and Piezo1 expression. After Piezo1 knockdown, the expression of Opg, Opn, Oc, and Ptpla was further decreased under mechanical stimulation. Cementogenic activity was inhibited in OCCM-30 cells under static mechanical force, a process that was partially mediated by the decrease of Piezo1. This study provides a new viewpoint of the pathogenesis mechanism of orthodontically induced root resorption and repair.

  8. Large Deflections Mechanical Analysis of a Suspended Single-Wall Carbon Nanotube under Thermoelectrical Loading

    Directory of Open Access Journals (Sweden)

    Assaf Ya'akobovitz


    Full Text Available Following the recent progress in integrating single-wall carbon nanotubes (SWCNTs into silicon-based micro-electromechanical systems (MEMS, new modeling tools are needed to predict their behavior under different loads, including thermal, electrical and mechanical. In the present study, the mechanical behavior of SWCNTs under thermoelectrical loading is analyzed using a large deflection geometrically nonlinear string model. The effect of the resistive heating was found to have a substantial influence on the SWCNTs behavior, including significant enhancement of the strain (up to the millistrains range and buckling due to the thermal expansion. The effect of local buckling sites was also studied and was found to enhance the local strain. The theoretical and numerical results obtained in the present study demonstrate the importance of resistive heating in the analysis of SWCNTs and provide an additional insight into the unique mechanics of suspended SWCNTs.

  9. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions. (United States)

    Derwent, Richard


    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NO x . Photochemical ozone production rates responded differently to 30% NO x and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NO x and VOCs also produced changes in OH. The responses in OH to 30% reductions in NO x and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NO x reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NO x and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NO x and VOC reductions under consideration. The purpose of this paper is to compare predicted ozone responses to NO x and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their

  10. Investigating the Mechanical Function of the Cervix during Pregnancy using Finite Element Models derived from High Resolution 3D MRI (United States)

    Fernandez, M.; House, M.; Jambawalikar, S.; Zork, N.; Vink, J.; Wapner, R.; Myers, K.


    Preterm birth is a strong contributor to perinatal mortality, and preterm infants that survive are at risk for long-term morbidities. During most of pregnancy appropriate mechanical function of the cervix is required to maintain the developing fetus in utero. Premature cervical softening and subsequent cervical shortening are hypothesized to cause preterm birth. Presently, there is a lack of understanding of the structural and material factors that influence the mechanical function of the cervix during pregnancy. In this study we build finite element (FE) models of the pregnant uterus, cervix, and fetal membrane based on magnetic resonance imagining (MRI) data in order to examine the mechanical function of the cervix under the physiologic loading conditions of pregnancy. We calculate the mechanical loading state of the cervix for two pregnant patients: 22 weeks gestational age with a normal cervical length and 28 weeks with a short cervix. We investigate the influence of 1) anatomical geometry 2) cervical material properties, and 3) fetal membrane material properties, including its adhesion properties, on the mechanical loading state of the cervix under physiologically relevant intrauterine pressures. Our study demonstrates that membrane-uterus interaction, cervical material modeling, and membrane mechanical properties are factors that must be deliberately and carefully handled in order to construct a high quality mechanical simulation of pregnancy. PMID:25970655

  11. How Hyperprolactinemia Affects Sexual Function in Patients Under Antipsychotic Treatment. (United States)

    Rubio-Abadal, Elena; Del Cacho, Núria; Saenz-Navarrete, Gerard; Arranz, Belen; Cambra, Rosa-Maria; Cuadras, Daniel; Rodante, Demián; Fehér, Csaba; Roca, Mercedes; Barneda, Vanessa; Usall, Judith


    We aimed to study the relationship between hyperprolactinemia (HPRL) and sexual dysfunction (SED) in a sample of patients being prescribed a dose-stable antipsychotic medication, and to evaluate sex differences in the prevalence of HPRL and SED and their relationship. A cross-sectional study was carried out including patients between 18 and 55 years of age with a psychotic spectrum diagnosis who were attending community mental health services or hospitalized in medium and long stay units. Positive and Negative Syndrome scale, Calgary depression scale for schizophrenia, Personal and Social Performance scale, and Changes in Sexual Functioning questionnaire-short form were administered. Not later than 3 months, a determination of prolactin, follicle-stimulating hormone, luteinizing hormone, estrogen (only in women) and testosterone was performed. A final sample of 101 patients (30 women and 71 men) was recruited. Seventy-two patients (71.3%) showed HPRL. Sexual dysfunction was significantly higher in HPRL patients than in non-HPRL patients (79.17% vs 51.72%) (P = 0.006), and mean prolactin values were significantly higher in case of SED (P = 0.020). No sex differences were found in prevalence of HPRL or SED. Low Personal and Social Performance scale scores and HPRL were factors independently associated with SED, whereas alcohol use was an independent protector factor. In our study, SED was significantly related to HPRL without showing sex differences. Prevalence of HPRL and SED observed was higher than that in previous studies, which should be taken into consideration because these have been associated with higher morbimortality, and noncompliance and relapse, respectively.

  12. Mechanisms of Chromium and Uranium Toxicity in Pseudomonas stutzeri RCH2 Grown under Anaerobic Nitrate-Reducing Conditions. (United States)

    Thorgersen, Michael P; Lancaster, W Andrew; Ge, Xiaoxuan; Zane, Grant M; Wetmore, Kelly M; Vaccaro, Brian J; Poole, Farris L; Younkin, Adam D; Deutschbauer, Adam M; Arkin, Adam P; Wall, Judy D; Adams, Michael W W


    Chromium and uranium are highly toxic metals that contaminate many natural environments. We investigated their mechanisms of toxicity under anaerobic conditions using nitrate-reducing Pseudomonas stutzeri RCH2, which was originally isolated from a chromium-contaminated aquifer. A random barcode transposon site sequencing library of RCH2 was grown in the presence of the chromate oxyanion (Cr[VI][Formula: see text]) or uranyl oxycation (U[VI][Formula: see text]). Strains lacking genes required for a functional nitrate reductase had decreased fitness as both metals interacted with heme-containing enzymes required for the later steps in the denitrification pathway after nitrate is reduced to nitrite. Cr[VI]-resistance also required genes in the homologous recombination and nucleotide excision DNA repair pathways, showing that DNA is a target of Cr[VI] even under anaerobic conditions. The reduced thiol pool was also identified as a target of Cr[VI] toxicity and psest_2088 , a gene of previously unknown function, was shown to have a role in the reduction of sulfite to sulfide. U[VI] resistance mechanisms involved exopolysaccharide synthesis and the universal stress protein UspA. As the first genome-wide fitness analysis of Cr[VI] and U[VI] toxicity under anaerobic conditions, this study provides new insight into the impact of Cr[VI] and U[VI] on an environmental isolate from a chromium contaminated site, as well as into the role of a ubiquitous protein, Psest_2088.

  13. Mechanisms of Chromium and Uranium Toxicity in Pseudomonas stutzeri RCH2 Grown under Anaerobic Nitrate-Reducing Conditions

    Directory of Open Access Journals (Sweden)

    Michael P. Thorgersen


    Full Text Available Chromium and uranium are highly toxic metals that contaminate many natural environments. We investigated their mechanisms of toxicity under anaerobic conditions using nitrate-reducing Pseudomonas stutzeri RCH2, which was originally isolated from a chromium-contaminated aquifer. A random barcode transposon site sequencing library of RCH2 was grown in the presence of the chromate oxyanion (Cr[VI]O42− or uranyl oxycation (U[VI]O22+. Strains lacking genes required for a functional nitrate reductase had decreased fitness as both metals interacted with heme-containing enzymes required for the later steps in the denitrification pathway after nitrate is reduced to nitrite. Cr[VI]-resistance also required genes in the homologous recombination and nucleotide excision DNA repair pathways, showing that DNA is a target of Cr[VI] even under anaerobic conditions. The reduced thiol pool was also identified as a target of Cr[VI] toxicity and psest_2088, a gene of previously unknown function, was shown to have a role in the reduction of sulfite to sulfide. U[VI] resistance mechanisms involved exopolysaccharide synthesis and the universal stress protein UspA. As the first genome-wide fitness analysis of Cr[VI] and U[VI] toxicity under anaerobic conditions, this study provides new insight into the impact of Cr[VI] and U[VI] on an environmental isolate from a chromium contaminated site, as well as into the role of a ubiquitous protein, Psest_2088.

  14. INSTRUMENTS AND METHODS OF INVESTIGATION: Physical mechanisms underlying the selective removal of atoms (United States)

    Gurovich, Boris A.; Prikhod'ko, Kirill E.


    This paper reviews the current understanding of the selective removal of atoms (SRA), a technique that uses ion irradiation to controllably change the chemical composition and properties of polyatomic materials. The main effects involved and the possible mechanisms that govern the process are discussed. It is shown that SRA holds great promise for manufacturing functional nanoelements.

  15. Comparative transcriptome analyses reveal the genetic basis underlying the immune function of three amphibians' skin. (United States)

    Fan, Wenqiao; Jiang, Yusong; Zhang, Meixia; Yang, Donglin; Chen, Zhongzhu; Sun, Hanchang; Lan, Xuelian; Yan, Fan; Xu, Jingming; Yuan, Wanan


    Skin as the first barrier against external invasions plays an essential role for the survival of amphibians on land. Understanding the genetic basis of skin function is significant in revealing the mechanisms underlying immunity of amphibians. In this study, we de novo sequenced and comparatively analyzed skin transcriptomes from three different amphibian species, Andrias davidianus, Bufo gargarizans, and Rana nigromaculata Hallowell. Functional classification of unigenes in each amphibian showed high accordance, with the most represented GO terms and KEGG pathways related to basic biological processes, such as binding and metabolism and immune system. As for the unigenes, GO and KEGG distributions of conserved orthologs in each species were similar, with the predominantly enriched pathways including RNA polymerase, nucleotide metabolism, and defense. The positively selected orthologs in each amphibian were also similar, which were primarily involved in stimulus response, cell metabolic, membrane, and catalytic activity. Furthermore, a total of 50 antimicrobial peptides from 26 different categories were identified in the three amphibians, and one of these showed high efficiency in inhibiting the growth of different bacteria. Our understanding of innate immune function of amphibian skin has increased basis on the immune-related unigenes, pathways, and antimicrobial peptides in amphibians.

  16. Comparative transcriptome analyses reveal the genetic basis underlying the immune function of three amphibians’ skin (United States)

    Zhang, Meixia; Yang, Donglin; Chen, Zhongzhu; Lan, Xuelian; Yan, Fan; Xu, Jingming; Yuan, Wanan


    Skin as the first barrier against external invasions plays an essential role for the survival of amphibians on land. Understanding the genetic basis of skin function is significant in revealing the mechanisms underlying immunity of amphibians. In this study, we de novo sequenced and comparatively analyzed skin transcriptomes from three different amphibian species, Andrias davidianus, Bufo gargarizans, and Rana nigromaculata Hallowell. Functional classification of unigenes in each amphibian showed high accordance, with the most represented GO terms and KEGG pathways related to basic biological processes, such as binding and metabolism and immune system. As for the unigenes, GO and KEGG distributions of conserved orthologs in each species were similar, with the predominantly enriched pathways including RNA polymerase, nucleotide metabolism, and defense. The positively selected orthologs in each amphibian were also similar, which were primarily involved in stimulus response, cell metabolic, membrane, and catalytic activity. Furthermore, a total of 50 antimicrobial peptides from 26 different categories were identified in the three amphibians, and one of these showed high efficiency in inhibiting the growth of different bacteria. Our understanding of innate immune function of amphibian skin has increased basis on the immune-related unigenes, pathways, and antimicrobial peptides in amphibians. PMID:29267366

  17. Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases. (United States)

    Bocharov, Eduard V; Sharonov, Georgy V; Bocharova, Olga V; Pavlov, Konstantin V


    Among membrane receptors, the single-span receptor protein kinases occupy a broad but specific functional niche determined by distinctive features of the underlying transmembrane signaling mechanisms that are briefly overviewed on the basis of some of the most representative examples, followed by a more detailed discussion of several hierarchical levels of organization and interactions involved. All these levels, including single-molecule interactions (e.g., dimerization, liganding, chemical modifications), local processes (e.g. lipid membrane perturbations, cytoskeletal interactions), and larger scale phenomena (e.g., effects of membrane surface shape or electrochemical potential gradients) appear to be closely integrated to achieve the observed diversity of the receptor functioning. Different species of receptor protein kinases meet their specific functional demands through different structural features defining their responses to stimulation, but certain common patterns exist. Signaling by receptor protein kinases is typically associated with the receptor dimerization and clustering, ligand-induced rearrangements of receptor domains through allosteric conformational transitions with involvement of lipids, release of the sequestered lipids, restriction of receptor diffusion, cytoskeleton and membrane shape remodeling. Understanding of complexity and continuity of the signaling processes can help identifying currently neglected opportunities for influencing the receptor signaling with potential therapeutic implications. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Human Cochlear Mechanical Nonlinearity Inferred via Psychometric Functions

    Directory of Open Access Journals (Sweden)

    Nizami Lance


    Extension of the model of Schairer and colleagues results in credible cochlear nonlinearities in man, suggesting that forward-masking provides a non-invasive way to infer the human mechanical cochlear nonlinearity.

  19. Assessing the Functionality of Mechanisms for Quality Assurance ...

    African Journals Online (AJOL)

    The paper further highlight the problems of quality assurance and the roles NUC, institutions Audit and Research assessment mechanisms towards quality ... design, week internal governance, loss of autonomy an academic freedom, politics, absolute dependence on government, inconsistent policies and mismanagement.

  20. Dilatometer for measurements of linear dimension variations under the effects of temperature, magnetic field and mechanical stress (United States)

    Cherepin, V. T.; Glavatska, N. I.; Glavatsky, I. N.; Gavriljuk, V. G.


    A multi-purpose automated dilatometer has been developed for simultaneous measurements of the expansion/contraction under the effects of magnetic field and/or mechanical stress and/or temperature. The differential capacitive position sensor, operating together with the microprocessor controlled digital transformer bridge, is used as a displacement transducer with the resolution of several tens of nanometres. Measurements are accomplished in the temperature range from -150 to 200 °C. The automatically controlled variation of the applied magnetic field is provided by the electromagnet with the field homogeneity of 0.5×10-5 of the magnetic field strength (maximum 1.1 T). A special controlling system is developed for the automated mechanical loading of the sample under investigation. Some examples of the measurements completed on the magnetic shape memory alloy Ni2MnGa are presented for three cases: (i) strain as a function of the applied magnetic field; (ii) creep under constant magnetic field or mechanical stress; and (iii) phase transformations during heating/cooling with and without the applied magnetic field.

  1. Common mechanism in endothelin-3 and PAF receptor function for anti-inflammatory responses. (United States)

    Sato, Akira; Ebina, Keiichi


    Platelet-activating factor (PAF) is a potent lipid mediator that is implicated in numerous inflammatory diseases. Under inflammatory conditions, PAF is biosynthesized through the remodelling pathway and elicits many inflammatory responses through binding to its specific PAF receptor. Endogenous bioactive endothelins (ETs: ET-1, -2, and -3) are also considered potent inflammatory mediators that play a critical role in many inflammatory diseases. In this perspective, we provide a brief overview of possible common mechanisms in ETs and PAF receptor function for inflammatory responses. Accumulating evidence strongly suggests that ET-3, but not ET-1 and ET-2, can attenuate PAF-induced inflammation through direct binding of the Tyr-Lys-Asp (YKD) region in the peptide to PAF and its metabolite/precursor lyso-PAF, followed by inhibition of binding between PAF and its receptor. Additionally, YKD sequence-containing peptides may be useful as a novel type of anti-inflammatory drugs targeting this mechanism. These findings should lead to new treatment strategies for numerous inflammatory diseases by targeting the common mechanism in ET and PAF receptor function. © 2013 Elsevier B.V. All rights reserved.

  2. Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue (United States)

    Su, Yun-Shuai; Yu, Shu-Rong; Li, Shu-Xin; He, Yan-Ni


    Wind turbine gearbox bearings fail with the service life is much shorter than the designed life. Gearbox bearings are subjected to rolling contact fatigue (RCF) and they are observed to fail due to axial cracking, surface flaking, and the formation of white etching areas (WEAs). The current study reviewed these three typical failure modes. The underlying dominant mechanisms were discussed with emphasis on the formation mechanism of WEAs. Although numerous studies have been carried out, the formation of WEAs remains unclear. The prevailing mechanism of the rubbing of crack faces that generates WEAs was questioned by the authors. WEAs were compared with adiabatic shear bands (ASBs) generated in the high strain rate deformation in terms of microstructural compositions, grain refinement, and formation mechanism. Results indicate that a number of similarities exist between them. However, substantial evidence is required to verify whether or not WEAs and ASBs are the same matters.

  3. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms. (United States)

    Nohe, Christoph; Hertel, Guido


    Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction) and relational mediators (trust in leader, leader-member exchange; LMX) of the positive relationship between transformational leadership and organizational citizenship behavior (OCB). Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall). When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB.

  4. Beneficial effects of dark chocolate on exercise capacity in sedentary subjects: Underlying mechanisms (United States)

    Taub, Pam R.; Ramirez-Sanchez, Israel; Patel, Minal; Higginbotham, Erin; Moreno-Ulloa, Aldo; Román-Pintos, Luis Miguel; Phillips, Paul; Perkins, Guy; Ceballos, Guillermo; Villarreal, Francisco


    In heart failure patients the consumption of (-)-epicatechin ((-)-Epi)-rich cocoa can restore skeletal muscle (SkM) mitochondrial structure and decrease biomarkers of oxidative stress. However, nothing is known about its effects on exercise capacity and underlying mechanisms in normal, sedentary subjects. Twenty normal, sedentary subjects (∼50 years old) were randomized to placebo or dark chocolate (DC) groups and consumed 20 g of the products for 3 months. Subjects underwent before and after treatment, bicycle ergometry to assess VO2 max and work, SkM biopsy to assess changes in mitochondrial density, function and oxidative stress and blood sampling to assess metabolic endpoints. Seventeen subjects completed the trial. In the DC group (n=9), VO2 max increased (17% increase, p=0.056) as well as maximum work (watts) achieved (p=0.026) with no changes with placebo (n=8). The DC group evidenced increases in HDL levels (p=0.005) and decreased triglycerides (p=0.07). With DC, SkM evidenced significant increases in protein levels for LKB1, AMPK and PGC1α and in their active forms (phosphorylated AMPK and LKB1) as well as in citrate synthase activity while no changes were observed in mitochondrial density. With DC, significant increases in SkM reduced glutathione levels and decreases in protein carbonylation were observed. Improvements in maximum work achieved and VO2 max may be due to DC activation of upstream control systems and enhancement of SkM mitochondria efficiency. Larger clinical studies are warranted to confirm these observations. PMID:27491778

  5. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  6. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments (United States)

    Xu, Yuan; Dai, Feng


    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  7. Inspection Mechanism and Experimental Study of Prestressed Reverse Tension Method under PC Beam Bridge Anchorage (United States)

    Peng, Zhang


    the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.

  8. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains. (United States)

    Hu, Ting; Han, Yang; Dong, Jinming


    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  9. Neural Mechanisms Underlying Social Intelligence and Their Relationship with the Performance of Sales Managers

    NARCIS (Netherlands)

    R.C. Dietvorst (Roeland)


    textabstractIdentifying the drivers of salespeople’s performance, strategies and moral behavior have been under the scrutiny of marketing scholars for many years. The functioning of the drivers of salespeople’s behaviors rests on processes going on in the minds of salespeople. However, research to

  10. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Anna Jarosz


    Full Text Available Due to the development of nanotechnology graphene and graphene-based nanomaterials have attracted the most attention owing to their unique physical, chemical, and mechanical properties. Graphene can be applied in many fields among which biomedical applications especially diagnostics, cancer therapy, and drug delivery have been arousing a lot of interest. Therefore it is essential to understand better the graphene-cell interactions, especially toxicity and underlying mechanisms for proper use and development. This review presents the recent knowledge concerning graphene cytotoxicity and influence on different cancer cell lines.

  11. Protein mechanics: a route from structure to function

    Indian Academy of Sciences (India)


    1999 Detoxification of environmental mutagens and carcinogens: structure, mechanism, and evolution of liver epoxide hydrolase;. Proc. Natl. Acad. Sci. USA 96 10637–10642. Bahar I and Jernigan R L 1999 Cooperative fluctuations and subunit communication in tryptophan synthase; Biochemistry. 38 3478–3490.

  12. Lights Off for Arbuscular Mycorrhiza: On Its Symbiotic Functioning under Light Deprivation (United States)

    Konvalinková, Tereza; Jansa, Jan


    Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases—on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore

  13. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue. (United States)

    Beaurepaire, P; Valdebenito, M A; Schuëller, G I; Jensen, H A


    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress.

  14. CISM course on mechanical behaviour of soils under environmentally induced cyclic loads

    CERN Document Server

    Wood, David; Mechanical Behaviour of Soils Under Environmentally Induced Cyclic Loads


    The book gives a comprehensive description of the mechanical response of soils (granular and cohesive materials) under cyclic loading. It provides the geotechnical engineer with the theoretical and analytical tools necessary for the evaluation of settlements developng with time under cyclic, einvironmentally idncued loads (such as wave motion, wind actions, water table level variation) and their consequences for the serviceability and durability of structures such as the shallow or deep foundations used in offshore engineering, caisson beakwaters, ballast and airport pavements and also to interpret monitoring data, obtained from both natural and artificial slopes and earth embankments, for the purposes of risk assessment and mitigation.

  15. PCBs: structure–function relationships and mechanism of action (United States)

    Safe, Stephen; Bandiera, Stelvio; Sawyer, Tom; Robertson, Larry; Safe, Lorna; Parkinson, Andrew; Thomas, Paul E.; Ryan, Dene E.; Reik, Linda M.; Levin, Wayne; Denomme, Mary Anne; Fujita, Toshio


    Numerous reports have illustrated the versatility of polychlorinated biphenyls (PCBs) and related halogenated aromatics as inducers of drug-metabolizing enzymes and the activity of individual compounds are remarkably dependent on structure. The most active PCB congeners, 3,4,4′,5-tetra-, 3,3′,4,4′-tetra-, 3,3′,4,4′,5-penta- and 3,3′,4,4′,5,5′-hexachlorobiphenyl, are substituted at both para and at two or more meta positions. The four coplanar PCBs resembled 3-methylcholanthrene (3-MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) in their mode of induction of the hepatic drug-metabolizing enzymes. These compounds induced rat hepatic microsomal benzo(a)pyrene hydroxylase (aryl hydrocarbon hydroxylase, AHH) and cytochromes P-450a, P-450c and P-450d. 3,4,4′,5-Tetrachlorobiphenyl, the least active coplanar PCB, also induced dimethylaminoantipyrine N-demethylase and cytochromes P-450b+e and resembled Aroclor 1254 as an inducer of the mixed-function oxidase system. Like Aroclor 1254, all the mono-ortho- and at least eight di-ortho-chloro analogs of the coplanar PCBs exhibited a “mixed-type” induction pattern and induced microsomal AHH, dimethylaminoantipyrine NM-demethylase and cytochromes P-450a–P-450e. Quantative structure–activity relationships (QSARs) within this series of PCBs were determined by comparing their AHH induction potencies (EC50) in rat hepatoma H-4-II-E cells and their binding affinities (ED50) for the 2,3,7,8-TCDD cytosolic receptor protein. The results showed that there was an excellent correlation between AHH induction potencies and receptor binding avidities of these compounds and the order of activity was coplanar PCBs (3,3′,4,4′-tetra-, 3,3′,4,4′,5-penta- and 3,3′,4,4′,5,5′-hexachlorobiphenyls) > 3,4,4′,5-tetrachlorobiphenyl ~ mono-ortho coplanar PCBs > di-ortho coplanar PCBs. It was also apparent that the relative toxicities of this group of PCBs paralleled their biological potencies. The

  16. Scientific conception on mechanisms of calcium homeostasis disorders under low dose effect of ionizing radiation

    International Nuclear Information System (INIS)

    Abylaev, Zh.A.; Dospolova, Zh.G.


    Scientific conception of probable consequences of calcium homeostasis disorders in personals, exposed to low dose effect of ionizing radiation has been developed. Principle positions of the conception is that pathologic processes development have different ways of conducting. During predominance of low doses of external gamma-radiation there is leading pathologic mechanism (mechanism 1) of disorder neuroendocrine regulation of both the calcium and the phosphor. In this case sicks have disorders of both the vegetative tonus and the endocrine status. Under internal irradiation (mechanism 2) there is disfunction of organs and systems (bore changes and disorders of hormone status). These changes are considered as consequence of negative action on organism of incorporated long-living radionuclides. Radio-toxic factors action (mechanism 3) provokes the excess of hormones, which acting on bone tissue and could be cause of steroid osteoporosis. Influence of chronic stress factor (mechanism 4) enlarges and burden action on organism of low radiation doses. It is emphasized, that decisive role in development of pathologic processes has mechanism of disturbance of neuroendocrine regulation of calcium exchange

  17. Contact force and mechanical loss of multistage cable under tension and bending (United States)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe


    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  18. From Sound to Significance: Exploring the Mechanisms Underlying Emotional Reactions to Music. (United States)

    Juslin, Patrik N; Barradas, Gonçalo; Eerola, Tuomas


    A common approach to studying emotional reactions to music is to attempt to obtain direct links between musical surface features such as tempo and a listener's responses. However, such an analysis ultimately fails to explain why emotions are aroused in the listener. In this article we explore an alternative approach, which aims to account for musical emotions in terms of a set of psychological mechanisms that are activated by different types of information in a musical event. This approach was tested in 4 experiments that manipulated 4 mechanisms (brain stem reflex, contagion, episodic memory, musical expectancy) by selecting existing musical pieces that featured information relevant for each mechanism. The excerpts were played to 60 listeners, who were asked to rate their felt emotions on 15 scales. Skin conductance levels and facial expressions were measured, and listeners reported subjective impressions of relevance to specific mechanisms. Results indicated that the target mechanism conditions evoked emotions largely as predicted by a multimechanism framework and that mostly similar effects occurred across the experiments that included different pieces of music. We conclude that a satisfactory account of musical emotions requires consideration of how musical features and responses are mediated by a range of underlying mechanisms.

  19. Exact solution for stresses/displacements in a multilayered hollow cylinder under thermo-mechanical loading

    International Nuclear Information System (INIS)

    Yeo, W.H.; Purbolaksono, J.; Aliabadi, M.H.; Ramesh, S.; Liew, H.L.


    In this study, a new analytical solution by the recursive method for evaluating stresses/displacements in multilayered hollow cylinder under thermo-mechanical loading was developed. The results for temperature distribution, displacements and stresses obtained by using the proposed solution were shown to be in good agreement with the FEM results. The proposed analytical solution was also found to produce more accurate results than those by the analytical solution reported in literature. - Highlights: • A new analytical solution for evaluating stresses in multilayered hollow cylinder under thermo-mechanical loading. • A simple computational procedure using a recursive method. • A promising technique for evaluating the operating axial and hoop stresses in pressurized composite vessels.

  20. Behavioral Effects of Upper Respiratory Tract Illnesses: A Consideration of Possible Underlying Cognitive Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrew P. Smith


    Full Text Available Previous research has shown that both experimentally induced upper respiratory tract illnesses (URTIs and naturally occurring URTIs influence mood and performance. The present study investigated possible cognitive mechanisms underlying the URTI-performance changes. Those who developed a cold (N = 47 had significantly faster, but less accurate, performance than those who remained healthy (N = 54. Illness had no effect on manipulations designed to influence encoding, response organisation (stimulus-response compatilibility or response preparation. Similarly, there was no evidence that different components of working memory were impaired. Overall, the present research confirms that URTIs can have an effect on performance efficiency. Further research is required to identify the physiological and behavioral mechanisms underlying these effects.

  1. Development of a novel 3-DOF suspension mechanism for multi-function stylus profiling systems


    Tian, Jia; Tian, Yanling; Guo, Zhiyong; Wang, Fujun; Zhang, Dawei; Liu, Xianping; Shirinzadeh, Bijian


    This paper proposes a novel 3-DOF suspension mechanism for multi-function stylus profiling systems. Incorporating an electromagnetic force actuator, the 3-DOF suspension mechanism provides a controlled loading force. For reasons of the thermal and mechanical stability, a triangular flexure structure is utilized to support the stylus. The stiffness matrix method is used to establish the analytical stiffness model of the 3-DOF suspension mechanism. Considering the 3-DOF suspension mechanism as ...

  2. Physiological mechanisms contributing to increased water-use efficiency in winter wheat under organic fertilization. (United States)

    Wang, Linlin; Wang, Shiwen; Chen, Wei; Li, Hongbing; Deng, Xiping


    Improving the efficiency of resource utilization has received increasing research attention in recent years. In this study, we explored the potential physiological mechanisms underlying improved grain yield and water-use efficiency of winter wheat (Triticum aestivum L.) following organic fertilizer application. Two wheat cultivars, ChangHan58 (CH58) and XiNong9871 (XN9871), were grown under the same nitrogen (N) fertilizer rate (urea-N, CK; and manure plus urea-N, M) and under two watering regimes (WW, well-watered; and WS, water stress) imposed after anthesis. The M fertilizer treatment had a higher Pn and lower gs and Tr than CK under both water conditions, in particular, it significantly increased WRC and Ψw, and decreased EWLR and MDA under WS. Also, the M treatment increased post-anthesis N uptake by 81.4 and 16.4% under WS and WW, thus increasing post-anthesis photosynthetic capacity and delaying leaf senescence. Consequently, the M treatment increased post-anthesis DM accumulation under WS and WW by 51.5 and 29.6%, WUEB by 44.5 and 50.9%, grain number per plant by 11.5 and 12.2% and 1000-grain weight by 7.3 and 3.6%, respectively, compared with CK. The grain yield under M treatment increased by 23 and 15%, and water use efficiency (WUEg) by 25 and 23%, respectively. The increased WUE under organic fertilizer treatment was due to elevated photosynthesis and decreased Tr and gs. Our results suggest that the organic fertilizer treatment enabled plants to use water more efficiently under drought stress.

  3. Investigation on the Charge Loss Mechanisms of Nanoscale Charge Trap Non-Volatile Memory by Using Stretched Exponential Function. (United States)

    Lee, Meng Chuan; Wong, Hin Yong


    Charge loss mechanisms of nanoscale charge trap non-volatile memory devices are carefully examined and studied. Fowler-Nordheim tunnelling mechanism is used to perform rapid program/erase cycling. Based on the good fit of post cycled and baked threshold voltage data to Stretched Exponential function, the lowest point and the peak of Vt distribution were found to evolve in a similar manner that resulted to similar derived Ea. The saturation behaviour of the threshold voltage decay can be predicted and validated through cells' threshold voltage measurements that fit well to Stretched Exponential function. The power law relationship of program/erase cycle count and the saturation behaviour was found to be similar on the device under study and NROM devices that utilizes significant different charge injection mechanisms for program/erase operation. The experimental results also demonstrated that charge injection mechanism is one of the dominant factors in determining the underlying charge loss mechanism. Moreover, the determination of charge loss mechanism depends on the total charges injected through the tunnel oxide layer of ONO stack in NB-CTNVM cell. Physical interpretation of the experimental findings of the dominant charge loss mechanism is deliberated in detail.

  4. Detecting method for crude oil price fluctuation mechanism under different periodic time series

    International Nuclear Information System (INIS)

    Gao, Xiangyun; Fang, Wei; An, Feng; Wang, Yue


    Highlights: • We proposed the concept of autoregressive modes to indicate the fluctuation patterns. • We constructed transmission networks for studying the fluctuation mechanism. • There are different fluctuation mechanism under different periodic time series. • Only a few types of autoregressive modes control the fluctuations in crude oil price. • There are cluster effects during the fluctuation mechanism of autoregressive modes. - Abstract: Current existing literatures can characterize the long-term fluctuation of crude oil price time series, however, it is difficult to detect the fluctuation mechanism specifically under short term. Because each fluctuation pattern for one short period contained in a long-term crude oil price time series have dynamic characteristics of diversity; in other words, there exhibit various fluctuation patterns in different short periods and transmit to each other, which reflects the reputedly complicate and chaotic oil market. Thus, we proposed an incorporated method to detect the fluctuation mechanism, which is the evolution of the different fluctuation patterns over time from the complex network perspective. We divided crude oil price time series into segments using sliding time windows, and defined autoregressive modes based on regression models to indicate the fluctuation patterns of each segment. Hence, the transmissions between different types of autoregressive modes over time form a transmission network that contains rich dynamic information. We then capture transmission characteristics of autoregressive modes under different periodic time series through the structure features of the transmission networks. The results indicate that there are various autoregressive modes with significantly different statistical characteristics under different periodic time series. However, only a few types of autoregressive modes and transmission patterns play a major role in the fluctuation mechanism of the crude oil price, and these

  5. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function


    Kosan, Christian; Godmann, Maren


    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several trans...

  6. Adverse Effects from Clenbuterol and Ractopamine on Nematode Caenorhabditis elegans and the Underlying Mechanism


    Zhuang, Ziheng; Zhao, Yunli; Wu, Qiuli; Li, Min; Liu, Haicui; Sun, Lingmei; Gao, Wei; Wang, Dayong


    In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure ...

  7. Optimal Contract Design for Cooperative Relay Incentive Mechanism under Moral Hazard


    Zhao, Nan; Wu, Minghu; Xiong, Wei; Liu, Cong


    Cooperative relay can effectively improve spectrum efficiency by exploiting the spatial diversity in the wireless networks. However, wireless nodes may acquire different network information with various users’ location and mobility, channels’ conditions, and other factors, which results in asymmetric information between the source and the relay nodes (RNs). In this paper, the relay incentive mechanism between relay nodes and the source is investigated under the asymmetric information. By mode...

  8. Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds


    Kowol, Christian R.; Heffeter, Petra; Miklos, Walter; Gille, Lars; Trondl, Robert; Cappellacci, Loredana; Berger, Walter; Keppler, Bernhard K.


    Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-amino-pyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone a...

  9. A fracture mechanics study of tungsten failure under high heat flux loads

    International Nuclear Information System (INIS)

    Li, Muyuan


    The performance of fusion devices is highly dependent on plasma-facing components. Tungsten is the most promising candidate material for armors in plasma-facing components in ITER and DEMO. However, the brittleness of tungsten below the ductile-to-brittle transition temperature is very critical to the reliability of plasma-facing components. In this work, thermo-mechanical and fracture behaviors of tungsten are predicted numerically under fusion relevant thermal loadings.

  10. The effects and underlying mechanisms of mirror therapy – literature review


    Urška Puh; Sonja Hlebš


    Background: Mirror therapy is a relatively new therapeutic modality, where movement of the unaffected limb is used to facilitate performance of the affected limb. Literature review of clinical studies regarding the effectiveness of mirror therapy in different groups of patients was performed. The review focussed on randomised controlled trials and studies, which explore the underlying mechanisms of mirror therapy. Conclusions: The majority of randomised controlled ...

  11. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates (United States)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  12. Modulating Conscious Movement Intention by Noninvasive Brain Stimulation and the Underlying Neural Mechanisms


    Douglas, Zachary H.; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M.; He, Biyu J.


    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60–70 ms earlier. Slow brain waves recorded ∼2–...

  13. Diffuse and Focal Brain Injury in a Large Animal Model of PTE: Mechanisms Underlying Epileptogenesis (United States)


    Conclusions: A) Contusion injury validation and neuropathology B) Grid electrode development and testing C) Wireless Large Animal Custom Enclosure...In addition, we will test the NF-L and GFAP immunoassay to begin quantification of this biomarkers, as well as collecting serum from the animals pre...AWARD NUMBER: W81XWH-16-1-0675 TITLE: Diffuse and Focal Brain Injury in a Large Animal Model of PTE: Mechanisms Underlying Epileptogenesis

  14. Different intra- and interspecific facilitation mechanisms between two Mediterranean trees under a climate change scenario. (United States)

    Gimeno, Teresa E; Escudero, Adrián; Valladares, Fernando


    In harsh environments facilitation alleviates biotic and abiotic constraints on tree recruitment. Under ongoing drier climate change, we expect facilitation to increase as a driver of coexistence. However, this might not hold under extreme abiotic stress and when the outcome depends on the interaction with other drivers such as altered herbivore pressure due to land use change. We performed a field water-manipulation experiment to quantify the importance of facilitation in two coexisting Mediterranean trees (dominant Juniperus thurifera and coexisting Quercus ilex subsp. ballota) under a climate change scenario. Shifts in canopy dominance favouring Q. ilex could be based on the extension of heterospecific facilitation to the detriment of conspecific alleviation. We found that saplings of both species transplanted under the canopy of nurse trees had greater survival probability, growth and photochemical efficiency. Intra- and interspecific facilitation mechanisms differed: alleviation of abiotic stress benefited both species during summer and J. thurifera during winter, whereas browsing protection was relevant only for Q. ilex. Facilitation was greater under the dry treatment only for Q. ilex, which partially agreed with the predictions of the stress gradient hypothesis. We conclude that present rainfall availability limits neither J. thurifera nor Q. ilex establishment. Nevertheless, under current global change scenarios, imposing increasing abiotic stress together with altered herbivore browsing, nurse trees could differentially facilitate the establishment of Q. ilex due to species-specific traits, i.e. palatability; drought, heat and cold tolerance, underlying species differences in the facilitation mechanisms and eventually triggering a change from pure juniper woodlands to mixed formations.

  15. FInal Report: First Principles Modeling of Mechanisms Underlying Scintillator Non-Proportionality

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sadigh, Babak [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhou, Fei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    This final report presents work carried out on the project “First Principles Modeling of Mechanisms Underlying Scintillator Non-Proportionality” at Lawrence Livermore National Laboratory during 2013-2015. The scope of the work was to further the physical understanding of the microscopic mechanisms behind scintillator nonproportionality that effectively limits the achievable detector resolution. Thereby, crucial quantitative data for these processes as input to large-scale simulation codes has been provided. In particular, this project was divided into three tasks: (i) Quantum mechanical rates of non-radiative quenching, (ii) The thermodynamics of point defects and dopants, and (iii) Formation and migration of self-trapped polarons. The progress and results of each of these subtasks are detailed.

  16. Potential neural mechanisms underlying the effectiveness of early intervention for children with autism spectrum disorder (United States)

    Sullivan, Katherine; Stone, Wendy L.; Dawson, Geraldine


    Although evidence supports the efficacy of early intervention for improving outcomes for children with autism spectrum disorder (ASD), the mechanisms underlying their effectiveness remain poorly understood. This paper reviews the research literature on the neural bases of the early core deficits in ASD and proposes three key features of early intervention related to the neural mechanisms that may contribute to its effectiveness in improving deficit areas. These features include (1) the early onset of intensive intervention which capitalizes on the experience-expectant plasticity of the immature brain, (2) the use of treatment strategies that address core deficits in social motivation through an emphasis on positive social engagement and arousal modulation, and (3) promotion of complex neural networks and connectivity through thematic, multi-sensory and multi-domain teaching approaches. Understanding the mechanisms of effective early intervention will enable us to identify common or foundational active ingredients for promoting optimal outcomes in children with ASD. PMID:25108609

  17. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue. (United States)

    Hara, Yusuke


    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  18. Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Zhou, H.W.; Li, H.Y.; Gui, L.L.


    Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different...... the angle between the fiber direction and the loading vector goes from 0° to 45° (by 2.3–2.6 times), and then slightly increases (when the angle approaches 80–90°). At the low angles between the fiber and the loading vector, fiber buckling and kinking are the main mechanisms of fiber failure....... With increasing the angle between the fiber and applied loading, failure of glass fibers is mainly controlled by shear cracking. For the computational analysis of the damage mechanisms, 3D multifiber unit cell models of GFRP composites and X-FEM approach to the fracture modeling were used. The computational...

  19. Functional (co)polymers from carbenes: scope, mechanism & polymer properties

    NARCIS (Netherlands)

    Franssen, N.M.G.


    Polymerization of carbenes is a valuable alternative to traditional olefin polymerization with regard to the formation of high molecular-weight functional copolymers in a stereoregular way. The versatility of this reaction with respect to different carbene precursors allows the formation of a large

  20. Asymptotic expansions of Mathieu functions in wave mechanics

    International Nuclear Information System (INIS)

    Hunter, G.; Kuriyan, M.


    Solutions of the radial Schroedinger equation containing a polarization potential r -4 are expanded in a form appropriate for large values of r. These expansions of the Mathieu functions are used in association with the numerical solution of the Schroedinger equation to impose the asymptotic boundary condition in the case of bound states, and to extract phase shifts in the case of scattering states

  1. Protein mechanics: a route from structure to function

    Indian Academy of Sciences (India)


    Why do proteins have such varied and complicated structures and how are these structures related to the functions that each protein must perform? Almost 50 years after the first protein structures were solved (Kendrew et al 1958; Perutz 1960), these questions are still very much part of molecular biology. While structures ...

  2. [Progress of researches on mechanism of acupuncture therapy underlying improvement of acute cerebral hemorrhage]. (United States)

    Wang, Fan; Wang, Hai-qiao; Dong, Gui-rong


    In the present paper, the authors review the progress of researches on the mechanism of acupuncture therapy underlying improvement of acute cerebral hemorrhage from experimental studies and research methods. The effects of acupuncture intervention mainly involve (1) lessening inflammatory reactions, (2) reducing impairment of free radicals and excitatory amino acids on cerebral neurons, (3) balancing release of vascular bioactive substances to increase regional cerebral blood flow, and (4) promoting repair and regeneration of the neural tissue, etc. In regard to the research methods, many new biological techniques such as biological molecular approaches, neuro-cellular chemical methods, reverse transcription-polymerase chain reaction (RT-PCR) or quantitative real time-PCR, situ hybridization, western blotting, electron microscope, etc., have been extensively applied to researches on the underlying mechanism of acupuncture therapy for cerebral infarction. In addition, the authors also pointed out that in spite of achieving some bigger progresses in experimental studies, most of the results basically reflect static, isolated and regional changes rather than dynamic and whole body changes. For this reason, more vivo research techniques and noninvasive research methods are highly recommended to be used in the future research on the underlying mechanisms of acupuncture therapy for acute cerebral ischemia.

  3. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47

    DEFF Research Database (Denmark)

    Kamstra, Jorke H; Hruba, Eva; Blumberg, Bruce


    . The mechanisms by which EDCs direct preadipocytes to form adipocytes are poorly understood. Here, we examined transcriptional and epigenetic mechanisms underlying the induction of in vitro adipocyte differentiation by BDE-47. Quantitative high content microscopy revealed concentration-dependent enhanced...

  4. Individual differences in context-dependent effects reveal common mechanisms underlying the direction aftereffect and direction repulsion. (United States)

    McGovern, David P; Walsh, Kevin S; Bell, Jason; Newell, Fiona N


    Both spatial and temporal context influence our perception of visual stimuli. For instance, both nearby moving stimuli and recently viewed motion can lead to biases in the perceived direction of a moving stimulus. Due to similarities in the spatial tuning properties of these spatial and temporal context-dependent effects, it is often assumed that they share a functional goal in motion processing and arise from common neural mechanisms. However, the psychophysical evidence concerning this assumption is inconsistent. Here we used an individual differences approach to examine the relationship between different effects of contextual modulation on perception. We reasoned that if measures of contextual modulation share a common underlying mechanism, they should exhibit a strong positive correlation across participants. To test this hypothesis, estimates of the direction aftereffect, direction repulsion, the tilt aftereffect and contrast adaptation were obtained from 54 healthy participants. Our results show pronounced interindividual differences in the effect sizes of all four tasks. Furthermore, there was a strong positive correlation between the estimates of the direction aftereffect and direction repulsion. This correlation was also evident in the threshold elevations that accompanied these repulsive biases in perceived direction. While the effects of contrast adaptation did not correlate with any of the other tasks, there was a weak, but non-significant, correlation between the direction and tilt aftereffects. These results provide evidence for common mechanisms underlying the direction aftereffect and direction repulsion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The Underlying Mechanism of Preventing Facial Nerve Stimulation by Triphasic Pulse Stimulation in Cochlear Implant Users Assessed With Objective Measure. (United States)

    Bahmer, Andreas; Baumann, Uwe


    Triphasic pulse stimulation prevents from facial nerve stimulation (FNS) because of a different electromyographic input-output function compared with biphasic pulse stimulation. FNS is sometimes observed in cochlear implant users as an unwanted side effect of electrical stimulation of the auditory nerve. The common stimulation applied in current cochlear implant consists of biphasic pulse patterns. Two common clinical remedies to prevent unpleasant FNS caused by activation of certain electrodes are to expand their pulse phase duration or simply deactivate them. Unfortunately, in some patients these methods do not provide sufficient FNS prevention. In these patients triphasic pulse can prevent from FNS. The underlying mechanism is yet unclear. Electromyographic (EMG) recordings of muscles innervated by the facial nerve (musculi orbicularis ori and oculi) were applied to quantitatively assess the effects on FNS. Triphasic and biphasic fitting maps were compared in four subjects with severe FNS. Based on the recordings, a model is presented which intends to explain the beneficial effects of triphasic pulse application. Triphasic stimulation provided by fitting of an OPUS 2 speech processor device. For three patients, EMG was successfully recorded depending on stimulation level up to uncomfortable and intolerable FNS stimulation as upper boarder. The obtained EMG recordings demonstrated high individual variability. However, a difference between the input-output function for biphasic and triphasic pulse stimulation was visually observable. Compared with standard biphasic stimulation, triphasic pulses require higher stimulation levels to elicit an equal amount of FNS, as reflected by EMG amplitudes. In addition, we assume a steeper slope of the input-output function for biphasic pulse stimulation compared with triphasic pulse stimulation. Triphasic pulse stimulation prevents from FNS because of a smaller gradient of EMG input-output function compared with biphasic pulse

  6. Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function

    Directory of Open Access Journals (Sweden)

    William C. Spencer


    Full Text Available The brain serotonin (5-hydroxytryptamine; 5-HT system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory

  7. Functional Catastrophe Analysis of Collapse Mechanism for Shallow Tunnels with Considering Settlement

    Directory of Open Access Journals (Sweden)

    Rui Zhang


    Full Text Available Limit analysis is a practical and meaningful method to predict the stability of geomechanical properties. This work investigates the pore water effect on new collapse mechanisms and possible collapsing block shapes of shallow tunnels with considering the effects of surface settlement. The analysis is performed within the framework of upper bound theorem. Furthermore, the NL nonlinear failure criterion is used to examine the influence of different factors on the collapsing shape and the minimum supporting pressure in shallow tunnels. Analytical solutions derived by functional catastrophe theory for the two different shape curves which describe the distinct characteristics of falling blocks up and down the water level are obtained by virtual work equations under the variational principle. By considering that the mechanical properties of soil are not affected by the presence of underground water, the strength parameters in NL failure criterion can be taken to be the same under and above the water table. According to the numerical results in this work, the influences on the size of collapsing block different parameters have are presented in the tables and the upper bounds on the loads required to resist collapse are derived and illustrated in the form of supporting forces graphs that account for the variation of the embedded depth and other factors.

  8. Fracture mechanics study on stress corrosion cracking behavior under corrosive environment

    International Nuclear Information System (INIS)

    Fujii, Tomoyuki; Tohgo, Keiichiro; Shimamura, Yoshinobu; Ishizuka, Naohiro; Takanashi, Masahiro; Itabashi, Yu; Nakayama, Gen; Sakakibara, Yohei; Hirano, Takashi


    This paper deals with applicability of non-linear fracture mechanics to crack growth by stress corrosion cracking (SCC) under large-scale yielding and in a plastically deformed area. Crack growth test by compact tension specimen is carried out to evaluate crack growth rate under small-scale and large-scale yielding conditions. To evaluate the crack growth behavior from a crack initiated in a plastically deformed area, crack growth test is also carried out for a very short pre-crack in a plastically deformed four-point bending specimen. Conventional stress intensity factor (K) and equivalent stress intensity factor (K J ) defined by J integral are used as fracture mechanics parameters which characterize the crack growth rate. On da/dt-K diagram, a data band shows wide scatter, especially the crack growth rate in a plastically deformed area is higher than that under small-scale yielding condition. On the other hand, da/dt-K J diagram exhibits narrower scatter on a data band than da/dt-K diagram. The equivalent stress intensity factor is appropriate for characterization of crack growth rate by SCC under small-scale yielding through large scale yielding conditions and in a plastically deformed area. (author)

  9. Molecular mechanisms underlying the enhanced analgesic effect of oxycodone compared to morphine in chemotherapy-induced neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Karine Thibault

    Full Text Available Oxycodone is a μ-opioid receptor agonist, used for the treatment of a large variety of painful disorders. Several studies have reported that oxycodone is a more potent pain reliever than morphine, and that it improves the quality of life of patients. However, the neurobiological mechanisms underlying the therapeutic action of these two opioids are only partially understood. The aim of this study was to define the molecular changes underlying the long-lasting analgesic effects of oxycodone and morphine in an animal model of peripheral neuropathy induced by a chemotherapic agent, vincristine. Using a behavioural approach, we show that oxycodone maintains an optimal analgesic effect after chronic treatment, whereas the effect of morphine dies down. In addition, using DNA microarray technology on dorsal root ganglia, we provide evidence that the long-term analgesic effect of oxycodone is due to an up-regulation in GABAB receptor expression in sensory neurons. These receptors are transported to their central terminals within the dorsal horn, and subsequently reinforce a presynaptic inhibition, since only the long-lasting (and not acute anti-hyperalgesic effect of oxycodone was abolished by intrathecal administration of a GABAB receptor antagonist; in contrast, the morphine effect was unaffected. Our study demonstrates that the GABAB receptor is functionally required for the alleviating effect of oxycodone in neuropathic pain condition, thus providing new insight into the molecular mechanisms underlying the sustained analgesic action of oxycodone.

  10. Molecular mechanisms underlying the enhanced analgesic effect of oxycodone compared to morphine in chemotherapy-induced neuropathic pain. (United States)

    Thibault, Karine; Calvino, Bernard; Rivals, Isabelle; Marchand, Fabien; Dubacq, Sophie; McMahon, Stephen B; Pezet, Sophie


    Oxycodone is a μ-opioid receptor agonist, used for the treatment of a large variety of painful disorders. Several studies have reported that oxycodone is a more potent pain reliever than morphine, and that it improves the quality of life of patients. However, the neurobiological mechanisms underlying the therapeutic action of these two opioids are only partially understood. The aim of this study was to define the molecular changes underlying the long-lasting analgesic effects of oxycodone and morphine in an animal model of peripheral neuropathy induced by a chemotherapic agent, vincristine. Using a behavioural approach, we show that oxycodone maintains an optimal analgesic effect after chronic treatment, whereas the effect of morphine dies down. In addition, using DNA microarray technology on dorsal root ganglia, we provide evidence that the long-term analgesic effect of oxycodone is due to an up-regulation in GABAB receptor expression in sensory neurons. These receptors are transported to their central terminals within the dorsal horn, and subsequently reinforce a presynaptic inhibition, since only the long-lasting (and not acute) anti-hyperalgesic effect of oxycodone was abolished by intrathecal administration of a GABAB receptor antagonist; in contrast, the morphine effect was unaffected. Our study demonstrates that the GABAB receptor is functionally required for the alleviating effect of oxycodone in neuropathic pain condition, thus providing new insight into the molecular mechanisms underlying the sustained analgesic action of oxycodone.

  11. Catalytic coupling reaction mechanism of 4-nitrobenzenethiol on silver clusters: a density functional theoretical study. (United States)

    Chen, Xiao; Wei, Wei; Li, Laicai; Liu, Liuxie; Pan, Rui; Tian, Anmin


    The catalytic coupling reaction mechanism of the transformation from 4-nitrobenzenethiol (4-NBT) to 4,4'-dimercaptoazobenzene (4,4'-DMAB) on a silver cluster was studied by density functional theory. Reactants, intermediates, transition states and products were optimized with the B3LYP method using the 6-311 + G(d,p) basis set (Ag using the pseudo potential basis set of LanL2DZ). Transition states and intermediates were confirmed by the corresponding vibration analysis and intrinsic reaction coordinates (IRC). Consistent with literature reports, the key point of the transformation from 4-NBT absorbed on the surface of Ag 5 clusters to 4,4'-DMAB is the elimination of two O atoms on the amino group. Meanwhile, the catalytic coupling reaction of 4-nitrobenzenethiol on a silver cluster is easy to carry out under irradiation. The possibility of "inter system channeling" (ISC) between different potential energy surfaces in the coupling reaction of 4-NBT is further discussed. The irradiation has an auxiliary catalytic effect on the coupling reaction. Our research results can explain the observed experimental phenomena. Graphical abstract Catalytic coupling reaction mechanism of the transformation from 4-nitrothiophenol (4-NBT) to 4,4'-dimercaptoazobenzene (4,4'-DMAB) on silver clusters studied by density functional theory.

  12. New insight into the mechanism of mitochondrial cytochrome c function

    DEFF Research Database (Denmark)

    Chertkova, Rita V; Brazhe, Nadezda A; Bryantseva, Tatiana V


    We investigate functional role of the P76GTKMIFA83 fragment of the primary structure of cytochrome c. Based on the data obtained by the