WorldWideScience

Sample records for underlying desiccation tolerance

  1. Unravelling desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.

    2014-01-01

    How different organisms survive in the absence or under very limited amounts of water is still an open question. The aim of the research presented in this thesis is to explore the molecular basis of desiccation tolerance in seeds. We investigated the possibilities of using germinated desiccation

  2. Sugars and Desiccation Tolerance in Seeds 1

    Science.gov (United States)

    Koster, Karen L.; Leopold, A. Carl

    1988-01-01

    Soluble sugars have been shown to protect liposomes and lobster microsomes from desiccation damage, and a protective role has been proposed for them in several anhydrous systems. We have studied the relationship between soluble sugar content and the loss of desiccation tolerance in the axes of germinating soybean (Glycine max L. Merr. cv Williams), pea (Pisum sativum L. cv Alaska), and corn (Zea mays L. cv Merit) axes. The loss of desiccation tolerance during imbibition was monitored by following the ability of seeds to germinate after desiccation following various periods of preimbibition and by following the rates of electrolyte leakage from dried, then rehydrated axes. Finally, we analyzed the soluble sugar contents of the axes throughout the transition from desiccation tolerance to intolerance. These analyses show that sucrose and larger oligosaccharides were consistently present during the tolerant stage, and that desiccation tolerance disappeared as the oligosaccharides were lost. The results support the idea that sucrose may serve as the principal agent of desiccation tolerance in these seeds, with the larger oligosaccharides serving to keep the sucrose from crystallizing. PMID:16666392

  3. Tolerance to environmental desiccation in moss sperm.

    Science.gov (United States)

    Shortlidge, Erin E; Rosenstiel, Todd N; Eppley, Sarah M

    2012-05-01

    • Sexual reproduction in mosses requires that sperm be released freely into the environment before finding and fertilizing a receptive female. After release from the male plant, moss sperm may experience a range of abiotic stresses; however, few data are available examining stress tolerance of moss sperm and whether there is genetic variation for stress tolerance in this important life stage. • Here, we investigated the effects of environmental desiccation and recovery on the sperm cells of three moss species (Bryum argenteum, Campylopus introflexus, and Ceratodon purpureus). • We found that a fraction of sperm cells were tolerant to environmental desiccation for extended periods (d) and that tolerance did not vary among species. We found that this tolerance occurs irrespective of ambient dehydration conditions, and that the addition of sucrose during dry-down improved cell recovery. Although we observed no interspecific variation, significant variation among individuals within species in sperm cell tolerance to environmental desiccation was observed, suggesting selection could potentially act on this basic reproductive trait. • The observation of desiccation-tolerant sperm in multiple moss species has important implications for understanding bryophyte reproduction, suggesting the presence of a significant, uncharacterized complexity in the ecology of moss mating systems. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  4. In situ FTIR assessment of desiccation-tolerant tissues

    NARCIS (Netherlands)

    Wolkers, W.F.; Hoekstra, F.A.

    2003-01-01

    This essay shows how Fourier transform infrared (FTIR) microspectroscopy can be applied to study thermodynamic parameters and conformation of endogenous biomolecules in desiccation-tolerant biological tissues. Desiccation tolerance is the remarkable ability of some organisms to survive complete

  5. Desiccation tolerance in seeds and plants

    NARCIS (Netherlands)

    Dias Costa, M.C.

    2016-01-01

    The interest of research groups in desiccation tolerance (DT) has increased substantially over the last decades. The emergence of germinated orthodox seeds and resurrection plants as main research models has pushed the limits of our knowledge beyond boundaries. At the same time, new questions and

  6. Desiccation tolerance of Sphagnum revisited: a puzzle resolved.

    Science.gov (United States)

    Hájek, T; Vicherová, E

    2014-07-01

    As ecosystem engineers, Sphagnum mosses control their surroundings through water retention, acidification and peat accumulation. Because water retention avoids desiccation, sphagna are generally intolerant to drought; however, the literature on Sphagnum desiccation tolerance (DT) provides puzzling results, indicating the inducible nature of their DT. To test this, various Sphagnum species and other mesic bryophytes were hardened to drought by (i) slow drying; (ii) ABA application and (iii) chilling or frost. DT tolerance was assessed as recovery of chlorophyll fluorescence parameters after severe desiccation. We monitored the seasonal course of DT in bog bryophytes. Under laboratory conditions, following initial de-hardening, untreated Sphagnum shoots lacked DT; however, DT was induced by all hardening treatments except chilling, notably by slow drying, and in Sphagnum species of the section Cuspidata. In the field, sphagna in hollows and lawns developed DT several times during the growing season, responding to reduced precipitation and a lowered water table. Hummock and aquatic species developed DT only in late autumn, probably as a response to frost. Sphagnum protonemata failed to develop DT; hence, desiccation may limit Sphagnum establishment in drier habitats with suitable substrate chemistry. Desiccation avoiders among sphagna form compact hummocks or live submerged; thus, they do not develop DT in the field, lacking the initial desiccation experience, which is frequent in hollow and lawn habitats. We confirmed the morpho-physiological trade-off: in contrast to typical hollow sphagna, hummock species invest more resources in water retention (desiccation avoidance), while they have a lower ability to develop physiological DT. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Effect of Nitrogen Starvation on Desiccation Tolerance of Arctic Microcoleus Strains (Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Daria eTashyreva

    2015-04-01

    Full Text Available Although desiccation tolerance of Microcoleus species is a well-known phenomenon, there is very little information about their limits of desiccation tolerance in terms of cellular water content, the survival rate of their cells, and the environmental factors inducing their resistance to drying. We have discovered that three Microcoleus strains, isolated from terrestrial habitats of the High Arctic, survived extensive dehydration (to 0.23 g water g-1 dry mass, but did not tolerate complete desiccation (to 0.03 g water g-1 dry mass regardless of pre-desiccation treatments. However, these treatments were critical for the survival of incomplete desiccation: cultures grown under optimal conditions failed to survive even incomplete desiccation; a low temperature enabled only 0 to 15% of cells to survive, while 39.8 to 65.9% of cells remained alive and intact after nitrogen starvation. Unlike Nostoc, which co-exists with Microcoleus in Arctic terrestrial habitats, Microcoleus strains are not truly anhydrobiotic and do not possess constitutive desiccation tolerance. Instead, it seems that the survival strategy of Microcoleus in periodically dry habitats involves avoidance of complete desiccation, but tolerance to milder desiccation stress, which is induced by suboptimal conditions (e.g. nitrogen starvation.

  8. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    Science.gov (United States)

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The role of macromolecular stability in desiccation tolerance

    NARCIS (Netherlands)

    Wolkers, W.F.

    1998-01-01

    The work presented in this thesis concerns a study on the molecular interactions that play a role in the macromolecular stability of desiccation-tolerant higher plant organs. Fourier transform infrared microspectroscopy was used as the main experimental technique to assess macromolecular

  10. Proteomics of desiccation tolerance during development and germination of maize embryos

    DEFF Research Database (Denmark)

    Huang, Hui; Møller, Ian Max; Song, Song-Quan

    2012-01-01

    Maize seeds were used to identify the key embryo proteins involved in desiccation tolerance during development and germination. Immature maize embryos (28N) during development and mature embryos imbibed for 72 h (72HN) are desiccation sensitive. Mature maize embryos (52N) during development...... pattern. We infer that these eleven proteins are involved in seed desiccation tolerance. We conclude that desiccation-tolerant embryos make more economical use of their resources to accumulate protective molecules and antioxidant systems to deal with maturation drying and desiccation treatment........ are desiccation tolerant. Thiobarbituric acid reactive substance and hydrogen peroxide contents decreased and increased with acquisition and loss of desiccation tolerance, respectively. A total of 111 protein spots changed significantly (1.5 fold increase/decrease) in desiccation-tolerant and -sensitive embryos...

  11. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Science.gov (United States)

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  12. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Directory of Open Access Journals (Sweden)

    Dalia Molina-Romero

    Full Text Available Plant growth-promoting rhizobacteria (PGPR increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440 and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02 strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  13. [Desiccation tolerance in seeds of Prosopisferox and Pterogyne nitens (Fabaceae)].

    Science.gov (United States)

    Morandini, Marcelo Nahuel; Giamminola, Eugenia Mabel; de Viana, Marta Leonor

    2013-03-01

    The high number of endemisms and species diversity together with the accelerated biodiversity loss by deforestation, especially in North Western Argentina, points out the need to work on species conservation combining ex situ and in situ strategies. The aim of this work was to study the desiccation tolerance in seeds of P ferox and P nitens for long term ex situ conservation at the Germplasm Bank of Native Species (BGEN) of the National University of Salta (Argentina). The fruits were collected from ten individuals in P ferox at the National Park Los Cardones and from two sites (Orán and Rivadavia) for P nitens. Desiccation tolerance was assessed following previous established methodologies. The moisture content (MC) of the seeds was determined by keeping them in oven at 103 degreeC and weighting the samples at different intervals till constant weight. Germination essays were carried out with two treatments (control and scarification), with different seed MC (fresh, 10-12%, 3-5%) and in desiccated seeds (3-5% MC) stored six months at -20 degreeC. The MC in P ferox seeds was 14.2% and 10% in P nitens, for both populations studied. Percentage germination in P ferox was higher in the scarification treatments (<82%). The difference between treatments increased with the reduction in MC and the storage for six months at -20 degreeC. Fresh seeds of P nitens do not need scarification treatment, but it is required with the reduction in MC and storage. Mean germination percentage of desiccated seeds stored six months at -20 degreeC was similar in both populations and greater than 82%.We concluded that both species are probably orthodox because seeds tolerated desiccation to 3-5% and storage for six months at -20 degree C.

  14. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Benina, Maria; Obata, Toshihiro; Tohge, Takayuki; Sujeeth, Neerakkal; Minkov, Ivan; Hille, Jacques; Temanni, Mohamed-Ramzi; Marriott, Andrew S.; Bergstrom, Ed; Thomas-Oates, Jane; Antonio, Carla; Mueller-Roeber, Bernd; Schippers, Jos H. M.; Fernie, Alisdair R.; Toneva, Valentina

    Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome analysis by next-generation

  15. The study of desiccation-tolerance in drying leaves of the desiccation-tolerant grass Sporobolus elongatus and the desiccation-sensitive grass Sporobolus pyramidalis.

    Science.gov (United States)

    Ghasempour, Hamid Reza; Kianian, Jahanbakheshe

    2007-03-01

    Hydrated leaves of the resurrection grass Sporobolus elongatus are not desiccation tolerant (DT), but moderate to severe drought stress can induce their DT with the leaves remain attach to drying intact plants. In vivo protein synthesis was studied with SDS-page of extracts of leaves of intact drying plants of S. elongatus (a desiccation-Tolerant grass (DT)) and S. pyramidalis (a desiccation-sensitive species (DS)). Free proline increased in drying leaves. Soluble sugar contents also increased with drying but were less than fully hydrated leaves at 8% RWC. Total protein also showed an increase with an exception at 8% RWC which showed a decrease. SDS-page of extracts of drying leaves of both DT and DS plants were studied as relative water contents (RWC) decreased. In first phase, DT species at 58% RWC (80-51% RWC range), two proteins increased in contents. In the second phase, at 8% (35-4% RWC range) two new bands increased and two bands decreased. In leaves of DS species some bands decreased as drying progressed. Also, as drying advanced free proline increased in DT species. Total protein increased as drying increased but at 8% RWC decreased. All data of results are consistent with current views about studied factors and their roles during drying and induction of desiccation tolerance in DT plants.

  16. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    Science.gov (United States)

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  17. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Andreas eHolzinger

    2013-08-01

    Full Text Available Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. For example, Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics and/or metabolomics are urgently needed to better understand the molecular mechanisms involved in desiccation-stress physiology of

  18. Desiccation tolerance in bryophytes: The dehydration and rehydration transcriptomes in the desiccation-tolerant bryophyte Bryum argenteum.

    Science.gov (United States)

    Gao, Bei; Li, Xiaoshuang; Zhang, Daoyuan; Liang, Yuqing; Yang, Honglan; Chen, Moxian; Zhang, Yuanming; Zhang, Jianhua; Wood, Andrew J

    2017-08-08

    The desiccation tolerant bryophyte Bryum argenteum is an important component of desert biological soil crusts (BSCs) and is emerging as a model system for studying vegetative desiccation tolerance. Here we present and analyze the hydration-dehydration-rehydration transcriptomes in B. argenteum to establish a desiccation-tolerance transcriptomic atlas. B. argenteum gametophores representing five different hydration stages (hydrated (H0), dehydrated for 2 h (D2), 24 h (D24), then rehydrated for 2 h (R2) and 48 h (R48)), were sampled for transcriptome analyses. Illumina high throughput RNA-Seq technology was employed and generated more than 488.46 million reads. An in-house de novo transcriptome assembly optimization pipeline based on Trinity assembler was developed to obtain a reference Hydration-Dehydration-Rehydration (H-D-R) transcriptome comprising of 76,206 transcripts, with an N50 of 2,016 bp and average length of 1,222 bp. Comprehensive transcription factor (TF) annotation discovered 978 TFs in 62 families, among which 404 TFs within 40 families were differentially expressed upon dehydration-rehydration. Pfam term enrichment analysis revealed 172 protein families/domains were significantly associated with the H-D-R cycle and confirmed early rehydration (i.e. the R2 stage) as exhibiting the maximum stress-induced changes in gene expression.

  19. Differential gene expression in Pyropia columbina (Bangiales, Rhodophyta under natural hydration and desiccation conditions

    Directory of Open Access Journals (Sweden)

    Loretto Contreras-Porcia

    2013-11-01

    Full Text Available In rocky shores, desiccation is triggered by daily tide changes, and experimental evidence suggests that local distribution of algal species across the intertidal rocky zone is related to their capacity to tolerate desiccation. In this context, the permanence of Pyropia columbina in the high intertidal rocky zone is explained by its exceptional physiological tolerance to desiccation. This study explored the metabolic pathways involved in tolerance to desiccation in the Chilean P. columbina, by characterizing its transcriptome under contrasting conditions of hydration. We obtained 1,410 ESTs from two subtracted cDNA libraries in naturally hydrated and desiccated fronds. Results indicate that transcriptome from both libraries contain transcripts from diverse metabolic pathways related to tolerance. Among the transcripts differentially expressed, 15% appears involved in protein synthesis, processing and degradation, 14.4% are related to photosynthesis and chloroplast, 13.1% to respiration and mitochondrial function (NADH dehydrogenase and cytochrome c oxidase proteins, 10.6% to cell wall metabolism, and 7.5% are involved in antioxidant activity, chaperone and defense factors (catalase, thioredoxin, heat shock proteins, cytochrome P450. Both libraries highlight the presence of genes/proteins never described before in algae. This information provides the first molecular work regarding desiccation tolerance in P. columbina, and helps, to some extent, explaining the classical patterns of ecological distribution described for algae across the intertidal zone.

  20. A realistic appraisal of methods to enhance desiccation tolerance of entomopathogenic nematodes.

    Science.gov (United States)

    Perry, Roland N; Ehlers, Ralf-Udo; Glazer, Itamar

    2012-06-01

    Understanding the desiccation survival attributes of infective juveniles of entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis, is central to evaluating the reality of enhancing the shelf-life and field persistence of commercial formulations. Early work on the structural and physiological aspects of desiccation survival focused on the role of the molted cuticle in controlling the rate of water loss and the importance of energy reserves, particularly neutral lipids. The accumulation of trehalose was also found to enhance desiccation survival. Isolation of natural populations that can survive harsh environments, such as deserts, indicated that some populations have enhanced abilities to survive desiccation. However, survival abilities of EPN are limited compared with those of some species of plant-parasitic nematodes inhabiting aerial parts of plants. Research on EPN stress tolerance has expanded on two main lines: i) to select strains of species, currently in use commercially, which have increased tolerance to environmental extremes; and ii) to utilize molecular information, including expressed sequence tags and genome sequence data, to determine the underlying genetic factors that control longevity and stress tolerance of EPN. However, given the inherent limitations of EPN survival ability, it is likely that improved formulation will be the major factor to enhance EPN longevity and, perhaps, increase the range of applications.

  1. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens

    International Nuclear Information System (INIS)

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S.; Sakata, Yoichi

    2016-01-01

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  2. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens

    Energy Technology Data Exchange (ETDEWEB)

    Yotsui, Izumi, E-mail: izumi.yotsui@riken.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Serada, Satoshi, E-mail: serada@nibiohn.go.jp [Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 (Japan); Naka, Tetsuji, E-mail: tnaka@nibiohn.go.jp [Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 (Japan); Saruhashi, Masashi, E-mail: s13db001@mail.saitama-u.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Taji, Teruaki, E-mail: t3teruak@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Hayashi, Takahisa, E-mail: t4hayash@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Quatrano, Ralph S., E-mail: rsq@wustl.edu [Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899 (United States); Sakata, Yoichi, E-mail: sakata@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan)

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  3. Developing sporophytes transition from an inducible to a constitutive ecological strategy of desiccation tolerance in the moss Aloina ambigua: effects of desiccation on fitness.

    Science.gov (United States)

    Stark, Lloyd R; Brinda, John C

    2015-03-01

    Two ecological strategies of desiccation tolerance exist in plants, constitutive and inducible. Because of difficulties in culturing sporophytes, very little is known about desiccation tolerance in this generation and how desiccation affects sexual fitness. Cultured sporophytes and vegetative shoots from a single genotype of the moss Aloina ambigua raised in the laboratory were tested for their strategy of desiccation tolerance by desiccating the shoot-sporophyte complex and vegetative shoots at different intensities, and comparing outcomes with those of undried shoot-sporophyte complexes and vegetative shoots. By using a dehardened clonal line, the effects of field, age and genetic variance among plants were removed. The gametophyte and embryonic sporophyte were found to employ a predominantly inducible strategy of desiccation tolerance, while the post-embryonic sporophyte was found to employ a moderately constitutive strategy of desiccation tolerance. Further, desiccation reduced sporophyte fitness, as measured by sporophyte mass, seta length and capsule size. However, the effects of desiccation on sporophyte fitness were reduced if the stress occurred during embryonic development as opposed to postembryonic desiccation. The effects of desiccation on dehardened sporophytes of a bryophyte are shown for the first time. The transition from one desiccation tolerance strategy to the other in a single structure or generation is shown for only the second time in plants and for the first time in bryophytes. Finding degrees of inducible strategies of desiccation tolerance in different life phases prompts the formulation of a continuum hypothesis of ecological desiccation tolerance in mosses, where desiccation tolerance is not an either/or phenomenon, but varies in degree along a gradient of ecological inducibility. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email

  4. Key genes involved in desiccation tolerance and dormancy across life forms

    NARCIS (Netherlands)

    Costa, M.C.D.; Farrant, Jill M.; Oliver, Melvin J.; Ligterink, Wilco; Buitink, Julia; Hilhorst, H.M.W.

    2016-01-01

    Desiccation tolerance (DT, the ability of certain organisms to survive severe dehydration) was a key trait in the evolution of life in terrestrial environments. Likely, the development of desiccation-tolerant life forms was accompanied by the acquisition of dormancy or a dormancy-like stage as a

  5. Desiccation tolerance in Anopheles coluzzii: the effects of spiracle size and cuticular hydrocarbons

    Science.gov (United States)

    Arcaz, Arthur C.; Huestis, Diana L.; Dao, Adama; Yaro, Alpha S.; Diallo, Moussa; Andersen, John; Blomquist, Gary J.; Lehmann, Tovi

    2016-01-01

    ABSTRACT The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii. Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism. PMID:27207644

  6. Slow desiccation improves dehydration tolerance and accumulation of compatible osmolytes in earthworm cocoons (Dendrobaena octaedra Savigny)

    DEFF Research Database (Denmark)

    Petersen, Christina R; Holmstrup, Martin; Malmendal, Anders

    2008-01-01

    The earthworm, Dendrobaena octaedra, is a common species in temperate and subarctic regions of the northern hemisphere. The egg capsules ('cocoons') of D. octaedra are deposited in the upper soil layers where they may be exposed to desiccation. Many previous studies on desiccation tolerance in soil...... anhydrobiotic organism we propose that they belong in a transition zone between the desiccation sensitive and the truly anhydrobiotic organisms. Clearly, these earthworm embryos share many physiological traits with anhydrobiotic organisms....

  7. Re-establishment of desiccation tolerance by PEG in germinated Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Maia de Oliveira, Julio; Dias Costa, Maria; Ligterink, Wilco; Hilhorst, Henk

    2015-01-01

    Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose DT while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with polyethylene glycol (PEG).

  8. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens.

    Science.gov (United States)

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S; Sakata, Yoichi

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  9. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta from polar habitats.

    Directory of Open Access Journals (Sweden)

    Martina Pichrtová

    Full Text Available Filamentous Zygnematophyceae are typical components of algal mats in the polar hydro-terrestrial environment. Under field conditions, they form senescent vegetative cells, designated as pre-akinetes, which are tolerant to desiccation and osmotic stress.Pre-akinete formation and desiccation tolerance was investigated experimentally under monitored laboratory conditions in four strains of Arctic and Antarctic isolates with vegetative Zygnema sp. morphology. Phylogenetic analyses of rbcL sequences revealed one Arctic strain as genus Zygnemopsis, phylogenetically distant from the closely related Zygnema strains. Algae were cultivated in liquid or on solidified medium (9 weeks, supplemented with or lacking nitrogen. Nitrogen-free cultures (liquid as well as solidified consisted of well-developed pre-akinetes after this period. Desiccation experiments were performed at three different drying rates (rapid: 10% relative humidity, slow: 86% rh and very slow; viability, effective quantum yield of PS II, visual and ultrastructural changes were monitored. Recovery and viability of pre-akinetes were clearly dependent on the drying rate: slower desiccation led to higher levels of survival. Pre-akinetes survived rapid drying after acclimation by very slow desiccation.The formation of pre-akinetes in polar Zygnema spp. and Zygnemopsis sp. is induced by nitrogen limitation. Pre-akinetes, modified vegetative cells, rather than specialized stages of the life cycle, can be hardened by mild desiccation stress to survive rapid drying. Naturally hardened pre-akinetes play a key role in stress tolerance and dispersal under the extreme conditions of polar regions, where sexual reproduction and production of dormant stages is largely suppressed.

  10. Identification of Novel Desiccation-Tolerant S. cerevisiae Strains for Deep Space Biosensors

    Science.gov (United States)

    Tieze, Sofia Massaro; Santa Maria, Sergio R.; Liddell, Lauren; Bhattacharya, Sharmila

    2017-01-01

    NASA's BioSentinel mission, a secondary payload that will fly on the Space Launch Systems first Exploration Mission (EM-1), utilizes the budding yeast S. cerevisiae to study the biological response to the deep space radiation environment. Yeast samples are desiccated prior to launch to suspend growth and metabolism while the spacecraft travels to its target heliocentric orbit beyond Low Earth Orbit. Each sample is then rehydrated at the desired time points to reactivate the cells. A major risk in this mission is the loss of cell viability that occurs in the recovery period following the desiccation and rehydration process. Cell survival is essential for the detection of the biological response to features in the deep space environment, including ionizing radiation.The aim of this study is to mitigate viable cell loss in future biosensors by identifying mutations and genes that confer tolerance to desiccation stress in rad51, a radiation-sensitive yeast strain. We initiated a screen for desiccation-tolerance after rehydrating cells that were desiccated for three years, and selected various clones exhibiting robust growth. To verify retention of radiation sensitivity in the isolated clonesa crucial feature for a successful biosensorwe exposed them to ionizing radiation. Finally, to elucidate the genetic and molecular bases for observed desiccation-tolerance, we will perform whole-genome sequencing of those rad51 clones that exhibit both robust growth and radiation sensitivity following desiccation. The identification and characterization of desiccation-tolerant strains will allow us to engineer a biological model that will be resilient in face of the challenges of the deep space environment, and will thus ensure the experimental success of future biosensor missions.

  11. Freezing and desiccation tolerance in entomopathogenic nematodes: diversity and correlation of traits.

    Science.gov (United States)

    Shapiro-Ilan, David I; Brown, Ian; Lewis, Edwin E

    2014-03-01

    The ability of entomopathogenic nematodes to tolerate environmental stress such as desiccating or freezing conditions, can contribute significantly to biocontrol efficacy. Thus, in selecting which nematode to use in a particular biocontrol program, it is important to be able to predict which strain or species to use in target areas where environmental stress is expected. Our objectives were to (i) compare inter- and intraspecific variation in freeze and desiccation tolerance among a broad array of entomopathogenic nematodes, and (ii) determine if freeze and desiccation tolerance are correlated. In laboratory studies we compared nematodes at two levels of relative humidity (RH) (97% and 85%) and exposure periods (24 and 48 h), and nematodes were exposed to freezing temperatures (-2°C) for 6 or 24 h. To assess interspecific variation, we compared ten species including seven that are of current or recent commercial interest: Heterorhabditis bacteriophora (VS), H. floridensis, H. georgiana, (Kesha), H. indica (HOM1), H. megidis (UK211), Steinernema carpocapsae (All), S. feltiae (SN), S. glaseri (VS), S. rarum (17C&E), and S. riobrave (355). To assess intraspecific variation we compared five strains of H. bacteriophora (Baine, Fl1-1, Hb, Oswego, and VS) and four strains of S. carpocapsae (All, Cxrd, DD136, and Sal), and S. riobrave (355, 38b, 7-12, and TP). S. carpocapsae exhibited the highest level of desiccation tolerance among species followed by S. feltiae and S. rarum; the heterorhabditid species exhibited the least desiccation tolerance and S. riobrave and S. glaseri were intermediate. No intraspecific variation was observed in desiccation tolerance; S. carpocapsae strains showed higher tolerance than all H. bacteriophora or S. riobrave strains yet there was no difference detected within species. In interspecies comparisons, poor freeze tolerance was observed in H. indica, and S. glaseri, S. rarum, and S. riobrave whereas H. georgiana and S. feltiae exhibited the

  12. A comparative study between Solenopsis invicta and Solenopsis richteri on tolerance to heat and desiccation stresses.

    Directory of Open Access Journals (Sweden)

    Jian Chen

    Full Text Available Solenopsis invicta and Solenopsis richteri are two very closely related invasive ant species; however, S. invicta is a much more successful invader. Physiological tolerance to abiotic stress has been hypothesized to be important to the success of an invasive species. In this study, we tested the hypothesis that S. invicta is more tolerant to heat and desiccation stress than S. richteri. The data strongly support our hypothesis. S. invicta was found to be significantly less vulnerable than S. richteri to both heat and desiccation stress. Despite S. richteri having significantly higher body water content, S. invicta was less sensitive to desiccation stress due to its significantly lower water loss rate (higher desiccation resistance. After the cuticular lipid was removed, S. invicta still had a significantly lower water loss rate than S. richteri, indicating that cuticular lipids were not the only factors accounting for difference in the desiccation resistance between these two species. Since multiple biological and/or ecological traits can contribute to the invasion success of a particular species, whether the observed difference in tolerance to heat and desiccation stresses is indeed associated with the variation in invasion success between these two species can only be confirmed by further extensive comparative study.

  13. Moss antheridia are desiccation tolerant: Rehydration dynamics influence sperm release in Bryum argenteum.

    Science.gov (United States)

    Stark, Lloyd R; McLetchie, D Nicholas; Greenwood, Joshua L; Eppley, Sarah M

    2016-05-01

    Free-living sperm of mosses are known to be partially desiccation tolerant. We hypothesized that mature moss antheridia should also tolerate desiccation and that rehydration to partial turgor (prehydration) or rehydration to full turgor (rehydration) before immersion in water is required for full recovery from any damaging effects of prior desiccation. Bryum argenteum (silvery-thread moss) was grown in continuous culture for several months, produced mature perigonia (clusters of antheridia), and these were subjected to a slow rate of drying (∼36 h from full turgor to desiccation) and equilibration with 50% relative humidity. Perigonia were prehydrated (exposed to a saturated atmosphere) or rehydrated (planted upright in saturated media) for 0, 45, 90, 135, 180, and 1440 min, then immersed in sterile water. Time to first sperm mass release, number of antheridia releasing sperm masses, and the integrity of the first sperm mass released were assessed. Rehydration of dried antheridia for at least 3 h before immersion in water resulted in antheridia functioning similar to control undried antheridia. Compared with rehydration, prehydration was not effective in the recovery of antheridia from desiccation. For the first time, moss antheridia are shown to be fully desiccation tolerant at a functional level, capable of releasing fully functional sperm following a slow drying event provided the antheridia are allowed to rehydrate at least 3 h before immersion in water. © 2016 Botanical Society of America.

  14. Physiological, cellular and molecular aspects of the desiccation tolerance in Anadenanthera colubrina seeds during germination

    Directory of Open Access Journals (Sweden)

    L. E. Castro

    2017-05-01

    Full Text Available Abstract During germination, orthodox seeds become gradually intolerant to desiccation, and for this reason, they are a good model for recalcitrance studies. In the present work, physiological, biochemical, and ultrastructural aspects of the desiccation tolerance were characterized during the germination process of Anadenanthera colubrina seeds. The seeds were imbibed during zero (control, 2, 8, 12 (no germinated seeds, and 18 hours (germinated seeds with 1 mm protruded radicle; then they were dried for 72 hours, rehydrated and evaluated for survivorship. Along the imbibition, cytometric and ultrastructural analysis were performed, besides the extraction of the heat-stable proteins. Posteriorly to imbibition and drying, the evaluation of ultrastructural damages was performed. Desiccation tolerance was fully lost after root protrusion. There was no increase in 4C DNA content after the loss of desiccation tolerance. Ultrastructural characteristics of cells from 1mm roots resembled those found in the recalcitrant seeds, in both hydrated and dehydrated states. The loss of desiccation tolerance coincided with the reduction of heat-stable proteins.

  15. Biosentinel: Improving Desiccation Tolerance of Yeast Biosensors for Deep-Space Missions

    Science.gov (United States)

    Dalal, Sawan; Santa Maria, Sergio R.; Liddell, Lauren; Bhattacharya, Sharmila

    2017-01-01

    BioSentinel is one of 13 secondary payloads to be deployed on Exploration Mission 1 (EM-1) in 2019. We will use the budding yeast Saccharomyces cerevisiae as a biosensor to determine how deep-space radiation affects living organisms and to potentially quantify radiation levels through radiation damage analysis. Radiation can damage DNA through double strand breaks (DSBs), which can normally be repaired by homologous recombination. Two yeast strains will be air-dried and stored in microfluidic cards within the payload: a wild-type control strain and a radiation sensitive rad51 mutant that is deficient in DSB repairs. Throughout the mission, the microfluidic cards will be rehydrated with growth medium and an indicator dye. Growth rates of each strain will be measured through LED detection of the reduction of the indicator dye, which correlates with DNA repair and the amount of radiation damage accumulated. Results from BioSentinel will be compared to analog experiments on the ISS and on Earth. It is well known that desiccation can damage yeast cells and decrease viability over time. We performed a screen for desiccation-tolerant rad51 strains. We selected 20 re-isolates of rad51 and ran a weekly screen for desiccation-tolerant mutants for five weeks. Our data shows that viability decreases over time, confirming previous research findings. Isolates L2, L5 and L14 indicate desiccation tolerance and are candidates for whole-genome sequencing. More time is needed to determine whether a specific strain is truly desiccation tolerant. Furthermore, we conducted an intracellular trehalose assay to test how intracellular trehalose concentrations affect or protect the mutant strains against desiccation stress. S. cerevisiae cell and reagent concentrations from a previously established intracellular trehalose protocol did not yield significant absorbance measurements, so we tested varying cell and reagent concentrations and determined proper concentrations for successful

  16. Desiccation tolerance and sensitivity in Medicago truncatula and Inga vera seeds

    NARCIS (Netherlands)

    Faria, J.M.R.

    2006-01-01

    Orthodox seeds acquire desiccation tolerance (DT) during their development which enables them to pass through the phase of maturation drying by the end of their development and enter a state of quiescence. After harvesting, these seeds can be dried further and stored for the long-term without

  17. The competence to acquire cellular desiccation tolerance is not dependent on seed morphological development

    NARCIS (Netherlands)

    Golovina, E.A.; Hoekstra, F.A.; Aelst, van A.C.

    2001-01-01

    Acquisition of desiccation tolerance and the related changes at the cellular level in wheat (Triticum aestivum cv. Priokskaya) kernels during normal development and premature drying on the ear were studied using a spin probe technique and low temperature scanning electron microscopy. During normal

  18. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.; Dekkers, S.J.W.; Dolle, M.; Ligterink, W.; Hilhorst, H.W.M.

    2014-01-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this

  19. Genome-wide analysis of desiccation tolerance-related genes in Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, Julio; Dekkers, Bas; Ligterink, Wilco; Provart, Nicholas J.; Hilhorst, Henk

    2013-01-01

    The combination of robust physiological models with “omics” studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance

  20. The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome

    NARCIS (Netherlands)

    Maia de Oliveira, J.; Dekkers, S.J.W.; Provart, N.J.; Ligterink, W.; Hilhorst, H.W.M.

    2011-01-01

    The combination of robust physiological models with “omics” studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance

  1. Nitrogen sources affect productivity, desiccation tolerance and storage stability of Beauveria bassiana blastospores.

    Science.gov (United States)

    Mascarin, G M; Kobori, N N; Jackson, M A; Dunlap, C A; Delalibera, Í

    2018-03-01

    Nitrogen is a critical element in industrial fermentation media. This study investigated the influence of various nitrogen sources on blastospore production, desiccation tolerance and storage stability using two strains of the cosmopolitan insect-pathogenic fungus Beauveria bassiana. Complex organic sources of nitrogen such as soy flour, autolysed yeast and cottonseed flour induced great numbers of blastospores after 2-3 days of fermentation, which also survived drying and remained viable (32-56% survival) after 9 months storage at 4°C, although variations were found between strains. Nitrogen availability in the form of free amino acids directly influenced blastospore production and resistance to desiccation. Increasing glucose and nitrogen concentrations up to 120 and 30 g l -1 , respectively, did not improve blastospore production but enhanced desiccation tolerance. Cell viability after drying and upon fast-rehydration was increased when ≥25 g acid-hydrolysed casein per litre was supplemented in the liquid culture medium. These findings indicate that low-cost complex nitrogen compounds are suitable to enhance yeast-like growth by B. bassiana with good desiccation tolerance and therefore support its further scale-up production as a mycoinsecticide. Nitrogen is the most expensive nutrient in liquid media composition, but this study underscores the feasibility of using low-cost nitrogen compounds composed mainly of agro-industrial by-products for rapid production of desiccation-tolerant B. bassiana blastospores by liquid culture fermentation. © 2018 The Society for Applied Microbiology.

  2. Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds

    NARCIS (Netherlands)

    Buitink, J.; Leprince, O.; Hoekstra, F.A.

    2000-01-01

    This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and

  3. Time-series of the re-establishment of desiccation tolerance by ABA in germinated Arabidopsis thaliana seeds

    NARCIS (Netherlands)

    Dias Costa, Maria; Righetti, K.; Ligterink, Wilco; Buitink, J.; Hilhorst, Henk

    2015-01-01

    Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose DT while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA).

  4. Re-induction of desiccation tolerance after germination of Cedrela fissilis Vell. seeds.

    Science.gov (United States)

    Masetto, Tathiana E; Faria, Jose M; Fraiz, Ana C R

    2014-09-01

    This work aimed to characterize the re-induction of desiccation tolerance (DT) in germinated seeds, using polyethylene glycol (PEG 8000). Cell changes were investigated through cytological assays (cell viability and transmission electronic microscopy) as well as DNA integrity during loss and re-establishment of DT. The loss of DT was characterized by drying germinated seeds with different radicle lengths (1, 2, 3, 4 and 5 mm) in silica gel, decreasing the moisture content to ten percentage points intervals, followed by pre-humidification (100% RH / 24 h) and rehydration. To re-induce DT, germinated seeds were treated for 72 h with PEG (-2.04 MPa) and PEG (-2.04 MPa) + ABA (100 µM) before dehydration. Germinated seeds did not tolerate desiccation to 10% moisture content, irrespectively of the radicle length. However, when incubated in PEG, those with 1 and 2 mm long radicle attained 71% and 29% survival, respectively. The PEG+ABA treatment was efficient to re-establish DT in seeds with 1 mm long radicles (100% survival). The ultrastructural assays of the cells of germinated seeds with 2 and 5 mm length confirmed the obtained physiological results. Germinated seeds of C. fissilis constitute a useful tool for desiccation tolerance investigations.

  5. Re-induction of desiccation tolerance after germination of Cedrela fissilis Vell. seeds

    Directory of Open Access Journals (Sweden)

    TATHIANA E. MASETTO

    2014-09-01

    Full Text Available This work aimed to characterize the re-induction of desiccation tolerance (DT in germinated seeds, using polyethylene glycol (PEG 8000. Cell changes were investigated through cytological assays (cell viability and transmission electronic microscopy as well as DNA integrity during loss and re-establishment of DT. The loss of DT was characterized by drying germinated seeds with different radicle lengths (1, 2, 3, 4 and 5 mm in silica gel, decreasing the moisture content to ten percentage points intervals, followed by pre-humidification (100% RH / 24 h and rehydration. To re-induce DT, germinated seeds were treated for 72 h with PEG (-2.04 MPa and PEG (-2.04 MPa + ABA (100 µM before dehydration. Germinated seeds did not tolerate desiccation to 10% moisture content, irrespectively of the radicle length. However, when incubated in PEG, those with 1 and 2 mm long radicle attained 71% and 29% survival, respectively. The PEG+ABA treatment was efficient to re-establish DT in seeds with 1 mm long radicles (100% survival. The ultrastructural assays of the cells of germinated seeds with 2 and 5 mm length confirmed the obtained physiological results. Germinated seeds of C. fissilis constitute a useful tool for desiccation tolerance investigations.

  6. Identification by phenotypic and genetic approaches of an indigenous Saccharomyces cerevisiae wine strain with high desiccation tolerance.

    Science.gov (United States)

    Zambuto, Marianna; Romaniello, Rossana; Guaragnella, Nicoletta; Romano, Patrizia; Votta, Sonia; Capece, Angela

    2017-10-01

    During active dry yeast (ADY) production process, cells are exposed to multiple stresses, such as thermal, oxidative and hyperosmotic shock. Previously, by analysing cells in exponential growth phase, we selected an indigenous Saccharomyces cerevisiae wine strain, namely CD-6Sc, for its higher tolerance to desiccation and higher expression of specific desiccation stress-related genes in comparison to other yeast strains. In this study, we performed a desiccation treatment on stationary phase cells by comparing the efficacy of two different methods: a 'laboratory dry test' on a small scale (mild stress) and a treatment by spray-drying (severe stress), one of the most appropriate preservation method for yeasts and other micro-organisms. The expression of selected desiccation-related genes has been also assessed in order to validate predictive markers for desiccation tolerance. Our data demonstrate that the 'mild' and the 'severe' desiccation treatments give similar results in terms of cell recovery, but the choice of marker genes strictly depends on the growth phase in which cells undergo desiccation. The indigenous CD-6Sc was ultimately identified as a high dehydration stress-tolerant indigenous strain suitable for ADY production. This study highlights the exploitation of natural yeast biodiversity as a source of hidden technological features and as an alternative approach to strain improvement by genetic modifications. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Experimental performance of a liquid desiccant dehumidification system under tropical climates

    International Nuclear Information System (INIS)

    Jain, Sanjeev; Tripathi, Sagun; Das, Rajat Subhra

    2011-01-01

    Research highlights: → Indirect contact between air and desiccant using a porous surface to avoid carryover. → Humidity effectiveness and moisture removal rate reported under varying conditions. → Humidity effectiveness with LiCl as desiccant in the range 0.36-0.45. → Mass transfer characteristic of contactor surface restricted system performance. -- Abstract: The current energy crisis, climate change and increased air conditioning demands have generated a need for developing technologies based on renewable energy sources. Foremost amongst the cooling technologies are the sorption technologies working on low grade heat that can be supplied by solar energy. Liquid desiccant technologies seem to be a promising option as these tend to have higher thermal COPs, lower regeneration temperatures, facilitate simultaneous cooling and ease of storage of concentrated desiccant that can be used during the nonsunshine hours. But few concerns like carryover of liquid desiccant in air require further investigations. The liquid desiccant system under study incorporates a double channelled exchanger for air to liquid desiccant heat and mass transfer. It provides a large surface area for air/desiccant contact and reduces the carryover as direct contact between desiccant and air is minimized unlike spray towers, packed bed and falling film designs. Desiccant is heated in a plate heat exchanger using hot water and then regenerated in a regenerator. The set-up comprises of a dehumidifier, along with a regenerator, a cooling tower, plate heat exchangers and a control unit. Experiments were conducted on the system using calcium chloride and lithium chloride as desiccants by varying parameters like inlet air conditions, hot water temperature and desiccant concentration in order to evaluate the performance of the system under different operating conditions. The performance of the system is presented in terms of moisture removal rates, dehumidifier and regenerator effectiveness.

  8. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster.

    Science.gov (United States)

    Cannell, Elizabeth; Dornan, Anthony J; Halberg, Kenneth A; Terhzaz, Selim; Dow, Julian A T; Davies, Shireen-A

    2016-06-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin (Drome-kinin, DK) in desiccation and starvation tolerance. Gene expression and labelled DH44 ligand binding data, as well as highly selective knockdowns and/or neuronal ablations of DH44 in neurons of the pars intercerebralis and DH44 receptor (DH44-R2) in Malpighian tubule principal cells, indicate that suppression of DH44 signalling improves desiccation tolerance of the intact fly. Drome-kinin receptor, encoded by the leucokinin receptor gene, LKR, is expressed in DH44 neurons as well as in stellate cells of the Malpighian tubules. LKR knockdown in DH44-expressing neurons reduces Malpighian tubule-specific LKR, suggesting interactions between DH44 and LK signalling pathways. Finally, although a role for DK in desiccation tolerance was not defined, we demonstrate a novel role for Malpighian tubule cell-specific LKR in starvation tolerance. Starvation increases gene expression of epithelial LKR. Also, Malpighian tubule stellate cell-specific knockdown of LKR significantly reduced starvation tolerance, demonstrating a role for neuropeptide signalling during starvation stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Desiccation tolerance of embryos of Syagrus oleracea, a cerrado ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-03-18

    Mar 18, 2015 ... Sader, 1987; Reis et al., 1999; Spera et al., 2001; Ribeiro et al., 2010). Plants from the family Arecaceae often have difficulties in germination due to morphological characteristics of the seed and peculiarities of the germination process. It is common for some species to not germinate even under adequate ...

  10. Effects of storage temperature on the physiological characteristics and vegetative propagation of desiccation-tolerant mosses

    Science.gov (United States)

    Guo, Yuewei; Zhao, Yunge

    2018-02-01

    Mosses, as major components of later successional biological soil crusts (biocrusts), play many critical roles in arid and semiarid ecosystems. Recently, some species of desiccation-tolerant mosses have been artificially cultured with the aim of accelerating the recovery of biocrusts. Revealing the factors that influence the vegetative propagation of mosses, which is an important reproductive mode of mosses in dry habitats, will benefit the restoration of moss crusts. In this study, three air-dried desiccation-tolerant mosses (Barbula unguiculata, Didymodon vinealis, and Didymodon tectorum) were hermetically sealed and stored at five temperature levels (0, 4, 17, 25, and 30 °C) for 40 days. Then, the vegetative propagation and physiological characteristics of the three mosses were investigated to determine the influence of storage temperature on the vegetative propagation of desiccation-tolerant mosses and the mechanism. The results showed that the vegetative propagation of the three mosses varied with temperature. The most variation in vegetative propagation among storage temperatures was observed in D. tectorum, followed by the variation observed in B. unguiculata. In contrast, no significant difference in propagation among temperatures was found in D. vinealis. The regenerative capacity of the three mosses increased with increasing temperature from 0 to 17 °C, accompanied by a decrease in malondialdehyde (MDA) content, and decreased thereafter. As the temperature increased, the chlorophyll and soluble protein contents increased in B. unguiculata but decreased in D. vinealis and D. tectorum. As to storage, the MDA and soluble sugar contents increased after storage. The MDA content of the three mosses increased at each of the investigated temperatures by more than 50 % from the initial values, and the soluble sugar content became higher than before in the three mosses. The integrity of cells and cell membranes is likely the most important factor influencing the

  11. Isolation and Purification of Heterotetrameric Catalase from a Desiccation Tolerant Cyanobacterium Lyngbya arboricola

    Directory of Open Access Journals (Sweden)

    Kapoor, Shivali

    2013-02-01

    Full Text Available The desiccation tolerant cyanobacterium Lyngbya arboricola, isolated from bark surfaces of Mangifera indica, possessed up to four stable isoforms of catalase in addition to other antioxidative enzymes, for several years under a dry state. Purification of the two most persistent isoforms of catalase (Cat has been undertaken by employing acetone precipitation, ethanol: chloroform treatment, gel filtration and ion exchange chromatography. The two isoforms of catalase remained almost unchanged on varying matric and osmotic hydration levels of mats of the cyanobacterium. The purification procedures resulted in a 1.3 % yield of purified single isoform (0.22 mg mL-1 protein with 709 Units mg-1 specific activity and a purity index of 0.83. Five millimolar of dithiothreitol (DTT was observed to be pertinent in maintaining the optimum redox state of the enzyme. The purification procedures additionally facilitated the simultaneous elimination and procurement of phycoerythrins (PE and mycosporine-like amino acids (MAA. Each purified isoform gave a single band (~45kDa upon SDS-PAGE and denaturing urea isoelectric focusing (IEF depicted the presence of 2 subunits each of CatA and CatB. The monoisotopic mass and pI value of CatA and CatB as revealed by LC-MS analysis and internal amino acid sequencing was 78.96, 5.89 and 80.77, 5.92, respectively, showing resemblance with CatA of Erysiphe graminis subs. hordei and CatB of Ajellomyces capsulata. The heterotetrameric monofunctional catalase (~320 kDa, due to its stability in the form of resistance to ethanol: chloroform, its thermoalkaliphilic nature and the presence of innumerable hydrophobic amino acid residues (~40%, thus exhibited its potential for biotechnological applications.

  12. Transcriptome-Based Identification of the Desiccation Response Genes in Marine Red Algae Pyropia tenera (Rhodophyta) and Enhancement of Abiotic Stress Tolerance by PtDRG2 in Chlamydomonas.

    Science.gov (United States)

    Im, Sungoh; Lee, Ha-Nul; Jung, Hyun Shin; Yang, Sunghwan; Park, Eun-Jeong; Hwang, Mi Sook; Jeong, Won-Joong; Choi, Dong-Woog

    2017-06-01

    Pyropia tenera (Kjellman) are marine red algae that grow in the intertidal zone and lose more than 90% of water during hibernal low tides every day. In order to identify the desiccation response gene (DRG) in P. tenera, we generated 1,444,210 transcriptome sequences using the 454-FLX platform from the gametophyte under control and desiccation conditions. De novo assembly of the transcriptome reads generated 13,170 contigs, covering about 12 Mbp. We selected 1160 differentially expressed genes (DEGs) in response to desiccation stress based on reads per kilobase per million reads (RPKM) expression values. As shown in green higher plants, DEGs under desiccation are composed of two groups of genes for gene regulation networks and functional proteins for carbohydrate metabolism, membrane perturbation, compatible solutes, and specific proteins similar to higher plants. DEGs that show no significant homology with known sequences in public databases were selected as DRGs in P. tenera. PtDRG2 encodes a novel polypeptide of 159 amino acid residues locating chloroplast. When PtDRG2 was overexpressed in Chlamydomonas, the PtDRG2 confer mannitol and salt tolerance in transgenic cells. These results suggest that Pyropia may possess novel genes that differ from green plants, although the desiccation tolerance mechanism in red algae is similar to those of higher green plants. These transcriptome sequences will facilitate future studies to understand the common processes and novel mechanisms involved in desiccation stress tolerance in red algae.

  13. Changes in DNa and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds

    NARCIS (Netherlands)

    Faria, J.M.R.; Buitink, J.; Lammeren, van A.A.M.; Hilhorst, H.W.M.

    2005-01-01

    Desiccation tolerance (DT) in orthodox seeds is acquired during seed development and lost upon imbibition/germination, purportedly upon the resumption of DNA synthesis in the radicle cells. In the present study, flow cytometric analyses and visualization of microtubules (MTs) in radicle cells of

  14. Can a genetic correlation with seed mass constrain adaptive evolution of seedling desiccation tolerance in wild barley?

    NARCIS (Netherlands)

    Verhoeven, K.J.F.; Biere, A.; Nevo, E.; Van Damme, J.M.M.

    2004-01-01

    Very young seedlings of wild barley Hordeum spontaneum have the ability to survive extended periods of severe drought. This desiccation tolerance is considered an adaptation to the rain-limited and unpredictable habitats that the species occupies. Genetic variation has been observed for this trait,

  15. PHYSIOLOGICAL CLASSIFICATION OF FOREST SEEDS REGARDING THE DESICCATION TOLERANCE AND STORAGE BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Rafaella Carvalho Mayrinck

    2016-03-01

    Full Text Available This work aims to classify forest seeds native to the Alto Rio Grande region regarding the desiccation tolerance and storage behaviour. Germination and water content tests were performed in seeds of different species. The tests were conducted immediately after seed processing, at 12% and 5% of water content, and at 5% after 3 months of storage in -18°C. Based on the results obtained, seeds were classified into recalcitrant, intermediate and orthodox class. Seeds of Brosimum gaudichaudii, Erythroxylum deciduum, Eugenia pleurantha, Myrcia venulosa, Nectandra megapotamica were classified as recalcitrant (22.7% of all species. Seeds of Aegiphila sellowiana, Aspidosperma parvifolium, Blepharocalyx salicifolius, Casearia lasiophylla, Cassia occidentalis, Dalbergia miscolobium, Diospyros brasiliensis, Diospyros hispida, Ilex brevicuspis, Ilex cerasifolia, Myrocarpus fastigiatus, Senna aversiflora, Senna splendida e Blepharocalyx salicifolius were classified as intermediate (59.1% of all species. Seeds of Miconia albicans, Platycyamus regnellii, Styrax camporum and Piptadenia gonoacantha were classified as orthodox (18.2% of all species.

  16. Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress

    Science.gov (United States)

    2014-01-01

    Background Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. Results M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. Conclusions MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress. PMID:24383424

  17. Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress.

    Science.gov (United States)

    Chen, Zi-Hong; Xu, Ling; Yang, Feng-lian; Ji, Guang-Hai; Yang, Jing; Wang, Jian-Yun

    2014-01-03

    Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.

  18. The chicken or the egg? Adaptation to desiccation and salinity tolerance in a lineage of water beetles.

    Science.gov (United States)

    Pallarés, Susana; Arribas, Paula; Bilton, David T; Millán, Andrés; Velasco, Josefa; Ribera, Ignacio

    2017-10-01

    Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso- and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation-resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso- and hypersaline habitats. © 2017 John Wiley & Sons Ltd.

  19. Seedling survival of Handroanthus impetiginosus (Mart ex DC Mattos in a semi-arid environment through modified germination speed and post-germination desiccation tolerance

    Directory of Open Access Journals (Sweden)

    J. R. Martins

    Full Text Available Abstract Uniform rapid seed germination generally forms a great risk for the plant population if subsequent intermittent precipitation causes desiccation and seedling death. Handroanthus impetiginosus can be found commonly in a wide range of biomes within Brazil including those that are semi-arid. Germination and early growth was studied to understand how germinated seeds survive under these stringent conditions. Accessions were sampled from four seasonally dry biomes in Brazil. Precipitation at the start of the rainy season in the Caatinga, a semi-arid biome, is less predictable and the number of successive dry days per dry interval in the first four months of the rainy season was higher than in the other studied biomes. Plants from the Caatinga produced thicker seeds and this trait concurred with slow germination and stronger osmotic inhibition of germination across the accessions, forming a stress avoidance mechanism in the Caatinga. Post-germination desiccation tolerance was high in the Caatinga accession, could be re-induced in accessions from biomes with more regular precipitation (Cerrado and transition zone, but remained poor in the Cerradão accession; thus forming a stress tolerance mechanism. Production of adventitious roots ascertained survival of all tested individuals from all four locations, even if protruded radicles did not survive desiccation, forming an additional stress tolerance mechanism. A sequence of stress avoidance and stress tolerance mechanisms in seeds and germinated seeds was associated with precipitation patterns in different biomes. These mechanisms purportedly allow rapid seedling establishment when conditions are suitable and enable survival of the young seedling when conditions are adverse.

  20. Protein and carbohydrate composition of larval food affects tolerance tothermal stress and desiccation in adult Drosophila melanogaster

    DEFF Research Database (Denmark)

    Andersen, Laila H; Kristensen, Torsten N; Loeschcke, Volker

    2010-01-01

    stress compared to males. Egg production was highest in females that had developed on the protein-enriched medium. However, there was a sex-specific effect of nutrition on egg-to-adult viability, with higher viability for males developing on the sucrose-enriched medium, while female survival was highest......Larval nutrition may affect a range of different life history traits as well as responses to environmental stress in adult insects. Here we test whether raising larvae of fruit flies, Drosophila melanogaster, on two different nutritional regimes affects resistance to cold, heat and desiccation....... In contrast, flies developed on the carbohydrate-enriched growth medium recovered faster from chill coma stress compared to flies developed on a protein-enriched medium. We also found gender differences in stress tolerance, with female flies being more tolerant to chill coma, heat knockdown and desiccation...

  1. A Combination of Histological, Physiological, and Proteomic Approaches Shed Light on Seed Desiccation Tolerance of the Basal Angiosperm Amborella trichopoda.

    Science.gov (United States)

    Villegente, Matthieu; Marmey, Philippe; Job, Claudette; Galland, Marc; Cueff, Gwendal; Godin, Béatrice; Rajjou, Loïc; Balliau, Thierry; Zivy, Michel; Fogliani, Bruno; Sarramegna-Burtet, Valérie; Job, Dominique

    2017-07-28

    Desiccation tolerance allows plant seeds to remain viable in a dry state for years and even centuries. To reveal potential evolutionary processes of this trait, we have conducted a shotgun proteomic analysis of isolated embryo and endosperm from mature seeds of Amborella trichopoda , an understory shrub endemic to New Caledonia that is considered to be the basal extant angiosperm. The present analysis led to the characterization of 415 and 69 proteins from the isolated embryo and endosperm tissues, respectively. The role of these proteins is discussed in terms of protein evolution and physiological properties of the rudimentary, underdeveloped, Amborella embryos, notably considering that the acquisition of desiccation tolerance corresponds to the final developmental stage of mature seeds possessing large embryos.

  2. De novo transcriptome characterization and gene expression profiling of the desiccation tolerant moss Bryum argenteum following rehydration.

    Science.gov (United States)

    Gao, Bei; Zhang, Daoyuan; Li, Xiaoshuang; Yang, Honglan; Zhang, Yuanming; Wood, Andrew J

    2015-05-28

    The desiccation-tolerant moss Bryum argenteum is an important component of the Biological Soil Crusts (BSCs) found in the Gurbantunggut desert. Desiccation tolerance is defined as the ability to revive from the air dried state. To elucidate the molecular mechanisms related to desiccation tolerance, we employed RNA-Seq and digital gene expression (DGE) technologies to study the genome-wide expression profiles of the dehydration and rehydration processes in this important desert plant. We applied a two-step approach to investigate the gene expression profile upon rehydration in the moss Bryum argenteum using Illumina HiSeq2000 sequencing platform. First, a total of 57,247 transcript assembly contigs (TACs) were obtained from 54.79 million reads by de novo assembly, with an average length of 863 bp and N50 of 1,372 bp. Among the reconstructed TACs, 36,916 (64.5%) revealed similarity with existing protein sequences in the public databases. 23,509 and 21,607 TACs were assigned GO and KEGG annotation information, respectively. Second, samples were taken from 3 hydration stages: desiccated (Dry), rehydrated 2 h (R2) and rehydrated 24 h (R24), and DEG libraries were constructed for Differentially Expressed Genes (DEGs) discovery. 4,081 and 6,709 DEGs were identified in R2 and R24, compared with Dry, respectively. Compared to the desiccated sample, up-regulated genes after two hours of hydration are primarily related to stress responses. GO function enrichment network, EKGG metabolic pathway and MapMan analysis supports the idea of the rapid recovery of photosynthesis after 24 h of rehydration. We identified 770 transcription factors (TFs) which were classified into 50 TF families. 142 TF transcripts were up-regulated upon rehydration including 23 members of the ERF family. In this study, we constructed a pioneering, high-quality reference transcriptome in B. argenteum and generated three DGE libraries to elucidate the changes of gene expression upon rehydration. Expression

  3. Impact of desiccation and heat exposure stress on Salmonella tolerance to acidic conditions.

    Science.gov (United States)

    Richardson, Kurt E; Cox, Nelson A; Cosby, Douglas E; Berrang, Mark E

    2018-02-01

    In a recent study, the pH of commonly used Salmonella pre-enrichment media became acidic (pH 4.0 to 5.0) when feed or feed ingredients were incubated for 24 h. Acidic conditions have been reported to injure or kill Salmonella. In this study, cultures of four known feed isolates (S. montevideo, S. senftenberg, S. tennessee, and S. schwarzengrund) and four important processing plant isolates (S. typhimurium, S. enteritidis, S. infantis, and S. heidelberg) were grown on meat and bone meal and later subjected to desiccation and heat exposure to stress the microorganism. The impact of stress on the isolates ability to survive in acidic conditions ranging from pH 4.0 to 7.0 was compared to the non-stressed isolate. Cell injury was determined on xylose lysine tergitol 4 (XLT4) and cell death determined on nutrient agar (NA). When measured by cell death in non-stressed Salmonella, S. typhimurium was the most acid tolerant and S. heidelberg was the most acid sensitive whereas in stressed Salmonella, S. senftenberg was the most acid tolerant and S. tennessee was the most acid sensitive. The pH required to cause cell injury varied among isolates. With some isolates, the pH required for 50% cell death and 50% cell injury was similar. In other isolates, cell injury occurred at a more neutral pH. These findings suggest that the pH of pre-enrichment media may influence the recovery and bias the serotype of Salmonella recovered from feed during pre-enrichment.

  4. Desiccation and freezing tolerance of embryonic axes from Citrus sinensis [L.] osb. pretreated with sucrose.

    Science.gov (United States)

    Santos, Izulmé R I; Stushnoff, Cecil

    2003-01-01

    Embryonic axes of Citrus sinensis L. were successfully cryopreserved. While fully hydrated unfrozen axes germinated 100%, survival decreased as axes water content dropped, and total loss of viability was observed when the water content dropped to 0.04 and 0.10 mg H2O/mg dry mass, for axes without and with sucrose preculture, respectively. Fully hydrated axes did not survive exposure to liquid nitrogen. Highest seedling recovery (93-100%) for untreated axes was observed at 0.26 to 0.15 mg H2O/mg dry mass. Differential scanning calorimetry revealed the presence of broad melting peaks in fully hydrated embryonic axes. The size of the melting peak diminished as water was removed by desiccation. Minimum melting of water was observed at the point axes survived cryopreservation. Occurrence of a glass transition upon warming was not a condition for axes to survive liquid nitrogen exposure. In untreated axes, glucose, increased with desiccation to 0.2 mg H2O/mg dry mass, and decreased as the axes were desiccated to lower water contents. Fructose and sucrose levels did not increase when untreated samples were desiccated for the same periods of time. Raffinose and stachyose levels decreased as untreated and precultured embryonic axes were desiccated. In sucrose precultured axes, sucrose and fructose levels increased when they were dehydrated, reaching maximum levels at 0.2 mg H2O/mg dry mass. Tissue glucose did not change significantly with desiccation. Raffinose and stachyose levels dropped as precultured embryonic axes were dried.

  5. An Experimental Evolution Test of the Relationship between Melanism and Desiccation Survival in Insects.

    Directory of Open Access Journals (Sweden)

    Subhash Rajpurohit

    Full Text Available We used experimental evolution to test the 'melanism-desiccation' hypothesis, which proposes that dark cuticle in several Drosophila species is an adaptation for increased desiccation tolerance. We selected for dark and light body pigmentation in replicated populations of D. melanogaster and assayed several traits related to water balance. We also scored pigmentation and desiccation tolerance in populations selected for desiccation survival. Populations in both selection regimes showed large differences in the traits directly under selection. However, after over 40 generations of pigmentation selection, dark-selected populations were not more desiccation-tolerant than light-selected and control populations, nor did we find significant changes in mass or carbohydrate amounts that could affect desiccation resistance. Body pigmentation of desiccation-selected populations did not differ from control populations after over 140 generations of selection, although selected populations lost water less rapidly. Our results do not support an important role for melanization in Drosophila water balance.

  6. Desiccation tolerance of seeds of Bunchosia armenica (Cav. DC.Tolerância à dessecação em sementes de Bunchosia armenica (Cav. DC.

    Directory of Open Access Journals (Sweden)

    Edson de Almeida Cardoso

    2012-08-01

    Full Text Available The seeds have different behaviors and tolerance to moisture loss. In order to determine desiccation tolerance in seeds of Bunchosia armenia (Cav. DC. (Ameixa-do-Pará was collected a lot of fruits of this species in Areia-PB. After the manual pulping the seeds were exposed to dry on paper towel, under laboratory conditions (22°C and 85% RH and greenhouse (24°C and 80% RH. Treatments consisted of sampling for the determination of water content and seedling emergence tests at baseline and after 24, 48, 72, 96 and 120 hours. The water content was measured by the oven method at 105 ± 3°C for 24 hours using four replicates of 10 seeds for each treatment. The seedling emergence test was conducted in a greenhouse with four replications of 25 seeds. The count of emergence has beenheld every two days, for a period of 35th day and calculated the IVE, length and dry mass of seedlings. The drying of the seeds of B.armenica, in both environments is viable for up to 24 hours; After 24 hours of drying the water content of seeds is reduced from 62.6% to 57%, a level considered critical to the desiccation of the seeds of Ameixa-do-Pará in both environments; Ameixa-do-Pará seeds nuts are dispersed with very high water content, and small reduction in physiological quality compromises their value, allowing the seeds to characterize this species as recalcitrant.As sementes têm comportamentos diferenciados quanto à tolerância à perda de umidade. Com o objetivo de determinar a tolerância à dessecação em sementes de Bunchosia armenica (Cav. DC. (ameixa-dopará foi coletado um lote de frutos desta espécie no município de Areia-PB. Após o despolpamento manual as sementes foram expostas para a secagem, sobre papel toalha, em condições de laboratório (22 ºC e 85% UR e casa de vegetação (24 ºC e 80% UR. Os tratamentos consistiram na amostragem para a determinação do teor de água e testes de emergência de plântulas no início do experimento e ap

  7. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Møller, Ian Max; Song, Song-Quan

    2012-01-01

    Seed germination is an important stage in life cycle of higher plants. The germination processes and its associated loss of desiccation tolerance, however, are still poorly understood. In present study, pea seeds were used to study changes in embryonic axis proteome during germination by 2-DE...... and mass spectrometry. We identified a total of 139 protein spots showing a significant (>2-fold) change during germination. The results show that seed germination is not only the activation of a series of metabolic processes, but also involves reorganization of cellular structure and activation...... of protective systems. To uncouple the physiological processes of germination and its associated loss of desiccation tolerance, we used the fact that pea seeds have different desiccation tolerance when imbibed in water, CaCl2 and methylviologen at the same germination stage. We compared the proteome amongst...

  8. Effects of leaf hair points of a desert moss on water retention and dew formation: implications for desiccation tolerance.

    Science.gov (United States)

    Tao, Ye; Zhang, Yuan Ming

    2012-05-01

    Leaf hair points (LHPs) are important morphological structures in many desiccation-tolerant mosses, but study of their functions has been limited. A desert moss, Syntrichia caninervis, was chosen for examination of the ecological effects of LHPs on water retention and dew formation at individual and population (patch) levels. Although LHPs were only 4.77% of shoot weight, they were able to increase absolute water content (AWC) by 24.87%. The AWC of samples with LHPs was always greater than for those without LHPs during dehydration. The accumulative evaporation ratio (AER) showed an opposite trend. AWC, evaporation ratio and AER of shoots with LHPs took 20 min longer to reach a completely dehydrated state than shoots without LHPs. At the population level, dew formation on moss crusts with LHPs was faster than on crusts without LHPs, and the former had higher daily and total dew amounts. LHPs were able to improve dew amounts on crusts by 10.26%. Following three simulated rainfall events (1, 3 and 6 mm), AERs from crusts with LHPs were always lower than from crusts without LHPs. LHPs can therefore significantly delay and reduce evaporation. We confirm that LHPs are important desiccation-tolerant features of S. caninervis at both individual and population levels. LHPs greatly aid moss crusts in adapting to arid conditions.

  9. An easily reversible structural change underlies mechanisms enabling desert crust cyanobacteria to survive desiccation.

    Science.gov (United States)

    Bar-Eyal, Leeat; Eisenberg, Ido; Faust, Adam; Raanan, Hagai; Nevo, Reinat; Rappaport, Fabrice; Krieger-Liszkay, Anja; Sétif, Pierre; Thurotte, Adrien; Reich, Ziv; Kaplan, Aaron; Ohad, Itzhak; Paltiel, Yossi; Keren, Nir

    2015-10-01

    Biological desert sand crusts are the foundation of desert ecosystems, stabilizing the sands and allowing colonization by higher order organisms. The first colonizers of the desert sands are cyanobacteria. Facing the harsh conditions of the desert, these organisms must withstand frequent desiccation-hydration cycles, combined with high light intensities. Here, we characterize structural and functional modifications to the photosynthetic apparatus that enable a cyanobacterium, Leptolyngbya sp., to thrive under these conditions. Using multiple in vivo spectroscopic and imaging techniques, we identified two complementary mechanisms for dissipating absorbed energy in the desiccated state. The first mechanism involves the reorganization of the phycobilisome antenna system, increasing excitonic coupling between antenna components. This provides better energy dissipation in the antenna rather than directed exciton transfer to the reaction center. The second mechanism is driven by constriction of the thylakoid lumen which limits diffusion of plastocyanin to P700. The accumulation of P700(+) not only prevents light-induced charge separation but also efficiently quenches excitation energy. These protection mechanisms employ existing components of the photosynthetic apparatus, forming two distinct functional modes. Small changes in the structure of the thylakoid membranes are sufficient for quenching of all absorbed energy in the desiccated state, protecting the photosynthetic apparatus from photoinhibitory damage. These changes can be easily reversed upon rehydration, returning the system to its high photosynthetic quantum efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    Science.gov (United States)

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K.; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S. L.; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in addition to screening for the presence of full-length inlA and a plasmid, could help food processors and food agency investigators determine why certain isolates might be persisting in a food processing environment. Additionally, increased

  11. Subterranean termite open-air foraging and tolerance to desiccation: Comparative water relation of two sympatric Macrotermes spp. (Blattodea: Termitidae).

    Science.gov (United States)

    Hu, Jian; Neoh, Kok-Boon; Appel, Arthur G; Lee, Chow-Yang

    2012-02-01

    The foraging patterns of termites are strongly related to physiological limits in overcoming desiccation stress. In this study, we examined moisture preferences and physiological characteristics of Macrotermes carbonarius (Hagen) and M. gilvus (Hagen) as both exhibit conspicuous patterns of foraging activity. Despite both species showing no significant differences in calculated cuticular permeability, and percentage of total body water, they differed greatly in rate of water loss and surface area to volume ratio. For example, M. carbonarius which had a lower surface area to volume ratio (29.26-53.66) showed lower rate of water loss and percentage of total body water loss. This also resulted in higher LT(50) when exposed to extreme conditions (≈2% RH). However, contrasting observations were made in M. gilvus that has smaller size with higher surface area to volume ratio of 40.28-69.75. It is likely that the standard equation for calculating insect surface areas is inadequate for these termite species. The trend was further supported by the result of a moisture preference bioassay that indicated M. carbonarius had a broader range of moisture preference (between 5% and 20%) than M. gilvus which had a relatively narrow moisture preference (only 20%). These results explain why M. carbonarius can tolerate desiccation stress for a longer period foraging above-ground in the open air; while M. gilvus only forages below ground or concealed within foraging mud tubes. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis

    Science.gov (United States)

    Billi, D.; Friedmann, E. I.; Hofer, K. G.; Caiola, M. G.; Ocampo-Friedmann, R.

    2000-01-01

    The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.

  13. SUMO-Dependent Synergism Involving Heat Shock Transcription Factors with Functions Linked to Seed Longevity and Desiccation Tolerance

    Directory of Open Access Journals (Sweden)

    Raúl Carranco

    2017-06-01

    Full Text Available A transcriptional synergism between HaHSFA9 (A9 and HaHSFA4a (A4a contributes to determining longevity and desiccation tolerance of sunflower (Helianthus annuus, L. seeds. Potential lysine SUMOylation sites were identified in A9 and A4a and mutated to arginine. We show that A9 is SUMOylated in planta at K38. Although we did not directly detect SUMOylated A4a in planta, we provide indirect evidence from transient expression experiments indicating that A4a is SUMOylated at K172. Different combinations of wild type and SUMOylation site mutants of A9 and A4a were analyzed by transient expression in sunflower embryos and leaves. Although most of the precedents in literature link SUMOylation with repression, the A9 and A4a synergism was fully abolished when the mutant forms for both factors were combined. However, the combination of mutant forms of A9 and A4a did not affect the nuclear retention of A4a by A9; therefore, the analyzed mutations would affect the synergism after the mutual interaction and nuclear co-localization of A9 and A4a. Our results suggest a role for HSF SUMOylation during late, zygotic, embryogenesis. The SUMOylation of A9 (or A4a would allow a crucial, synergic, transcriptional effect that occurs in maturing sunflower seeds.

  14. Loss and re-establishment of desiccation tolerance in the germinated seeds of Sesbania virgata (Cav. (Pers.

    Directory of Open Access Journals (Sweden)

    Tathiana Elisa Masetto

    2015-08-01

    Full Text Available This research aimed to investigate the cellular alterations during the loss and re-establishment of desiccation tolerance (DT in germinated Sesbania virgata seeds. The loss of DT was characterized in germinated seeds with increasing radicle lengths (1, 2, 3, 4 and 5 mm when subjected to dehydration in silica gel, followed by rehydration. To re-establish DT, the germinated seeds were incubated for 72h in polyethylene glycol (PEG, -2.04 MPa with or without ABA (100 μM before dehydration in silica gel. Cell viability was assessed by seedling survival, and DNA integrity was evaluated by gel electrophoresis. Seeds with 1 mm radicle length survived dehydration to the original moisture content (MC of the dry seed (approximately 10%. PEG treatment was able to re-establish DT, at least partially, with 2, 3 and 4 mm but not in 5 mm radicle lengths. Germinated seeds treated with PEG+ABA performed better than those treated only with PEG, and DT was re-established even in germinated seeds with a 5 mm radicle length. Among the PEG-treated germinated seeds dehydrated to 10% MC, DNA integrity was maintained only in those with a 1 mm radicle length.

  15. Tolerance of Ruppia sinensis Seeds to Desiccation, Low Temperature, and High Salinity With Special Reference to Long-Term Seed Storage.

    Science.gov (United States)

    Gu, Ruiting; Zhou, Yi; Song, Xiaoyue; Xu, Shaochun; Zhang, Xiaomei; Lin, Haiying; Xu, Shuai; Yue, Shidong; Zhu, Shuyu

    2018-01-01

    Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass) populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage. Also, three morphological and nine physiological indices were measured and compared between two types of seeds: Shape L and Shape S. We found that: (1) wet storage at a salinity of 30-40 psu and 0°C were the optimal long-term storage conditions, and the proportion of viable seeds reached over 90% after a storage period of 11 months since the seeds were collected from the reproductive shoots; (2) dry condition was not the optimal choice for long-term storage of R. sinensis seeds; however, storing seeds in a dry condition at 5°C and 33 ± 10% relative humidity for 9 months had a relatively high percentage (74.44 ± 2.22%) of viable seeds, consequently desiccation exposure could also be an acceptable seed storage method; (3) R. sinensis seeds would lose vigor in the interaction of extreme cold (-27°C) and desiccation; (4) there were significant differences in seed weight, seed curvature, and endocarp thickness between the two types of seeds. These findings provided fundamental physiological information for R. sinensis seeds and supported the long-term storage of its seeds. Our results may also serve as useful reference for seed storage of other threatened seagrass species and facilitate their ex situ conservation and habitat restoration.

  16. Tolerance of Ruppia sinensis Seeds to Desiccation, Low Temperature, and High Salinity With Special Reference to Long-Term Seed Storage

    Directory of Open Access Journals (Sweden)

    Ruiting Gu

    2018-03-01

    Full Text Available Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage. Also, three morphological and nine physiological indices were measured and compared between two types of seeds: Shape L and Shape S. We found that: (1 wet storage at a salinity of 30–40 psu and 0°C were the optimal long-term storage conditions, and the proportion of viable seeds reached over 90% after a storage period of 11 months since the seeds were collected from the reproductive shoots; (2 dry condition was not the optimal choice for long-term storage of R. sinensis seeds; however, storing seeds in a dry condition at 5°C and 33 ± 10% relative humidity for 9 months had a relatively high percentage (74.44 ± 2.22% of viable seeds, consequently desiccation exposure could also be an acceptable seed storage method; (3 R. sinensis seeds would lose vigor in the interaction of extreme cold (-27°C and desiccation; (4 there were significant differences in seed weight, seed curvature, and endocarp thickness between the two types of seeds. These findings provided fundamental physiological information for R. sinensis seeds and supported the long-term storage of its seeds. Our results may also serve as useful reference for seed storage of other threatened seagrass species and facilitate their ex situ conservation and habitat restoration.

  17. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  18. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds.

    Science.gov (United States)

    Verdier, Jerome; Lalanne, David; Pelletier, Sandra; Torres-Jerez, Ivone; Righetti, Karima; Bandyopadhyay, Kaustav; Leprince, Olivier; Chatelain, Emilie; Vu, Benoit Ly; Gouzy, Jerome; Gamas, Pascal; Udvardi, Michael K; Buitink, Julia

    2013-10-01

    In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states.

  19. Desiccation stress induces developmental heterochrony in ...

    Indian Academy of Sciences (India)

    Stressful environments are known to perturb developmental patterns in insects. In the purview of desiccation as astressor, relatively little is known about the developmental consequences linked with desiccation tolerance. In thisstudy, we have particularly focused on the exploration of the temporal profile of postembryonic ...

  20. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    DEFF Research Database (Denmark)

    Hingston, Patricia A.; Chen, Jessica; Dhillon, Bhavjinder K

    2017-01-01

    elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold......The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also...... tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food...

  1. Parameter analysis and optimization of the energy and economic performance of solar-assisted liquid desiccant cooling system under different climate conditions

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2015-01-01

    Highlights: • Operation conditions significantly affect energy & economic performance of SLDCS. • Control parameters in three areas were optimized by Multi-Population Genetic Algorithm. • Solar collector area showed the greatest effect on system performance for humid areas. • Desiccant concentration showed greatest effect on system performance for dry areas. • Requirement of collector area, heating water and desiccant flow rates for humid areas is highest. - Abstract: Operation conditions significantly affect the energy and economic performance of solar-assisted liquid desiccant cooling systems. This study optimized the system control parameters for buildings in different climates, i.e., Singapore (hot and humid), Beijing (moderate) and Boulder (hot and dry), with a multi-parameter optimization based on the Multi-Population Genetic Algorithm to obtain optimal system performance in terms of relatively maximum electricity saving rate with a minimum cost payback period. The results indicated that the selection of operation parameters is significantly influenced by climatic conditions. The solar collector installation area exhibited the greatest effect on both energy and economic performance in humid areas, and the heating water flow rate was also important. For dry areas, a change in desiccant concentration had the largest effect on system performance. Although the effect of the desiccant flow rate was significant in humid cities, it appeared to have little influence over buildings in dry areas. Furthermore, the requirements of the solar collector installation area in humid areas were much higher. The optimized area was up to 70 m"2 in Singapore compared with 27.5 m"2 in Boulder. Similar results were found for the flow rates of heating water and the desiccant solution. Applying the optimization, humid cities could achieve an electricity saving of more than 40% with a six-year payback period. The optimal performance for hot and dry areas of a 38% electricity

  2. Tolerability of hysteroscopy under local anaesthesia

    International Nuclear Information System (INIS)

    Nasrullah, F.D.; Khan, A.

    2007-01-01

    To assess the tolerability of hysteroscopy amongst patients, when performed under local anesthesia. Patients attending the Outpatient Clinics with bleeding per vagina were randomly selected. After the clinical work-up and taking consent, all patients were given injection diclofenac sodium half an hour prior to the procedure. After preparing and positioning the patient,10cc of injection Bupivacaine was given for para cervical block at 3 and 9 o'clock positions. The uterine cavity was distended with normal saline. Hysteroscopy was performed and the findings noted. Pain scoring was done by visual analogue scale. The condition of the patient was monitored during and after the procedure; they were kept under observation for four hours. Tolerability of the procedure was assessed by pain scoring and the presence of complications, and the results analyzed. During the study period 113 patients underwent hysteroscopy for abnormal uterine bleeding. The procedure was performed successfully in 98.2% patients without any complications, while 1.8% patients experienced transient vasovagal attack. The procedure was painless in 52.2% patients; 40.7% patients had mild pain (score <3) and were reassured, whereas 7.1% patients had moderate pain (score 3-5). Only 3.5% cases required analgesia for pain control. All patients remained haemodynamically stable during and after the procedure. Hysteroscopy is very well tolerated under local anaesthesia by our local population. (author)

  3. The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Cannell, Elizabeth; Dornan, Anthony J.; Halberg, Kenneth Agerlin

    2016-01-01

    Malpighian tubules are critical organs for epithelial fluid transport and stress tolerance in insects, and are under neuroendocrine control by multiple neuropeptides secreted by identified neurons. Here, we demonstrate roles for CRF-like diuretic hormone 44 (DH44) and Drosophila melanogaster kinin...

  4. Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation.

    Directory of Open Access Journals (Sweden)

    Cihan Erkut

    Full Text Available Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals.

  5. Clinical and Molecular Inflammatory Response in Sjögren Syndrome-Associated Dry Eye Patients Under Desiccating Stress.

    Science.gov (United States)

    López-Miguel, Alberto; Tesón, Marisa; Martín-Montañez, Vicente; Enríquez-de-Salamanca, Amalia; Stern, Michael E; González-García, María J; Calonge, Margarita

    2016-01-01

    To evaluate the response of the lacrimal function unit in Sjögren syndrome (SS)-associated dry eye patients exposed to 2 simulated daily life environmental conditions. Prospective crossover pilot study. Fourteen female SS dry eye patients were exposed for 2 hours to a controlled normal condition (23 C, 45% relative humidity, and air flow 0.10 m/s) and a controlled adverse condition that simulates desiccating stress (23 C, 5% relative humidity, and air flow 0.10 m/s). The following dry eye tests were performed before and after the exposure: tear osmolarity, phenol red thread test, conjunctival hyperemia, fluorescein tear break-up time, corneal fluorescein staining, conjunctival lissamine green staining, and Schirmer test. Levels of 16 molecules were analyzed in tears by multiplex immunobead analysis. Clinical evaluation showed lacrimal functional unit impairment after the desiccating stress: significantly increased tear osmolarity (315.7 ± 3.0 vs 327.7 ± 5.1 mOsm/L, P = .03), conjunctival hyperemia (1.3 ± 0.1 vs 1.6 ± 0.1, P = .05), and corneal staining in temporal (3.5 ± 0.5 vs 4.7 ± 0.4, P = .01) and nasal (3.6 ± 0.5 vs 4.5 ± 0.5, P = .04) areas. Tear concentrations increased for interleukin-1 receptor antagonist (16 557.1 ± 4047.8 vs 31 895.3 ± 5916.5 pg/mL, P = .01), interleukin-6 (63.8 ± 20.2 vs 111.5 ± 29.6 pg/mL, P = .02), interleukin-8 (2196.1 ± 737.9 vs 3753.2 ± 1106.0 pg/mL, P = .03), and matrix metalloproteinase-9 (101 515.6 ± 37 088.4 vs 145 867.1 ± 41 651.5 pg/mL, P = .03). After the simulated normal condition, only a significant increase in nasal corneal staining (2.9 ± 0.5 vs 3.6 ± 0.5, P = .03) was observed. Even a short exposure to a desiccating environment can produce a significant deterioration of the lacrimal function unit in female SS dry eye patients. The often unnoticed exposure to these conditions during daily life may increase inflammatory activity rapidly, triggering an ocular surface deterioration. Copyright © 2016

  6. Contrasting strategies used by lichen microalgae to cope with desiccation-rehydration stress revealed by metabolite profiling and cell wall analysis.

    Science.gov (United States)

    Centeno, Danilo C; Hell, Aline F; Braga, Marcia R; Del Campo, Eva M; Casano, Leonardo M

    2016-05-01

    Most lichens in general, and their phycobionts in particular, are desiccation tolerant, but their mechanisms of desiccation tolerance (DT) remain obscure. The physiological responses and cell wall features of two putatively contrasting lichen-forming microalgae, Trebouxia sp. TR9 (TR9), isolated from Ramalina farinacea (adapted to frequent desiccation-rehydration cycles), and Coccomyxa solorina-saccatae (Csol), obtained from Solorina saccata (growing in usually humid limestone crevices, subjected to seasonal dry periods) was characterized. Microalgal cultures were desiccated under 25%-30% RH and then rehydrated. Under these conditions, RWC and ψw decreased faster and simultaneously during dehydration in Csol, whereas TR9 maintained its ψw until 70% RWC. The metabolic profile indicated that polyols played a key role in DT of both microalgae. However, TR9 constitutively accumulated higher amounts of polyols, whereas Csol induced the polyol synthesis under desiccation-rehydration. Csol also accumulated ascorbic acid, while TR9 synthesized protective raffinose-family oligosaccharides (RFOs) and increased its content of phenolics. Additionally, TR9 exhibited thicker and qualitatively different cell wall and extracellular polymeric layer compared with Csol, indicating higher water retention capability. The findings were consistent with the notion that lichen microalgae would have evolved distinct strategies to cope with desiccation-rehydration stress in correspondence with the water regime of their respective habitats. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment.

    Science.gov (United States)

    Contour-Ansel, Dominique; Torres-Franklin, Maria Lucia; Cruz DE Carvalho, Maria Helena; D'Arcy-Lameta, Agnès; Zuily-Fodil, Yasmine

    2006-12-01

    Reactive oxygen species are frequently produced when plants are exposed to abiotic stresses. Among the detoxication systems, two enzymes, ascorbate peroxidase and glutathione reductase (GR) play key roles. GR has also a central role in keeping the reduced glutathione pool during stress thus allowing the adjustments on the cellular redox reactions. The aim of this work was to study the variations in cytosolic and dual-targeted GR gene expression in the leaves of cowpea plants submitted to progressive drought, rapid desiccation and application of exogenous abscisic acid (ABA). Two cowpea (Vigna unguiculata) cultivars, one drought-resistant ('EPACE-1'), the other drought-sensitive ('1183') were submitted to progressive drought stress by withholding irrigation. Cut-off leaves were air-dried or treated with exogenous ABA. Two GR cDNAs, one cytosolic, the other dual-targeted to chloroplasts and mitochondria were isolated by PCR and cloned in plasmid vectors. Reverse-transcription PCR was used to study the variations in GR gene expression. Two new cDNAs encoding a putative dual-targeted and a cytosolic GR were cloned and sequenced from leaves of V. unguiculata. Drought stress induced an up-regulation of the expression of the cytosolic GR gene directly related to the intensity of the stress in both cultivars. The expression of dual-targeted GR was up-regulated by the drought treatment in the susceptible cultivar only. Under a fast desiccation, the '1183' cultivar responded later than the 'EPACE-1', although in 'EPACE-1' it was the cytosolic isoform which responded and in '1183' the dual-targeted one. Exogenous ABA enhanced significantly the activity and expression levels of GR in both cultivars after treatment for 24 h. These results demonstrate a noticeable activation in both cultivars of the antioxidant metabolism under a progressive water stress, which involves both GR genes in the case of the susceptible cultivar. Under a fast desiccation, the susceptible cultivar

  8. Desiccation induces accumulations of antheraxanthin and zeaxanthin in intertidal macro-alga Ulva pertusa (Chlorophyta.

    Directory of Open Access Journals (Sweden)

    Xiujun Xie

    Full Text Available For plants and algae, exposure to high light levels is deleterious to their photosynthetic machineries. It also can accelerate water evaporation and thus potentially lead to drought stress. Most photosynthetic organisms protect themselves against high light caused photodamages by xanthophyll cycle-dependent thermal energy dissipation. It is generally accepted that high light activates xanthophyll cycle. However, the relationship between xanthophyll cycle and drought stress remains ambiguous. Herein, Ulva pertusa (Chlorophyta, a representative perennial intertidal macro-algae species with high drought-tolerant capabilities and simple structures, was used to investigate the operation of xanthophyll cycle during desiccation in air. The results indicate that desiccation under dim light induced accumulation of antheraxanthin (Ax and zeaxanthin (Zx at the expense of violaxanthin (Vx. This accumulation could be arrested by dithiothreitol completely and by uncoupler (carbonyl cyanide p-trifluoromethoxyphenylhydrazone partially, implying the participation of Vx de-epoxidase in conversion of Vx to Ax and Zx. Treatment with inhibitors of electron transport along thylakoid membrane, e.g. DCMU, PG and DBMIB, did not significantly arrest desiccation-induced accumulation of Ax and Zx. We propose that for U. pertusa, besides excess light, desiccation itself could also induce accumulation of Ax and Zx. This accumulation could proceed without electron transport along thylakoid membrane, and is possibly resulting from the reduction of thylakoid lumen volume during desiccation. Considering the pleiotropic effects of Ax and Zx, accumulated Ax and Zx may function in protecting thylakoid membrane and enhancing thermal quenching during emersion in air.

  9. Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.) Populations under Extreme Drought Conditions

    Science.gov (United States)

    Bolte, Andreas; Czajkowski, Tomasz; Cocozza, Claudia; Tognetti, Roberto; de Miguel, Marina; Pšidová, Eva; Ditmarová, Ĺubica; Dinca, Lucian; Delzon, Sylvain; Cochard, Hervè; Ræbild, Anders; de Luis, Martin; Cvjetkovic, Branislav; Heiri, Caroline; Müller, Jürgen

    2016-01-01

    European beech (Fagus sylvatica L., hereafter beech), one of the major native tree species in Europe, is known to be drought sensitive. Thus, the identification of critical thresholds of drought impact intensity and duration are of high interest for assessing the adaptive potential of European beech to climate change in its native range. In a common garden experiment with one-year-old seedlings originating from central and marginal origins in six European countries (Denmark, Germany, France, Romania, Bosnia-Herzegovina, and Spain), we applied extreme drought stress and observed desiccation and mortality processes among the different populations and related them to plant water status (predawn water potential, ΨPD) and soil hydraulic traits. For the lethal drought assessment, we used a critical threshold of soil water availability that is reached when 50% mortality in seedling populations occurs (LD50SWA). We found significant population differences in LD50SWA (10.5–17.8%), and mortality dynamics that suggest a genetic difference in drought resistance between populations. The LD50SWA values correlate significantly with the mean growing season precipitation at population origins, but not with the geographic margins of beech range. Thus, beech range marginality may be more due to climatic conditions than to geographic range. The outcome of this study suggests the genetic variation has a major influence on the varying adaptive potential of the investigated populations. PMID:27379105

  10. Responses of the Lichen Photobiont Trebouxia erici to Desiccation and Rehydration (II) Proteomics

    Science.gov (United States)

    Lichen desiccation tolerance is associated with cellular protection mechanisms directed against the oxidative stress produced during dehydration and/or rehydration, however, these mechanisms are not well understood. In other poikilohydric organisms, changes in the synthesis of proteins have bee...

  11. Effects of temperature, light, desiccation and cold storage on ...

    African Journals Online (AJOL)

    In the present experiments, germination characteristics, desiccation, and low temperature tolerance of seeds of Sophora tonkinensis was studied; a traditional Chinese medicine on the edge of extinction, were investigated for the first time in attempt to interpret their storage behaviour. The results indicate that the temperature ...

  12. Desiccation as a mitigation tool to manage biofouling risks: trials on temperate taxa to elucidate factors influencing mortality rates.

    Science.gov (United States)

    Hopkins, Grant A; Prince, Madeleine; Cahill, Patrick L; Fletcher, Lauren M; Atalah, Javier

    2016-01-01

    The desiccation tolerance of biofouling taxa (adults and early life-stages) was determined under both controlled and 'realistic' field conditions. Adults of the ascidian Ciona spp. died within 24 h. Mortality in the adult blue mussel Mytilus galloprovincialis occurred within 11 d under controlled conditions, compared with 7 d when held outside. The Pacific oyster Crassostrea gigas was the most desiccation-tolerant taxon tested (up to 34 d under controlled conditions). Biofouling orientated to direct sunlight showed faster mortality rates for all the taxa tested. Mortality in Mytilus juveniles took up to 24 h, compared with 8 h for Ciona, with greater survival at the higher temperature (18.5°C) and humidity (~95% RH) treatment combination. This study demonstrated that desiccation can be an effective mitigation method for a broad range of fouling taxa, especially their early life-stages. Further work is necessary to assess risks from other high-risk species such as algae and cyst forming species.

  13. Study of an aqueous lithium chloride desiccant system Part II: Desiccant regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Fumo, Nelson [Universidad Nacional Experimental del Tachira, San Cristobal (Venezuela); Goswami, Yogi [University of Florida, Gainesville (United States)

    2000-07-01

    Desiccant systems have been proposed as alternative to handle the latent load in vapor compression air conditioning for energy saving. The air dehumidification occurs because of the difference in vapor pressure which let the moisture diffuse from the air to the liquid desiccant. The diffused moisture cause a dilution of the desiccant which must be regenerated to return it to the original conditions. This paper presents the results from a study of the performance of a packed tower regenerator for an aqueous lithium chloride desiccant dehumidification system. The rate of water evaporation, as well as the effectiveness of the regeneration process were assessed under the effects of variables such as air and desiccant flow rates, air temperature and humidity, and desiccant temperature and concentration. A variation of the oeberg and Goswami mathematical model was used to predict the experimental findings given satisfactory results. [Spanish] Se han propuesto sistemas desecantes para hacerse cargo de la carga latente en acondicionamiento de aire por compresion de vapor para el ahorro de energia. La deshumidificacion del aire ocurre en razon de la diferencia de presion de vapor que deja la humedad difusa del aire en el desecante liquido. La humedad difusa del aire origina una dilucion del desecante el cual debe de ser regenerado para regresarlo a sus condiciones originales. Este documento presenta los resultados de un estudio sobre el comportamiento de un regenerador de torre empacada para un sistema de deshumidificacion de solucion desecante de cloruro de litio. El regimen de evaporacion de agua, asi como tambien la efectividad del proceso de regeneracion que se evaluo bajo los efectos de variables tales como los regimenes de flujo de aire y de desecante, temperatura del aire y humedad, y temperatura y concentracion del desecante. Una variacion del modelo matematico de Oberg y Goswami se uso para predecir los resultados experimentales que dieron resultados satisfactorios.

  14. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases....

  15. Review of Desiccant Dehumidification Technology

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A. A.

    1994-10-01

    This paper overviews applications of desiccant technology for dehumidifying commercial and institutional buildings. Because of various market, policy, and regulatory factors, this technology is especially attractive for dehumidification applications in the I990s.

  16. Hemodynamic mechanisms underlying the incomplete tolerance to caffeine's pressor effects.

    Science.gov (United States)

    Farag, Noha H; Vincent, Andrea S; McKey, Barbara S; Whitsett, Thomas L; Lovallo, William R

    2005-06-01

    Blood pressure (BP) and cardiovascular hemodynamics were assessed at baseline and after caffeine administration in a 4-week, placebo-controlled, double-blind, randomized, crossover trial of caffeine tolerance formation. Half of the subjects developed tolerance to the pressor effect of caffeine, whereas the other half continued to show increases in BP after caffeine ingestion (F = 16.7, p <0.0001). In the subjects who did not develop tolerance, peripheral resistance increased incrementally as the daily dose of caffeine increased (F = 2.8, p = 0.05).

  17. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    is linked to a different set of circumstances than the ones suggested by existing models in contemporary democratic theory. Reorienting the discussion of tolerance, the book raises the question of how to disclose new possibilities within our given context of affect and perception. Once we move away from......Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated...... by the desire to experiment and to become otherwise. The objective is to discuss what gets lost, conceptually as well as politically, when we neglect the subsistence of active tolerance within other practices of tolerance, and to develop a theory of active tolerance in which tolerance's mobilizing character...

  18. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain

    DEFF Research Database (Denmark)

    Burgess, Catherine M.; Gianotti, Andrea; Gruzdev, Nadia

    2016-01-01

    In combination with other strategies, hyperosmolarity and desiccation are frequently used by the food processing industry as a means to prevent bacterial proliferation, and particularly that of foodborne pathogens, in food products. However, it is increasingly observed that bacteria, including...... human pathogens, encode mechanisms to survive and withstand these stresses. This review provides an overview of the mechanisms employed by Salmonella spp., Shiga toxin producing E. coli, Cronobacter spp., Listeria monocytogenes and Campylobacter spp. to tolerate osmotic and desiccation stresses...... and identifies gaps in knowledge which need to be addressed to ensure the safety of low water activity and desiccated food products....

  19. Tolerance

    DEFF Research Database (Denmark)

    Tønder, Lars

    Tolerance: A Sensorial Orientation to Politics is an experiment in re-orientation. The book is based on the wager that tolerance exceeds the more prevalent images of self-restraint and repressive benevolence because neither precludes the possibility of a more “active tolerance” motivated by the d...... these alternatives by returning to the notion of tolerance as the endurance of pain, linking this notion to exemplars and theories relevant to the politics of multiculturalism, religious freedom, and free speech....

  20. Performance investigation on the ultrasonic atomization liquid desiccant regeneration system

    International Nuclear Information System (INIS)

    Yang, Zili; Zhang, Kaisheng; Hwang, Yunho; Lian, Zhiwei

    2016-01-01

    Highlights: • We applied ultrasonic atomization technology to boost liquid desiccant regeneration. • We established a novel UARS and made a thorough study on its performance. • We developed a performance prediction model for UARS and validated its accuracy. • The necessary regeneration temperature dropped significantly (4.4 °C) in UARS. • Energy consumption for regenerating desiccant was reduced greatly (60.4%) in UARS. - Abstract: Liquid desiccant dehumidification systems have accumulated considerable research interest in recent years for their great energy saving potential in buildings. Within the system, the regenerator recovering liquid desiccant plays a major role in its performance. When the ultrasonic atomization technology is applied to atomize the desiccant solution into numerous tiny droplets with diameters around 50 μm, the regeneration process could be greatly enhanced. To validate this approach, a novel ultrasonic atomization liquid desiccant regeneration system (UARS) was studied in this work. An Ideal Regeneration Model (IRM) was developed to predict the regeneration performance of the UARS. Additionally, thorough experiments were carried out to validate the model under different operating conditions of the desiccant solution and air stream. The model predicted values and the experimental results coincided, with the average deviation less than 7.9%. The performance of UARS was compared with other regeneration systems from the open literature, while a case study was conducted for the power consumption and energy saving potential of UARS. It was found that the ultrasonic atomization technology enabled utilization of lower-grade energy for desiccant regeneration with the regeneration temperature lowered as much as 4.4 °C. In addition, a considerable energy saving potential of up to 23.4% could be achieved by the UARS for regenerating per unit mass flow of desiccant solution, while the power consumption of the ultrasonic atomization system

  1. Experimental performance of indirect air–liquid membrane contactors for liquid desiccant cooling systems

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2013-01-01

    Owing to the stringent indoor air quality (IAQ) requirements and high cost of desiccants, one of the major concerns in liquid desiccant technology has been the carryover, which can be eliminated through indirect contact between desiccant and air. Membrane contactors using microporous semipermeable hydrophobic membranes have a great potential in this regard. This communication investigates the performance of semipermeable membrane based indirect contactors as dehumidifiers in liquid desiccant cooling applications. Experiments on different types of membrane contactors are carried out using lithium chloride (LiCl) solution as desiccant. The membrane contactors consist of alternate channels of air and liquid desiccant flowing in cross-flow direction. Hydrophobic membranes form a liquid tight, vapor permeable porous barrier between hygroscopic solution and moist air, thus eliminating carryover of desiccant droplets. In order to provide maximum contact area for air–desiccant interaction, a wicking material is sandwiched between two membranes in the liquid channel. It is observed that vapor flux upto 1300 g/m 2 h can be achieved in a membrane contactor with polypropylene (PP) membranes, although the dehumidification effectiveness remains low. The effect of key parameters on the transmembrane vapor transport is presented in the paper. - Highlights: • Indirect membrane contactors developed to avoid carryover in liquid desiccant system. • Dehumidification effectiveness and vapor flux reported under varying conditions. • Vapor flux upto 1295 g/m 2 h in polypropylene contactor with high area density. • Dehumidification effectiveness with LiCl solution varies within 23% to 45%

  2. Evaluation of bread wheat genotypes for salinity tolerance under ...

    African Journals Online (AJOL)

    In two consecutive seasons (2007-08 and 2008-09), field experiments were conducted at Soil Salinity Research Institute, Pindi Bhattian and Biosaline Agricultural Research Station, Pakka Aana, Pakistan. During 2007-08, 103 wheat landrace genotypes were evaluated for salinity tolerance. During 2008-09, 47 selected ...

  3. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  4. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  5. Neck injury tolerance under inertial loads in side impacts.

    Science.gov (United States)

    McIntosh, Andrew S; Kallieris, Dimitrios; Frechede, Bertrand

    2007-03-01

    Neck injury remains a major issue in road safety. Current side impact dummies and side impact crashworthiness assessments do not assess the risk of neck injury. These assessments are limited by biofidelity and knowledge regarding neck injury criteria and tolerance levels in side impacts. Side impact tests with PMHS were performed at the Heidelberg University in the 1980s and 1990s to improve primarily the understanding of trunk dynamics, injury mechanisms and criteria. In order to contribute to the definition of human tolerances at neck level, this study presents an analysis of the head/neck biomechanical parameters that were measured in these tests and their relationship to neck injury severity. Data from 15 impact tests were analysed. Head accelerations, and neck forces and moments were calculated from 9-accelerometer array head data, X-rays and anthropometric data. Statistically significant relationships were observed between resultant head acceleration and neck force and neck injury severity. The average resultant head acceleration for AIS 2 neck injuries was 112 g, while resultant neck force was 4925 N and moment 241 Nm. The data compared well to other test data on cadavers and volunteers. It is hoped that the paper will assist in the understanding of neck injuries and the development of tolerance criteria.

  6. Tissue tolerance under the combination treatment of maxillary cancer

    International Nuclear Information System (INIS)

    Egawa, Jun; Ono, Isamu; Suzuki, Kunio; Takeda, Chisato; Ebihara, Satoshi.

    1977-01-01

    The tissue tolerance doses of the maxillary sinus structures were estimated when they were subjected to treatment for maxillary cancer by the usual combination of surgery, radiotherapy and regional arterial infusion of 5-fluorouracil. Equivalent single dose calculation was applied with irreversible tissue damage as an indicator. The retardation of epithelialization of the maxillary sinus operated upon appeared to be correlated with the dose delivered. The study indicated that 2,200 rad expressed by equivalent single dose is a safe dose level for sufficient epithelialization. The safety dose level for the bony structure, exposed by surgery, seemed to be at 1,800 rad. (auth.)

  7. Tissue tolerance under the combination treatment of maxillary cancer

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, J [Teikyo Univ., Tokyo (Japan). Faculty of Medicine; Ono, I; Suzuki, K; Takeda, C; Ebihara, S

    1977-06-01

    The tissue tolerance doses of the maxillary sinus structures were estimated when they were subjected to treatment for maxillary cancer by the usual combination of surgery, radiotherapy, and regional arterial infusion of 5-fluorouracil. Equivalent single dose calculation was applied with irreversible tissue damage as an indicator. The retardation of epithelialization of the maxillary sinus operated upon appeared to be correlated with the dose delivered. The study indicated that 2,200 rad expressed by equivalent single dose is a safe dose level for sufficient epithelialization. The safety dose level for the bony structure, exposed by surgery, seemed to be at 1,800 rad.

  8. General response of Salmonella enterica serovar Typhimurium to desiccation: A new role for the virulence factors sopD and sseD in survival.

    Directory of Open Access Journals (Sweden)

    Alice Maserati

    Full Text Available Salmonella can survive for long periods under extreme desiccation conditions. This stress tolerance poses a risk for food safety, but relatively little is known about the molecular and cellular regulation of this adaptation mechanism. To determine the genetic components involved in Salmonella's cellular response to desiccation, we performed a global transcriptomic analysis comparing S. enterica serovar Typhimurium cells equilibrated to low water activity (aw 0.11 and cells equilibrated to high water activity (aw 1.0. The analysis revealed that 719 genes were differentially regulated between the two conditions, of which 290 genes were up-regulated at aw 0.11. Most of these genes were involved in metabolic pathways, transporter regulation, DNA replication/repair, transcription and translation, and, more importantly, virulence genes. Among these, we decided to focus on the role of sopD and sseD. Deletion mutants were created and their ability to survive desiccation and exposure to aw 0.11 was compared to the wild-type strain and to an E. coli O157:H7 strain. The sopD and sseD mutants exhibited significant cell viability reductions of 2.5 and 1.3 Log (CFU/g, respectively, compared to the wild-type after desiccation for 4 days on glass beads. Additional viability differences of the mutants were observed after exposure to aw 0.11 for 7 days. E. coli O157:H7 lost viability similarly to the mutants. Scanning electron microscopy showed that both mutants displayed a different morphology compared to the wild-type and differences in production of the extracellular matrix under the same conditions. These findings suggested that sopD and sseD are required for Salmonella's survival during desiccation.

  9. What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect.

    Science.gov (United States)

    Murik, Omer; Oren, Nadav; Shotland, Yoram; Raanan, Hagai; Treves, Haim; Kedem, Isaac; Keren, Nir; Hagemann, Martin; Pade, Nadin; Kaplan, Aaron

    2017-02-01

    Filamentous cyanobacteria are the main founders and primary producers in biological desert soil crusts (BSCs) and are likely equipped to cope with one of the harshest environmental conditions on earth including daily hydration/dehydration cycles, high irradiance and extreme temperatures. Here, we resolved and report on the genome sequence of Leptolyngbya ohadii, an important constituent of the BSC. Comparative genomics identified a set of genes present in desiccation-tolerant but not in dehydration-sensitive cyanobacteria. RT qPCR analyses showed that the transcript abundance of many of them is upregulated during desiccation in L. ohadii. In addition, we identified genes where the orthologs detected in desiccation-tolerant cyanobacteria differs substantially from that found in desiccation-sensitive cells. We present two examples, treS and fbpA (encoding trehalose synthase and fructose 1,6-bisphosphate aldolase respectively) where, in addition to the orthologs present in the desiccation-sensitive strains, the resistant cyanobacteria also possess genes with different predicted structures. We show that in both cases the two orthologs are transcribed during controlled dehydration of L. ohadii and discuss the genetic basis for the acclimation of cyanobacteria to the desiccation conditions in desert BSC. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Analysis of Natural Variation in Bermudagrass (Cynodon dactylon) Reveals Physiological Responses Underlying Drought Tolerance

    Science.gov (United States)

    Cheng, Zhangmin; Ye, Tiantian; Chan, Zhulong

    2012-01-01

    Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H2O2 content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system. PMID:23285294

  11. Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance.

    Science.gov (United States)

    Shi, Haitao; Wang, Yanping; Cheng, Zhangmin; Ye, Tiantian; Chan, Zhulong

    2012-01-01

    Bermudagrass (Cynodon dactylon) is a widely used warm-season turfgrass and one of the most drought tolerant species. Dissecting the natural variation in drought tolerance and physiological responses will bring us powerful basis and novel insight for plant breeding. In the present study, we evaluated the natural variation of drought tolerance among nine bermudagrass varieties by measuring physiological responses after drought stress treatment through withholding water. Three groups differing in drought tolerance were identified, including two tolerant, five moderately tolerant and two susceptible varieties. Under drought stress condition, drought sensitive variety (Yukon) showed relative higher water loss, more severe cell membrane damage (EL), and more accumulation of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), while drought tolerant variety (Tifgreen) exhibited significantly higher antioxidant enzymes activities. Further results indicated that drought induced cell injury in different varieties (Yukon, SR9554 and Tifgreen) exhibited liner correlation with leaf water content (LWC), H₂O₂ content, MDA content and antioxidant enzyme activities. Additionally, Tifgreen plants had significantly higher levels of osmolytes (proline level and soluble sugars) when compared with Yukon and SR9554 under drought stress condition. Taken together, our results indicated that natural variation of drought stress tolerance in bermudagrass varieties might be largely related to the induced changes of water status, osmolyte accumulation and antioxidant defense system.

  12. Influences on cocaine tolerance assessed under a multiple conjunctive schedule of reinforcement.

    Science.gov (United States)

    Yoon, Jin Ho; Branch, Marc N

    2009-11-01

    Under multiple schedules of reinforcement, previous research has generally observed tolerance to the rate-decreasing effects of cocaine that has been dependent on schedule-parameter size in the context of fixed-ratio (FR) schedules, but not under the context of fixed-interval (FI) schedules of reinforcement. The current experiment examined the effects of cocaine on key-pecking responses of White Carneau pigeons maintained under a three-component multiple conjunctive FI (10 s, 30 s, & 120 s) FR (5 responses) schedule of food presentation. Dose-effect curves representing the effects of presession cocaine on responding were assessed in the context of (1) acute administration of cocaine (2) chronic administration of cocaine and (3) daily administration of saline. Chronic administration of cocaine generally resulted in tolerance to the response-rate decreasing effects of cocaine, and that tolerance was generally independent of relative FI value, as measured by changes in ED50 values. Daily administration of saline decreased ED50 values to those observed when cocaine was administered acutely. The results show that adding a FR requirement to FI schedules is not sufficient to produce schedule-parameter-specific tolerance. Tolerance to cocaine was generally independent of FI-parameter under the present conjunctive schedules, indicating that a ratio requirement, per se, is not sufficient for tolerance to be dependent on FI parameter.

  13. Fault-Tolerant Approach for Modular Multilevel Converters under Submodule Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Tian, Yanjun; Zhu, Rongwu

    2016-01-01

    The modular multilevel converter (MMC) is attractive for medium- or high-power applications because of the advantages of its high modularity, availability, and high power quality. The fault-tolerant operation is one of the important issues for the MMC. This paper proposed a fault-tolerant approach...... for the MMC under submodule (SM) faults. The characteristic of the MMC with arms containing different number of healthy SMs under faults is analyzed. Based on the characteristic, the proposed approach can effectively keep the MMC operation as normal under SM faults. It can effectively improve the MMC...

  14. Aquatic insects dealing with dehydration: do desiccation resistance traits differ in species with contrasting habitat preferences?

    Directory of Open Access Journals (Sweden)

    Susana Pallarés

    2016-08-01

    Full Text Available Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters. We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin.

  15. Influences on Cocaine Tolerance Assessed under a Multiple Conjunctive Schedule of Reinforcement

    Science.gov (United States)

    Yoon, Jin Ho; Branch, Marc N.

    2009-01-01

    Under multiple schedules of reinforcement, previous research has generally observed tolerance to the rate-decreasing effects of cocaine that has been dependent on schedule-parameter size in the context of fixed-ratio (FR) schedules, but not under the context of fixed-interval (FI) schedules of reinforcement. The current experiment examined the…

  16. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  17. Steady state modeling of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2014-01-01

    Desiccant wheels are rotary desiccant dehumidifiers used in air conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...

  18. Desiccation: An environmental and food industry stress that bacteria commonly face.

    Science.gov (United States)

    Esbelin, Julia; Santos, Tiago; Hébraud, Michel

    2018-02-01

    Water is essential for all living organisms, for animals as well as for plants and micro-organisms. For these latter, the presence of water or a humid environment with a high air relative humidity (RH) is necessary for their survival and growth. Thus, variations in the availability of water or in the air relative humidity constitute widespread environmental stresses which challenge microorganisms, and especially bacteria. Indeed, in their direct environment, bacteria are often faced with conditions that remove cell-bound water through air-drying of the atmosphere. Bacterial cells are subject to daily or seasonal environmental variations, sometimes going through periods of severe desiccation. This is also the case in the food industry, where air dehumidification treatments are applied after the daily cleaning-disinfection procedures. In plants producing low-water activity products, it is also usual to significantly reduce or eliminate water usage. Periodic desiccation exposure affects bacteria viability and so they require strategies to persist. Negative effects of desiccation are wide ranging and include direct cellular damage but also changes in the biochemical and biophysical properties of cells for which planktonic cells are more exposed than cells in biofilm. Understanding the mechanisms of desiccation adaptation and tolerance has a biological and biotechnological interest. This review gives an overview of the factors influencing desiccation tolerance and the biological mechanisms involved in this stress response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach

    Science.gov (United States)

    The study of desiccation tolerance of lichens, and of their photobionts in particular, has frequently focused on the antioxidant system that protects the cell against photo-oxidative stress during dehydration/rehydration cycles. Thus, in this work we carried out proteomic and transcript analyses of ...

  20. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, T.J.; Tuskan, G.A. [Oak Ridge National Lab., TN (United States); Wierman, C. [Boise Cascade Corp., Wallula, WA (United States)

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  1. Changes in some thylakoid membrane proteins and pigments upon desiccation of the resurrection plant Haberlea rhodopensis.

    Science.gov (United States)

    Georgieva, Katya; Röding, Anja; Büchel, Claudia

    2009-09-15

    The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that beta-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids. Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and beta-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the

  2. Campomanesia adamantium (Cambess. O. Berg seed desiccation: influence on vigor and nucleic acids

    Directory of Open Access Journals (Sweden)

    DAIANE M. DRESCH

    2015-12-01

    Full Text Available The aim of this study was to evaluate the sensitivity of Campomanesia adamantium seeds to desiccation by drying in activated silica gel (fast and under laboratory conditions (slow. To assess the sensitivity of the seeds to desiccation, we used drying with silica gel and drying under laboratory conditions (25 °C, in order to obtain seeds with moisture content of 45, 35, 30, 25, 20, 15, 10 and 5%. The physiological potential of the seeds after desiccation was evaluated by measuring primary root protrusion, percentage of normal seedlings, germination seed index, seedling length, total seedling dry mass, electrical conductivity and DNA and RNA integrities. The C. adamantium seeds were sensitive to desiccation and to a reduction in moisture content to 21.1% or less by desiccation using silica gel, and to 17.2% or less by desiccation under laboratory conditions; impairment of the physiological potential of the seeds was observed at these low moisture content levels. The integrity of the seed genomic DNA was not affected after drying seeds in the two methods. However, drying in silica gel to 4.5% moisture content and drying under laboratory conditions to 5.4% moisture content resulted in the loss of seed RNA integrity.

  3. Campomanesia adamantium (Cambess.) O. Berg seed desiccation: influence on vigor and nucleic acids.

    Science.gov (United States)

    Dresch, Daiane M; Masetto, Tathiana E; Scalon, Silvana P Q

    2015-01-01

    The aim of this study was to evaluate the sensitivity of Campomanesia adamantium seeds to desiccation by drying in activated silica gel (fast) and under laboratory conditions (slow). To assess the sensitivity of the seeds to desiccation, we used drying with silica gel and drying under laboratory conditions (25 °C), in order to obtain seeds with moisture content of 45, 35, 30, 25, 20, 15, 10 and 5%. The physiological potential of the seeds after desiccation was evaluated by measuring primary root protrusion, percentage of normal seedlings, germination seed index, seedling length, total seedling dry mass, electrical conductivity and DNA and RNA integrities. The C. adamantium seeds were sensitive to desiccation and to a reduction in moisture content to 21.1% or less by desiccation using silica gel, and to 17.2% or less by desiccation under laboratory conditions; impairment of the physiological potential of the seeds was observed at these low moisture content levels. The integrity of the seed genomic DNA was not affected after drying seeds in the two methods. However, drying in silica gel to 4.5% moisture content and drying under laboratory conditions to 5.4% moisture content resulted in the loss of seed RNA integrity.

  4. Evaluation of drought tolerance and yield capacity of barley (hordeum vulgare) genotypes under irrigated and water-stressed conditions

    International Nuclear Information System (INIS)

    Khokhar, M.I.; Silva, J.A.T.D

    2012-01-01

    Twelve barley genotypes developed through different selection methods were evaluated under drought and irrigated conditions. The results of a correlation matrix revealed highly significant associations between Grain Yield (Yp) and Mean Productivity (MP), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) under irrigated conditions while the Mean Productivity (MP), Yield Stability Index (Yi), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP) and Yield Index (Yi) had a high response under stressed condition. Based on a principal component analysis, Geometric Mean Productivity (GMP), Mean Productivity (MP) and Stress Tolerance Index (STI) were considered to be the best parameters for selection of drought-tolerant genotypes. The 2-row barley genotypes B-07023 and B-07021 performed better in yield response under drought conditions and were more stable under stress conditions. Furthermore, drought stress reduced the yield of some genotypes while others were tolerant to drought, suggesting genetic variability in this material for drought tolerance. (author)

  5. Active fault-tolerant control strategy of large civil aircraft under elevator failures

    Directory of Open Access Journals (Sweden)

    Wang Xingjian

    2015-12-01

    Full Text Available Aircraft longitudinal control is the most important actuation system and its failures would lead to catastrophic accident of aircraft. This paper proposes an active fault-tolerant control (AFTC strategy for civil aircraft with different numbers of faulty elevators. In order to improve the fault-tolerant flight control system performance and effective utilization of the control surface, trimmable horizontal stabilizer (THS is considered to generate the extra pitch moment. A suitable switching mechanism with performance improvement coefficient is proposed to determine when it is worthwhile to utilize THS. Furthermore, AFTC strategy is detailed by using model following technique and the proposed THS switching mechanism. The basic fault-tolerant controller is designed to guarantee longitudinal control system stability and acceptable performance degradation under partial elevators failure. The proposed AFTC is applied to Boeing 747-200 numerical model and simulation results validate the effectiveness of the proposed AFTC approach.

  6. Experimental investigation of activities and tolerance of denitrifying bacteria under alkaline and reducing condition

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao

    2000-07-01

    In the geological disposal system of TRU wastes, nitrogen generation by denitrifying bacteria could provide significant impact on the assessment of this system, because nitrate contained in process concentrated liquid waste might be electron acceptor for denitrifying bacteria. In this study, the activities and tolerance of denitrifying under disposal condition were investigated. Pseudomonas denitrificans as denitrifying bacteria was used. The results showed that Pseudomonas denitrificans had activity under reducing condition, but under high pH condition (pH>9.5), the activity of Pseudomonas denitrificans was not detected. It is possible that the activity of Pseudomonas denitrificans would be low under disposal condition. (author)

  7. Clay with Desiccation Cracks is an Advection Dominated Environment

    Science.gov (United States)

    Baram, S.; Kurtzman, D.; Sher, Y.; Ronen, Z.; Dahan, O.

    2012-04-01

    Heavy clay sediments are regarded "safe" from the hydrological point of view due to their low hydraulic conductivities. However, the formation of desiccation cracks in dispersive clays may dramatically change their bulk hydraulic properties. The impact of desiccation cracks on water percolation, dissolved salts and contaminants transport and redox related reactions (microbial ammonium oxidation and denitrification) were investigated in 6 -12 m clay layer near a diary farm waste lagoon. The study implemented unique vadose-zone monitoring systems that enable in-situ measurements of the temporal variation of the sediment's water content along with frequent sampling of the sediment's pore water along the entire vadose zone (> 30 m). Results from four years of continuous measurements showed quick rises in sediment water content following rain events and temporal wastewater overflows. The percolation pattern indicated dominance of preferential flow through a desiccation-cracks network crossing the entire clay sediment layer. High water-propagation velocities (0.4 - 23.6 m h-1) were observed, indicating that the desiccation-crack network remains open and serves as a preferential flow pathway year-round, even at high sediment water content (~0.50 m3 m-3). The rapid percolation bypassed the most bio-geo-active parts of the soil, transporting even highly sorptive contaminants (testosterone and estrogen) in to the deep sections of the vadose zone, accelerating the underlying groundwater contamination. The ammonium and nitrate concentrations in the vadose zone and the high number of nitrifying and denitrifying bacteria (~108 gene copies gdry-sediemt-1, each) found in the sediment indicated that the entire vadose zone is aerated even at high water content conditions (~0.55 m3 m-3). The dissolved salts concentration in the pore-water and the δ2H-H2O and δ18O-H2O values of the pore-water substantially increased with depth (becoming less depleted) in the clay sediment

  8. Effect of Water Content Components on Desiccation and Recovery in Sphagnum Mosses

    Science.gov (United States)

    Hájek, Tomáš; Beckett, Richard P.

    2008-01-01

    Background and Aims The basic parameters of water relations were measured in Sphagnum mosses. The relationships of these parameters to the photosynthetic response to desiccation and the ecology of these mosses were then tested. Methods The water relations parameters of six Sphagnum species (mosses typical of wet habitats) and Atrichum androgynum (a moss more typical of mesophytic conditions) were calculated from pressure–volume isotherms. Photosynthetic properties during and after moderate desiccation were monitored by chlorophyll fluorescence. Key Results When desiccated, the hummock-forming species S. fuscum and S. magellanicum lost more water before turgor started dropping than other sphagna inhabiting less exposed habitats (73 % compared with 56 % on average). Osmotic potentials at full turgor were similar in all species, with an average value of −1·1 MPa. Hummock sphagna had clearly more rigid cell walls than species of wet habitats (ε = 3·55 compared with 1·93 MPa). As a result, their chlorophyllous cells lost turgor at higher relative water contents (RWCs) than species of wet habitats (0·61 compared with 0·46) and at less negative osmotic potentials (–2·28 compared with −3·00 MPa). During drying, ΦPSII started declining earlier in hummock species (at an RWC of 0·65 compared with 0·44), and Fv/Fm behaved similarly. Compared with other species, hummock sphagna desiccated to −20 or −40 MPa recovered more completely after rehydration. Atrichum androgynum responded to desiccation similarly to hummock sphagna, suggesting that their desiccation tolerance may have a similar physiological basis. Conclusions Assuming a fixed rate of desiccation, the higher water-holding capacities of hummock sphagna will allow them to continue metabolism for longer than other species. While this could be viewed as a form of ‘desiccation avoidance’, hummock species also recover faster than other species during rehydration, suggesting that they have higher

  9. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants.

    Science.gov (United States)

    Challabathula, Dinakar; Puthur, Jos T; Bartels, Dorothea

    2016-02-01

    Photosynthesis is the key process that is affected by dehydration in plants. Desiccation-tolerant resurrection plants can survive conditions of very low relative water content. During desiccation, photosynthesis is not operational, but is recovered within a short period after rehydration. While homoiochlorophyllous resurrection plants retain their photosynthetic apparatus during desiccation, poikilochlorophyllous resurrection species dismantle chloroplasts and degrade chlorophyll but resynthesize them again during rehydration. Dismantling the chloroplasts avoids the photooxidative stress in poikilochlorophyllous resurrection plants, whereas it is minimized in homoiochlorophyllous plants through the synthesis of antioxidant enzymes and protective proteins or metabolites. Although the cellular protection mechanisms in both of these species vary, these mechanisms protect cells from desiccation-induced damage and restore photosynthesis upon rehydration. Several of the proteins synthesized during dehydration are localized in chloroplasts and are believed to play major roles in the protection of photosynthetic structures and in recovery in resurrection species. This review focuses on the strategies of resurrection plants in terms of how they protect their photosynthetic apparatus from oxidative stress during desiccation without membrane damage and with full recovery during rehydration. We review the role of the dehydration-induced protection mechanisms in chloroplasts and how photosynthesis is restored during rehydration. © 2015 New York Academy of Sciences.

  10. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions.

    Science.gov (United States)

    Abbaspour, H; Saeidi-Sar, S; Afshari, H; Abdel-Wahhab, M A

    2012-05-01

    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Organic nitrates: update on mechanisms underlying vasodilation, tolerance and endothelial dysfunction.

    Science.gov (United States)

    Münzel, Thomas; Steven, Sebastian; Daiber, Andreas

    2014-12-01

    Given acutely, organic nitrates, such as nitroglycerin (GTN), isosorbide mono- and dinitrates (ISMN, ISDN), and pentaerythrityl tetranitrate (PETN), have potent vasodilator and anti-ischemic effects in patients with acute coronary syndromes, acute and chronic congestive heart failure and arterial hypertension. During long-term treatment, however, side effects such as nitrate tolerance and endothelial dysfunction occur, and therapeutic efficacy of these drugs rapidly vanishes. Recent experimental and clinical studies have revealed that organic nitrates per se are not just nitric oxide (NO) donors, but rather a quite heterogeneous group of drugs considerably differing for mechanisms underlying vasodilation and the development of endothelial dysfunction and tolerance. Based on this, we propose that the term nitrate tolerance should be avoided and more specifically the terms of GTN, ISMN and ISDN tolerance should be used. The present review summarizes preclinical and clinical data concerning organic nitrates. Here we also emphasize the consequences of chronic nitrate therapy on the supersensitivity of the vasculature to vasoconstriction and on the increased autocrine expression of endothelin. We believe that these so far rather neglected and underestimated side effects of chronic therapy with at least GTN and ISMN are clinically important. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. EXOPOLYSACCHARIDE PRODUCTION BY DROUGHT TOLERANT BACILLUS SPP. AND EFFECT ON SOIL AGGREGATION UNDER DROUGHT STRESS

    Directory of Open Access Journals (Sweden)

    Sandhya Vardharajula

    2014-08-01

    Full Text Available Exopolysaccharides (EPS of microbial origin with novel functionality, reproducible physico-chemical properties, are important class of polymeric materials. EPS are believed to protect bacterial cells from dessication, produce biofilms, thus enhancing the cells chances of bacterial colonizing special ecological niches. In rhizosphere, EPS are known to be useful to improve the moisture-holding capacity. Three Bacillus spp. strains identified by 16s rDNA sequence analysis as B. amyloliquefaciens strain HYD-B17; B. licheniformis strain HYTAPB18; B. subtilis strain RMPB44 were studied for the ability to tolerate matric stress and produce EPS under different water potentials. EPS production in all the three Bacillus spp strains increased with increasing water stress indicating correlation between drought stress tolerance and EPS production. Among the isolates, strain HYD-17 showed highest production of EPS. The exopolysaccharide composition of the three strains was further analyzed by HPLC. Drought stress influenced the ratio of sugars in EPS and glucose was found as major sugar in strains HYTAPB18 and RMPB44 whereas raffinose was major sugar found in strain HYD-B17. Inoculation of EPS producing Bacillus spp. strains in soil resulted in good soil aggregation under drought stress conditions at different incubation periods. This study shows that exposure to water stress conditions affects the composition and ratios of sugars in EPS produced by Bacillus spp. strains HYD-B17, HYTAPB18 and RMPB44 influencing abiotic stress tolerance of the microorganisms.

  13. Heat tolerance in Field Grown Tomatoes (Lycopersicon esculentum Mill.) under Semi Arid Conditions of West Africa

    DEFF Research Database (Denmark)

    Kugblenu, Y O; Oppong Danso, E; Ofori, K

    2013-01-01

    One major reason for extremely low production of tomato in Ghana is that the length of the growing season last only for a few months due to the high temperature influx during the remaining months. The temperatures recorded during these months are above the optimum for tomato flowering and fruiting...... and this consequently affects yield. To solve this problem a number management practices may be undertaken such has growing heat tolerant tomato varieties or providing shade to mitigate the devastating effect of high temperatures. Therefore the present study was conducted outside the normal growing season from June...... to October, which has a mean temperature of 23°C. Heat tolerant tomato cultivars were grown from April to July with a mean temperature of 25°C to evaluate their performance under these conditions and to assess the effect of shading on the production of one of the genotypes. Fruiting percentage...

  14. Transcriptomic analysis of Salmonella desiccation resistance.

    Science.gov (United States)

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  15. Improved climatic chamber for desiccation simulation

    Directory of Open Access Journals (Sweden)

    Lozada Catalina

    2016-01-01

    Full Text Available The climatic chamber at the Universidad de Los Andes was improved for modeling desiccation in soil layers. This chamber allows the measurement of different environmental variables. In this research, evaporation tests were conducted in water imposing boundary conditions for drying, and then these tests were performed in a soil layer. The soil was prepared from a slurry state and was drying controlling the temperature, the infrared radiation, the wind velocity, and the relative humidity. In the first part of this paper, a description of the climatic chamber, operation ranges and theoretical work principles of the climatic chamber are presented. Then, the second part shows the results for desiccation in water and soil. The desiccation tests performed with the climatic chamber allow simulating all environmental conditions accurately during drying coupling the effect of all environmental variables. As a result, the evaporation rate increases with infrared radiation in soil and water. The rate at the beginning of the desiccation tests in clays is the same as in water. However, this evaporation rate decreases as the soil becomes desiccated.

  16. Comparison of desiccant air conditioning systems with different indirect evaporative air coolers

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey; Worek, William M.; Drąg, Paweł

    2016-01-01

    Highlights: • A numerical study of desiccant air conditioning systems is presented. • The ε-NTU model is used for the analysis. • Different arrangements of the desiccant systems were compared. • The systems were compared under different operating conditions. - Abstract: This paper presents a numerical analysis of three desiccant air-conditioning systems equipped with different indirect evaporative air coolers: (1) the cross-flow Maisotsenko cycle heat and mass exchanger (HMX), (2) the regenerative counter-flow Maisotsenko cycle heat and mass exchanger and (3) the standard cross-flow evaporative air cooler. To analyze the desiccant wheel and the indirect evaporative air coolers, the modified ε-NTU-model was used. The simulations were performed under assumption that the desiccant wheel is regenerated with air heated to relatively low temperature values (50–60 °C), which can be produced with solar panels in typical moderate climatic conditions. It was established that the main advantage of the presented solutions is that they can provide comfort conditions even with less effective dehumidification. The different systems were compared under variable selected operational factors (i.e. inlet air temperature, humidity and regeneration air temperature). The analysis allowed establishing the advantages and disadvantages of presented solutions and allowed estimating their application potential.

  17. Salinity effects on the dynamics and patterns of desiccation cracks

    Science.gov (United States)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to

  18. Desiccant-assisted cooling fundamentals and applications

    CERN Document Server

    Brum, Nisio

    2014-01-01

    The increasing concern with indoor air quality has led to air-quality standards with increased ventilation rates. Although increasing the volume flow rate of outside air is advisable from the perspective of air-quality, it is detrimental to energy consumption, since the outside air has to be brought to the comfort condition before it is insufflated to the  conditioned ambient. Moreover, the humidity load carried within outside air has challenging HVAC engineers to design cooling units which are able to satisfactorily handle both sensible and latent contributions to the thermal load. This constitutes a favorable scenario for the use of solid desiccants to assist the cooling units. In fact, desiccant wheels have been increasingly applied by HVAC designers, allowing distinct processes for the air cooling and dehumidification. In fact, the ability of solid desiccants in moisture removal is effective enough to allow the use of evaporative coolers, in opposition to the traditional vapor-compression cycle, resultin...

  19. Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress.

    Science.gov (United States)

    Flores-Bavestrello, Alejandra; Król, Marianna; Ivanov, Alexander G; Hüner, Norman P A; García-Plazaola, José Ignacio; Corcuera, Luis J; Bravo, León A

    2016-02-01

    Hymenophyllaceae is a desiccation tolerant family of Pteridophytes which are poikilohydric epiphytes. Their fronds are composed by a single layer of cells and lack true mesophyll cells and stomata. Although they are associated with humid and shady environments, their vertical distribution varies along the trunk of the host plant with some species inhabiting the drier sides with a higher irradiance. The aim of this work was to compare the structure and function of the photosynthetic apparatus during desiccation and rehydration in two species, Hymenophyllum dentatum and Hymenoglossum cruentum, isolated from a contrasting vertical distribution along the trunk of their hosts. Both species were subjected to desiccation and rehydration kinetics to analyze frond phenotypic plasticity, as well as the structure, composition and function of the photosynthetic apparatus. Minimal differences in photosynthetic pigments were observed upon dehydration. Measurements of ϕPSII (effective quantum yield of PSII), ϕNPQ (quantum yield of the regulated energy dissipation of PSII), ϕNO (quantum yield of non-regulated energy dissipation of PSII), and TL (thermoluminescence) indicate that both species convert a functional photochemical apparatus into a structure which exhibits maximum quenching capacity in the dehydrated state with minimal changes in photosynthetic pigments and polypeptide compositions. This dehydration-induced conversion in the photosynthetic apparatus is completely reversible upon rehydration. We conclude that H. dentatum and H. cruentum are homoiochlorophyllous with respect to desiccation stress and exhibited no correlation between inherent desiccation tolerance and the vertical distribution along the host tree trunk. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Dynamics of Endogenous Phytohormones during Desiccation and Recovery of the Resurrection Plant Species Haberlea rhodopensis

    Czech Academy of Sciences Publication Activity Database

    Djilianov, D.L.; Dobrev, Petre; Moyankova, D.P.; Vaňková, Radomíra; Georgieva, D.T.; Gajdošová, Silvia; Motyka, Václav

    2013-01-01

    Roč. 32, č. 3 (2013), s. 564-574 ISSN 0721-7595 R&D Projects: GA ČR(CZ) GAP506/11/0774; GA ČR GA522/09/2058; GA ČR GA206/09/2062 Institutional research plan: CEZ:AV0Z50380511 Keywords : Abscisic acid * Auxin * Desiccation tolerance * Cytokinin Subject RIV: ED - Physiology Impact factor: 2.058, year: 2013

  1. Desiccation effects on germination and vigor of King palm seeds

    Directory of Open Access Journals (Sweden)

    Martins Cibele C.

    2003-01-01

    Full Text Available The desiccation tolerance of Archontophoenix alexandrae (Wendl. & Drude seeds was determined and the most sensitive vigor test for assessing seed deterioration of this species was identified. Mature fruits were harvested in the palm collection of the Instituto Agronomico in Campinas, Brazil. Depulped fruits were transported in impermeable packages to the Faculdade de Agronomia in Botucatu, where the seeds were dried. As the seed moisture decreased, germination, seedling length, electrical conductivity and moisture were measured. The seeds of A. alexandrae are recalcitrant, with high germination percentage (over 67% when undried (47% seed moisture. Lowering seed moisture below 31.5% reduced the germination rate significantly (<52.5%. Total germination failure was observed when seed moisture reached 15.1%. The electrical conductivity was the most sensitive vigor test to identify seed deterioration.

  2. Shrinkage-reducing admixtures and early-age desiccation in cement pastes and mortars

    DEFF Research Database (Denmark)

    Bentz, D. P.; Geiker, Mette Rica; Hansen, Kurt Kielsgaard

    2001-01-01

    Fundamental studies of the early-age desiccation of cement-based materials with and without a shrinkage-reducing admixture (SRA) have been performed. Studies have been conducted under both sealed and drying conditions. Physical measurements include mass loss, surface tension, X-ray absorption to ...... to low w/c ratio concretes undergoing self-desiccation, in addition to their normal usage to reduce drying shrinkage.......Fundamental studies of the early-age desiccation of cement-based materials with and without a shrinkage-reducing admixture (SRA) have been performed. Studies have been conducted under both sealed and drying conditions. Physical measurements include mass loss, surface tension, X-ray absorption...

  3. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L. under saline conditions.

    Directory of Open Access Journals (Sweden)

    Mahmut Can Hiz

    Full Text Available Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values was performed by qRT-PCR (Quantitative Reverse Transcription PCR analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies.

  4. Water relations during desiccation of cysts of the potato-cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Wharton, D A; Worland, M R

    2001-03-01

    The loss during desiccation of osmotically active water (OAW), which freezes during cooling to -45 degrees C, and osmotically inactive water (OIW), which remains unfrozen, from the cysts of the potato cyst nematode, Globodera rostochiensis, was determined using differential scanning calorimetry. Exotherms and endotherms associated with non-egg compartments were not detected after 5 min desiccation at 50% relative humidity and 20 degrees C. The pattern of water loss from the cysts indicates that water is lost from compartments outside the eggs first, that nearly all the non-egg water is OAW and that the OIW content of the cyst is contained within the eggs. Water is lost from the eggs only after the OAW content outside the eggs falls below that within the eggs. Both OAW and OIW are lost from the eggs during desiccation but the eggs retain a small amount of OIW. Other animals which survive some desiccation but which are not anhydrobiotic will tolerate the loss of OAW but not the loss of their OIW. Anhydrobiotic animals can survive the loss of both their OAW and a substantial proportion of their OIW.

  5. Thermodynamic analysis of an innovative liquid desiccant air conditioning system to supply potable water

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Gandhidasan, P.; Zubair, Syed M.; Bahaidarah, Haitham M.

    2017-01-01

    Highlights: • The study objective is to reduce the energy consumption of desiccant AC system. • Heat and mass losses are recovered in the proposed system using a condenser. • The conventional and the proposed systems are compared in terms of COP. • The proposed system performance is better than the conventional system. • The proposed system produces freshwater in addition to space cooling. - Abstract: Liquid desiccant air conditioning systems are cost-effective, environmentally friendly and energy efficient techniques, especially in coastal areas. In the conventional liquid desiccant air conditioning system, the scavenging air is expelled into the atmosphere carrying a considerable amount of energy and water vapor. Thus, there is plenty of room to improve the system performance by recovering these losses. The proposed system consists of a conventional liquid desiccant air conditioning system plus a condenser. The aim of this study is to reduce the energy consumption by recovering the heat from the scavenging air using the condenser while also producing freshwater in addition to space cooling. Lithium chloride (LiCl) is used as the liquid desiccant for this study. The mathematical formulation for simultaneous heat and mass transfer between the condenser and the regenerator was developed to establish a comparison between the performance of the conventional and modified systems. Using the generated model, it is found that the modified system performance is 11.25% better than the conventional system and that it produces 86.4 kg of freshwater per hour as a by-product under the given conditions.

  6. Tolerance to gamma radiation in the marine heterotardigrade, Echiniscoides sigismundi

    DEFF Research Database (Denmark)

    Jönsson, K. Ingemar; Hygum, Thomas Lunde; Andersen, Kasper Nørgaard

    2016-01-01

    Tardigrades belong to the most radiation tolerant animals on Earth, as documented by a number of studies using both low-LET and high-LET ionizing radiation. Previous studies have focused on semi-terrestrial species, which are also very tolerant to desiccation. The predominant view on the reason...... for the high radiation tolerance among these semi-terrestrial species is that it relies on molecular mechanisms that evolved as adaptations for surviving dehydration. In this study we report the first study on radiation tolerance in a marine tardigrade, Echiniscoides sigismundi. Adult specimens in the hydrated...... that have high tolerance to both desiccation and radiation, supporting the hypothesis that radiation tolerance is a by-product of adaptive mechanisms to survive desiccation. More studies on radiation tolerance in tardigrade species adapted to permanently wet conditions, both marine and freshwater...

  7. Desiccation tolerance of Sphagnum revisited: a puzzle resolved

    Czech Academy of Sciences Publication Activity Database

    Hájek, Tomáš; Vicherová, E.

    2014-01-01

    Roč. 16, č. 4 (2014), s. 765-773 ISSN 1435-8603 R&D Projects: GA ČR GAP505/10/0638 Institutional support: RVO:67985939 Keywords : ecophysiology * moss * peatland Subject RIV: EH - Ecology, Behaviour Impact factor: 2.633, year: 2014

  8. Transcriptomes of the desiccation- tolerant resurrection plant Craterostigma plantagineum

    DEFF Research Database (Denmark)

    Rodriguez, M. C.; Edsgard, Stefan Daniel; Hussain, S. S.

    2010-01-01

    the transcriptomes of C. plantagineum leaves at four stages of dehydration and rehydration. This reveals that genes involved in several pathways, such as those required for vitamin K and thiamin biosynthesis, are tightly regulated at the level of gene expression. Our analysis also provides a comprehensive picture...

  9. Desiccation tolerance of embryos of Syagrus oleracea, a cerrado ...

    African Journals Online (AJOL)

    aghomotsegin

    2015-03-18

    Mar 18, 2015 ... Tissue culture was used to test the effect of different fruit drying times (0, 4, 8 and 12 days) on embryo ... confers different colours to the embryos, allowing their ..... Superior – CAPES) and the National Council for Scientific.

  10. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight.

    Science.gov (United States)

    Krause, G Heinrich; Winter, Klaus; Matsubara, Shizue; Krause, Barbara; Jahns, Peter; Virgo, Aurelio; Aranda, Jorge; García, Milton

    2012-09-01

    High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.

  11. Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan.

    Science.gov (United States)

    Yoshimura, Yasuyuki; Matsuo, Kazuhito; Yasuda, Koji

    2006-01-01

    Natural out-crossing rates were evaluated for conventional soybeans (Glycine max (L.) Merr.) cultivated adjacent to genetically modified (GM) glyphosate-tolerant soybeans under field conditions during a four-year period in Japan. A total of 107 846 progeny of 2772 plants harvested from conventional varieties were screened for glyphosate herbicide tolerance. The highest out-crossing rates, 0.19% in 2001 and 0.16% in 2002, were observed in adjacent rows 0.7 m from the pollen source. The highest rate in 2004 was 0.052%, which was observed at 2.1 m. No out-crossing was observed in the rows 10.5 m from the pollen source over the four-year period. The farthest distances between receptor and pollen source at which out-crossing was observed were 7 m in 2001, 2.8 m in 2002, and 3.5 m in 2004. The greatest airborne pollen density during the flowering period, determined by Durham pollen samplers located between the rows of each variety, was 0.368 grains.cm(-2).day(-1), with the average value at 0.18 grains.cm(-2).day(-1), indicating that the possibility of out-crossing by wind is minimal. Thrips species and predatory Hemiptera visited the soybean flowers more frequently during the four-year period than any other common pollinators, such as bees.

  12. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Priti Azad

    Full Text Available BACKGROUND: Constant hypoxia (CH and intermittent hypoxia (IH occur during several pathological conditions such as asthma and obstructive sleep apnea. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. Our current genome-wide study is designed to investigate gene expression changes and identify protective mechanism(s in D. melanogaster after exposure to severe (1% O(2 intermittent or constant hypoxia. METHODOLOGY/PRINCIPAL FINDINGS: Our microarray analysis has identified multiple gene families that are up- or down-regulated in response to acute CH or IH. We observed distinct responses to IH and CH in gene expression that varied in the number of genes and type of gene families. We then studied the role of candidate genes (up-or down-regulated in hypoxia tolerance (adult survival for longer periods (CH-7 days, IH-10 days under severe CH or IH. Heat shock proteins up-regulation (specifically Hsp23 and Hsp70 led to a significant increase in adult survival (as compared to controls of P-element lines during CH. In contrast, during IH treatment the up-regulation of Mdr49 and l(208717 genes (P-element lines provided survival advantage over controls. This suggests that the increased transcript levels following treatment with either paradigm play an important role in tolerance to severe hypoxia. Furthermore, by over-expressing Hsp70 in specific tissues, we found that up-regulation of Hsp70 in heart and brain play critical role in tolerance to CH in flies. CONCLUSIONS/SIGNIFICANCE: We observed that the gene expression response to IH or CH is specific and paradigm-dependent. We have identified several genes Hsp23, Hsp70, CG1600, l(208717 and Mdr49 that play an important role in hypoxia tolerance whether it is in CH or IH. These data provide further clues about the mechanisms by which IH or CH lead to cell injury and morbidity or adaptation and survival.

  13. Evaluation of Freeze Tolerance in Lancelot Plantain (Plantago lanceolata L. Ecotypes under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    M. Janalizadeh

    2016-02-01

    Full Text Available Introduction Lancelot Plantain (Ribwort, narrow-leaf or English plantain is a deep-rooted, short-lived perennial herb from Plantaginaceae family which has been used for various medicinal purposes for centuries, especially in Europe and only more recently has been proposed as a forage plant. The leaf of plantain is highly palatable for grazing animals, providing mineral-rich forage. Recently two productive upright cultivars of plantain have been bred and introduced, Grasslands Lancelot and the more erect winter active Ceres Tonic. Plantain grows moderately in winter but its main growth periods beings in spring and autumn with opportunistic summer growth. Although it reveals suitable winter survival in natural conditions, but there is not a lot of information about cold tolerance of this plant. So it is important to recognize the freeze tolerance of narrow leaf plantain for successful planting and utilization in cold regions such as Mashhad in Khorasan Razavi Province (Northeast of Iran. Determining LT50 point or critical temperature for survival of plant is the most reliable and simple method for evaluating cold tolerance of plants. Another reliable method for freeze tolerance of plants is estimation of temperature at which 50 % of dry matter reduces (RDMT50. This experiment was carried out to evaluate freeze tolerance of five ecotypes of Lancelot plantain according to the LT50su and RDMT50 indices. Materials and Methods In order to evaluate freeze tolerance of Lancelot plantain, a factorial experiment based on completely randomized design with three replications was carried out under controlled conditions at college of agriculture, Ferdowsi University of Mashhad. Five ecotypes of Lancelot plantain (Bojnourd, Kalat, Mashhad, Ghayen and Birjand after three months growth and hardening in natural environment were transferred to a Thermo gradient freezer on January 20th, 2012 and exposed to eight freezing temperatures (Zero, -3, -6, -9, -12, -15, -18

  14. Censoring the Press: A Barometer of Government Tolerance for Anti-regime Dissent under Authoritarian Rule

    Directory of Open Access Journals (Sweden)

    Elizabeth Ann Stein

    2016-01-01

    Full Text Available This paper proposes that dissident leaders aiming to build mass opposition movements follow the mainstream press to help them gauge government tolerance for anti-government mass actions in repressive authoritarian regimes. Under conditions of censorship, media–state interactions serve as a barometer of the government’s disposition toward and capacity to impede public displays of dissent. Observing trends in coverage and the government’s reaction to this coverage helps activist leaders assess when it should be safest to plan anti-government mass actions, such as demonstrations, marches, or strikes. Using original data derived from coding content from the Brazilian newspaper Folha de São Paulo over the period of 1974–1982, I test whether opposition mass actions followed trends in taboo content and government treatment of the press during the period of political liberalization of Brazil’s military regime.

  15. Morphological and transcriptional response of an anhydrobiotic insect to ionizing radiation and desiccation: steps forward in understanding molecular background of extreme radioresistance in higher eukaryotes

    Science.gov (United States)

    Gusev, Oleg; Novikova, Nataliya; Sychev, Vladimir; Okuda, Takashi; Kikawada, Takahiro; Sakashita, Tetsuya; Mukae, Kyosuke

    2012-07-01

    Life in extreme or drastically changing environments in many cases leads to evolutionary evolvement of mechanisms of cross-resistance to different abiotic stresses, often never actually faced by the organism in its natural habitat. Larvae of the sleeping chironomidPolypedilum vanderplanki (Diptera) are able to resist complete desiccation and in the dry form survive under excess of various abiotic stresses, including exposure to space environment. One of the most intriguing features of the anhydrobiotic larvae is resistance to extremely high doses of different types of ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We find that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated after anhydrobiosis larvae were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He+). In comparison, low-LET radiation (gamma rays) of the same dose causes less initial damage to the larvae, and recovery of DNA repair is complete within 24 h. Genome-wide analysis of mRNA expression in the larvae revealed that a large group of genes (including antioxidants, anhydrobiosis-specific biomolecules and protein-reparation enzymes) showed a similar patterns of activity in response to both desiccation and ionizing radiation. We conclude that t one of the factors explaining the relationship between the resistance to ionizing radiation and the ability to undergo anhydrobiosis in the sleeping chironomid would be an adaptation to desiccation-inflicted proteins and nuclear DNA damage.

  16. Desiccant cooling: State-of-the-art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  17. Desiccant cooling: State-of-the-art assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    1992-10-01

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.

  18. Experimental Analysis on Solar Desiccant Air Conditioner

    OpenAIRE

    Dr. U. V. Kongre, C. M. Singh, A. B. Biswas

    2014-01-01

    The experiment investigated and evaluated the feasibility of an solar desiccant air conditioner. Its effectiveness as a possible air conditioner option used in household air conditioner or as an energy efficient and environmentally friendly alternative to conventional air conditioning units used in houses are evaluated. A solar water heater was used as heat gain. The model utilizes the technology of solar air conditioner system. The purpose in the long term wou...

  19. Methodology adjustments for organic acid tolerance studies in oat under hydroponic systems

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2009-06-01

    Full Text Available The occurrence of anaerobic conditions in hydromorphic soils favors the development of anaerobic microorganisms that produce phytotoxic substances representing primarily by organic acids. The selection of promising oat (Avena sativa L. genotypes for use in those situations requires field evaluations that can be cumbersome, making hydroponics a viable alternative. The objective of this work was to adjust a methodology to use in studies of tolerance to organic acids in oat under hydroponic systems. For such goal, the best germination system was determined in order to reduce the seedling initial establishment effects under hydroponics, the ideal concentration for screening genotypes and the best variable for stress evaluation. It was found that the most efficient germination system was "pleated germination paper" with small and husked seeds. The best concentration for studying organic acid tolerance ranged from 2.3 to 6.2 mM and the most suitable variable for the evaluation was root length.A ocorrência de condições anaeróbias nos solos hidromórficos favorece o desenvolvimento de microrganismos anaeróbios que produzem substâncias fitotóxicas representadas principalmente pelos ácidos orgânicos. A seleção de constituições genéticas de aveia (Avena sativa L. promissoras para utilização nestas situações requer avaliações de difícil execução no campo, tornando a utilização de sistemas hidropônicos mais vantajosa. O objetivo deste trabalho foi ajustar uma metodologia para ser utilizada em estudos de tolerância a ácidos orgânicos em aveia através de sistemas hidropônicos. Para tal fim foi determinada uma forma adequada de promover a germinação das sementes de maneira a reduzir os efeitos do estabelecimento inicial das plântulas na hidroponia, uma faixa de concentração ideal para discriminação dos genótipos e as variáveis de maior interesse para avaliação. O sistema de germinação mais eficiente é através de

  20. Downregulation of dTps1 in Drosophila melanogaster larvae confirms involvement of trehalose in redox regulation following desiccation.

    Science.gov (United States)

    Thorat, Leena; Mani, Krishna-Priya; Thangaraj, Pradeep; Chatterjee, Suvro; Nath, Bimalendu B

    2016-03-01

    As a survival strategy to environmental water deficits, desiccation-tolerant organisms are commonly known for their ability to recruit stress-protective biomolecules such as trehalose. We have previously reported the pivotal role of trehalose in larval desiccation tolerance in Drosophila melanogaster. Trehalose has emerged as a versatile molecule, serving mainly as energy source in insects and also being a stress protectant. While several recent reports have revealed the unconventional role of trehalose in scavenging reactive oxygen species in yeast and plants, this aspect has not received much attention in animals. We examined the status of desiccation-induced generation of reactive oxygen species in D. melanogaster larvae and the possible involvement of trehalose in ameliorating the harmful consequences thereof. Insect trehalose synthesis is governed by the enzyme trehalose 6-phosphate synthase 1 (TPS1). Using the ubiquitous da-GAL4-driven expression of the dTps1-RNAi transgene, we generated dTps1-downregulated Drosophila larvae possessing depleted levels of dTps1 transcripts. This resulted in the inability of the larvae for trehalose synthesis, thereby allowing us to elucidate the significance of trehalose in the regulation of desiccation-responsive redox homeostasis. Furthermore, the results from molecular genetics studies, biochemical assays, electron spin resonance analyses and a simple, non-invasive method of whole larval live imaging suggested that trehalose in collaboration with superoxide dismutase (SOD) is involved in the maintenance of redox state in D. melanogaster.

  1. Using stable isotopes and functional wood anatomy to identify underlying mechanisms of drought tolerance in different provenances of lodgepole pine

    Science.gov (United States)

    Isaac-Renton, Miriam; Montwé, David; Hamann, Andreas; Spiecker, Heinrich; Cherubini, Paolo; Treydte, Kerstin

    2016-04-01

    Choosing drought-tolerant seed sources for reforestation may help adapt forests to climate change. By combining dendroecological growth analysis with a long-term provenance trial, we assessed growth and drought tolerance of different populations of a wide-ranging conifer, lodgepole pine (Pinus contorta). This experimental design simulated a climate warming scenario through southward seed transfer, and an exceptional drought also occurred in 2002. We felled over 500 trees, representing 23 seed sources, which were grown for 32 years at three warm, dry sites in southern British Columbia, Canada. Northern populations showed poor growth and drought tolerance. These seed sources therefore appear to be especially at risk under climate change. Before recommending assisted migration of southern seeds towards the north, however, it is important to understand the physiological mechanisms underlying these responses. We combine functional wood anatomy with a dual-isotope approach to evaluate these mechanisms to drought response.

  2. Ancient symbiosis confers desiccation resistance to stored grain pest beetles.

    Science.gov (United States)

    Engl, Tobias; Eberl, Nadia; Gorse, Carla; Krüger, Theresa; Schmidt, Thorsten H P; Plarre, Rudy; Adler, Cornel; Kaltenpoth, Martin

    2017-11-08

    Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities. © 2017 John Wiley & Sons Ltd.

  3. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments.

    Directory of Open Access Journals (Sweden)

    Qaisar Ayub

    Full Text Available Delay Tolerant Network (DTN multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.

  4. Priority Queue Based Reactive Buffer Management Policy for Delay Tolerant Network under City Based Environments.

    Science.gov (United States)

    Ayub, Qaisar; Ngadi, Asri; Rashid, Sulma; Habib, Hafiz Adnan

    2018-01-01

    Delay Tolerant Network (DTN) multi-copy routing protocols are privileged to create and transmit multiple copies of each message that causes congestion and some messages are dropped. This process is known as reactive drop because messages were dropped re-actively to overcome buffer overflows. The existing reactive buffer management policies apply a single metric to drop source, relay and destine messages. Hereby, selection to drop a message is dubious because each message as source, relay or destine may have consumed dissimilar magnitude of network resources. Similarly, DTN has included time to live (ttl) parameter which defines lifetime of message. Hence, when ttl expires then message is automatically destroyed from relay nodes. However, time-to-live (ttl) is not applicable on messages reached at their destinations. Moreover, nodes keep replicating messages till ttl expires even-though large number of messages has already been dispersed. In this paper, we have proposed Priority Queue Based Reactive Buffer Management Policy (PQB-R) for DTN under City Based Environments. The PQB-R classifies buffered messages into source, relay and destine queues. Moreover, separate drop metric has been applied on individual queue. The experiment results prove that proposed PQB-R has reduced number of messages transmissions, message drop and increases delivery ratio.

  5. Effect of desiccation on the dynamics of genome-wide DNA methylation in orthodox seeds of Acer platanoides L.

    Science.gov (United States)

    Plitta, Beata P; Michalak, Marcin; Bujarska-Borkowska, Barbara; Barciszewska, Mirosława Z; Barciszewski, Jan; Chmielarz, Paweł

    2014-12-01

    5-methylcytosine, an abundant epigenetic mark, plays an important role in the regulation of plant growth and development, but there is little information about stress-induced changes in DNA methylation in seeds. In the present study, changes in a global level of m5C were measured in orthodox seeds of Acer platanoides L. during seed desiccation from a WC of 1.04 to 0.05-0.06 g H2O g g(-1) dry mass (g g(-1)). Changes in the level of DNA methylation were measured using 2D TLC e based method. Quality of desiccated seeds was examined by germination and seedling emergence tests. Global m5C content (R2)increase was observed in embryonic axes isolated from seeds collected at a high WC of 1.04 g g(-1) after their desiccation to significantly lower WC of 0.17 and 0.19 g g(-1). Further desiccation of these seeds to a WC of 0.06 g g(-1), however, resulted in a significant DNA demethylation to R2 ¼ 11.52-12.22%. Similar m5C decrease was observed in seeds which undergo maturation drying on the tree and had four times lower initial WC of 0.27 g g(-1) at the time of harvest, as they were dried to a WC of 0.05 g g(-1). These data confirm that desiccation induces changes in seed m5C levels. Results were validated by seed lots derived from tree different A. platanoides provenances. It is plausible that sine wave-like alterations in m5C amount may represent a specific response of orthodox seeds to drying and play a relevant role in desiccation tolerance in seeds.

  6. Foliar Desiccators Glyphosate, Carfentrazone, and Paraquat Affect the Technological and Chemical Properties of Cowpea Grains.

    Science.gov (United States)

    Lindemann, Igor da Silva; Lang, Gustavo Heinrich; Hoffmann, Jessica Fernanda; Rombaldi, Cesar Valmor; de Oliveira, Maurício; Elias, Moacir Cardoso; Vanier, Nathan Levien

    2017-08-16

    The effects of the use of glyphosate (GLY), glyphosate plus carfentrazone (GLY/CAR), and paraquat (PAR) as plant desiccators on the technological and chemical properties of cowpea grains were investigated. All studied desiccants provided lower cooking time to freshly harvested cowpea. However, the coat color of PAR- and GLY/CAR-treated cowpea was reddish in comparison to the control treatment. Principal component analysis (PCA) from liquid chromatography-mass spectrometry (LC-MS) data sets showed a clear distinction among cowpea from the different treatments. Catechin-3-glucoside and epicatechin significantly contributed for discriminating GLY-treated cowpea, while citric acid was responsible for discriminating GLY/CAR-treated cowpea. Quercetin derivative and gluconic acid were responsible for discriminating control treatment. Residual glyphosate and paraquat content was higher than the maximum limits allowed by Codex Alimentarius and the European Union Commission. Improvements in the technological and chemical properties of cowpea may not be overlapped by the risks that those desiccants exhibit when exceeding the maximum limits of tolerance in food.

  7. Numerical modelling of desiccation cracking of clayey soil

    Directory of Open Access Journals (Sweden)

    Vo Thi Dong

    2016-01-01

    Full Text Available The formation and propagation of desiccation cracks in soil is an extremely complex phenomenon because of the coupling between hydraulic and mechanical behaviour of soil, which are constituted here by the presence of capillary forces and discontinuities. The formation of a cracks network strongly influences the mechanical and hydraulic properties of soil. The main objective of this research is to study the evolution of suction and strain fields, the initiation and propagation of cracks under the effect of drying, using the finite element method. A simulation of a soil sample with four cohesive joints shows the results similar to experimental data. In addition, a simulation of multijoints shows that cracks does not open in all potentials positions and it gives similar spacing.

  8. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  9. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  10. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  11. Physiological Response of Wheat to Chemical Desiccants Used to Simulate Post-Anthesis Drought Stress

    Directory of Open Access Journals (Sweden)

    Nasrein Mohamed Kamal

    2018-04-01

    Full Text Available Post-anthesis drought stress is one of the main constraints on the production of wheat (Triticum aestivum L.. Because field screening for post-anthesis drought tolerance is difficult, effective and validated methods to simulate drought in order to identify sources of tolerance can facilitate screening of breeding materials. Chemical desiccants are widely used to simulate post-anthesis drought stress. We aimed to identify physiological traits that respond to desiccants as they do to drought. We examined the responses of ‘Norin 61’ to six treatments in a greenhouse: irrigated control, drought after anthesis, and 2% or 4% potassium chlorate (KClO3 at anthesis (A or grain filling (GF. We measured δ13C in leaves, aboveground fresh biomass, stomatal conductance, chlorophyll content, harvest index, and grain yield. Both 2% and 4% KClO3 at both A and GF simulated the effect of drought stress. Selection of drought-tolerant genotypes can be aided by chlorophyll content and δ13C measurement of leaves when 2% or 4% KClO3 is used to simulate drought.

  12. Efficient energy storage in liquid desiccant cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  13. Evaluation of Freezing Tolerance of Hexaploid Triticale Genotypes under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Ahmad, NEZAMI

    2010-06-01

    Full Text Available In order to evaluate freezing tolerance of different triticale (X Triticosecale Wittmack genotypes, an experiment was carried out under controlled conditions in 2007 and 2008 at college of agriculture, Ferdowsi University of Mashhad. In this study seeven triticale genotypes (�Juanilo-92�, �ET-82-15�, �ET-82-8�, �ET-83-20�, �ET-83-19�, �ET-83-18� and �ET-79-17�, across six temperatures (0�C, -4�C, -8�C, -12�C, -16�C and -20�C were evaluated within a factorial-completely randomized design with three replications. Plants were kept until 2 leaf stage in chamber with temperature of 20/15�C (day/night and 12.5 h photoperiod. At the end of this stage, plants were under acclimation for three weeks. After exposing to acclimation freezing the cell membrane integrity was measured through electrolyte leakage (EL and the lethal temperature (LT50 of samples was measured. After the exposure to freezing temperatures the samples were transferred to the greenhouse. Survival percentage, plant height, leaf area and number, chlorophyll content, and plant dry weight were determined after 3 weeks. Results showed that the effect of different freezing temperature and genotypes were significant on all plant characteristics. As temperature decreased, %EL of all genotypes was increased. Minimum and Maximum EL % in leaf and crown were observed at 0�C (21% and -20�C (88.5%. �ET-79-17� and �Juanilo-92� genotypes showed the highest EL% (55.5% and 44.8% and �ET-83-20� the lowest EL% (47.3% and 41.2% in leaf and crown. Dry weight and leaf area decreased by 48% and 42% respectively compared to non frozen control plants. �ET-79-17� and �ET-82-15� genotypes showed the highest dry weight (83.8 mg and highest leaf area (14.3 cm2 respectively and �ET-83-20� cultivar showed the lowest dry weight and leaf area (58.2 mg and 8.7 cm2.

  14. Evaluation of Freezing Tolerance of Hexaploid Triticale Genotypes under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Ahmad, NEZAMI

    2010-06-01

    Full Text Available In order to evaluate freezing tolerance of different triticale (X Triticosecale Wittmack genotypes, an experiment was carried out under controlled conditions in 2007 and 2008 at college of agriculture, Ferdowsi University of Mashhad. In this study seeven triticale genotypes (Juanilo-92, ET-82-15, ET-82-8, ET-83-20, ET-83-19, ET-83-18 and ET-79-17, across six temperatures (0C, -4C, -8C, -12C, -16C and -20C were evaluated within a factorial-completely randomized design with three replications. Plants were kept until 2 leaf stage in chamber with temperature of 20/15C (day/night and 12.5 h photoperiod. At the end of this stage, plants were under acclimation for three weeks. After exposing to acclimation freezing the cell membrane integrity was measured through electrolyte leakage (EL and the lethal temperature (LT50 of samples was measured. After the exposure to freezing temperatures the samples were transferred to the greenhouse. Survival percentage, plant height, leaf area and number, chlorophyll content, and plant dry weight were determined after 3 weeks. Results showed that the effect of different freezing temperature and genotypes were significant on all plant characteristics. As temperature decreased, %EL of all genotypes was increased. Minimum and Maximum EL % in leaf and crown were observed at 0C (21% and -20C (88.5%. ET-79-17 and Juanilo-92 genotypes showed the highest EL% (55.5% and 44.8% and ET-83-20 the lowest EL% (47.3% and 41.2% in leaf and crown. Dry weight and leaf area decreased by 48% and 42% respectively compared to non frozen control plants. ET-79-17 and ET-82-15 genotypes showed the highest dry weight (83.8 mg and highest leaf area (14.3 cm2 respectively and ET-83-20 cultivar showed the lowest dry weight and leaf area (58.2 mg and 8.7 cm2.

  15. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: A potential marker of anhydrobiosis

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, Leena J. [Centre for Advanced Studies, Department of Zoology, University of Pune, Pune 411007 (India); Gaikwad, Sushama M. [Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008 (India); Nath, Bimalendu B., E-mail: bbnath@unipune.ac.in [Centre for Advanced Studies, Department of Zoology, University of Pune, Pune 411007 (India)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer First report confirming anhydrobiosis in Drosophila melanogaster larvae. Black-Right-Pointing-Pointer Trehalose synthesis and accumulation in larvae that hydrolyzed on rehydration. Black-Right-Pointing-Pointer Trehalose synthesis in concert with the enzymes involved in trehalose metabolism. Black-Right-Pointing-Pointer Inhibition of trehalose hydrolysis in presence of a specific trehalase inhibitor. Black-Right-Pointing-Pointer Trehalose proposed as a reliable marker for biomonitoring of climate change studies. -- Abstract: In the current scenario of global climate change, desiccation is considered as one of the major environmental stressors for the biota exposed to altered levels of ambient temperature and humidity. Drosophila melanogaster, a cosmopolitan terrestrial insect has been chosen as a humidity-sensitive bioindicator model for the present study since its habitat undergoes frequent stochastic and/or seasonally aggravated dehydration regimes. We report here for the first time the occurrence of anhydrobiosis in D. melanogaster larvae by subjecting them to desiccation stress under laboratory conditions. Larvae desiccated for ten hours at <5% relative humidity could enter anhydrobiosis and could revive upon rehydration followed by resumption of active metabolism. As revealed by FTIR and HPLC analyzes, our findings strongly indicated the synthesis and accumulation of trehalose in the desiccating larvae. Biochemical measurements pointed out the desiccation-responsive trehalose metabolic pathway that was found to be coordinated in concert with the enzymes trehalose 6-phosphate synthase and trehalase. Further, an inhibitor-based experimental approach using deoxynojirimycin, a specific trehalase inhibitor, demonstrated the pivotal role of trehalose in larval anhydrobiosis of D. melanogaster. We therefore propose trehalose as a potential marker for the assessment of anhydrobiosis in Drosophila. The present findings thus add

  16. Trehalose as an indicator of desiccation stress in Drosophila melanogaster larvae: A potential marker of anhydrobiosis

    International Nuclear Information System (INIS)

    Thorat, Leena J.; Gaikwad, Sushama M.; Nath, Bimalendu B.

    2012-01-01

    Highlights: ► First report confirming anhydrobiosis in Drosophila melanogaster larvae. ► Trehalose synthesis and accumulation in larvae that hydrolyzed on rehydration. ► Trehalose synthesis in concert with the enzymes involved in trehalose metabolism. ► Inhibition of trehalose hydrolysis in presence of a specific trehalase inhibitor. ► Trehalose proposed as a reliable marker for biomonitoring of climate change studies. -- Abstract: In the current scenario of global climate change, desiccation is considered as one of the major environmental stressors for the biota exposed to altered levels of ambient temperature and humidity. Drosophila melanogaster, a cosmopolitan terrestrial insect has been chosen as a humidity-sensitive bioindicator model for the present study since its habitat undergoes frequent stochastic and/or seasonally aggravated dehydration regimes. We report here for the first time the occurrence of anhydrobiosis in D. melanogaster larvae by subjecting them to desiccation stress under laboratory conditions. Larvae desiccated for ten hours at <5% relative humidity could enter anhydrobiosis and could revive upon rehydration followed by resumption of active metabolism. As revealed by FTIR and HPLC analyzes, our findings strongly indicated the synthesis and accumulation of trehalose in the desiccating larvae. Biochemical measurements pointed out the desiccation-responsive trehalose metabolic pathway that was found to be coordinated in concert with the enzymes trehalose 6-phosphate synthase and trehalase. Further, an inhibitor-based experimental approach using deoxynojirimycin, a specific trehalase inhibitor, demonstrated the pivotal role of trehalose in larval anhydrobiosis of D. melanogaster. We therefore propose trehalose as a potential marker for the assessment of anhydrobiosis in Drosophila. The present findings thus add to the growing list of novel biochemical markers in specific bioindicator organisms for fulfilling the urgent need of

  17. Tolerance and potential for adaptation of a Baltic Sea rockweed under predicted climate change conditions.

    Science.gov (United States)

    Rugiu, Luca; Manninen, Iita; Rothäusler, Eva; Jormalainen, Veijo

    2018-03-01

    Climate change is threating species' persistence worldwide. To predict species responses to climate change we need information not just on their environmental tolerance but also on its adaptive potential. We tested how the foundation species of rocky littoral habitats, Fucus vesiculosus, responds to combined hyposalinity and warming projected to the Baltic Sea by 2070-2099. We quantified responses of replicated populations originating from the entrance, central, and marginal Baltic regions. Using replicated individuals, we tested for the presence of within-population tolerance variation. Future conditions hampered growth and survival of the central and marginal populations whereas the entrance populations fared well. Further, both the among- and within-population variation in responses to climate change indicated existence of genetic variation in tolerance. Such standing genetic variation provides the raw material necessary for adaptation to a changing environment, which may eventually ensure the persistence of the species in the inner Baltic Sea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Monte Carlo simulation methodology for the reliabilty of aircraft structures under damage tolerance considerations

    Science.gov (United States)

    Rambalakos, Andreas

    Current federal aviation regulations in the United States and around the world mandate the need for aircraft structures to meet damage tolerance requirements through out the service life. These requirements imply that the damaged aircraft structure must maintain adequate residual strength in order to sustain its integrity that is accomplished by a continuous inspection program. The multifold objective of this research is to develop a methodology based on a direct Monte Carlo simulation process and to assess the reliability of aircraft structures. Initially, the structure is modeled as a parallel system with active redundancy comprised of elements with uncorrelated (statistically independent) strengths and subjected to an equal load distribution. Closed form expressions for the system capacity cumulative distribution function (CDF) are developed by expanding the current expression for the capacity CDF of a parallel system comprised by three elements to a parallel system comprised with up to six elements. These newly developed expressions will be used to check the accuracy of the implementation of a Monte Carlo simulation algorithm to determine the probability of failure of a parallel system comprised of an arbitrary number of statistically independent elements. The second objective of this work is to compute the probability of failure of a fuselage skin lap joint under static load conditions through a Monte Carlo simulation scheme by utilizing the residual strength of the fasteners subjected to various initial load distributions and then subjected to a new unequal load distribution resulting from subsequent fastener sequential failures. The final and main objective of this thesis is to present a methodology for computing the resulting gradual deterioration of the reliability of an aircraft structural component by employing a direct Monte Carlo simulation approach. The uncertainties associated with the time to crack initiation, the probability of crack detection, the

  19. Desiccant-Based Preconditioning Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.

    2001-01-11

    A number of important conclusions can be drawn as a result of this broad, first-phase market evaluation. The more important conclusions include the following: (1) A very significant market opportunity will exist for specialized outdoor air-handling units (SOAHUs) as more construction and renovation projects are designed to incorporate the recommendations made by the ASHRAE 62-1989 standard. Based on this investigation, the total potential market is currently $725,000,000 annually (see Table 6, Sect. 3). Based on the market evaluations completed, it is estimated that approximately $398,000,000 (55%) of this total market could be served by DBC systems if they were made cost-effective through mass production. Approximately $306,000,000 (42%) of the total can be served by a non-regenerated, desiccant-based total recovery approach, based on the information provided by this investigation. Approximately $92,000,000 (13%) can be served by a regenerated desiccant-based cooling approach (see Table 7, Sect. 3). (2) A projection of the market selling price of various desiccant-based SOAHU systems was prepared using prices provided by Trane for central-station, air-handling modules currently manufactured. The wheel-component pricing was added to these components by SEMCO. This resulted in projected pricing for these systems that is significantly less than that currently offered by custom suppliers (see Table 4, Sect. 2). Estimated payback periods for all SOAHU approaches were quite short when compared with conventional over-cooling and reheat systems. Actual paybacks may vary significantly depending on site-specific considerations. (3) In comparing cost vs benefit of each SOAHU approach, it is critical that the total system design be evaluated. For example, the cost premium of a DBC system is very significant when compared to a conventional air handling system, yet the reduced chiller, boiler, cooling tower, and other expense often equals or exceeds this premium, resulting in a

  20. Thermodynamic analysis of a novel energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation

    International Nuclear Information System (INIS)

    She, Xiaohui; Yin, Yonggao; Zhang, Xiaosong

    2014-01-01

    Highlights: • An energy-efficient refrigeration system with a novel subcooling method is proposed. • Thermodynamic analysis is conducted to discuss the effects of operation parameters. • Two different utilization ways of condensation heat are compared. • The system achieves much higher COP, even higher than reverse Carnot cycle. • Suggested mass concentration for LiCl–H 2 O is around 32% at a typical case. - Abstract: A new energy-efficient refrigeration system subcooled by liquid desiccant dehumidification and evaporation was proposed in this paper. In the system, liquid desiccant system could produce very dry air for an indirect evaporative cooler, which would subcool the vapor compression refrigeration system to get higher COP than conventional refrigeration system. The desiccant cooling system can use the condensation heat for the desiccant regeneration. Thermodynamic analysis is made to discuss the effects of operation parameters (condensing temperature, liquid desiccant concentration, ambient air temperature and relative humidity) on the system performance. Results show that the proposed hybrid vapor compression refrigeration system achieves significantly higher COP than conventional vapor compression refrigeration system, and even higher than the reverse Carnot cycle at the same operation conditions. The maximum COPs of the hybrid systems using hot air and ambient air are 18.8% and 16.3% higher than that of the conventional vapor compression refrigeration system under varied conditions, respectively

  1. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress

    Directory of Open Access Journals (Sweden)

    Kannika Chookietwattana* and Kedsukon Maneewan

    2012-05-01

    Full Text Available For successful application of plant growth promoting bacteria (PGPB in salt-affected soil, bioinoculant with salt-tolerant property is required in order to provide better survival and perform well in the field. The present study aimed to select the most efficient salt-tolerant bacterium containing 1-aminocyclopropane-1-carboxylic acid (ACC deaminase from eighty four bacterial strains and to investigate the effects of the selected bacterium on the germination and growth of tomato (Licopersicon esculentum Mill. cv. Seeda under saline conditions. The Bacillus licheniformis B2r was selected for its ability to utilize ACC as a sole nitrogen source under salinity stress. It also showed a high ACC deaminase activity at 0.6 M NaCl salinity. Tomato plants inoculated with the selected bacterium under various saline conditions (0, 30, 60, 90 and 120 mM NaCl revealed a significant increase in the germination percentage, germination index, root length, and seedling dry weight especially at salinity levels ranging from 30-90 mM NaCl. The work described in this report is an important step in developing an efficient salt-tolerant bioinoculant to facilitate plant growth in saline soil.

  2. Solar assisted liquid desiccant cooling using clay based membranes

    Directory of Open Access Journals (Sweden)

    Priya S. Shanmuga

    2018-01-01

    Full Text Available The environmental concerns have led to the urge of the usage of non-conventional energy resources like solar, wind, thermal, geothermal etc. which provide enormous source of energy without causing any further diminution of the environment. Instead of the conventional HVAC systems that cause colossal environmental perils, usage of liquid desiccants in coming in vogue whereby reducing ecological threats. Moreover, solar assisted systems provide further impulse to such systems. This paper discusses about the various comparisons between liquid desiccants: Lithium chloride, Potassium formate and Calcium chloride and concludes that potassium formate is the best desiccant to be used among the three. Potassium formate (HCOOK is used which is cheaper and less corrosive as compared to the other aqueous salts, and has a negative crystallization temperature. Potassium formate is a new liquid desiccant and thus, not much research is available currently. The weather conditions of Manipal provide an appropriate condition for the experimentations of solar aided liquid desiccant evaporative cooling systems due to its humid climate and intense solar radiation obtained. The small scale experimentation also encounters the problem of liquid desiccant carryover by the air flow, with the help of clay based membranes which are again cheap, environmentally benign and obtained in a facile way. The projected system takes complete advantage of pure solar energy aimed at the regeneration of liquid desiccant.

  3. Expression profiling and cross-species RNA interference (RNAi of desiccation-induced transcripts in the anhydrobiotic nematode Aphelenchus avenae

    Directory of Open Access Journals (Sweden)

    Culleton Bridget A

    2010-01-01

    Full Text Available Abstract Background Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. Results To identify such genes, a panel of expressed sequence tags (ESTs enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. Conclusions This study has identified and characterised the

  4. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions.

    Directory of Open Access Journals (Sweden)

    Arshid Hussain Ganie

    Full Text Available Maize (Zea mays L. is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency.A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4 and low-P tolerant (PEHM-2 maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition.The new insights generated on the maize metabolome in response to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize.

  5. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    Science.gov (United States)

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Dehydrins from wheat x Thinopyrum ponticum amphiploid increase salinity and drought tolerance under their own inducible promoters without growth retardation.

    Science.gov (United States)

    Qin, Yu-Xiang; Qin, Fangyuan

    2016-02-01

    Dehydrins confer abiotic stress tolerance in seedlings, but few dehydrins have been studied by transgenic analysis under their own promoters in relation to abiotic stress tolerance. Also the inducible promoters for transgenic engineering are limited. In this study, we isolated from wheat three salt-induced YSK2 dehydrin genes and their promoters. The cDNA sequences were 711, 785, and 932 bp in length, encoding proteins containing 133, 166 and 231 amino acids, respectively, and were named TaDHN1, TaDHN2, and TaDHN3. TaDHN2 doesn't contain introns, while the other two genes each contain one. Semi-quantitative reverse transcription PCR analysis revealed all three dehydrin genes are substantially induced by ABA and NaCl, but only TaDHN2 is induced in seedlings by PEG and by cold (4 °C). Regulatory sequences upstream of the first translation codon (775, 1615 and 889 bp) of the three dehydrin genes were also cloned. Cis-element prediction indicated the presence of ABRE and other abiotic-stress-related elements. Histochemical analysis using GUS expression demonstrated that all three promoters were induced by ABA, cold or NaCl. Ectopic over-expression of TaDHN1 or TaDHN3 in Arabidopsis under their own inducible promoters enhanced NaCl- and drought-stress tolerance without growth retardation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Distributed Fault-Tolerant Control of Networked Uncertain Euler-Lagrange Systems Under Actuator Faults.

    Science.gov (United States)

    Chen, Gang; Song, Yongduan; Lewis, Frank L

    2016-05-03

    This paper investigates the distributed fault-tolerant control problem of networked Euler-Lagrange systems with actuator and communication link faults. An adaptive fault-tolerant cooperative control scheme is proposed to achieve the coordinated tracking control of networked uncertain Lagrange systems on a general directed communication topology, which contains a spanning tree with the root node being the active target system. The proposed algorithm is capable of compensating for the actuator bias fault, the partial loss of effectiveness actuation fault, the communication link fault, the model uncertainty, and the external disturbance simultaneously. The control scheme does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online, which largely reduces the online computation and expedites the responsiveness of the controller. To validate the effectiveness of the proposed method, a test-bed of multiple robot-arm cooperative control system is developed for real-time verification. Experiments on the networked robot-arms are conduced and the results confirm the benefits and the effectiveness of the proposed distributed fault-tolerant control algorithms.

  8. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance

    Science.gov (United States)

    Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua

    2016-01-01

    The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892

  9. Death by desiccation: Effects of hermetic storage on cowpea bruchids

    KAUST Repository

    Murdock, Larry L.; Margam, Venu; Baoua, Ibrahim B.; Balfe, Susan; Shade, Richard E.

    2012-01-01

    't reproduce. As a result, population growth ceases and damaging infestations don't develop. . C. maculatus eggs, larvae, and pupae subjected to hypoxia eventually die after exposures of various duration. The cause of death is desiccation resulting from

  10. Mode of inheritance of low-N tolerance adaptive traits in wheat (Triticum aestivum L. under contrasting nitrogen environments

    Directory of Open Access Journals (Sweden)

    Ahmed M. M. Al Naggar

    2017-07-01

    Full Text Available Because of essential economic and ecological concerns, there is increased interest worldwide in developing wheat cultivars that are more efficient in utilizing nitrogen (N and better suited to N limitations. The objective of the present investigation was to get information on the type of gene action controlling the inheritance of wheat low-N tolerance traits in order to start a breeding program for improving such traits. Six parents of contrasting low-N tolerance were crossed in a diallel fashion. Evaluation of 6 parents, 15 F1crosses and 15 F2 crosses was done using a randomized complete block design with three replications under two levels of soil N, i.e. low-N (0 kg N/ha and high-N (180 kg N/ha.The magnitude of dominance variance inF2's for all studied traits was much greater than that of additive variance under both high N and low N, suggesting that selection should be postponed to later segregating generations in order to eliminate masking effects of dominance variance and take advantage of the additive variance for the improvement of nitrogen use efficiency and grain yield traits. Narrow-sense heritability (h2n in F2's was generally of higher magnitude under low-N than high-N, suggesting that it is better to practice selection for studied nitrogen efficiency and grain yield traits under low-N conditions to obtain higher values of selection gain.

  11. Mode of inheritance of low-N tolerance adaptive traits in wheat (Triticum aestivum L.) under contrasting nitrogen environments

    International Nuclear Information System (INIS)

    Al Naggar, A.M.M.; Shabana, R.; Abd-El-Aleem, M.M.; El-Rashidy, Z.

    2017-01-01

    Because of essential economic and ecological concerns, there is increased interest worldwide in developing wheat cultivars that are more efficient in utilizing nitrogen (N) and better suited to N limitations. The objective of the present investigation was to get information on the type of gene action controlling the inheritance of wheat low-N tolerance traits in order to start a breeding program for improving such traits. Six parents of contrasting low-N tolerance were crossed in a diallel fashion. Evaluation of 6 parents, 15 F1crosses and 15 F2 crosses was done using a randomized complete block design with three replications under two levels of soil N, i.e. low-N (0 kg N/ha) and high-N (180 kg N/ha).The magnitude of dominance variance inF2's for all studied traits was much greater than that of additive variance under both high N and low N, suggesting that selection should be postponed to later segregating generations in order to eliminate masking effects of dominance variance and take advantage of the additive variance for the improvement of nitrogen use efficiency and grain yield traits. Narrow-sense heritability (h2n) in F2's was generally of higher magnitude under low-N than high-N, suggesting that it is better to practice selection for studied nitrogen efficiency and grain yield traits under low-N conditions to obtain higher values of selection gain.

  12. Mode of inheritance of low-N tolerance adaptive traits in wheat (Triticum aestivum L.) under contrasting nitrogen environments

    Energy Technology Data Exchange (ETDEWEB)

    Al Naggar, A.M.M.; Shabana, R.; Abd-El-Aleem, M.M.; El-Rashidy, Z.

    2017-07-01

    Because of essential economic and ecological concerns, there is increased interest worldwide in developing wheat cultivars that are more efficient in utilizing nitrogen (N) and better suited to N limitations. The objective of the present investigation was to get information on the type of gene action controlling the inheritance of wheat low-N tolerance traits in order to start a breeding program for improving such traits. Six parents of contrasting low-N tolerance were crossed in a diallel fashion. Evaluation of 6 parents, 15 F1crosses and 15 F2 crosses was done using a randomized complete block design with three replications under two levels of soil N, i.e. low-N (0 kg N/ha) and high-N (180 kg N/ha).The magnitude of dominance variance inF2's for all studied traits was much greater than that of additive variance under both high N and low N, suggesting that selection should be postponed to later segregating generations in order to eliminate masking effects of dominance variance and take advantage of the additive variance for the improvement of nitrogen use efficiency and grain yield traits. Narrow-sense heritability (h2n) in F2's was generally of higher magnitude under low-N than high-N, suggesting that it is better to practice selection for studied nitrogen efficiency and grain yield traits under low-N conditions to obtain higher values of selection gain.

  13. Damage tolerance optimization of composite stringer run-out under tensile load

    DEFF Research Database (Denmark)

    Badalló, Pere; Trias, Daniel; Lindgaard, Esben

    2015-01-01

    . The influence of some geometric variables of the run-out in the interface of the set stringer-panel is crucial to avoid the onset and growth of delamination cracks. In this study, a damage tolerant design of a stringer run-out is achieved by a process of design optimization and surrogate modeling techniques....... A parametric finite element model created with python was used to generate a number of different geometrical designs of the stringer run-out. The relevant information of these models was adjusted using Radial Basis Functions (RBF). Finally, the optimization problem was solved using Quasi-Newton method...

  14. Desiccants for retrospective dosimetry using optically stimulated luminescence (OSL)

    International Nuclear Information System (INIS)

    Geber-Bergstrand, Therése; Bernhardsson, Christian; Christiansson, Maria; Mattsson, Sören; Rääf, Christopher L.

    2015-01-01

    Optically stimulated luminescence (OSL) was used to test different kinds of desiccants for their potential use in retrospective dosimetry. Desiccants are used for the purpose of absorbing liquids and can be found in a number of items which may be found in the immediate environment of a person, including hand bags, drug packages, and the vehicles of rescue service teams. Any material exhibiting OSL properties suitable for retrospective dosimetry is a useful addition to the existing dosimetry system available in emergency preparedness. Eleven kinds of desiccants were investigated in order to obtain an overview of the fundamental OSL properties necessary for retrospective dosimetry. Measurements were made using a Risø TL/OSL reader and irradiations were achieved with the 90 Sr/ 90 Y source incorporated in the reader. Several of the desiccants exhibited promising properties as retrospective dosemeters. Some of the materials exhibited a strong as-received signal, i.e. without any laboratory irradiation, but the origin of this signal has not yet been established. The minimum detectable dose ranged from 8 to 450 mGy for ten of the materials and for one material (consisting of natural clay) the minimum detectable dose was 1.8 Gy. - Highlights: • Desiccants can be used as fortuitous dosemeters using OSL. • The minimum detectable dose for processed desiccants range from 8 to 450 mGy. • The minimum detectable dose for natural clay was 1.8 Gy

  15. Evaluation of Fall Sowing of Cold Tolerant Chickpa (Cicer arietinum L. Genotypes under Supplementary Irrigation in Mashhad

    Directory of Open Access Journals (Sweden)

    A. Nezami

    2011-01-01

    Full Text Available Abstract In order to investigate of phenological and morphological characteristics, yield components and yield of cold tolerant chickpea genotypes in fall sowing, 9 cold tolerant chickpea genotypes and Karaj 12-60-31 as a control were evaluated in Experimental Field of College of Agriculture, Ferdowsi University of Mashhad in 2006-2007. The experiment was carried out based on randomized complete block design with four replications. The planting date was 25 October and three times of irrigation was done as supplementary irrigation at planting stage, 20 days after that and at flowering stage. The control was ruined at seedling stage due to the hard cold. Based on the results, the differences among the genotypes for all of measured traits including growth duration, plant height, number and length of branches, yield components (pod number per plant, seed number per pod and 100 seeds weight, seed yield and biological yield were significant (P≥0.05. There were positive and significant correlations between seed yield and vegetative (r=0.71** and reproductive (r=0.68** periods. MCC291, MCC349 and MCC207 produced the highest seed yield with 231, 229 and 217 g.m-2, respectively. Totally, it appears that some of genotypes have appropriate yield potential for fall sowing under supplementary irrigation at Mashhad. Keywords: Cold tolerant, Chickpea genotypes, Phenological and morphological characteristics, Seed yield, Yield components

  16. Ambient but not local lactate underlies neuronal tolerance to prolonged glucose deprivation

    Science.gov (United States)

    Sobieski, Courtney; Shu, Hong-Jin

    2018-01-01

    Neurons require a nearly constant supply of ATP. Glucose is the predominant source of brain ATP, but the direct effects of prolonged glucose deprivation on neuronal viability and function remain unclear. In sparse rat hippocampal microcultures, neurons were surprisingly resilient to 16 h glucose removal in the absence of secondary excitotoxicity. Neuronal survival and synaptic transmission were unaffected by prolonged removal of exogenous glucose. Inhibition of lactate transport decreased microculture neuronal survival during concurrent glucose deprivation, suggesting that endogenously released lactate is important for tolerance to glucose deprivation. Tandem depolarization and glucose deprivation also reduced neuronal survival, and trace glucose concentrations afforded neuroprotection. Mass cultures, in contrast to microcultures, were insensitive to depolarizing glucose deprivation, a difference attributable to increased extracellular lactate levels. Removal of local astrocyte support did not reduce survival in response to glucose deprivation or alter evoked excitatory transmission, suggesting that on-demand, local lactate shuttling is not necessary for neuronal tolerance to prolonged glucose removal. Taken together, these data suggest that endogenously produced lactate available globally in the extracellular milieu sustains neurons in the absence of glucose. A better understanding of resilience mechanisms in reduced preparations could lead to therapeutic strategies aimed to bolster these mechanisms in vulnerable neuronal populations. PMID:29617444

  17. Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress.

    Science.gov (United States)

    Shabir, Rahat; Abbas, Ghulam; Saqib, Muhammad; Shahid, Muhammad; Shah, Ghulam Mustafa; Akram, Muhammad; Niazi, Nabeel Khan; Naeem, Muhammad Asif; Hussain, Munawar; Ashraf, Farah

    2018-06-07

    In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg -1 ), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.

  18. Characteristic Analysis and Fault-Tolerant Control of Circulating Current for Modular Multilevel Converters under Sub-Module Faults

    Directory of Open Access Journals (Sweden)

    Wen Wu

    2017-11-01

    Full Text Available A modular multilevel converter (MMC is considered to be a promising topology for medium- or high-power applications. However, a significantly increased amount of sub-modules (SMs in each arm also increase the risk of failures. Focusing on the fault-tolerant operation issue for the MMC under SM faults, the operation characteristics of MMC with different numbers of faulty SMs in the arms are analyzed and summarized in this paper. Based on the characteristics, a novel circulating current-suppressing (CCS fault-tolerant control strategy comprised of a basic control unit (BCU and virtual resistance compensation control unit (VRCCU in two parts is proposed, which has three main features: (i it can suppress the multi-different frequency components of the circulating current under different SM fault types simultaneously; (ii it can help fast limiting of the transient fault current caused at the faulty SM bypassed moment; and (iii it does not need extra communication systems to acquire the information of the number of faulty SMs. Moreover, by analyzing the stability performance of the proposed controller using the Root-Locus criterion, the election principle of the value of virtual resistance is revealed. Finally, the efficiency of the control strategy is confirmed with the simulation and experiment studies under different fault conditions.

  19. Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling)

    International Nuclear Information System (INIS)

    Ge, T.S.; Ziegler, F.; Wang, R.Z.; Wang, H.

    2010-01-01

    Solar driven rotary desiccant cooling systems have been widely recognized as alternatives to conventional vapor compression systems for their merits of energy-saving and being eco-friendly. In the previous paper, the basic performance features of desiccant wheel have been discussed. In this paper, a solar driven two-stage rotary desiccant cooling system and a vapor compression system are simulated to provide cooling for one floor in a commercial office building in two cities with different climates: Berlin and Shanghai. The model developed in the previous paper is adopted to predict the performance of the desiccant wheel. The objectives of this paper are to evaluate and compare the thermodynamic and economic performance of the two systems and to obtain useful data for practical application. Results show that the desiccant cooling system is able to meet the cooling demand and provide comfortable supply air in both of the two regions. The required regeneration temperatures are 55 deg. C in Berlin and 85 deg. C in Shanghai. As compared to the vapor compression system, the desiccant cooling system has better supply air quality and consumes less electricity. The results of the economic analysis demonstrate that the dynamic investment payback periods are 4.7 years in Berlin and 7.2 years in Shanghai.

  20. Neuroadaptive Fault-Tolerant Control of Nonlinear Systems Under Output Constraints and Actuation Faults.

    Science.gov (United States)

    Zhao, Kai; Song, Yongduan; Shen, Zhixi

    2018-02-01

    In this paper, a neuroadaptive fault-tolerant tracking control method is proposed for a class of time-delay pure-feedback systems in the presence of external disturbances and actuation faults. The proposed controller can achieve prescribed transient and steady-state performance, despite uncertain time delays and output constraints as well as actuation faults. By combining a tangent barrier Lyapunov-Krasovskii function with the dynamic surface control technique, the neural network unit in the developed control scheme is able to take its action from the very beginning and play its learning/approximating role safely during the entire system operational envelope, leading to enhanced control performance without the danger of violating compact set precondition. Furthermore, prescribed transient performance and output constraints are strictly ensured in the presence of nonaffine uncertainties, external disturbances, and undetectable actuation faults. The control strategy is also validated by numerical simulation.

  1. Role of redox homeostasis in thermo-tolerance under a climate change scenario

    Science.gov (United States)

    de Pinto, Maria Concetta; Locato, Vittoria; Paradiso, Annalisa; De Gara, Laura

    2015-01-01

    Background Climate change predictions indicate a progressive increase in average temperatures and an increase in the frequency of heatwaves, which will have a negative impact on crop productivity. Over the last decade, a number of studies have addressed the question of how model plants or specific crops modify their metabolism when exposed to heat stress. Scope This review provides an overview of the redox pathways that contribute to how plants cope with heat stress. The focus is on the role of reactive oxygen species (ROS), redox metabolites and enzymes in the signalling pathways leading to the activation of defence responses. Additional attention is paid to the regulating mechanisms that lead to an increase in specific ROS-scavenging systems during heat stress, which have been studied in different model systems. Finally, increasing thermo-tolerance in model and crop plants by exposing them to heat acclimation or to exogenous treatments is discussed. Conclusions Although there is clear evidence that several strategies are specifically activated according to the intensity and the duration of heat stress, as well as the capacity of the different species or genotypes to overcome stress, an alteration in redox homeostasis seems to be a common event. Different mechanisms that act to enhance redox systems enable crops to overcome heat stress more effectively. Knowledge of thermo-tolerance within agronomic biodiversity is thus of key importance to enable researchers to identify new strategies for overcoming the impacts of climate change, and for decision-makers in planning for an uncertain future with new choices and options open to them. PMID:26034009

  2. Tolerance of glue embolization under local anesthesia in varicoceles: A comparative study of two different cyanoacrylates

    Energy Technology Data Exchange (ETDEWEB)

    Vanlangenhove, Peter, E-mail: peter.vanlangenhove@uzgent.be [Department of Vascular and Interventional Radiology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium); Everaert, Karel [Department of Urology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium); Van Maele, Georges [Department of Statistics, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium); Defreyne, Luc [Department of Vascular and Interventional Radiology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent (Belgium)

    2014-03-15

    Purpose: To find out whether in varicocele embolization the copolymer cyanoacrylate glue (NBCA-MS) has a better patient tolerance compared to the monomer n-butyl-2-cyanoacrylate (NBCA). Materials and methods: N = 112 insufficient spermatic veins (left sided N = 84, right sided N = 28) diagnosed in N = 83 adult males were prospectively randomized for blinded embolization with either NBCA N = 54 (Histoacryl) or with NBCA-MS N = 58 (Glubran2). Before, during and up to one week after embolization, patient discomfort was assessed by a standardized pain scale. Type, location and side of discomfort were noted. Statistical analysis was performed with the Mann–Whitney U-test, the McNemar test and the Fisher's exact test. Results: Embolization caused discomfort in N = 48/112 (43%) spermatic veins, comprising N = 26/54 (48%) in the NBCA group and N = 22/58 (38%) in the NBCA-MS group. During the week after embolization, the overall number of discomfort reports rose to N = 62/106 (59%), with an increase to N = 30/53 (57%) in the NBCA group and to N = 32/53 (60%) in the NBCA-MS group. The number of immediate grade 2 to 4 pain reactions was N = 22/112 (20%), and rose to N = 37/106 (35%) after one week. No difference in discomfort during embolization and at 1 week after treatment was noted. Characteristics, severity grading, and location of discomfort were similar in both NBCA groups, regardless the time point of observation. Conclusion: Discomfort after glue embolization of varicocele is a common side effect, which might evolve to pain. The assumed lower inflammatory reaction on NBCA-MS was not translated in an improved tolerance.

  3. Experimental Investigation of Air Conditioner using the Desiccant Cooling System in Equatorial Climates

    Directory of Open Access Journals (Sweden)

    Abdullah Kamaruddin

    2018-01-01

    Full Text Available Indonesia lies in the tropical climate which requires air conditioning to increase working productivity of the people. Up to now people are still using the compressive cooling system which uses Freon as the refrigerant, which have been known to have a negative environmental impact. Therefore, new cooling system which is environmentally friendly is now needed. Desiccant cooling system manipulates the humidity condition of outside air in such a way so that the final temperature should become at 25 °C and RH of 65 %. Since it does not require refrigerant, a desiccant cooling has the potential to be developed in a tropical country like Indonesia. In this study an experimental desiccant cooling system has been designed and constructed and tested under laboratory condition. Experimental results have shown that the resulting air temperature was 26.1 °C with RH of 55.6 %, and average cooling capacity was 0.425 kW. The COP was found to be 0.44.

  4. Performance of a desiccant assisted packed bed passive solar dryer for copra processing

    Directory of Open Access Journals (Sweden)

    Padmanaban Govindarajulu

    2017-01-01

    Full Text Available In this paper, the performance of a novel desiccant assisted packed bed passive solar dryer was evaluated for copra processing and compared with conventional passive solar dryer. This novel solar dryer consists of a desiccant assisted packed bed solar air heater attached with a dryer cabin. The desiccant and phase change materials packed in the solar air heater has control the humidity and retains the heat for longer duration, respectively. The performance of the dryer was evaluated (in terms of drying time to attain the final equilibrium moisture content, drying rate, specific moisture extraction rate, pick-up efficiency, and dryer efficiency under the meteorological conditions of Coimbatore city in India during March and April 2016. The copra was dried from initial moisture content (wet basis of about 52% to the final moisture content (wet basis of about 8% in 62 hours with specific moisture extraction rate of 0.82 kg/kWh. The drying time was reduced by about 44 hours when compared to the conventional passive solar dryer. The dryer pick-up efficiency was varied between about 10% and 65%. The average dryer thermal efficiency was calculated to be about 32%. The quality of final dried product was found to be good.

  5. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  6. The extraembryonic serosa protects the insect egg against desiccation

    Science.gov (United States)

    Jacobs, Chris G. C.; Rezende, Gustavo L.; Lamers, Gerda E. M.; van der Zee, Maurijn

    2013-01-01

    Insects have been extraordinarily successful in occupying terrestrial habitats, in contrast to their mostly aquatic sister group, the crustaceans. This success is typically attributed to adult traits such as flight, whereas little attention has been paid to adaptation of the egg. An evolutionary novelty of insect eggs is the serosa, an extraembryonic membrane that enfolds the embryo and secretes a cuticle. To experimentally test the protective function of the serosa, we exploit an exceptional possibility to eliminate this membrane by zerknüllt1 RNAi in the beetle Tribolium castaneum. We analyse hatching rates of eggs under a range of humidities and find dramatically decreasing hatching rates with decreasing humidities for serosa-less eggs, but not for control eggs. Furthermore, we show serosal expression of Tc-chitin-synthase1 and demonstrate that its knock-down leads to absence of the serosal cuticle and a reduction in hatching rates at low humidities. These developmental genetic techniques in combination with ecological testing provide experimental evidence for a crucial role of the serosa in desiccation resistance. We propose that the origin of this extraembryonic membrane facilitated the spectacular radiation of insects on land, as did the origin of the amniote egg in the terrestrial invasion of vertebrates. PMID:23782888

  7. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    Science.gov (United States)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  8. Active Desiccant-Based Preconditioning Market Analysis and Product Development

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J.

    2001-01-11

    The Phase 1 report (ORNL/Sub/94-SVO44/1), completed earlier in this program, involved a comprehensive field survey and market analysis comparing various specialized outdoor air handling units. This initial investigation included conventional cooling and reheat, conventional cooling with sensible recovery, total energy recovery systems (passive desiccant technology) and various active desiccant systems. The report concluded that several markets do promise a significant sales opportunity for a Climate Changer-based active desiccant system offering. (Climate Changer is a registered trademark of Trane Company.) This initial market analysis defined the wants and needs of the end customers (design engineers and building owners), which, along with subsequent information included in this report, have been used to guide the determination of the most promising active desiccant system configurations. This Phase 2 report begins with a summary of a more thorough investigation of those specific markets identified as most promising for active desiccant systems. Table 1 estimates the annual sales potential for a cost-effective product line of active desiccant systems, such as that built from Climate Changer modules. The Product Development Strategy section describes the active desiccant system configurations chosen to best fit the needs of the marketplace while minimizing system options. Key design objectives based on market research are listed in this report for these active desiccant systems. Corresponding performance goals for the dehumidification wheel required to meet the overall system design objectives are also defined. The Performance Modeling section describes the strategy used by SEMCO to design the dehumidification wheels integrated into the prototype systems currently being tested as part of the U.S. Department of Energy's Advanced Desiccant Technology Program. Actual performance data from wheel testing was used to revise the system performance and energy analysis

  9. Rhizospheric salt tolerant bacteria improving plant growth in single and mixed culture inoculations under NaCl stress (abstract)

    International Nuclear Information System (INIS)

    Afrasayab, S.; Hasnain, S.

    2005-01-01

    Salt tolerant bacterial strains isolated from rhizosphere of Mazus plant (inhabitant of salt range) were used singly (ST -1; ST -2; ST -3; ST -4) and in mixed combinations (ST -1,3,4; ST -2,3,4) to improve the growth to Tricticum aestivum in the pot experiments. Growth and yield of T. aestivum var. Inqlab-91 plants exposed to NaCl stress (0.75% NaCl) was markedly affected. Na/sup +//K/sup +/ ratios in shoots and roots were profoundly increased under NaCl stress. Bacterial inoculations improved plant growth under salt stress. Bacterial combinations ST - 1,3,4 and ST -2,3,4 were more effective in stimulating growth and showed prominent results as compared to their pure cultures. Mono and mixed bacterial inoculations improved yield parameters of wheat. ST -1,3,4 mixed culture inoculation maximally improved yield under salt stress. Generally bacterial inoculations resulted in increase in Na/sup +//K/sup +/ ratios in shoots and roots under salt free and salt stress conditions. Overall ST -1,3,4 mixed inoculation yielded promising results under NaCl stress, hence 168 rRNA gene sequence analysis of its pure cultures was obtained for their identification to genus level. (author)

  10. Experimental study on solar desiccant cooling system. 2nd Report; Taiyonetsu kudo desiccant cooling system no jikkenteki kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H; Funato, H [Fukuoka Institute of Technology, Fukuoka (Japan); Kuma, T [Seibu Giken Co. Ltd., Fukuoka (Japan)

    1996-10-27

    Study has been made about a desiccant cleaning system using solar heated water for regenerating the dehumidifier. A dehumidifier and evaporation coolers are combined to attain a synergistic effect in dehumidifying and cooling the air in the house. The simultaneous control of humidity and temperature, however, is quite difficult. Under the circumstances, an evaporation cooler was removed from the outdoor air intake side, to leave a humidifier alone for the control of humidity only. In addition, the length of the dehumidifier was reduced into half for saving fan driving power and for downscaling the model. With only one evaporation cooler in operation that is installed at the exhaust side, the cooling effect is diminished by half. For dealing with the situation, ultrasonic atomization is performed at the exhaust side evaporation cooler for the improvement of the air cooling effect for the next sensible heat exchanger (intake side). The return air is heated by the solar heater water (approximately 60{degree}C hot), regenerates the dehumidifier, and then exhausted. The atomization process elevates the cooling effect, and the resultant cooling effect was as high as that expected from a 2-cooler setup. The dehumidification effect, however, lowers a little. Exclusion of the atomization process will enhance the dehumidification effect, but will reduce the cooling effect as well. 3 refs., 8 figs., 3 tabs.

  11. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    Directory of Open Access Journals (Sweden)

    M. M. S. Dezfouli

    2014-01-01

    Full Text Available A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-stage recirculation. These models were stimulated for 8,760 hr of operation under hot and humid weather in Malaysia. Several parameters (i.e., coefficient of performance or COP, room temperature and humidity ratio, and the solar fraction of each system were evaluated by detecting the temperature and humidity ratio of the different points of each configuration by TRNSYS simulation. The latent and sensible loads of the test room were 0.875 kW and 2.625 kW, respectively. By investigating the simulation results of the four systems, the ventilation modes were found to be higher than the recirculation modes in the one- and two-stage solar desiccant cooling systems. The isothermal dehumidification COP of the two-stage ventilation was higher than that of the two-stage recirculation. Hence, the two-stage ventilation mode desiccant cooling system in a hot and humid area has higher efficiency than the other configurations.

  12. Tolerance of different rice genotypes (oryza sativa l.) against the infestation of rice stem borers under natural field conditions

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Nasrullah; Tofique, M.

    2010-01-01

    The present studies report the genotypic responses of 61 rice (Oryza sativa L.) genotypes (35 aromatic and 26 non aromatic) against the infestation of rice stem borers under natural field conditions. The data obtained on these genotypes on larval infestation in combination with yield were the criteria to assess the resistance depicted by them. The studies showed that among aromatic genotypes, 'Khushboo-95' gave the best yield of grain and harboured the least pest infestation (2.81% dead hearts and 1.85% white heads); on the other hand variety 'Sonahri Sugdasi (P)' harboured the highest borers attack (10.37% and 19.30%) and yielded the lowest grain yield. Regarding non-aromatic genotypes, IR8-2.5-11 received least infestation (1.32% and 0.26% dead hearts and white heads, respectively) generating highest yield showing its tolerance to borer's attack, in contrast, genotype IR6-252 harboured the highest infestation (5.65%, 4.28%) and yielded minimum grain indicating its susceptibility. These results demonstrate the expression of resistance gene in the genome of tolerant rice genotypes that can provide season-long protection from the natural infestation of insect pests. (author)

  13. Determination of Heat Tolerance Coefficient in Crossbred and Baladi Pregnant Cows under Egyptian Environmental Conditions

    International Nuclear Information System (INIS)

    EL-Masry, K.A.; Nessim, M.Z.; Gad, A.E.

    2010-01-01

    The experiment was carried out during August (hot climate) on twelve pregnant cows, six crossbred (50% native Baladi and 50% Brown Swiss) and six native Baladi pregnant cows in the same age and second parity during their mid-pregnancy as detected by rectal palpation. The experiment was repeated during December (mild climate) on similar twelve pregnant cows. Blood sample was obtained from each cow at the end of August (first group) and at the end of December (second group) to determine blood plasma levels of two thermogenic hormones (total T3 and cortisol) and biochemical parameters, total protein, creatinine, urea-N, triglycerides, ALT and AST. Comparison was made between hot group and mild group to estimate heat induced changes in both breeds and to identify which breed is more tolerant to heat stress. The results showed that heat- induced a significant decrease (p<0.01) in plasma level of total T3 in crossbred and Baladi by (-53.6 and -51.8%), respectively and triglycerides in crossbred and Baladi by (-35.6 and-32.2%), respectively. But hot weather caused a significant increase (p<0.01) in cortisol hormone level in crossbred and Baladi by (78.3 and 77.6%), respectively. Significant (p<0.01) difference between crossbred and Baladi cows in cortisol hormone level was remarked. Moreover, a significant increase (p<0.01) in total protein level in crossbred and Baladi by (11.4 and 13.4%), respectively was observed. An increase (p<0.05) was noticed in creatinine level by 25.0% and 20.1% in crossbred and Baladi, respectively, urea-N level in crossbred and Baladi by 16.6% and 21.7%, respectively and ALT in crossbred and Baladi by 42.4% and 45.7%, respectively. Also, a difference was recognized amounted in AST level in crossbred and Baladi by 22.3 %, (p<0.02) and 31.0 % (p<0.01), respectively.

  14. Numerical and experimental analysis of a solid desiccant wheel

    Directory of Open Access Journals (Sweden)

    Koronaki Irene P.

    2016-01-01

    Full Text Available The rotary desiccant dehumidifier is an important component which can be used in air conditioning systems in order to reduce the electrical energy consumption and introduce renewable energy sources. In this study a one dimensional gas side resistance model is presented for predicting the performance of the desiccant wheel. Measurements from two real sorption wheels are used in order to validate the model. One wheel uses silica gel as desiccant material and the other lithium chloride. The simulation results are in good agreement with the experimental data. The model is used to compare the counter flow with the co-current wheel arrangements and to explain why the counter flow one is more efficient for air dehumidification.

  15. Dry air preservation and corrosion prevention using desiccant dehumidification

    International Nuclear Information System (INIS)

    Tykesson, M.; Ashworth, C.

    1991-01-01

    The preservation and longevity of power station plants is a significant problem, particularly in cold shut down situations for prolonged periods of time, and also in storage of parts prior to installation. Power station protection and equipment preservation using the desiccant method is not new. For many years dehumidification machinery has been employed as a barrier to moisture related degradation. The first rotary desiccant dehumidifiers were installed within the power plant industry in the mid 1960s. Many of these first installations remain in operation today. In order to understand the functioning of a desiccant unit as compared with other air handling systems, it is essential to understand the fundamentals of a psychrometric chart. This article will attempt to give the reader an understanding of the subject. (author)

  16. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli Narasimha, Murthy Srivatsa; Lefers, Ryan; Fedoroff, Nina V.; Leiknes, TorOve; Nunes, Suzana Pereira

    2016-01-01

    the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface

  17. Xylanase production by a thermo-tolerant Bacillus species under solid-state and submerged fermentation

    Directory of Open Access Journals (Sweden)

    Uma Gupta

    2009-12-01

    Full Text Available Effects of xylose on xylanase production by a thermophilic Bacillus sp showed diverse patterns on corn cob (CC and wheat bran (WB as sole carbon sources in solid- state fermentation (SSF and submerged fermentation (SmF. Supplementation of these media with either mineral salt solution (MSS or yeast extract peptone (YEP also exerted variable effects. While under SSF, xylose stimulated xylanase synthesis by 44.01%, on wheat bran supplemented with MSS, it decreased the enzyme activity by 12.89% with YEP supplementation. In SmF, however the enzyme synthesis was stimulated by xylose on supplementation with both MSS and YEP by 41.38% and 27.47%, respectively. On corn cob under SSF, xylose repression was significant both with MSS (26.92% and YEP (23.90% supplementation. Repression by xylose also took place on corn cob and YEP (19.69% under SmF, while significant stimulation (28.55% was observed by MSS supplementation. The possible role of media composition and fermentation conditions in the regulation of xylanase synthesis by xylose is discussed.

  18. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    Science.gov (United States)

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  19. Desiccation of sludges as instruments for solid radioactive wastes reduction

    International Nuclear Information System (INIS)

    Perez, C.

    2003-01-01

    In order to maintain as well as possible and optimize use of the radioactive waste storage capacity of El Carbil ENRESA and the Electric Sector put a series of actions into motion in 1994 to reduce and optimize radioactive waste processing. As a result of this strategy, a moist waste desiccation system has been developed with Spanish technology by ENSA. This system was installed in Trillo NPP in 2001 and has operated satisfactorily for the past year, having significantly reduced the volume of waste generated by evaporator concentrates. This article describes the objectives, design and implementation of the desiccation system installed in Trillo NPP. (Author)

  20. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato.

    Science.gov (United States)

    Ruiz-Lozano, Juan Manuel; Aroca, Ricardo; Zamarreño, Ángel María; Molina, Sonia; Andreo-Jiménez, Beatriz; Porcel, Rosa; García-Mina, José María; Ruyter-Spira, Carolien; López-Ráez, Juan Antonio

    2016-02-01

    Arbuscular mycorrhizal (AM) symbiosis alleviates drought stress in plants. However, the intimate mechanisms involved, as well as its effect on the production of signalling molecules associated with the host plant-AM fungus interaction remains largely unknown. In the present work, the effects of drought on lettuce and tomato plant performance and hormone levels were investigated in non-AM and AM plants. Three different water regimes were applied, and their effects were analysed over time. AM plants showed an improved growth rate and efficiency of photosystem II than non-AM plants under drought from very early stages of plant colonization. The levels of the phytohormone abscisic acid, as well as the expression of the corresponding marker genes, were influenced by drought stress in non-AM and AM plants. The levels of strigolactones and the expression of corresponding marker genes were affected by both AM symbiosis and drought. The results suggest that AM symbiosis alleviates drought stress by altering the hormonal profiles and affecting plant physiology in the host plant. In addition, a correlation between AM root colonization, strigolactone levels and drought severity is shown, suggesting that under these unfavourable conditions, plants might increase strigolactone production in order to promote symbiosis establishment to cope with the stress. © 2015 John Wiley & Sons Ltd.

  1. Local tolerance testing under REACH: Accepted non-animal methods are not on equal footing with animal tests.

    Science.gov (United States)

    Sauer, Ursula G; Hill, Erin H; Curren, Rodger D; Raabe, Hans A; Kolle, Susanne N; Teubner, Wera; Mehling, Annette; Landsiedel, Robert

    2016-07-01

    In general, no single non-animal method can cover the complexity of any given animal test. Therefore, fixed sets of in vitro (and in chemico) methods have been combined into testing strategies for skin and eye irritation and skin sensitisation testing, with pre-defined prediction models for substance classification. Many of these methods have been adopted as OECD test guidelines. Various testing strategies have been successfully validated in extensive in-house and inter-laboratory studies, but they have not yet received formal acceptance for substance classification. Therefore, under the European REACH Regulation, data from testing strategies can, in general, only be used in so-called weight-of-evidence approaches. While animal testing data generated under the specific REACH information requirements are per se sufficient, the sufficiency of weight-of-evidence approaches can be questioned under the REACH system, and further animal testing can be required. This constitutes an imbalance between the regulatory acceptance of data from approved non-animal methods and animal tests that is not justified on scientific grounds. To ensure that testing strategies for local tolerance testing truly serve to replace animal testing for the REACH registration 2018 deadline (when the majority of existing chemicals have to be registered), clarity on their regulatory acceptance as complete replacements is urgently required. 2016 FRAME.

  2. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    Energy Technology Data Exchange (ETDEWEB)

    Sand, J R [ORNL; Grossman, G [ORNL; Rice, C K [ORNL; Fairchild, P D [ORNL; Gross, I L [Engelhard/ICC

    1994-01-01

    Desiccant air-conditioning systems can be used as alternatives for conventional air-conditioning equipment in any commercial or residential building. Recent breakthroughs in desiccant materials technology and the creation of new markets by Indoor Air Quality issues make desiccant-based air-conditioning equipment practical for many space-conditioning applications.

  3. Antistranspirant compounds alleviate the mild-desiccation-induced reduction of vase life in cut roses

    NARCIS (Netherlands)

    Fanourakis, D.; Gebraegziabher, Habtamu; Li, Tao; Kambourakis, Emmanouil; Ligoxigakis, Eleftherios K.; Padadimitriou, Michael; Strataridaki, Argiro; Bouranis, Dimitrios; Fiorani, F.; Heuvelink, E.; Ottosen, Carl-Otto

    2016-01-01

    The vase life sensitivity to mild desiccation (12% weight loss) was addressed in rose, together with alleviation possibilities. The postharvest longevity upon arrival or following mild desiccation was determined on eight cultivars, combined with several morpho-physiological traits. Mild desiccation

  4. Experimental analysis on performance of high temperature heat pump and desiccant wheel system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Deng, Na

    2013-01-01

    In order to solve the problem of high energy consumption for regeneration of desiccant wheel in the rotary desiccant system, high temperature heat pump and desiccant wheel (HTHP&DW) system and corresponding air conditioning unit is built and tested in the extensive thermal hygrometric environment...

  5. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Science.gov (United States)

    Daranas, Núria; Badosa, Esther; Francés, Jesús; Montesinos, Emilio; Bonaterra, Anna

    2018-01-01

    Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH) conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  6. Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments.

    Directory of Open Access Journals (Sweden)

    Núria Daranas

    Full Text Available Lactobacillus plantarum strains PM411 and TC92 can efficiently control bacterial plant diseases, but their fitness on the plant surface is limited under unfavourable low relative humidity (RH conditions. To increase tolerance of these strains to water stress, an adaptive strategy was used consisting of hyperosmotic and acidic conditions during growth. Adapted cells had higher survival rates under desiccation than non-adapted cells. Transcript levels and patterns of general stress-related genes increased immediately after the combined-stress adaptation treatment, and remained unaltered or repressed during the desiccation challenge. However, there were differences between strains in the transcription patterns that were in agreement with a better performance of adapted cells of PM411 than TC92 in plant surfaces under low RH environmental conditions. The combined-stress adaptation treatment increased the survival of PM411 cells consistently in different plant hosts in the greenhouse and under field conditions. Stress-adapted cells of PM411 had similar biocontrol potential against bacterial plant pathogens than non-adapted cells, but with less variability within experiments.

  7. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids.

    Science.gov (United States)

    Diniz, Mariana C; Olivon, Vania C; Tavares, Lívia D; Simplicio, Janaina A; Gonzaga, Natália A; de Souza, Daniele G; Bendhack, Lusiane M; Tirapelli, Carlos R; Bonaventura, Daniella

    2017-05-01

    To determine the role of reactive oxygen species (ROS) on sodium nitroprusside (SNP)-induced tolerance. Additionally, we evaluated the role of ROS on NF-κB activation and pro-inflammatory cytokines production during SNP-induced tolerance. To induce in vitro tolerance, endothelium-intact or -denuded aortic rings isolated from male Balb-c mice were incubated for 15, 30, 45 or 60min with SNP (10nmol/L). Tolerance to SNP was observed after incubation of endothelium-denuded, but not endothelium-intact aortas for 60min with this inorganic nitrate. Pre-incubation of denuded rings with tiron (superoxide anion (O 2 - ) scavenger), and the NADPH oxidase inhibitors apocynin and atorvastatin reversed SNP-induced tolerance. l-NAME (non-selective NOS inhibitor) and l-arginine (NOS substrate) also prevented SNP-induced tolerance. Similarly, ibuprofen (non-selective cyclooxygenase (COX) inhibitor), nimesulide (selective COX-2 inhibitor), AH6809 (prostaglandin PGF 2 α receptor antagonist) or SQ29584 [PGH 2 /thromboxane TXA 2 receptor antagonist] reversed SNP-induced tolerance. Increased ROS generation was detected in tolerant arteries and both tiron and atorvastatin reversed this response. Tiron prevented tolerance-induced increase on O 2 - and hydrogen peroxide (H 2 O 2 ) levels. The increase onp65/NF-κB expression and TNF-α production in tolerant arteries was prevented by tiron. The major new finding of our study is that SNP-induced tolerance is mediated by NADPH-oxidase derived ROS and vasoconstrictor prostanoids derived from COX-2, which are capable of reducing the vasorelaxation induced by SNP. Additionally, we found that ROS mediate the activation of NF-κB and the production of TNF-α in tolerant arteries. These findings identify putative molecular mechanisms whereby SNP induces tolerance in the vasculature. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Screening of sesame ecotypes (Sesamum indicum L. for salinity tolerance under field conditions: 1-Phenological and morphological characteristics

    Directory of Open Access Journals (Sweden)

    F. Fazeli Kakhki

    2016-05-01

    Full Text Available Salinity is one of the most restrictions in plant growth in dry and semi dry land which effects production of many crops such as sesame. In order to study the phenology and morphology characteristics of 43 ecotypes and line of sesame (Sesamum indicum L. under salinity of irrigation water (5.2 dS.m-1 a field experiment was conducted at research farm of center of excellence for special crops, Ferdowsi University of Mashhad, Iran, during growing season of 2009-2010 based on a randomized complete block design with three replications. Results showed that four sesame ecotypes could not emerge, 14 sesame ecotypes had appropriate emergence but died before reproductive stage and only 58 % of sesame ecotypes could alive until maturity. There was significant difference between sesame ecotypes for phenological stages and were varied from 64 to 81 days for vegetative and 60 to 65 days for reproductive stages. Plant height, number and length of branches also were different between sesame ecotypes. The highest and the lowest plant height were observed in MSC43 and MSC12 ecotypes, respectively. Number of branches per plant was from 1 to 8 and length of branches in 32 percent of ecotypes was more than 100 cm. There was a considerable correlation between seed weight in plant with reproductive growth (r=0.38** and plant height (r=0.25. In addition different response of sesame ecotypes to saline water and also better morphological indices in some sesame ecotypes may be show the tolerance of these accessions to salinity. More studies may be useful for selection of sesame salt tolerance resources.

  9. Limitations to the Dutch cannabis toleration policy: Assumptions underlying the reclassification of cannabis above 15% THC.

    Science.gov (United States)

    Van Laar, Margriet; Van Der Pol, Peggy; Niesink, Raymond

    2016-08-01

    The Netherlands has seen an increase in Δ9-tetrahydrocannabinol (THC) concentrations from approximately 8% in the 1990s up to 20% in 2004. Increased cannabis potency may lead to higher THC-exposure and cannabis related harm. The Dutch government officially condones the sale of cannabis from so called 'coffee shops', and the Opium Act distinguishes cannabis as a Schedule II drug with 'acceptable risk' from other drugs with 'unacceptable risk' (Schedule I). Even in 1976, however, cannabis potency was taken into account by distinguishing hemp oil as a Schedule I drug. In 2011, an advisory committee recommended tightening up legislation, leading to a 2013 bill proposing the reclassification of high potency cannabis products with a THC content of 15% or more as a Schedule I drug. The purpose of this measure was twofold: to reduce public health risks and to reduce illegal cultivation and export of cannabis by increasing punishment. This paper focuses on the public health aspects and describes the (explicit and implicit) assumptions underlying this '15% THC measure', as well as to what extent these are supported by scientific research. Based on scientific literature and other sources of information, we conclude that the 15% measure can provide in theory a slight health benefit for specific groups of cannabis users (i.e., frequent users preferring strong cannabis, purchasing from coffee shops, using 'steady quantities' and not changing their smoking behaviour), but certainly not for all cannabis users. These gains should be weighed against the investment in enforcement and the risk of unintended (adverse) effects. Given the many assumptions and uncertainty about the nature and extent of the expected buying and smoking behaviour changes, the measure is a political choice and based on thin evidence. Copyright © 2016 Springer. Published by Elsevier B.V. All rights reserved.

  10. Application of a diffusion model to measure ion leakage of resurrection plant leaves undergoing desiccation.

    Science.gov (United States)

    Mihailova, Gergana; Kocheva, Konstantina; Goltsev, Vasilij; Kalaji, Hazem M; Georgieva, Katya

    2018-04-01

    Haberlea rhodopensis is a chlorophyll-retaining resurrection plant, which can survive desiccation to air dry state under both low light and sunny environments. Maintaining the integrity of the membrane during dehydration of resurrection plants is extremely important. In the present study, the diffusion model was improved and used for a first time to evaluate the changes in ion leakage through different cellular compartments upon desiccation of H. rhodopensis and to clarify the reasons for significant increase of electrolyte leakage from dry leaves. The applied diffusion approach allowed us to distinguish the performance of plants subjected to dehydration and subsequent rehydration under different light intensities. Well-hydrated (control) shade plants had lower and slower electrolyte leakage compared to control sun plants as revealed by lower values of phase amplitudes, lower rate constants and ion concentration. In well-hydrated and moderately dehydrated plants (50% relative water content, RWC) ion efflux was mainly due to leakage from apoplast. The electrolyte leakage sharply increased in severely desiccated leaves (8% RWC) from both sun and shade plants mainly due to ion efflux from symplast. After 1 day of rehydration the electrolyte leakage was close to control values, indicating fast recovery of plants. We suggest that the enhanced leakage in air-dried leaves should not be considered as damage but rather as a survival mechanism based on a reversible modification in the structure of cell wall, plasma membrane and alterations in vacuolar system of the cells. However, further studies should be conducted to investigate the changes in cell wall/plasma membrane to support this conclusion. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Soil desiccation cracks as a suction–contraction process

    KAUST Repository

    Cordero, J. A.; Useche, G.; Prat, P. C.; Ledesma, A.; Santamarina, Carlos

    2017-01-01

    Recent macro- and particle-scale advances in unsaturated soil behaviour have led to an enhanced understanding of the effects of moisture changes on soil response. This research examines desiccation cracks as a suction–contraction-coupled process using sand–clay mixtures. Suction–moisture measurements highlight the role of fines on suction potential even at low fines content; on the other hand, oedometer tests exhibit a marked transition from sand-controlled to clay-controlled compressibility. Time-lapse photography of desiccation tests in flat trays show the onset of crack initiation and the subsequent evolution in horizontal strains; concurrent gravimetric water content measurements relate crack nucleation to suction at air entry. Suction and compressibility increase with the soil-specific surface and have a compounded effect on desiccation-driven lateral contraction. Both layer thickness and its lateral extent affect the development of desiccation cracks. The recently proposed revised soil classification system properly anticipates the transitions in compressibility and capillary phenomena observed in this study (between 15 and 35% fines content).

  12. Desiccant wheels for air humidification: An experimental and numerical analysis

    International Nuclear Information System (INIS)

    De Antonellis, Stefano; Intini, Manuel; Joppolo, Cesare Maria; Molinaroli, Luca; Romano, Francesco

    2015-01-01

    Highlights: • The use of desiccant wheel to humidify an air stream is investigated. • Air humidification is obtained by extracting water vapour from outdoor air. • Experimental tests in winter humidification conditions are performed. • The design of the proposed humidification system is numerically analyzed. • Effects of boundary conditions on humidification capacity are investigated. - Abstract: In this work the use of a desiccant wheel for air humidification is investigated through a numerical and experimental approach. In the proposed humidification system, water vapour is adsorbed from outdoor environment and it is released directly to the air stream supplied to the building. Such a system can be an interesting alternative to steam humidifiers in hospitals or, more generally, in applications where air contamination is a critical issue and therefore adiabatic humidifiers are not allowed. Performance of the proposed system is deeply investigated and optimal values of desiccant wheel configuration parameters are discussed. It is shown that in the investigated conditions, which are representative of Southern Europe winter climate, the system can properly match the latent load of the building. Finally, power consumption referred to the primary source of the proposed humidification system is compared to the one of steam humidifiers. The present analysis is carried out through experimental tests of a desiccant wheel in winter humidification conditions and through a phenomenological model of the device, based on heat and mass transfer equations.

  13. Survival of methanogens during desiccation: implications for life on Mars.

    Science.gov (United States)

    Kendrick, Michael G; Kral, Timothy A

    2006-08-01

    The relatively recent discoveries that liquid water likely existed on the surface of past Mars and that methane currently exists in the martian atmosphere have fueled the possibility of extant or extinct life on Mars. One possible explanation for the existence of the methane would be the presence of methanogens in the subsurface. Methanogens are microorganisms in the domain Archaea that can metabolize molecular hydrogen as an energy source and carbon dioxide as a carbon source and produce methane. One factor of importance is the arid nature of Mars, at least at the surface. If one is to assume that life exists below the surface, then based on the only example of life that we know, liquid water must be present. Realistically, however, that liquid water may be seasonal just as it is at some locations on our home planet. Here we report on research designed to determine how long certain species of methanogens can survive desiccation on a Mars soil simulant, JSC Mars-1. Methanogenic cells were grown on JSC Mars-1, transferred to a desiccator within a Coy anaerobic environmental chamber, and maintained there for varying time periods. Following removal from the desiccator and rehydration, gas chromatographic measurements of methane indicated survival for varying time periods. Methanosarcina barkeri survived desiccation for 10 days, while Methanobacterium formicicum and Methanothermobacter wolfeii were able to survive for 25 days.

  14. Desiccation-induced changes in viability, lipid peroxidation and ...

    African Journals Online (AJOL)

    user

    2012-05-31

    May 31, 2012 ... Key words: Intermediate seeds, desiccation, reactive oxygen species, antioxidant enzymes, lipid peroxidation,. Mimusops ... between ROS production and cell defenses determines ... needed for reduction of dehydroascorbate, which is .... was calculated using the extinction coefficient (6.2 mM-1cm-1) for.

  15. Soil desiccation cracks as a suction–contraction process

    KAUST Repository

    Cordero, J. A.

    2017-10-05

    Recent macro- and particle-scale advances in unsaturated soil behaviour have led to an enhanced understanding of the effects of moisture changes on soil response. This research examines desiccation cracks as a suction–contraction-coupled process using sand–clay mixtures. Suction–moisture measurements highlight the role of fines on suction potential even at low fines content; on the other hand, oedometer tests exhibit a marked transition from sand-controlled to clay-controlled compressibility. Time-lapse photography of desiccation tests in flat trays show the onset of crack initiation and the subsequent evolution in horizontal strains; concurrent gravimetric water content measurements relate crack nucleation to suction at air entry. Suction and compressibility increase with the soil-specific surface and have a compounded effect on desiccation-driven lateral contraction. Both layer thickness and its lateral extent affect the development of desiccation cracks. The recently proposed revised soil classification system properly anticipates the transitions in compressibility and capillary phenomena observed in this study (between 15 and 35% fines content).

  16. The effect of Piriformospora indica inoculation on salt and drought stress tolerance in Stevia rebaudiana under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Fahimeh Seraj

    2016-09-01

    Full Text Available In order to investigate the effect of Piriformospora indica under salt and drought stresses on some vegetative characteristics and physiological parameters of stevia (Stevia rebaudiana Bertoni medicinal plant, an experiment was conducted in factorial arrangement based on completely randomized design with three replicates at Genetics and Agricultural Biotechnology Institute in Sari Agricultural Sciences and Natural Resources University. Factors include three levels of osmatic potential (0, -5, and -10 bar and with three osmotic sources including NaCl (Na, Mannitol (M and NaCl+Mannitol (N+M and inoculation of mycorrhizae like fungi at two levels (non-inoculated and inoculation with fungi. The plantlets were treated for 30 days and then some morphological and physiological parameters were measured. Results of ANOVA showed that there was a significant interaction between osmatic source and levels with fungi inoculation for the most determined parameters. Inoculation of stevia plantlets with P. indica at osmatic level of -5 bar caused either by M or M+Na markedly improved dry weight of leaf (112 and 156%, respectively and aerial parts (49 and 144%, respectively as compared to the uninoculated control. Fungi inoculation positively improved vegetative parameters of stevia plant under most osmatic levels and sources. The most ameliorate effect, however, was observed where M as drought stress or M+Na were adjusted to -5 bar. Therefore, the results of this study represented a positive effect of P. indica inoculation in inproving osmotic tolerance of stevia medicinal plant.

  17. Simulation of potential standalone liquid desiccant cooling cycles

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2015-01-01

    LDCS (Liquid desiccant cooling systems), capable of achieving dehumidification and cooling with low-grade heat input, can be effectively used for treating fresh air in hot and humid regions. These can also be operated using non-concentrating solar collectors. The present study is concerned with the evaluation of various potential liquid desiccant cycles for tropical climatic conditions. Six potential standalone liquid desiccant cycles are identified and analyzed to select the best configuration for achieving thermal comfort. A computer simulation model is developed in EES (Equation Solver) software platform to evaluate the performance of all the cycles at various operating conditions. Aqueous solution of LiCl (lithium chloride) is used as desiccant. Mass and energy balance equations of all the components along with their effectiveness and LiCl property correlation equations are solved simultaneously for given ambient conditions. As the desiccant circuit is a closed loop, no assumptions are made about its concentration and temperature in the algorithm. Supply air conditions, cooling capacity, COP (capacity and coefficient of performance) and CR (circulation rate) per unit cooling capacity and hot water temperature requirement are used as a measure for analyzing the performance of the different cycles. The effect of hot water temperature on the performance of the cycles is evaluated at ARI conditions. The performances of the cycles are also evaluated for cities selected from each of the climatic zone of India that represent typical tropical climates. Although all the cycles are feasible at ARI and hot and dry conditions, only two cycles can achieve the selected indoor conditions in the peak humid conditions. The results would be useful for selecting suitable liquid desiccant cycle for a given climate. - Highlights: • Six potential standalone liquid desiccant cycles identified and analyzed to select best configuration. • A computer simulation model is developed in

  18. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition

    Directory of Open Access Journals (Sweden)

    ASISH KUMAR PARIDA

    2016-03-01

    Full Text Available Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl. There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl. The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM, whereas it increased significantly at higher salinity (500 and 750 mM NaCl. The proline content increased in the NaCl treated seedlings as

  19. Growth under visible light increases conidia and mucilage production and tolerance to UV-B radiation in the plant pathogenic fungus Colletotrichum acutatum.

    Science.gov (United States)

    de Menezes, Henrique D; Massola, Nelson S; Flint, Stephan D; Silva, Geraldo J; Bachmann, Luciano; Rangel, Drauzio E N; Braga, Gilberto U L

    2015-01-01

    Light conditions can influence fungal development. Some spectral wavebands can induce conidial production, whereas others can kill the conidia, reducing the population size and limiting dispersal. The plant pathogenic fungus Colletotrichum acutatum causes anthracnose in several crops. During the asexual stage on the host plant, Colletototrichum produces acervuli with abundant mucilage-embedded conidia. These conidia are responsible for fungal dispersal and host infection. This study examined the effect of visible light during C. acutatum growth on the production of conidia and mucilage and also on the UV tolerance of these conidia. Conidial tolerance to an environmentally realistic UV irradiance was determined both in conidia surrounded by mucilage on sporulating colonies and in conidial suspension. Exposures to visible light during fungal growth increased production of conidia and mucilage as well as conidial tolerance to UV. Colonies exposed to light produced 1.7 times more conidia than colonies grown in continuous darkness. The UV tolerances of conidia produced under light were at least two times higher than conidia produced in the dark. Conidia embedded in the mucilage on sporulating colonies were more tolerant of UV than conidia in suspension that were washed free of mucilage. Conidial tolerance to UV radiation varied among five selected isolates. © 2014 The American Society of Photobiology.

  20. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    A field test of desiccation is being conducted as an element of the deep vadose zone treatability test program. Desiccation technology relies on removal of water from a portion of the subsurface such that the resultant low moisture conditions inhibit downward movement of water and dissolved contaminants. Previously, a field test report (Truex et al. 2012a) was prepared describing the active desiccation portion of the test and initial post-desiccation monitoring data. Additional monitoring data have been collected at the field test site during the post-desiccation period and is reported herein along with interpretation with respect to desiccation performance. This is an interim report including about 2 years of post-desiccation monitoring data.

  1. Natural variation underlies alterations in NRAT1 expression and function that play a key role in rice aluminum tolerance

    Science.gov (United States)

    Aluminum (Al) toxicity is a major constraint for crop production on acid soils which comprise approximately 40% of arable land in the tropics and subtropics. Rice is the most Al tolerant cereal crop, and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natu...

  2. Flexibility-Rigidity Coordination of the Dense Exopolysaccharide Matrix in Terrestrial Cyanobacteria Acclimated to Periodic Desiccation.

    Science.gov (United States)

    Liu, Wen; Cui, Lijuan; Xu, Haiyan; Zhu, Zhaoxia; Gao, Xiang

    2017-11-15

    A dense exopolysaccharide (EPS) matrix is crucial for cyanobacterial survival in terrestrial xeric environments, in which cyanobacteria undergo frequent expansion and shrinkage processes during environmental desiccation-rehydration cycles. However, it is unclear how terrestrial cyanobacteria coordinate the structural dynamics of the EPS matrix upon expansion and shrinkage to avoid potential mechanical stress while benefiting from the matrix. In the present study, we sought to answer this question by investigating the gene expression, protein dynamics, enzymatic characteristics, and biological roles of WspA, an abundantly secreted protein, in the representative terrestrial cyanobacterium Nostoc flagelliforme The results demonstrated that WspA is a novel β-galactosidase that facilitates softening of the EPS matrix by breaking the polysaccharide backbone under substantial moisture or facilitates the thickening and relinkage of the broken matrix during the drying process, and thus these regulations are well correlated with moisture availability or desiccation-rehydration cycles. This coordination of flexibility and rigidity of the cyanobacterial extracellular matrix may contribute to a favorable balance of cell growth and stress resistance in xeric environments. IMPORTANCE How the exopolysaccharide matrix is dynamically coordinated by exoproteins to cope with frequent expansion and shrinkage processes in terrestrial colonial cyanobacteria remains unclear. Here we elucidated the biochemical identity and biological roles of a dominant exoprotein in these regulation processes. Our study thus gained insight into this regulative mechanism in cyanobacteria to combat periodic desiccation. In addition, the filamentous drought-adapted cyanobacterium Nostoc flagelliforme serves as an ideal model for us to explore this issue in this study. Copyright © 2017 American Society for Microbiology.

  3. The ins and outs of water dynamics in cold tolerant soil invertebrates.

    Science.gov (United States)

    Holmstrup, Martin

    2014-10-01

    Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis Cultivars Differing in Chilling Tolerance under Cold Stress.

    Directory of Open Access Journals (Sweden)

    Huaqiang Tan

    Full Text Available Cowpea (V. unguiculata L. Walp. is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars-"Dubai bean" and "Ningjiang-3", which are tolerant and sensitive to chilling, respectively-were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18% had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic

  5. Deep Vadose Zone Treatability Test for the Hanford Central Plateau. Interim Post-Desiccation Monitoring Results, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    A field test of desiccation is being conducted as an element of the Deep Vadose Zone Treatability Test Program. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 4 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.

  6. ProP Is Required for the Survival of Desiccated Salmonella enterica Serovar Typhimurium Cells on a Stainless Steel Surface

    Science.gov (United States)

    Finn, Sarah; Händler, Kristian; Condell, Orla; Colgan, Aoife; Cooney, Shane; McClure, Peter; Amézquita, Aléjandro; Hinton, Jay C. D.

    2013-01-01

    Consumers trust commercial food production to be safe, and it is important to strive to improve food safety at every level. Several outbreaks of food-borne disease have been caused by Salmonella strains associated with dried food. Currently we do not know the mechanisms used by Salmonella enterica serovar Typhimurium to survive in desiccated environments. The aim of this study was to discover the responses of S. Typhimurium ST4/74 at the transcriptional level to desiccation on a stainless steel surface and to subsequent rehydration. Bacterial cells were dried onto the same steel surfaces used during the production of dry foods, and RNA was recovered for transcriptomic analysis. Subsequently, dried cells were rehydrated and were again used for transcriptomic analysis. A total of 266 genes were differentially expressed under desiccation stress compared with a static broth culture. The osmoprotectant transporters proP, proU, and osmU (STM1491 to STM1494) were highly upregulated by drying. Deletion of any one of these transport systems resulted in a reduction in the long-term viability of S. Typhimurium on a stainless steel food contact surface. The proP gene was critical for survival; proP deletion mutants could not survive desiccation for long periods and were undetectable after 4 weeks. Following rehydration, 138 genes were differentially expressed, with upregulation observed for genes such as proP, proU, and the phosphate transport genes (pstACS). In time, this knowledge should prove valuable for understanding the underlying mechanisms involved in pathogen survival and should lead to improved methods for control to ensure the safety of intermediate- and low-moisture foods. PMID:23666329

  7. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan; Rö thig, Till; Voolstra, Christian R.; Ochsenkuhn, Michael A.; Lattemann, Sabine; Amy, Gary L.

    2014-01-01

    - specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess

  8. Experimental study of regenerative desiccant integrated solar dryer with and without reflective mirror

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, V. [Department of Mechanical Engineering, Sathyabama University, Chennai, 600 119 (India); Natarajan, E. [Institute for Energy Studies, College of Engineering, Anna University, Chennai, 600 025 (India)

    2007-06-15

    An indirect forced convection with desiccant integrated solar dryer has been built and tested. The main parts are: a flat plate solar air collector, a drying chamber, desiccant bed and a centrifugal blower. The system is operated in two modes, sunshine hours and off sunshine hours. During sun shine hours the hot air from the flat plate collector is forced to the drying chamber for drying the product and simultaneously the desiccant bed receives solar radiation directly and through the reflected mirror. In the off sunshine hours, the dryer is operated by circulating the air inside the drying chamber through the desiccant bed by a reversible fan. The dryer is used to dry 20 kg of green peas and pineapple slices. Drying experiments were conducted with and without the integration of desiccant unit. The effect of reflective mirror on the drying potential of desiccant unit was also investigated. With the inclusion of reflective mirror, the drying potential of the desiccant material is increased by 20% and the drying time is reduced. The drying efficiency of the system varies between 43% and 55% and the pick-up efficiency varies between 20% and 60%, respectively. Approximately in all the drying experiments 60% of moisture is removed by air heated using solar energy and the remainder by the desiccant. The inclusion of reflective mirror on the desiccant bed makes faster regeneration of the desiccant material. (author)

  9. Self-desiccation mechanism of high-performance concrete.

    Science.gov (United States)

    Yang, Quan-Bing; Zhang, Shu-Qing

    2004-12-01

    Investigations on the effects of W/C ratio and silica fume on the autogenous shrinkage and internal relative humidity of high performance concrete (HPC), and analysis of the self-desiccation mechanisms of HPC showed that the autogenous shrinkage and internal relative humidity of HPC increases and decreases with the reduction of W/C respectively; and that these phenomena were amplified by the addition of silica fume. Theoretical analyses indicated that the reduction of RH in HPC was not due to shortage of water, but due to the fact that the evaporable water in HPC was not evaporated freely. The reduction of internal relative humidity or the so-called self-desiccation of HPC was chiefly caused by the increase in mole concentration of soluble ions in HPC and the reduction of pore size or the increase in the fraction of micro-pore water in the total evaporable water (T(r)/T(te) ratio).

  10. Dry heat tolerance of the dry colony in Nostoc sp. HK-01 for useful usage in space agriculture

    Science.gov (United States)

    Kimura, Shunta; Tomita-Yokotani, Kaori; Yamashita, Masamichi; Sato, Seigo; Katoh, Hiroshi

    Space agriculture producing foods is important as one of approach for space habitation. Nostoc sp. HK-01 is one of terrestrial cyanobacterium having a high dry tolerance and it has several ability, photosynthesis, nitrogen fixation and usefulness as a food, it is thought that it can be used for space agriculture. Besides, a study on each tolerance predicted at the time of introduction to space agriculture is necessary. Therefore, as one of the tolerance that are intended to space environment, dry heat ( 100(°) C, 10 h ) tolerance of dry colony in Nostoc sp. HK-01 has been investigated, but the detail function of them has not yet been elucidated. We focused on the extracellular polysaccharides ( EPS ) having the various tolerance, desiccation, low temperature, NaCl, and heavy particle beam. We will consider the function and useful usage of this cyanobacterum in space agriculture after the consideration of the results of contribution of the possibility that EPS improves dry heat tolerance under a dry condition.

  11. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength.

    Science.gov (United States)

    Penella, Consuelo; Landi, Marco; Guidi, Lucia; Nebauer, Sergio G; Pellegrini, Elisa; San Bautista, Alberto; Remorini, Damiano; Nali, Cristina; López-Galarza, Salvador; Calatayud, Angeles

    2016-04-01

    The performance of a salt-tolerant pepper (Capsicum annuum L.) accession (A25) utilized as a rootstock was assessed in two experiments. In a first field experiment under natural salinity conditions, we observed a larger amount of marketable fruit (+75%) and lower Blossom-end Root incidence (-31%) in commercial pepper cultivar Adige (A) grafted onto A25 (A/A25) when compared with ungrafted plants. In order to understand this behavior a second greenhouse experiment was conducted to determine growth, mineral partitioning, gas exchange and chlorophyll a fluorescence parameters, antioxidant systems and proline content in A and A/A25 plants under salinity conditions (80 mM NaCl for 14 days). Salt stress induced significantly stunted growth of A plants (-40.6% of leaf dry weight) compared to the control conditions, while no alterations were observed in A/A25 at the end of the experiment. Accumulation of Na(+) and Cl(-) in leaves and roots was similar in either grafted or ungrafted plants. Despite the activation of protective mechanisms (increment of superoxide dismutase, catalase, ascorbate peroxidase activity and non-photochemical quenching), A plants showed severely reduced photosynthetic CO2 assimilation (-45.6% of AN390) and substantial buildup of malondialdehyde (MDA) by-product, suggesting the inability to counteract salt-triggered damage. In contrast, A/A25 plants, which had a constitutive enhanced root apparatus, were able to maintain the shoot and root growth under salinity conditions by supporting the maintained photosynthetic performance. No increases in catalase and ascorbate peroxidase activities were observed in response to salinity, and MDA levels increased only slightly; indicating that alleviation of oxidative stress did not occur in A/A25 plants. In these plants the increased proline levels could protect enzymatic stability from salt-triggered damage, preserving the photosynthetic performance. The results could indicate that salt stress was vanished by

  12. Chemical desiccation for early harvest in soybean cultivars

    Directory of Open Access Journals (Sweden)

    Tamara Pereira

    2015-08-01

    Full Text Available The use of desiccants is an alternative to anticipate the soybean harvest and keep the physiological quality of seed. The objective of this work was to assess the production performance and germination seeds in response to differents stages and desiccation chemicals products to early harvest of soybean cultivars. The experiment was conducted in Campos Novos, in two harvests, it was used a randomized complete block design disposed in split-split-plots. Two phenological stages of application (stage R7.1 and R7.3 were tested in the main plot. Five soybean cultivars (NA 5909 RG, CD 2585 RR, BMX Turbo RR, SYN 1059 RR and BENSO 1RR were evaluated in the subplots, and three desiccants ammonium glufosinate, paraquat, carfentrazone-ethyl in the 2011/12 season and one control (without the desiccant application were evaluated in the sub-subplots. In the 2012/13 season the carfentrazone-ethyl was substituted by diquat. It were evaluated the number of the days in the early harvest, yield, number of pods per plant, number of seeds per pod, mass of 100 seeds and germination percentage. The chemical dessecation with the use of glufosinate ammonium and paraquat applied in R7.1 stage allowed to anticipate the harvest in six days (2011/12 and provided maintenance germination percentage (90% and 92% compared to control (76%. The dessecation didn’t influence negatively on seeds productivity, but reduced the mass of seeds in the two growing seasons, and early harvest was dependent of pre-harvest rain absence, with this preamble. The use of dessicants is a possibility of early harvest in production field of soybean seeds.

  13. Commelina Species Control with Desiccants Alone and in Mixtures

    OpenAIRE

    FERREIRA, S.D.; SALVALAGGIO, A.C.; MORATELLI, G.; VASCONCELOS, E.D.; COSTA, N.V.

    2017-01-01

    ABSTRACT: The objective of this study was to evaluate the chemical control of the species C. benghalensis and C. erecta with desiccants alone and mixtures, as well as the spreading of spray droplets on the leaf surfaces. The experimental design was completely randomized in a 2 x 16 factorial arrangement with four replications, totaling 32 treatments and 128 plots. The first factor is related to the species C. benghalensis and C. erecta and the second factor corresponds to the treatments carfe...

  14. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  15. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress

    Directory of Open Access Journals (Sweden)

    Moumeni Ali

    2011-12-01

    Full Text Available Abstract Background Plant roots are important organs to uptake soil water and nutrients, perceiving and transducing of soil water deficit signals to shoot. The current knowledge of drought stress transcriptomes in rice are mostly relying on comparative studies of diverse genetic background under drought. A more reliable approach is to use near-isogenic lines (NILs with a common genetic background but contrasting levels of resistance to drought stress under initial exposure to water deficit. Here, we examined two pairs of NILs in IR64 background with contrasting drought tolerance. We obtained gene expression profile in roots of rice NILs under different levels of drought stress help to identify genes and mechanisms involved in drought stress. Results Global gene expression analysis showed that about 55% of genes differentially expressed in roots of rice in response to drought stress treatments. The number of differentially expressed genes (DEGs increased in NILs as the level of water deficits, increased from mild to severe condition, suggesting that more genes were affected by increasing drought stress. Gene onthology (GO test and biological pathway analysis indicated that activated genes in the drought tolerant NILs IR77298-14-1-2-B-10 and IR77298-5-6-B-18 were mostly involved in secondary metabolism, amino acid metabolism, response to stimulus, defence response, transcription and signal transduction, and down-regulated genes were involved in photosynthesis and cell wall growth. We also observed gibberellic acid (GA and auxin crosstalk modulating lateral root formation in the tolerant NILs. Conclusions Transcriptome analysis on two pairs of NILs with a common genetic background (~97% showed distinctive differences in gene expression profiles and could be effective to unravel genes involved in drought tolerance. In comparison with the moderately tolerant NIL IR77298-5-6-B-18 and other susceptible NILs, the tolerant NIL IR77298-14-1-2-B-10 showed

  16. Triiodothyronine and thyroxine content of desiccated thyroid tablets.

    Science.gov (United States)

    Rees-Jones, R W; Larsen, P R

    1977-11-01

    Triiodothyronine (T3) and thyroxine (T4) were measured by radioimmunoassay in Pronase hydrolysates of four lots each of 1- and 2-grain tablets of desiccated thyroid (Thyroid, Armour) and thyroglobulin (Proloid, Warner-Chilcott). The methodology used was verified by studies of tablets containing known quantities of T4 and T3. One grain of desiccated thyroid contained 12 +/- 1 and 64 +/- 3 microgram (mean +/- SD) of T3 and T4 per tablet, respectively (T4/T3 molar ratio, 4.3). A 1-grain tablet of thyroglobulin contained 16 +/- 2 and 55 +/- 5 microgram of T3 and T4, respectively with a T4/T3 ratio of 2.9. Two-grain tablets generally contained twice the quantity of T3 and T4 in the 1-grain preparations. The variation in T3 and T4 content between the four lots of each tablet strength for each product was 10% or less. These estimates of T3 and T4 content are 1.5- to 2-fold greater than those previously published. This difference probably results from the more sophisticated methodology now available which does not require chromatographic separation of T3 and T4 or iodometry. Using calculations based on published estimates of T4 and T3 absorption and of the T3/T4 potency ratio, it would appear that the T3 content of desiccated thyroid and thyroglobulin provide approximately 39% and 51%, respectively, of the thyromimetic activity of these two medications.

  17. Preparation of desiccation-resistant aquatic-living Nostoc flagelliforme (Cyanophyceae) for potential ecological application

    Science.gov (United States)

    Gao, Xiang; Yang, Yi-Wen; Cui, Li-Juan; Zhou, De-Bao; Qiu, Bao-Sheng

    2015-01-01

    Nostoc flagelliforme is a terrestrial edible cyanobacterium that grows in arid and semi-arid steppes. The continued over-exploitation in the last century has led to a sharp decline of this resource and a severe deterioration of the steppe ecology. Liquid-cultured N. flagelliforme serves as promising algal ‘seeds’ for resource restoration. In this study, macroscopic (or visible) aquatic-living colonies (MaACs) of N. flagelliforme were developed under weak light and high nitrogen conditions. In a 24 day shake-flask culture, MaACs were propagated by about 4.5-fold in biomass without loss of their macro-morphology; at the same time, the addition of weak UV-B treatment resulted in slightly bigger MaACs. Polyvinylpyrrolidone (PVP) k30, a water-soluble polymer, was used to generate the coating around MaACs, and after full desiccation, the coated MaACs could recover their photosynthetic physiological activity when rehydrated, with 4% PVP k30 for coating being most effective. In contrast, PVP k30-coated microscopic aquatic-living colonies of N. flagelliforme and non-coated MaACs showed no resistance to full desiccation. The macroscopic morphology or structure of MaACs should be crucial for the formation of protection by PVP k30 coating. PVP k30-coated MaACs were more approaching to actual application for resource restoration. PMID:25847617

  18. Experimental investigation of a novel configuration of desiccant based evaporative air conditioning system

    International Nuclear Information System (INIS)

    Uçkan, İrfan; Yılmaz, Tuncay; Hürdoğan, Ertaç; Büyükalaca, Orhan

    2013-01-01

    Highlights: ► A novel desiccant based evaporative cooling system is developed and tested. ► Cooling capacity, COP and energy consumption of the system are evaluated. ► Indoor air conditions are in the range of thermal comfort zone and expanded comfort zone. ► Designing of the system have considerable effect on the energy consumption. - Abstract: A novel configuration of desiccant based evaporative cooling system for air conditioning application is developed and tested. At the beginning of the design stage of the system, an analysis is carried out in order to maximize the performance of the system. It is found based on configuration that outdoor air must be used for regeneration to increase performance of the system and so three air channels are used. Experiments are carried out to investigate the total performance of the system and performance of the components used during summer season in a hot and humid climate. Effectiveness values for both heat exchangers and evaporative coolers are calculated through this work. In addition to the cooling capacity, coefficient of performance (COP) and energy consumption of the system are also evaluated. Results show that the effectiveness for the heat exchangers and evaporative coolers are very high under different outdoor conditions. It is also shown from the results that indoor air conditions are in the range of thermal comfort zone defined by ASHRAE and expanded comfort zone for evaporative air conditioning applications.

  19. Correlation Coefficient, Path Analysis and Drought Tolerance Indices for Different Wheat Cultivars under Deficit Irrigation Conditions of Isfahan Region

    Directory of Open Access Journals (Sweden)

    H. R Salemi

    2017-06-01

    Full Text Available Introduction Water crisis as a main factor of agronomy limitation exists in all over the arid and semiarid regions such as Isfahan province which is located in the central part of the Zayandehrud River Basin. This study aimed to use path analysis and indices of drought to evaluate the correlation coefficients between main physiological parameter (grain yield with yield components and water use efficiency of winter wheat under three water conditions. Materials and Methods The experiment was carried out in Kaboutar Abad Agricultural Research Station, Isfahan in the central region of Iran (32º 31’N, 51º 51’E is located at the altitude of 1545 m above the sea level with a split plot in a randomized complete block design (RCBD with three replications in three cropping seasons on irrigated wheat cultivars. The treatments were included three levels of irrigation (60%FI, 80%FI and full irrigation as main plots and six wheat cultivars (Pishtaz, Shiraz, Sepahan, Marvdasht, Mahdavi and BC-Roshan as sub plots. Grain yield, straw and stubble, biological yield, harvest index (H.I., productivity degree (P.D., water use efficiency (WUE, plant height, grain number per spike, spike number per m2 and TGW were determined. Winter wheat cultivars were sown at the beginning of November and harvested in mid-June of the following year. The seed rate was 400 seed m-2, with a row spacing of 0.75 m. The first irrigation was by furrow method, implemented one day after seeding. Seeds emergence was observed about 5 days later. The N application was 250, 200 and 300 kgha-1 of N (urea at 46% N for each year divided into installments (10 days before planting, 30 days after planting, and every 30 days until the last irrigation. The P2O5 (phosphate ammonium and super-phosphate triple application to soil was 200, 100 and 50 kg ha-1 during the 3 years, respectively. At this stage, cultivation was done to mix the fertilizers with top soil manually. Pests and weeds were

  20. Regulation of Nicotine Tolerance by Quorum Sensing and High Efficiency of Quorum Quenching Under Nicotine Stress in Pseudomonas aeruginosa PAO1

    Directory of Open Access Journals (Sweden)

    Huiming Tang

    2018-03-01

    Full Text Available Quorum sensing (QS regulates the behavior of bacterial populations and promotes their adaptation and survival under stress. As QS is responsible for the virulence of vast majority of bacteria, quorum quenching (QQ, the interruption of QS, has become an attractive therapeutic strategy. However, the role of QS in stress tolerance and the efficiency of QQ under stress in bacteria are seldom explored. In this study, we demonstrated that QS-regulated catalase (CAT expression and biofilm formation help Pseudomonas aeruginosa PAO1 resist nicotine stress. CAT activity and biofilm formation in wild type (WT and ΔrhlR strains are significantly higher than those in the ΔlasR strain. Supplementation of ΔlasI strain with 3OC12-HSL showed similar CAT activity and biofilm formation as those of the WT strain. LasIR circuit rather than RhlIR circuit is vital to nicotine tolerance. Acylase I significantly decreased the production of virulence factors, namely elastase, pyocyanin, and pyoverdine under nicotine stress compared to the levels observed in the absence of nicotine stress. Thus, QQ is more efficient under stress. To our knowledge, this is the first study to report that QS contributes to nicotine tolerance in P. aeruginosa. This work facilitates a better application of QQ for the treatment of bacterial infections, especially under stress.

  1. Regulation of Nicotine Tolerance by Quorum Sensing and High Efficiency of Quorum Quenching Under Nicotine Stress in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Tang, Huiming; Zhang, Yunyun; Ma, Yifan; Tang, Mengmeng; Shen, Dongsheng; Wang, Meizhen

    2018-01-01

    Quorum sensing (QS) regulates the behavior of bacterial populations and promotes their adaptation and survival under stress. As QS is responsible for the virulence of vast majority of bacteria, quorum quenching (QQ), the interruption of QS, has become an attractive therapeutic strategy. However, the role of QS in stress tolerance and the efficiency of QQ under stress in bacteria are seldom explored. In this study, we demonstrated that QS-regulated catalase (CAT) expression and biofilm formation help Pseudomonas aeruginosa PAO1 resist nicotine stress. CAT activity and biofilm formation in wild type (WT) and Δ rhlR strains are significantly higher than those in the Δ lasR strain. Supplementation of Δ lasI strain with 3OC12-HSL showed similar CAT activity and biofilm formation as those of the WT strain. LasIR circuit rather than RhlIR circuit is vital to nicotine tolerance. Acylase I significantly decreased the production of virulence factors, namely elastase, pyocyanin, and pyoverdine under nicotine stress compared to the levels observed in the absence of nicotine stress. Thus, QQ is more efficient under stress. To our knowledge, this is the first study to report that QS contributes to nicotine tolerance in P. aeruginosa . This work facilitates a better application of QQ for the treatment of bacterial infections, especially under stress.

  2. Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene.

    Science.gov (United States)

    Amara, Imen; Capellades, Montserrat; Ludevid, M Dolors; Pagès, Montserrat; Goday, Adela

    2013-06-15

    Late Embryogenesis Abundant (LEA) proteins participate in plant stress responses and contribute to the acquisition of desiccation tolerance. In this report Rab28 LEA gene has been over-expressed in maize plants under a constitutive maize promoter. The expression of Rab28 transcripts led to the accumulation and stability of Rab28 protein in the transgenic plants. Native Rab28 protein is localized to nucleoli in wild type maize embryo cells; here we find by whole-mount immunocytochemistry that in root cells of Rab28 transgenic and wild-type plants the protein is also associated to nucleolar structures. Transgenic plants were tested for stress tolerance and resulted in sustained growth under polyethyleneglycol (PEG)-mediated dehydration compared to wild-type controls. Under osmotic stress transgenic seedlings showed increased leaf and root areas, higher relative water content (RWC), reduced chlorophyll loss and lower Malondialdehyde (MDA) production in relation to wild-type plants. Moreover, transgenic seeds exhibited higher germination rates than wild-type seeds under water deficit. Overall, our results highlight the presence of transgenic Rab28 protein in nucleolar structures and point to the potential of group 5 LEA Rab28 gene as candidate to enhance stress tolerance in maize plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Effect of operating conditions on performance of silica gel-water air-fluidised desiccant cooler

    Directory of Open Access Journals (Sweden)

    Rogala Zbigniew

    2017-01-01

    Full Text Available Fluidised desiccant cooling is reported in the literature as an efficient way to provide cooling for air-conditioning purposes. The performance of this technology can be described by electric and thermal Coefficients of Performance (COP and Specific Cooling Power (SCP. In this paper comprehensive theoretical study was carried out in order to assess the effect of operating conditions such as: superficial air velocity, desiccant particle diameter, bed switching time and desiccant filling height on the performance of fluidised desiccant cooler (FDC. It was concluded that FDC should be filled with as small as possible desiccant particles featuring diameters and should not be operated with shorter switching times than optimum. Moreover in order to efficiently run such systems superficial air velocities during adsorption and desorption should be similar. At last substantial effect of desiccant filling height on performance of FDC was presented.

  4. Effect of UV-B Radiation and Desiccation Stress on Photoprotective Compounds Accumulation in Marine Leptolyngbya sp.

    Science.gov (United States)

    Joshi, Devika; Mohandass, C; Dhale, Mohan

    2018-01-01

    Increased awareness regarding the harmful effects of ultraviolet (UV)-B radiation has led to the search for new sources of natural UV-B protecting compounds. Mycosporine-like amino acids are one of such promising compounds found in several organisms. Cyanobacteria are ideal organisms for isolation of these compounds due to their compatibility and adaptability to thrive under harsh environmental conditions. In the following investigation, we report the production of shinorine in Leptolyngbya sp. isolated from the intertidal region. Based on the spectral characteristics and liquid chromatography-mass spectrometry analysis, the UV-absorbing compound was identified as shinorine. To the best of our knowledge, this is the first report on the occurrence of shinorine in Leptolyngbya sp. We also investigated the effect of artificial UV-B radiation and periodic desiccation on chlorophyll-a, total carotenoids, and mycosporine-like amino acids (MAAs) production. The UV-B radiation had a negative effect on growth and chlorophyll concentration, whereas it showed an inductive effect on the production of total carotenoids and MAAs. Desiccation along with UV-B radiation led to an increase in the concentration of photoprotective compounds. These results indicate that carotenoids and MAAs thus facilitate cyanobacteria to avoid and protect themselves from the deleterious effects of UV-B and desiccation.

  5. The effects of regeneration temperature of the desiccant wheel on the performance of desiccant cooling cycles for greenhouse thermally insulated

    Science.gov (United States)

    Rjibi, Amel; Kooli, Sami; Guizani, Amenaallah

    2018-05-01

    The use of solar energy for cooling greenhouses in the hot period in Mediterranean climate is an important issue. Desiccant evaporative cooling (DEC) system is advantageous because it uses a low grade thermal energy and preserves the merits to be friendly environmentally technology. In this paper, a numerical investigation was carried out on a desiccant cooling system powered by air solar collectors coupled to an insulated greenhouse. The influence of the regeneration temperature on the air stream properties at every system component state point was studied. The performance of the desiccant cooling system was evaluated in terms of thermal and electric coefficient of performance. Results show that the best performance of the system (COPel = 14 and COPth = 0.94) was obtained for a 60 °C regeneration temperature and a supply flow rate ratio of 0.2. An economic analysis shows that the use of the DEC system for greenhouse cooling is attractive and profitable since the payback period is 1 years. The use of the proposed system allows saving 9396 kWh/year of electric energy compared to conventional system.

  6. Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner

    International Nuclear Information System (INIS)

    Mohan, B. Shaji; Tiwari, Shaligram; Maiya, M.P.

    2015-01-01

    A coupled desiccant column is integrated with a conventional room air conditioner (AC) to enhance dehumidification of the room air. One desiccant column (absorber) is placed after the evaporator the other (regenerator) after the condenser of the AC unit. Such a novel liquid desiccant vapour compression hybrid air conditioning system has been fabricated and tested in a balanced ambient room type calorimeter for very low flow rates of liquid desiccant (lithium bromide solution). The moisture from the cold supply air is transferred to the hot condenser air by the desiccant flowing in the loop, thereby complimenting the dehumidification of the room air at the evaporator. The supply air is also sensibly heated during the dehumidification process by liquid desiccant in the absorber, which together enables the hybrid system to maintain low humidity in the room. Whereas the liquid desiccant is regenerated by the condenser waste heat, the entire cooling is derived only by the AC unit. The experimental results show that an increase of room temperature reduces both dehumidification of process air and regeneration of liquid desiccant, whereas an increase of room specific humidity enhances both these for the flow rate of the liquid desiccant in the range of 0.2–1.6% of the air flow rate through the absorber. - Highlights: • A liquid desiccant vapor compression hybrid system is fabricated and tested. • The liquid desiccant reduces latent load but equally increases sensible load. • Hybrid system performance is studied for varying room temperature and humidity. • Higher room temperature lowers air dehumidification and desiccant regeneration. • Increase of room specific humidity enhances dehumidification and also regeneration

  7. Dietary lecithin potentiates thermal tolerance and cellular stress protection of milk fish (Chanos Chanos) reared under low dose endosulfan-induced stress.

    Science.gov (United States)

    Kumar, Neeraj; Minhas, P S; Ambasankar, K; Krishnani, K K; Rana, R S

    2014-12-01

    Endosulfan is an organochlorine pesticide commonly found in aquatic environments that has been found to reduce thermal tolerance of fish. Lipotropes such as the food additive, Lecithin has been shown to improve thermal tolerance in fish species. This study was conducted to evaluate the role of lipotropes (lecithin) for enhancing the thermal tolerance of Chanos chanos reared under sublethal low dose endosulfan-induced stress. Two hundred and twenty-five fish were distributed randomly into five treatments, each with three replicates. Four isocaloric and isonitrogenous diets were prepared with graded levels of lecithin: normal water and fed with control diet (En0/L0), endosulfan-treated water and fed with control diet (En/L0), endosulfan-treated water and fed with 1% (En/L1%), 1.5% (En/L 1.5%) and 2% (En/L 2%) lecithin supplemented feed. The endosulfan in treated water was maintained at the level of 1/40th of LC50 (0.52ppb). At the end of the five weeks, critical temperature maxima (CTmax), lethal temperature maxima (LTmax), critical temperature minima (CTmin) and lethal temperature minima (LTmin) were Determined. There was a significant (Plecithin on temperature tolerance (CTmax, LTmax, CTmin and LTmin) of the groups fed with 1, 1.5 and 2% lecithin-supplemented diet compared to control and endosulfan-exposed groups. Positive correlations were observed between CT max and LTmax (R(2)=0.934) as well as between CTmin and LTmin (R(2)=0.9313). At the end of the thermal tolerance study, endosulfan-induced changes in cellular stress enzymes (Catalase, SOD and GST in liver and gill and neurotansmitter enzyme, brain AChE) were significantly (plecithin. We herein report the role of lecithin in enhancing the thermal tolerance and protection against cellular stress in fish exposed to an organochlorine pesticide. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli Narasimha, Murthy Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  9. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.

    Science.gov (United States)

    Mohammadi, Payam Pour; Moieni, Ahmad; Komatsu, Setsuko

    2012-11-01

    Rapeseed (Brassica napus L.), which is the third leading source of vegetable oil, is sensitive to drought stress during the early vegetative growth stage. To investigate the initial response of rapeseed to drought stress, changes in the protein expression profiles of drought-sensitive (RGS-003) and drought-tolerant lines (SLM-003), and their F1 hybrid, were analyzed using a proteomics approach. Seven-day-old rapeseed seedlings were treated with drought stress by restricting water for 7 days, and proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. In the sensitive rapeseed line, 35 protein spots were differentially expressed under drought stress, and proteins related to metabolism, energy, disease/defense, and transport were decreased. In the tolerant line, 32 protein spots were differentially expressed under drought stress, and proteins involved in metabolism, disease/defense, and transport were increased, while energy-related proteins were decreased. Six protein spots in F1 hybrid were common among expressed proteins in the drought-sensitive and -tolerant lines. Notably, tubulin beta-2 and heat shock protein 70 were decreased in the drought-sensitive line and hybrid F1 plants, while jasmonate-inducible protein and 20S proteasome subunit PAF1 were increased in the F1 hybrids and drought-tolerant line. These results indicate that (1) V-type H(+) ATPase, plasma-membrane associated cation-binding protein, HSP 90, and elongation factor EF-2 have a role in the drought tolerance of rapeseed; (2) The decreased levels of heat shock protein 70 and tubulin beta-2 in the drought-sensitive and hybrid F1 lines might explain the reduced growth of these lines in drought conditions.

  10. Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishida, Yoko; Nguyen, Trinh T M; Kitajima, Sakihito; Izawa, Shingo

    2016-01-01

    Vanillin is a potent fermentation inhibitor derived from the lignocellulosic biomass in biofuel production, and high concentrations of vanillin result in the pronounced repression of bulk translation in Saccharomyces cerevisiae. Studies on genes that are efficiently translated even in the presence of high concentrations of vanillin will be useful for improving yeast vanillin tolerance and fermentation efficiency. The BDH1 and BDH2 genes encode putative medium-chain alcohol dehydrogenase/reductases and their amino acid sequences are very similar to each other. Although BDH2 was previously suggested to be involved in vanillin tolerance, it has yet to be clarified whether Bdh1/Bdh2 actually contribute to vanillin tolerance and reductions in vanillin. Therefore, we herein investigated the effects of Bdh1 and Bdh2 on vanillin tolerance. bdh2Δ cells exhibited hypersensitivity to vanillin and slower reductions in vanillin than wild-type cells and bdh1Δ cells. Additionally, the overexpression of the BDH2 gene improved yeast tolerance to vanillin more efficiently than that of BDH1. Only BDH2 mRNA was efficiently translated under severe vanillin stress, however, both BDH genes were transcriptionally up-regulated. These results reveal the importance of Bdh2 in vanillin detoxification and confirm the preferential translation of the BDH2 gene in the presence of high concentrations of vanillin. The BDH2 promoter also enabled the expression of non-native genes under severe vanillin stress and furfural stress, suggesting its availability to improve of the efficiency of bioethanol production through modifications in gene expression in the presence of fermentation inhibitors.

  11. High salinity tolerance of the Red Sea coral Fungia granulosa under desalination concentrate discharge conditions: an in situ photophysiology experiment

    KAUST Repository

    Van Der Merwe, Riaan

    2014-11-10

    Seawater reverse osmosis desalination concentrate may have chronic and/or acute impacts on the marine ecosystems in the near-field area of the discharge. Environmental impact of the desalination plant discharge is supposedly site- and volumetric- specific, and also depends on the salinity tolerance of the organisms inhabiting the water column in and around a discharge environment. Scientific studies that aim to understand possible impacts of elevated salinity levels are important to assess detrimental effects to organisms, especially for species with no mechanism of osmoregulation, e.g., presumably corals. Previous studies on corals indicate sensitivity toward hypo- and hyper-saline environments with small changes in salinity already affecting coral physiology. In order to evaluate sensitivity of Red Sea corals to increased salinity levels, we conducted a long-term (29 days) in situ salinity tolerance transect study at an offshore seawater reverse osmosis (SWRO) discharge on the coral Fungia granulosa. While we measured a pronounced increase in salinity and temperature at the direct outlet of the discharge structure, effects were indistinguishable from the surrounding environment at a distance of 5 m. Interestingly, corals were not affected by varying salinity levels as indicated by measurements of the photosynthetic efficiency. Similarly, cultured coral symbionts of the genus Symbiodinium displayed remarkable tolerance levels in regard to hypo- and hypersaline treatments. Our data suggest that increased salinity and temperature levels from discharge outlets wear off quickly in the surrounding environment. Furthermore, F. granulosa seem to tolerate levels of salinity that are distinctively higher than reported for other corals previously. It remains to be determined whether Red Sea corals in general display increased salinity tolerance, and whether this is related to prevailing levels of high(er) salinity in the Red Sea in comparison to other oceans.

  12. Stable symbiotic nitrogen fixation under water-deficit field conditions by a stress-tolerant alfalfa microsymbiont and its complete genome sequence.

    Science.gov (United States)

    Jozefkowicz, Cintia; Brambilla, Silvina; Frare, Romina; Stritzler, Margarita; Piccinetti, Carlos; Puente, Mariana; Berini, Carolina Andrea; Pérez, Pedro Reyes; Soto, Gabriela; Ayub, Nicolás

    2017-12-10

    We here characterized the stress-tolerant alfalfa microsymbiont Sinorhizobium meliloti B401. B401-treated plants showed high nitrogen fixation rates under humid and semiarid environments. The production of glycine betaine in isolated bacteroids positively correlated with low precipitation levels, suggesting that this compound acts as a critical osmoprotectant under field conditions. Genome analysis revealed that strain B401 contains alternative pathways for the biosynthesis and uptake of glycine betaine and its precursors. Such genomic information will offer substantial insight into the environmental physiology of this biotechnologically valuable nitrogen-fixing bacterium. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Tolerance and nutrients consumption of Chlorella vulgaris growing in mineral medium and real wastewater under laboratory conditions

    Directory of Open Access Journals (Sweden)

    María de Lourdes Franco Martínez

    2017-02-01

    Full Text Available Microalgae have the potential of consuming high amounts of nitrogen and phosphorus from wastewater; thus, avoiding the risk of eutrophication of the water bodies. Nevertheless, ammonium can usually inhibit the growth of microalgae. Tolerance to ammonium is specific of each strain; so, the development of tertiary wastewater treatment proposals, employing microalgae, has as a first step the study of its tolerance to N-NH3. In this work, the tolerance of Chlorella vulgaris to N-NH3, using mineral medium, was studied. Afterward, C. vulgaris was used to remove nitrogen and phosphorus from a real wastewater. The maximal biomass concentration was reached at 66 ppm N-NH3 (0.49 gL-1 with the complete depletion of the ammonium and a phosphorus consumption of 2 mgPi L-1d-1 in all the experiments. When C. vulgaris was grown in real wastewater, the final biomass concentration was 0.267 g L-1 and the nutrients (N and P were totally consumed after 3 days. According with these results, this strain of Chlorella has the potential for the removal of nitrogen and phosphorus from tertiary wastewater and the biomass produced in the process can be used for the production of high value products, such as pigments, proteins, carbohydrate or used for animal feed.

  14. Correlation Coefficient, Path Analysis and Drought Tolerance Indices for Wheat under Deficit Irrigation Conditions and Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    A. R Tavakoli

    2012-07-01

    Full Text Available In order to investigate the indices of drought tolerance, correlation coefficient and path analysis at deficit irrigation and nitrogen experiment, this experiment was conducted as split plot arranged in a randomized complete block design (RCBD with three replications during 2000-2003 for wheat at Maragheh agricultural research station of DARI. The treatments were included four levels of deficit irrigation (Rainfed, 100, 160 and 220mm of water use as main plots and five nitrogen rates (0, 30, 60, 90 and 120 kg.N.ha-1 as sub plots. Grain, straw and biological yield, harvest index, productivity degree, plant height, kernel number per spike, Spike number per square meter and TKW determined from the middle of each plot. There were positive significant correlations due to grain yield with all variables: harvest index (r = 0.969 , Productivity degree (r = 0.952 , straw yield (r = 0.904 , plant height (r = 0.904 , biological yield (r = 0.824 , Spike number per square meter (r = 0.817 , kernel number per spike (r = 0.773 and TKW (r = 0.612 respectively. Results of path analysis showed that increase in grain yield was due to increase spike number per square meter and kernel number per spike respectively. On based of indices of drought tolerance (Tolerance Index, Mean Productivity, Geometric Mean Productivity and Harmonic Mean, treatment of %66full irrigation combined with 90KgN.ha-1 was substantially increased water productivity.

  15. [Impact of area under the curve of oral glucose tolerance test on pregnant woman with gestational diabetes mellitus].

    Science.gov (United States)

    Zhang, Congyue; Su, Shiping; Liu, Chunhong; Zhang, Li; Yang, Huixia

    2015-09-01

    To investigate whether area under the curve (AUC) of oral glucose tolerance test (OGTT) could work as a predictor of outcomes of gestational diabetes mellitus (GDM) on condition that blood glucose is controlled. A total of 1 796 women who had a standard antenatal care in Peking University First Hospital and gave single live births from July 1, 2011 to December 31, 2 013 were included. They should be diagnosed of GDM by the diagnosis criteria of gestational diabetes published by the Ministry of Health of PRC and diabetes pre-pregnancy excluded. Data were analyzed with SPSS 17.0, grouping by AUC. (1) Women with higher AUC had a rising trend of age and a downward trend of gestational weight gain, however, not statistically significant [specifically, in the four group of less than 15.00 mmol · L⁻¹ · h⁻¹, 15.00 to 16.79 mmol · L⁻¹ · h⁻¹, 16.80 to 17.99 mmol · L⁻¹ · h⁻¹ and 18.00 mmol · L⁻¹ · h⁻¹ or more, gestational weight gain was (15.3 ± 5.2), (14.1 ± 4.8), (13.5 ± 4.7) and (13.1 ± 4.8) kg]. The prevalence of macrosomia raised while AUC increased. Those with an AUC of lower than 15.00 (mmol · L⁻¹ · h⁻¹) had a lower risk of macrosomia (P = 0.04). But those with an AUC of 18.00 (mmol · L⁻¹ · h⁻¹) or more had a higher risk of macrosomia (P = 0.02). There was a rising trend in premature birth and preeclampsia with AUC increasing but not significant (the prevalence of premature birth was 4.38%, 5.36%, 7.71% and 7.94% while that of preeclampsia was 2.85%, 4.69%, 4.67% and 5.08% in these four groups). (2) The prevalence of macrosomia was 12.76% (54/423) when overweight pre-pregnancy, significantly higher compared with 5.87% (65/1 107) in normal group. The prevalence of preeclampsia was 5.91% (25/423) and 3.34% (37/1 107) in those two groups, which was also significantly different. The obese group had a statistically highest prevalence of preeclampsia of 9.23% (12/130). (3) AUC (P AUC, as well as pre-pregnancy BMI and

  16. High Tolerance of Hydrogenothermus marinus to Sodium Perchlorate

    Directory of Open Access Journals (Sweden)

    Kristina Beblo-Vranesevic

    2017-07-01

    Full Text Available On Mars, significant amounts (0.4–0.6% of perchlorate ions were detected in dry soil by the Phoenix Wet Chemistry Laboratory and later confirmed with the Mars Science Laboratory. Therefore, the ability of Hydrogenothermus marinus, a desiccation tolerant bacterium, to survive and grow in the presence of perchlorates was determined. Results indicated that H. marinus was able to tolerate concentrations of sodium perchlorate up to 200 mM ( 1.6% during cultivation without any changes in its growth pattern. After the addition of up to 440 mM ( 3.7% sodium perchlorate, H. marinus showed significant changes in cell morphology; from single motile short rods to long cell chains up to 80 cells. Furthermore, it was shown that the known desiccation tolerance of H. marinus is highly influenced by a pre-treatment with different perchlorates; additive effects of desiccation and perchlorate treatments are visible in a reduced survival rate. These data demonstrate that thermophiles, especially H. marinus, have so far, unknown high tolerances against cell damaging treatments and may serve as model organisms for future space experiments.

  17. Variation of structures of ingredients of desiccated coconut during hydrolysis by hydrochloric acid at low temperature

    Directory of Open Access Journals (Sweden)

    Jian XIONG

    2017-10-01

    Full Text Available Abstract Owing to the high content of lignocellulose, desiccated coconut become a healthy material for dietary fiber supplementation. In this study, the changes in solubility of the fibers of desiccated coconut were evaluated. The changes of the pHs and weight losses were studied. Furthermore, variations of the ingredient structures of desiccated coconut by hydrolysis by hydrochloric acid were characterized by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and scanning electron microscopy (SEM. After hydrolysis 30 s, the pHs of all systems increased, while six hours later, the pH of only system with initial pH = 1.00 decreased. The decline of pH only existed in hydrolysis systems with initial pH = 1.00, there is no relevant with the quantities of desiccated coconut. The lower initial pH of hydrolysis system was, the less the intrinsic viscosity of the desiccated coconut after hydrolysis was, the small the crystallinity was. After hydrolysis, the microstructure of the desiccated coconut become looser, and the secondary structure of the coconut protein became more stable and ordered. The results suggest that the hydrolysis of desiccated coconut mainly occurred in the branched chain and the non-crystalline region of lignocellulose, which transforms some insoluble dietary fiber into soluble dietary fiber. This improves the nutritional value of desiccated coconut.

  18. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    NARCIS (Netherlands)

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Al-Najjar, Mohammad A.A.

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution

  19. Development of a desiccated cadaver delivery system to apply entomopathogenic nematodes for control of soil pests

    Science.gov (United States)

    Pentomopathogenic nematodes may be more capable of controlling soil pests when they are harbored by desiccated cadavers. A small-scale system was developed from a modified crop seed planter to effectively deliver desiccated nematode-infected cadavers into the soil. The system mainly consists of a me...

  20. Formulation and validation of a two-dimensional steady-state model of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin R.

    2015-01-01

    Desiccant wheels are rotary desiccant dehumidifiers used in air-conditioning and drying applications. The modeling of simultaneous heat and mass transfer in these components is crucial for estimating their performances, as well as for simulating and optimizing their implementation in complete...

  1. Combination of air-source heat pumps with liquid desiccant dehumidification of air

    International Nuclear Information System (INIS)

    Zhang Li; Hihara, Eiji; Saikawa, Michiyuki

    2012-01-01

    Highlights: ► We propose a frost-free air-source heat pump system with integrated desiccant. ► The system can provide heating load continuously and humidify room. ► The coefficient of performance of the system is 2.6 at T a = −7 °C and RH = 80%. ► The heating load of solution is 3–4 times larger than cooling load of solution. - Abstract: This paper proposes a frost-free air source heat pump system with integrated liquid desiccant dehumidification, in which frosting can be retarded by dehumidifying air before entering an outdoor heat exchanger. And the water removed from the air is used to humidify a room. Simulation is carried out at a dry-bulb temperature of −7 to 5.5 °C and a relative humidity of 80% depending on the frosting conditions. The results show that the coefficient of performance (COP) is in the range of 2.6–2.9, which is 30–40% higher than that of heat pump heating integrated with an electric heater humidifying system. And it is found that the optimum value of the concentration of lithium chloride aqueous solution is 37% for the frost-free operation mode. Experiments are conducted for liquid desiccant system under low air temperature and high relative humidity conditions. Experimental results show that the dew point of the dehumidified air is decreased by 8 °C and the humidity ratio of the humidified air is kept at 8.1 g kg −1 , which ensures the frost-free operation of the heat pump evaporator and the comfortable level of room humidity simultaneously. The heating load of solution is 3–4.5 times larger than cooling load of solution, which agrees with the assumption given at the part of the simulation. Furthermore, the deviations between the calculated COP LHRU and the experimental results are within 33%.

  2. Death by desiccation: Effects of hermetic storage on cowpea bruchids

    KAUST Repository

    Murdock, Larry L.

    2012-04-01

    When cowpea grain is stored in airtight containers, destructive populations of the cowpea bruchid (. Callosobruchus maculatus) don\\'t develop even though the grain put into the store is already infested with sufficient . C. maculatus to destroy the entire store within a few months. The surprising effectiveness of hermetic storage for preserving grain against insect pests has long been linked with the depletion of oxygen in the hermetic container and with the parallel rise in carbon dioxide. With . C. maculatus, low oxygen (hypoxia) leads to cessation of larval feeding activity, whereas elevated levels of carbon dioxide (hypercarbia) have little or no effect on feeding. Cessation of feeding arrests the growth of the insects, which don\\'t mature and don\\'t reproduce. As a result, population growth ceases and damaging infestations don\\'t develop. . C. maculatus eggs, larvae, and pupae subjected to hypoxia eventually die after exposures of various duration. The cause of death is desiccation resulting from an inadequate supply of water. We demonstrate that blocking the supply of oxygen interdicts the main supply of water for . C. maculatus. This leads to inactivity, cessation of population growth, desiccation and eventual death. © 2012 Elsevier Ltd.

  3. Chroococcidiopsis sp. strain AAB1, a new model from the Atacama desert for the understanding of extreme UV tolerance in an astrobiological context

    International Nuclear Information System (INIS)

    Azua-Bustos, A.; Arenas, C.; Paulino-Lima, I G.; Galante, D.

    2012-01-01

    Full text: The Atacama Desert in northern Chile is the driest and oldest desert on Earth. In a recently published report [Azua-Bustos, 2011] we showed that along its Coastal Range, fog can support hypolithic colonization rates of 80From these hypolithic communities we were able to obtain a previously unknown strain of Chroococcidiopsis which we characterized by morphological and molecular means. Due to the extreme tolerance of cyanobacteria of this genus to UV, and since the Atacama Desert has constantly high UV radiation levels all year long, we propose this strain as a pertinent model for understanding the limits UV tolerance for life as we know it. We have measured the viability of the isolate by using the DEAD/LIVE BacLight kit which allows the detection of dead cells by measuring the loss of integrity of the plasma membrane, and found that it remains almost unchanged with control cultures when desiccated. In addition, desiccated samples readily start new cultures. Transmission electron microscopy (TEM) of desiccated samples show no evident changes compared with controls. Pigments extracts from desiccated samples show a decrease in photosynthetic pigments like Chlorophyll-a, measured by fluorescence spectra and by tissue layer chromatography. Desiccated samples also synthesize sucrose, an intracellular compatible solute known to play a role in desiccation tolerance. As desiccation and extreme UV tolerance are thought to share similar metabolic routes [Rebecchi, 2007], we expect that our isolate (as suggested by preliminary experiments performed with our strain at LNLS in 2010) should be extremely tolerant to UV radiation. Future work include exposition of monolayers of our strain using the VUV line, and the determination of its comparative tolerance levels with a Chroococcidiopsis strain (N76) isolated from the Mojave Desert which we also have in culture. The experiments will consist of different exposition times in order to achieve increasing UV accumulation

  4. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation

    Directory of Open Access Journals (Sweden)

    Janosch eSchirmack

    2015-03-01

    Full Text Available Methanogenic archaea have been studied as model organisms for possible life on Mars for several reasons: they can grow lithoautotrophically by using hydrogen and carbon dioxide as energy and carbon sources, respectively; they are anaerobes; and they evolved at a time when conditions on early Earth are believed to have looked similar to those of early Mars. As Mars is currently dry and cold and as water might be available only at certain time intervals, any organism living on this planet would need to cope with desiccation. On Earth there are several regions with low water availability as well, e.g. permafrost environments, desert soils and salt pans. Here, we present the results of a set of experiments investigating the influence of different Martian regolith analogs on the metabolic activity and growth of three methanogenic strains exposed to culture conditions as well as long-term desiccation. In most cases, concentrations below 1 %wt of regolith in the media resulted in an increase of methane production rates, whereas higher concentrations decreased the rates, thus prolonging the lag phase. Further experiments showed that methanogenic archaea are capable of producing methane when incubated on a water-saturated sedimentary matrix of regolith lacking nutrients. Survival of methanogens under these conditions was analyzed with a 400 day desiccation experiment in the presence of regolith analogs. All tested strains of methanogens survived the desiccation period as it was determined through reincubation on fresh medium and via qPCR following propidium monoazide treatment to identify viable cells. The survival of long-term desiccation and the ability of active metabolism on water-saturated MRAs strengthens the possibility of methanogenic archaea or physiologically similar organisms to exist in environmental niches on Mars. The best results were achieved in presence of a phyllosilicate, which provides insights of possible positive effects in habitats

  5. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment.

    Directory of Open Access Journals (Sweden)

    Harsh Chauhan

    Full Text Available Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.

  6. Performance assessment of adding Cu-ultrafine particles into falling film desiccant

    International Nuclear Information System (INIS)

    Al-Mulla Ali, A.

    2006-01-01

    The concept of dehumidification between air and liquid desiccant for the improvement of the efficiency of heating and cooling fluids in industrial applications was discussed. The use of solid/liquid desiccants has received much attention in recent years because liquid desiccants can take moisture from surrounding air at low temperature and then release the moisture at high temperature to provide a continuous process of dehumidification of air and regeneration of liquid desiccant. This process can be used with conventional vapor compression cycles. This paper presented a comparative numerical study between parallel and counter flow configurations that examined the effects of various parameters on heat and mass transfer for the dehumidification and cooling processes of air and regeneration rate of liquid desiccant. Ultrafine particles were added to the falling film desiccant to investigate heat and mass transfer enhancement for both parallel and counter flow channels. The Cu-volume fraction in the falling film desiccant and dispersion effect were the important parameters. A mathematical model was therefore developed to account for the addition of Cu-ultrafine particles into the film desiccant. The dehumidification and cooling rate processes were found to improve with an increase in the Cu-ultrafine particles and dispersion effect. The new hybrid AC system was shown to improve indoor air quality, reduce energy consumption, and be environmentally safe. It was concluded that although the volume fraction and dispersion factor improve the dehumidification and cooling processes of the air, the improvements are not significant due to the small thickness of the falling-film desiccant. The regeneration process did not improve for either controlling parameter because of the small thickness of the film desiccant. 14 refs., 10 figs

  7. Overexpression of the TaSHN1 transcription factor in bread wheat leads to leaf surface modifications, improved drought tolerance and no yield penalty under controlled growth conditions.

    Science.gov (United States)

    Bi, Huihui; Shi, Jianxin; Kovalchuk, Natalia; Luang, Sukanya; Bazanova, Natalia; Chirkova, Larissa; Zhang, Dabing; Shavrukov, Yuri; Stepanenko, Anton; Tricker, Penny; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy; Borisjuk, Nikolai

    2018-05-14

    Transcription factors regulate multiple networks, mediating the responses of organisms to stresses, including drought. Here we investigated the role of the wheat transcription factor TaSHN1 in crop growth and drought tolerance. TaSHN1, isolated from bread wheat, was characterised for molecular interactions and functionality. The overexpression of TaSHN1 in wheat was followed by the evaluation of T 2 and T 3 transgenic lines for drought tolerance, growth and yield components. Leaf surface changes were analysed by light microscopy, SEM, TEM and GC-MS/GC-FID. TaSHN1 behaves as a transcriptional activator in a yeast transactivation assay and binds stress-related DNA cis-elements, determinants of which were revealed using 3D molecular modelling. The overexpression of TaSHN1 in transgenic wheat did not result in a yield penalty under the controlled plant growth conditions of a glasshouse. Transgenic lines had significantly lower stomatal density and leaf water loss, and exhibited improved recovery after severe drought, compared to control plants. The comparative analysis of cuticular waxes revealed an increased accumulation of alkanes in leaves of transgenic lines. Our data demonstrate that TaSHN1 may operate as a positive modulator of drought stress tolerance. Positive attributes could be mediated through an enhanced accumulation of alkanes and reduced stomatal density. This article is protected by copyright. All rights reserved.

  8. Preparation of desiccation-resistant aquatic-living Nostoc flagelliforme (Cyanophyceae) for potential ecological application.

    Science.gov (United States)

    Gao, Xiang; Yang, Yi-Wen; Cui, Li-Juan; Zhou, De-Bao; Qiu, Bao-Sheng

    2015-11-01

    Nostoc flagelliforme is a terrestrial edible cyanobacterium that grows in arid and semi-arid steppes. The continued over-exploitation in the last century has led to a sharp decline of this resource and a severe deterioration of the steppe ecology. Liquid-cultured N. flagelliforme serves as promising algal 'seeds' for resource restoration. In this study, macroscopic (or visible) aquatic-living colonies (MaACs) of N. flagelliforme were developed under weak light and high nitrogen conditions. In a 24 day shake-flask culture, MaACs were propagated by about 4.5-fold in biomass without loss of their macro-morphology; at the same time, the addition of weak UV-B treatment resulted in slightly bigger MaACs. Polyvinylpyrrolidone (PVP) k30, a water-soluble polymer, was used to generate the coating around MaACs, and after full desiccation, the coated MaACs could recover their photosynthetic physiological activity when rehydrated, with 4% PVP k30 for coating being most effective. In contrast, PVP k30-coated microscopic aquatic-living colonies of N. flagelliforme and non-coated MaACs showed no resistance to full desiccation. The macroscopic morphology or structure of MaACs should be crucial for the formation of protection by PVP k30 coating. PVP k30-coated MaACs were more approaching to actual application for resource restoration. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Effects of UV-B Radiation and Periodic Desiccation on the Morphogenesis of the Edible Terrestrial Cyanobacterium Nostoc flagelliforme

    Science.gov (United States)

    Feng, Yan-Na; Zhang, Zhong-Chun; Feng, Jun-Li

    2012-01-01

    The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m−2) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG110) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future. PMID:22865081

  10. Meta-analysis of geographical clines in desiccation tolerance of Indian drosophilids

    Czech Academy of Sciences Publication Activity Database

    Rajpurohit, S.; Nedvěd, Oldřich; Gibbs, A. G.

    2013-01-01

    Roč. 164, č. 2 (2013), s. 391-398 ISSN 1095-6433 Grant - others: National Science Foundation(US) 0723930 Institutional support: RVO:60077344 Keywords : Drosophila * climatic adaptation * geographic variability Subject RIV: EH - Ecology, Behaviour Impact factor: 2.371, year: 2013 http://www.sciencedirect.com/science/article/pii/S109564331200520X

  11. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces.

    Science.gov (United States)

    Daneshvar Alavi, Hessam Edin; Truelstrup Hansen, Lisbeth

    2013-01-01

    This study investigated the dynamics of static biofilm formation (100% RH, 15 °C, 48-72 h) and desiccation survival (43% RH, 15 °C, 21 days) of Listeria monocytogenes, in dual species biofilms with the common spoilage bacteria, Pseudomonas fluorescens, Serratia proteamaculans and Shewanella baltica, on the surface of food grade stainless steel. The Gram-negative bacteria reduced the maximum biofilm population of L. monocytogenes in dual species biofilms and increased its inactivation during desiccation. However, due to the higher desiccation resistance of Listeria relative to P. fluorescens and S. baltica, the pathogen survived in greater final numbers. In contrast, S. proteamaculans outcompeted the pathogen during the biofilm formation and exhibited similar desiccation survival, causing the N21 days of Serratia to be ca 3 Log10(CFU cm(-2)) greater than that of Listeria in the dual species biofilm. Microscopy revealed biofilm morphologies with variable amounts of exopolymeric substance and the presence of separate microcolonies. Under these simulated food plant conditions, the fate of L. monocytogenes during formation of mixed biofilms and desiccation depended on the implicit characteristics of the co-cultured bacterium.

  12. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance.

    Science.gov (United States)

    Fortunato, Ana S; Lidon, Fernando C; Batista-Santos, Paula; Leitão, António Eduardo; Pais, Isabel P; Ribeiro, Ana I; Ramalho, José Cochicho

    2010-03-15

    Low positive temperature (chilling) is frequently linked to the promotion of oxidative stress conditions, and is of particular importance in the coffee plant due to its severe impact on growth, development, photosynthesis and production. Nevertheless, some acclimation ability has been reported within the Coffea genus, and is possibly related to oxidative stress control. Using an integrated biochemical and molecular approach, the characterization of the antioxidative system of genotypes with different cold acclimation abilities was performed. Experiments were carried out using 1.5-year-old coffee seedlings of Coffea canephora cv. Apoatã, C. arabica cv. Catuaí, C. dewevrei and 2 hybrids, Icatu (C. arabicaxC. canephora) and Piatã (C. dewevreixC. arabica) subjected to a gradual cold treatment and a recovery period. Icatu showed the greatest ability to control oxidative stress, as reflected by the enhancement of several antioxidative components (Cu,Zn-SOD and APX activities; ascorbate, alpha-tocopherol and chlorogenic acids (CGAs) contents) and lower reactive oxygen species contents (H(2)O(2) and OH). Gene expression studies show that GRed, DHAR and class III and IV chitinases might also be involved in the cold acclimation ability of Icatu. Catuaí showed intermediate acclimation ability through the reinforcement of some antioxidative molecules, usually to a lesser extent than that observed in Icatu. On the other hand, C. dewevrei showed the poorest response in terms of antioxidant accumulation, and also showed the greatest increase in OH values. The difference in the triggering of antioxidative traits supports the hypothesis of its importance to cold (and photoinhibition) tolerance in Coffea sp. and could provide a useful probe to identify tolerant genotypes. Copyright 2009 Elsevier GmbH. All rights reserved.

  13. Desiccant wheel thermal performance modeling for indoor humidity optimal control

    International Nuclear Information System (INIS)

    Wang, Nan; Zhang, Jiangfeng; Xia, Xiaohua

    2013-01-01

    Highlights: • An optimal humidity control model is formulated to control the indoor humidity. • MPC strategy is used to implement the optimal operation solution. • Practical applications of the MPC strategy is illustrated by the case study. - Abstract: Thermal comfort is an important concern in the energy efficiency improvement of commercial buildings. Thermal comfort research focuses mostly on temperature control, but humidity control is an important aspect to maintain indoor comfort too. In this paper, an optimal humidity control model (OHCM) is presented. Model predictive control (MPC) strategy is applied to implement the optimal operation of the desiccant wheel during working hours of a commercial building. The OHCM is revised to apply the MPC strategy. A case is studied to illustrate the practical applications of the MPC strategy

  14. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation

    International Nuclear Information System (INIS)

    Zhang, Li-Zhi; Zhang, Ning

    2014-01-01

    A compression heat pump driven and membrane-based liquid desiccant air dehumidification system is presented. The dehumidifier and the regenerator are made of two hollow fiber membrane bundles packed in two shells. Water vapor can permeate through these membranes effectively, while the liquid desiccant droplets are prevented from cross-over. Simultaneous heating and cooling of the salt solution are realized with a heat pump system to improve energy efficiency. In this research, the system is built up and a complete modeling is performed for the system. Heat and mass transfer processes in the membrane modules, as well as in the evaporator, the condenser, and other key components are modeled in detail. The whole model is validated by experiment. The performances of SDP (specific dehumidification power), dehumidification efficiency, EER (energy efficiency ratio) of heat pump, and the COP (coefficient of performance) of the system are investigated numerically and experimentally. The results show that the model can predict the system accurately. The dehumidification capabilities and the energy efficiencies of the system are high. Further, it performs well even under the harsh hot and humid South China weather conditions. - Highlights: • A membrane-based and heat pump driven air dehumidification system is proposed. • A real experimental set up is built and used to validate the model for the whole system. • Performance under design and varying operation conditions is investigated. • The system performs well even under harsh hot and humid conditions

  15. Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains.

    Science.gov (United States)

    Ortiz, N; Armada, E; Duque, E; Roldán, A; Azcón, R

    2015-02-01

    Autochthonous microorganisms [a consortium of arbuscular-mycorrhizal (AM) fungi and Bacillus thuringiensis (Bt)] were assayed and compared to Rhizophagus intraradices (Ri), Bacillus megaterium (Bm) or Pseudomonas putida (Psp) and non-inoculation on Trifolium repens in a natural arid soil under drought conditions. The autochthonous bacteria Bt and the allochthonous bacteria Psp increased nutrients and the relative water content and decreased stomatal conductance, electrolyte leakage, proline and APX activity, indicating their abilities to alleviate the drought stress. Mycorrhizal inoculation significantly enhanced plant growth, nutrient uptake and the relative water content, particularly when associated with specific bacteria minimizing drought stress-imposed effects. Specific combinations of autochthonous or allochthonous inoculants also contributed to plant drought tolerance by changing proline and antioxidative activities. However, non-inoculated plants had low relative water and nutrients contents, shoot proline accumulation and glutathione reductase activity, but the highest superoxide dismutase activity, stomatal conductance and electrolyte leakage. Microbial activities irrespective of the microbial origin seem to be coordinately functioning in the plant as an adaptive response to modulated water stress tolerance and minimizing the stress damage. The autochthonous AM fungi with Bt or Psp and those allochthonous Ri with Bm or Psp inoculants increased water stress alleviation. The autochthonous Bt showed the greatest ability to survive under high osmotic stress compared to the allochthonous strains, but when single inoculated or associated with Ri or AM fungi were similarly efficient in terms of physiological and nutritional status and in increasing plant drought tolerance, attenuating and compensating for the detrimental effect of water limitation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Cover Your Cough! A Short and Simple Activity to Demonstrate the Antimicrobial Effect of Desiccation

    Directory of Open Access Journals (Sweden)

    Jennifer Cook Easterwood

    2013-08-01

    Full Text Available Many undergraduate microbiology laboratory manuals include exercises demonstrating the antimicrobial effects of physical agents, such as UV light and heat, and chemical agents, such as disinfectants and antibiotics (3, 4. There is, however, a lack of exercises examining the effects of desiccation on bacterial growth and survival. This particular form of antimicrobial control is especially relevant today with an increased emphasis on coughing and sneezing into one’s sleeve or a tissue, where microbes will not contaminate hands and will eventually desiccate and die (2. Desiccation can have bacteriostatic or bactericidal effects depending on the species, the material on which the organism has desiccated, and the length of time. The absence of water can damage many cellular components, including enzymes, nucleic acids, and cell membranes (1. However, many prokaryotes have some degree of resistance to desiccation, with Escherichia coli surviving around 24 hours and Bacillus species surviving upwards of 300 years, though these numbers can vary due to a number of confounding factors (5. Some of these factors include the method by which desiccation occurred, whether desiccation occurred in a natural or laboratory situation, and the species itself (5. To address the effects of desiccation on bacterial growth and survival, a short, simple exercise was developed. By inoculating various materials with bacterial cultures and allowing them to air-dry for 24 hours, students can visualize the effects of desiccation by analyzing the growth, or lack thereof, when organisms are transferred to nutrient agar plates. This exercise has been used in a health professions microbiology course as well as a microbiology course for biology and biochemistry majors. It is short enough to be conducted during a standard lecture period or during a longer laboratory period in conjunction with other experiments demonstrating the effectiveness of physical agents on microbial

  17. Developing a Standard Method of Test for Packaged, Solid-Desiccant Based Dehumidification Systems

    International Nuclear Information System (INIS)

    Sand, J.R.

    2001-01-01

    A draft Method of Test (MOT) has been proposed for packaged, air-to-air, desiccant-based dehumidifier systems that incorporate a thermally-regenerated desiccant material for dehumidification. This MOT is intended to function as the ''system'' testing and rating compliment to the desiccant ''component'' (desiccant wheels and/or cassettes) MOT (ASHRAE 1998) and rating standard (ARI 1998) already adopted by industry. This draft standard applies to ''packaged systems'' that: Use desiccants for dehumidification of conditioned air for buildings; Use heated air for regeneration of the desiccant material; Include fans for moving process and regeneration air; May include other system components for filtering, pre-cooling, post-cooling, or heating conditioned air; and May include other components for humidification of conditioned air. The proposed draft applies to four different system operating modes depending on whether outdoor or indoor air is used for process air and regeneration air streams . Only the ''ventilation'' mode which uses outdoor air for both process and regeneration inlets is evaluated in this paper. Performance of the dehumidification system is presented in terms that would be most familiar and useful to designers of building HVAC systems to facilitate integration of desiccant equipment with more conventional hardware. Parametric performance results from a modified, commercial desiccant dehumidifier undergoing laboratory testing were used as data input to evaluate the draft standard. Performance results calculated from this experimental input, results from an error-checking/heat-balance verification test built into the standard, and estimated comparisons between desiccant and similarly performing conventional dehumidification equipment are calculated and presented. Some variations in test procedures are suggested to aid in analytical assessment of individual component performance

  18. Toleration out of respect?

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2013-01-01

    Under conditions of pluralism different cultures, interests or values can come into conflict, which raises the problem of how to secure peaceful co-existence. The idea of toleration historically emerged as an answer to this problem. Recently Rainer Forst has argued that toleration should not just...... be based on a modus vivendi designed to secure peaceful co-existence, but should be based on moral reasons. Forst therefore advances what he calls the ‘respect conception’ of toleration as an in itself morally desirable type of relationship, which is furthermore the only conception of toleration...... that avoids various so-called ‘paradoxes of toleration’. The paper first examines whether Forst’s respect conception can be applied descriptively to distinguish between actual patterns of behaviour and classify different acts of toleration. Then the focus is shifted to toleration out of respect as a normative...

  19. Feasibility study on an energy-saving desiccant wheel system with CO2 heat pump

    Science.gov (United States)

    Liu, Yefeng; Meng, Deren; Chen, Shen

    2018-02-01

    In traditional desiccant wheel, air regeneration process occurs inside an open loop, and lots of energy is consumed. In this paper, an energy-saving desiccant wheel system with CO2 heat pump and closed loop air regeneration is proposed. The general theory and features of the desiccant wheel are analysed. The main feature of the proposed system is that the air regeneration process occurs inside a closed loop, and a CO2 heat pump is utilized inside this loop for the air regeneration process as well as supplying cooling for the process air. The simulation results show that the proposed system can save significant energy.

  20. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...... system, which includes a desiccant wheel and a dew point cooler. The system is simulated during the summer period in the Mediterranean climate of Rome and it results completely independent of external water sources. The seasonal thermal COP drops 8% in comparison to the open regeneration circuit solution...

  1. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    Science.gov (United States)

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  2. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Ye, Z.H. [State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Chan, W.F.; Chen, X.W.; Wu, F.Y. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); Wu, S.C. [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong (Hong Kong); School of Environment and Natural Resources, Zhejiang Agriculture and Forestry University, Lin' an, Zhejiang 311300 (China)

    2011-10-15

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg{sup -1}. In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: > Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. > Rice colonized with suitable AMF can increase grain yield. > The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  3. Can arbuscular mycorrhizal fungi improve grain yield, As uptake and tolerance of rice grown under aerobic conditions?

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Chan, W.F.; Chen, X.W.; Wu, F.Y.; Wu, S.C.; Wong, M.H.

    2011-01-01

    The effects of arbuscular mycorrhizal fungi (AMF) -Glomus intraradices and G. geosporum on arsenic (As) and phosphorus (P) uptake by lowland (Guangyinzhan) and upland rice (Handao 502) were investigated in soil, spiked with and without 60 mg As kg -1 . In As-contaminated soil, Guangyinzhan inoculated with G. intraradices or Handao 502 inoculated with G. geosporum enhanced As tolerance, grain P content, grain yield. However, Guangyinzhan inoculated with G. geosporum or Handao 502 inoculated with G. intraradices decreased grain P content, grain yield and the molar ratio of grain P/As content, and increased the As concentration and the ratio of grain/straw As concentration. These results show that rice/AMF combinations had significant (p < 0.05) effects on grain As concentration, grain yield and grain P uptake. The variation in the transfer and uptake of As and P reflected strong functional diversity in AM (arbuscular mycorrhizal) symbioses. - Highlights: → Rice/AMF combinations had significant effects on grain As concentration, grain yield and grain P uptake. → Rice colonized with suitable AMF can increase grain yield. → The variation in the transfer and uptake of As and P reflected strong functional diversity in AM symbioses. - Different rice/AMF combinations had very different effects on arsenic and phosphorus uptake.

  4. Infectious Tolerance

    Science.gov (United States)

    Jonuleit, Helmut; Schmitt, Edgar; Kakirman, Hacer; Stassen, Michael; Knop, Jürgen; Enk, Alexander H.

    2002-01-01

    Regulatory CD4+CD25+ T cells (Treg) are mandatory for maintaining immunologic self-tolerance. We demonstrate that the cell-cell contact–mediated suppression of conventional CD4+ T cells by human CD25+ Treg cells is fixation resistant, independent from membrane-bound TGF-β but requires activation and protein synthesis of CD25+ Treg cells. Coactivation of CD25+ Treg cells with Treg cell–depleted CD4+ T cells results in anergized CD4+ T cells that in turn inhibit the activation of conventional, freshly isolated CD4+ T helper (Th) cells. This infectious suppressive activity, transferred from CD25+ Treg cells via cell contact, is cell contact–independent and partially mediated by soluble transforming growth factor (TGF)-β. The induction of suppressive properties in conventional CD4+ Th cells represents a mechanism underlying the phenomenon of infectious tolerance. This explains previously published conflicting data on the role of TGF-β in CD25+ Treg cell–induced immunosuppression. PMID:12119350

  5. A contribution to the study of mechanical behaviour of concrete structures taking into account the effects of desiccation

    International Nuclear Information System (INIS)

    Hubert, F.X.

    2004-12-01

    In this work, is given a model of the drying influence on the mechanical behaviour of concrete and a reliable anticipating tool is proposed for engineers. The drying of hardened concrete has several consequences on the mechanical properties of concrete. The desiccation shrinkage is the first sign, generating crack visible at the surface level under the form of crackling and core cracking particularly on the account of the presence of aggregates which prevent the shrinkage of the cement paste to make easily. Then, the elastic parameters are strongly affected (decrease of stiffness, of the Poisson coefficient). A simplified model of the stiffness loss during the drying is proposed under the form of an isotropic hydric damage. The model is validated in the unidimensional case with tests results carried out in the LML. With this model, it is possible to estimate with more accuracy the state of the hydric constraints in concrete. Numerical simulations on 3D structures are then proposed. An application to the case of a wall being manufactured is given. The contributions of the model are tested too in the case where the global mechanical response of cylindrical mortar specimens submitted to drying and to compression tests is simulated. The effect of the capillary suction as well as the increase of the elastic limit during drying are then discussed. At last, the contributions of the model for creep calculations and desiccation are presented. (O.M.)

  6. Erasmus Darwin's Deistic Dissent and Didactic Epic Poetry: Promoting Science Education to a Mixed Audience Under the Banner of Tolerance

    Science.gov (United States)

    Martin, Kirsten Anne

    Erasmus Darwin's task as a Deistic Dissenter poet who wished to promote science education to a mixed audience was complex. There was mainstream concern over what Deists and Dissenters actually believed about God, their involvement in science, and, especially, how their published works, whatever the subject, might affect public morality and politics. I argue that Darwin's poetry is primarily in the genre of Lucretian didactic epic but that it also involves elements of other written traditions (literary and non-literary). I focus on English didactic poetry, the theological written traditions of Dissent and Deism, and a particular tradition of erotic satire. The genre of Lucretian didactic epic and the tradition of English didactic poetry are non-identical. In Darwin's Lucretian didactic epic, resemblances to such poems as Pope's Essay on Man challenge ideas about what kind of narrative a didactic poem in the English language can deliver. Techniques from the theological written traditions of Dissent and Deism reflect Darwin's affiliations, signal that science education fits within a larger debate about intellectual freedom, and promote tolerance for differences of opinion about nature. Mimicry of a particular tradition of erotic satire helps to downplay the address to a mixed audience while satirising some common misconceptions about poetry, botany, and women in the period. Darwin's poetry challenges ideas about what people from his community of belief meant to communicate or transmit by writing for the general public, what the general public was entitled to learn, and what poetry was able to teach. Perhaps Darwin's biggest modification of Lucretian didactic epic was that he did not tell his readers exactly what to think, but how.

  7. Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant

    International Nuclear Information System (INIS)

    Liu, X.H.; Zhang, Y.; Qu, K.Y.; Jiang, Y.

    2006-01-01

    The liquid desiccant air conditioning system is drawing more and more attention due to its advantages in energy saving and environmental friendliness. The dehumidifier is one of the essential parts of the system, which affects the whole system performance severely. This paper experimentally studies the performance of the cross flow dehumidifier, which has been less studied than the counter flow dehumidifier, although it is more applicable in practice. Celdek structured packings were used in the dehumidifier, and a LiBr aqueous solution was used as the liquid desiccant. The moisture removal rate and dehumidifier effectiveness were adopted as the dehumidifier performance indices. The effects of the dehumidifier inlet parameters, including air and desiccant flow rates, air inlet temperature and humidity ratio and desiccant inlet temperature and concentration, on the two indices were investigated. Correlations are proposed to predict the cross flow dehumidifier performance, which give results in good agreement with the present experimental findings

  8. Experimental and Numerical Investigations of Soil Desiccation for Vadose Zone Remediation: Report for Fiscal Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Oostrom, Mart; Bacon, Diana H.

    2008-02-04

    Apart from source excavation, the options available for the remediation of vadose zone metal and radionuclide contaminants beyond the practical excavation depth (0 to 15 m) are quite limited. Of the available technologies, very few are applicable to the deep vadose zone with the top-ranked candidate being soil desiccation. An expert panel review of the work on infiltration control and supplemental technologies identified a number of knowledge gaps that would need to be overcome before soil desiccation could be deployed. The report documents some of the research conducted in the last year to fill these knowledge gaps. This work included 1) performing intermediate-scale laboratory flow cell experiments to demonstrate the desiccation process, 2) implementing a scalable version of Subsurface Transport Over Multiple Phases–Water-Air-Energy (STOMP-WAE), and 3) performing numerical experiments to identify the factors controlling the performance of a desiccation system.

  9. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  10. Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions.

    Science.gov (United States)

    Vidyashankar, S; Deviprasad, K; Chauhan, V S; Ravishankar, G A; Sarada, R

    2013-09-01

    Five indigenous microalgal strains of Scenedesmus, Chlorococcum, Coelastrum, and Ankistrodesmus genera, isolated from Indian fresh water habitats, were studied for carbon-dioxide tolerance and its effect on growth, lipid and fatty acid profile. Scenedesmus dimorphus strain showed maximum growth (1.5 g/L) and lipid content (17.83% w/w) under CO2 supplementation, hence selected for detailed evaluation. The selected strain was alkaline adapted but tolerated (i) wide range of pH (5-11); (ii) elevated salinity levels (up to 100 mM, NaCl) with low biomass yields and increased carotenoids (19.34 mg/g biomass); (iii) elevated CO2 levels up to 15% v/v with enhancement in specific growth rate (0.137 d(-1)), biomass yield (1.57 g/L), lipid content (19.6% w/w) and CO2 biofixation rate (0.174 g L(-1) d(-1)). Unsaturated fatty acid content (alpha linolenic acid) increased with CO2 supplementation in the strain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Variation in the Abundance of OsHAK1 Transcript Underlies the Differential Salinity Tolerance of an indica and a japonica Rice Cultivar

    Directory of Open Access Journals (Sweden)

    Guang Chen

    2018-01-01

    Full Text Available Salinity imposes a major constraint over the productivity of rice. A set of chromosome segment substitution lines (CSSLs, derived from a cross between the japonica type cultivar (cv. Nipponbare (salinity sensitive and the indica type cv. 9311 (moderately tolerant, was scored using a hydroponics system for their salinity tolerance at the seedling stage. Two of the CSSLs, which share a ∼1.2 Mbp stretch of chromosome 4 derived from cv. Nipponbare, were as sensitive to the stress as cv. Nipponbare itself. Fine mapping based on an F2 population bred from a backcross between one of these CSSLs and cv. 9311 narrowed this region to 95 Kbp, within which only one gene (OsHAK1 exhibited a differential (lower transcript abundance in cv. Nipponbare and the two CSSLs compared to in cv. 9311. The gene was up-regulated by exposure to salinity stress both in the root and the shoot, while a knockout mutant proved to be more salinity sensitive than its wild type with respect to its growth at both the vegetative and reproductive stages. Seedlings over-expressing OsHAK1 were more tolerant than wild type, displaying a superior photosynthetic rate, a higher leaf chlorophyll content, an enhanced accumulation of proline and a reduced level of lipid peroxidation. At the transcriptome level, the over-expression of OsHAK1 stimulated a number of stress-responsive genes as well as four genes known to be involved in Na+ homeostasis and the salinity response (OsHKT1;5, OsSOS1, OsLti6a and OsLti6b. When the stress was applied at booting through to maturity, the OsHAK1 over-expressors out-yielded wild type by 25%, and no negative pleiotropic effects were expressed in plants gown under non-saline conditions. The level of expression of OsHAK1 was correlated with Na+/K+ homeostasis, which implies that the gene should be explored a target for molecular approaches to the improvement of salinity tolerance in rice.

  12. Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis

    NARCIS (Netherlands)

    Alonso-Blanco, C.; Gomez-Mena, C.; Llorente, F.; Koornneef, M.; Salinas, J.; Martinez-Zapater, J.M.

    2005-01-01

    Natural variation for freezing tolerance is a major component of adaptation and geographic distribution of plant species. However, little is known about the genes and molecular mechanisms that determine its naturally occurring diversity. We have analyzed the intraspecific freezing tolerance

  13. 29 CFR 5.15 - Limitations, variations, tolerances, and exemptions under the Contract Work Hours and Safety...

    Science.gov (United States)

    2010-07-01

    ... minimum hourly wage required under the contract pursuant to the provisions of the Service Contract Act of... premium payment of one-half times such minimum hourly wage for all hours worked in excess of 40 hours in... this section are met. (ii) The apprentice or trainee comes within the definition contained in § 5.2(n...

  14. Research and development needs for desiccant cooling technology 1992--1997. (Supplement to the NREL report, Desiccant Cooling: State-of-the-Art Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, A A

    1992-12-01

    This report is a supplement to Desiccant Cooling: State-of-the-Art Assessment (NREL/TP-254-4147, DE93000013). In this supplement document we have described a detailed program assuming sufficient funding to implement the R&D activities needed. Desiccant dehumidification is a mature technology for industrial applications, and in recent years the technology has been used for air conditioning a number of institutional and commercial buildings. Our proposal is based on argumentative discussions at various national meetings with leaders of the technology. The goal is the penetration of the broad air conditioning market. This work is funded by the Buildings technology Office of the US Department of Energy.

  15. Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model

    Science.gov (United States)

    Sharma, Ashish; Huang, Huei-Ping; Zavialov, Peter; Khan, Valentina

    2018-01-01

    This study explores the impacts of the desiccation of the Aral Sea and large-scale climate change on the regional climate of Central Asia in the post-1960 era. A series of climate downscaling experiments for the 1960's and 2000's decades were performed using the Weather Research and Forecast model at 12-km horizontal resolution. To quantify the impacts of the changing surface boundary condition, a set of simulations with an identical lateral boundary condition but different extents of the Aral Sea were performed. It was found that the desiccation of the Aral Sea leads to more snow (and less rain) as desiccated winter surface is relatively much colder than water surface. In summer, desiccation led to substantial warming over the Aral Sea. These impacts were largely confined to within the area covered by the former Aral Sea and its immediate vicinity, although desiccation of the Sea also led to minor cooling over the greater Central Asia in winter. A contrasting set of simulations with an identical surface boundary condition but different lateral boundary conditions produced more identifiable changes in regional climate over the greater Central Asia which was characterized by a warming trend in both winter and summer. Simulations also showed that while the desiccation of the Aral Sea has significant impacts on the local climate over the Sea, the climate over the greater Central Asia on inter-decadal time scale was more strongly influenced by the continental or global-scale climate change on that time scale.

  16. Energy saving effect of desiccant ventilation system using Wakkanai siliceous shale

    Science.gov (United States)

    Nabeshima, Yuki; Togawa, Jun-ya; Nagano, Katsunori; Kazuyo, Tsuzuki

    2017-10-01

    The nuclear power station accident resulting from the Great East Japan Earthquake disaster has resulted in a constrained electricity supply. However, in this Asian region there is high temperature and high humidity and consequently dehumidification process requires a huge amount of energy. This is the reason for the increasing energy consumption in the residential and commercial sectors. Accordingly, a high efficiency air-conditioning system is needed to be developed. The desiccant ventilation system is effective to reduce energy consumption for the dehumidification process. This system is capable of dehumidifying without dew condensing unlike a conventional air-conditioning system. Then we focused on Wakkanai Siliceous Shale (WSS) as a desiccant material to develop a new desiccant ventilation system. This is low priced, high performance, new type of thing. The aim of this study is to develop a desiccant ventilation unit using the WSS rotor which can be regenerated with low-temperature by numerical calculation. The results of performance prediction of the desiccant unit, indicate that it is possible to regenerate the WSS rotor at low-temperature of between 35 - 45 °C. In addition, we produced an actual measurement for the desiccant unit and air-conditioning unit. This air-conditioning system was capable to reduce roughly 40 % of input energy consumption.

  17. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  18. Energy farming in Dutch desiccation abatement areas. Effects on break-even biomass price

    International Nuclear Information System (INIS)

    Londo, M.; Dekker, J.; Vleeshouwers, L.; De Graaf, H.

    1999-09-01

    Measures in Dutch nature areas to combat desiccation of nature areas often have effects on surrounding agricultural lands, or buffer areas. Generally, these soils become moister, which can lead to lower yields for most common crops. Cultivation of the flooding-tolerant energy crop willow may be an alternative. In this study, the performance of willow production is compared to that of grass for roughage, in buffer areas as well as in a hydrologically optimal situation. Financial consequences are evaluated by calculating the biomass price that makes willow equally competitive to grass (break-even). The effect of high groundwater tables on yields of both crops is estimated using the agro-hydrological model SWAP. The calculated price that gives break-even between willow and grass is lower on wet soils than in a hydrologically optimal situation. At a groundwater table class of II, a groundwater situation quite common in buffer areas, this break-even price is 20% lower. The physical yield of willow is lower than its optimum, but grass yields decrease stronger, making willow more competitive. The biomass price in a hydrologically optimal situation, as calculated in this study, is comparable to values found in other studies. However, this comparison is complicated by differences in assumptions in the cost calculations, and by the fact that grass as roughage has less value added than food crops such as potatoes and wheat. This study contains considerable uncertainties with respect to the data used and the methodology. A sensitivity analysis shows that several parameters with a strong influence on the biomass price have low uncertainties. An uncertain value with strong influence is the optimal willow yield, which could not be estimated on practical data. Methodological limitations of the study, both in the economic comparison between willow and grass and in the yield estimations, are also discussed. 50 refs

  19. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.

    Science.gov (United States)

    Wang, Lu; Waters, Mark T; Smith, Steven M

    2018-05-04

    The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  20. Preliminary investigation of microbiological effect for radioactive waste disposal system. 1. Experimental investigation of tolerance of some bacterias under alkaline and reducing condition

    International Nuclear Information System (INIS)

    Yoshikawa, Hideki; Yui, Mikazu; Mihara, Morihiro; Fukunaga, Sakae; Asano, Hidekazu.

    1995-01-01

    Activities and tolerance of some bacteria were investigated under alkaline and reducing conditions for geological disposal. A fermenter was used to control pH and Eh with a liquid culture inoculated with sulphate-reducing bacteria (SRB), methane-producing bacteria (MPB) and sulphur-oxidizing bacteria (SOB). Growth of SRB was obtained at maximum pH 8.6 (Eh -340 mV) or maximum Eh -100 mV (pH 7). Ranges of Eh for the growth of MPB and SOB were estimated to be less than -210 mV at pH8, and more than +240 mV at pH 7.5, respectively. Activity for SOB was not observed in the pH range more than 8. (author)

  1. Epidermal transmittance and phenolic composition in leaves of atrazine-tolerant and atrazine-sensitive cultivars of Brassica napus grown under enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Olsson, L.C.; Veit, M.; Bornman, J.F.

    1999-01-01

    Experiments were conducted on the atrazine-tolerant mutant Stallion and the atrazine-sensitive cv. Paroll of Brassica napus L., which were grown under either visible light or with the addition of UV-B radiation (280–320 nm) for 15 days. The mutant has been shown to be sensitive to high levels of visible light as compared to the atrazine-sensitive cultivar and therefore we wished to determine plant response to UV-B radiation with respect to potential pigment changes, certain anatomical features, radiation penetration and partial photosynthesis. With regard to pigment changes, we were particularly interested in whether the compositional shift in flavonol pigments under enhanced UV-B radiation, previously suggested to favour increased antioxidant activity, is confined to the adaxial epidermis, which generally receives most UV-B radiation or whether the pigment shift is also inducible in the abaxial epidermis.As was to be expected, the penetration of UV-B radiation (310 nm) was lower in the UV-B-exposed plants, which was correlated with an increased amount of UV-screening pigments in the adaxial and abaxial epidermal layers. The main flavonoid glycosides showed the largest shift from kaempferol to quercetin as aglycone moiety in the adaxial epidermal layer. However, in the abaxial epidermal layer the hydroxycinnamic acid (HCA) derivatives and kaempferol glycosides were predominant. Penetration of 430 nm light was higher after UV-B exposure, and probably contributed to the fact that photosynthetic efficiency of photosystem II was unchanged or higher after UV-B exposure. UV-B radiation decreased leaf area in the atrazine-tolerant mutant only. Both cultivars showed an increased leaf thickness after UV-B exposure due to cell elongation mainly of the palisade tissue. This was especially evident in the mutant

  2. Use of dehumidifiers in desiccant cooling and dehumidification systems

    International Nuclear Information System (INIS)

    Van den Bulck, E.; Mitchell, J.W.; Klein, S.A.

    1986-01-01

    The use of rotary dehumidifiers in gas-fired open-cycle desiccant cooling systems is investigated by analyzing the performance of the rotary heat exchanger-rotary dehumidifier subsystem. For a given cooling load, the required regeneration heat supply can be minimized by choosing appropriate values for the regeneration air mass flow rate and the wheel rotation speed. A map is presented showing optimal values for rotational speed and regeneration flow rate as functions of the regeneration air inlet temperature and the process air inlet humidity ratio. This regeneration temperature is further optimized as a function of the process humidity ratio. In the analysis, the control strategy adjusts the process air mass flow rate to provide the required cooling load. Additional control options are considered and the sensitivity of the regeneration heat required to the wheel speed, regeneration air mass flow rate, and inlet temperature is discussed. Experimental data reported in the literature are compared with the analytical results and indicate good agreement

  3. Tolerância à dessecação e longevidade de sementes germinadas de Sesbania virgata (Cav.) Pers.

    NARCIS (Netherlands)

    Costa, Maria Cecília Dias; Faria, José Marcio Rocha; José, Anderson Cleiton; Ligterink, Wilco; Hilhorst, Henk W.M.

    2016-01-01

    Seed desiccation tolerance (DT) and longevity are necessary for better dissemination of plant species and establishment of soil seed bank. They are acquired by orthodox seeds during the maturation phase of development and lost upon germination. DT can be re-induced in germinated seeds by an

  4. Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions

    Science.gov (United States)

    Jänchen, Jochen; Feyh, Nina; Szewzyk, Ulrich; de Vera, Jean-Pierre P.

    2016-04-01

    Motivated by findings of new mineral related water sources for organisms under extremely dry conditions on Earth we studied in an interdisciplinary approach the water sorption behaviour of halite, soil component and terrestrial Nostoc commune biofilm under Mars relevant environmental conditions. Physicochemical methods served for the determination of water sorption equilibrium data and survival of heterotrophic bacteria in biofilm samples with different water contents was assured by recultivation. Deliquescence of halite provides liquid water at temperatures <273 K and may serve as water source on Mars during the morning stabilized by the CO2 atmosphere for a few hours. The protecting biofilm of N. commune is rather hygroscopic and tends to store water at lower humidity values. Survival tests showed that a large proportion of the Alphaproteobacteria dominated microbiota associated to N. commune is very desiccation tolerant and water uptake from saturated NaCl solutions (either by direct uptake of brine or adsorption of humidity) did not enhance recultivability in long-time desiccated samples. Still, a minor part can grow under highly saline conditions. However, the salinity level, although unfavourable for the host organism, might be for parts of the heterotrophic microbiota no serious hindrance for growing in salty Mars-like environments.

  5. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions.

    Science.gov (United States)

    Park, Seong-Im; Kim, Young-Saeng; Kim, Jin-Ju; Mok, Ji-Eun; Kim, Yul-Ho; Park, Hyang-Mi; Kim, Il-Sup; Yoon, Ho-Sung

    2017-08-01

    Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields. Copyright © 2017. Published by Elsevier GmbH.

  6. Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system

    International Nuclear Information System (INIS)

    Zhang, Ning; Yin, Shao-You; Zhang, Li-Zhi

    2016-01-01

    Graphical abstract: A heat pump driven, hollow fiber membrane-based two-stage liquid desiccant air dehumidification system. - Highlights: • A two-stage hollow fiber membrane based air dehumidification is proposed. • It is heat pump driven liquid desiccant system. • Performance is improved 20% upon single stage system. • The optimal first to second stage dehumidification area ratio is 1.4. - Abstract: A novel compression heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system is presented. The liquid desiccant droplets are prevented from crossing over into the process air by the semi-permeable membranes. The isoenthalpic processes are changed to quasi-isothermal processes by the two-stage dehumidification processes. The system is set up and a model is proposed for simulation. Heat and mass capacities in the system, including the membrane modules, the condenser, the evaporator and the heat exchangers are modeled in detail. The model is also validated experimentally. Compared with a single-stage dehumidification system, the two-stage system has a lower solution concentration exiting from the dehumidifier and a lower condensing temperature. Thus, a better thermodynamic system performance is realized and the COP can be increased by about 20% under the typical hot and humid conditions in Southern China. The allocations of heat and mass transfer areas in the system are also investigated. It is found that the optimal regeneration to dehumidification area ratio is 1.33. The optimal first to second stage dehumidification area ratio is 1.4; and the optimal first to second stage regeneration area ratio is 1.286.

  7. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci

    Directory of Open Access Journals (Sweden)

    Sehgal Deepmala

    2012-01-01

    Full Text Available Abstract Background Identification of genes underlying drought tolerance (DT quantitative trait loci (QTLs will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. Results Seventy five single nucleotide polymorphism (SNP and conserved intron spanning primer (CISP markers were developed from available expressed sequence tags (ESTs using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. Conclusions We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene

  8. Regeneration characteristics of desiccant rotor with microwave and hot-air heating

    International Nuclear Information System (INIS)

    Kubota, Mitsuhiro; Hanada, Takuya; Yabe, Satoshi; Matsuda, Hitoki

    2013-01-01

    Microwave heating, because of its advantages of direct and rapid heating of materials, has the potential to be employed as a novel regeneration method of desiccant rotors in humidity conditioners. We proposed a combined regeneration process, which combines microwave heating and conventional hot-air heating. The system is expected to achieve high heating rate during an initial regeneration period by assisting water desorption using the additional energy of the microwave. In this study, the regeneration characteristics of a desiccant rotor were experimentally investigated under conditions of microwave heating, hot-air heating, and combined heating at various microwave powers and hot-air temperatures. The effectiveness of the combined regeneration was evaluated in terms of the regeneration ratio, the initial regeneration rate, the temperature distribution in the rotor, and finally in terms of the energy consumption. It was demonstrated that combined heating was effective at leveling non-uniform temperature distribution in the rotor. Combined heating achieved higher ratios and initial rates in regeneration compared to just microwave and hot-air heating. This result was obviously attributed to the additional input of microwave energy, resulting that average rotor temperature increased by microwave absorption of rotor. Moreover, it was also effective for enhancement of regeneration to level the temperature distribution in the rotor by combination of two heating methods with different heating mechanisms. Both the initial regeneration rate and the equilibrium regeneration ratio for combined heating were found to increase as the microwave power increased. A linear relationship was observed with respect to microwave power. From the viewpoint of energy consumption, it may be possible to apply combined and microwave heating to humidity control systems that switch between adsorption and regeneration in short cycle times, if the conversion and absorption efficiencies of the

  9. Crafting tolerance

    DEFF Research Database (Denmark)

    Kirchner, Antje; Freitag, Markus; Rapp, Carolin

    2011-01-01

    Ongoing changes in social structures, orientation, and value systems confront us with the growing necessity to address and understand transforming patterns of tolerance as well as specific aspects, such as social tolerance. Based on hierarchical analyses of the latest World Values Survey (2005......–08) and national statistics for 28 countries, we assess both individual and contextual aspects that influence an individual's perception of different social groupings. Using a social tolerance index that captures personal attitudes toward these groupings, we present an institutional theory of social tolerance. Our...

  10. Innovative PCM-desiccant packet to provide dry microclimate and improve performance of cooling vest in hot environment

    International Nuclear Information System (INIS)

    Itani, Mariam; Ghaddar, Nesreen; Ghali, Kamel

    2017-01-01

    Highlights: • A PCM and desiccant packet is proposed for use in personal cooling vest to keep dry air next to skin. • A PCM-Desiccant model for clothed heated wet cylinder is developed and validated experimentally. • The microclimate air temperature was 0.6 °C higher in PCM-Desiccant case compared to PCM-only case. • Microclimate humidity content decreased due to desiccant from 21.23 to 19.74 g/kg dry air. • PCM melted fraction increased due to desiccant from 0.24 to 0.5. - Abstract: A novel combination of phase change material (PCM) and a solid desiccant layer is proposed for the aim of maintaining dry cool microclimate air adjacent to wet warm skin and hence improve PCM performance in cooling vests used in hot humid environment. A fabric-PCM-Desiccant model is developed to predict the temperature and moisture content of the microclimate air layer in the presence of a PCM-Desiccant packet. The developed model is validated through experiments conducted on a wet clothed heated cylinder for the two cases of using (i) a PCM only packet and (ii) a PCM-Desiccant packet. Microclimate air temperatures and humidity content as well as PCM and desiccant temperatures were measured experimentally and were compared with predicted values by the fabric-PCM-Desiccant model. Good agreement was attained with a maximum relative error of 7% in measured temperatures. A decrease is observed in the humidity content of the microclimate air in the presence of the solid desiccant from 21.23 g/kg dry air to 19.74 g/kg dry air and an increase in the melted fraction of the PCM at the end of the experiment from 0.24 to 0.5.

  11. Improvement of embryogenesis and regeneration by air desiccation in maize (zea mays l.)

    International Nuclear Information System (INIS)

    Morshed, S.; Siddique, B.; Islam, S.M.S.

    2016-01-01

    Calli derived from mature embryos of four maize varieties viz. Mohar, Khoi bhutta, Barnali and Shuvra were cultured in three basal media for regeneration (MS, N6 and 6N1) which individually supplemented with four hormonal combinations e.g. H1 = BAP 0.5 mg/l + IAA 0.0 mg/l, H2 = BAP 1.0 mg/l + IAA 0.5 mg/l, H3 = BAP 1.5 mg/l + IAA 1.0 mg/l and H4 = BAP 2.0 mg/l + IAA 1.5 mg/l. The highest frequency of regeneration was found with MS + H2 (41.35%) in Mohar, while the lowest was 17.37% in 6N1 + H1 for Barnali. To enhance the capability of regeneration, calli were pretreated by ten groups (6, 12, 18, 24, 30, 36, 42, 48, 54 and 60 h) of desiccation periods. The degrees of desiccation of pretreated calli were determined; and it was ranged as 6.23 to 40.52% where Khoi bhutta showed the maximum value at 60 h desiccation. The callus of Mohar exhibited the highest frequency of regeneration (75.24%) which desiccated for 48 h; and it was around 2 fold higher than the control. The variety Khoi bhutta showed the lowest efficiency (31.80%) when the callus was desiccated for 6 h. All the varieties performed their maximum regeneration at different periods, where 36, 30 and 42 h desiccation were optimal for Barnali (67.23%), Khoi bhutta (68.03%) and Shuvra (73.98%) accordingly. Analysis of variance (ANOVA) showed significant effect of maize genotype and periods of partial air desiccation to enhance regeneration at p<0.05 level. (author)

  12. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults

    Directory of Open Access Journals (Sweden)

    Jean-Francois Ferveur

    2018-02-01

    Full Text Available Background The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. Methods The link between desiccation resistance and CH profile remains unclear, so we tested (1 experimentally selected desiccation-resistant lines, (2 transgenic flies with altered desaturase expression and (3 natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. Results We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. Discussion We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.

  13. A desiccant-enhanced evaporative air conditioner: Numerical model and experiments

    International Nuclear Information System (INIS)

    Woods, Jason; Kozubal, Eric

    2013-01-01

    Highlights: ► We studied a new process combining liquid desiccants and evaporative cooling. ► We modeled the process using a finite-difference numerical model. ► We measured the performance of the process with experimental prototypes. ► Results show agreement between model and experiment of ±10%. ► Results add confidence to previous modeled energy savings estimates of 40–85%. - Abstract: This article presents modeling and experimental results on a recently proposed liquid desiccant air conditioner, which consists of two stages: a liquid desiccant dehumidifier and an indirect evaporative cooler. Each stage is a stack of channel pairs, where a channel pair is a process air channel separated from an exhaust air channel with a thin plastic plate. In the first stage, a liquid desiccant film, which lines the process air channels, removes moisture from the air through a porous hydrophobic membrane. An evaporating water film wets the surface of the exhaust channels and transfers the enthalpy of vaporization from the liquid desiccant into an exhaust airstream, cooling the desiccant and enabling lower outlet humidity. The second stage is a counterflow indirect evaporative cooler that siphons off and uses a portion of the cool-dry air exiting the second stage as the evaporative sink. The objectives of this article are to (1) present fluid-thermal numerical models for each stage, (2) present experimental results of prototypes for each stage, and (3) compare the modeled and experimental results. Several experiments were performed on the prototypes over a range of inlet temperatures and humidities, process and exhaust air flow rates, and desiccant concentrations and flow rates. The model predicts the experiments within ±10%.

  14. A Liquid Desiccant Cycle for Dehumidification and Fresh Water Supply in Controlled Environment Agriculture

    KAUST Repository

    Lefers, Ryan

    2017-12-01

    Controlled environment agriculture allows the production of fresh food indoors from global locations and contexts where it would not otherwise be possible. Growers in extreme climates and urban areas produce food locally indoors, saving thousands of food import miles and capitalizing upon the demand for fresh, tasty, and nutritious food. However, the growing of food, both indoors and outdoors, consumes huge quantities of water - as much as 70-80% of global fresh water supplies. The utilization of liquid desiccants in a closed indoor agriculture cycle provides the possibility of capturing plant-transpired water vapor. The regeneration/desalination of these liquid desiccants offers the potential to recover fresh water for irrigation and also to re-concentrate the desiccants for continued dehumidification. Through the utilization of solar thermal energy, the process can be completed with a very small to zero grid-energy footprint. The primary research in this dissertation focused on two areas: the dehumidification of indoor environments utilizing liquid desiccants inside membrane contactors and the regeneration of these desiccants using membrane distillation. Triple-bore PVDF hollow fiber membranes yielded dehumidification permeance rates around 0.25-0.31 g m-2 h-1 Pa-1 in lab-scale trials. A vacuum membrane distillation unit utilizing PVDF fibers yielded a flux of 2.8-7.0 kg m-2 hr-1. When the membrane contactor dehumidification system was applied in a bench scale controlled environment agriculture setup, the relative humidity levels responded dynamically to both plant transpiration and dehumidification rates, reaching dynamic equilibrium levels during day and night cycles. In addition, recovered fresh water from distillation was successfully applied for irrigation of crops and concentrated desiccants were successfully reused for dehumidification. If applied in practice, the liquid desiccant system for controlled environment agriculture offers the potential to reduce

  15. MAPK-mediated regulation of growth and essential oil composition in a salt-tolerant peppermint (Mentha piperita L.) under NaCl stress.

    Science.gov (United States)

    Li, Zhe; Wang, Wenwen; Li, Guilong; Guo, Kai; Harvey, Paul; Chen, Quan; Zhao, Zhongjuan; Wei, Yanli; Li, Jishun; Yang, Hetong

    2016-11-01

    Peppermint (Mentha × piperita L.) is an important and commonly used flavoring agent worldwide, and salinity is a major stress that limits plant growth and reduces crop productivity. This work demonstrated the metabolic responses of essential oil production including the yield and component composition, gene expression, enzyme activity, and protein activation in a salt-tolerant peppermint Keyuan-1 with respect to NaCl stress. Our results showed that Keyuan-1 maintained normal growth and kept higher yield and content of essential oils under NaCl stress than wild-type (WT) peppermint.Gas chromatography-mass spectrometry (GC-MS) and qPCR results showed that compared to WT seedlings, a 150-mM NaCl stress exerted no obvious changes in essential oil composition, transcriptional level of enzymes related to essential oil metabolism, and activity of pulegone reductase (Pr) in Keyuan-1 peppermint which preserved the higher amount of menthol and menthone as well as the lower content of menthofuran upon the 150-mM NaCl stress. Furthermore, it was noticed that a mitogen-activated protein kinase (MAPK) protein exhibited a time-dependent activation in the Keyuan-1 peppermint and primarily involved in the modulation of the essential oil metabolism in the transcript and enzyme levels during the 12-day treatment of 150 mM NaCl. In all, our data elucidated the effect of NaCl on metabolic responses of essential oil production, and demonstrated the MAPK-dependent regulation mechanism of essential oil biosynthesis in the salt-tolerant peppermint, providing scientific basis for the economic and ecological utilization of peppermint in saline land.

  16. A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria.

    Science.gov (United States)

    Kuhne, S; Strieth, D; Lakatos, M; Muffler, K; Ulber, R

    2014-12-20

    Cyanobacteria offer great potential for the production of biotechnological products for pharmaceutical applications. However, these organisms can only be cultivated efficiently using photobioreactors (PBR). Under submerged conditions though, terrestrial cyanobacteria mostly grow in a suboptimal way, which makes this cultivation-technique uneconomic and thus terrestrial cyanobacteria unattractive. Therefore, a novel emersed photobioreactor (ePBR) has been developed, which can provide the natural conditions for these organisms. Proof of concept as well as first efficiency tests are conducted using the terrestrial cyanobacteria Trichocoleus sociatus as a model organism. The initial maximum growth rate of T. sociatus (0.014±0.001h(-1)) in submerged systems could be increased by 35%. Furthermore, it is now possible to control desiccation-correlated product formation and related metabolic processes. This is shown for the production of extracellular polymeric substances (EPS). In this case the yield of 0.068±0.006g of EPS/g DW could be increased by more than seven times. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Isolation of high-salinity-tolerant bacterial strains, Enterobacter sp., Serratia sp., Yersinia sp., for nitrification and aerobic denitrification under cyanogenic conditions.

    Science.gov (United States)

    Mpongwana, N; Ntwampe, S K O; Mekuto, L; Akinpelu, E A; Dyantyi, S; Mpentshu, Y

    2016-01-01

    Cyanides (CN(-)) and soluble salts could potentially inhibit biological processes in wastewater treatment plants (WWTPs), such as nitrification and denitrification. Cyanide in wastewater can alter metabolic functions of microbial populations in WWTPs, thus significantly inhibiting nitrifier and denitrifier metabolic processes, rendering the water treatment processes ineffective. In this study, bacterial isolates that are tolerant to high salinity conditions, which are capable of nitrification and aerobic denitrification under cyanogenic conditions, were isolated from a poultry slaughterhouse effluent. Three of the bacterial isolates were found to be able to oxidise NH(4)-N in the presence of 65.91 mg/L of free cyanide (CN(-)) under saline conditions, i.e. 4.5% (w/v) NaCl. The isolates I, H and G, were identified as Enterobacter sp., Yersinia sp. and Serratia sp., respectively. Results showed that 81% (I), 71% (G) and 75% (H) of 400 mg/L NH(4)-N was biodegraded (nitrification) within 72 h, with the rates of biodegradation being suitably described by first order reactions, with rate constants being: 4.19 h(-1) (I), 4.21 h(-1) (H) and 3.79 h(-1) (G), respectively, with correlation coefficients ranging between 0.82 and 0.89. Chemical oxygen demand (COD) removal rates were 38% (I), 42% (H) and 48% (G), over a period of 168 h with COD reduction being highest at near neutral pH.

  18. Efficiency Evaluation of Five-Phase Outer-Rotor Fault-Tolerant BLDC Drives under Healthy and Open-Circuit Faulty Conditions

    Directory of Open Access Journals (Sweden)

    ARASHLOO, R. S.

    2014-05-01

    Full Text Available Fault tolerant motor drives are an interesting subject for many applications such as automotive industries and wind power generation. Among different configurations of these systems, five-phase BLDC drives are gaining more importance which is because of their compactness and high efficiency. Due to replacement of field windings by permanent magnets in their rotor structure, the main sources of power losses in these drives are iron (core losses, copper (winding losses, and inverter unit (semiconductor losses. Although low amplitude of power losses in five-phase BLDC drives is an important aspect for many applications, but their efficiency under faulty conditions is not considered in previous studies. In this paper, the efficiency of an outer-rotor five phase BLDC drive is evaluated under normal and different faulty conditions. Open-circuit fault is considered for one, two adjacent and two non-adjacent faulty phases. Iron core losses are calculated via FEM simulations in Flux-Cedrat software, and moreover, inverter losses and winding copper losses are simulated in MATLAB� environment. Experimental evaluations are conducted to evaluate the efficiency of the entire BLDC drive which verifies the theoretical developments.

  19. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses.

    Science.gov (United States)

    Raikwar, Shailendra; Srivastava, Vineet K; Gill, Sarvajeet S; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress conditions. Here, we report the in silico analysis of novel stress inducible promoter of Oryza sativa XPB2 (OsXPB2). The in vivo validation of functionality/activity of OsXPB2 promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. The present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration, or cold) and hormone (Auxin, ABA, or MeJA) induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA, or ABA responsive, respectively. Functional analysis was done by Agrobacterium-mediated transient assay using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present findings suggest that OsXPB2 promoter is a multi-stress inducible promoter and has potential applications in sustainable crop production under abiotic stresses by regulating desirable pattern of gene expression.

  20. STABILITY OF CO2 ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS

    International Nuclear Information System (INIS)

    Gao, Peter; Hu, Renyu; Li, Cheng; Yung, Yuk L.; Robinson, Tyler D.

    2015-01-01

    We investigate the chemical stability of CO 2 -dominated atmospheres of desiccated M dwarf terrestrial exoplanets using a one-dimensional photochemical model. Around Sun-like stars, CO 2 photolysis by Far-UV (FUV) radiation is balanced by recombination reactions that depend on water abundance. Planets orbiting M dwarf stars experience more FUV radiation, and could be depleted in water due to M dwarfs’ prolonged, high-luminosity pre-main sequences. We show that, for water-depleted M dwarf terrestrial planets, a catalytic cycle relying on H 2 O 2 photolysis can maintain a CO 2 atmosphere. However, this cycle breaks down for atmospheric hydrogen mixing ratios <1 ppm, resulting in ∼40% of the atmospheric CO 2 being converted to CO and O 2 on a timescale of 1 Myr. The increased O 2 abundance leads to high O 3 concentrations, the photolysis of which forms another CO 2 -regenerating catalytic cycle. For atmospheres with <0.1 ppm hydrogen, CO 2 is produced directly from the recombination of CO and O. These catalytic cycles place an upper limit of ∼50% on the amount of CO 2 that can be destroyed via photolysis, which is enough to generate Earth-like abundances of (abiotic) O 2 and O 3 . The conditions that lead to such high oxygen levels could be widespread on planets in the habitable zones of M dwarfs. Discrimination between biological and abiotic O 2 and O 3 in this case can perhaps be accomplished by noting the lack of water features in the reflectance and emission spectra of these planets, which necessitates observations at wavelengths longer than 0.95 μm

  1. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  2. Soil Desiccation Techniques Strategies For Immobilization Of Deep Vadose Contaminants At The Hanford Central Plateau

    International Nuclear Information System (INIS)

    Benecke, M.W.; Chronister, G.B.; Truex, M.J.

    2012-01-01

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  3. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.

    Science.gov (United States)

    Tu, Y D; Wang, R Z; Ge, T S; Zheng, X

    2017-01-12

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  4. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun

    2015-12-24

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  5. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    Directory of Open Access Journals (Sweden)

    Arjun eChennu

    2015-12-01

    Full Text Available Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 minutes after rehydration chlorophyll a concentrations increased 2-5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min – 48 h involved migration of the reactivated cyanobacteria towards the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and aquatic origin. However the response of upward migration and its triggering factor appears to be mat-specific and likely linked to other factors.

  6. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products.

    Science.gov (United States)

    Hansen, Lisbeth Truelstrup; Vogel, Birte Fonnesbech

    2011-03-15

    The foodborne bacterial pathogen, Listeria monocytogenes, commonly contaminates foods during processing, where the microorganisms are potentially subjected to low relative humidity (RH) conditions for extended periods of time. The objective of this study was to examine survival during desiccation (43% RH and 15 °C) of biofilm L. monocytogenes N53-1 cells on stainless steel coupons and to assess subsequent transfer to salmon products. Formation of static biofilm (2 days at 100% RH and 15 °C) prior to desiccation for 23 days significantly (Pbiofilm cells also desiccated in low salt, indicating the protective effect of the biofilm matrix. Osmoadaptation of cells in 5% NaCl before formation of the static biofilm significantly (Pbiofilm cells was significantly (Pbiofilm bacteria, however, as biofilm formation enhanced desiccation survival more bacteria were still transferred to smoked and fresh salmon. In conclusion, the current work shows the protective effect of biofilm formation, salt and osmoadaptation on the desiccation survival of L. monocytogenes, which in turn increases the potential for cross-contamination during food processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Handling zone dividing method in packed bed liquid desiccant dehumidification/regeneration process

    International Nuclear Information System (INIS)

    Liu, X.H.; Jiang, Y.

    2009-01-01

    Dehumidifier and regenerator are the most significant components in liquid desiccant air-conditioning systems, in which air directly contacts liquid desiccant and heat and mass transfer process occurs between the two fluids. Heat transfer process and mass transfer process within dehumidifier/regenerator influence each other and should not be separately considered. Based on the previous reachable handling region analysis, a zonal method is proposed in present study. Four zones are divided in the psychrometric chart according to the relative position of inlet air to inlet desiccant including two dehumidification zones, zone A and zone D, and two regeneration zones, zone B and zone C. In zone A or C, mass transfer is key process, and counter-flow configuration has the best mass transfer performance and parallel-flow is the poorest in the same operating conditions. In zone B or D, heat transfer is governing process, parallel-flow has the best mass transfer performance and counter-flow is the poorest. In order to obtain better mass transfer performance, liquid desiccant should be cooled (in zone A) rather than air (in zone D) in dehumidifier, and liquid desiccant should be heated (in zone C) rather than air (in zone B) in regenerator. The divided zones and the corresponding zonal properties will be helpful to the design and optimization of dehumidifiers and regenerators.

  8. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Alnajjar, Mohammad Ahmad

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  9. Tolerância de juvenis do pampo Trachinotus marginatus (Teleostei, Carangidae ao choque agudo de salinidade em laboratório Acute salinity tolerance of juvenile pompano Trachinotus marginatus (Teleostei, Carangidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Luís André Sampaio

    2003-08-01

    Full Text Available O pampo Trachinotus marginatus é uma espécie com potencial para piscicultura, mas a sua utilização pode ser limitada pelas variações de salinidade comuns em estuários ou em ambientes super-salinos. Este trabalho foi realizado com o objetivo de determinar a tolerância à salinidade de juvenis de T. marginatus em laboratório. Foram testadas 12 salinidades em duplicata (0, 6, 8, 10, 15, 25, 45, 55, 58, 61, 65 e 75‰ e um tratamento controle (35‰. Dez peixes (comprimento total: 20,7±2,3mm e peso úmido: 427±113mg foram colocados em tanques plásticos de 3L. A temperatura da água foi mantida em 24ºC com um banho termostatisado, aeração constante e, a cada 24 horas, os meios experimentais foram completamente renovados. Após 96 horas de exposição, as salinidades letais médias inferior e superior, com os respectivos intervalos de confiança (IC 95%, foram estimadas em 6,99‰ (IC 95% = 6,86-7,13‰ e 58,50‰ (IC 95% = 56,81-60,24‰, respectivamente. Estes resultados permitem caracterizar esta espécie como eurialina. O estudo da influência da salinidade sobre T. marginatus deve ser aprofundado, buscando avaliar principalmente os efeitos sobre o crescimento, de modo que seja possível determinar o potencial do seu cultivo em ambientes com diferentes salinidades.The pompano Trachinotus marginatus shows good potential for aquaculture, but the success of its culture might be limited by the salinity fluctuations common in estuaries or in hyper-saline environments. The objective of this work was to establish the salinity tolerance of juvenile T. marginatus under laboratory conditions. Twelve salinities (0, 6, 8, 10, 15, 25, 45, 55, 58, 61, 65, and 75‰ plus a control (35‰ were tested in duplicate. Groups of ten fish (total length: 20.7±2,3mm and wet weight: 427±113mg were placed in plastic tanks with 3L of water. A water bath was set to control the temperature at 24ºC, water was continuously aerated, and completely exchanged

  10. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems

    International Nuclear Information System (INIS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-01-01

    Highlights: • Studying three two-stage solid desiccant cooling systems using Maisotsenko cooler. • Proposing precooling to improve two-stage desiccant systems’ COP for humid climates. • Performing transient analysis for a two-stage solid desiccant cooler in UAE. • Optimizing daily performance of a two-stage solid desiccant cooler for UAE. - Abstract: Renewable energy is one of the most promising solutions to both energy and global warming crisis. Energy consumption can be minimized considerably by utilizing solar energy in air conditioning systems operation. One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, conventional desiccant air conditioning systems have a relatively low coefficient of performance (COP). In consequence, two-stage desiccant air-conditioning systems are proposed to improve desiccant air conditioning systems’ COP. Moreover, a recently commercialized cooling method named Maisotsenko cooling cycle which is capable of cooling air near to its dew point temperature is considered to be integrated within the proposed multi-stage desiccant cooling systems. In this paper, three new two-stage desiccant air conditioning systems incorporating Maisotsenko cooling cycle are proposed and investigated in details for hot and humid climates such as UAE. Furthermore, air precooling is considered to improve two stage desiccant air conditioning systems’ COP. Moreover, full transient analysis and optimization are carried out in UAE within June–October. The proposed system can minimize the required solar heating during noon time as the ambient air dry bulb temperature rises. Average COP of the system during electricity load peak hours (10:00–14:00) for all five considered and combined months is 1.77. Average rate of heat input required to operate the system and average building cooling load are determined to be 100.3 kW and 46.2 kW, respectively. Therefore, system average COP is computed to be 0.46.

  11. Changes in thermo-tolerance and survival under simulated gastrointestinal conditions of Salmonella Enteritidis PT4 and Salmonella Typhimurium PT4 in chicken breast meat after exposure to sequential stresses.

    Science.gov (United States)

    Melo, Adma Nadja Ferreira de; Souza, Geany Targino de; Schaffner, Donald; Oliveira, Tereza C Moreira de; Maciel, Janeeyre Ferreira; Souza, Evandro Leite de; Magnani, Marciane

    2017-06-19

    This study assessed changes in thermo-tolerance and capability to survive to simulated gastrointestinal conditions of Salmonella Enteritidis PT4 and Salmonella Typhimurium PT4 inoculated in chicken breast meat following exposure to stresses (cold, acid and osmotic) commonly imposed during food processing. The effects of the stress imposed by exposure to oregano (Origanum vulgare L.) essential oil (OVEO) on thermo-tolerance were also assessed. After exposure to cold stress (5°C for 5h) in chicken breast meat the test strains were sequentially exposed to the different stressing substances (lactic acid, NaCl or OVEO) at sub-lethal amounts, which were defined considering previously determined minimum inhibitory concentrations, and finally to thermal treatment (55°C for 30min). Resistant cells from distinct sequential treatments were exposed to simulated gastrointestinal conditions. The exposure to cold stress did not result in increased tolerance to acid stress (lactic acid: 5 and 2.5μL/g) for both strains. Cells of S. Typhimurium PT4 and S. Enteritidis PT4 previously exposed to acid stress showed higher (pthermo-tolerance in both strains. The cells that survived the sequential stress exposure (resistant) showed higher tolerance (pthermo-tolerance and enhance the survival under gastrointestinal conditions of S. Enteritidis PT4 and S. Typhimurium PT4. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cloning and baculovirus expression of a desiccation stress gene from the beetle, Tenebrio molitor.

    Science.gov (United States)

    Graham, L A; Bendena, W G; Walker, V K

    1996-02-01

    The cDNA sequence encoding a novel desiccation stress protein (dsp28) found in the hemolymph of the common yellow mealworm beetle, Tenebrio molitor, has been determined. The sequence encodes a 225 amino acid protein containing a 20 amino acid signal peptide. Dsp28 shows no significant similarity to any known nucleic acid or protein sequence. Levels of dsp28 mRNA were found to increase approx 5-fold following desiccation. Dsp28 cDNA has been cloned into a baculovirus expression vector and the expressed protein was compared to native dsp28. Both dsp28 expressed by recombinant baculovirus and native dsp28 are glycosylated and N-terminally processed. Although dsp28 is induced by cold in addition to desiccation stress, it does not contribute to the freezing point depression (thermal hysteresis) observed in Tenebrio hemolymph.

  13. Absorber and regenerator models for liquid desiccant air conditioning systems. Validation and comparison using experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Krause, M.; Heinzen, R.; Jordan, U.; Vajen, K. [Kassel Univ., Inst. of Thermal Engineering, Kassel (Germany); Saman, W.; Halawa, E. [Sustainable Energy Centre, Univ. of South Australia, Mawson Lakes, Adelaide (Australia)

    2008-07-01

    Solar assisted air conditioning systems using liquid desiccants represent a promising option to decrease high summer energy demand caused by electrically driven vapor compression machines. The main components of liquid desiccant systems are absorbers for dehumidifying and cooling of supply air and regenerators for concentrating the desiccant. However, high efficient and validated reliable components are required and the design and operation have to be adjusted to each respective building design, location, and user demand. Simulation tools can help to optimize component and system design. The present paper presents new developed numerical models for absorbers and regenerators, as well as experimental data of a regenerator prototype. The models have been compared with a finite-difference method model as well as experimental data. The data are gained from the regenerator prototype presented and an absorber presented in the literature. (orig.)

  14. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of energy costs...... and CO2 emissions. The electricity consumption for auxiliaries in the DDC system is higher than in the chiller-based systems. The number of commercial-size DPC units required to cover the cooling load during the whole period is high: 8 in Copenhagen and 12 in Venice....

  15. Tolerância ao alumínio em cultivares de aveia branca sob cultivo hidropônico Tolerance to the aluminum in oat cultivars under hydroponic culture

    Directory of Open Access Journals (Sweden)

    José Antonio Gonzalez da Silva

    2007-01-01

    Full Text Available O emprego do cultivo hidropônico para avaliar a tolerância à toxicidade pelo alumínio em genótipos de aveia pode ser feito por meio da medida da retomada do crescimento de raiz. Avaliaram-se 12 cultivares de aveia branca indicadas para o cultivo no Sul do Brasil com o intuito de caracterizar a tolerância ao alumínio, de maneira a ser estrategicamente recomendadas e/ou incluídas em blocos de cruzamento na obtenção de constituições genéticas de elevado potencial produtivo e tolerante ao íon metálico. Foram utilizadas doses de 10, 15 e 20 mg L-1 de alumínio na solução hidropônica e o delineamento experimental adotado foi o completamente casualizado, com três repetições, seguindo o esquema fatorial (12 x 3. As doses empregadas são altamente eficientes na identificação de genótipos de aveia tolerantes e sensíveis ao alumínio tóxico. As cultivares UPF 16, URS 21, UFRGS 14, UPF 19 e UFRGS 17 expressam tolerância.The use of hidroponic culture to evaluate tolerance to aluminum toxicity in oat genotypes can be performed by measuring root regrowth, allowing phenotypically to discriminate tolerant genetic constitutions sensitivity. Twelve white oat cultivars indicated for cultivation in Southern Brazil were evaluated aiming at to characterize their aluminum tolerance, in order to use them as parents in crosses or to recommend them for in cultivation regions. Aluminum concentration of 10, 15 and 20 mg L-1 were used in the hydroponic solution arranged in complete randomized blocks with three replications in 12 x 3 factorial designs. Concentrations of 10, 15 and 20 mg L-1 were highly efficient for the identification of tolerant and sensitive oat genotypes. Cultivars UPF 16, URS 21, UFRGS 14, UPF 19 and UFRGS 17 showed aluminum.

  16. Mass transfer performance comparison of two commonly used liquid desiccants: LiBr and LiCl aqueous solutions

    International Nuclear Information System (INIS)

    Liu, X.H.; Yi, X.Q.; Jiang, Y.

    2011-01-01

    Mass transfer performance of two commonly used liquid desiccants, LiBr aqueous solution and LiCl aqueous solution, is compared in this paper on the basis of the same solution temperature and surface vapor pressure. According to the analysis of the analytical solutions of heat and mass transfer processes, the key performance influencing factors are heat capacity ratio of air to desiccant m * and mass transfer unit NTU m . The heat capacities of the two liquid desiccants are about the same at same volumetric flow rate, and LiBr solution has higher density and smaller specific heat capacity. The variance of mass transfer unit with different operating conditions and liquid desiccants are derived based on the experimental results. In the condition of the same desiccant mass flow rate, the dehumidification performance of LiCl solution is better, and the regeneration performance of LiBr solution is a little better or almost the same as that of LiCl solution. In the condition of the same desiccant volumetric flow rate, the dehumidification performance of LiCl solution is a little better or about the same compared with LiBr solution, and the regeneration performance of LiBr solution is better. The COPs of the liquid desiccant systems using these two desiccants are similar; while LiCl solution costs 18% lower than LiBr solution at current Chinese price.

  17. The regeneration of a liquid desiccant using direct contact membrane distillation to unlock the potential of coastal desert agriculture

    KAUST Repository

    Cribbs, Kimberly

    2018-01-01

    desiccant solution has been on configurations that release water vapor back to the atmosphere. Studies have shown that the amount of water captured by the liquid desiccant when used to dehumidify a greenhouse can supply a significant amount of the water

  18. Om tolerance

    DEFF Research Database (Denmark)

    Huggler, Jørgen

    2007-01-01

    Begrebet tolerance og dets betydninger diskuteres med henblik på en tydeliggørelse af begrebets forbindelse med stat, religion, ytringsfrihed, skeptisk erkendelsesteori, antropologi og pædagogik.......Begrebet tolerance og dets betydninger diskuteres med henblik på en tydeliggørelse af begrebets forbindelse med stat, religion, ytringsfrihed, skeptisk erkendelsesteori, antropologi og pædagogik....

  19. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products

    DEFF Research Database (Denmark)

    Hansen, Lisbeth Truelstrup; Vogel, Birte Fonnesbech

    2011-01-01

    The foodborne bacterial pathogen, Listeria monocytogenes, commonly contaminates foods during processing, where the microorganisms are potentially subjected to low relative humidity (RH) conditions for extended periods of time. The objective of this study was to examine survival during desiccation...... (43% RH and 15°C) of biofilm L. monocytogenes N53-1 cells on stainless steel coupons and to assess subsequent transfer to salmon products. Formation of static biofilm (2days at 100% RH and 15°C) prior to desiccation for 23days significantly (P...

  20. Effects of streptomycin, desiccation, and UV radiation on ice nucleation by Pseudomonas viridiflava

    International Nuclear Information System (INIS)

    Anderson, J.A.; Ashworth, E.N.

    1986-01-01

    Streptomycin (100 micrograms per milliliter), desiccation (over CaSO 4 ), and ultraviolet radiation (4500 microwatts per square centimeter at 254 nonometers for 15 minutes) reduced ice nucleation activity by Pseudomonas viridiflava strain W-1 as determined by freezing drops of the bacterial suspensions. Highest residual ice nucleation activity by dead cells was obtained by desiccation, although no freezing above -3.5 0 C was detected. The rate and extent of loss of ice nucleation activity following streptomycin and ultraviolet treatment was affected by preconditioning temperature. At 21 0 C and above, loss of activity by dead cells was rapid and irreversible

  1. Energy performance of an innovative liquid desiccant dehumidification system with a counter-flow heat and mass exchanger using potassium formate

    DEFF Research Database (Denmark)

    Jradi, Muhyiddine; Riffat, Saffa

    2014-01-01

    An innovative micro-scale liquid desiccant dehumidification system is numerically investigated. The liquid desiccant dehumidification unit employs a counter-flow low-cost and efficient heat and mass exchange core, improving the thermal performance and eliminating desiccant carryover...... that the dehumidifier effectiveness is directly proportional to the intake air temperature, intake air relative humidity and liquid desiccant flow rate where the effectiveness is inversely proportional to the intake air velocity and the heat exchanger air channel height....

  2. Experimental analysis and regression prediction of desiccant wheel behavior in high temperature heat pump and desiccant wheel air-conditioning system

    DEFF Research Database (Denmark)

    Sheng, Ying; Zhang, Yufeng; Sun, Yuexia

    2014-01-01

    The objectives of this study are to evaluate the performance of desiccant wheel (DW) in the running system and obtain the useful data for practical application. The combined influences of multiple variables on the performance of desiccant wheel are investigated based on evaluating the indexes...... of moisture removal capacity, dehumidification effectiveness, dehumidification coefficient of performance and sensible energy ratio. The results show that higher effect on the dehumidification is due to the regeneration temperature and outdoor air humidity ratio rather than the outdoor air temperature...... and the ratio between regeneration and process air flow rates. A simple method based on multiple linear regression theory for predicting the performance of the wheel has been proposed. The predicted values and the experimental data are compared and good agreements are obtained. Regression models are established...

  3. Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses

    Directory of Open Access Journals (Sweden)

    Shailendra eRaikwar

    2015-12-01

    Full Text Available Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved protein present in different organisms, including plants. Availability of few efficient promoters for gene expression in plants provoked us to study the promoter of XPB for better understanding of gene regulation under stress The analysis of promoter sequence from plant genome is important in understanding the gene regulation. Hereconditions. Here, we report the in silico analysis of novel stress inducible promoter of rice Oryza sativa OsXPB2 (OsXPB2. gene is reported. The in vivo validation of functionality/activity of novel stress inducible promoter of rice OsXPB2 gene promoter under abiotic and hormonal stress conditions was performed by Agrobacterium-mediated transient assay in tobacco leaves using OsXPB2::GUS chimeric construct. Our resultsThe present research revealed that OsXPB2 promoter contains cis-elements accounting for various abiotic stresses (salt, dehydration or cold and hormone (Auxin, ABA or MeJA induced GUS expression/activity in the promoter-reporter assay. The promoter region of OsXPB2 contains CACG, GTAACG, CACGTG, CGTCA CCGCCGCGCT cis acting-elements which are reported to be salt, dehydration, cold, MeJA or ABA responsive, respectively. Functional analysis was done by Agrobacterium-transient assays using agroinfiltration in tobacco leaves, followed by GUS staining and fluorescence quantitative analyses. The results revealed high induction of GUS activity under multiple abiotic stresses as compared to mock treated control. The present

  4. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change.

    Directory of Open Access Journals (Sweden)

    Apple Pui Yi Chui

    Full Text Available With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient, 30, 32°C] and salinity [33 psu (ambient, 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu could

  5. Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity.

    Science.gov (United States)

    Fu, Xing-Zheng; Tong, Ya-Hua; Zhou, Xue; Ling, Li-Li; Chun, Chang-Pin; Cao, Li; Zeng, Ming; Peng, Liang-Zhi

    2017-09-20

    Plant metal tolerance proteins (MTPs) play important roles in heavy metal homeostasis; however, related information in citrus plants is limited. Citrus genome sequencing and assembly have enabled us to perform a systematic analysis of the MTP gene family. We identified 12 MTP genes in sweet orange, which we have named as CitMTP1 and CitMTP3 to CitMTP12 based on their sequence similarity to Arabidopsis thaliana MTPs. The CitMTPs were predicted to encode proteins of 864 to 2556 amino acids in length that included 4 to 6 putative transmembrane domains (TMDs). Furthermore, all the CitMTPs contained a highly conserved signature sequence encompassing the TMD-II and the start of the TMD-III. Phylogenetic analysis further classified the CitMTPs into Fe/Zn-MTP, Mn-MTP, and Zn-MTP subgroups, which coincided with the MTPs of A. thaliana and rice. The closely clustered CitMTPs shared a similar gene structure. Expression analysis indicated that most CitMTP transcripts were upregulated to various extents under heavy metal stress. Among these, CitMTP5 in the roots and CitMTP11 in the leaves during Zn stress, CitMTP8 in the roots and CitMTP8.1 in the leaves during Mn stress, CitMTP12 in the roots and CitMTP1 in the leaves during Cu stress, and CitMTP11 in the roots and CitMTP1 in the leaves during Cd stress showed the highest extent of upregulation. These findings are suggestive of their individual roles in heavy metal detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Performance investigation of solid desiccant evaporative cooling system configurations in different climatic zones

    International Nuclear Information System (INIS)

    Ali, Muzaffar; Vukovic, Vladimir; Sheikh, Nadeem Ahmed; Ali, Hafiz M.

    2015-01-01

    Highlights: • Five configurations of a DEC system are analyzed in five climate zones. • DEC system model configurations are developed in Dymola/Modelica. • Performance analysis predicted a suitable DEC system configuration for each climate zone. • Results show that climate of Vienna, Sao Paulo, and Adelaide favors the ventilated-dunkle cycle. • While ventilation cycle configuration suits the climate of Karachi and Shanghai. - Abstract: Performance of desiccant evaporative cooling (DEC) system configurations is strongly influenced by the climate conditions and varies widely in different climate zones. Finding the optimal configuration of DEC systems for a specific climatic zone is tedious and time consuming. This investigation conducts performance analysis of five DEC system configurations under climatic conditions of five cities from different zones: Vienna, Karachi, Sao Paulo, Shanghai, and Adelaide. On the basis of operating cycle, three standard and two modified system configurations (ventilation, recirculation, dunkle cycles; ventilated-recirculation and ventilated-dunkle cycles) are analyzed in these five climate zones. Using an advance equation-based object-oriented (EOO) modeling and simulation approach, optimal configurations of a DEC system are determined for each climate zone. Based on the hourly climate data of each zone for its respective design cooling day, performance of each system configuration is estimated using three performance parameters: cooling capacity, COP, and cooling energy delivered. The results revealed that the continental/micro-thermal climate of Vienna, temperate/mesothermal climate of Sao Paulo, and dry-summer subtropical climate of Adelaide favor the use of ventilated-dunkle cycle configuration with average COP of 0.405, 0.89 and 1.01 respectively. While ventilation cycle based DEC configuration suits arid and semiarid climate of Karachi and another category of temperate/mesothermal climate of Shanghai with average COP of

  7. Evaluation of Salt Tolerance in Commercial Cultivars Seedlings and Native Genotypes of Pistachio (Pistacia vera L. under Controlled Conditions in Rafssanjan, Iran

    Directory of Open Access Journals (Sweden)

    Hamid Alipour

    2017-10-01

    Full Text Available Introduction: In Iran, main pistachio cultivation areas are located in the edge of desert. The major problem of these areas is the salinity of soil and irrigation water, which affects the growth and performance of plants and reduce yield. Material and methods: In the present study, the effects of salinity on growth characteristics and mineral contents of seedlings of seven pistachio cultivars and three genotypes (Akbari, Ahmad-Aghaei, Kaleh-Ghoochi, Fandoghi, Badami, Ebrahimi, Seyfadini and G1, G2 and G3 genotypes were evaluated. The study was conducted in split plot based on randomized complete block design in three replications. The main plots were salinity levels of the irrigation water (0.6, 15 and 30 dS/m by adding sodium chloride to tap water, and the sub plots were the pistachio cultivars. After germination of seeds in the lab, the seedlings were transplanted into new vases in the greenhouse. At 3rd leaf stage, the salinity treatments were imposed for a period of four months. At the end of the experiment, all samples were collected for growth and cation contents of shoots and roots and data were analyzed by analysis of variance and correlation method, using SAS statistical software and Duncan’s Multiple Range Test was employed at probability level of 5%. Results and discussions: The results showed that increasing salinity levels reduced stem, root and leaf dry weight as well as stem height and diameter. Salinity also caused a reduction in leaf number and leaf area. At the salinity level of 30 dS/m, dry weights of root and leaf decreased by more than 70%. The length and diameter of seedlings were decreased by 17.2 % and 37.9 % under the mentioned condition. According to the measured growth characteristics, Akbari and Kaleh-Ghoochi, considered as fast growing cultivars, while G3 genotype and Seyfoddini cultivar were considered as slow growing cultivars. By increasing salinity, sodium and calcium concentrations in root, stem and leaf

  8. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  9. The impact of land use on water loss and soil desiccation in the soil profile

    Science.gov (United States)

    Zhang, Jing; Wang, Li

    2018-02-01

    Farmlands have gradually been replaced by apple orchards in Shaanxi province, China, and there will be a risk of severe soil-water-storage deficit with the increasing age of the apple trees. To provide a theoretical basis for the sustainable development of agriculture and forestry in the Loess Plateau, soil water content in a 19-year-old apple orchard, a 9-year-old apple orchard, a cornfield and a wheat field in the Changwu Tableland was investigated at different depths from January to October 2014. The results showed that: (1) the soil moisture content is different across the soil profile—for the four plots, the soil moisture of the cornfield is the highest, followed by the 9-year-old apple orchard and the wheat field, and the 19-year-old apple orchard has the lowest soil moisture. (2) There are varying degrees of soil desiccation in the four plots: the most serious degree of desiccation is in the 19-year-old apple orchard, followed by the wheat field and the cornfield, with the least severe desiccation occurring in the 9-year-old apple orchard. Farmland should replace apple orchards for an indefinite period while there is an extremely desiccated soil layer in the apple orchard so as to achieve the purpose of sustainable development. It will be necessary to reduce tree densities, and to carry out other research, if development of the economy and ecology of Changwu is to be sustainable.

  10. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.

    This paper presents a numerical study of a regenerative indirect evaporative cooler, the so-called Dew Point Cooler (DPC), which is part of a Desiccant Cooling system that may both dehumidify and cool humid air. The DPC model is based on first principles using a 1D finite volume scheme...

  11. The effects of gamma irradiation on the volatile components of desiccated coconut during storage

    International Nuclear Information System (INIS)

    Acevedo, T.P.; Azanza, M.P.

    1989-11-01

    Flavor volatiles of desiccated and irradiated desiccated coconut stored for 24 weeks at room temperature were identified and quantified by gas chromatography. Chromatograms of fresh coconut meat revealed sone esters, ketones, aldehydes and alcohols which were responsible for its fruity odor. The oily odor of fresh coconut meat was attributed to minimal amount of delta lactones. Freshly desiccated coconut contained the same volatiles responsible for the fresh fruity odor but the concentration of the delta lactones was considerably higher. The newly irradiated desiccated coconut had the highest concentration of the delta lactones with other volatiles such as ethyl caproate, 1-hexanol, and caprylic aldehyde being also present. With storage, development of oily odor to rancid odor was noted due to increasing amount of delta lactones. Corresponding decrease of volatiles responsible for the fresh fruity odor was noted as shown by the chromatographic profiles of both irradiated and unirradiated samples. Odor deterioration was more pronounced in the irradiated sample. Significant changes in moisture content, peroxide and iodine values, and free acid were observed during storage. No significant changes, however were noted in percent oil, pH and water activity. Significant difference in color, taste and general acceptability were noted at the start of storage with odor changes becoming more evident only after 4 weeks of storage. (Auth.). 69 refs.; 15 figs.; 14 tabs.; Appendix p. 90-205

  12. Design of Air Ventilation System for Cargo Hold Vessels Using Solar Desiccant

    Directory of Open Access Journals (Sweden)

    Alam Baheramsyah

    2017-09-01

    Full Text Available One of the facilities and infrastructure of the vessel is the ventilation system in the cargo hold to maintain the quality. One attempt to avoid high moisture ratios is to provide a dry air supply by using desiccants. The purpose of this thesis is to design the system of air ventilation with solar desiccant by analysis the calculation with decrease air humidity ratio after passing desiccant rotor as well as fulfillment needs of heater and cooling system using heat of exhaust gas and seawater as well as fulfillment of electricity need using solar energy. From the result of analysis obtain to provide air supply in the cargo hold of 437.5 m3 / hour, the specification of rotor desiccant has a diameter of 550 mm with thickness 200 mm to decrease ratio of outside air humidity equal to 83.1% become 46.5%. Dehumidification air temperature of 47.7oC will be lowered to 35oC by using the sea water cooling media. As for the reactivation air heater requirement of 24.292 kW would be to fulfilled by utilizing the exhaust power of 498.12 kW. And for the electric power needs of the syetm is 34,488 wp will be supplied from the total solar module is 33 units with 345 wp per-capacity.

  13. Experimental performance study of a proposed desiccant based air conditioning system.

    Science.gov (United States)

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  14. Phenotypic differentiation of species from Aspergillus section Flavi on neutral red desiccated coconut agar

    DEFF Research Database (Denmark)

    Atanda, O. O.; Adetunji, M. C.; Ezekiel, C. N.

    2014-01-01

    In order to facilitate easy and rapid identification of aflatoxin-producing Aspergillus species, the phenotypic traits of Aspergillus section Flavi isolates were examined on neutral red desiccated coconut agar (NRDCA). Phenotype variations in colony morphology and the relationship between colour...

  15. Giant desiccation fissures on the Black Rock and Smoke Creek Deserts, Nevada

    Science.gov (United States)

    Willden, R.; Mabey, D.R.

    1961-01-01

    Open fissures, from 100 to several hundred feet apart, that have produced polygonal patterns on the Black Rock Desert, Nevada, are believed to be giant desiccation cracks resulting from a secular trend toward aridity in the last few decades. Similar features on the Smoke Creek Desert probably have the same origin.

  16. Study on effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans

    Directory of Open Access Journals (Sweden)

    Sari Farah Dina

    2015-03-01

    Full Text Available The main objective is to assess effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans. Two type of desiccants were tested, molecular sieve 13× (Na86 [(AlO286·(SiO2106]·264H2O as an adsorbent type and CaCl2 as an absorbent type. The results revealed that during sunshine hours, the maximum temperature within the drying chamber varied from 40 °C to 54 °C. In average, it was 9–12 °C higher than ambient temperature. These temperatures are very suitable for drying cocoa beans. During off-sunshine hours, humidity of air inside the drying chamber was lower than ambient because of the desiccant thermal storage. Drying times for intermittent directs sun drying, solar dryer integrated with adsorbent, and solar dryer integrated with absorbent were 55 h, 41 h, and 30 h, respectively. Specific energy consumptions for direct sun drying, solar dryer integrated with adsorbent, and solar dryer integrated with absorber were 60.4 MJ/kg moist, 18.94 MJ/kg moist, and 13.29 MJ/kg moist, respectively. The main conclusion can be drawn here is that a solar dryer integrated with desiccant thermal storage makes drying using solar energy more effective in term of drying time and specific energy consumption.

  17. Natural convection liquid desiccant loop as an auxiliary air conditioning system: investigating the operational parameters

    Science.gov (United States)

    Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad

    2018-03-01

    Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.

  18. Effect of irreversible processes on the thermodynamic performance of open-cycle desiccant cooling cycles

    International Nuclear Information System (INIS)

    La, Dong; Li, Yong; Dai, Yanjun; Ge, Tianshu; Wang, Ruzhu

    2013-01-01

    Highlights: ► Effects of irreversible processes on the performance of desiccant cooling cycle are identified. ► The exergy destructions involved are classified by the properties of the individual processes. ► Appropriate indexes for thermodynamic evaluation are proposed based on thermodynamic analyses. - Abstract: Thermodynamic analyses of desiccant cooling cycle usually focus on the overall cycle performance in previous study. In this paper, the effects of the individual irreversible processes in each component on thermodynamic performance are analyzed in detail. The objective of this paper is to reveal the elemental features of the individual components, and to show their effects on the thermodynamic performance of the whole cycle in a fundamental way. Appropriate indexes for thermodynamic evaluation are derived based on the first and second law analyses. A generalized model independent of the connection of components is developed. The results indicate that as the effectiveness of the desiccant wheel increases, the cycle performance is increased principally due to the significant reduction in exergy carried out by exhaust air. The corresponding exergy destruction coefficient of the cycle with moderate performance desiccant wheel is decreased greatly to 3.9%, which is more than 50% lower than that of the cycle with low performance desiccant wheel. The effect of the heat source is similar. As the temperature of the heat source increases from 60 °C to 90 °C, the percentage of exergy destruction raised by exhaust air increases sharply from 5.3% to 21.8%. High heat exchanger effectiveness improves the cycle performance mainly by lowering the irreversibility of the heat exchanger, using less regeneration heat and pre-cooling the process air effectively

  19. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  20. Towards Tolerance

    NARCIS (Netherlands)

    Lisette Kuyper; Jurjen Iedema; Saskia Keuzenkamp

    2013-01-01

    Across Europe, public attitudes towards lesbian, gay and bisexual (LGB) individuals range from broad tolerance to widespread rejection. Attitudes towards homosexuality are more than mere individual opinions, but form part of the social and political structures which foster or hinder the equality

  1. Intolerant tolerance.

    Science.gov (United States)

    Khushf, G

    1994-04-01

    The Hyde Amendment and Roman Catholic attempts to put restrictions on Title X funding have been criticized for being intolerant. However, such criticism fails to appreciate that there are two competing notions of tolerance, one focusing on the limits of state force and accepting pluralism as unavoidable, and the other focusing on the limits of knowledge and advancing pluralism as a good. These two types of tolerance, illustrated in the writings of John Locke and J.S. Mill, each involve an intolerance. In a pluralistic context where the free exercise of religion is respected, John Locke's account of tolerance is preferable. However, it (in a reconstructed form) leads to a minimal state. Positive entitlements to benefits like artificial contraception or nontherapeutic abortions can legitimately be resisted, because an intolerance has already been shown with respect to those that consider the benefit immoral, since their resources have been coopted by taxation to advance an end that is contrary to their own. There is a sliding scale from tolerance (viewed as forbearance) to the affirmation of communal integrity, and this scale maps on to the continuum from negative to positive rights.

  2. Phenotypic and genetic characteristics associated with Listeria monocytogenes food chain isolates displaying enhanced and diminished cold tolerance

    DEFF Research Database (Denmark)

    Hingston, P.; Chen, J.; Laing, C.

    between strains with varied cold tolerance. The objective of this study was to determine if Lm isolates with enhanced cold tolerance, exhibit other high risk characteristics that may add to their survival and/or pathogenicity. To accomplish this, 166 predominantly food/food plant Lm isolates were tested...... in brainheart infusion broth, for their ability to tolerate cold (4°C), salt (6% NaCl, 25°C), acid (pH 5, 25°C), and desiccation (33% RH, 20°C) stress. Isolates were considered tolerant or sensitive if they exhibited survival characteristics > or ... with a truncated version (n=47). Cold tolerant isolates were more likely to be tolerant to the other three stresses than intermediate and cold sensitive isolates. Similarly, cold sensitive isolates were more likely to be sensitive to the other stresses. Cold tolerant isolates had shorter (p=0.012) lag phases...

  3. Experimental Evolution of UV-C Radiation Tolerance: Emergence of Adaptive and Non-Adaptive Traits in Escherichia coli Under Differing Flux Regimes

    Science.gov (United States)

    Moffet, A.; Okansinski, A.; Sloan, C.; Grace, J. M.; Paulino-Lima, I. G.; Gentry, D.; Rothschild, L. J.; Camps, M.

    2014-12-01

    High-energy ultraviolet (UV-C) radiation is a significant challenge to life in environments such as high altitude areas, the early Earth, the Martian surface, and space. As UV-C exposure is both a selection pressure and a mutagen, adaptation dynamics in such environments include a high rate of change in both tolerance-related and non-tolerance-related genes, as well changes in linkages between the resulting traits. Determining the relationship between the intensity and duration of the UV-C exposure, mutation rate, and emergence of UV-C resistance will inform our understanding of both the emergence of radiation-related extremophily in natural environments and the optimal strategies for generating artificial extremophiles. In this study, we iteratively exposed an Escherichia colistrain to UV-C radiation of two different fluxes, 3.3 J/m^2/s for 6 seconds and 0.5 J/m^2/s for 40 seconds, with the same overall fluence of 20 J/m^2. After each iteration, cells from each exposure regime were assayed for increased UV-C tolerance as an adaptive trait. The exposed cells carried a plasmid bearing a TEM beta-lactamase gene, which in the absence of antibiotic treatment is a neutral reporter for mutagenesis. Sequencing of this gene allowed us to determine the baseline mutation frequency for each flux. As an additional readout for adaptation, the presence of extended-spectrum beta-lactamase mutations was tested by plating UV-exposed cultures in cefotaxime plates. We observed an increase of approximately one-million-fold in UV-C tolerance over seven iterations; no significant difference between the two fluxes was found. Future work will focus on identifying the genomic changes responsible for the change in UV-C tolerance; determining the mechanisms of the emerged UV-C tolerance; and performing competition experiments between the iteration strains to quantify fitness tradeoffs resulting from UV-C adaptation.

  4. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  5. Desiccant wheels as gas-phase absorption (GPA) air cleaners: evaluation by PTR-MS and sensory assessment

    DEFF Research Database (Denmark)

    Fang, Lei; Zhang, G.; Wisthaler, A.

    2008-01-01

    Two experiments were conducted to investigate the use of the co-sorption effect of a desiccant wheel for improving indoor air quality. One experiment was conducted in a climate chamber to investigate the co-sorption effect of a desiccant wheel on the chemical removal of indoor air pollutants......; another experiment was conducted in an office room to investigate the resulting effect on perceived air quality. A dehumidifier with a silica-gel desiccant wheel was installed in the ventilation system of the test chamber and office room to treat the recirculation airflow. Human subjects, flooring...

  6. Benefits of Group Living Include Increased Feeding Efficiency and Lower Mass Loss during Desiccation in the Social and Inbreeding Spider Stegodyphus dumicola

    Science.gov (United States)

    Vanthournout, Bram; Greve, Michelle; Bruun, Anne; Bechsgaard, Jesper; Overgaard, Johannes; Bilde, Trine

    2016-01-01

    Group living carries a price: it inherently entails increased competition for resources and reproduction, and may also be associated with mating among relatives, which carries costs of inbreeding. Nonetheless, group living and sociality is found in many animals, and understanding the direct and indirect benefits of cooperation that override the inherent costs remains a challenge in evolutionary ecology. Individuals in groups may benefit from more efficient management of energy or water reserves, for example in the form of reduced water or heat loss from groups of animals huddling, or through reduced energy demands afforded by shared participation in tasks. We investigated the putative benefits of group living in the permanently social spider Stegodyphus dumicola by comparing the effect of group size on standard metabolic rate, lipid/protein content as a body condition measure, feeding efficiency, per capita web investment, and weight/water loss and survival during desiccation. Because energetic expenditure is temperature sensitive, some assays were performed under varying temperature conditions. We found that feeding efficiency increased with group size, and the rate of weight loss was higher in solitary individuals than in animals in groups of various sizes during desiccation. Interestingly, this was not translated into differences in survival or in standard metabolic rate. We did not detect any group size effects for other parameters, and group size effects did not co-vary with experimental temperature in a predictive manner. Both feeding efficiency and mass loss during desiccation are relevant ecological factors as the former results in lowered predator exposure time, and the latter benefits social spiders which occupy arid, hot environments. PMID:26869936

  7. Benefits of group living include increased feeding efficiency and lower mass loss during desiccation in the social and inbreeding spider Stegodyphus dumicola.

    Directory of Open Access Journals (Sweden)

    Bram eVanthournout

    2016-02-01

    Full Text Available Group living carries a price: it inherently entails increased competition for resources and reproduction, and may also be associated with mating among relatives, which carries costs of inbreeding. Nonetheless, group living and sociality is found in many animals, and understanding the direct and indirect benefits of cooperation that override the inherent costs remains a challenge in evolutionary ecology. Individuals in groups may benefit from more efficient management of energy or water reserves, for example in the form of reduced water or heat loss from groups of animals huddling, or through reduced energy demands afforded by shared participation in tasks. We investigated the putative benefits of group living in the permanently social spider Stegodyphus dumicola by comparing the effect of group size on standard metabolic rate, lipid/protein content as a body condition measure, feeding efficiency, per capita web investment and weight/water loss and survival during desiccation. Because energetic expenditure is temperature sensitive, some assays were performed under varying temperature conditions. We found that feeding efficiency increased with group size, and the rate of weight loss was higher in solitary individuals than in animals in groups of various sizes during desiccation. Interestingly, this was not translated into differences in survival or in standard metabolic rate. We did not detect any group size effects for other parameters, and group size effects did not co-vary with experimental temperature in a predictive manner. Both feeding efficiency and mass loss during desiccation are relevant ecological factors as the former results in lowered predator exposure time, and the latter benefits social spiders which occupy arid, hot environments.

  8. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  9. Theoretical modelling and experimental study of air thermal conditioning process of a heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Li, Zan; Hu, Wenju

    2017-01-01

    purification aimed at improving indoor air quality and reducing building energy consumption. The heat and moisture transfer in adsorption desiccant rotor was theoretical modelled with one-dimensional partial differential equations. The theoretical model was validated with experimental measurements...... system, the energy performance of HP-SDC was more efficient mainly due to high efficient air purification capacity, reduction of cooling load and raised evaporation temperature. The energy performance of HP-SDC was sensitive to outdoor humidity ratio. Further improvements of HP-SDC energy efficiency......Taking the integrated gaseous contaminants and moisture adsorption potential of desiccant material, a new heat pump assisted solid desiccant cooling system (HP-SDC) was proposed based on the combination of desiccant rotor with heat pump. The HP-SDC was designed for dehumidification, cooling and air...

  10. Desiccation and cold storage of Galleria mellonella cadavers and effects on in vivo production of Steinernema carpocapsae

    NARCIS (Netherlands)

    Wang, Xin; Wang, Huan; Feng, Qing-zhou; Cui, Xi-yang; Liu, Ri-yue; Sun, Yan-bo; Li, Guo-chao; Tan, Hao; Song, Dong-min; Liu, Wen; Ruan, Wei-bin; Harvey, J.A.

    2014-01-01

    BACKGROUND: Direct application of insect cadavers infected with entomopathogenic nematodes (EPN) can successfully control target pest insects. Little is known about the effects of environmental factors (desiccation and temperature) on the production process for infective juveniles (IJ) in insects.

  11. Desiccation and cold storage of Galleria mellonella cadavers and effects on in vivo production of Steinernema carpocapsae

    NARCIS (Netherlands)

    Wang, X.; Wang, H.; Feng, Q.Z.; Cui, X.Y.; Liu, R.Y.; Sun, Y.B.; Li, G.C.; Tan, H.; Song, D.M.; Liu, W.; Ruan, W.B.; Harvey, J.A.

    2014-01-01

    BACKGROUNDDirect application of insect cadavers infected with entomopathogenic nematodes (EPN) can successfully control target pest insects. Little is known about the effects of environmental factors (desiccation and temperature) on the production process for infective juveniles (IJ) in insects.

  12. The effect of wounds on desiccation of prey: implications for a predator with extra-oral digestion.

    Science.gov (United States)

    Morse, Douglass H

    1998-06-01

    Predators that inject prey with proteolytic enzymes, thereby breaking down their tissues for subsequent ingestion, run the risk that desiccation will hinder eventual retrieval of resources from these prey. Wounds made in capture might exacerbate this problem. However, desiccation rates of small syrphid flies Toxomerusmarginatus (Diptera: Syrphidae) killed by juvenile crab spiders Misumena vatia (Araneae: Thomisidae) and intact dead syrphid flies did not differ over the normal period of feeding, though desiccation rates in shade and sun differed several-fold. Neither the size of the spider (and presumably the size of the wounds it inflicted) nor the location of the wounds on the flies' bodies affected desiccation rates. Thus, this tactic of prey handling does not exact an added processing cost on Misumena.

  13. Deep Vadose Zone Treatability Test of Soil Desiccation for the Hanford Central Plateau: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chronister, Glen B. [CH2M Hill Plateau Remediation Co., Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, William J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Peterson, John E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hubbard, Susan S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ward, Anderson L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2018-02-20

    Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths where direct exposure pathways are not of concern, but may need to be remediated to protect groundwater. The Department of Energy developed a treatability test program for technologies to address Tc-99 and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment, have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. The treatability test of desiccation described herein was conducted as an element of the deep vadose zone treatability test program. Desiccation was shown to be a potentially effective vadose zone remediation technology to protect groundwater when used in conjunction with a surface infiltration barrier.

  14. Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae

    OpenAIRE

    Ishida, Yoko; Nguyen, Trinh T. M.; Kitajima, Sakihito; Izawa, Shingo

    2016-01-01

    Vanillin is a potent fermentation inhibitor derived from the lignocellulosic biomass in biofuel production, and high concentrations of vanillin result in the pronounced repression of bulk translation in Saccharomyces cerevisiae. Studies on genes that are efficiently translated even in the presence of high concentrations of vanillin will be useful for improving yeast vanillin tolerance and fermentation efficiency. The BDH1 and BDH2 genes encode putative medium-chain alcohol dehydrogenase/reduc...

  15. Emerging Importance of Helicases in Plant Stress Tolerance: Characterization of Oryza sativa Repair Helicase XPB2 Promoter and Its Functional Validation in Tobacco under Multiple Stresses

    OpenAIRE

    Raikwar, Shailendra; Srivastava, Vineet K.; Gill, Sarvajeet S.; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. Helicases, the unique molecular motors, are emerged as prospective molecules to engineer stress tolerance in plants and are involved in nucleic acid metabolism including DNA repair. The repair helicase, XPB is an evolutionary conserved protein present in different organisms, including pl...

  16. Emerging importance of helicases in plant stress tolerance: characterization of Oryza sativa repair helicase XPB2 promoter and its functional validation in tobacco under multiple stresses

    OpenAIRE

    Shailendra eRaikwar; Vineet Kumar Shrivastava; Sarvajeet Singh Gill; Renu eTuteja; Narendra eTuteja; Narendra eTuteja

    2015-01-01

    Genetic material always remains at the risk of spontaneous or induced damage which challenges the normal functioning of DNA molecule, thus, DNA repair is vital to protect the organisms against genetic damage. DNA hHelicases, the unique molecular motors, are emerged as potentialprospective molecules to engineer stress tolerance in plants and are involved in a variety of DNA nucleic acid metabolismc processes including DNA repair. The DNA repair helicase, OsXPB2 is an evolutionary conserved pr...

  17. The effect of light, temperature and desiccation on differential ...

    African Journals Online (AJOL)

    steadiness and photoperiodism of wheat and Barley varieties Selekcia KN11 grown under stress conditions. A total RNA preparation was isolated from spring and winter seedlings using phenol-detergent method, and the isolated poly (A) RNA ...

  18. OsLEA3-2, an abiotic stress induced gene of rice plays a key role in salt and drought tolerance.

    Directory of Open Access Journals (Sweden)

    Jianli Duan

    Full Text Available Late embryogenesis abundant (LEA proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa using the Rapid Amplification of cDNA Ends (RACE method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.

  19. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms.

    Science.gov (United States)

    Cunha, Joana T; Costa, Carlos E; Ferraz, Luís; Romaní, Aloia; Johansson, Björn; Sá-Correia, Isabel; Domingues, Lucília

    2018-04-02

    Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.

  20. Moving Advanced Desiccant Materials into Mainstream Non-CFC Cooling Products

    Energy Technology Data Exchange (ETDEWEB)

    Sand, J. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grossman, T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fairchild, P. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gross, I. L. [Engelhard/ICC, Hatboro, PA (United States). Fresh Air Solutions

    2004-12-30

    Desiccant dehumidification technology is emerging as a technically viable alternative for comfort conditioning in many commercial and institutional buildings. Attempts to improve the indoor air quality of buildings has resulted in increasingly stringent guidelines for occupant outdoor air ventilation rates. Additionally, revised building heating, ventilating, and air-conditioning (HVAC) design criteria based on regional peak dew point data highlight the important of the latent (moisture removal) building load relative to the sensible (temperature) building load.

  1. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3; FINAL

    International Nuclear Information System (INIS)

    Fischer, J.

    2001-01-01

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations-a college dormitory and a research laboratory-during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systems were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pi lot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous ventilation air

  2. Adsorption Machine & Desiccant Wheel based SOLAR COOLING in a Second Law perspective

    OpenAIRE

    Bivona, Santo

    2011-01-01

    This thesis work is intended to investigate energy and exergy performance of a low power prototype solar air conditioning system based on sorption materials. Its performance is analyzed in the light of both the First and Second Law of Thermodynamics and compared with conventional HVAC systems as well as with a further solar cooling technology based on desiccant wheels (Solar DEC). The adsorption machine based solar cooling plant was thoroughly designed and its thermal performance analysed ...

  3. Infectious Tolerance

    OpenAIRE

    Jonuleit, Helmut; Schmitt, Edgar; Kakirman, Hacer; Stassen, Michael; Knop, Jürgen; Enk, Alexander H.

    2002-01-01

    Regulatory CD4+CD25+ T cells (Treg) are mandatory for maintaining immunologic self-tolerance. We demonstrate that the cell-cell contact–mediated suppression of conventional CD4+ T cells by human CD25+ Treg cells is fixation resistant, independent from membrane-bound TGF-β but requires activation and protein synthesis of CD25+ Treg cells. Coactivation of CD25+ Treg cells with Treg cell–depleted CD4+ T cells results in anergized CD4+ T cells that in turn inhibit the activation of conventional, ...

  4. Facing the Heat: Does Desiccation and Thermal Stress Explain Patterns of Orientation in an Intertidal Invertebrate?

    Science.gov (United States)

    Fraser, Clarissa M L; Seebacher, Frank; Lathlean, Justin; Coleman, Ross A

    2016-01-01

    A key challenge for ecologists is to quantify, explain and predict the ecology and behaviour of animals from knowledge of their basic physiology. Compared to our knowledge of many other types of distribution and behaviour, and how these are linked to individual function, we have a poor level of understanding of the causal basis for orientation behaviours. Most explanations for patterns of animal orientation assume that animals will modify their exposure to environmental factors by altering their orientation. We used a keystone grazer on rocky shores, the limpet Cellana tramoserica, to test this idea. Manipulative experiments were done to evaluate whether orientation during emersion affected limpet desiccation or body temperature. Body temperature was determined from infrared thermography, a technique that minimises disturbance to the test organism. No causal relationships were found between orientation and (i) level of desiccation and (ii) their body temperature. These results add to the growing knowledge that responses to desiccation and thermal stress may be less important in modifying the behaviour of intertidal organisms than previously supposed and that thermoregulation does not always reflect patterns of animal orientation. Much of what we understand about orientation comes from studies of animals able to modify orientation over very short time scales. Our data suggests that for animals whose location is less flexible, orientation decisions may have less to do with responses to environmental factors and more to do with structural habitat properties or intrinsic individual attributes. Therefore we suggest future studies into processes affecting orientation must include organisms with differing levels of behavioural plasticity.

  5. Thermodynamic analysis of an open cycle solid desiccant cooling system using Artificial Neural Network

    International Nuclear Information System (INIS)

    Koronaki, I.P.; Rogdakis, E.; Kakatsiou, T.

    2012-01-01

    Highlights: ► A neural network model based on experimental data was developed. ► Description of the experimental setup. ► Prediction of the state conditions of air at the process and regeneration stream. ► Sensitivity Analysis performed on these predicted results. ► Predicted output values in line with correlation model based on data from industry. - Abstract: This paper examines the performance of an installed open cycle air-conditioning system with a silica gel desiccant wheel which uses a conventional heat pump and heat exchangers for the improvement of the outlet air of the system. A neural network model based on the training of a black box model with experimental data was developed as a method based on experimental results predicting the state conditions of air at the process and regeneration stream. The model development was followed by a Sensitivity Analysis performed on these predicted results. The key parameters were the thermodynamic condition of process and regeneration air streams, the sensible heat factor of the room, and the mass air flow ratio of the regeneration and process streams. The results of this analysis revealed that all investigated parameters influenced the performance of the desiccant unit. Predicted output values of the proposed Neural Network Model for Desiccant Systems are in line with results from other correlation models based on the interpolation of experimental data obtained from industrial air conditioning installations.

  6. Effect of wetting-drying cycles on soil desiccation cracking behaviour

    Directory of Open Access Journals (Sweden)

    Tang Chao-Sheng

    2016-01-01

    Full Text Available Better understanding the desiccation cracking process is essential in analysing drought effects on soil hydraulic and mechanical properties through consideration of the atmosphere-ground interaction. Laboratory tests were conducted to investigate the consequence of wetting-drying cycles on the initiation and propagation characteristics of desiccation cracks on soil surface. Initially saturated slurry specimens were prepared and subjected to five subsequent wetting-drying cycles. Image processing technique was employed to quantitatively analyze the morphology characteristics of crack patterns formed during each drying path. The results show that the desiccation cracking behaviour of soil is significantly affected by the wetting-drying cycles. Before the third wetting-drying cycle is reached, the surface crack ratio and the average crack width increases while the average clod area decreases with increasing the number of wetting-drying cycles. The number of intersections and crack segments per unit area reaches the peak values after the second wetting-drying cycle. After the third wetting-drying cycle is reached, the effect of increasing wetting-drying cycles on crack patterns is insignificant. Moreover, it is observed that the applied wetting-drying cycles are accompanied by a continual reconstruction of soil structure. The initial homogenous slurry structure is completely replaced with aggregated structure after the third cycles, and a significant increase in the inter-aggregate porosity can be observed.

  7. Calculation method of the desiccant amount for the protection of packed electronic equipments and its comparison with other methods currently used

    International Nuclear Information System (INIS)

    Del Valle, J.C.; Guido, O.O.

    1982-01-01

    The silica gel characteristics and properties are reviewed from the viewpoint of its use as a desiccant under static conditions. There were developed two calculation methods of the desiccant amount required for the protection from moisture of electronic equipments packed into rigid synthetic foam containers, for a given period and with an adequate safety margin. Besides, MIL specifications methods applicable to this type of packages have been also included. The proposed method considers the depression due to the contraction of the inside air volume during the temperature decrease periods as the only cause of the water vapor ingress into the container, the moisture permeation by diffusion through the closed cell synthetic foams being negligible. Owing to the marked thermal inertia of the package material, the thermal amplitude inside the container is lower than the outside thermal amplitude; therefore the method includes the calculation of the former. The other method is based on a procedure applicable to large storage rooms, briefly described in the literature, and where the moisture entrance is due to the above mentioned cause. A test to verify the reliability of the estimation is proposed. Finally, the amount of silica gel required for the protection of an electronic equipment packed in a given container has been calculated by the aforementioned methods, and the results compared. The value found by the proposed method was over 30% lower than that obtained by the most adequate procedure described in the MIL specification. (author) [es

  8. Variations in biofilm formation, desiccation resistance and Benzalkonium chloride susceptibility among Listeria monocytogenes strains isolated in Canada.

    Science.gov (United States)

    Piercey, Marta J; Ells, Timothy C; Macintosh, Andrew J; Truelstrup Hansen, Lisbeth

    2017-09-18

    Listeria monocytogenes is a pathogenic foodborne microorganism noted for its ability to survive in the environment and food processing facilities. Survival may be related to the phenotype of individual strains including the ability to form biofilms and resist desiccation and/or sanitizer exposure. The objectives of this research were to compare 14 L. monocytogenes strains isolated from blood (3), food (6) and water (5) with respect to their benzalkonium chloride (BAC) sensitivity, desiccation resistance, and ability to form biofilm. Correlations were tested between those responses, and the presence of the SSI-1 (Stress Survival Islet) and LGI1/CC8 (Listeria Genomic Island 1 in a clonal complex 8 background) genetic markers. Genetic sequences from four strains representing different phenotypes were also probed for predicted amino acid differences in biofilm, desiccation, and membrane related genes. The water isolates were among the most desiccation susceptible strains, while strains exhibiting desiccation resistance harboured SSI-1 or both the SSI-1 and LGI1/CC8 markers. BAC resistance was greatest in planktonic LGI1/CC8 cells (relative to non-LGI1/CC8 cells), and higher BAC concentrations were also needed to inhibit the formation of biofilm by LGI1/CC8 strains during incubation for 48h and 6days compared to other strains. Formation of biofilm on stainless steel was not significantly (p>0.05) different among the strains. Analysis of genetic sequence data from desiccation and BAC sensitive (CP4 5-1, CP5 2-3, both from water), intermediate (Lm568, food) and desiccation and BAC resistant (08 5578, blood, human outbreak) strains led to the finding of amino acid differences in predicted functional protein domains in several biofilm, desiccation and peptidoglycan related genes (e.g., lmo0263, lmo0433, lmo0434, lmo0771, lmo0973, lmo1080, lmo1224, lmo1370, lmo1744, and lmo2558). Notably, the LGI1/CC8 strain 08-5578 had a frameshift mutation in lmo1370, a gene previously

  9. Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance.

    Science.gov (United States)

    Coleto, I; Pineda, M; Rodiño, A P; De Ron, A M; Alamillo, J M

    2014-05-01

    Drought is the principal constraint on world production of legume crops. There is considerable variability among genotypes in sensitivity of nitrogen fixation to drought, which has been related to accumulation of ureides in soybean. The aim of this study was to search for genotypic differences in drought sensitivity and ureide accumulation in common bean (Phaseolus vulgaris) germplasm that may be useful in the improvement of tolerance to water deficit in common bean. Changes in response to water deficit of nitrogen fixation rates, ureide content and the expression and activity of key enzymes for ureide metabolism were measured in four P. vulgaris genotypes differing in drought tolerance. A variable degree of drought-induced nitrogen fixation inhibition was found among the bean genotypes. In addition to inhibition of nitrogen fixation, there was accumulation of ureides in stems and leaves of sensitive and tolerant genotypes, although this was higher in the leaves of the most sensitive ones. In contrast, there was no accumulation of ureides in the nodules or roots of stressed plants. In addition, the level of ureides in the most sensitive genotype increased after inhibition of nitrogen fixation, suggesting that ureides originate in vegetative tissues as a response to water stress, probably mediated by the induction of allantoinase. Variability of drought-induced inhibition of nitrogen fixation among the P. vulgaris genotypes was accompanied by subsequent accumulation of ureides in stems and leaves, but not in nodules. The results indicate that shoot ureide accumulation after prolonged exposure to drought could not be the cause of inhibition of nitrogen fixation, as has been suggested in soybean. Instead, ureides seem to be produced as part of a general response to stress, and therefore higher accumulation might correspond to higher sensitivity to the stressful conditions.

  10. Ferric Sulfate and Proline Enhance Heavy-Metal Tolerance of Halophilic/Halotolerant Soil Microorganisms and Their Bioremediation Potential for Spilled-Oil Under Multiple Stresses

    Science.gov (United States)

    Al-Mailem, Dina M.; Eliyas, Mohamed; Radwan, Samir S.

    2018-01-01

    The aim of this study was to explore the heavy-metal resistance and hydrocarbonoclastic potential of microorganisms in a hypersaline soil. For this, hydrocarbonoclastic microorganisms were counted on a mineral medium with oil vapor as a sole carbon source in the presence of increasing concentrations of ZnSO4, HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4. The colony-forming units counted decreased in number from about 150 g-1 on the heavy-metal-free medium to zero units on media with 40–100 mg l-1 of HgCl2, CdSO4, PbNO3, or Na2HAsO4. On media with CuSO4 or ZnSO4 on the other hand, numbers increased first reaching maxima on media with 50 mg l-1 CuSO4 and 90 mg l-1 ZnSO4. Higher concentrations reduced the numbers, which however, still remained considerable. Pure microbial isolates in cultures tolerated 200–1600 mg l-1 of HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4 in the absence of crude oil. In the presence of oil vapor, the isolates tolerated much lower concentrations of the heavy metals, only 10–80 mg l-1. The addition of 10 Fe2(SO4)3 and 200 mg l-1 proline (by up to two- to threefold) enhanced the tolerance of several isolates to heavy metals, and consequently their potential for oil biodegradation in their presence. The results are useful in designing bioremediation technologies for oil spilled in hypersaline areas. PMID:29563904

  11. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants.

    Science.gov (United States)

    Zhuo, Chunliu; Wang, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-06-14

    Plasma membrane intrinsic proteins (PIPs), which belong to aquaporins (AQPs) superfamily, are subdivided into two groups, PIP1 and PIP2, based on sequence similarity. Several PIP2s function as water channels, while PIP1s have low or no water channel activity, but have a role in water permeability through interacting with PIP2. A cold responsive PIP2 named as MfPIP2-7 was isolated from Medicago falcata (hereafter falcata), a forage legume with great cold tolerance, and transgenic tobacco plants overexpressing MfPIP2-7 were analyzed in tolerance to multiple stresses including freezing, chilling, and nitrate reduction in this study. MfPIP2-7 transcript was induced by 4 to 12 h of cold treatment and 2 h of abscisic acid (ABA) treatment. Pretreatment with inhibitor of ABA synthesis blocked the cold induced MfPIP2-7 transcript, indicating that ABA was involved in cold induced transcription of MfPIP2-7 in falcata. Overexpression of MfPIP2-7 resulted in enhanced tolerance to freezing, chilling and NO3 (-) deficiency in transgenic tobacco (Nicotiana tabacum L.) plants as compared with the wild type. Moreover, MfPIP2-7 was demonstrated to facilitate H2O2 diffusion in yeast. Higher transcript levels of several stress responsive genes, such as NtERD10B, NtERD10C, NtDREB1, and 2, and nitrate reductase (NR) encoding genes (NtNIA1, and NtNIA2) were observed in transgenic plants as compared with the wild type with dependence upon H2O2. In addition, NR activity was increased in transgenic plants, which led to alterations in free amino acid components and concentrations. The results suggest that MfPIP2-7 plays an important role in plant tolerance to freezing, chilling, and NO3 (-) deficiency by promoted H2O2 diffusion that in turn up-regulates expression of NIAs and multiple stress responsive genes.

  12. Nitrogen Limitation and Slow Drying Induce Desiccation Tolerance in Conjugating Green Algae (Zygnematophyceae, Streptophyta) from Polar Habitats

    Czech Academy of Sciences Publication Activity Database

    Pichrtová, Martina; Kulichová, J.; Holzinger, A.

    2014-01-01

    Roč. 9, č. 11 (2014), č. článku e113137. E-ISSN 1932-6203 Institutional support: RVO:67985939 Keywords : Biological soil crust * High-alpine habitat * land plants Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.234, year: 2014

  13. Heat stability of proteins in desiccation tolerant cattail pollen (Typha latifolia): A Fourier transform infrared spectroscopic study.

    NARCIS (Netherlands)

    Wolkers, W.F.; Hoekstra, F.A.

    1997-01-01

    Secondary structure and aggregation behavior of proteins, as determined in situ in Typha latifolia pollen, were studied by means of Fourier transform infrared microspectroscopy. The amide-I band, arising from the peptide backbone, was recorded over a temperature range from -50 to 120°C at different

  14. Development of a novel rotary desiccant cooling cycle with isothermal dehumidification and regenerative evaporative cooling using thermodynamic analysis method

    International Nuclear Information System (INIS)

    La, D.; Li, Y.; Dai, Y.J.; Ge, T.S.; Wang, R.Z.

    2012-01-01

    A novel rotary desiccant cooling cycle is proposed and studied using thermodynamic analysis method. The proposed cycle integrates the technologies of isothermal dehumidification and regenerative evaporative cooling, which are beneficial for irreversibility reduction. Thermodynamic investigation on the basic rotary desiccant cooling cycle shows that the exergy efficiency of the basic cycle is only 8.6%. The processes of desiccant dehumidification and evaporative cooling, which are essentially the basis for rotary desiccant cooling, affect the exergy performance of the cycle greatly and account for about one third of the total exergy destruction. The proposed cycle has potential to improve rotary desiccant cooling technology. It is advantageous in terms of both heat source utilization rate and space cooling capacity. The exergy efficiency of the new cycle is enhanced significantly to 29.1%, which is about three times that of the ventilation cycle, and 60% higher than that of the two-stage rotary desiccant cooling cycle. Furthermore, the regeneration temperature is reduced from 80 °C to about 60 °C. The corresponding specific exergy of the supply air is increased by nearly 30% when compared with the conventional cycles. -- Highlights: ► A novel rotary desiccant cooling cycle is developed using thermodynamic analysis method. ► Isothermal dehumidification and regenerative evaporative cooling have been integrated. ► The cycle is advantageous in terms of both heat source utilization rate and space cooling capacity. ► Cascaded energy utilization is beneficial for cycle performance improvement. ► Upper limits, which will be helpful to practical design and optimization, are obtained.

  15. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.

    Science.gov (United States)

    Lei, Bo; Huang, Yuan; Sun, Jingyu; Xie, Junjun; Niu, Mengliang; Liu, Zhixiong; Fan, Molin; Bie, Zhilong

    2014-12-01

    Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. © 2014 Scandinavian Plant Physiology Society.

  16. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...

  17. Monocytes from cystic fibrosis patients are locked in an LPS tolerance state: down-regulation of TREM-1 as putative underlying mechanism.

    Directory of Open Access Journals (Sweden)

    Carlos del Fresno

    Full Text Available Cystic Fibrosis (CF is an inherited pleiotropic disease that results from abnormalities in the gene that codes for the chloride channel, Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. CF patients are frequently colonized by several pathogens, but the mechanisms that allow colonization in spite of apparently functional immune systems are incompletely understood. In this paper we show that blood peripheral monocytes isolated from CF patients are found in an endotoxin tolerance state, yet this is not due to a deficient TLR activation. On the other hand, levels of the amplifier of inflammatory responses, TREM-1 (Triggering Receptor Expressed on Myeloid cells, are notably down-regulated in monocytes from patients, in comparison to those extracted from healthy volunteers. Furthermore, the soluble form of TREM-1 (sTREM-1 was not detected in the sera of patients. Additionally, and in strict contrast to patients who suffer from Chronic Obstructive Pulmonary Disease (COPD, CF monocytes challenged ex vivo with LPS neither up-regulated membrane-anchored TREM-1 nor sTREM-1. Finally, similar levels of PGE(2 expression and p65 translocation into the nucleus were found in both patients and healthy volunteers, thus suggesting that TREM-1 regulation is neither controlled by PGE(2 levels nor by p65 activation in this case. However, PU.1 translocation into the nucleus was significantly higher in CF monocytes than in controls, suggesting a role for this transcription factor in the control of TREM-1 expression. We conclude that down-regulation of TREM-1 expression in cystic fibrosis patients is at least partly responsible for the endotoxin tolerance state in which their monocytes are locked.

  18. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    Science.gov (United States)

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.

  19. Repressive Tolerance

    DEFF Research Database (Denmark)

    Pedersen, Morten Jarlbæk

    2017-01-01

    Consultation of organised interests and others when drafting laws is often seen as an important source of both input and output legitimacy. But whereas the input side of the equation stems from the very process of listening to societal actors, output legitimacy can only be strengthened if consult......Consultation of organised interests and others when drafting laws is often seen as an important source of both input and output legitimacy. But whereas the input side of the equation stems from the very process of listening to societal actors, output legitimacy can only be strengthened...... a substantial effect on the substance of laws – shows that there is a great difference in the amenability of different branches of government but that, in general, authorities do not listen much despite a very strong consultation institution and tradition. A suggestion for an explanation could be pointing...... to an administrative culture of repressive tolerance of organised interests: authorities listen but only reacts in a very limited sense. This bears in it the risk of jeopardising the knowledge transfer from societal actors to administrative ditto thus harming the consultation institutions’ potential for strengthening...

  20. Influence of desiccation procedures on the surface wettability and corrosion resistance of porous aluminium anodic oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Meng, E-mail: ZhengMeng@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan); Sakairi, Masatoshi [Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan); Jha, Himendra [Technische Universitaet Muenchen, Lichtenbergstrasse 4, D-85748 Garching (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Simple desiccation treatment without coating or etching produces hydrophobicity of porous anodic oxide film. Black-Right-Pointing-Pointer Treatment time can be shortened by controlling desiccation condition. Black-Right-Pointing-Pointer Surface microstructure is the key point to determine the wettability. Black-Right-Pointing-Pointer The hydrophobic surfaces show better corrosion resistance than oxide aluminium. - Abstract: A hydrophobic oxide film was formed on aluminium by anodizing followed by desiccation treatment. Films subjected to gradual heating and cooling exhibit larger water contact angles than samples exposed to fast heating and cooling at the same temperature. From SEM and Auger Electron Spectroscopic observations, the low wettability surface shows a regular porous morphology with no significant chemical composition differences due to the different treatments. The desiccation process improves the corrosion resistance, shown by immersion in NaCl. The change in morphology by the desiccation processes is considered a main reason to lower the wettability, which further affects the corrosion properties.

  1. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development

    Science.gov (United States)

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  2. Tolerance to Gamma Radiation in the Tardigrade Hypsibius dujardini from Embryo to Adult Correlate Inversely with Cellular Proliferation.

    Directory of Open Access Journals (Sweden)

    Eliana Beltrán-Pardo

    Full Text Available Tardigrades are highly tolerant to desiccation and ionizing radiation but the mechanisms of this tolerance are not well understood. In this paper, we report studies on dose responses of adults and eggs of the tardigrade Hypsibius dujardini exposed to gamma radiation. In adults the LD50/48h for survival was estimated at ~ 4200 Gy, and doses higher than 100 Gy reduced both fertility and hatchability of laid eggs drastically. We also evaluated the effect of radiation (doses 50 Gy, 200 Gy, 500 Gy on eggs in the early and late embryonic stage of development, and observed a reduced hatchability in the early stage, while no effect was found in the late stage of development. Survival of juveniles from irradiated eggs was highly affected by a 500 Gy dose, both in the early and the late stage. Juveniles hatched from eggs irradiated at 50 Gy and 200 Gy developed into adults and produced offspring, but their fertility was reduced compared to the controls. Finally we measured the effect of low temperature during irradiation at 4000 Gy and 4500 Gy on survival in adult tardigrades, and observed a slight delay in the expressed mortality when tardigrades were irradiated on ice. Since H. dujardini is a freshwater tardigrade with lower tolerance to desiccation compared to limno-terrestrial tardigrades, the high radiation tolerance in adults, similar to limno-terrestrial tardigrades, is unexpected and seems to challenge the idea that desiccation and radiation tolerance rely on the same molecular mechanisms. We suggest that the higher radiation tolerance in adults and late stage embryos of H. dujardini (and in other studied tardigrades compared to early stage embryos may partly be due to limited mitotic activity, since tardigrades have a low degree of somatic cell division (eutely, and dividing cells are known to be more sensitive to radiation.

  3. Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus EST libraries

    Directory of Open Access Journals (Sweden)

    Kube Michael

    2007-12-01

    Full Text Available Abstract Background Ice, snow and temperatures of -14°C are conditions which most animals would find difficult, if not impossible, to survive in. However this exactly describes the Arctic winter, and the Arctic springtail Onychiurus arcticus regularly survives these extreme conditions and re-emerges in the spring. It is able to do this by reducing the amount of water in its body to almost zero: a process that is called "protective dehydration". The aim of this project was to generate clones and sequence data in the form of ESTs to provide a platform for the future molecular characterisation of the processes involved in protective dehydration. Results Five normalised libraries were produced from both desiccating and rehydrating populations of O. arcticus from stages that had previously been defined as potentially informative for molecular analyses. A total of 16,379 EST clones were generated and analysed using Blast and GO annotation. 40% of the clones produced significant matches against the Swissprot and trembl databases and these were further analysed using GO annotation. Extraction and analysis of GO annotations proved an extremely effective method for identifying generic processes associated with biochemical pathways, proving more efficient than solely analysing Blast data output. A number of genes were identified, which have previously been shown to be involved in water transport and desiccation such as members of the aquaporin family. Identification of these clones in specific libraries associated with desiccation validates the computational analysis by library rather than producing a global overview of all libraries combined. Conclusion This paper describes for the first time EST data from the arctic springtail (O. arcticus. This significantly enhances the number of Collembolan ESTs in the public databases, providing useful comparative data within this phylum. The use of GO annotation for analysis has facilitated the identification of a

  4. Performance analysis of ventilation systems with desiccant wheel cooling based on exergy destruction

    International Nuclear Information System (INIS)

    Tu, Rang; Liu, Xiao-Hua; Hwang, Yunho; Ma, Fei

    2016-01-01

    Highlights: • Ventilation systems with desiccant wheel were analyzed from exergy destruction. • Main performances influencing factors for ventilation systems are put forward. • Improved ventilation systems with lower exergy destruction are suggested. • Performances of heat pumps driven ventilation systems are greatly increased. - Abstract: This paper investigates the performances of ventilation systems with desiccant wheel cooling from the perspective of exergy destructions. Based on the inherent influencing factors for exergy destructions of heat and mass transfer and heat sources, provide guidelines for efficient system design. First, performances of a basic ventilation system are simulated, which is operated at high regeneration temperature and low coefficient of performance (COP). Then, exergy analysis of the basic ventilation system shows that exergy destructions mainly exist in the heat and mass transfer components and the heat source. The inherent influencing factors for the heat and mass transfer exergy destruction are heat and mass transfer capacities, which are related to over dehumidification of the desiccant wheel, and unmatched coefficients, which represent the uniformity of the temperature or humidity ratio differences fields for heat and mass transfer components. Based on these findings, two improved ventilation systems are suggested. For the first system, over dehumidification is avoided and unmatched coefficients for each component are reduced. With lower heat and mass transfer exergy destructions and lower regeneration temperature, COP and exergy efficiency of the first system are increased compared with the basic ventilation system. For the second system, a heat pump, which recovers heat from the process air to heat the regeneration air, is adopted to replace the electrical heater and cooling devices. The exergy destruction of the heat pump is considerably reduced as compared with heat source exergy destruction of the basic ventilation

  5. Facing the Heat: Does Desiccation and Thermal Stress Explain Patterns of Orientation in an Intertidal Invertebrate?

    Directory of Open Access Journals (Sweden)

    Clarissa M L Fraser

    Full Text Available A key challenge for ecologists is to quantify, explain and predict the ecology and behaviour of animals from knowledge of their basic physiology. Compared to our knowledge of many other types of distribution and behaviour, and how these are linked to individual function, we have a poor level of understanding of the causal basis for orientation behaviours. Most explanations for patterns of animal orientation assume that animals will modify their exposure to environmental factors by altering their orientation. We used a keystone grazer on rocky shores, the limpet Cellana tramoserica, to test this idea. Manipulative experiments were done to evaluate whether orientation during emersion affected limpet desiccation or body temperature. Body temperature was determined from infrared thermography, a technique that minimises disturbance to the test organism. No causal relationships were found between orientation and (i level of desiccation and (ii their body temperature. These results add to the growing knowledge that responses to desiccation and thermal stress may be less important in modifying the behaviour of intertidal organisms than previously supposed and that thermoregulation does not always reflect patterns of animal orientation. Much of what we understand about orientation comes from studies of animals able to modify orientation over very short time scales. Our data suggests that for animals whose location is less flexible, orientation decisions may have less to do with responses to environmental factors and more to do with structural habitat properties or intrinsic individual attributes. Therefore we suggest future studies into processes affecting orientation must include organisms with differing levels of behavioural plasticity.

  6. Facing the Heat: Does Desiccation and Thermal Stress Explain Patterns of Orientation in an Intertidal Invertebrate?

    Science.gov (United States)

    Fraser, Clarissa M. L.; Seebacher, Frank; Lathlean, Justin; Coleman, Ross A.

    2016-01-01

    A key challenge for ecologists is to quantify, explain and predict the ecology and behaviour of animals from knowledge of their basic physiology. Compared to our knowledge of many other types of distribution and behaviour, and how these are linked to individual function, we have a poor level of understanding of the causal basis for orientation behaviours. Most explanations for patterns of animal orientation assume that animals will modify their exposure to environmental factors by altering their orientation. We used a keystone grazer on rocky shores, the limpet Cellana tramoserica, to test this idea. Manipulative experiments were done to evaluate whether orientation during emersion affected limpet desiccation or body temperature. Body temperature was determined from infrared thermography, a technique that minimises disturbance to the test organism. No causal relationships were found between orientation and (i) level of desiccation and (ii) their body temperature. These results add to the growing knowledge that responses to desiccation and thermal stress may be less important in modifying the behaviour of intertidal organisms than previously supposed and that thermoregulation does not always reflect patterns of animal orientation. Much of what we understand about orientation comes from studies of animals able to modify orientation over very short time scales. Our data suggests that for animals whose location is less flexible, orientation decisions may have less to do with responses to environmental factors and more to do with structural habitat properties or intrinsic individual attributes. Therefore we suggest future studies into processes affecting orientation must include organisms with differing levels of behavioural plasticity. PMID:26959815

  7. Desiccated coconut industry of Sri Lanka: opportunities for energy efficiency and environmental protection

    International Nuclear Information System (INIS)

    Kumar, S.; Senanayake, G.; Visvanathan, C.; Basu, B.

    2003-01-01

    The desiccated coconut (DC) industry is one of the major export oriented food processing industries in Sri Lanka. This paper discusses the production processes, types of fuel used, energy use pattern and the overall specific thermal and electrical energy consumption in the DC sector. An analysis of the energy use highlights the inefficient processes and the key energy loss areas. Options for energy conservation in the DC mills have been discussed, and carbon dioxide emissions from this sector and its mitigation potential are estimated. Other options to improve efficiency and reduce other pollution and policy aspects have been presented

  8. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina in the Australian semi-desert.

    Directory of Open Access Journals (Sweden)

    Reid Tingley

    Full Text Available Some invasive species flourish in places that impose challenges very different from those faced in their native geographic ranges. Cane toads (Rhinella marina are native to tropical and subtropical habitats of South and Central America, but have colonised extremely arid regions over the course of their Australian invasion. We radio-tracked 44 adult cane toads at a semi-arid invasion front to investigate how this invasive anuran has managed to expand its geographic range into arid areas that lie outside of its native climatic niche. As predicted from their low physiological control over rates of evaporative water loss, toads selected diurnal shelter sites that were consistently cooler and damper (and thus, conferred lower water loss rates than nearby random sites. Desiccation risk also had a profound influence on rates of daily movement. Under wet conditions, toads that were far from water moved further between shelter sites than did conspecifics that remained close to water, presumably in an attempt to reach permanent water sources. However, this relationship was reversed under dry conditions, such that only toads that were close to permanent water bodies made substantial daily movements. Toads that were far from water bodies also travelled along straighter paths than did conspecifics that generally remained close to water. Thus, behavioural flexibility--in particular, an ability to exploit spatial and temporal heterogeneity in the availability of moist conditions--has allowed this invasive anuran to successfully colonize arid habitats in Australia. This finding illustrates that risk assessment protocols need to recognise that under some circumstances an introduced species may be able to thrive in conditions far removed from any that it experiences in its native range.

  9. Inactivation of Nondesiccated and Desiccated Cronobacter sakazakii in Reconstituted Infant Formula by Combination of Citral and Mild Heat.

    Science.gov (United States)

    Shi, Chao; Jia, Zhenyu; Sun, Yi; Chen, Yifei; Guo, Du; Liu, Zhiyuan; Wen, Qiwu; Guo, Xiao; Ma, Linlin; Yang, Baowei; Baloch, Allah Bux; Xia, Xiaodong

    2017-07-01

    The objective of this study was to evaluate the combined effect of citral plus mild heat on nondesiccated and desiccated Cronobacter sakazakii in reconstituted infant formula. Various concentrations of citral (0, 0.3, 0.6, and 0.9%) combined with various temperatures (25, 45, 50, and 55°C) were applied to nondesiccated and desiccated cocktails of three C. sakazakii strains (approximately 6.0 log CFU mL -1 ) in reconstituted infant formula, and the bacterial populations were assayed periodically. The combined treatments had marked antimicrobial effects on C. sakazakii compared with the control. Desiccated cells were more susceptible to citral than were nondesiccated cells in reconstituted infant formula. These findings suggest there is a potential application of citral in combination with mild heat to control C. sakazakii during preparation of reconstituted infant formula.

  10. Variations in biofilm formation, desiccation resistance and Benzalkonium chloride susceptibility among Listeria monocytogenes strains isolated in Canada

    DEFF Research Database (Denmark)

    Piercey, Marta J.; C. Ells, Timothy; Macintosh, Andrew J.

    2017-01-01

    needed to inhibit the formation of biofilm by LGI1/CC8 strains during incubation for 48 h and 6 days compared to other strains. Formation of biofilm on stainless steel was not significantly (p > 0.05) different among the strains. Analysis of genetic sequence data from desiccation and BAC sensitive (CP4 5......Listeria monocytogenes is a pathogenic foodborne microorganism noted for its ability to survive in the environment and food processing facilities. Survival may be related to the phenotype of individual strains including the ability to form biofilms and resist desiccation and/or sanitizer exposure....... The objectives of this research were to compare 14 L. monocytogenes strains isolated from blood (3), food (6) and water (5) with respect to their benzalkonium chloride (BAC) sensitivity, desiccation resistance, and ability to form biofilm. Correlations were tested between those responses, and the presence...

  11. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast.

    Science.gov (United States)

    Lin, Xue; Zhang, Cui-Ying; Bai, Xiao-Wen; Feng, Bing; Xiao, Dong-Guang

    2015-03-16

    During the bread-making process, industrial baker's yeast cells are exposed to multiple baking-associated stresses, such as elevated high-temperature, high-sucrose and freeze-thaw stresses. There is a high demand for baker's yeast strains that could withstand these stresses with high leavening ability. The SNR84 gene encodes H/ACA snoRNA (small nucleolar RNA), which is known to be involved in pseudouridylation of the large subunit rRNA. However, the function of the SNR84 gene in baker's yeast coping with baking-associated stresses remains unclear. In this study, we explored the effect of SNR84 overexpression on baker's yeast which was exposed to high-temperature, high-sucrose and freeze-thaw stresses. These results suggest that overexpression of the SNR84 gene conferred tolerance of baker's yeast cells to high-temperature, high-sucrose and freeze-thaw stresses and enhanced their leavening ability in high-sucrose and freeze-thaw dough. These findings could provide a valuable insight for breeding of novel stress-resistant baker's yeast strains that are useful for baking. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. DROUGHT TOLERANCE OF LOCAL ROTE AND CHECK VARIETIES OF GROUNDNUT (Arachis hypogaea L. UNDER DRY SEASON IN TWO LOCATIONS IN EAST NUSA TENGGARA

    Directory of Open Access Journals (Sweden)

    Yosep S. Mau

    2014-10-01

    Full Text Available Groundnut is the most important pulse crop in East Nusa Tenggara (ENT; however, the crop yield in ENT is low due to erratic climatic condition, drought stress, and low yielding ability of most cultivated genotypes. Local Rote is a well-known local groundnut variety in ENT, which is a potential superior variety and parental source due its large seed size and high yielding ability. Information on its resistance to abiotic and biotic stresses is important for its future development. Five groundnut genotypes, Local Rote and check varieties were elucidated to identify drought resistant genotypes. The study was carried out in a split-plot design with three replicates in two locations during dry season 2013. Two irrigation regimes (optimum and stress conditions were assigned as main plot and 5 groundnut geno-types as sub-plot. Research results revealed significant effect of irrigation by genotype interaction on observed yield and yield compo-nent characters in both locations. Seed yields of most tested genotypes were below their yield potential. Local Rote yielded best over two locations (1.26 t.ha-1 seed yield. Yields of check varieties were below 1.0 t.ha-1. Local Rote was considered tolerant to drought based on STI, GMP, SSI and YL selection indices.

  13. Abscisic Acid and Cytokinin-Induced Osmotic and Antioxidant Regulation in Two Drought-Tolerant and Drought-Sensitive Cultivars of Wheat During Grain Filling Under Water Deficit in Field Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza SARAFRAZ-ARDAKANI

    2014-09-01

    Full Text Available Phytohormones play critical roles in regulating plant responses to stress. The present study investigates the effect of cytokinin, abscisic acid and cytokinin/abscisic acid interaction on some osmoprotectants and antioxidant parameters induced by drought stress in two wheat cultivars (Triticum aestivum L. of ‘Pishgam’ and ‘MV-17’ as tolerant and sensitive to drought during post-anthesis phase, respectively grown in field conditions. The most considerable effect of the treatments was exhibited 21 days after anthesis. Under drought conditions, the flag leaf soluble carbohydrate content increased in both cultivars while starch content was remarkably decreased in ‘Pishgam’ as compared to ‘MV-17’. Abscisic acid increased total soluble sugar and reduced starch more than other hormonal treatments, although it decreased studied monosaccharaides in ‘Pishgam’, especially. Drought stress induced high proportion of gylycinebetain and free proline in ‘Pishgam’ cultivar. Application of abscisic acid and cytokinin/abscisic acid interaction increased gylycinebetain and proline content in both cultivars under irrigation and drought conditions. The tolerant cultivar exhibited less accumulation of hydrogen peroxide and malondialdehyde in relation to significant increase of catalase and peroxidase activities and α-tocpherol content under drought conditions. All hormonal treatments increased the named enzyme activities under both irrigation and drought conditions, while higher accumulation of α-tocopherol was only showed in case of cytokinin application. Also, abscisic acid and cytokinin/abscisic acid could decrease drought-induced hydrogen peroxide and malondialdehyde level to some extent, although abscisic acid increased both of hydrogen peroxide andmalondialdehyde content in irrigation phase, especially.

  14. Energy and exergy performance analysis of a marine rotary desiccant air-conditioning system based on orthogonal experiment

    International Nuclear Information System (INIS)

    Zhu, Jun; Chen, Wu

    2014-01-01

    A novel marine rotary desiccant A/C (air-conditioning) system was developed and studied to improve energy utilization efficiency of ship A/C. The orthogonal experiment was first carried out to investigate the influence of various parameters of the marine rotary desiccant A/C system. During the orthogonal experiment the analysis of variance was used to exclude interference from the secondary influencing factor on system performance. The significant influencing factors of system were studied in great detail using the first and second laws of thermodynamics to find optimal setting parameters for best system performance. It is suggested from the analysis results that as regeneration temperature increases, the COP th (thermal coefficient of performance) and exergy efficiency of system (η e ) decreases by 46.9% and 38.8% respectively. They decrease in proportion to the increase of the temperature. η e reaches its maximum value of about 23.5% when the inlet humidity ratio of process air is 22 g/kg. Besides, the exergy loss of system concentrates on the regeneration air heater, the desiccant wheel and the regeneration air leaving the desiccant wheel, which account for 68.4%–81% of the total exergy loss. It can be concluded that applying the marine rotary desiccant A/C in high-temperature and high-humidity marine environment is advantageous. - Highlights: • Significant influencing factors of the system are found by the analysis of variance. • The change trends of the COP th and the η e are nearly proportional with the regeneration temperature. • The η e reaches its maximum value (about 23.5%) when the inlet humidity ratio of process air is 22 g/kg. • The contribution rate of the dry-bulb temperature of fresh air is up to 73.91% for the COP th . • Applying the marine rotary desiccant A/C in high-temperature and high-humidity marine environment is advantageous

  15. Investigation on a two-stage solar liquid-desiccant (LiBr) dehumidification system assisted by CaCl2 solution

    International Nuclear Information System (INIS)

    Xiong, Z.Q.; Dai, Y.J.; Wang, R.Z.

    2009-01-01

    A two-stage solar powered liquid-desiccant dehumidification system, for which two kinds of desiccant solution (lithium chloride and calcium bromide) are fed to the two dehumidification stages separately, has been studied. In the studied system air moisture (latent) load is separately removed by a pre-dehumidifier using cheap calcium chloride (CaCl 2 ) and a main dehumidifier using stable lithium bromide (LiBr). Side-effect of mixing heat rejected during dehumidification process is considerably alleviated by an indirect evaporative cooling unit added between the two dehumidification stages. The feasibility of high-desiccant concentration difference achieved by reusing desiccant solution to dehumidify air and regenerating desiccant repeatedly is analyzed. By increasing desiccant concentration difference, desiccant storage capacity is effectively explored. It is found that the pre-dehumidification effect of CaCl 2 solution is significant in high ambient humidity condition. Also seen is that the desiccant investment can be decreased by 53%, though the cost of equipments is somewhat increased, and the Tcop and COP of the proposed system can reach 0.97 and 2.13, respectively

  16. Bacillus amyloliquefaciens Confers Tolerance to Various Abiotic Stresses and Modulates Plant Response to Phytohormones through Osmoprotection and Gene Expression Regulation in Rice

    Directory of Open Access Journals (Sweden)

    Shalini Tiwari

    2017-08-01

    Full Text Available Being sessile in nature, plants have to withstand various adverse environmental stress conditions including both biotic and abiotic stresses. Comparatively, abiotic stresses such as drought, salinity, high temperature, and cold pose major threat to agriculture by negatively impacting plant growth and yield worldwide. Rice is one of the most widely consumed staple cereals across the globe, the production and productivity of which is also severely affected by different abiotic stresses. Therefore, several crop improvement programs are directed toward developing stress tolerant rice cultivars either through marker assisted breeding or transgenic technology. Alternatively, some known rhizospheric competent bacteria are also known to improve plant growth during abiotic stresses. A plant growth promoting rhizobacteria (PGPR, Bacillus amyloliquefaciens NBRI-SN13 (SN13 was previously reported by our lab to confer salt stress tolerance to rice seedlings. However, the present study investigates the role of SN13 in ameliorating various abiotic stresses such as salt, drought, desiccation, heat, cold, and freezing on a popular rice cv. Saryu-52 under hydroponic growth conditions. Apart from this, seedlings were also exogenously supplied with abscisic acid (ABA, salicylic acid (SA, jasmonic acid (JA and ethephon (ET to study the role of SN13 in phytohormone-induced stress tolerance as well as its role in abiotic and biotic stress cross-talk. All abiotic stresses and phytohormone treatments significantly affected various physiological and biochemical parameters like membrane integrity and osmolyte accumulation. SN13 also positively modulated stress-responsive gene expressions under various abiotic stresses and phytohormone treatments suggesting its multifaceted role in cross-talk among stresses and phytohormones in response to PGPR. To the best of our knowledge, this is the first report on detailed analysis of plant growth promotion and stress alleviation by a

  17. Theoretical study on volatile organic compound removal and energy performance of a novel heat pump assisted solid desiccant cooling system

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei; Zhang, Ge

    2015-01-01

    for cooling, dehumidification and indoor air cleaning in normal office, commercial or residential buildings. The desiccant rotor was used for dehumidification and indoor air cleaning; the heat pump provided sensible cooling and regeneration heat for the desiccant rotor. The theoretical model consisted of two...... and predicted. The theoretical model was validated by experimental data. Validating results showed that the model could be used to predict the performance of HP-SDC. The results also showed that the HP-SDC could clean air borne contaminants effectively and could provide an energy efficient choice...

  18. Desiccator Volume: A Vital Yet Ignored Parameter in CaCO3 Crystallization by the Ammonium Carbonate Diffusion Method

    Directory of Open Access Journals (Sweden)

    Joe Harris

    2017-07-01

    Full Text Available Employing the widely used ammonium carbonate diffusion method, we demonstrate that altering an extrinsic parameter—desiccator size—which is rarely detailed in publications, can alter the route of crystallization. Hexagonally packed assemblies of spherical magnesium-calcium carbonate particles or spherulitic aragonitic particles can be selectively prepared from the same initial reaction solution by simply changing the internal volume of the desiccator, thereby changing the rate of carbonate addition and consequently precursor formation. This demonstrates that it is not merely the quantity of an additive which can control particle morphogenesis and phase selectivity, but control of other often ignored parameters are vital to ensure adequate reproducibility.

  19. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation.

    Science.gov (United States)

    Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra

    2011-11-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

  20. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  1. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance.

    Science.gov (United States)

    Herburger, Klaus; Remias, Daniel; Holzinger, Andreas

    2016-08-01

    Streptophyte green algae, ancestors of Embryophytes, occur frequently in terrestrial habitats being exposed to high light intensities, water scarcity and potentially toxic metal cations under acidic conditions. The filamentous Zygogonium ericetorum synthesizes a purple vacuolar ferrous pigment, which is lost after aplanospore formation. However, it is unknown whether this cellular reorganization also removes excessive iron from the protoplast and how Z. ericetorum copes with high concentrations of aluminium. Here we show that aplanospore formation shifts iron into the extracellular space of the algal filament. Upon germination of aplanospores, aluminium is bound in the parental cell wall. Both processes reduce iron and aluminium in unpigmented filaments. Comparison of the photosynthetic oxygen production in response to light and temperature gradients in two different Z. ericetorum strains from an Austrian alpine and a Scottish highland habitat revealed lower values in the latter strain. In contrast, the Scottish strain showed a higher optimum quantum yield of PSII during desiccation stress followed by rehydration. Furthermore, pigmented filaments of both strains exhibited a higher light and temperature dependent oxygen production when compared to the unpigmented phenotype. Our results demonstrate a high metal tolerance of Z. ericetorum, which is crucial for surviving in acidic terrestrial habitats. © FEMS 2016.

  2. PHYSIOLOGICAL AND SANITARY QUALITY OF DESICCATED AND STORED AZUKI BEAN SEEDS

    Directory of Open Access Journals (Sweden)

    CÁSSIO JARDIM TAVARES

    2016-01-01

    Full Text Available The objective of this research was to evaluate the effects of using different herbicides as desiccants in pre - harvest and the effects of storage on the physiological and sanitary quality of azuki bean seeds ( Vigna angularis Willd. The experiment was arranged in a randomized complete block design in a split plot scheme, with four replications. Four herbicides were tested: paraquat (400 g a.i. ha - 1 , glufosinate ammonium (400 g a.i. ha - 1 , glyphosate (720 g a.i. ha - 1 , flumioxazin (30 g a.i. ha - 1 and a control without herbicide application. In the subplots seed quality was tested in two evaluation periods: at harvest and six months after harvest. Desiccant was applied when the azuki beans were physiologically mature. We assessed the physiological and sanitary quality of the seeds using a vigour and seed health test. The use of glyphosate resulted in a higher incidence of abnormal seedlings and reduced size and weight of the seedlings. With paraquat and flumioxazin the physiological quality was maintained and there was reduced pathogen infestation in the seeds six months after harvest. Storage affected the physiological quality of the azuki bean seeds.

  3. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber

    Directory of Open Access Journals (Sweden)

    M.H Aghkhani

    2013-09-01

    Full Text Available Drying is a high energy consuming process. Solar drying is one of the most popular methods for dehydration of agricultural products. In the present study, the performance of a forced convection solar dryer equipped with recycling air system and desiccant chamber was investigated. The solar dryer is comprised of solar collector, drying chamber, silica jell desiccant chamber, air ducts, fan and measuring and controlling system. Drying rate and energy consumption in three levels of air temperature (40, 45 and 50 oC and two modes of drying (with recycling air and no-recycling with open duct system were measured and compared. The results showed that increasing the drying air temperature decreased the drying time and increased the energy consumption in the mode of non-recycling air system. The dryer efficiency and drying rate were better in the mode of recycling air system than open duct system. The highest dryer efficiency was obtained from drying air temperature of 50 oC and the mode of recycling air system. In general, the efficiency of solar collector and the highest efficiency of the dryer were 0.34 and 0.41, respectively.

  4. Man-portable personal cooling garment based on vacuum desiccant cooling

    International Nuclear Information System (INIS)

    Yang Yifan; Stapleton, Jill; Diagne, Barbara Thiané; Kenny, Glen P.; Lan, Christopher Q.

    2012-01-01

    A man-portable personal cooling garment based on the concept of vacuum desiccant cooling (VDC) was developed. It was demonstrated with cooling pads that a cooling capacity of 373.1 W/m 2 could be achieved in an ambient environment of 37 °C. Tests with human subjects wearing prototype cooling garments consisting of 12 VDC pads with an overall weight of 3.4 kg covering 0.4 m 2 body surface indicate that the garment could maintain a core temperature substantially lower than the control when the workload was walking on a treadmill of 2% inclination at 3 mph. The exercise was carried out in an environment of 40 °C and 50% relative humidity (RH) for 60 min. Tests also showed that the VDC garment could effectively reduce the metabolic heat accumulation in body with subject wearing heavily insulated nuclear, biological and chemical (NBC) suit working in the heat and allow the participant to work safely for 60 min, almost doubling the safe working time of the same participant when he wore NBC suit only. - Highlights: ► Heat stress mitigation is important for workers health, safety, and performance. ► Vacuum desiccant cooling (VDC) a novel concept for personal cooling. ► VDC garment man-portable and more efficient than commercial ice/pad vest. ► VDC garment suitable for personal cooling with NBC suit.

  5. Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm

    International Nuclear Information System (INIS)

    Wang, Xinli; Cai, Wenjian; Lu, Jiangang; Sun, Youxian; Zhao, Lei

    2015-01-01

    This study presents a model-based optimization strategy for an actual chiller driven dehumidifier of liquid desiccant dehumidification system operating with lithium chloride solution. By analyzing the characteristics of the components, energy predictive models for the components in the dehumidifier are developed. To minimize the energy usage while maintaining the outlet air conditions at the pre-specified set-points, an optimization problem is formulated with an objective function, the constraints of mechanical limitations and components interactions. Model-based optimization strategy using genetic algorithm is proposed to obtain the optimal set-points for desiccant solution temperature and flow rate, to minimize the energy usage in the dehumidifier. Experimental studies on an actual system are carried out to compare energy consumption between the proposed optimization and the conventional strategies. The results demonstrate that energy consumption using the proposed optimization strategy can be reduced by 12.2% in the dehumidifier operation. - Highlights: • Present a model-based optimization strategy for energy saving in LDDS. • Energy predictive models for components in dehumidifier are developed. • The Optimization strategy are applied and tested in an actual LDDS. • Optimization strategy can achieve energy savings by 12% during operation

  6. Ground penetrating radar and direct current resistivity evaluation of the desiccation test cap, Savannah River Site

    International Nuclear Information System (INIS)

    Wyatt, D.E.; Cumbest, R.J.

    1996-04-01

    The Savannah River Site (SRS) has a variety of waste units that may be temporarily or permanently stabilized by closure using an impermeable cover to prevent groundwater infiltration. The placement of an engineered kaolin clay layer over a waste unit is an accepted and economical technique for providing an impermeable cover but the long term stability and integrity of the clay in non-arid conditions is unknown. A simulated kaolin cap has been constructed at the SRA adjacent to the Burial Ground Complex. The cap is designed to evaluate the effects of desiccation on clay integrity, therefore half of the cap is covered with native soil to prevent drying, while the remainder of the cap is exposed. Measurements of the continuing impermeability of a clay cap are difficult because intrusive techniques may locally compromise the structure. Point measurements made to evaluate clay integrity, such as those from grid sampling or coring and made through a soil cover, may miss cracks, joints or fissures, and may not allow for mapping of the lateral extent of elongate features. Because of these problems, a non-invasive technique is needed to map clay integrity, below a soil or vegetation cover, which is capable of moderate to rapid investigation speeds. Two non-intrusive geophysical techniques, direct current resistivity and ground penetrating radar (GPR), have been successful at the SRS in geologically mapping shallow subsurface clay layers. The applicability of each technique in detecting the clay layer in the desiccation test cap and associated anomalies was investigated

  7. Simulation and energy efficiency analysis of desiccant wheel systems for drying processes

    International Nuclear Information System (INIS)

    De Antonellis, Stefano; Joppolo, Cesare Maria; Molinaroli, Luca; Pasini, Alberto

    2012-01-01

    In drying processes it is necessary to appropriately control air humidity and temperature in order to enhance water evaporation from product surface. The aim of this work is to investigate several HVAC configurations for product drying based on desiccant wheels, in order to find systems which reach high primary energy savings through the appropriate integration of refrigerating machines, adsorption wheels and cogenerative engines. Simulations are carried out for different values of sensible to latent ambient load ratio and the effect of ambient and outside air conditions is evaluated for each configuration. It is shown that primary energy savings can reach 70–80% compared to the reference technology based on a cooling coil. With respect to works available in literature, the results of this study keep a general approach and they can be used as a simple tool for preliminary assessment in a wide range of applications. -- Highlights: ► Several HVAC systems for product drying based on desiccant wheels are investigated. ► The sensible to latent ambient load ratio influences the choice of the best system. ► Energy savings can reach 80% compared to the technology based on a cooling coil. ► Simulation results can be used for preliminary assessment in many applications.

  8. Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2016-09-01

    Full Text Available In this paper, three alternative layouts (scenarios of an innovative solar-assisted hybrid desiccant-based air handling unit (AHU are investigated through dynamic simulations. Performance is evaluated with respect to a reference system and compared to those of the innovative plant without modifications. For each scenario, different collector types, surfaces and tilt angles are considered. The effect of the solar thermal energy surplus exploitation for other low-temperature uses is also investigated. The first alternative scenario consists of the recovery of the heat rejected by the condenser of the chiller to pre-heat the regeneration air. The second scenario considers the pre-heating of regeneration air with the warmer regeneration air exiting the desiccant wheel (DW. The last scenario provides pre-cooling of the process air before entering the DW. Results reveal that the plants with evacuated solar collectors (SC can ensure primary energy savings (15%–24% and avoid equivalent CO2 emissions (14%–22%, about 10 percentage points more than those with flat-plate collectors, when the solar thermal energy is used only for air conditioning and the collectors have the best tilt angle. If all of the solar thermal energy is considered, the best results with evacuated tube collectors are approximately 73% in terms of primary energy saving, 71% in terms of avoided equivalent CO2 emissions and a payback period of six years.

  9. Radiographic image analysis of Anacardium othonianum Rizz (anacardiaceae achenes subjected to desiccation

    Directory of Open Access Journals (Sweden)

    Lílian Abadia da Silva

    2017-04-01

    Full Text Available Studies evaluating the internal morphology and seed quality of native species are essential for successful conservation programs. Our aim was to verify the efficiency of X-ray imagery in evaluating cashew-tree-of-the-cerrado (Anacardium othonianum Rizz. achene viability after desiccation. The achenes were collected at 12% water content (w.b. and dried in silica gel until they reached 10, 8, 6, and 4% (w.b.. The fruit morphology and the quality of the seeds were evaluated by X-ray test together with vigor, electrical conductivity and emergence tests. Achenes with different water contents were exposed to an X-ray machine at 18 kV for 11 s and were thereafter submitted to emergence tests. The images were analyzed, and the achenes were classified based on internal morphology as completely full, malformed, or empty. These results were compared to those from the emergence tests. The statistical design was a complete randomized factorial (5 x 3. Desiccation to 4% (w.b. did not damage or modify the internal structures. X-ray was efficient in evaluating the internal morphology and detecting achene quality, making it possible to remove empty and abnormal fruit and form vigorous seed lots, reducing the cost of storage and bedding plant production for this native species.

  10. Molecular Plasticity under Ocean Warming: Proteomics and Fitness Data Provides Clues for a Better Understanding of the Thermal Tolerance in Fish.

    Science.gov (United States)

    Madeira, Diana; Araújo, José E; Vitorino, Rui; Costa, Pedro M; Capelo, José L; Vinagre, Catarina; Diniz, Mário S

    2017-01-01

    Ocean warming is known to alter the performance and fitness of marine organisms albeit the proteome underpinnings of species thermal tolerance are still largely unknown. In this 1-month experiment we assessed the vulnerability of the gilt-head sea bream Sparus aurata , taken here as a biological model for some key fisheries species, to ocean warming (control 18°C, nursery ground temperature 24°C and heat wave 30°C). Survival was impaired after 28 days, mainly at 30°C although fishes' condition was unaltered. Muscle proteome modulation was assessed at 14 and 21 days, showing that protein expression profiles were similar between fish exposed to 18 and 24°C, differing from fish exposed to 30°C. Fish subjected to 24°C showed an enhanced glycolytic potential and decreased glycogenolysis mainly at 14 days of exposure. Fish subjected to 30°C also showed enhanced glycolytic potential and up-regulated proteins related to gene expression, cellular stress response (CSR), and homeostasis (mostly cytoskeletal dynamics, acid-base balance, chaperoning). However, inflammatory processes were elicited at 21 days along with a down-regulation of the tricarboxylic acid cycle. Thus, juvenile fish seem able to acclimate to 24°C but possibly not to 30°C, which is the predicted temperature for estuaries during heat waves by the year 2100. This may be related with increasing constraints on organism physiology associated with metabolic scope available for performance and fitness at higher temperatures. Consequently, recruitment of commercial sea breams may be in jeopardy, highlighting the need for improved management plans for fish stocks.

  11. Molecular Plasticity under Ocean Warming: Proteomics and Fitness Data Provides Clues for a Better Understanding of the Thermal Tolerance in Fish

    Directory of Open Access Journals (Sweden)

    Diana Madeira

    2017-10-01

    Full Text Available Ocean warming is known to alter the performance and fitness of marine organisms albeit the proteome underpinnings of species thermal tolerance are still largely unknown. In this 1-month experiment we assessed the vulnerability of the gilt-head sea bream Sparus aurata, taken here as a biological model for some key fisheries species, to ocean warming (control 18°C, nursery ground temperature 24°C and heat wave 30°C. Survival was impaired after 28 days, mainly at 30°C although fishes' condition was unaltered. Muscle proteome modulation was assessed at 14 and 21 days, showing that protein expression profiles were similar between fish exposed to 18 and 24°C, differing from fish exposed to 30°C. Fish subjected to 24°C showed an enhanced glycolytic potential and decreased glycogenolysis mainly at 14 days of exposure. Fish subjected to 30°C also showed enhanced glycolytic potential and up-regulated proteins related to gene expression, cellular stress response (CSR, and homeostasis (mostly cytoskeletal dynamics, acid-base balance, chaperoning. However, inflammatory processes were elicited at 21 days along with a down-regulation of the tricarboxylic acid cycle. Thus, juvenile fish seem able to acclimate to 24°C but possibly not to 30°C, which is the predicted temperature for estuaries during heat waves by the year 2100. This may be related with increasing constraints on organism physiology associated with metabolic scope available for performance and fitness at higher temperatures. Consequently, recruitment of commercial sea breams may be in jeopardy, highlighting the need for improved management plans for fish stocks.

  12. Evaluation of the CBL family gene expression under drought stress and virus attack in two susceptible and drought tolerant tomato cultivars using semi-quantitative PCR analysis

    Directory of Open Access Journals (Sweden)

    Peyman Aghaie

    2017-08-01

    Full Text Available Eleven genes encoding Calcineurin B-Like proteins with a high degree of sequence conservation were identified using bioinformatics approaches in tomato. These proteins classified into five clusters including SlCBL1, SlCBL3, SlCBL4, SlCBL8 and SlCBL10 using orthology-based method of nomenclature. Sequence analysis showed that all five members of SlCBL1 and SlCBL4 contained a myristoylation conserved motif (MGXXXS/T at their N-terminals. Semi-quantitative RT-PCR showed that among the SlCBL1 members, SlCBL1-3 up-regulated under both drought and virus stresses, as well as the combined treatment. Although, both SlCBL3-1 and SlCBL3-2 up-regulated under both drought and virus stresses in both susceptive and resistant cultivars, the combined stress did not have any additional effect on the expression. Among SlCBL4 members, only SlCBL4-1 up-regulated under drought or virus attack. There was a diverse pattern of expression between the two SlCBL8 members under different stresses in both cultivars. SlCBL10 showed no change in expression pattern under drought or virus stresses in susceptive cultivar and this gene showed to be up-regulated under drought in resistant cultivar. Overall, it was concluded that changes in the expression pattern of CBL genes under biotic and abiotic stresses seemingly induced various CBL/CIPK patways in suseptive or resistant plants.

  13. Evaluation of drought tolerance in different growth stages of maize ...

    African Journals Online (AJOL)

    Jane

    2011-10-12

    Oct 12, 2011 ... index; STI: stress tolerance index. condition. MO17 was a tolerant inbred line based on TOL and its low quantity indicates tolerant inbred lines (Table 4). MO17 was low yielding under all conditions. It seems that. TOL had succeeded in selecting genotypes with high yield under stress, but had failed to select ...

  14. Gene expression changes governing extreme dehydration tolerance in an Antarctic insect

    Science.gov (United States)

    Teets, Nicholas M.; Peyton, Justin T.; Colinet, Herve; Renault, David; Kelley, Joanna L.; Kawarasaki, Yuta; Lee, Richard E.; Denlinger, David L.

    2012-01-01

    Among terrestrial organisms, arthropods are especially susceptible to dehydration, given their small body size and high surface area to volume ratio. This challenge is particularly acute for polar arthropods that face near-constant desiccating conditions, as water is frozen and thus unavailable for much of the year. The molecular mechanisms that govern extreme dehydration tolerance in insects remain largely undefined. In this study, we used RNA sequencing to quantify transcriptional mechanisms of extreme dehydration tolerance in the Antarctic midge, Belgica antarctica, the world’s southernmost insect and only insect endemic to Antarctica. Larvae of B. antarctica are remarkably tolerant of dehydration, surviving losses up to 70% of their body water. Gene expression changes in response to dehydration indicated up-regulation of cellular recycling pathways including the ubiquitin-mediated proteasome and autophagy, with concurrent down-regulation of genes involved in general metabolism and ATP production. Metabolomics results revealed shifts in metabolite pools that correlated closely with changes in gene expression, indicating that coordinated changes in gene expression and metabolism are a critical component of the dehydration response. Finally, using comparative genomics, we compared our gene expression results with a transcriptomic dataset for the Arctic collembolan, Megaphorura arctica. Although B. antarctica and M. arctica are adapted to similar environments, our analysis indicated very little overlap in expression profiles between these two arthropods. Whereas several orthologous genes showed similar expression patterns, transcriptional changes were largely species specific, indicating these polar arthropods have developed distinct transcriptional mechanisms to cope with similar desiccating conditions. PMID:23197828

  15. Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR for inducing salinity tolerance in mung bean under field condition of semi arid climate

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2013-04-01

    Full Text Available Salinity stress severely affects the growth, nodulation and yield of mung bean (Vigna radiata L.. However, its growth can be improved under salinity stress by inoculation/co-inoculation with rhizobia and plant growth promoting rhizobacteria (PGPR containing 1-Aminocyclopropane-1-carboxylic acid (ACC deaminase enzyme. ACC-deaminase containing bacteria regulate the stress induced ethylene production by hydrolyzing the ACC (immediate precursor of ethylene into ammonia and ketobutyric acid, thus improve plant growth by lowering the ethylene level. A study was conducted under salt affected field conditions where pre-isolated strains of Rhizobium and PGPR were used alone as well as in combination for mitigating the salinity stress on growth, nodulation and yield of mung bean by following the randomized complete block design (RCBD. The data were recorded and analyzed statistically to see the difference among treatments.

  16. Tree mortality in the eastern Mediterranean, causes and implications under climatic change

    Science.gov (United States)

    Sarris, Dimitrios; Iacovou, Valentina; Hoch, Guenter; Vennetier, Michel; Siegwolf, Rolf; Christodoulakis, Dimitrios; Koerner, Christian

    2015-04-01

    The eastern Mediterranean has experienced repeated incidents of forest mortality related to drought in recent decades. Such events may become more frequent in the future as drought conditions are projected to further intensify due to global warming. We have been investigating the causes behind such forest mortality events in Pinus halepensis, (the most drought tolerant pine in the Mediterranean). We cored tree stems and sampled various tissue types from dry habitats close to sea level and explored growth responses, stable isotope signals and non-structural carbohydrate (NSC) concentrations. Under intense drought that coincided with pine desiccation events in natural populations our result indicate a significant reduction in tree growth, the most significant in more than a century despite the increase in atmospheric CO2 concentrations in recent decades. This has been accompanied by a lengthening in the integration periods of rainfall needed for pine growth, reaching even 5-6 years before and including the year of mortality occurrence. Oxygen stable isotopes indicate that these signals were associated with a shift in tree water utilization from deeper moisture pools related to past rainfall events. Furthermore, where the driest conditions occur, pine carbon reserves were found to increase in stem tissue, indicating that mortality in these pines cannot be explained by carbon starvation. Our findings suggest that for pine populations that are already water limited (i) a further atmospheric CO2 increase will not compensate for the reduction in growth because of a drier climate, (ii) hydraulic failure appears as the most likely cause of pine desiccation, as no shortage occurs in tree carbon reserves, (iii) a further increase in mortality events may cause these systems to become carbon sources.

  17. Synergistic interaction between the fungus Beauveria bassiana and desiccant dusts applied against poultry red mites (Dermanyssus gallinae)

    DEFF Research Database (Denmark)

    Steenberg, Tove; Kilpinen, Ole Østerlund

    2014-01-01

    , but these fungi often take several days to kill mites. Laboratory experiments were carried out to study the efficacy of 3 types of desiccant dusts, the fungus Beauveria bassiana and combinations of the two control agents against D. gallinae. There was significant synergistic interaction between each...

  18. Assessment of Energy, Environmental and Economic Performance of a Solar Desiccant Cooling System with Different Collector Types

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2014-10-01

    Full Text Available Desiccant-based air handling units can achieve reductions in greenhouse gas emissions and energy savings with respect to conventional air conditioning systems. Benefits are maximized when they interact with renewable energy technologies, such as solar collectors. In this work, experimental tests and data derived from scientific and technical literature are used to implement a model of a solar desiccant cooling system, considering three different collector technologies (air, flat-plate and evacuated collectors. Simulations were then performed to compare the energy, environmental and economic performance of the system with those of a desiccant-based unit where regeneration thermal energy is supplied by a natural gas boiler, and with those of a conventional air-handling unit. The only solution that allows achieving the economic feasibility of the solar desiccant cooling unit consists of 16 m2 of evacuated solar collectors. This is able to obtain, with respect to the reference system, a reduction of primary energy consumption and of the equivalent CO2 emissions of 50.2% and 49.8%, respectively, but with a payback time of 20 years.

  19. Simulation and parameter analysis of a two-stage desiccant cooing/heating system driven by solar air collectors

    International Nuclear Information System (INIS)

    Li, H.; Dai, Y.J.; Köhler, M.; Wang, R.Z.

    2013-01-01

    Highlights: ► A solar desiccant cooling/heating system is simulation studied. ► The mean deviation is about 10.5% for temperature and 9.6% for humidity ratio. ► The 51.7% of humidity load and 76% of the total cooling can be handled. ► About 49.0% of heating load can be handled by solar energy. ► An optimization of solar air collector has been investigated. - Abstract: To increase the fraction of solar energy might be used in supplying energy for the operation of a building, a solar desiccant cooling and heating system was modeled in Simulink. First, base case performance models were programmed according to the configuration of the installed solar desiccant system and verified by the experimental data. Then, the year-round performance about the system was simulated. Last, design parameters of solar air collectors were optimized that include collector area, air leakage and thermal insulation. Comparison between numerical and experimental results shows good agreement. During the simulation, the humidity load for 63 days (51.7%) can be totally handled by the two-stage desiccant cooling unit. For seasonal total heating load, about 49.0% can be handled by solar energy. Based on optimized results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage

  20. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  1. Energetic efficiency of the use of desiccant in sugarcane; Eficiencia energetica do uso de dessecante em cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Gilda B.C.; Ripoli, Tomaz Caetano C.; Romanelli, Thiago L. [Escola Superior de Agricultura Luiz de Queiroz(ESALQ/USP), Piracicaba, SP (Brazil)], E-mail: gildacardoso@usp.br

    2010-07-01

    Economically, sugarcane is one of the most important crop in Brazil, showing a great perspective of expansion in the cultivated area. In the last few years the sugarcane mechanical harvested area has increased, causing a series of inconveniences for the system of harvest of the sugarcane, such as: the increase in the percentage of extraneous matter and losses of sugarcane and/or fractions in the field. Due the high value invested in the system of harvest of the sugarcane, the desiccant is one of the alternatives used to minimize such inconveniences in the pre harvest. In order to quantify the demand of energy of the system, the present work used a base of energy pointers as tool for the planning process and production of sugarcane in two systems, one with application of desiccant (T1) and the other without (T2). The energy flows of entrance (EE) and exit had been established, allowing the identification of the energy rocking (BE), that quantifies the liquid profit of energy for area. The results had shown that the application of the desiccant resulted in a bigger EE in system T1 (86601.44 MJ ha{sup -1} versus 83345.45 MJ ha{sup -1}). The BE of T2 presented superior in 0.14% in relation the T1 (2241318.57 MJ ha{sup -1} against 2238062.57 MJ ha{sup -1}), indicating that the desiccant presents greater energy consumption. (author)

  2. 75 FR 69353 - Isoxaben; Pesticide Tolerances

    Science.gov (United States)

    2010-11-12

    ...; and pistachio. Dow AgroSciences requested these tolerances under the Federal Food, Drug, and Cosmetic... 0.01 ppm; and nut, tree, group 14 and pistachio at 0.03 ppm. That notice referenced a summary of the... the data supporting the petition, EPA has reduced the tolerances for nut, tree, group 14 and pistachio...

  3. 7 CFR 51.346 - Tolerances.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Grades of Apples for Processing Tolerances § 51.346 Tolerances. When a lot of apples is...

  4. 7 CFR 51.306 - Tolerances.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Grades of Apples Tolerances § 51.306 Tolerances. In order to allow for variations incident to...

  5. Xylem diameter changes during osmotic stress, desiccation and freezing in Pinus sylvestris and Populus tremula.

    Science.gov (United States)

    Lintunen, Anna; Lindfors, Lauri; Nikinmaa, Eero; Hölttä, Teemu

    2017-04-01

    Trees experience low apoplastic water potential frequently in most environments. Low apoplastic water potential increases the risk of embolism formation in xylem conduits and creates dehydration stress for the living cells. We studied the magnitude and rate of xylem diameter change in response to decreasing apoplastic water potential and the role of living parenchyma cells in it to better understand xylem diameter changes in different environmental conditions. We compared responses of control and heat-injured xylem of Pinus sylvestris (L.) and Populus tremula (L.) branches to decreasing apoplastic water potential created by osmotic stress, desiccation and freezing. It was shown that xylem in control branches shrank more in response to decreasing apoplastic water potential in comparison with the samples that were preheated to damage living xylem parenchyma. By manipulating the osmotic pressure of the xylem sap, we observed xylem shrinkage due to decreasing apoplastic water potential even in the absence of water tension within the conduits. These results indicate that decreasing apoplastic water potential led to withdrawal of intracellular water from the xylem parenchyma, causing tissue shrinkage. The amount of xylem shrinkage per decrease in apoplastic water potential was higher during osmotic stress or desiccation compared with freezing. During desiccation, xylem diameter shrinkage involved both dehydration-related shrinkage of xylem parenchyma and water tension-induced shrinkage of conduits, whereas dehydration-related shrinkage of xylem parenchyma was accompanied by swelling of apoplastic ice during freezing. It was also shown that the exchange of water between symplast and apoplast within xylem is clearly faster than previously reported between the phloem and the xylem. Time constant of xylem shrinkage was 40 and 2 times higher during osmotic stress than during freezing stress in P. sylvestris and P. tremula, respectively. Finally, it was concluded that the

  6. Characterization of Biocontrol Traits in Heterorhabditis floridensis: A Species with Broad Temperature Tolerance.

    Science.gov (United States)

    Shapiro-Ilan, David I; Blackburn, Dana; Duncan, Larry; El-Borai, Fahiem E; Koppenhöfer, Heather; Tailliez, Patrick; Adams, Byron J

    2014-12-01

    Biological characteristics of two strains of the entomopathogenic nematode, Heterorhabditis floridensis (332 isolated in Florida and K22 isolated in Georgia) were described. The identity of the nematode's symbiotic bacteria was elucidated and found to be Photorhabdus luminescens subsp. luminescens. Beneficial traits pertinent to biocontrol (environmental tolerance and virulence) were characterized. The range of temperature tolerance in the H. floridensis strains was broad and showed a high level of heat tolerance. The H. floridensis strains caused higher mortality or infection in G. mellonella at 30°C and 35°C compared with S. riobrave (355), a strain widely known to be heat tolerant, and the H. floridensis strains were also capable of infecting at 17°C whereas S. riobrave (355) was not. However, at higher temperatures (37°C and 39°C), though H. floridensis readily infected G. mellonella, S. riobrave strains caused higher levels of mortality. Desiccation tolerance in H. floridensis was similar to Heterorhabditis indica (Hom1) and S. riobrave (355) and superior to S. feltiae (SN). H. bacteriophora (Oswego) and S. carpocapsae (All) exhibited higher desiccation tolerance than the H. floridensis strains. The virulence of H. floridensis to four insect pests (Aethina tumida, Conotrachelus nenuphar, Diaprepes abbreviatus, and Tenebrio molitor) was determined relative to seven other nematodes: H. bacteriophora (Oswego), H. indica (Hom1), S. carpocapsae (All), S. feltiae (SN), S. glaseri (4-8 and Vs strains), and S. riobrave (355). Virulence to A. tumida was similar among the H. floridensis strains and other nematodes except S. glaseri (Vs), S. feltiae, and S. riobrave failed to cause higher mortality than the control. Only H. bacteriophora, H. indica, S. feltiae, S. riobrave, and S. glaseri (4-8) caused higher mortality than the control in C. nenuphar. All nematodes were pathogenic to D. abbreviatus though S. glaseri (4-8) and S. riobrave (355) were the most virulent

  7. GmSALT3, which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl– Exclusion prior to Na+ Exclusion but does not Improve Early Vigour under Salinity

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2016-09-01

    Full Text Available Soil salinity reduces soybean growth and yield. The recently identified GmSALT3 (Glycine max salt Tolerance-associated gene on chromosome 3 has the potential to improve soybean yields in salinized conditions. To evaluate the impact of GmSALT3 on soybean performance under saline or non-saline conditions, three sets of near isogenic lines (NILs, with genetic similarity 95.6-99.3% between each pair of NIL-T and NIL-S, were generated from a cross between two varieties, 85-140 (salt-sensitive, S and Tiefeng 8 (salt-tolerant, T by using marker-assisted selection. Each NIL; 782-T, 820-T and 860-T, contained a common ~1000 kb fragment on chromosome 3 where GmSALT3 was located. We show that GmSALT3 does not contribute to an improvement in seedling emergence rate or early vigour under salt stress. However, when 12-day-old seedlings were exposed to NaCl stress, the NIL-T lines accumulated significantly less leaf Na+ compared with their corresponding NIL-S, while no significant difference of K+ concentration was observed between NIL-T and NIL-S; the magnitude of Na+ accumulation within each NIL-T set was influenced by the different genetic backgrounds. In addition, NIL-T lines accumulated less Cl– in the leaf and more in the root prior to any difference in Na+; in the field they accumulated less pod wall Cl– than the corresponding NIL-S lines. Under non-saline field conditions, no significant differences were observed for yield related traits within each pair of NIL-T and NIL-S lines, indicating there was no yield penalty for having the GmSALT3 gene. In contrast, under saline field conditions the NIL-T lines had significantly greater plant seed weight and 100-seed weight than the corresponding NIL-S lines, meaning GmSALT3 conferred a yield advantage to soybean plants in salinized fields. Our results indicated that GmSALT3 mediated regulation of both Na+ and Cl– accumulation in soybean, and contributes to improved soybean yield through maintaining a

  8. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton.

    Science.gov (United States)

    Magwanga, Richard Odongo; Lu, Pu; Kirungu, Joy Nyangasi; Lu, Hejun; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Zhang, Zhenmei; Salih, Haron; Wang, Kunbo; Liu, Fang

    2018-01-15

    Late embryogenesis abundant (LEA) proteins are large groups of hydrophilic proteins with major role in drought and other abiotic stresses tolerance in plants. In-depth study and characterization of LEA protein families have been carried out in other plants, but not in upland cotton. The main aim of this research work was to characterize the late embryogenesis abundant (LEA) protein families and to carry out gene expression analysis to determine their potential role in drought stress tolerance in upland cotton. Increased cotton production in the face of declining precipitation and availability of fresh water for agriculture use is the focus for breeders, cotton being the backbone of textile industries and a cash crop for many countries globally. In this work, a total of 242, 136 and 142 LEA genes were identified in G. hirsutum, G. arboreum and G. raimondii respectively. The identified genes were classified into eight groups based on their conserved domain and phylogenetic tree analysis. LEA 2 were the most abundant, this could be attributed to their hydrophobic character. Upland cotton LEA genes have fewer introns and are distributed in all chromosomes. Majority of the duplicated LEA genes were segmental. Syntenic analysis showed that greater percentages of LEA genes are conserved. Segmental gene duplication played a key role in the expansion of LEA genes. Sixty three miRNAs were found to target 89 genes, such as miR164, ghr-miR394 among others. Gene ontology analysis revealed that LEA genes are involved in desiccation and defense responses. Almost all the LEA genes in their promoters contained ABRE, MBS, W-Box and TAC-elements, functionally known to be involved in drought stress and other stress responses. Majority of the LEA genes were involved in secretory pathways. Expression profile analysis indicated that most of the LEA genes were highly expressed in drought tolerant cultivars Gossypium tomentosum as opposed to drought susceptible, G. hirsutum. The tolerant

  9. Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature

    Science.gov (United States)

    Gauthier, Paul P. G.; Crous, Kristine Y.; Ayub, Gohar; Duan, Honglang; Weerasinghe, Lasantha K.; Ellsworth, David S.; Tjoelker, Mark G.; Evans, John R.; Tissue, David T.; Atkin, Owen K.

    2014-01-01

    Climate change is resulting in increasing atmospheric [CO2], rising growth temperature (T), and greater frequency/severity of drought, with each factor having the potential to alter the respiratory metabolism of leaves. Here, the effects of elevated atmospheric [CO2], sustained warming, and drought on leaf dark respiration (R dark), and the short-term T response of R dark were examined in Eucalyptus globulus. Comparisons were made using seedlings grown under different [CO2], T, and drought treatments. Using high resolution T–response curves of R dark measured over the 15–65 °C range, it was found that elevated [CO2], elevated growth T, and drought had little effect on rates of R dark measured at T CO2], growth T, and drought on T response of R dark. However, drought increased R dark at high leaf T typical of heatwave events (35–45 °C), and increased the measuring T at which maximal rates of R dark occurred (T max) by 8 °C (from 52 °C in well-watered plants to 60 °C in drought-treated plants). Leaf starch and soluble sugars decreased under drought and elevated growth T, respectively, but no effect was found under elevated [CO2]. Elevated [CO2] increased the Q 10 of R dark (i.e. proportional rise in R dark per 10 °C) over the 15–35 °C range, while drought increased Q 10 values between 35 °C and 45 °C. Collectively, the study highlights the dynamic nature of the T dependence of R dark in plants experiencing future climate change scenarios, particularly with respect to drought and elevated [CO2]. PMID:25205579

  10. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress.

    Directory of Open Access Journals (Sweden)

    Qingjie Guan

    Full Text Available The 636-bp-long cDNA sequence of OsCu/Zn-SOD (AK059841 was cloned from Oryza sativa var. Longjing11 via reverse transcription polymerase chain reaction (RT-PCR. The encoded protein comprised of 211 amino acids is highly homologous to Cu/Zn-SOD proteins from tuscacera rice and millet. Quantitative RT-PCR revealed that in rice, the level of OsCu/Zn-SOD gene expression was lowest in roots and was highest in petals and during the S5 leaf stage. Moreover, the expression level of OsCu/Zn-SOD gene expression decreased during the L5 leaf stage to maturity. The level of OsCu/Zn-SOD gene expression, however, was increased under saline-sodic stress and NaHCO3 stress. Germination tests under 125, 150, and 175 mM NaCl revealed that OsCu/Zn-SOD-overexpressing lines performed better than the non-transgenic (NT Longjing11 lines in terms of germination rate and height. Subjecting seedlings to NaHCO3 and water stress revealed that OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of SOD activity, fresh weight, root length, and height. Under simulated NaHCO3 stress, OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of survival rate (25.19% > 6.67% and yield traits (average grain weight 20.6 > 18.15 g. This study showed that OsCu/Zn-SOD gene overexpression increases the detoxification capacity