WorldWideScience

Sample records for underlying current sheet

  1. Plasma dynamics in current sheets

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Drejden, G.V.; Kirij, N.P.; AN SSSR, Leningrad

    1992-01-01

    Plasma dynamics in successive stages of current sheet evolution is investigated on the base of analysis of time-spatial variations of electron density and electrodynamic force fields. Current sheet formation is realized in a two-dimensional magnetic field with zero line under the action of relatively small initial disturbances (linear regimes). It is established that in the limits of the formed sheet is concentrated dense (N e ∼= 10 16 cm -3 ) (T i ≥ 100 eV, bar-Z i ≥ 2) hot pressure of which is balanced by the magnetic action of electrodynamic forces is carried out both plasma compression in the sheet limits and the acceleration along the sheet surface from a middle to narrow side edges

  2. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.

  3. Active current sheets near the earth's bow shock

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Kessel, R.L.; Brown, C.C.; Woolliscroft, L.J.C.; Dunlop, M.W.; Farrugia, C.J.; Hall, D.S.

    1988-01-01

    The authors present here an investigation of active current sheets observed by the AMPTE UK spacecraft near the Earth's bow shock, concentrating on their macroscopic features and geometry. Events selected primarily by flow directions which deviate substantially from the Sun-Earth line show similar characteristics, including their association with an underlying macroscopic current sheet and a hot central region whose flow direction is organized, at least in part, by location relative to the inferred initial intersection point between the current sheet and the bow shock. This region is flanked by edges which, according to a Rankine-Hugoniot analysis, are often fast shocks whose orientation is consistent with that expected if a bulge on the bow shock convected past the spacecraft. They have found the magnetosheath manifestations of these events which they study in detail. They suggest that these events are the direct result of the disruption and reformation of the bow shock by the passage of an interplanetary current sheet, most probably a tangential discontinuity

  4. Ohm's law for a current sheet

    Science.gov (United States)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  5. Energized Oxygen : Speiser Current Sheet Bifurcation

    Science.gov (United States)

    George, D. E.; Jahn, J. M.

    2017-12-01

    A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs

  6. Relation between current sheets and vortex sheets in stationary incompressible MHD

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2012-03-01

    Full Text Available Magnetohydrodynamic configurations with strong localized current concentrations and vortices play an important role in the dissipation of energy in space and astrophysical plasma. Within this work we investigate the relation between current sheets and vortex sheets in incompressible, stationary equilibria. For this approach it is helpful that the similar mathematical structure of magnetohydrostatics and stationary incompressible hydrodynamics allows us to transform static equilibria into stationary ones. The main control function for such a transformation is the profile of the Alfvén-Mach number MA, which is always constant along magnetic field lines, but can change from one field line to another. In the case of a global constant MA, vortices and electric current concentrations are parallel. More interesting is the nonlinear case, where MA varies perpendicular to the field lines. This is a typical situation at boundary layers like the magnetopause, heliopause, the solar wind flowing around helmet streamers and at the boundary of solar coronal holes. The corresponding current and vortex sheets show in some cases also an alignment, but not in every case. For special density distributions in 2-D, it is possible to have current but no vortex sheets. In 2-D, vortex sheets of field aligned-flows can also exist without strong current sheets, taking the limit of small Alfvén Mach numbers into account. The current sheet can vanish if the Alfvén Mach number is (almost constant and the density gradient is large across some boundary layer. It should be emphasized that the used theory is not only valid for small Alfvén Mach numbers MA MA ≲ 1. Connection to other theoretical approaches and observations and physical effects in space plasmas are presented. Differences in the various aspects of theoretical investigations of current sheets and vortex sheets are given.

  7. Bifurcation of Jovian magnetotail current sheet

    Directory of Open Access Journals (Sweden)

    P. L. Israelevich

    2006-07-01

    Full Text Available Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer and double-peaked (bifurcated current sheet. Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.

  8. Bifurcation of Jovian magnetotail current sheet

    Directory of Open Access Journals (Sweden)

    P. L. Israelevich

    2006-07-01

    Full Text Available Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer and double-peaked (bifurcated current sheet. Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.

  9. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  10. Magnetic configurations of the tilted current sheets in magnetotail

    Directory of Open Access Journals (Sweden)

    C. Shen

    2008-11-01

    Full Text Available In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1 The magnetic field lines (MFLs in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2 The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3 In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4 In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of

  11. Electron energization in the geomagnetic tail current sheet

    International Nuclear Information System (INIS)

    Lyons, L.R.

    1984-01-01

    Electron motion in the distant tail current sheet is evaluated and found to violate the guiding center approximation at energies > or approx. =100 eV. Most electrons within the energy range approx.10 -1 -10 2 keV that enter the current sheet become trapped within the magnetic field reversal region. These electrons then convect earthward and gain energy from the cross-tail electric field. If the energy spectrum of electrons entering the current sheet is similar to that of electrons from the boundary layer surrounding the magnetotail, the energy gain from the electric field produces electron energy spectra comparable to those observed in the earth's plasma sheet. Thus current sheet interactions can be a significant source of particles and energy for plasma sheet electrons as well as for plasma sheet ions. A small fraction of electrons within the current sheet has its pitch angles scattered so as to be ejected from the current sheet within the atmospheric loss cone. These electrons can account for the electron precipitation near the high-latitude boundary of energetic electrons, which is approximately isotropic in pitch angle up to at least several hundred keV. Current sheet interaction should cause approximately isotropic auroral precipitation up to several hundred keV energies, which extends to significantly lower latitudes for ions than for electrons in agreement with low-altitude satellite observations. Electron precipitation associated with diffuse aurora generally has a transition at 1-10 keV to anisotropic pitch angle distributions. Such electron precipitation cannot be explained by current sheet interactions, but it can be explained by pitch angle diffusion driven by plasma turbulence

  12. Physics of the magnetotail current sheet

    International Nuclear Information System (INIS)

    Chen, J.

    1993-01-01

    The Earth's magnetotail plays an important role in the solar-wind--magnetosphere coupling. At the midplane of the magnetotail is a current sheet where the dominant magnetic field component reverses sign. The charged particle motion in and near the current sheet is collisionless and nonintegrable, exhibiting chaotic scattering. The current understanding of the dynamical properties of the charged particle motion is discussed. In particular, the relationships between particle dynamics and global attributes of the system are elucidated. Geometrical properties of the phase space determine important physical observables on both micro- and macroscales

  13. Effects of electron pressure anisotropy on current sheet configuration

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A. [Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095 (United States); Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2016-09-15

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  14. Effects of electron pressure anisotropy on current sheet configuration

    International Nuclear Information System (INIS)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Vasko, I. Y.

    2016-01-01

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. We find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.

  15. Symmetry breaking bifurcations of a current sheet

    International Nuclear Information System (INIS)

    Parker, R.D.; Dewar, R.L.; Johnson, J.L.

    1990-01-01

    Using a time evolution code with periodic boundary conditions, the viscoresistive hydromagnetic equations describing an initially static, planar current sheet with large Lundquist number have been evolved for times long enough to reach a steady state. A cosh 2 x resistivity model was used. For long periodicity lengths L p , the resistivity gradient drives flows that cause forced reconnection at X point current sheets. Using L p as a bifurcation parameter, two new symmetry breaking bifurcations were found: a transition to an asymmetric island chain with nonzero, positive, or negative phase velocity, and a transition to a static state with alternating large and small islands. These states are reached after a complex transient behavior, which involves a competition between secondary current sheet instability and coalescence

  16. Continuous development of current sheets near and away from magnetic nulls

    International Nuclear Information System (INIS)

    Kumar, Sanjay; Bhattacharyya, R.

    2016-01-01

    The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scaling than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.

  17. Symmetry breaking bifurcations of a current sheet

    International Nuclear Information System (INIS)

    Parker, R.D.; Dewar, R.L.; Johnson, J.L.

    1988-08-01

    Using a time evolution code with periodic boundary conditions, the viscoresistive hydromagnetic equations describing an initially static, planar current sheet with large Lundquist number have been evolved for times long enough to reach a steady state. A cosh 2 x resistivity model was used. For long periodicity lengths, L p , the resistivity gradient drives flows which cause forced reconnection at X point current sheets. Using L p as a bifurcation parameter, two new symmetry breaking bifurcations were found - a transition to an asymmetric island chain with nonzero, positive or negative phase velocity, and a transition to a static state with alternating large and small islands. These states are reached after a complex transient behavior which involves a competition between secondary current sheet instability and coalescence. 31 refs., 6 figs

  18. Spatially Localized Particle Energization by Landau Damping in Current Sheets

    Science.gov (United States)

    Howes, G. G.; Klein, K. G.; McCubbin, A. J.

    2017-12-01

    Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.

  19. Near-earth Thin Current Sheets and Birkeland Currents during Substorm Growth Phase

    International Nuclear Information System (INIS)

    Sorin Zaharia; Cheng, C.Z.

    2003-01-01

    Two important phenomena observed during the magnetospheric substorm growth phase are modeled: the formation of a near-Earth (|X| ∼ 9 R E ) thin cross-tail current sheet, as well as the equatorward shift of the ionospheric Birkeland currents. Our study is performed by solving the 3-D force-balance equation with realistic boundary conditions and pressure distributions. The results show a cross-tail current sheet with large current (J φ ∼ 10 nA/m 2 ) and very high plasma β (β ∼ 40) between 7 and 10 R E . The obtained region-1 and region-2 Birkeland currents, formed on closed field lines due to pressure gradients, move equatorward and become more intense (J parallel max ∼ 3 (micro)A/m 2 ) compared to quiet times. Both results are in agreement with substorm growth phase observations. Our results also predict that the cross-tail current sheet maps into the ionosphere in the transition region between the region-1 and region-2 currents

  20. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  1. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    International Nuclear Information System (INIS)

    Jaquet, O.; Namar, R.; Jansson, P.

    2010-10-01

    program DarcyTools in order to evaluate the current conceptual model for groundwater flow under ice sheet conditions, as well as to provide some guidance to the field investigations. For this first modelling phase, coupled processes are not considered for the modelling of the groundwater flow system under ice sheet conditions; e.g. density driven flow, thermal and geomechanical effects as well as coupling with a dynamical ice sheet model shall be investigated in the next phase

  2. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    program DarcyTools in order to evaluate the current conceptual model for groundwater flow under ice sheet conditions, as well as to provide some guidance to the field investigations. For this first modelling phase, coupled processes are not considered for the modelling of the groundwater flow system under ice sheet conditions; e.g. density driven flow, thermal and geomechanical effects as well as coupling with a dynamical ice sheet model shall be investigated in the next phase

  3. Static current-sheet models of quiescent prominences

    Science.gov (United States)

    Wu, F.; Low, B. C.

    1986-12-01

    A particular class of theoretical models idealize the prominence to be a discrete flat electric-current sheet suspended vertically in a potential magnetic field. The weight of the prominence is supported by the Lorentz force in the current sheet. These models can be extended to have curved electric-current sheets and to vary three-dimensionally. The equation for force balance is 1 over 4 pi (del times B) times Bdel p- p9 z=zero. Using Cartesian coordinates we take, for simplicity, a uniform gravity with constant acceleration g in the direction -z. If we are interested not in the detailed internal structure of the prominence, but in the global magnetic configuration around the prominence, we may take prominence plasma to be cold. Consideration is given to how such equilibrium states can be constructed. To simplify the mathematical problem, suppose there is no electric current in the atmosphere except for the discrete currents in the cold prominence sheet. Let us take the plane z =0 to be the base of the atmosphere and restrict our attention to the domain z greater than 0. The task we have is to solve for a magnetic field which is everywhere potential except on some free surface S, subject to suit able to boundary conditions. The surface S is determined by requiring that it possesses a discrete electric current density such that the Lorentz force on it is everywhere vertically upward to balance the weight of the material m(S). Since the magnetic field is potential in the external atmosphere, the latter is decoupled from the magnetic field and its plane parallel hydrostatic pressure and density can be prescribed.

  4. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    DEFF Research Database (Denmark)

    Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren

    2014-01-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...

  5. Nonlinear dynamics of thin current sheets

    International Nuclear Information System (INIS)

    Daughton, William

    2002-01-01

    Observations indicate that the current sheet in the Earth's geomagnetic tail may compress to a thickness comparable to an ion gyro-radius prior to substorm onset. In recent years, there has been considerable controversy regarding the kinetic stability of these thin structures. In particular, the growth rate of the kink instability and its relevance to magnetotail dynamics is still being debated. In this work, a series of fully kinetic particle-in-cell simulations are performed for a thin Harris sheet. The ion to electron mass ratio is varied between m i /m e =4→400 and careful comparisons are made with a formally exact approach to the linear Vlasov theory. At low mass ratio m i /m e <64, the simulations are in excellent agreement with the linear theory, but at high mass ratio the kink instability is observed to grow more rapidly in the kinetic simulations than predicted by theory. The resolution to this apparent discrepancy involves the lower hybrid instability which is active on the edge of the sheet and rapidly produces nonlinear modifications to the initial equilibrium. The nature of this nonlinear deformation is characterized and a simple model is proposed to explain the physics. After the growth and saturation of the lower hybrid fluctuations, the deformed current sheet is similar in structure to a Harris equilibrium with an additional background population. This may explain the large growth rate of the kink instability at later times, since this type of modification to the Harris sheet has been shown to greatly enhance the growth rate of the kink mode

  6. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  7. Current disruptions in the near-earth neutral sheet region

    International Nuclear Information System (INIS)

    Liu, A.T.Y.; Anderson, B.J.; Takahashi, K.; Zanetti, L.J.; McEntire, R.W.; Potemra, T.A.; Lopez, R.E.; Klumpar, D.M.; Greene, E.M.; Strangeway, R.

    1992-01-01

    Observations from the Charge Composition Explorer in 1985 and 1986 revealed fifteen current disruption events in which the magnetic field fluctuations were large and their onsets coincided well with ground onsets of substorm expansion or intensification. Over the disruption interval, the local magnetic field can change by as much as a factor of ∼7. In general, the stronger the current buildup and the closer the neutral sheet, the larger the resultant field change. There is also a tendency for a larger subsequent enhancement in the AE index with a stronger current buildup prior to current disruption. For events with good pitch angle coverage and extended observation in the neutral sheet region the authors find that the particle pressure increases toward the disruption onset and decreases afterward. Just prior to disruption, either the total particle pressure is isotropic, or the perpendicular component (P perpendicular ) dominates the parallel component (P parallel ), the plasma beta is seen to be as high as ∼70, and the observed plasma pressure gradient at the neutral sheet is large along the tail axis. The deduced local current density associated with pressure gradient is ∼27-80 n/Am 2 and is ∼85-105 mA/m when integrated over the sheet thickness. They infer from these results that just prior to the onset of current disruption, (1) an extremely thin current sheet requiring P parallel > P perpendicular for stress balance does not develop at these distances, (2) the thermal ion orbits are in the chaotic or Speiser regime while the thermal electrons are in the adiabatic regime and, in one case, exhibit peaked fluxes perpendicular to the magnetic field, thus implying no electron orbit chaotization to possibly initiate ion tearing instability, and (3) the neutral sheet is in the unstable regime specified by the cross-field current instability

  8. Current sheet characteristics of a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode

    Science.gov (United States)

    Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun

    2018-05-01

    The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.

  9. Current sheets and pressure anisotropy in the reconnection exhaust

    International Nuclear Information System (INIS)

    Le, A.; Karimabadi, H.; Roytershteyn, V.; Egedal, J.; Ng, J.; Scudder, J.; Daughton, W.; Liu, Y.-H.

    2014-01-01

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma

  10. Current sheets and pressure anisotropy in the reconnection exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Le, A.; Karimabadi, H.; Roytershteyn, V. [SciberQuest, Inc., Del Mar, California 92014 (United States); Egedal, J. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Ng, J. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Scudder, J. [University of Iowa, Iowa City, Iowa 52242 (United States); Daughton, W.; Liu, Y.-H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-01-15

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma.

  11. On the structure of the magnetotail current sheet

    International Nuclear Information System (INIS)

    Ashour-Abdalla, M.; Peroomian, V.; Richard, R.L.; Zelenyi, L.M.

    1993-01-01

    Results from modeling ion distribution functions in a two-dimensional reduction of the Tsyganenko magnetic field model have enabled the authors to calculate the full ion pressure tensor inside the model magnetotail. A thin current sheet is formed in the distant tail and the pressure tensor within this sheet has significant off-diagonal terms. These terms resulting from quasiadiabatic ion trajectories create azimuthally asymmetric distribution functions which are capable of maintaining stress-balance. Outside the current sheet the off-diagonal terms disappear and moderate anisotropy builds up with P perpendicular/P parallel ∼ 0.8. Closer to the Earth rapid isotropization of the distribution occurs

  12. Thin current sheets observation by MMS during a near-Earth's magnetotail reconnection event

    Science.gov (United States)

    Nakamura, R.; Varsani, A.; Nakamura, T.; Genestreti, K.; Plaschke, F.; Baumjohann, W.; Nagai, T.; Burch, J.; Cohen, I. J.; Ergun, R.; Fuselier, S. A.; Giles, B. L.; Le Contel, O.; Lindqvist, P. A.; Magnes, W.; Schwartz, S. J.; Strangeway, R. J.; Torbert, R. B.

    2017-12-01

    During summer 2017, the four spacecraft of the Magnetospheric Multiscale (MMS) mission traversed the nightside magnetotail current sheet at an apogee of 25 RE. They detected a number of flow reversal events suggestive of the passage of the reconnection current sheet. Due to the mission's unprecedented high-time resolution and spatial separation well below the ion scales, structure of thin current sheets is well resolved both with plasma and field measurements. In this study we examine the detailed structure of thin current sheets during a flow reversal event from tailward flow to Earthward flow, when MMS crossed the center of the current sheet . We investigate the changes in the structure of the thin current sheet relative to the X-point based on multi-point analysis. We determine the motion and strength of the current sheet from curlometer calculations comparing these with currents obtained from the particle data. The observed structures of these current sheets are also compared with simulations.

  13. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Battarbee, Markus; Dalla, Silvia [Jeremiah Horrocks Institute, University of Central Lancashire, PR1 2HE (United Kingdom); Marsh, Mike S., E-mail: mbattarbee@uclan.ac.uk [Met Office, Exeter, EX1 3 PB (United Kingdom)

    2017-02-10

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  14. Pulsar current sheet C̆erenkov radiation

    Science.gov (United States)

    Zhang, Fan

    2018-04-01

    Plasma-filled pulsar magnetospheres contain thin current sheets wherein the charged particles are accelerated by magnetic reconnections to travel at ultra-relativistic speeds. On the other hand, the plasma frequency of the more regular force-free regions of the magnetosphere rests almost precisely on the upper limit of radio frequencies, with the cyclotron frequency being far higher due to the strong magnetic field. This combination produces a peculiar situation, whereby radio-frequency waves can travel at subluminal speeds without becoming evanescent. The conditions are thus conducive to C̆erenkov radiation originating from current sheets, which could plausibly serve as a coherent radio emission mechanism. In this paper we aim to provide a portrait of the relevant processes involved, and show that this mechanism can possibly account for some of the most salient features of the observed radio signals.

  15. Electrodynamic forces and plasma conductivity inside the current sheet

    International Nuclear Information System (INIS)

    Bogdanov, S.Yu.; Frank, A.G.; Markov, V.S.

    1985-01-01

    The process of accumulation and explosive release of magnetic energy was studied in a current sheet of plasma of a high-current linear discharge. The distribution of current density and of electrodynamic forces were measured and the time evolution of these quantities was determined. The evolution of the plasma conductivity was also obtained. The measured and calculated electrodynamic forces may explain the plasma acceleration up to the velocities about 3x10 4 m/s only near the sheet edges. (D.Gy.)

  16. Sausage mode instability of thin current sheets as a cause of magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    J. Büchner

    Full Text Available Observations have shown that, prior to substorm explosions, thin current sheets are formed in the plasma sheet of the Earth's magnetotail. This provokes the question, to what extent current-sheet thinning and substorm onsets are physically, maybe even causally, related. To answer this question, one has to understand the plasma stability of thin current sheets. Kinetic effects must be taken into account since particle scales are reached in the course of tail current-sheet thinning. We present the results of theoretical investigations of the stability of thin current sheets and about the most unstable mode of their decay. Our conclusions are based upon a non-local linear dispersion analysis of a cross-magnetic field instability of Harris-type current sheets. We found that a sausage-mode bulk current instability starts after a sheet has thinned down to the ion inertial length. We also present the results of three-dimensional electromagnetic PIC-code simulations carried out for mass ratios up to Mi / me=64. They verify the linearly predicted properties of the sausage mode decay of thin current sheets in the parameter range of interest.

    Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms · Space plasma physics (magnetic reconnection

  17. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    International Nuclear Information System (INIS)

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are ∼1-5 x 10 4 km and ∼5-50 nA/m 2 . Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of ∼1.2 x 10 5 K and ∼40 in the center of the current sheet to ∼1 x 10 6 K and ∼3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (∼1 at ICE), and that a region of strongly enhanced mass loading (ion source rate ∼24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is ∼2.6 x 10 26 H 2 O+/sec, which is only ∼1% of the independently determined total cometary efflux. 79 refs., 37 figs

  18. On the role of topological complexity in spontaneous development of current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjay; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2015-08-15

    The computations presented in this work aim to asses the importance of field line interlacing on spontaneous development of current sheets. From Parker's magnetostatic theorem, such development of current sheets is inevitable in a topologically complex magnetofluid, with infinite electrical conductivity, at equilibrium. Relevant initial value problems are constructed by superposition of two untwisted component fields, each component field being represented by a pair of global magnetic flux surface. The intensity of field line interlacing is then specified by the relative amplitude of the two superposed fields. The computations are performed by varying this relative amplitude. Also to have a direct visualization of current sheet formation, we follow the evolution of flux surfaces instead of the vector magnetic field. An important finding of this paper is in the demonstration that initial field lines having intense interlacing tend to develop current sheets which are distributed throughout the computational domain with no preference for topologically favorable sites like magnetic nulls or field reversal layers. The onsets of these current sheets are attributed to favorable contortions of magnetic flux surfaces where two oppositely directed parts of the same field line or different field lines come to close proximity. However, for less intensely interlaced field lines, the simulations indicate development of current sheets at sites only where the magnetic topology is favorable. These current sheets originate as two sets of anti-parallel complimentary field lines press onto each other.

  19. PERISTALTIC PUMPING NEAR POST-CORONAL MASS EJECTION SUPRA-ARCADE CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Roger B.; Longcope, Dana W.; McKenzie, David E., E-mail: rscott@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2013-10-10

    Temperature and density measurements near supra-arcade current sheets suggest that plasma on unreconnected field lines may experience some degree of 'pre-heating' and 'pre-densification' prior to reconnection. Models of patchy reconnection allow for heating and acceleration of plasma along reconnected field lines but do not offer a mechanism for transport of thermal energy across field lines. Here, we present a model in which a reconnected flux tube retracts, deforming the surrounding layer of unreconnected field. The deformation creates constrictions that act as peristaltic pumps, driving plasma flow along affected field lines. Under certain circumstances, these flows lead to shocks that can extend far out into the unreconnected field, altering the plasma properties in the affected region. These findings have direct implications for observations in the solar corona, particularly in regard to such phenomena as high temperatures near current sheets in eruptive solar flares and wakes seen in the form of descending regions of density depletion or supra-arcade downflows.

  20. Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2004-01-01

    Full Text Available Thin current sheets represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current sheet structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current sheet dynamics, including the well-known current sheet bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current sheets in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the plasma pressure gradients was developed earlier. The influence of the anisotropic electron population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the plasma is taken into account. It is assumed that the electron motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current sheet, i.e. a narrow sharp peak of electron current in the very center of the sheet due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to electron temperature ratio, the curvature of the magnetic field lines, and the average electron magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current sheets

  1. Anomalous resistivity due to kink modes in a thin current sheet

    International Nuclear Information System (INIS)

    Moritaka, Toseo; Horiuchi, Ritoku; Ohtani, Hiroaki

    2007-01-01

    The roles of microscopic plasma instabilities on the violation of the frozen-in constraint are investigated by examining the force balance equation based on explicit electromagnetic particle simulation for a thin current sheet. Wave-particle interactions associated with lower hybrid drift instability and drift kink instability (DKI) contribute to the wavy electric force term at the periphery of the current sheet and the wavy magnetic force term at the neutral sheet, respectively. In the linear growing phase of DKI, the wavy magnetic force term balances with the electric force term due to the dc electric field at the neutral sheet. It is concluded that the growth of DKI can create anomalous resistivity and result in the violation of the frozen-in constraint as well as the diffusion of current density

  2. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikić, Zoran; Linker, Jon A.

    2013-01-01

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 Å and 131 Å channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model

  3. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    Science.gov (United States)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  4. Generalized lower-hybrid drift instabilities in current-sheet equilibrium

    International Nuclear Information System (INIS)

    Yoon, Peter H.; Lui, Anthony T. Y.; Sitnov, Mikhail I.

    2002-01-01

    A class of drift instabilities in one-dimensional current-sheet configuration, i.e., classical Harris equilibrium, with frequency ranging from low ion-cyclotron to intermediate lower-hybrid frequencies, are investigated with an emphasis placed on perturbations propagating along the direction of cross-field current flow. Nonlocal two-fluid stability analysis is carried out, and a class of unstable modes with multiple eigenstates, similar to that of the familiar quantum mechanical potential-well problem, are found by numerical means. It is found that the most unstable modes correspond to quasi-electrostatic, short-wavelength perturbations in the lower-hybrid frequency range, with wave functions localized at the edge of the current sheet where the density gradient is maximum. It is also found that there exist quasi-electromagnetic modes located near the center of the current sheet where the current density is maximum, with both kink- and sausage-type polarizations. These modes are low-frequency, long-wavelength perturbations. It turns out that the current-driven modes are low-order eigensolutions while the lower-hybrid-type modes are higher-order states, and there are intermediate solutions between the two extreme cases. Attempts are made to interpret the available simulation results in light of the present eigenmode analysis

  5. Magnetic reconnection and current sheet formation in 3D magnetic configurations

    International Nuclear Information System (INIS)

    Frank, A.G.

    1999-01-01

    The problem of magnetic reconnection in three-dimensional (3D) magnetic configurations has been studied experimentally. The research has concentrated on the possibilities of formation of current sheets, which represent crucial objects for a realization of magnetic reconnection phenomena. Different types of 3D magnetic configurations were examined, including configurations with singular lines of the X-type, non-uniform fields containing isolated magnetic null-points and without null-points. It was revealed that formation of quasi-one-dimensional current sheets is the universal process for plasma dynamics in 3D magnetic fields both with null-points and without. At the same time the peculiarities of current sheets, plasma dynamics and magnetic reconnection processes depend essentially on characteristics of 3D magnetic configurations. The result of principal significance obtained was that magnetic reconnection phenomena can take place in a wide range of 3D magnetic configurations as a consequence of their ability to form current sheets. (author)

  6. Current sheet particle acceleration - theory and observations for the geomagnetic tail

    International Nuclear Information System (INIS)

    Speiser, T.W.

    1984-01-01

    It has been found that the current sheet in the geomagnetic tail is a source of plasma and energetic particles for the magnetospheric ring current and radiation belts. It is also a seat for instabilities and magnetospheric substorms. Theoretical studies related to the geomagnetic tail are discussed, taking into account Dungey's (1953) original ideas concerning neutral point acceleration, and studies of particle motion in current sheets conducted by many authors. A description of observations concerning the geomagnetic tail is also provided, taking into account plasma sheet populations, and the plasma sheet boundary layer. Some remaining problems are partly related to the location and the behavior of the distant source, the nature of the relative (time-dependent) ionospheric versus solar wind contributions, and the role of the solar wind in the initiation of distant or near-earth neutral lines. 56 references

  7. Experimental observations of the tearing of an electron current sheet

    International Nuclear Information System (INIS)

    Gekelman, W.; Pfister, H.

    1988-01-01

    A neutral magnetic sheet, in which the current is carried mainly by the electrons, is set up in a laboratory plasma. By forcing the current through a thin slot, the ratio of the length to height t of the sheet may be varied; the current is observed to tear when tapprox. >30. The structure of the magnetic islands and their associated currents is fully three dimensional, although a linear two-dimensional theory gives a very good estimate of the tearing mode growth time. Tearing is accompanied by the generation of significant Hall currents, and magnetic disturbances are observed to propagate at the whistler wave speed

  8. Spatial Offsets in Flare-CME Current Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, John C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Giordano, Silvio [INAF-Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Ciaravella, Angela, E-mail: jraymond@cfa.harvard.edu [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, I-90134 Palermo (Italy)

    2017-07-10

    Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and to allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV, and X-ray observations have been identified as current sheets and have been interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emission features in the [Fe xviii] and Si xii lines. In this paper, we discuss several surprising cases in which the [Fe xviii] and Si xii emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as the projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.

  9. Evolution of three-dimensional relativistic current sheets and development of self-generated turbulence

    Science.gov (United States)

    Takamoto, M.

    2018-05-01

    In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.

  10. CURRENT SHEET ENERGETICS, FLARE EMISSIONS, AND ENERGY PARTITION IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Reeves, Katharine K.; Linker, Jon A.; Mikic, Zoran; Forbes, Terry G.

    2010-01-01

    We investigate coronal energy flow during a simulated coronal mass ejection (CME). We model the CME in the context of the global corona using a 2.5D numerical MHD code in spherical coordinates that includes coronal heating, thermal conduction, and radiative cooling in the energy equation. The simulation domain extends from 1 to 20 R s . To our knowledge, this is the first attempt to apply detailed energy diagnostics in a flare/CME simulation when these important terms are considered in the context of the MHD equations. We find that the energy conservation properties of the code are quite good, conserving energy to within 4% for the entire simulation (more than 6 days of real time). We examine the energy release in the current sheet as the eruption takes place, and find, as expected, that the Poynting flux is the dominant carrier of energy into the current sheet. However, there is a significant flow of energy out of the sides of the current sheet into the upstream region due to thermal conduction along field lines and viscous drag. This energy outflow is spatially partitioned into three separate components, namely, the energy flux flowing out the sides of the current sheet, the energy flowing out the lower tip of the current sheet, and the energy flowing out the upper tip of the current sheet. The energy flow through the lower tip of the current sheet is the energy available for heating of the flare loops. We examine the simulated flare emissions and energetics due to the modeled CME and find reasonable agreement with flare loop morphologies and energy partitioning in observed solar eruptions. The simulation also provides an explanation for coronal dimming during eruptions and predicts that the structures surrounding the current sheet are visible in X-ray observations.

  11. Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model

    Science.gov (United States)

    Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.

    2017-12-01

    The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric

  12. Shear flow generation and transport barrier formation on rational surface current sheets in tokamaks

    International Nuclear Information System (INIS)

    Wang Xiaogang; Xiao Chijie; Wang Jiaqi

    2009-01-01

    Full text: A thin current sheet with a magnetic field component in the same direction can form the electrical field perpendicularly pointing to the sheet, therefore an ExB flow with a strong shear across the current sheet. An electrical potential well is also found on the rational surface of RFP as well as the neutral sheet of the magnetotail with the E-field pointing to the rational (neutral) surface. Theoretically, a current singularity is found to be formed on the rational surface in ideal MHD. It is then very likely that the sheet current on the rational surfaces will generate the electrical potential well in its vicinity so the electrical field pointing to the sheet. It results in an ExB flow with a strong shear in the immediate neighborhood of the rational surface. It may be the cause of the transport barrier often seen near the low (m, n) rational surfaces with MHD signals. (author)

  13. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    International Nuclear Information System (INIS)

    Catapano, F.; Zimbardo, G.; Artemyev, A. V.; Vasko, I. Y.

    2015-01-01

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed

  14. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    Energy Technology Data Exchange (ETDEWEB)

    Catapano, F., E-mail: menacata3@gmail.com; Zimbardo, G. [Dipartimento di Fisica, Università della Calabria, Rende, Cosenza (Italy); Artemyev, A. V., E-mail: ante0226@gmail.com; Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  15. Monitoring dc stray current corrosion at sheet pile structures

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2012-01-01

    Steel is discarded by railway owners as a material for underground structures near railway lines, due to uncertainty over increased corrosion by DC stray currents stemming from the traction power system. This paper presents a large scale field test in which stray currents interference of a sheet

  16. Onset of fast "ideal" tearing in thin current sheets: Dependence on the equilibrium current profile

    Science.gov (United States)

    Pucci, F.; Velli, M.; Tenerani, A.; Del Sarto, D.

    2018-03-01

    In this paper, we study the scaling relations for the triggering of the fast, or "ideal," tearing instability starting from equilibrium configurations relevant to astrophysical as well as laboratory plasmas that differ from the simple Harris current sheet configuration. We present the linear tearing instability analysis for equilibrium magnetic fields which (a) go to zero at the boundary of the domain and (b) contain a double current sheet system (the latter previously studied as a Cartesian proxy for the m = 1 kink mode in cylindrical plasmas). More generally, we discuss the critical aspect ratio scalings at which the growth rates become independent of the Lundquist number S, in terms of the dependence of the Δ' parameter on the wavenumber k of unstable modes. The scaling Δ'(k) with k at small k is found to categorize different equilibria broadly: the critical aspect ratios may be even smaller than L/a ˜ Sα with α = 1/3 originally found for the Harris current sheet, but there exists a general lower bound α ≥ 1/4.

  17. The Topology and Properties of Mercury's Tail Current Sheet

    Science.gov (United States)

    Al Asad, M.; Johnson, C.; Philpott, L. C.

    2017-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury from March 2011 until April 2015, measuring the vector magnetic field inside and outside the magnetosphere. MESSENGER repeatedly encountered the tail current sheet (TCS) on the nightside of the planet. We examined 1s magnetic field data within 20 minutes of the magnetic equator position on 2435 orbit to characterize the shape and properties of Mercury's TCS and investigate its response to solar wind conditions. Identification of the TCS from vector magnetic field data used the following criteria: (1) a rapid rotation in the field direction from anti-sunward in the southern tail lobe to sunward in the northern lobe, accompanied by (2) a decrease in the field magnitude and (3) an increase in field variability. The current sheet was encountered on 606 orbits allowing the probability of encountering the tail current sheet in the equatorial plane to be mapped. Orbits on which the TCS was identified were binned spatially and superposed epoch analysis used to determine the field magnitude at the edge of the TCS, from which its time-averaged 3D shape was extracted. The TCS has an inner edge at 1.5 RM downtail in the midnight plane with a thickness of 0.34 RM, extends to the observation limit of 2.8 RM, decreasing in thickness to 0.28 RM. The thickness of the TCS increases in the dawn/dusk directions to 0.7 RM at 1.8 RM downtail and ± 1.5 RM from the noon-midnight plane and it warps towards the planet in the dawn/dusk directions. No strong correlations were found between the time-averaged shape and position of the TCS and solar wind conditions such as the solar wind ram pressure and the magnetic disturbance index, nor with parameters that control these conditions such as heliocentric distance. However, it is likely that the TCS does respond to these conditions on time scales too short to be characterized with MESSENGER data. In addition to mapping the shape of the

  18. Development of tearing instability in a current sheet forming by sheared incompressible flow

    Science.gov (United States)

    Tolman, Elizabeth A.; Loureiro, Nuno F.; Uzdensky, Dmitri A.

    2018-02-01

    Sweet-Parker current sheets in high Lundquist number plasmas are unstable to tearing, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Formation can occur due to sheared, sub-Alfvénic incompressible flows which narrow the sheet. Standard tearing theory (Furth et al. Phys. Fluids, vol. 6 (4), 1963, pp. 459-484, Rutherford, Phys. Fluids, vol. 16 (11), 1973, pp. 1903-1908, Coppi et al. Fizika Plazmy, vol. 2, 1976, pp. 961-966) is not immediately applicable to such forming sheets for two reasons: first, because the flow introduces terms not present in the standard calculation; second, because the changing equilibrium introduces time dependence to terms which are constant in the standard calculation, complicating the formulation of an eigenvalue problem. This paper adapts standard tearing mode analysis to confront these challenges. In an initial phase when any perturbations are primarily governed by ideal magnetohydrodynamics, a coordinate transformation reveals that the flow compresses and stretches perturbations. A multiple scale formulation describes how linear tearing mode theory (Furth et al. Phys. Fluids, vol. 6 (4), 1963, pp. 459-484, Coppi et al. Fizika Plazmy, vol. 2, 1976, pp. 961-966) can be applied to an equilibrium changing under flow, showing that the flow affects the separable exponential growth only implicitly, by making the standard scalings time dependent. In the nonlinear Rutherford stage, the coordinate transformation shows that standard theory can be adapted by adding to the stationary rates time dependence and an additional term due to the strengthening equilibrium magnetic field. Overall, this understanding supports the use of flow-free scalings with slight modifications to study tearing in a forming sheet.

  19. Probabilistic Design in a Sheet Metal Stamping Process under Failure Analysis

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao, Jian; Chen, Wei; Xia, Z. Cedric

    2005-01-01

    Sheet metal stamping processes have been widely implemented in many industries due to its repeatability and productivity. In general, the simulations for a sheet metal forming process involve nonlinearity, complex material behavior and tool-material interaction. Instabilities in terms of tearing and wrinkling are major concerns in many sheet metal stamping processes. In this work, a sheet metal stamping process of a mild steel for a wheelhouse used in automobile industry is studied by using an explicit nonlinear finite element code and incorporating failure analysis (tearing and wrinkling) and design under uncertainty. Margins of tearing and wrinkling are quantitatively defined via stress-based criteria for system-level design. The forming process utilizes drawbeads instead of using the blank holder force to restrain the blank. The main parameters of interest in this work are friction conditions, drawbead configurations, sheet metal properties, and numerical errors. A robust design model is created to conduct a probabilistic design, which is made possible for this complex engineering process via an efficient uncertainty propagation technique. The method called the weighted three-point-based method estimates the statistical characteristics (mean and variance) of the responses of interest (margins of failures), and provide a systematic approach in designing a sheet metal forming process under the framework of design under uncertainty

  20. Bank stress testing under different balance sheet assumptions

    OpenAIRE

    Busch, Ramona; Drescher, Christian; Memmel, Christoph

    2017-01-01

    Using unique supervisory survey data on the impact of a hypothetical interest rate shock on German banks, we analyse price and quantity effects on banks' net interest margin components under different balance sheet assumptions. In the first year, the cross-sectional variation of banks' simulated price effect is nearly eight times as large as the one of the simulated quantity effect. After five years, however, the importance of both effects converges. Large banks adjust their balance sheets mo...

  1. Lower hybrid drift instability in modified Harris current sheet with negative ions

    International Nuclear Information System (INIS)

    Huang Feng; Chen, Y-H; Shi Guifen; Hu, Z-Q; Yu, M Y

    2008-01-01

    The lower hybrid drift instability (LHDI) in a Harris current sheet with negative ions is investigated using the kinetic theory. Numerical results show that the negative ions have considerable effect on the LHDI. With increase of the negative-ion concentration, the growth rate of the LHDI increases and its real frequency decreases for any wave length. The Harris current sheet can thus be significantly modified

  2. Simulation of auroral current sheet equilibria and associated V-shaped potential structures

    International Nuclear Information System (INIS)

    Singh, N.; Thiemann, H.; Schunk, R.W.

    1983-01-01

    Results from numerical simulations of auroral current sheet equilibrium and associated V-shaped potential structures are presented. It is shown that with allowance for both hot magnetospheric ion and cold ionospheric ion populations, the perpendicular potential drop, assiciated with a non-neutral auroral current sheet is critically controlled by the temperature of the 'heated' ionospheric ions. The heating is caused by the wave turbulence excited by the auroral current sheet. In the presence of heated ionospheric ions, a relatively large variation in the temperature of the hot magnetospheric ion population causes a very small variation in the potential drop thetam. The perpendicular potential drop acts to produce a V-shaped double layer with multiple potential steps parallel to the magnetic field when a zero potential boundary condition is imposed at the ionospheric boundary. Outside the V-shaped potential structure, ionospheric return currents develop self-consistently

  3. Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism

    International Nuclear Information System (INIS)

    Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.

    2010-01-01

    Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the ''kink'' and ''sausage'' flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating along the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity.

  4. FORMATION AND RECONNECTION OF THREE-DIMENSIONAL CURRENT SHEETS IN THE SOLAR CORONA

    International Nuclear Information System (INIS)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun's corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional (3D) magnetohydrodynamic simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to directly apply the vast body of knowledge gained from the many studies of two-dimensional (2D) reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet-Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona.

  5. Intensity variation of cosmic rays near the heliospheric current sheet

    International Nuclear Information System (INIS)

    Badruddin, K.S.; Yadav, R.S.; Yadav, N.R.

    1985-01-01

    Cosmic ray intensity variations near the heliospheric current sheet-both above and below it-have been studied during 1964-76. Superposed epoch analysis of the cosmic ray neutron monitor data with respect to sector boundaries (i.e., heliospheric current sheet crossings) has been performed. In this analysis data from neutron monitors well distributed in latitude over the Earth's surface is used. First, this study has been made during the two solar activity minimum periods 1964-65 and 1975-76, using the data from Thule (cut-off rigidity O GV), Deep River (cut-off rigidity 1.02 GV), Rome (cut-off rigidity 6.32 GV) and Huancayo (cut-off rigidity 13.45 GV) neutron monitors. The data is analyzed from Deep River, Rome and Huancayo neutron monitors, for which data is available for the full period (1964-76), by dividing the periods according to the changes in solar activity, interplanetary magnetic field polarity and coronal holes. All these studies have shown a negative gradient with respect to heliomagnetic latitude (current sheet). These results have been discussed in the light of theoretical and observational evidences. Suggestions have been given to overcome the discrepancy between the observational and theoretical results. Further, possible explanations for these observational results have been suggested. (author)

  6. Hysteresis-controlled instability waves in a scale-free driven current sheet model

    Directory of Open Access Journals (Sweden)

    V. M. Uritsky

    2005-01-01

    Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.

  7. On the instability of a quasiequilibrium current sheet and the onset of impulsive bursty reconnection

    International Nuclear Information System (INIS)

    Skender, Marina; Lapenta, Giovanni

    2010-01-01

    A two-dimensional reconnecting current sheet is studied numerically in the magnetohydrodynamic approach. Different simulation setups are employed in order to follow the evolution of the formed current sheet in diverse configurations: two types of initial equilibria, Harris and force-free, two types of boundary conditions, periodic and open, with uniform and nonuniform grid set, respectively. All the simulated cases are found to exhibit qualitatively the same behavior in which a current sheet evolves slowly through a series of quasiequilibria; eventually it fragments and enters a phase of fast impulsive bursty reconnection. In order to gain more insight on the nature and characteristics of the instability taking place, physical characteristics of the simulated current sheet are related to its geometrical properties. At the adopted Lundquist number of S=10 4 and Reynolds number R=10 4 , the ratio of the length to width (aspect ratio) of the formed current sheet is observed to increase slowly in time up to a maximum value at which it fragments. Moreover, additional turbulence applied to the system is shown to exhibit the same qualitative steps, but with the sooner onset of the fragmentation and at smaller aspect ratio.

  8. Nanostructure characterization of beta-sheet crystals in silk under various temperatures

    Directory of Open Access Journals (Sweden)

    Zhang Yan

    2014-01-01

    Full Text Available This paper studies the nanostructure characterizations of β-sheet in silk fiber with different reaction temperatures. A molecular dynamic model is developed and simulated by Gromacs software packages. The results reveal the change rules of the number of hydrogen bonds in β-sheet under different temperatures. The best reaction temperature for the β-sheet crystals is also found. This work provides theoretical basis for the designing of materials based on silk.

  9. Coronal Heating Topology: The Interplay of Current Sheets and Magnetic Field Lines

    Energy Technology Data Exchange (ETDEWEB)

    Rappazzo, A. F.; Velli, M. [Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095 (United States); Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Ruffolo, D. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Servidio, S., E-mail: rappazzo@ucla.edu [Dipartimento di Fisica, Università della Calabria, Cosenza I-87036 (Italy)

    2017-07-20

    The magnetic topology and field line random walk (FLRW) properties of a nanoflare-heated and magnetically confined corona are investigated in the reduced magnetohydrodynamic regime. Field lines originating from current sheets form coherent structures, called current sheet connected (CSC) regions, which extend around them. CSC FLRW is strongly anisotropic, with preferential diffusion along the current sheets’ in-plane length. CSC FLRW properties remain similar to those of the entire ensemble but exhibit enhanced mean square displacements and separations due to the stronger magnetic field intensities in CSC regions. The implications for particle acceleration and heat transport in the solar corona and wind, and for solar moss formation are discussed.

  10. Preservation of a Preglacial Landscape Under the Center of the Greenland Ice Sheet

    Science.gov (United States)

    Bierman, Paul R.; Corbett, Lee B.; Graly, Joseph A.; Neumann, Thomas Allen; Lini, Andrea; Crosby, Benjamin T.; Rood, Dylan H.

    2014-01-01

    Continental ice sheets typically sculpt landscapes via erosion; under certain conditions, ancient landscapes can be preserved beneath ice and can survive extensive and repeated glaciation. We used concentrations of atmospherically produced cosmogenic beryllium-10, carbon, and nitrogen to show that ancient soil has been preserved in basal ice for millions of years at the center of the ice sheet at Summit, Greenland. This finding suggests ice sheet stability through the Pleistocene (i.e., the past 2.7 million years). The preservation of this soil implies that the ice has been non-erosive and frozen to the bed for much of that time, that there was no substantial exposure of central Greenland once the ice sheet became fully established, and that preglacial landscapes can remain preserved for long periods under continental ice sheets

  11. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  12. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    Directory of Open Access Journals (Sweden)

    V. Zharkova

    2015-04-01

    Full Text Available Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS or in a front of interplanetary coronal mass ejections (ICMEs often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012. The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR, which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic

  13. Instabilities of collisionless current sheets revisited: The role of anisotropic heating

    International Nuclear Information System (INIS)

    Muñoz, P. A.; Kilian, P.; Büchner, J.

    2014-01-01

    In this work, we investigate the influence of the anisotropic heating on the spontaneous instability and evolution of thin Harris-type collisionless current sheets, embedded in antiparallel magnetic fields. In particular, we explore the influence of the macroparticle shape-function using a 2D version of the PIC code ACRONYM. We also investigate the role of the numerical collisionality due to the finite number of macroparticles in PIC codes. It is shown that it is appropriate to choose higher order shape functions of the macroparticles compared to a larger number of macroparticles per cell. This allows to estimate better the anisotropic electron heating due to the collisions of macroparticles in a PIC code. Temperature anisotropies can stabilize the tearing mode instability and trigger additional current sheet instabilities. We found a good agreement between the analytically derived threshold for the stabilization of the anisotropic tearing mode and other instabilities, either spontaneously developing or initially triggered ones. Numerical effects causing anisotropic heating at electron time scales become especially important for higher mass ratios (above m i /m e =180). If numerical effects are carefully taken into account, one can recover the theoretical estimated linear growth rates of the tearing instability of thin isotropic collisionless current sheets, also for higher mass ratios

  14. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  15. Propagation of large amplitude Alfven waves in the solar wind current sheet

    International Nuclear Information System (INIS)

    Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi

    1996-01-01

    The time evolution of Alfvenic perturbations in the Solar Wind current sheet is studied by using numerical simulations of the compressible magnetohydrodynamic (MHD) equations. The simulations show that the interaction between the large amplitude Alfvenic pertubation and the solar wind current sheet decreases the correlation between velocity and magnetic field fluctuations and produces compressive fluctuations. The characteristics of these compressive fluctuations compare rather well with spatial observations. The behavior of the correlation between density and magnetic field intensity fluctuations and of the their spectra are well reproduced so that the physical mechanisms giving rise to these behaviors can be identified

  16. Survey of large-amplitude flapping motions in the midtail current sheet

    Directory of Open Access Journals (Sweden)

    V. A. Sergeev

    2006-08-01

    Full Text Available We surveyed fast current sheet crossings (flapping motions over the distance range 10–30 RE in the magnetotail covered by the Geotail spacecraft. Since the local tilts of these dynamic sheets are large and variable in these events, we compare three different methods of evaluating current sheet normals using 4-s/c Cluster data and define the success criteria for the single-spacecraft-based method (MVA to obtain the reliable results. Then, after identifying more than ~1100 fast CS crossings over a 3-year period of Geotail observations in 1997–1999, we address their parameters, spatial distribution and activity dependence. We confirm that over the entire distance covered and LT bins, fast crossings have considerable tilts in the YZ plane (from estimated MVA normals which show a preferential appearance of one (YZ kink-like mode that is responsible for these severe current sheet perturbations. Their occurrence is highly inhomogeneous; it sharply increases with radial distance and has a peak in the tail center (with some duskward shift, resembling the occurrence of the BBFs, although there is no one-to-one local correspondence between these two phenomena. The crossing durations typically spread around 1 min and decrease significantly where the high-speed flows are registered. Based on an AE index superposed epoch study, the flapping motions prefer to appear during the substorm expansion phase, although a considerable number of events without any electrojet and auroral activity were also observed. We also present statistical distributions of other parameters and briefly discuss what could be possible mechanisms to generate the flapping motions.

  17. Oscillations Excited by Plasmoids Formed During Magnetic Reconnection in a Vertical Gravitationally Stratified Current Sheet

    Science.gov (United States)

    Jelínek, P.; Karlický, M.; Van Doorsselaere, T.; Bárta, M.

    2017-10-01

    Using the FLASH code, which solves the full set of the 2D non-ideal (resistive) time-dependent magnetohydrodynamic (MHD) equations, we study processes during the magnetic reconnection in a vertical gravitationally stratified current sheet. We show that during these processes, which correspond to processes in solar flares, plasmoids are formed due to the tearing mode instability of the current sheet. These plasmoids move upward or downward along the vertical current sheet and some of them merge into larger plasmoids. We study the density and temperature structure of these plasmoids and their time evolution in detail. We found that during the merging of two plasmoids, the resulting larger plasmoid starts to oscillate with a period largely determined by L/{c}{{A}}, where L is the size of the plasmoid and c A is the Alfvén speed in the lateral parts of the plasmoid. In our model, L/{c}{{A}} evaluates to ˜ 25 {{s}}. Furthermore, the plasmoid moving downward merges with the underlying flare arcade, which causes oscillations of the arcade. In our model, the period of this arcade oscillation is ˜ 35 {{s}}, which also corresponds to L/{c}{{A}}, but here L means the length of the loop and c A is the average Alfvén speed in the loop. We also show that the merging process of the plasmoid with the flare arcade is a complex process as presented by complex density and temperature structures of the oscillating arcade. Moreover, all these processes are associated with magnetoacoustic waves produced by the motion and merging of plasmoids.

  18. On the energy release rate in a turbulent current sheet on the Sun

    International Nuclear Information System (INIS)

    Bardakov, V.M.

    1986-01-01

    It is shown that turbulent current sheets on the Sun, realizing in the form of the Parker - Sweet flow, are in quasilinear regime of turbulence (or in the regime of instability threshold). The energy release rate in such sheets does not exceed 10 26 erg/s for typical plasma parameters in active regions

  19. The formation of solar prominences by thermal instability in a current sheet

    International Nuclear Information System (INIS)

    Smith, E.A.; Priest, E.R.

    1977-01-01

    The energy balance equation for the upper chromosphere or lower corona contains a radiative loss term which is destabilizing, because of slight decrease in temperature from the equilibrium value causes more radiation and hence a cooling of the plasma; also a slight increase in temperature has the effect of heating the plasma. In spite of this tendency towards thermal instability, most of the solar atmosphere is remarkably stable, since thermal conduction is very efficient at equalizing any temperature irregularity which may arise. However, the effectiveness of thermal conduction in transporting heat is decreased considerably in a current sheet or a magnetic flux tube, since heat can be conducted quickly only along the magnetic field lines. This paper presents a simple model for the thermal equilibrium and stability of a current sheet. It is found that, when its length exceeds a certain maximum value, no equilibrium is possible and the plasma in the sheet cools. The results may be relevant for the formation of a quiescent prominence. (Auth.)

  20. A route to explosive large-scale magnetic reconnection in a super-ion-scale current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2009-01-01

    Full Text Available How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te|| at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||. Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1 The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2 The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3 When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level

  1. Instabilities of collisionless current sheets: Theory and simulations

    International Nuclear Information System (INIS)

    Silin, I.; Buechner, J.; Zelenyi, L.

    2002-01-01

    The problem of Harris current sheet stability is investigated. A linear dispersion relation in the long-wavelength limit is derived for instabilities, propagating in the neutral plane at an arbitrary angle to the magnetic field but symmetric across the sheet. The role of electrostatic perturbations is especially investigated. It appears, that for the tearing-mode instability electrostatic effects are negligible. However, for obliquely propagating modes the modulation of the electrostatic potential φ is essential. In order to verify the theoretical results, the limiting cases of tearing and sausage instabilities are compared to the two-dimensional (2D) Vlasov code simulations. For tearing the agreement between theory and simulations is good for all mass ratios. For sausage-modes, the theory predicts fast stabilization for mass ratios m i /m e ≥10. This is not observed in simulations due to the diminishing of the wavelength for higher mass ratios, which leads beyond the limit of applicability of the theory developed here

  2. Kinky heliospheric current sheet: Cause of CDAW-6 substorms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Russell, C.T.; King, J.H.; Zwickl, R.D.; Lin, R.P.

    1984-01-01

    Two magnetospheric substorms and the intensification of the second are caused by interplanetary magnetic field and ram pressure changes associated with a kinky heliospheric current sheet (KHCS). The responsible interplanetary features occur in a highly compressed region between a solar flare-associated shock wave and the cold driver gas. The possibity that the interplanetary structure is a ''magnetic cloud'' is ruled out

  3. Impact of the storm-time plasma sheet ion composition on the ring current energy density

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Petrinec, S. M.; Fuselier, S. A.; Cohen, I.

    2017-12-01

    The adiabatic inward transport of the night-side near-earth ( 6 Re) hot plasma sheet is the dominant contributor to the ring current pressure during storm times. During storm times, the plasma sheet composition in the 6 - 12 Re tail region changes due to O+ entry from the lobes (from the cusp) and the direct feeding from the night side auroral region. In addition, at substorm onset the plasma sheet O+ ions can be preferentially accelerated. We use MMS and observations during two magnetic storms, 5/8/2016 and 7/16/2017, to monitor the composition changes and energization in the 6 - 12 Re plasma sheet region. For both storms the MMS apogee was in the tail. In addition, we use subsequent Van Allen Probe observations (with apogee in the dawn and dusk respectively) to test if the 6-12 Re plasma sheet, observed by MMS, is a sufficient source of the O+ in the ring current. For this we will compare the phase space density (PSD) of the plasma sheet source population and the PSD of the inner magnetosphere at constant magnetic moment values as used in Kistler et al., [2016].

  4. Observations of the Formation, Development, and Structure of a Current Sheet in an Eruptive Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Seaton, Daniel B.; Darnel, Jonathan M. [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO 80305 (United States); Bartz, Allison E., E-mail: daniel.seaton@noaa.gov [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States)

    2017-02-01

    We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops. We estimate that the rate of reconnection during the event was M{sub A} ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.

  5. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    Science.gov (United States)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  6. Chaotic jumps in the generalized first adiabatic invariant in current sheets

    International Nuclear Information System (INIS)

    Brittnacher, M.J.; Whipple, E.C.

    1991-01-01

    In attempting to develop a fluidlike model of plasma dynamics in a current sheet, kinetic effects due to chaotic non-adiabatic particle motion must be included in any realistic description. Using drift variables, derived by the Kruskal averaging procedure, to construct distribution functions may provide an approach in which to develop the fluid description. However, the drift motion is influenced by abrupt changes in the value of the generalized first adiabatic invariant J. In this letter, the authors indicate how the changes in J derived from separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. In particular, the authors propose a method to determine distribution functions for an ensemble of particles following interactions with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant

  7. Flapping current sheet with superposed waves seen in space and on the ground

    Science.gov (United States)

    Wang, Guoqiang; Volwerk, Martin; Nakamura, Rumi; Boakes, Peter; Zhang, Tielong; Ge, Yasong; Yoshikawa, Akimasa; Baishev, Dmitry

    2015-04-01

    A wavy current sheet event observed on 15th of October 2004 between 1235 and 1300 UT has been studied by using Cluster and ground-based magnetometer data. Waves propagating from the tail centre to the duskside flank with a period ~30 s and wavelength ~1 RE, are superimposed on a flapping current sheet, accompanied with a bursty bulk flow (BBF). Three Pi2 pulsations, with onset at ~1236, ~1251 and ~1255 UT, respectively, are observed at the Tixie (TIK) station located near the foot-points of Cluster. The mechanism creating the Pi2 (period ~40 s) onset at ~1236 UT is unclear. The second Pi2 (period ~90 s, onset at ~1251 UT) is associated with a strong field-aligned current, which has a strong transverse component of the magnetic field, observed by Cluster with a time delay ~60 s. We suggest that it is caused by bouncing Alfvén waves between the northern and southern ionosphere which transport the field-aligned current. For the third Pi2 (period ~60 s) there is almost no damping at the first three periods. They occur in conjunction with periodic field-aligned currents one-on-one with 72s delay. We suggest that it is generated by these periodic field-aligned currents. We conclude that the strong field-aligned currents generated in the plasma sheet during flapping with superimposed higher frequency waves can drive Pi2 pulsations on the ground, and periodic field-aligned currents can even control the period of the Pi2s.

  8. Enhancement of the guide field during the current sheet formation in the three-dimensional magnetic configuration with an X line

    International Nuclear Information System (INIS)

    Frank, Anna; Bugrov, Sergey; Markov, Vladimir

    2009-01-01

    Results are presented from studies of the formation of current sheets during exciting a current aligned with the X line of the 3D magnetic configuration, in the CS-3D device. Enhancement of the guide field (parallel to the X line) was directly observed for the first time, on the basis of magnetic measurements. After the current sheet formation, the guide field inside the sheet exceeds its initial value, as well as the field outside. It is convincingly demonstrated that an enhancement of the guide field is due to its transportation by plasma flows on the early stage of the sheet formation. The in-plane plasma currents, which produce the excess guide field, are comparable to the total current along the X line that initiates the sheet itself.

  9. Is the Near-Earth Current Sheet Prior to Reconnection Unstable to Tearing Mode?

    International Nuclear Information System (INIS)

    Xin-Hua, Wei; Jin-Bin, Cao; Guo-Cheng, Zhou; Hui-Shan, Fu

    2010-01-01

    The tearing mode instability plays a key role in the triggering process of reconnection. The triggering collisionless tearing mode instability has been theoretically and numerically analyzed by many researchers. However, due to the difficulty in obtaining the observational wave number, it is still unknown whether the tearing mode instability can be excited in an actual plasma sheet prior to reconnection onset. Using the data from four Cluster satellites prior to a magnetospheric reconnection event on 13 September 2002, we utilized the wave telescope technique to obtain the wave number which corresponds to the peak of power spectral density. The wavelength is about 18R E and is consistent with previous theoretic and numerical results. After substituting the wave vector and other necessary parameters of the observed current sheet into the triggering condition of tearing mode instability, we find that the near-Earth current sheet prior to reconnection is unstable to tearing mode. (geophysics, astronomy, and astrophysics)

  10. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  11. Surface dose measurements under stretched, perforated thermoplast sheets and under protective wound dressings for high energy photon radiation

    International Nuclear Information System (INIS)

    Staudenraus, J.; Christ, G.

    2000-01-01

    Patient fixation masks made of perforated thermoplast sheets are widely used in radiotherapy. These masks in particular serve to immobilize the head and neck region during radiation treatment. We placed samples made of differently stretched, perforated mask material on the surface of a white polystyrene (RW3) phantom and measured for high energy photon beams from Co-60 radiation up to 25 MV bremsstrahlung the dose increase resulting from the build-up under the hole and bridge areas. Depending on the energy of the incident beam and the thickness of the stretched mask material we observed a dose increase under the bridges at the phantom surface of 55% up to 140% compared to the dose without a layer of mask material. Under a hole the dose increase is almost half the value found under a bridge. However, deeper than 1 mm under the phantom surface this difference in dose increase under holes and bridges decreases to less than 10%. The mean dose increase under a perforated thermoplast sheet is lower than the dose increase under a homogeneous sheet made of the same material with the same mean thickness. Radiation induced skin lesions or an ulcerating tumour, respectively, may require a protective wound dressing under a patient fixation mask during radiation therapy. Choosing a thin hydrocolloid wound dressing the additional dose increase of the skin, compared to the dose increase due to the fixation mask, can be kept low. (orig.) [de

  12. Ion motion in the current sheet with sheared magnetic field – Part 2: Non-adiabatic effects

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-10-01

    Full Text Available We investigate dynamics of charged particles in current sheets with the sheared magnetic field. In our previouspaper (Artemyev et al., 2013 we studied the particle motion in such magnetic field configurations on the basis of the quasi-adiabatic theory and conservation of the quasi-adiabatic invariant. In this paper we concentrate on violation of the adiabaticity due to jumps of this invariant and the corresponding effects of stochastization of a particle motion. We compare effects of geometrical and dynamical jumps, which occur due to the presence of the separatrix in the phase plane of charged particle motion. We show that due to the presence of the magnetic field shear, the average value of dynamical jumps is not equal to zero. This effect results in the decrease of the time interval necessary for stochastization of trapped particle motion. We investigate also the effect of the magnetic field shear on transient trajectories, which cross the current sheet boundaries. Presence of the magnetic field shear leads to the asymmetry of reflection and transition of particles in the current sheet. We discuss the possible influence of single-particle effects revealed in this paper on the current sheet structure and dynamics.

  13. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    International Nuclear Information System (INIS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-01-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  14. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  15. Feature Size Effect on Formability of Multilayer Metal Composite Sheets under Microscale Laser Flexible Forming

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-07-01

    Full Text Available Multilayer metal composite sheets possess superior properties to monolithic metal sheets, and formability is different from monolithic metal sheets. In this research, the feature size effect on formability of multilayer metal composite sheets under microscale laser flexible forming was studied by experiment. Two-layer copper/nickel composite sheets were selected as experimental materials. Five types of micro molds with different diameters were utilized. The formability of materials was evaluated by forming depth, thickness thinning, surface quality, and micro-hardness distribution. The research results showed that the formability of two-layer copper/nickel composite sheets was strongly influenced by feature size. With feature size increasing, the effect of layer stacking sequence on forming depth, thickness thinning ratio, and surface roughness became increasingly larger. However, the normalized forming depth, thickness thinning ratio, surface roughness, and micro-hardness of the formed components under the same layer stacking sequence first increased and then decreased with increasing feature size. The deformation behavior of copper/nickel composite sheets was determined by the external layer. The deformation extent was larger when the copper layer was set as the external layer.

  16. A MODEL FOR THE ELECTRICALLY CHARGED CURRENT SHEET OF A PULSAR

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, C. R.; Antiochos, S. K.; Black, C. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Timokhin, A. N., E-mail: c.richard.devore@nasa.gov [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-03-10

    Global-scale solutions for the magnetosphere of a pulsar consist of a region of low-lying, closed magnetic field near the star, bounded by opposite-polarity regions of open magnetic field along which the pulsar wind flows into space. Separating these open-field regions is a magnetic discontinuity—an electric current sheet—consisting of generally nonneutral plasma. We have developed a self-consistent model for the internal equilibrium structure of the sheet by generalizing the charge-neutral Vlasov/Maxwell equilibria of Harris and Hoh to allow for net electric charge. The resulting equations for the electromagnetic field are solved analytically and numerically. Our results show that the internal thermal pressure needed to establish equilibrium force balance, and the associated effective current-sheet thickness and magnetization, can differ by orders of magnitude from the Harris/Hoh charge-neutral limit. The new model provides a starting point for kinetic or fluid investigations of instabilities that can cause magnetic reconnection and flaring in pulsar magnetospheres.

  17. A kinky heliospheric current sheet - Cause of CDAW-6 substorms

    Science.gov (United States)

    Tsurutani, B. T.; Russell, C. T.; King, J. H.; Zwickl, R. D.; Lin, R. P.

    1984-01-01

    Two magnetospheric substorms and the intensification of the second are caused by interplanetary magnetic field and ram pressure changes associated with a kinky heliospheric current sheet (KHCS). The responsible interplanetary features occur in a highly compressed region between a solar flare-associated shock wave and the cold driver gas. The possibility that the interplanetary structure is a 'magnetic cloud' is ruled out.

  18. DROPOUTS IN SOLAR ENERGETIC PARTICLES: ASSOCIATED WITH LOCAL TRAPPING BOUNDARIES OR CURRENT SHEETS?

    International Nuclear Information System (INIS)

    Seripienlert, A.; Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2010-01-01

    In recent observations by the Advanced Composition Explorer, the intensity of solar energetic particles exhibits sudden, large changes known as dropouts. These have been explained in terms of turbulence or a flux tube structure in the solar wind. Dropouts are believed to indicate filamentary magnetic connection to a localized particle source near the solar surface, and computer simulations of a random-phase model of magnetic turbulence have indicated a spatial association between dropout features and local trapping boundaries (LTBs) defined for a two-dimensional (2D) + slab model of turbulence. Previous observations have shown that dropout features are not well associated with sharp magnetic field changes, as might be expected in the flux tube model. Random-phase turbulence models do not properly treat sharp changes in the magnetic field, such as current sheets, and thus cannot be tested in this way. Here, we explore the properties of a more realistic magnetohydrodynamic (MHD) turbulence model (2D MHD), in which current sheets develop and the current and magnetic field have characteristic non-Gaussian statistical properties. For this model, computer simulations that trace field lines to determine magnetic connection from a localized particle source indicate that sharp particle gradients should frequently be associated with LTBs, sometimes with strong 2D magnetic fluctuations, and infrequently with current sheets. Thus, the 2D MHD + slab model of turbulent fluctuations includes some realistic features of the flux tube view and is consistent with the lack of an observed association between dropouts and intense magnetic fields or currents.

  19. Multiple current sheets in a double auroral oval observed from the MAGION-2 and MAGION-3 satellites

    Directory of Open Access Journals (Sweden)

    M. Echim

    1997-04-01

    Full Text Available A case is described of multiple current sheets crossed by the MAGION-2 satellite in the near-midnight quieting auroral oval. The data were obtained by the magnetometer experiment onboard. Results show during a quieting period after a preceding substorm, or during an early growth phase of the next substorm, two double-sheet current bands, POLB and EQUB, located at respectively the polar and equatorial borders of the auroral oval separated by about 500 km in latitude. This is consistent with the double-oval structure during recovery introduced by Elphinstone et al. (1995. Within the POLB, the magnetic field data show simultaneous existence of several narrow parallel bipolar current sheets within the upward current branch (at 69.5–70.3° invariant latitude with an adjacent downward current branch at its polar side at (70.5–71.3°. The EQUB was similarly stratified and located at 61.2–63.5° invariant latitude. The narrow current sheets were separated on average by about 35 km and 15 km, respectively, within the POLB and EQUB. A similar case of double-oval current bands with small-scale structuring of their upward current branches during a quieting period is found in the data from the MAGION-3 satellite. These observations contribute to the double-oval structure of the late recovery phase, and add a small-scale structuring of the upward currents producing the auroral arcs in the double- oval pattern, at least for the cases presented here. Other observations of multiple auroral current sheets and theories of auroral arc multiplicity are briefly discussed. It is suggested that multiple X-lines in the distant tail, and/or leakage of energetic particles and FA currents from a series of plasmoids formed during preceding magnetic activity, could be one cause of highly stratified upward FA currents at the polar edge of the quieting double auroral oval.

  20. Kinetic instabilities of thin current sheets: Results of two-and-one-half-dimensional Vlasov code simulations

    International Nuclear Information System (INIS)

    Silin, I.; Buechner, J.

    2003-01-01

    Nonlinear triggering of the instability of thin current sheets is investigated by two-and-one-half- dimensional Vlasov code simulations. A global drift-resonant instability (DRI) is found, which results from the lower-hybrid-drift waves penetrating from the current sheet edges to the center where they resonantly interact with unmagnetized ions. This resonant nonlinear instability grows faster than a Kelvin-Helmholtz instability obtained in previous studies. The DRI is either asymmetric or symmetric mode or a combination of the two, depending on the relative phase of the lower-hybrid-drift waves at the edges of the current sheet. With increasing particle mass ratio the wavenumber of the fastest-growing mode increases as kL z ∼(m i /m e ) 1/2 /2 and the growth rate of the DRI saturates at a finite level

  1. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    Science.gov (United States)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  2. Energization of the Ring Current through Convection of Substorm Enhancements of the Plasma Sheet Source.

    Science.gov (United States)

    Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Henderson, M. G.; Matsui, H.

    2017-12-01

    It has been shown that electric field strength and night-side plasma sheet density are the two best predictors of the adiabatic energy gain of the ring current during geomagnetic storms (Liemohn and Khazanov, 2005). While H+ dominates the ring current during quiet times, O+ can contribute substantially during geomagnetic storms. Substorm activity provides a mechanism to enhance the energy density of O+ in the plasma sheet during geomagnetic storms, which is then convected adiabatically into the inner-magnetosphere. Using the Van Allen Probes data in the the plasma sheet source region (defined as L>5.5 during storms) and the inner magnetosphere, along with LANL-GEO data to identify substorm injection times, we show that adiabatic convection of O+ enhancements in the source region can explain the observed enhancements in the inner magnetosphere. We use the UNH-IMEF electric field model to calculate drift times from the source region to the inner magnetosphere to test whether enhancements in the inner-magnetosphere can be explained by dipolarization driven enhancements in the plasma sheet source hours before.

  3. Effect of current sheets on the solar wind magnetic field power spectrum from the Ulysses observation: from Kraichnan to Kolmogorov scaling.

    Science.gov (United States)

    Li, G; Miao, B; Hu, Q; Qin, G

    2011-03-25

    The MHD turbulence theory developed by Iroshnikov and Kraichnan predicts a k(-1.5) power spectrum. Solar wind observations, however, often show a k(-5/3) Kolmogorov scaling. Based on 3 years worth of Ulysses magnetic field data where over 28,000 current sheets are identified, we propose that the current sheet is the cause of the Kolmogorov scaling. We show that for 5 longest current-sheet-free periods the magnetic field power spectra are all described by the Iroshnikov-Kraichnan scaling. In comparison, for 5 periods that have the most number of current sheets, the power spectra all exhibit Kolmogorov scaling. The implication of our results is discussed.

  4. Numerical simulations of plasma equilibrium in a one-dimensional current sheet with a nonzero normal magnetic field component

    International Nuclear Information System (INIS)

    Mingalev, O. V.; Mingalev, I. V.; Malova, Kh. V.; Zelenyi, L. M.

    2007-01-01

    The force balance in a thin collisionless current sheet in the Earth's magnetotail with a given constant magnetic field component B z across the sheet is numerically studied for the first time in a self-consistent formulation of the problem. The current sheet is produced by oppositely directed plasma flows propagating from the periphery of the sheet toward the neutral plane. A substantially improved version of a macroparticle numerical model is used that makes it possible to simulate on the order of 10 7 macroparticles even with a personal computer and to calculate equilibrium configurations with a sufficiently low discrete noise level in the first-and second-order moments of the distribution function, which determine the stress tensor elements. Quasisteady configurations were calculated numerically for several sets of plasma parameters in some parts of the magnetotail. The force balance in the sheet was checked by calculating the longitudinal and transverse pressures as well as the elements of the full stress tensor. The stress tensor in the current sheet is found to be nondiagonal and to differ appreciably from the gyrotropic stress tensor in the Chew-Goldberger-Low model, although the Chew-Goldberger-Low theory and numerical calculations yield close results for large distances from the region of reversed magnetic field

  5. Resistance and sheet resistance measurements using electron beam induced current

    International Nuclear Information System (INIS)

    Czerwinski, A.; Pluska, M.; Ratajczak, J.; Szerling, A.; KaPtcki, J.

    2006-01-01

    A method for measurement of spatially uniform or nonuniform resistance in layers and strips, based on electron beam induced current (EBIC) technique, is described. High electron beam currents are used so that the overall resistance of the measurement circuit affects the EBIC signal. During the evaluation, the electron beam is scanned along the measured object, whose load resistance varies with the distance. The variation is compensated by an adjustable resistance within an external circuit. The method has been experimentally deployed for sheet resistance determination of buried regions of lateral confinements in semiconductor laser heterostructures manufactured by molecular beam epitaxy

  6. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    International Nuclear Information System (INIS)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal; Jansson, Peter

    2012-11-01

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  7. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal [In2Earth Modelling Ltd, Lausanne (Switzerland); Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)

    2012-11-15

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  8. Investigation of sheet steel St 37.2 under mechanical impact

    International Nuclear Information System (INIS)

    Berg, H.P.; Brennecke, P.; Koester, R.; Friehmelt, V.

    1990-01-01

    Special waste originating, e.g. from chemical industry and radioactive wastes are emplaced in disposal mines. Slinger stowing is an approved technique to fill up residual voids in emplacement rooms. If it should be applied, possible mechanical loads on the integrity of sheet steel containers have to be considered. By theoretical calculations and by experiments under variation of different parameters using test specimen and backfill material from the Konrad mine using the container type V as an example it has been shown that sheet steel St 37.2 with a wall thickness of 3 mm will withstand mechanical impact imposed by backfill particles having a speed of 24 m/s. (orig.) [de

  9. Dense sheet Z-pinches

    International Nuclear Information System (INIS)

    Tetsu, Miyamoto

    1999-01-01

    The steady state and quasi-steady processes of infinite- and finite-width sheet z-pinches are studied. The relations corresponding to the Bennett relation and Pease-Braginskii current of cylindrical fiber z-pinches depend on a geometrical factor in the sheet z-pinches. The finite-width sheet z-pinch is approximated by a segment of infinite-width sheet z-pinch, if it is wide enough, and corresponds to a number of (width/thickness) times fiber z-pinch plasmas of the diameter that equals the sheet thickness. If the sheet current equals this number times the fiber current, the plasma created in the sheet z-pinches is as dense as in the fiber z-pinches. The total energy of plasma and magnetic field per unit mass is approximately equal in both pinches. Quasi-static transient processes are different in several aspects from the fiber z-pinch. No radiation collapse occurs in the sheet z-pinch. The stability is improved in the sheet z-pinches. The fusion criterions and the experimental arrangements to produce the sheet z-pinches are also discussed. (author)

  10. Drinking water regulations under the Safe Drinking Water Act. Fact sheet

    International Nuclear Information System (INIS)

    1990-12-01

    The fact sheet describes the requirements covered under the 1986 amendments to the Safe Drinking Water Act. Levels of various contaminants (including radio nuclides) are explained. Also discussed are the Surface Water Treatment Rule and the Total Coliforms Rule

  11. Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures

    NARCIS (Netherlands)

    Hajlasz, M.; Donkers, J.J.T.M.; Sque, S.J.; Heil, S.B.S.; Gravesteijn, Dirk J; Rietveld, F.J.R.; Schmitz, Jurriaan

    2014-01-01

    For the determination of specific contact resistance in semiconductor devices, it is usually assumed that the sheet resistance under the contact is identical to that between the contacts. This generally does not hold for contacts to AlGaN/GaN structures, where an effective doping under the contact

  12. Buckling of thin viscous sheets with inhomogenous viscosity under extensional flows

    Science.gov (United States)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.

    2016-11-01

    We investigate the dynamics, shape and stability of a thin viscous sheet subjected to an extensional flow under an imposed non-uniform temperature field. Using finite element simulations, we first solve for the stretching flow to determine the pre-buckling sheet thickness and in-plane flow velocities. Next, we use this solution as the base state and solve the linearized partial differential equation governing the out-of-plane deformation of the mid-surface as a function of two dimensionless operating parameters: the normalized stretching ratio α and a dimensionless width of the heating zone β. We show the sheet can become unstable via a buckling instability driven by the development of localized compressive stresses, and determine the global shape and growth rates of the most unstable mode. The growth rate is shown to exhibit a transition from stationary to oscillatory modes in region upstream of the heating zone. Finally, we investigate the effect of surface tension and present an operating diagram that indicates regions of the parameter space that minimizes or entirely suppresses the instability while achieving desired outlet sheet thickness. Therefore, our work is directly relevant to various industrial processes including the glass redraw & float-glass method.

  13. On the linear stability of sheared and magnetized jets without current sheets - relativistic case

    Science.gov (United States)

    Kim, Jinho; Balsara, Dinshaw S.; Lyutikov, Maxim; Komissarov, Serguei S.

    2018-03-01

    In our prior series of papers, we studied the non-relativistic and relativistic linear stability analysis of magnetized jets that do not have current sheets. In this paper, we extend our analysis to relativistic jets with a velocity shear and a similar current sheet free structure. The jets that we study are realistic because we include a velocity shear, a current sheet free magnetic structure, a relativistic velocity and a realistic thermal pressure so as to achieve overall pressure balance in the unperturbed jet. In order to parametrize the velocity shear, we apply a parabolic profile to the jets' 4-velocity. We find that the velocity shear significantly improves the stability of relativistic magnetized jets. This fact is completely consistent with our prior stability analysis of non-relativistic, sheared jets. The velocity shear mainly plays a role in stabilizing the short wavelength unstable modes for the pinch as well as the kink instability modes. In addition, it also stabilizes the long wavelength fundamental pinch instability mode. We also visualize the pressure fluctuations of each unstable mode to provide a better physical understanding of the enhanced stabilization by the velocity shear. Our overall conclusion is that combining velocity shear with a strong and realistic magnetic field makes relativistic jets even more stable.

  14. Heliospheric current sheet and effects of its interaction with solar cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Malova, H. V., E-mail: hmalova@yandex.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Popov, V. Yu.; Grigorenko, E. E.; Dunko, A. V.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-08-15

    The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in the given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.

  15. A statistical study of current-sheet formation above solar active regions based on selforganized criticality

    Science.gov (United States)

    Dimitropoulou, M.; Isliker, H.; Vlahos, L.; Georgoulis, M.; Anastasiadis, A.; Toutountzi, A.

    2013-09-01

    We treat flaring solar active regions as physical systems having reached the self-organized critical state. Their evolving magnetic configurations in the low corona may satisfy an instability criterion, related to the excession of a specific threshold in the curl of the magnetic field. This imposed instability criterion implies an almost zero resistivity everywhere in the solar corona, except in regions where magnetic-field discontinuities and. hence, local currents, reach the critical value. In these areas, current-driven instabilities enhance the resistivity by many orders of magnitude forming structures which efficiently accelerate charged particles. Simulating the formation of such structures (thought of as current sheets) via a refined SOC cellular-automaton model provides interesting information regarding their statistical properties. It is shown that the current density in such unstable regions follows power-law scaling. Furthermore, the size distribution of the produced current sheets is best fitted by power laws, whereas their formation probability is investigated against the photospheric magnetic configuration (e.g. Polarity Inversion Lines, Plage). The average fractal dimension of the produced current sheets is deduced depending on the selected critical threshold. The above-mentioned statistical description of intermittent electric field structures can be used by collisional relativistic test particle simulations, aiming to interpret particle acceleration in flaring active regions and in strongly turbulent media in astrophysical plasmas. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  16. Analytical theory of neutral current sheets with a sheared magnetic field in collisionless relativistic plasma

    Science.gov (United States)

    Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Nechaev, A. A.

    2017-12-01

    We derive and describe analytically a new wide class of self-consistent magnetostatic structures with sheared field lines and arbitrary energy distributions of particles. To do so we analyze superpositions of two planar current sheets with orthogonal magnetic fields and cylindrically symmetric momentum distribution functions, such that the magnetic field of one of them is directed along the symmetry axis of the distribution function of the other. These superpositions satisfy the pressure balance equation and allow one to construct configurations with an almost arbitrarily sheared magnetic field. We show that most of previously known current sheet families with sheared magnetic field lines are included in this novel class.

  17. Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations

    Science.gov (United States)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.

  18. THE ROLE OF FAST MAGNETOSONIC WAVES IN THE RELEASE AND CONVERSION VIA RECONNECTION OF ENERGY STORED BY A CURRENT SHEET

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, D. W.; Tarr, L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2012-09-10

    Using a simple two-dimensional, zero-{beta} model, we explore the manner by which reconnection at a current sheet releases and dissipates free magnetic energy. We find that only a small fraction (3%-11% depending on current-sheet size) of the energy is stored close enough to the current sheet to be dissipated abruptly by the reconnection process. The remaining energy, stored in the larger-scale field, is converted to kinetic energy in a fast magnetosonic disturbance propagating away from the reconnection site, carrying the initial current and generating reconnection-associated flows (inflow and outflow). Some of this reflects from the lower boundary (the photosphere) and refracts back to the X-point reconnection site. Most of this inward wave energy is reflected back again and continues to bounce between X-point and photosphere until it is gradually dissipated, over many transits. This phase of the energy dissipation process is thus global and lasts far longer than the initial purely local phase. In the process, a significant fraction of the energy (25%-60%) remains as undissipated fast magnetosonic waves propagating away from the reconnection site, primarily upward. This flare-generated wave is initiated by unbalanced Lorentz forces in the reconnection-disrupted current sheet, rather than by dissipation-generated pressure, as some previous models have assumed. Depending on the orientation of the initial current sheet, the wave front is either a rarefaction, with backward-directed flow, or a compression, with forward-directed flow.

  19. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  20. The most intense current sheets in the high-speed solar wind near 1 AU

    Science.gov (United States)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1current-carrying structures in high-speed wind occur at electron scales, although the peak current densities at kinetic and electron scales are predicted to be nearly the same as those found in this study.

  1. On the Use of Maximum Force Criteria to Predict Localised Necking in Metal Sheets under Stretch-Bending

    Directory of Open Access Journals (Sweden)

    Domingo Morales-Palma

    2017-11-01

    Full Text Available The maximum force criteria and their derivatives, the Swift and Hill criteria, have been extensively used in the past to study sheet formability. Many extensions or modifications of these criteria have been proposed to improve necking predictions under only stretching conditions. This work analyses the maximum force principle under stretch-bending conditions and develops two different approaches to predict necking. The first is a generalisation of classical maximum force criteria to stretch-bending processes. The second approach is an extension of a previous work of the authors based on critical distance concepts, suggesting that necking of the sheet is controlled by the damage of a critical material volume located at the inner side of the sheet. An analytical deformation model is proposed to characterise the stretch-bending process under plane-strain conditions. Different parameters are considered, such as the thickness reduction, the gradient of variables through the sheet thickness, the thickness stress and the anisotropy of the material. The proposed necking models have been successfully applied to predict the failure in different materials, such as steel, brass and aluminium.

  2. A cylindrical current sheet over the South solar pole observed by Ulysses

    Science.gov (United States)

    Khabarova, Olga; Kislov, Roman; Malova, Helmi; Obridko, Vladimir

    2016-04-01

    We provide the first evidence for the existence of a quasi-stable cylindrical current sheet over the South solar pole as observed by Ulysses in 2006, near the solar minimum, when it reached maximal heliolatitude of 79.7 degrees at 2.4 AU. It took place inside a fast speed stream from the coronal hole, and the tube was presumably crossed rather far from the center within two degrees of heliolatitude and ~10 degrees of heliolongitude. During the spacecraft passage throughout the structure, the solar wind velocity was approximately twice as little, the solar wind density was 20 times lower than the surrounded plasma values, but the temperature was twice as large in the point closest to the pole. The interplanetary magnetic field (IMF) strongly decreased due to sharp variations in the IMF radial component (RTN) that changed its sign twice, but other components did not show changes out of usual stochastic behavior. Both the behavior of the IMF, rotation of the plasma flow direction and other features indicate the occurrence of cylindrical current sheet. We discuss its solar origin and present modeling that can explain the observations.

  3. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    Science.gov (United States)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  4. Electron Acceleration in a Turbulent Current Sheet - Comparison of GCA and HARHA Methods

    Czech Academy of Sciences Publication Activity Database

    Kramoliš, D.; Varady, Michal; Bárta, Miroslav

    2016-01-01

    Roč. 40, č. 1 (2016), s. 69-77 ISSN 1845-8319. [Hvar Astrophysical Colloquium /14./. Hvar, 26.09.2016-30.09.2016] R&D Projects: GA ČR(CZ) GA16-18495S Institutional support: RVO:67985815 Keywords : magnetic reconnection * current sheet * electron acceleration Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  5. Oscillation of the current sheet velocity in plasma focus discharges

    International Nuclear Information System (INIS)

    Melzacki, K.; Nardi, V.

    1994-01-01

    The oscillation of the propagation speed of the plasma focus current sheet has been recorded with schlieren photography. The sheet stuttering in the propagation during the implosion phase has a frequency of about 60 MHz. The effect could be recorded due to application of long exposure time (60 ns) technique. It is not detectable in the subnanosecond pictures. The pictures are taken in black schlieren. The probing range of the electron density gradient, with integration along the path of the 1 J, Q-switched ruby laser beam, has been selected by the size of the stop and aperture within 3 x 10 18 cm -3 and 3 x 10 20 cm -3 . Raising the sensitivity threshold to 2 x 10 19 cm -3 (refraction angle of 4 mrad) has helped to clear the pictures by limiting their image to high gradients of density only. With this technique (and other diagnostic methods) the dynamics of 6 kJ, 16 kV plasma focus discharges in deuterium at 5 torr, with a 10% decrease of the magnetic insulation at the breech has been investigated. The average implosion velocity of the current sheath obtained with this effect, 5 x 10 6 cm/s, is consistent with those measured by the smear effect, and the electric probe. The electron density gradient has been determined at several instants; at the pinch time it is (3 ± 1.5) x 10 20 cm -4 . The data are discussed on the basis of several pictures

  6. 3D reconnection due to oblique modes: a simulation of Harris current sheets

    Directory of Open Access Journals (Sweden)

    G. Lapenta

    2000-01-01

    Full Text Available Simulations in three dimensions of a Harris current sheet with mass ratio, mi/me = 180, and current sheet thickness, pi/L = 0.5, suggest the existence of a linearly unstable oblique mode, which is independent from either the drift-kink or the tearing instability. The new oblique mode causes reconnection independently from the tearing mode. During the initial linear stage, the system is unstable to the tearing mode and the drift kink mode, with growth rates that are accurately described by existing linear theories. How-ever, oblique modes are also linearly unstable, but with smaller growth rates than either the tearing or the drift-kink mode. The non-linear stage is first reached by the drift-kink mode, which alters the initial equilibrium and leads to a change in the growth rates of the tearing and oblique modes. In the non-linear stage, the resulting changes in magnetic topology are incompatible with a pure tearing mode. The oblique mode is shown to introduce a helical structure into the magnetic field lines.

  7. General formulation for magnetohydrodynamic wave propagation, fire-hose, and mirror instabilities in Harris-type current sheets

    International Nuclear Information System (INIS)

    Hau, L.-N.; Lai, Y.-T.

    2013-01-01

    Harris-type current sheets with the magnetic field model of B-vector=B x (z)x-caret+B y (z)y-caret have many important applications to space, astrophysical, and laboratory plasmas for which the temperature or pressure usually exhibits the gyrotropic form of p↔=p ∥ b-caretb-caret+p ⊥ (I↔−b-caretb-caret). Here, p ∥ and p ⊥ are, respectively, to be the pressure component along and perpendicular to the local magnetic field, b-caret=B-vector/B. This study presents the general formulation for magnetohydrodynamic (MHD) wave propagation, fire-hose, and mirror instabilities in general Harris-type current sheets. The wave equations are expressed in terms of the four MHD characteristic speeds of fast, intermediate, slow, and cusp waves, and in the local (k ∥ ,k ⊥ ,z) coordinates. Here, k ∥ and k ⊥ are, respectively, to be the wave vector along and perpendicular to the local magnetic field. The parameter regimes for the existence of discrete and resonant modes are identified, which may become unstable at the local fire-hose and mirror instability thresholds. Numerical solutions for discrete eigenmodes are shown for stable and unstable cases. The results have important implications for the anomalous heating and stability of thin current sheets.

  8. Bond-Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading.

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-02-26

    The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.

  9. Bond–Slip Relationship for CFRP Sheets Externally Bonded to Concrete under Cyclic Loading

    Science.gov (United States)

    Li, Ke; Cao, Shuangyin; Yang, Yue; Zhu, Juntao

    2018-01-01

    The objective of this paper was to explore the bond–slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond–slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond–slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond–slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond–slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond–slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results. PMID:29495383

  10. Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Loizu, J. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Hudson, S. R.; Bhattacharjee, A.; Lazerson, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2015-09-15

    We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at the resonant surface.

  11. The Onset of Magnetic Reconnection: Tearing Instability in Current Sheets with a Guide Field

    Science.gov (United States)

    Daldorff, L. K. S.; Klimchuk, J. A.; Knizhnik, K. J.

    2016-12-01

    Magnetic reconnection is fundamental to many solar phenomena, ranging from coronal heating, to jets, to flares and CMEs. A poorly understood yet crucial aspect of reconnection is that it does not occur until magnetic stresses have built to sufficiently high levels for significant energy release. If reconnection were to happen too soon, coronal heating would be weak and flares would be small. As part of our program to study the onset conditions for magnetic reconnection, we have investigated the instability of current sheets to tearing. Surprisingly little work has been done on this problem for sheets that include a guide field, i.e., for which the field rotates by less than 180 degrees. This is the most common situation on the Sun. We present numerical 3D resistive MHD simulations of several sheets and show how the behaviour depends on the shear angle (rotation). We compare our results to the predictions of linear theory and discuss the nonlinear evolution in terms of plasmoid formation and the interaction of different oblique tearing modes. The relevance to the Sun is explained.

  12. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    Science.gov (United States)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  13. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  14. Energetic Particles of keV–MeV Energies Observed near Reconnecting Current Sheets at 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Zank, Gary P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

    2017-07-01

    We provide evidence for particle acceleration up to ∼5 MeV at reconnecting current sheets in the solar wind based on both case studies and a statistical analysis of the energetic ion and electron flux data from the five Advanced Composition Explorer Electron, Proton, and Alpha Monitor (EPAM) detectors. The case study of a typical reconnection exhaust event reveals (i) a small-scale peak of the energetic ion flux observed in the vicinity of the reconnection exhaust and (ii) a long-timescale atypical energetic particle event (AEPE) encompassing the reconnection exhaust. AEPEs associated with reconnecting strong current sheets last for many hours, even days, as confirmed by statistical studies. The case study shows that time-intensity profiles of the ion flux may vary significantly from one EPAM detector to another partially because of the local topology of magnetic fields, but mainly because of the impact of upstream magnetospheric events; therefore, the occurrence of particle acceleration can be hidden. The finding of significant particle energization within a time interval of ±30 hr around reconnection exhausts is supported by a superposed epoch analysis of 126 reconnection exhaust events. We suggest that energetic particles initially accelerated via prolonged magnetic reconnection are trapped and reaccelerated in small- or medium-scale magnetic islands surrounding the reconnecting current sheet, as predicted by the transport theory of Zank et al. Other mechanisms of initial particle acceleration can contribute also.

  15. Three-dimensional equilibria for the extended magnetotail and the generation of field-aligned current sheets

    International Nuclear Information System (INIS)

    Birn, J.

    1989-01-01

    Using the magnetotail equilibrium theory and a solution method outlined by Birn (1987), we have constructed self-consistent three-dimensional models for the quiet average magnetotail beyond about 20 R/sub E/ distance but earthward of a potential distant neutral line, which take into account the decrease of the tail flaring with distance. We find that this effect is coupled with the presence of magnetic shear and thus with field-aligned electric currents. These currents have the signature of region 1 currents, toward the Earth on the dawnside and away on the duskside, and contribute about 5 x 10 5 A to the total Birkeland current. They are strongly concentrated near the plasma sheet-lobe boundary and increase toward the flanks of the tail. Associated with the field-aligned currents and the corresponding magnetic field shear there is a bulging effect that tends to deform a circular cross section of the tail near the Earth into one that has bulges in the low-latitude boundary region. We argue that this effect may be the cause for increased interaction with the solar wind in these regions, producing interconnected fields and tailward flowing plasma on magnetospheric-like fields in the low-latitude boundary layer, and deforming this boundary region into the observed dog bone shape of the plasma sheet cross section. copyright American Geophysical Union 1989

  16. Influence of pulsed current on deformation mechanism of AZ31B sheets during tension

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kai [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Dong, Xianghuai, E-mail: dongxh@sjtu.edu.cn [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China); Xie, Huanyang [Shanghai Superior Die Technology Co., Ltd, 775 Jinsui Road, Shanghai 201209 (China); Wu, Yunjian; Peng, Fang [National Die & Mold CAD Engineering Research Center, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China)

    2016-08-15

    The tensile tests of AZ31B sheets were carried out under pulsed current (PC) of different frequencies, and then the deformation mechanism at different conditions was analyzed by X-Ray Diffraction. The results show that PC does not change the initial yield stress, but reduces the work hardening rate and induces softening effect. Furthermore, electroplasticity effect is controlled by thermal activation. When Z (Zener-Hollomon parameter) is high, the effect of PC is limited, causing a relatively weak electroplasticity effect. With the increasing of Z, the effect of PC strengthens. When Z reaches the critical condition, the activated slip systems obviously change because of PC, which induces the change of texture evolution and the discontinuous change of the intensity of electroplasticity. When Z is low, electroplasticity effect reaches a saturate condition and does not change with Z. Moreover, higher frequency contributes to the dislocation annihilation at all the slip systems, and then increasing frequency can strengthen the extra softening effect of PC. - Highlights: • Pulsed current does not change the initial yield stress, but reduce the work hardening rate and cause softening effect. • Increasing frequency can strengthen the softening effect. • The rules of the softening effect at different deformation condition are different. • The influence of current on deformation mechanism was analyzed by XRD.

  17. Modeling sheet-flow sand transport under progressive surface waves

    NARCIS (Netherlands)

    Kranenburg, Wouter

    2013-01-01

    In the near-shore zone, energetic sea waves generate sheet-flow sand transport. In present day coastal models, wave-induced sheet-flow sand transport rates are usually predicted with semi-empirical transport formulas, based on extensive research on this phenomenon in oscillatory flow tunnels.

  18. Current Sheet Structures Observed by the TESIS EUV Telescope during a Flux Rope Eruption on the Sun

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Kuzin, S. V.

    2016-11-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 {R}⊙ from the Sun’s center in the Fe 171 Å line. The Fe 171 Å line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed coronal mass ejection (CME) had a core with a spiral—flux rope—structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70,000 K, observed in He 304 Å line) and a hotter core (0.7 MK, observed in Fe 171 Å line). Such a structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We interpreted the Y-structure as a hot envelope of the current sheet and hot reconnection outflows. The Y-structure had a thickness of 6.0 Mm. Its length increased over time from 79 Mm to more than 411 Mm.

  19. Punchless Drawing of Magnesium Alloy Sheet under Cold Condition and its Computation

    International Nuclear Information System (INIS)

    Yamashita, Minoru; Hattori, Toshio; Sato, Joji

    2011-01-01

    The punchless drawing with Maslennikov's technique was applied to the circular cup drawing of magnesium alloy AZ31B sheet under cold condition. The elastic rubber ring was used instead of the 'hard' punch, where the compressed ring dragged the sheet inward the die cavity. Attainable circumferential strain of the blank was increased by this technique with repetitive drawing operation. Thickness of the rubber pad affected little the attainable strain. The shape appearance became better when a harder rubber was used. The cup forming by single drawing operation was also tested using a small die shoulder radius. The LDR of 1.250 was obtained with the straight cup wall. Further, the computation of the punchless drawing was also conducted for the single drawing operation. The computed deformation pattern was well consistent with the corresponding experimental result.

  20. Current and high-β sheets in CIR streams: statistics and interaction with the HCS and the magnetosphere

    Science.gov (United States)

    Potapov, A. S.

    2018-04-01

    Thirty events of CIR streams (corotating interaction regions between fast and slow solar wind) were analyzed in order to study statistically plasma structure within the CIR shear zones and to examine the interaction of the CIRs with the heliospheric current sheet (HCS) and the Earth's magnetosphere. The occurrence of current layers and high-beta plasma sheets in the CIR structure has been estimated. It was found that on average, each of the CIR streams had four current layers in its structure with a current density of more than 0.12 A/m2 and about one and a half high-beta plasma regions with a beta value of more than five. Then we traced how and how often the high-speed stream associated with the CIR can catch up with the heliospheric current sheet (HCS) and connect to it. The interface of each fourth CIR stream coincided in time within an hour with the HCS, but in two thirds of cases, the CIR connection with the HCS was completely absent. One event of the simultaneous observation of the CIR stream in front of the magnetosphere by the ACE satellite in the vicinity of the L1 libration point and the Wind satellite in the remote geomagnetic tail was considered in detail. Measurements of the components of the interplanetary magnetic field and plasma parameters showed that the overall structure of the stream is conserved. Moreover, some details of the fine structure are also transferred through the magnetosphere. In particular, the so-called "magnetic hole" almost does not change its shape when moving from L1 point to a neighborhood of L2 point.

  1. Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection

    Czech Academy of Sciences Publication Activity Database

    Chen, L. J.; Bessho, N.; Lefebvre, B.; Vaith, H.; Asnes, A.; Santolík, Ondřej; Fazakerley, A.; Puhl-Quinn, P.; Bhattacharjee, A.; Khotyaintsev, Y.; Daly, P.; Torbert, R.

    2009-01-01

    Roč. 16, - (2009), 056501/1-056501/12 ISSN 1070-664X Institutional research plan: CEZ:AV0Z30420517 Keywords : magnetotail reconnection * electron current sheet * multispacecraft observations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009

  2. Forced current sheet structure, formation and evolution: application to magnetic reconnection in the magnetosphere

    Directory of Open Access Journals (Sweden)

    V. I. Domrin

    2004-07-01

    Full Text Available By means of a simulation model, the earlier predicted nonlinear kinetic structure, a Forced Kinetic Current Sheet (FKCS, with extremely anisotropic ion distributions, is shown to appear as a result of a fast nonlinear process of transition from a previously existing equilibrium. This occurs under triggering action of a weak MHD disturbance that is applied at the boundary of the simulation box. In the FKCS, current is carried by initially cold ions which are brought into the CS by convection from both sides, and accelerated inside the CS. The process then appears to be spontaneously self-sustained, as a MHD disturbance of a rarefaction wave type propagates over the background plasma outside the CS. Comparable to the Alfvénic discontinuity in MHD, transformation of electromagnetic energy into the energy of plasma flows occurs at the FKCS. But unlike the MHD case, ``free" energy is produced here: dissipation should occur later, through particle interaction with turbulent waves generated by unstable ion distribution being formed by the FKCS action. In this way, an effect of magnetic field ``annihilation" appears, required for fast magnetic reconnection. Application of the theory to observations at the magnetopause and in the magnetotail is considered.

  3. Durability assessment of concrete sheet piling in the 'De Betuweroute' railway line

    NARCIS (Netherlands)

    Peelen, W.H.A.; Polder, R.B.

    2004-01-01

    Assessment of the durability of prestressed concrete sheet piles under the interference of CP gas pipeline system current, established that due to their low magnitude, these currents do not compromise the required 100-year service life of the structures. The sophisticated numerical modelling tools

  4. Resistive instabilities of current sheets in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolny, M [CNR, Laboratorio per il Plasma nello Spazio, Frascati, Italy; Trussoni, E [CNR, Laboratorio di Cosmo-Geofisica, Turin, Italy

    1979-03-01

    Resistive magnetohydrodynamic instabilities are investigated numerically for non-antisymmetric magnetic field profiles similar to those indicated in spacecraft data on solar wind discontinuities. The eigenvalue problem derived for the growth rate of possible instabilities from dimensionless equations for velocity and magnetic field perturbations is solved starting from the outer regions where the plasma is frozen to the magnetic field. For an antisymmetric magnetic profile, calculations show only tearing modes to be present, with instabilities occurring only at long wavelengths, while for a non-antisymmetric magnetic profile resembling the observed solar wind, calculations indicate the presence of rippling modes driven by resistivity gradients, in addition to the tearing modes. Calculations of the scale lengths of variation of the reversing component based on a scaling law relating the maximum growth rate to the magnetic Reynolds number are found to agree with observed solar current sheet scale lengths.

  5. Motion and shape of snowplough sheets in coaxial accelerators

    International Nuclear Information System (INIS)

    Tsagas, N.F.; Mair, G.L.R.; Prinn, A.E.

    1978-01-01

    A long coaxial accelerator is filled with helium at initial gas pressure between 0.2 and 4 Torr. When connected to a large capacitor at < - 10 kV a discharge is started at one end; the central electrode has negative polarity. The velocity of the plasma sheet, the snowplough, and its shape have been derived from streak photographs for terminal currents between about 100 and 300 kA. The motion of the sheet has been analysed by balancing the electromagnetic driving force against the inertia of the mass of the gas swept up by a plane sheet taken to be impenetrable to gas atoms. The calculated positions and average sheet velocities, which involve simplifying assumptions, have been found to be in good agreement with observations at different positions and pressures. Also the shape of the sheet has been derived by allowing for the sheet's curvature in the linear momentum equation while net radial motions causing variations in profile have, at first, been excluded. The calculated shape of the sheet is very nearly that photographically observed. The axial velocity of a sheet element is evaluated under the assumption that the plasma is azimuthally uniform, free of spikes and that the vessel's wall does not affect the shape. (author)

  6. Sheet flow measurements on a surf-zone sandbar under shoaling and breaking waves

    Science.gov (United States)

    Mieras, R.; Puleo, J. A.; Cox, D. T.; Anderson, D. L.; Kim, Y.; Hsu, T. J.

    2016-02-01

    A large-scale experiment to quantify sheet flow processes over a sandbar under varying levels of wave steepness was conducted in the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory. A fixed profile was constructed with concrete slabs anchored to the flume side walls, with the exception of the sandbar crest, where a steel pit was installed and filled with well-sorted sediment (d50 0.17 mm). This hybrid approach allowed for the isolation of small-scale bed response to large-scale wave forcing over the sandbar, where an array of sensors was positioned to measure hydrodynamic forcing and sediment response. Near-bed ( 0.08 m3/m3) were approximated using Conductivity Concentration Profilers. Test conditions consisted of a regular wave train with incident wave heights for individual runs ranging from 0.4 m to 0.6 m and incident wave periods from 5 s to 9 s, encompassing a variety of skewed and asymmetric wave shapes across the shoaling and breaking regimes. Ensemble-averaged sediment concentration profiles exhibit considerable variation across the different conditions. The largest variation in sheet layer thickness occurs beneath the wave crest, ranging from 30 grain diameters for 5 sec, 0.4 m waves, up to 80 grain diameters for 7 sec, 0.6 m waves. Furthermore, the initiation and duration of sheet flow relative to the wave period differs for each condition set. It is likely that more than one mechanism plays a role in determining the aforementioned sheet layer characteristics. In the present work, we focus on the relative magnitude and phase of the near-bed flow acceleration and shear stress in determining the characteristics of the sheet layer.

  7. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail

    Science.gov (United States)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.

    1988-01-01

    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  8. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation

    International Nuclear Information System (INIS)

    Lee, Eunwoo; Hong, Jin-Yong; Kang, Haeyoung; Jang, Jyongsik

    2012-01-01

    Highlights: ► TiO 2 nanorods were successfully decorated on the surface of graphene sheets. ► Population of TiO 2 nanorods can be controlled by changing experimental conditions. ► TiO 2 nanorod-decorated graphene sheets have an expanded light absorption range. ► TiO 2 nanorod-decorated graphene sheets showed unprecedented photocatalytic activity. - Abstract: The titanium dioxide (TiO 2 ) nanorod-decorated graphene sheets photocatalysts with different TiO 2 nanorods population have been synthesized by a simple non-hydrolytic sol–gel approach. Electron microscopy and X-ray diffraction analysis indicated that the TiO 2 nanorods are well-dispersed and successfully anchored on the graphene sheet surface through the formation of covalent bonds between Ti and C atoms. The photocatalytic activities are evaluated in terms of the efficiencies of photodecomposition and adsorption of methylene blue (MB) in aqueous solution under visible-light irradiation. The as-synthesized TiO 2 nanorod-decorated graphene sheets showed unprecedented photodecomposition efficiency compared to the pristine TiO 2 nanorods and the commercial TiO 2 (P-25, Degussa) under visible-light. It is believed that this predominant photocatalytic activity is due to the synergistic contribution of both a retarded charge recombination rate caused by a high electronic mobility of graphene and an increased surface area originated from nanometer-sized TiO 2 nanorods. Furthermore, photoelectrochemical study is performed to give deep insights into the primary roles of graphene that determines the photocatalytic activity.

  9. VOYAGER OBSERVATIONS OF MAGNETIC SECTORS AND HELIOSPHERIC CURRENT SHEET CROSSINGS IN THE OUTER HELIOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J. D. [Kavli Center for Astrophysics and Space Science, Massachusetts Institute of Technology, Cambridge, 02139 (United States); Burlaga, L. F. [NASA Goddard Space Flight Center, Code 673, Greenbelt, MD 20771 (United States); Drake, J. F. [Department of Physics and Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Hill, M. E. [Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723 (United States); Opher, M., E-mail: jdr@space.mit.edu, E-mail: lburlagahsp@verizon.net, E-mail: drake@umd.edu, E-mail: Matthew.Hill@jhuapl.edu, E-mail: mopher@bu.edu [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States)

    2016-11-10

    Voyager 1 ( V1 ) has passed through the heliosheath and is in the local interstellar medium. Voyager 2 ( V2 ) has been in the heliosheath since 2007. The role of reconnection in the heliosheath is under debate; compression of the heliospheric current sheets (HCS) in the heliosheath could lead to rapid reconnection and a reconfiguration of the magnetic field topology. This paper compares the expected and actual amounts of time the Voyager spacecraft observe each magnetic sector and the number of HCS crossings. The predicted and observed values generally agree well. One exception is at Voyager 1 in 2008 and 2009, where the distribution of sectors is more equal than expected and the number of HCS crossings is small. Two other exceptions are at V1 in 2011–2012 and at V2 in 2012, when the spacecraft are in the opposite magnetic sector less than expected and see fewer HCS crossings than expected. These features are consistent with those predicted for reconnection, and consequently searches for other reconnection signatures should focus on these times.

  10. Dynamic Processes of Cross-Tail Current in the Near-Earth Magnetotail

    International Nuclear Information System (INIS)

    Xing-Qiang, Lu; Zhi-Wei, Ma

    2009-01-01

    Current dynamic processes in realistic magnetotail geometry are studied by Hall magnetohydrodynamic (MHD) simulations under various driven conditions and Hall effects. Associated with the external driving force, a thin current sheet with a broad extent is built up in the near-Earth magnetotail. The time evolution for the formation of the current sheet comprises two phases: slow growth and a fast impulsive phase before the near-Earth disruption of the current sheet resulting from the fast magnetic reconnection. The simulation results indicate that as the external driving force increases, the site and the tailward speed of the near-Earth current disruption region are closer to the Earth and faster, respectively. Whether the near-Earth disruption of the current sheet takes place or not is mainly controlled by Hall effects. It is found that there is no sudden disruption of the current sheet in the near-Earth region if the ion inertial length is below d i = 0.04. (geophysics, astronomy, and astrophysics)

  11. Final Report. Coupled simulations of Antarctic Ice-sheet/ocean interactions using POP and CISM

    Energy Technology Data Exchange (ETDEWEB)

    Asay-Davis, Xylar Storm [Potsdam Institute for Climate Impact Research, Potdam (Germany)

    2015-12-30

    The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently being incorporated into two manuscripts in preparation.

  12. Evolution of the MHD sheet pinch

    International Nuclear Information System (INIS)

    Matthaeus, W.H.; Montgomery, D.

    1979-01-01

    A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table

  13. Orientation of Birkeland current sheets in the dayside polar region and its relationship to the IMF

    International Nuclear Information System (INIS)

    Saflekos, N.A.; Potemra, T.A.

    1980-01-01

    Vector magnetic field observations made with the three-axes magnetometer on the Triad satellite have been used to study the orientation of magnetic disturbances in the dayside polar region. These measurements were all made over the southern polar region and recorded at McMurdo, Antarctica. These disturbances are transverse to the main geomagnetic field and may be interpreted as being caused by field-aligned Birkeland current sheets consistent with Maxwell's equations. The current sheets in the regions usually associated with the morning and afternoon auroral regions are most often aligned in the geomagnetic east-west direction. The amplitudes of these 'south auroral' currents are larger in the morning than in the afternoon when the interplanetary magnetic field (IMF) is directed toward the sun (B/sub y/ 0) and larger in the afternoon when the IMF is directed away (B/sub y/>0, B/sub x/ 0 the Birkeland current flow in the region of the southern cusp is predominantly away from the ionosphere in contrast to the downward flow into the northern cusp as determined earlier (e.g., McDiarmid et al., 1978b; Iijima et al., 1978). The cusp Birkeland current flow directions appear to reverse for B/sub y/>0 and B/sub x/<0. From a search of the Triad data set, some rare examples of magnetic disturbances with a large north-south (noon-midnight) component have been discovered in the polar cap near noon

  14. Slow convection of a magnetized plasma and the earth plasma sheet

    International Nuclear Information System (INIS)

    Hruska, A.

    1980-01-01

    Stationary convection of an isotropic, infinitely conducting plasma in a magnetic field with non-trivial geometry is discussed under the assumption that the inertial term in the equation of motion may be ignored. The energy gained or lost by a volume element of plasma per unit time does not vary along the field-lines. Simple relations between the components of the current density, depending on the field-line geometry, exist. Similar relations hold for the components of the plasma velocity. The theoretical analysis is applied to the geomagnetically-quiet plasma sheet and a qualitative physical picture of the sheet is suggested. The observed structure of the sheet is compatible with Axford-Hines type of convection perhaps combined with a low-speed flow from a distant neutral point. The magnetic-field-aligned currents are driven by the deformations of the closed field-lines which are enforced by the solar wind. (orig.)

  15. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... Abstract. The stable crack growth in thin steel sheets is the topic of this paper. The crack opening was observed using a videoextensometry system, allowing the crack extension determination. JR-curve and dR-curve were established from obtained data. The ductile tearing properties of different thin sheets ...

  16. 17 CFR 210.6-04 - Balance sheets.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.6-04... sheets. This rule is applicable to balance sheets filed by registered investment companies except for... of this part. Balance sheets filed under this rule shall comply with the following provisions: Assets...

  17. Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

    International Nuclear Information System (INIS)

    Huo Wenqing; Guo Shijie; Ding Liang; Xu Yuemin

    2013-01-01

    A large magnetized plasma sheet with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion

  18. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Science.gov (United States)

    Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo

    2017-05-01

    In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  19. Compensation of the Persistent Current Multipoles in the LHC Dipoles by making the Coil Protection Sheet from Soft Magnetic Material

    CERN Document Server

    Völlinger, C

    2000-01-01

    This note presents a scheme for compensating the persistent current multipole errors of the LHC dipoles by making the coil protection sheets from soft magnetic material of 0.5 mm thickness. The material properties assumed in this study are those of iron sheets with a very low content of impurities (99.99% pure Fe). The non-linearities in the upramp cycle on the b3 multipole component can be reduced by the factor of four (while decreasing the b5 variation by the factor of two. Using sheets of slightly different thicknesses offers a tuning possibility for the series magnet coils and can compensate deviations arising from cables of different suppliers. The calculation method is based on a semi-analytical hysteresis model for hard superconductors and an M(B) - iteration using the method of coupled boundary elements - finite elements (BEM - FEM). It is now possible to compute persistent current multipole errors of geometries with arbitrarily shaped iron yokes and thin layers of soft magnetic material such as tunin...

  20. Automobile sheet metal part production with incremental sheet forming

    Directory of Open Access Journals (Sweden)

    İsmail DURGUN

    2016-02-01

    Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming

  1. Sheet Beam Klystron Instability Analysis

    International Nuclear Information System (INIS)

    Bane, K.

    2009-01-01

    Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly

  2. Research on Al-alloy sheet forming formability during warm/hot sheet hydroforming based on elliptical warm bulging test

    Science.gov (United States)

    Cai, Gaoshen; Wu, Chuanyu; Gao, Zepu; Lang, Lihui; Alexandrov, Sergei

    2018-05-01

    An elliptical warm/hot sheet bulging test under different temperatures and pressure rates was carried out to predict Al-alloy sheet forming limit during warm/hot sheet hydroforming. Using relevant formulas of ultimate strain to calculate and dispose experimental data, forming limit curves (FLCS) in tension-tension state of strain (TTSS) area are obtained. Combining with the basic experimental data obtained by uniaxial tensile test under the equivalent condition with bulging test, complete forming limit diagrams (FLDS) of Al-alloy are established. Using a quadratic polynomial curve fitting method, material constants of fitting function are calculated and a prediction model equation for sheet metal forming limit is established, by which the corresponding forming limit curves in TTSS area can be obtained. The bulging test and fitting results indicated that the sheet metal FLCS obtained were very accurate. Also, the model equation can be used to instruct warm/hot sheet bulging test.

  3. Lower hybrid drift instability in a current sheet with anisotropic temperature

    International Nuclear Information System (INIS)

    Huang Feng; Liu Guohong; Yan Fei; Deng Yan; Chen Yinhua; Yu, M Y; Chen Hanshuang

    2013-01-01

    The effect of the temperature anisotropy on the lower hybrid drift instability (LHDI) in a current sheet is investigated using local kinetic theory. It is found that the ratio r te of the perpendicular to parallel electron temperatures can significantly affect the instability. In fact, a critical value exists r te = r te * , such that when r te >r te * the LHD waves are unstable if the perpendicular wave vector k y is between two threshold values, and when r te te * the LHD mode is stable for any k y . It is also found that r te * increases and the unstable LHD regime shrinks as the parallel wave vector k z increases. That is, sufficiently low perpendicular electron temperature can stabilize the LHDI, especially that of short parallel wavelength. (paper)

  4. Structural phase transition and failure of nanographite sheets under high pressure: a molecular dynamics study

    International Nuclear Information System (INIS)

    Zhang Bin; Liang Yongcheng; Sun Huiyu

    2007-01-01

    Nanographite sheets under high compressive stresses at ambient temperature have been investigated through molecular dynamics simulations using the Tersoff-Brenner potential. Nanographite undergoes a soft to hard phase transition at a certain compressive stress, about 15 GPa. With increasing compressions, the bonding structures of nanographite are changed, interlayer sp 3 -bonds are formed, and nanographite transforms into a superhard carbon phase (SCP). Further compressions lead to the instabilities of the SCP. Although the detailed lattice structure of the SCP remains elusive, its compressive strength can approach 150 GPa, comparable to that of diamond. The maximum failure stresses of nanographite sheets are sensitive to the inter-and intra-layer interstices. Our results may explain paradoxical experimental results in the available literature

  5. Laminin-521 Promotes Rat Bone Marrow Mesenchymal Stem Cell Sheet Formation on Light-Induced Cell Sheet Technology

    Directory of Open Access Journals (Sweden)

    Zhiwei Jiang

    2017-01-01

    Full Text Available Rat bone marrow mesenchymal stem cell sheets (rBMSC sheets are attractive for cell-based tissue engineering. However, methods of culturing rBMSC sheets are critically limited. In order to obtain intact rBMSC sheets, a light-induced cell sheet method was used in this study. TiO2 nanodot films were coated with (TL or without (TN laminin-521. We investigated the effects of laminin-521 on rBMSCs during cell sheet culturing. The fabricated rBMSC sheets were subsequently assessed to study cell sheet viability, reattachment ability, cell sheet thickness, collagen type I deposition, and multilineage potential. The results showed that laminin-521 could promote the formation of rBMSC sheets with good viability under hyperconfluent conditions. Cell sheet thickness increased from an initial 26.7 ± 1.5 μm (day 5 up to 47.7 ± 3.0 μm (day 10. Moreover, rBMSC sheets maintained their potential of osteogenic, adipogenic, and chondrogenic differentiation. This study provides a new strategy to obtain rBMSC sheets using light-induced cell sheet technology.

  6. Icebase: A suborbital survey to map geothermal heat flux under an ice sheet

    Science.gov (United States)

    Purucker, Michael E.; Connerney, John E. P.; Blakely, Richard J.; Bracken, Robert E.; Nowicki, Sophie; Le, Guan; Sabaka, Terence J.; Bonalsky, Todd M.; Kuang, Weijia; Ravat, Dhananjay; Ritz, Catherine; Vaughan, Alan P. M.; Gaina, Carmen; McEnroe, Suzanne; Lesur, Vincent

    2013-04-01

    NASA will solicit suborbital missions as part of its Earth Venture program element in the coming year. These missions are designed as complete PI-led investigations to conduct innovative hypothesis or scientific question-driven approaches to pressing questions in Earth System science. We propose to carry out a suborbital magnetic survey of Greenland using NASA's Global Hawk unmanned aerial vehicle to produce the first-ever map of the geothermal heat flux under an ice sheet. Better constraints on geothermal heat flux will reduce the uncertainty in future sea level rise, in turn allowing a more informed assessment of its impact on society. The geothermal heat flux depends on conditions such as mantle heat flux, and the tectonic history and heat production of the crust, all of which vary spatially. Underneath ice sheets, the geothermal heat flux influences the basal ice. Therefore heat flux is an important boundary condition in ice sheet modeling. Using magnetic data to constrain heat flux is possible because the magnetic properties of rocks are temperature dependent until they reach the Curie temperature. The technique has applications to understanding the response of Greenland ice sheet to climate forcing because the basal heat flux provides one of the boundary conditions. The technique also helps to locate the oldest ice. The oldest ice in Greenland should be found in areas of very low heat flux, and the identification of those areas is provided by this technique. Ice cores from the areas of oldest ice help to decipher past temperatures and CO2 contents. Our latest model of the geothermal heat flux under the Greenland ice sheet (http://websrv.cs.umt.edu/isis/index.php/Greenland_Basal_Heat_Flux) is based on low- resolution satellite observations collected by the CHAMP satellite between 2000 and 2010. Those observations will be enhanced by the upcoming Swarm gradient satellite mission, but the resolution will improve by less than a factor of two, from 400 km

  7. Combined influence of radiation absorption and Hall current effects on MHD double-diffusive free convective flow past a stretching sheet

    Directory of Open Access Journals (Sweden)

    G. Sreedevi

    2016-03-01

    Full Text Available An analysis has been carried out on the influence of radiation absorption, variable viscosity, Hall current of a magnetohydrodynamic free-convective flow and heat and mass transfer over a stretching sheet in the presence of heat generation/absorption. The fluid viscosity is assumed to vary as an inverse linear function of temperature. The boundary-layer equations governing the fluid flow, heat and mass transfer under consideration have been reduced to a system of nonlinear ordinary differential equations by employing a similarity transformation. Using the finite difference scheme, numerical solutions to the transform ordinary differential equations have been obtained and the results are presented graphically. The numerical results obtained are in good agreement with the existing scientific literature.

  8. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)

    Yoshitaka Maeda

    2017-05-01

    Full Text Available In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D magnetic properties (properties under the arbitrary alternating and the rotating flux conditions of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  9. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    Science.gov (United States)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  10. HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lei; Lin, Jun [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Roussev, Ilia I. [Division of Geosciences, National Science Foundation Arlington, Virginia (United States); Schmieder, Brigitte, E-mail: leini@ynao.ac.cn [Observatoire de Paris, LESIA, Meudon (France)

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.

  11. Evidence for a current sheet forming in the wake of a coronal mass ejection from multi-viewpoint coronagraph observations

    Science.gov (United States)

    Patsourakos, S.; Vourlidas, A.

    2011-01-01

    Context. Ray-like features observed by coronagraphs in the wake of coronal mass ejections (CMEs) are sometimes interpreted as the white light counterparts of current sheets (CSs) produced by the eruption. The 3D geometry of these ray-like features is largely unknown and its knowledge should clarify their association to the CS and place constraints on CME physics and coronal conditions. Aims: If these rays are related to field relaxation behind CMEs, therefore representing current sheets, then they should be aligned to the CME axis. With this study we test these important implications for the first time. Methods: An example of such a post-CME ray was observed by various coronagraphs, including these of the Sun Earth Connection Coronal and Heliospheric investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO) twin spacecraft and the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). The ray was observed in the aftermath of a CME which occurred on 9 April 2008. The twin STEREO spacecraft were separated by about 48° on that day. This significant separation combined with a third “eye” view supplied by LASCO allow for a truly multi-viewpoint observation of the ray and of the CME. We applied 3D forward geometrical modeling to the CME and to the ray as simultaneously viewed by SECCHI-A and B and by SECCHI-A and LASCO, respectively. Results: We found that the ray can be approximated by a rectangular slab, nearly aligned with the CME axis, and much smaller than the CME in both terms of thickness and depth (≈0.05 and 0.15 R⊙ respectively). The ray electron density and temperature were substantially higher than their values in the ambient corona. We found that the ray and CME are significantly displaced from the associated post-CME flaring loops. Conclusions: The properties and location of the ray are fully consistent with the expectations of the standard CME theories for post-CME current

  12. Magnetic loss and B(H) behaviour of non-oriented electrical sheets under a trapezoidal exciting field

    Science.gov (United States)

    Kedous-Lebouc, A.; Errard, S.; Cornut, B.; Brissonneau, P.

    1994-05-01

    The excess loss and hysteresis response of electrical steel are measured and discussed in the case of trapezoidal field excitation similar to the current provided by a current commutation supply of a self-synchronous rotating machine. Three industrial non-oriented SiFe samples of different magnetic grades and thicknesses are tested using an automatic Epstein frame equipment. The losses and the unusual observed B( H) loops are analysed in terms of the rate of change of the field, the diffusion of the induction inside the sheet and by the calculation of the theoretical hysteresis cycles due to the eddy currents.

  13. Behavior of current sheets at directional magnetic discontinuities in the solar wind at 0.72 AU

    Czech Academy of Sciences Publication Activity Database

    Zhang, T. L.; Russell, C. T.; Zambelli, W.; Vörös, Zoltán; Wang, C.; Cao, J. B.; Jian l, L. K.; Strangeway, R. J.; Balikhin, M.; Baumjohann, W.; Delva, M.; Volwerk, M.; Glassmeier, K.; H.

    2008-01-01

    Roč. 35, č. 24 (2008), L24102/1-L24102/5 ISSN 0094-8276 Grant - others:Austrian Wissenschaftfonds(AT) P20131-N16; NNSFC(CN) 40628003; 973 Program(CN) 2006CB806305; NASA (US) NNG06GC62G Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * current sheets * magnetic annihilation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.959, year: 2008

  14. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  15. Electromigration failures under bidirectional current stress

    Science.gov (United States)

    Tao, Jiang; Cheung, Nathan W.; Hu, Chenming

    1998-01-01

    Electromigration failure under DC stress has been studied for more than 30 years, and the methodologies for accelerated DC testing and design rules have been well established in the IC industry. However, the electromigration behavior and design rules under time-varying current stress are still unclear. In CMOS circuits, as many interconnects carry pulsed-DC (local VCC and VSS lines) and bidirectional AC current (clock and signal lines), it is essential to assess the reliability of metallization systems under these conditions. Failure mechanisms of different metallization systems (Al-Si, Al-Cu, Cu, TiN/Al-alloy/TiN, etc.) and different metallization structures (via, plug and interconnect) under AC current stress in a wide frequency range (from mHz to 500 MHz) has been study in this paper. Based on these experimental results, a damage healing model is developed, and electromigration design rules are proposed. It shows that in the circuit operating frequency range, the "design-rule current" is the time-average current. The pure AC component of the current only contributes to self-heating, while the average (DC component) current contributes to electromigration. To ensure longer thermal-migration lifetime under high frequency AC stress, an additional design rule is proposed to limit the temperature rise due to self-joule heating.

  16. Exploration of a possible cause of magnetic reconfiguration/reconnection due to generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet

    Science.gov (United States)

    Huang, Y. C.; Lyu, L. H.

    2014-12-01

    Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.

  17. Development and anisotropy of three-dimensional turbulence in a current sheet

    International Nuclear Information System (INIS)

    Onofri, M.; Veltri, P.; Malara, F.

    2007-01-01

    The nonlinear evolution of three-dimensional reconnection instabilities are studied in a current sheet where many resonant surfaces are simultaneously present at different locations of the simulation domain. The nonlinear evolution produces the development of anisotropic magnetohydrodynamic turbulence. The development of the energy spectrum is followed until the energy is transported to the dissipative length scale and the anisotropy of the spectrum is analyzed. The energy cascade is affected by the Alfven effect and it takes place mainly in the direction perpendicular to the local average magnetic field. Anisotropy is also affected by propagation of perturbations across the main magnetic field, due to the growth of a transverse component related to reconnection. The direction of anisotropy varies with the position in space. The spectral index is different both from what is found in homogeneous isotropic turbulence and from the values predicted for magnetohydrodynamic turbulence with a uniform large-scale magnetic field

  18. SPECTROSCOPIC OBSERVATIONS OF AN EVOLVING FLARE RIBBON SUBSTRUCTURE SUGGESTING ORIGIN IN CURRENT SHEET WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, S. R.; Longcope, D. W.; Qiu, J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2015-09-01

    We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph of the evolution of the flare ribbon in the SOL2014-04-18T13:03 M-class flare event, at high spatial resolution and time cadence. These observations reveal small-scale substructure within the ribbon, which manifests as coherent quasi-periodic oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these, we find the best support for some form of wave localized to the coronal current sheet, such as a tearing mode or Kelvin–Helmholtz instability.

  19. Current state and future perspectives on coupled ice-sheet – sea-level modelling

    NARCIS (Netherlands)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S.W.

    2017-01-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the

  20. Modelling geomagnetically induced currents in midlatitude Central Europe using a thin-sheet approach

    Science.gov (United States)

    Bailey, Rachel L.; Halbedl, Thomas S.; Schattauer, Ingrid; Römer, Alexander; Achleitner, Georg; Beggan, Ciaran D.; Wesztergom, Viktor; Egli, Ramon; Leonhardt, Roman

    2017-06-01

    Geomagnetically induced currents (GICs) in power systems, which can lead to transformer damage over the short and the long term, are a result of space weather events and geomagnetic variations. For a long time, only high-latitude areas were considered to be at risk from these currents, but recent studies show that considerable GICs also appear in midlatitude and equatorial countries. In this paper, we present initial results from a GIC model using a thin-sheet approach with detailed surface and subsurface conductivity models to compute the induced geoelectric field. The results are compared to measurements of direct currents in a transformer neutral and show very good agreement for short-period variations such as geomagnetic storms. Long-period signals such as quiet-day diurnal variations are not represented accurately, and we examine the cause of this misfit. The modelling of GICs from regionally varying geoelectric fields is discussed and shown to be an important factor contributing to overall model accuracy. We demonstrate that the Austrian power grid is susceptible to large GICs in the range of tens of amperes, particularly from strong geomagnetic variations in the east-west direction.

  1. On Jovian plasma sheet structure

    International Nuclear Information System (INIS)

    Khurana, K.K.; Kivelson, M.G.

    1989-01-01

    The authors evaluate several models of Jovian plasma sheet structure by determining how well they organize several aspects of the observed Voyager 2 magnetic field characteristics as a function of Jovicentric radial distance. It is shown that in the local time sector of the Voyager 2 outbound pass (near 0300 LT) the published hinged-magnetodisc models with wave (i.e., models corrected for finite wave velocity effects) are more successful than the published magnetic anomaly model in predicting locations of current sheet crossings. They also consider the boundary between the plasma sheet and the magnetotail lobe which is expected to vary slowly with radial distance. They use this boundary location as a further test of the models of the magnetotail. They show that the compressional MHD waves have much smaller amplitude in the lobes than in the plasma sheet and use this criterion to refine the identification of the plasma-sheet-lobe boundary. When the locations of crossings into and out of the lobes are examined, it becomes evident that the magnetic-anomaly model yields a flaring plasma sheet with a halfwidth of ∼ 3 R J at a radial distance of 20 R J and ∼ 12 R J at a radial distance of 100 R J . The hinged-magnetodisc models with wave, on the other hand, predict a halfwidth of ∼ 3.5 R J independent of distance beyond 20 R J . New optimized versions of the two models locate both the current sheet crossings and lobe encounters equally successfully. The optimized hinged-magnetodisc model suggests that the wave velocity decreases with increasing radial distance. The optimized magnetic anomaly model yields lower velocity contrast than the model of Vasyliunas and Dessler (1981)

  2. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  3. On the organization of commercial production of profiled polyethylene sheets used for water proofing under NPP construction

    International Nuclear Information System (INIS)

    Likhachev, V.D.; Korenev, K.I.; Chukvaidze, K.I.; Dzhurinskij, M.B.

    1986-01-01

    The problem on the organization of commercial production of profiled polyethylene sheets with special longitudinal ribs which are anchorized in concrete is considered. The use of new water proofing material applied under NPP construction allows one to enhance the commercialization of water proofing works which ensured cost reduction of these works

  4. The Rapid Ice Sheet Change Observatory (RISCO)

    Science.gov (United States)

    Morin, P.; Howat, I. M.; Ahn, Y.; Porter, C.; McFadden, E. M.

    2010-12-01

    The recent expansion of observational capacity from space has revealed dramatic, rapid changes in the Earth’s ice cover. These discoveries have fundamentally altered how scientists view ice-sheet change. Instead of just slow changes in snow accumulation and melting over centuries or millennia, important changes can occur in sudden events lasting only months, weeks, or even a single day. Our understanding of these short time- and space-scale processes, which hold important implications for future global sea level rise, has been impeded by the low temporal and spatial resolution, delayed sensor tasking, incomplete coverage, inaccessibility and/or high cost of data available to investigators. New cross-agency partnerships and data access policies provide the opportunity to dramatically improve the resolution of ice sheet observations by an order of magnitude, from timescales of months and distances of 10’s of meters, to days and meters or less. Advances in image processing technology also enable application of currently under-utilized datasets. The infrastructure for systematically gathering, processing, analyzing and distributing these data does not currently exist. Here we present the development of a multi-institutional, multi-platform observatory for rapid ice change with the ultimate objective of helping to elucidate the relevant timescales and processes of ice sheet dynamics and response to climate change. The Rapid Ice Sheet Observatory (RISCO) gathers observations of short time- and space-scale Cryosphere events and makes them easily accessible to investigators, media and general public. As opposed to existing data centers, which are structured to archive and distribute diverse types of raw data to end users with the specialized software and skills to analyze them, RISCO focuses on three types of geo-referenced raster (image) data products in a format immediately viewable with commonly available software. These three products are (1) sequences of images

  5. NTPR Fact Sheets

    Science.gov (United States)

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Support Center Contact Us FAQ Sheet Links Success Stories Contracts Business Opportunities Current

  6. Dipole-sheet multipole magnets for accelerators

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1993-01-01

    The dipole-sheet formalism can be used to describe both cylindrical current-sheet multipole magnets and cylindrical-bore magnets made up of permanent magnet blocks. For current sheets, the formalism provides a natural way of finding a finite set of turns that approximate a continuous distribution. The formalism is especially useful In accelerator applications where large-bore, short, high-field-quality magnets that are dominated by fringe fields are needed. A further advantage of the approach is that in systems with either open or cylindrically symmetric magnetic boundaries, analytical expressions for the three-dimensional fields that are suitable for rapid numerical evaluation can be derived. This development is described in some detail. Also, recent developments in higher-order particle-beam optics codes based on the formalism are described briefly

  7. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    Energy Technology Data Exchange (ETDEWEB)

    Villalpando, I. [Centro de Investigacion de los Recursos Naturales, Antigua Normal Rural, Salaices, Lopez, Chihuahua (Mexico); John, P.; Wilson, J. I. B., E-mail: isaelav@hotmail.com [School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14-4AS (United Kingdom)

    2017-11-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  8. Growth of carbon fibres, sheets and tubes on diamond films under high power plasma etching conditions

    International Nuclear Information System (INIS)

    Villalpando, I.; John, P.; Wilson, J. I. B.

    2017-01-01

    The application of diamond as a plasma facing material for fusion reactors can be limited by unknown reactions between diamond and the chamber materials transported by the plasma. Transformation of diamond to other structures can cause problems such as contamination of the plasma with loose particles or retention of gases. We have seen that diamond thin films are eroded under hydrogen plasma etching, but if silicon is present the growth of various carbon structures on diamond films is observed. We have produced carbon with different morphologies on diamond films including fibres, sheets with flower-like shapes and tubes and proposed growth mechanisms based on the results of scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Sample surfaces contain silicon and are oxidised having COO and CO groups as seen by XP S analysis. Raman analyses revealed a spectrum typical for graphite combined with that from diamond that remains on the surface after hydrogen bombardment. The results of this sturdy show the experimental conditions in which carbon fibres, sheets and tubes are produced under high-power hydrogen etching of diamond films and open the possibility to other applications such as catalysts, sensors and the production of electrodes. (Author)

  9. Current-induced nonuniform enhancement of sheet resistance in A r+ -irradiated SrTi O3

    Science.gov (United States)

    Roy, Debangsu; Frenkel, Yiftach; Davidovitch, Sagi; Persky, Eylon; Haham, Noam; Gabay, Marc; Kalisky, Beena; Klein, Lior

    2017-06-01

    The sheet resistance Rs of A r+ irradiated SrTi O3 in patterns with a length scale of several microns increases significantly below ˜40 K in connection with driving currents exceeding a certain threshold. The initial lower Rs is recovered upon warming with accelerated recovery around 70 and 160 K. Scanning superconducting quantum interference device microscopy shows local irreversible changes in the spatial distribution of the current with a length scale of several microns. We attribute the observed nonuniform enhancement of Rs to the attraction of the charged single-oxygen and dioxygen vacancies by the crystallographic domain boundaries in SrTi O3 . The boundaries, which are nearly ferroelectric below 40 K, are polarized by the local electrical field associated with the driven current and the clustered vacancies which suppress conductivity in their vicinity and yield a noticeable enhancement in the device resistance when the current path width is on the order of the boundary extension. The temperatures of accelerated conductivity recovery are associated with the energy barriers for the diffusion of the two types of vacancies.

  10. Experimental investigation of possible geomagnetic feedback from energetic (0.1 to 16 keV) terrestrial O(+) ions in the magnetotail current sheet

    Science.gov (United States)

    Lennartsson, O. W.; Klumpar, D. M.; Shelley, E. G.; Quinn, J. M.

    1994-01-01

    Data from energetic ion mass spectrometers on the ISEE 1 and AMPTE/CCE spacecraft are combined with geomagnetic and solar indices to investigate, in a statistical fashion, whether energized O(+) ions of terrestrial origin constitute a source of feedback which triggers or amplifies geomagnetic activity as has been suggested in the literature, by contributing a destabilizing mass increase in the magnetotail current sheet. The ISEE 1 data (0.1-16 keV/e) provide in situ observations of the O(+) concentration in the central plasma sheet, inside of 23 R(sub E), during the rising and maximum phases of solar cycle 21, as well as inner magnetosphere data from same period. The CCE data (0.1-17 keV/e) taken during the subsequent solar minimum all within 9 R(sub E). provide a reference for long-term variations in the magnetosphere O(+) content. Statistical correlations between the ion data and the indices, and between different indices. all point in the same direction: there is probably no feedback specific to the O(+) ions, in spite of the fact that they often contribute most of the ion mass density in the tail current sheet.

  11. CONTROLLING INFLUENCE OF MAGNETIC FIELD ON SOLAR WIND OUTFLOW: AN INVESTIGATION USING CURRENT SHEET SOURCE SURFACE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Poduval, B., E-mail: bpoduval@spacescience.org [Space Science Institute, Boulder, CO 80303 (United States)

    2016-08-10

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  12. Current sheets in the Earth’s magnetosphere and in laboratory experiments: The magnetic field structure and the Hall effect

    International Nuclear Information System (INIS)

    Frank, A. G.; Artemyev, A. V.; Zelenyi, L. M.

    2016-01-01

    The main characteristics of current sheets (CSs) formed in laboratory experiments are compared with the results of satellite observations of CSs in the Earth’s magnetotail. We show that many significant features of the magnetic field structure and the distributions of plasma parameters in laboratory and magnetospheric CSs exhibit a qualitative similarity, despite the enormous differences of scales, absolute values of plasma parameters, magnetic fields, and currents. In addition to a qualitative comparison, we give a number of dimensionless parameters that demonstrate the possibility of laboratory modeling of the processes occurring in the magnetosphere.

  13. Substorms in the Inner Plasma Sheet

    Science.gov (United States)

    Le Contel, O.; Perraut, S.; Roux, A.; Pellat, R.; Korth, A.

    Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T∥ > T⊺) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (Ecurrents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropies are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop (~= few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to ``High Frequency'' (HF) waves. These ``HF'' waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so

  14. Seasonal dependence of large-scale Birkeland currents

    International Nuclear Information System (INIS)

    Fujii, R.; Iijima, T.; Potemra, T.A.; Sugiura, M.

    1981-01-01

    The seasonal dependence of large-scale Birkeland currents has been determined from the analysis of vector magnetic field data acquired by the TRIAD satellite in the northern hemisphere. Statistical characteristics of single sheet (i.e., net currents) and double sheet Birkeland currents were determined from 555 TRIAD passes during the summer, and 408 passes during the winter (more complicated multiple-sheet current systems were not included in this study). The average K/sub p/ value for the summer events is 1.9 and for the winter events is 2.0. The principal results include the following: (1) The single sheet Birkeland currents are statistically observed more often than the double sheet currents in the dayside of the auroral zone during any season. The single sheet currents are also observed more often in the summer than in the winter (as much as 2 to 3 times as often depending upon the MLT sector). (2) The intensities of the single and double sheet Birkeland currents on the dayside, from approximately 1000 MLT to 1800 MLT, are larger during the summer (in comparison to winter) by a factor of about 2. (3) The intensities of the double sheet Birkeland currents in the nightside (the dominant system in this local time) do not show a significant difference from summer to winter. (4) The single and double sheet currents in the dayside (between 0600 and 1800 MLT) appear at higher latitudes (by about 1 0 to 3 0 ) during the summer in comparison to the winter. These characterisctis suggest that the Birkeland current intensities are controlled by the ionosphere conductivity in the polar region. The greater occurrence of single sheet Birkeland currents during the summertime supports the suggestion that these currents close via the polar cap when the conductivity there is sufficiently high to permit it

  15. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  16. High performance electrode material for supercapacitors based on α-Co(OH)2 nano-sheets prepared through pulse current cathodic electro-deposition (PC-CED)

    Science.gov (United States)

    Aghazadeh, Mustafa; Rashidi, Amir; Ganjali, Mohammad Reza

    2018-01-01

    In this paper, the well-defined nano-sheets of α-Co(OH)2 were prepared through the cathodic electrosynthesis from an additive-free aqueous cobalt nitrate bath. The pulse current cathodic electro-deposition (PC-CED) was used as the means for the controlling the OH- electrogeneration on the cathode surface. The characteristics and electrochemical behavior of the prepared cobalt hydroxide were also assessed through SEM, TEM, XRD, BET, and IR. The results proved the product to be composed of crystalline pure α phase of cobalt hydroxide with sheet-like morphology at nanoscale. Evaluations of the electrochemical behaviour of the α-Co(OH)2 nano-sheets revealed that they are capable to delivering the specific capacitance of 1122 F g-1 at a discharge load of 3 A g-1 and SC retention of 84% after 4000 continues discharging cycles, suggesting the nano-sheets as promising candidates for use in electrochemical supercapacitors. Further, the method used for the preparation of the compounds enjoys the capability of being scaled up. [Figure not available: see fulltext.

  17. New method for determining central axial orientation of flux rope embedded within current sheet using multipoint measurements

    Science.gov (United States)

    Li, ZhaoYu; Chen, Tao; Yan, GuangQing

    2016-10-01

    A new method for determining the central axial orientation of a two-dimensional coherent magnetic flux rope (MFR) via multipoint analysis of the magnetic-field structure is developed. The method is devised under the following geometrical assumptions: (1) on its cross section, the structure is left-right symmetric; (2) the projected structure velocity is vertical to the line of symmetry. The two conditions can be naturally satisfied for cylindrical MFRs and are expected to be satisfied for MFRs that are flattened within current sheets. The model test demonstrates that, for determining the axial orientation of such structures, the new method is more efficient and reliable than traditional techniques such as minimum-variance analysis of the magnetic field, Grad-Shafranov (GS) reconstruction, and the more recent method based on the cylindrically symmetric assumption. A total of five flux transfer events observed by Cluster are studied using the proposed approach, and the application results indicate that the observed structures, regardless of their actual physical properties, fit the assumed geometrical model well. For these events, the inferred axial orientations are all in excellent agreement with those obtained using the multi-GS reconstruction technique.

  18. Predicting Pulsar Scintillation from Refractive Plasma Sheets

    Science.gov (United States)

    Simard, Dana; Pen, Ue-Li

    2018-05-01

    The dynamic and secondary spectra of many pulsars show evidence for long-lived, aligned images of the pulsar that are stationary on a thin scattering sheet. One explanation for this phenomenon considers the effects of wave crests along sheets in the ionized interstellar medium, such as those due to Alfvén waves propagating along current sheets. If these sheets are closely aligned to our line-of-sight to the pulsar, high bending angles arise at the wave crests and a selection effect causes alignment of images produced at different crests, similar to grazing reflection off of a lake. Using geometric optics, we develop a simple parameterized model of these corrugated sheets that can be constrained with a single observation and that makes observable predictions for variations in the scintillation of the pulsar over time and frequency. This model reveals qualitative differences between lensing from overdense and underdense corrugated sheets: Only if the sheet is overdense compared to the surrounding interstellar medium can the lensed images be brighter than the line-of-sight image to the pulsar, and the faint lensed images are closer to the pulsar at higher frequencies if the sheet is underdense, but at lower frequencies if the sheet is overdense.

  19. Sheet pinch devices

    International Nuclear Information System (INIS)

    Anderson, O.A.; Baker, W.R.; Ise, J. Jr.; Kunkel, W.B.; Pyle, R.V.; Stone, J.M.

    1958-01-01

    Three types of sheet-like discharges are being studied at Berkeley. The first of these, which has been given the name 'Triax', consists of a cylindrical plasma sleeve contained between two coaxial conducting cylinders A theoretical analysis of the stability of the cylindrical sheet plasma predicts the existence of a 'sausage-mode' instability which is, however, expected to grow more slowly than in the case of the unstabilized linear pinch (by the ratio of the radial dimensions). The second pinch device employs a disk shaped discharge with radial current guided between flat metal plates, this configuration being identical to that of the flat hydromagnetic capacitor without external magnetic field. A significant feature of these configurations is the absence of a plasma edge, i.e., there are no regions of sharply curved magnetic field lines anywhere in these discharges. The importance of this fact for stability is not yet fully investigated theoretically. As a third configuration a rectangular, flat pinch tube has been constructed, and the behaviour of a flat plasma sheet with edges is being studied experimentally

  20. Curvature-induced stiffness and the spatial variation of wavelength in wrinkled sheets.

    Science.gov (United States)

    Paulsen, Joseph D; Hohlfeld, Evan; King, Hunter; Huang, Jiangshui; Qiu, Zhanlong; Russell, Thomas P; Menon, Narayanan; Vella, Dominic; Davidovitch, Benny

    2016-02-02

    Wrinkle patterns in compressed thin sheets are ubiquitous in nature and technology, from the furrows on our foreheads to crinkly plant leaves, from ripples on plastic-wrapped objects to the protein film on milk. The current understanding of an elementary descriptor of wrinkles--their wavelength--is restricted to deformations that are parallel, spatially uniform, and nearly planar. However, most naturally occurring wrinkles do not satisfy these stipulations. Here we present a scheme that quantitatively explains the wrinkle wavelength beyond such idealized situations. We propose a local law that incorporates both mechanical and geometrical effects on the spatial variation of wrinkle wavelength. Our experiments on thin polymer films provide strong evidence for its validity. Understanding how wavelength depends on the properties of the sheet and the underlying liquid or elastic subphase is crucial for applications where wrinkles are used to sculpt surface topography, to measure properties of the sheet, or to infer forces applied to a film.

  1. Mountain building and the initiation of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Solgaard, Anne Munck; Bonow, Johan; Langen, Peter Lang

    2013-01-01

    The effects of a new hypothesis about mountain building in Greenland on ice sheet initiation are investigated using an ice sheet model in combination with a climate model. According to this hypothesis, low-relief landscapes near sea level characterised Greenland in Miocene times until two phases...... superimposed by cold and warm excursions. The modelling results show that no ice initiates in the case of the low-lying and almost flat topography prior to the uplifts. However, the results demonstrate a significant ice sheet growth in response to the orographically induced increase in precipitation....... Under conditions that are colder than the present, the ice can overcome the Föhn effect, flow into the interior and form a coherent ice sheet. The results thus indicate that the Greenland Ice Sheet of today is a relict formed under colder conditions. The modelling results are consistent...

  2. Antarctic Circumpolar Current Dynamics and Their Relation to Antarctic Ice Sheet and Perennial Sea-Ice Variability in the Central Drake Passage During the Last Climate Cycle

    Science.gov (United States)

    Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.

    2017-12-01

    The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves

  3. Influence of Mg doping on ZnO nanoparticles decorated on graphene oxide (GO) crumpled paper like sheet and its high photo catalytic performance under sunlight

    Science.gov (United States)

    Labhane, P. K.; Sonawane, S. H.; Sonawane, G. H.; Patil, S. P.; Huse, V. R.

    2018-03-01

    Mg doped ZnO nanoparticles decorated on graphene oxide (GO) sheets were synthesized by a wet impregnation method. The effect of Mg doping on ZnO and ZnO-GO composite has been evaluated by using x-ray diffraction (XRD), Williamson-Hall Plot (Wsbnd H Plot), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). The physical parameters of as-prepared samples were estimated by XRD data. FESEM and HR-TEM images showed the uniform distribution of nanoparticles on GO crumpled paper like sheet. Solar light photocatalytic activities of samples were evaluated spectrophotometrically by the degradation of p-nitrophenol (PNP) and indigo carmine (IC) solution. Mgsbnd ZnO decorated on GO sheets exhibit excellent catalytic efficiency compared to all other prepared samples under identical conditions, degrading PNP and IC nearly 99% within 60 min under sunlight. The effective degradation by Mgsbnd ZnO decorated on GO sheet would be due to extended solar light absorption, enhanced adsorptivity on the composite catalyst surface and efficient charge separation of photo-induced electrons. Finally, plausible mechanism was suggested with the help of scavengers study.

  4. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  5. High-latitude Conic Current Sheets in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V.; Obridko, Vladimir N.; Kharshiladze, Alexander F. [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Malova, Helmi V. [Scobeltsyn Nuclear Physics Institute of Lomonosov Moscow State University, Moscow (Russian Federation); Kislov, Roman A.; Zelenyi, Lev M. [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Tokumaru, Munetoshi; Fujiki, Ken’ichi [Institute for Space-Earth Environmental Research, Nagoya University (Japan); Sokół, Justyna M.; Grzedzielski, Stan [Space Research Centre of the Polish Academy of Sciences (CBK), Warsaw (Poland)

    2017-02-10

    We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2–3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/ nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk–Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.

  6. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure.

    Science.gov (United States)

    Celej, María Soledad; Sarroukh, Rabia; Goormaghtigh, Erik; Fidelio, Gerardo D; Ruysschaert, Jean-Marie; Raussens, Vincent

    2012-05-01

    Parkinson's disease is an age-related movement disorder characterized by the presence in the mid-brain of amyloid deposits of the 140-amino-acid protein AS (α-synuclein). AS fibrillation follows a nucleation polymerization pathway involving diverse transient prefibrillar species varying in size and morphology. Similar to other neurodegenerative diseases, cytotoxicity is currently attributed to these prefibrillar species rather than to the insoluble aggregates. Nevertheless, the underlying molecular mechanisms responsible for cytotoxicity remain elusive and structural studies may contribute to the understanding of both the amyloid aggregation mechanism and oligomer-induced toxicity. It is already recognized that soluble oligomeric AS species adopt β-sheet structures that differ from those characterizing the fibrillar structure. In the present study we used ATR (attenuated total reflection)-FTIR (Fourier-transform infrared) spectroscopy, a technique especially sensitive to β-sheet structure, to get a deeper insight into the β-sheet organization within oligomers and fibrils. Careful spectral analysis revealed that AS oligomers adopt an antiparallel β-sheet structure, whereas fibrils adopt a parallel arrangement. The results are discussed in terms of regions of the protein involved in the early β-sheet interactions and the implications of such conformational arrangement for the pathogenicity associated with AS oligomers.

  7. The Plasma Sheet as Natural Symmetry Plane for Dipolarization Fronts in the Earth's Magnetotail

    Science.gov (United States)

    Frühauff, D.; Glassmeier, K.-H.

    2017-11-01

    In this work, observations of multispacecraft mission Time History of Events and Macroscale Interactions during Substorms are used for statistical investigation of dipolarization fronts in the near-Earth plasma sheet of the magnetotail. Using very stringent criteria, 460 events are detected in almost 10 years of mission data. Minimum variance analysis is used to determine the normal directions of the phase fronts, providing evidence for the existence of a natural symmetry of these phenomena, given by the neutral sheet of the magnetotail. This finding enables the definition of a local coordinate system based on the Tsyganenko model, reflecting the intrinsic orientation of the neutral sheet and, therefore, the dipolarization fronts. In this way, the comparison of events with very different background conditions is improved. Through this study, the statistical results of Liu, Angelopoulos, Runov, et al. (2013) are both confirmed and extended. In a case study, the knowledge of this plane of symmetry helps to explain the concave curvature of dipolarization fronts in the XZ plane through phase propagation speeds of magnetoacoustic waves. A second case study is presented to determine the central current system of a passing dipolarization front through a constellation of three spacecraft. With this information, a statistical analysis of spacecraft observations above and below the neutral sheet is used to provide further evidence for the neutral sheet as the symmetry plane and the central current system. Furthermore, it is shown that the signatures of dipolarization fronts are under certain conditions closely related to that of flux ropes, indicating a possible relationship between these two transient phenomena.

  8. The crack growth resistance of thin steel sheets under eccentric ...

    Indian Academy of Sciences (India)

    Ľ AMBRIŠKO

    2018-03-10

    Mar 10, 2018 ... of zinc-coated automotive steel sheets (IF – deep drawing interstitial free steel ..... to determine; therefore, the Ji was determined for observ- able crack initiation .... M R S, da Silva L F M and de Castro P M S T 2011. Analysis of ...

  9. Environmental constraints on West Antarctic ice-sheet formation

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, D R; MacAyeal, D R

    1987-01-01

    Small perturbations in Antarctic environmental conditions can culminate in the demise of the Antarctic ice sheet's western sector. This may have happened during the last interglacial period, and could recur within the next millennium due to atmospheric warming from trace gas and CO/sub 2/ increases. In this study, we investigate the importance of sea-level, accumulation rate, and ice influx from the East Antarctic ice sheet in the re-establishment of the West Antarctic ice sheet from a thin cover using a time-dependent numerical ice-shelf model. Our results show that a precursor to the West Antarctic ice sheet can form within 3000 years. Sea-level lowering caused by ice-sheet development in the Northern Hemisphere has the greatest environmental influence. Under favorable conditions, ice grounding occurs over all parts of the West Antarctic ice sheet except up-stream of Thwaites Glacier and in the Ross Sea region.

  10. Sheet, ligament and droplet formation in swirling primary atomization

    Directory of Open Access Journals (Sweden)

    Changxiao Shao

    2018-04-01

    Full Text Available We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF method coupled with adapted mesh refinement (AMR technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  11. Sheet, ligament and droplet formation in swirling primary atomization

    Science.gov (United States)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  12. Assisted crack tip flipping under Mode I thin sheet tearing

    DEFF Research Database (Denmark)

    Felter, Christian Lotz; Nielsen, Kim Lau

    2017-01-01

    Crack tip flipping, where the fracture surface alternates from side to side in roughly 45° shear bands, seems to be an overlooked propagation mode in Mode I thin sheet tearing. In fact, observations of crack tip flipping is rarely found in the literature. Unlike the already established modes...

  13. TURBULENT DYNAMICS IN SOLAR FLARE SHEET STRUCTURES MEASURED WITH LOCAL CORRELATION TRACKING

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D. E., E-mail: mckenzie@physics.montana.edu [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717-3840 (United States)

    2013-03-20

    High-resolution observations of the Sun's corona in extreme ultraviolet and soft X-rays have revealed a new world of complexity in the sheet-like structures connecting coronal mass ejections (CMEs) to the post-eruption flare arcades. This article presents initial findings from an exploration of dynamic flows in two flares observed with Hinode/XRT and SDO/AIA. The flows are observed in the hot ({approx}> 10 MK) plasma above the post-eruption arcades and measured with local correlation tracking. The observations demonstrate significant shears in velocity, giving the appearance of vortices and stagnations. Plasma diagnostics indicate that the plasma {beta} exceeds unity in at least one of the studied events, suggesting that the coronal magnetic fields may be significantly affected by the turbulent flows. Although reconnection models of eruptive flares tend to predict a macroscopic current sheet in the region between the CME and the flare arcade, it is not yet clear whether the observed sheet-like structures are identifiable as the current sheets or 'thermal halos' surrounding the current sheets. Regardless, the relationship between the turbulent motions and the embedded magnetic field is likely to be complicated, involving dynamic fluid processes that produce small length scales in the current sheet. Such processes may be crucial for triggering, accelerating, and/or prolonging reconnection in the corona.

  14. Ni-Flash-Coated Galvannealed Steel Sheet with Improved Properties

    Science.gov (United States)

    Pradhan, D.; Dutta, M.; Venugopalan, T.

    2016-11-01

    In the last several years, automobile industries have increasingly focused on galvannealed (GA) steel sheet due to their superior properties such as weldability, paintability and corrosion protection. To improve the properties further, different coatings on GA have been reported. In this context, an electroplating process (flash coating) of bright and adherent Ni plating was developed on GA steel sheet for covering the GA defects and enhancing the performances such as weldability, frictional behavior, corrosion resistance and phosphatability. For better illustration, a comparative study with bare GA steel sheet has also been carried out. The maximum electroplating current density of 700 A/m2 yielded higher cathode current efficiency of 95-98%. The performances showed that Ni-coated (coating time 5-7 s) GA steel sheet has better spot weldability, lower dynamic coefficient of friction (0.07 in lubrication) and three times more corrosion resistance compared to bare GA steel sheet. Plate-like crystal of phosphate coating with size of 10-25 µm was obtained on the Ni-coated GA. The main phase in the phosphate compound was identified as hopeite (63.4 wt.%) along with other phases such as spencerite (28.3 wt.%) and phosphophyllite (8.3 wt.%).

  15. Complex world-sheets from N=2 strings

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1996-01-01

    We study some properties of target space strings constructed from (2,1) heterotic strings. We argue that world-sheet complexification is a general property of the bosonic sector of such target world-sheets. We give a target space interpretation of this fact and relate it to the non-gaussian nature of free string field theory. We provide several one-loop calculations supporting the stringy construction of critical world-sheets in terms of (2,1) models. Using finite-temperature boundary conditions in the underlying (2,1) string we obtain non-chiral target space spin structures, and point out some of the problems arising for chiral spin structures, such as the heterotic world-sheet. To this end, we study the torus partition function of the corresponding asymmetric orbifold of the (2,1) string. (orig.)

  16. Ice Sheet System Model as Educational Entertainment

    Science.gov (United States)

    Perez, G.

    2013-12-01

    Understanding the importance of polar ice sheets and their role in the evolution of Sea Level Rise (SLR), as well as Climate Change, is of paramount importance for policy makers as well as the public and schools at large. For example, polar ice sheets and glaciers currently account for 1/3 of the SLR signal, a ratio that will increase in the near to long-term future, which has tremendous societal ramifications. Consequently, it is important to increase awareness about our changing planet. In our increasingly digital society, mobile and web applications are burgeoning venues for such outreach. The Ice Sheet System Model (ISSM) is a software that was developed at the Jet Propulsion Laboratory/CalTech/NASA, in collaboration with University of California Irvine (UCI), with the goal of better understanding the evolution of polar ice sheets. It is a state-of-the-art framework, which relies on higher-end cluster-computing to address some of the aforementioned challenges. In addition, it is a flexible framework that can be deployed on any hardware; in particular, on mobile platforms such as Android or iOS smart phones. Here, we look at how the ISSM development team managed to port their model to these platforms, what the implications are for improving how scientists disseminate their results, and how a broader audience may familiarize themselves with running complex climate models in simplified scenarios which are highly educational and entertaining in content. We also look at the future plans toward a web portal fully integrated with mobile technologies to deliver the best content to the public, and to provide educational plans/lessons that can be used in grades K-12 as well as collegiate under-graduate and graduate programs.

  17. Magneto-hydrodynamics of coupled fluid–sheet interface with mass suction and blowing

    International Nuclear Information System (INIS)

    Ahmad, R.

    2016-01-01

    There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid–sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses. - Highlights: • The momentum equation is modelled for both the surrounding MHD fluid and the sheet with the effects of mass suction and blowing. • The current study further investigates the heat and mass transfer characteristics between a permeable sheet and the surrounding electrically conducting fluid across the thermal and mass boundary layers. • Both the approximated and analytical techniques have been included for the purpose of comparison, and the perfect numerical agreements have been established with the previous studies. • Dual solutions for the skin friction coefficients are found for various categories of

  18. Nonlinear energy transfer and current sheet development in localized Alfvén wavepacket collisions in the strong turbulence limit

    Science.gov (United States)

    Verniero, J. L.; Howes, G. G.; Klein, K. G.

    2018-02-01

    In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.

  19. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  20. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  1. Decontamination sheet

    International Nuclear Information System (INIS)

    Hirose, Emiko; Kanesaki, Ken.

    1995-01-01

    The decontamination sheet of the present invention is formed by applying an adhesive on one surface of a polymer sheet and releasably appending a plurality of curing sheets. In addition, perforated lines are formed on the sheet, and a decontaminating agent is incorporated in the adhesive. This can reduce the number of curing operation steps when a plurality steps of operations for radiation decontamination equipments are performed, and further, the amount of wastes of the cured sheets, and operator's exposure are reduced, as well as an efficiency of the curing operation can be improved, and propagation of contamination can be prevented. (T.M.)

  2. Balance sheet capacity and endogenous risk

    OpenAIRE

    Jon Danielsson; Hyun Song Shin; Jean-Pierre Zigrand

    2011-01-01

    Banks operating under Value-at-Risk constraints give rise to a well-defined aggregate balance sheet capacity for the banking sector as a whole that depends on total bank capital. Equilibrium risk and market risk premiums can be solved in closed form as functions of aggregate bank capital. We explore the empirical properties of the model in light of recent experience in the financial crisis and highlight the importance of balance sheet capacity as the driver of the financial cycle and market r...

  3. Nanotechnology for Site Remediation: Fact Sheet

    Science.gov (United States)

    This fact sheet presents a snapshot of nanotechnology and its current uses in remediation. It presents information to help site project managers understand the potential applications of this group of technologies at their sites.

  4. Experimental Characterization and Material Modelling of an AZ31 Magnesium Sheet Alloy at Elevated Temperatures under Consideration of the Tension-Compression Asymmetry

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.

    2017-09-01

    Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.

  5. Film sheet cassette

    International Nuclear Information System (INIS)

    1981-01-01

    A novel film sheet cassette is described for handling CAT photographic films under daylight conditions and facilitating their imaging. A detailed description of the design and operation of the cassette is given together with appropriate illustrations. The resulting cassette is a low-cost unit which is easily constructed and yet provides a sure light-tight seal for the interior contents of the cassette. The individual resilient fingers on the light-trap permit the ready removal of the slide plate for taking pictures. The stippled, non-electrostatic surface of the pressure plate ensures an air layer and free slidability of the film for removal and withdrawal of the film sheet. The advantage of the daylight system is that a darkroom need not be used for inserting and removing the film in and out of the cassette resulting in a considerable time saving. (U.K.)

  6. Dynamics of a radially expanding liquid sheet: Experiments

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh

    2017-11-01

    A recent theory predicts that sinuous waves generated at the center of a radially expanding liquid sheet grow spatially even in absence of a surrounding gas phase. Unlike flat liquid sheets, the thickness of a radially expanding liquid sheet varies inversely with distance from the center of the sheet. To test the predictions of the theory, experiments were carried out on a horizontal, radially expanding liquid sheet formed by collision of a single jet on a solid impactor. The latter was placed on a speaker-vibrator with controlled amplitude and frequency. The growth of sinuous waves was determined by measuring the wave surface inclination angle using reflected laser light under both atmospheric and sub-atmospheric pressure conditions. It is shown that the measured growth rate matches with the predictions of the theory over a large range of Weber numbers for both pressure conditions suggesting that the thinning of the liquid sheet plays a dominant role in setting the growth rate of sinuous waves with minimal influence of the surrounding gas phase on its dynamics. IIT Bombay.

  7. Neutron spatial distribution measurement with 6Li-contained thermoluminescent sheets

    International Nuclear Information System (INIS)

    Konnai, A.; Odano, N.; Sawamura, H.; Ozasa, N.; Ishikawa, Y.

    2006-01-01

    We have been developing a thermoluminescent (TL) sheet for photon dosimetry (TL sheet) with thermoluminescent material of LiF:Mg, Cu, P and a co-polymer of ethylene and tetrafluoroethylene. For the purpose of a development of simple method for neutron spatial distribution measurement, TL sheet for neutron detection (NTL sheet) is made by adding 94.7% enriched 6 LiF to TL sheet. TL material in TL sheet is directly excited by ionizing radiation whereas, in the case of neutron detection, TL material in NTL sheet is indirectly excited by neutron capture reaction. That is neutron distribution can be obtained with TL caused by α particle from 6 Li(n, α) 3 H reaction. Responses of NTL sheets to neutrons were examined at the neutron beam irradiation facility for Boron Neutron Capture Therapy (BNCT) in JRR-4 research reactor in Japan Atomic Energy Agency. TL and NTL sheets were exposed to striped and roundly distributed neutron fields. Attenuations of neutron flux in air and water were also observed using NTL sheets. TL sheets were also exposed on the same conditions and compared with NTL sheets. TL intensity ratios of NTL sheet to TL sheet were consistent with the calculated value from 6 Li content. Thermal neutron attenuation observed by NTL sheet also corresponded with the result measured by Au wire radioactivation and TLD chips, which were currently used in BNCT at JRR-4. These results were analyzed with by Monte Carlo simulation. The present results indicated that NTL sheet is applicable to measurement of neutron spatial distribution. (author)

  8. Large patternable metal nanoparticle sheets by photo/e-beam lithography

    Science.gov (United States)

    Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru

    2017-10-01

    Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.

  9. A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail

    International Nuclear Information System (INIS)

    Grigorenko, E. E.; Malova, H. V.; Malykhin, A. Yu.; Zelenyi, L. M.

    2015-01-01

    The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formation of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics

  10. A possible mechanism of the enhancement and maintenance of the shear magnetic field component in the current sheet of the Earth’s magnetotail

    Energy Technology Data Exchange (ETDEWEB)

    Grigorenko, E. E., E-mail: elenagrigorenko2003@yahoo.com; Malova, H. V., E-mail: hmalova@yandex.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation); Malykhin, A. Yu., E-mail: anmaurdreg@gmail.com [Moscow Institute of Physics and Technology (Russian Federation); Zelenyi, L. M., E-mail: lzelenyi@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2015-01-15

    The influence of the shear magnetic field component, which is directed along the electric current in the current sheet (CS) of the Earth’s magnetotail and enhanced near the neutral plane of the CS, on the nonadiabatic dynamics of ions interacting with the CS is studied. The results of simulation of the nonadiabatic ion motion in the prescribed magnetic configuration similar to that observed in the magnetotail CS by the CLUSTER spacecraft demonstrated that, in the presence of some initial shear magnetic field, the north-south asymmetry in the ion reflection/refraction in the CS is observed. This asymmetry leads to the formation of an additional current system formed by the oppositely directed electric currents flowing in the northern and southern parts of the plasma sheet in the planes tangential to the CS plane and in the direction perpendicular to the direction of the electric current in the CS. The formation of this current system perhaps is responsible for the enhancement and further maintenance of the shear magnetic field near the neutral plane of the CS. The CS structure and ion dynamics observed in 17 intervals of the CS crossings by the CLUSTER spacecraft is analyzed. In these intervals, the shear magnetic field was increased near the neutral plane of the CS, so that the bell-shaped spatial distribution of this field across the CS plane was observed. The results of the present analysis confirm the suggested scenario of the enhancement of the shear magnetic field near the neutral plane of the CS due to the peculiarities of the nonadiabatic ion dynamics.

  11. Multi-scale magnetic field intermittence in the plasma sheet

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    2003-09-01

    Full Text Available This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large-scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC process.Key words. Magnetospheric physics (magnetotail; plasma sheet – Space plasma physics (turbulence

  12. MHD Ballooning Instability in the Plasma Sheet

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Zaharia, S.

    2003-01-01

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum

  13. Current Sheets in the Corona and the Complexity of Slow Wind

    Science.gov (United States)

    Antiochos, Spiro

    2010-01-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.

  14. CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki (Finland); Dalla, S. [Jeremiah Horrocks Institute, University of Central Lancashire (United Kingdom); Lario, D. [Applied Physics Laboratory, Johns Hopkins University (United States)

    2013-03-10

    We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.

  15. Multi-objective optimization under uncertainty for sheet metal forming

    Directory of Open Access Journals (Sweden)

    Lafon Pascal

    2016-01-01

    Full Text Available Aleatory uncertainties in material properties, blank thickness and friction condition are inherent and irreducible variabilities in sheet metal forming. Optimal design configurations, which are obtained by conventional design optimization methods, are not always able to meet the desired targets due to the effect of uncertainties. This paper proposes a multi-objective robust design optimization that aims to tackle this problem. Results obtained on a U shape draw bending benchmark show that spring-back effect can be controlled by optimizing process parameters.

  16. Buckling Behavior of Substrate Supported Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Kuijian Yang

    2016-01-01

    Full Text Available The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm, both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems.

  17. Numerical and experimental analysis of resistance projection welding of square nuts to sheets

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Martins, Paulo A.F.

    2014-01-01

    Projection welding of nuts to sheets is a widely utilized manufacturing process in the automotive industry. The process entails challenges due the necessity of joining different sheet thicknesses and nut sizes made from dissimilar materials, and due to the fact of experiencing large local deforma...... of the square nut to the sheet under different operating conditions. © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license...

  18. Comparing Sources of Storm-Time Ring Current O+

    Science.gov (United States)

    Kistler, L. M.

    2015-12-01

    The first observations of the storm-time ring current composition using AMPTE/CCE data showed that the O+ contribution to the ring current increases significantly during storms. The ring current is predominantly formed from inward transport of the near-earth plasma sheet. Thus the increase of O+ in the ring current implies that the ionospheric contribution to the plasma sheet has increased. The ionospheric plasma that reaches the plasma sheet can come from both the cusp and the nightside aurora. The cusp outflow moves through the lobe and enters the plasma sheet through reconnection at the near-earth neutral line. The nightside auroral outflow has direct access to nightside plasma sheet. Using data from Cluster and the Van Allen Probes spacecraft, we compare the development of storms in cases where there is a clear input of nightside auroral outflow, and in cases where there is a significant cusp input. We find that the cusp input, which enters the tail at ~15-20 Re becomes isotropized when it crosses the neutral sheet, and becomes part of the hot (>1 keV) plasma sheet population as it convects inward. The auroral outflow, which enters the plasma sheet closer to the earth, where the radius of curvature of the field line is larger, does not isotropize or become significantly energized, but remains a predominantly field aligned low energy population in the inner magnetosphere. It is the hot plasma sheet population that gets accelerated to high enough energies in the inner magnetosphere to contribute strongly to the ring current pressure. Thus it appears that O+ that enters the plasma sheet further down the tail has a greater impact on the storm-time ring current than ions that enter closer to the earth.

  19. Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Rong Ming Lin

    2015-04-01

    Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.

  20. Preparation of multilayer graphene sheets and their applications for particle accelerators

    Science.gov (United States)

    Tatami, Atsushi; Tachibana, Masamitsu; Yagi, Takashi; Murakami, Mutsuaki

    2018-05-01

    Multilayer graphene sheets were prepared by heat treatment of polyimide films at temperatures of up to 3000 °C. The sheets consist of highly oriented graphite layers with excellent mechanical robustness and flexibility. Key features of these sheets include their high thermal conductivity in the in-plane direction, good mechanical properties, and high carbon purity. The results suggest that the multilayer graphene sheets have great potential for charge stripping foils that persist even under the highest ion beam intensities irradiation and can be used for accelerator applications.

  1. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    Science.gov (United States)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  2. The electrostatics of charged insulating sheets peeled from grounded conductors

    International Nuclear Information System (INIS)

    Datta, M J; Horenstein, M N

    2008-01-01

    The physics of a charged, insulating sheet peeled from a ground-plane conductor is examined. Contact charging is ensured by charging a sheet to 10-12 kV with corona to establish intimate electrostatic contact with the underlying conductor. The surface potential is next forced to zero by sweeping the sheet with a stainless-steel brush, and the surface recharged to a new potential between 0 and 11 kV. The sheet is then peeled from the ground plane and its residual charge density is measured. Results show that the residual charge equals the breakdown-limiting value, but its polarity depends on the surface potential acquired just prior to peeling. The results have relevance to studies of industrial webs and insulating sheets.

  3. The plasma sheet and boundary layers under northward IMF: A multi-point and multi-instrument perspective

    Czech Academy of Sciences Publication Activity Database

    Taylor, M. G. G. T.; Lavraud, B.; Escoubet, C. P.; Milan, S.E.; Nykyri, K.; Dunlop, M. W.; Davies, J.A.; Friedel, R.H.W.; Frey, H.; Bogdanova, Y.V.; Asnes, A.; Laakso, H.; Trávníček, Pavel M.; Masson, A.; Opgenoorth, H.; Vallat, C.; Fazakerley, A. N.; Lahiff, A.; Owen, C. J.; Pitout, F.; Pu, Y.; Shen, C.; Zong, Q.-G.; Rème, H.; Scudder, J. D.; Zhang, T. L.

    2008-01-01

    Roč. 41, č. 10 (2008), s. 1619-1629 ISSN 0273-1177 Institutional research plan: CEZ:AV0Z10030501 Keywords : plasma sheet * magnetopshere * cold dense plasma sheet Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.860, year: 2008

  4. Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, Miren [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); University of California, Department of Geography, Berkeley, CA (United States); Mikolajewicz, Uwe; Maier-Reimer, Ernst [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Groeger, Matthias [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); IFM-GEOMAR, Kiel (Germany); Schurgers, Guy [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Lund University, Department of Physical Geography and Ecosystems Analysis, Lund (Sweden); Winguth, Arne M.E. [Center for Climatic Research, Department of Atmospheric and Oceanic Sciences, Madison (United States)

    2008-11-15

    Several multi-century and multi-millennia simulations have been performed with a complex Earth System Model (ESM) for different anthropogenic climate change scenarios in order to study the long-term evolution of sea level and the impact of ice sheet changes on the climate system. The core of the ESM is a coupled coarse-resolution Atmosphere-Ocean General Circulation Model (AOGCM). Ocean biogeochemistry, land vegetation and ice sheets are included as components of the ESM. The Greenland Ice Sheet (GrIS) decays in all simulations, while the Antarctic ice sheet contributes negatively to sea level rise, due to enhanced storage of water caused by larger snowfall rates. Freshwater flux increases from Greenland are one order of magnitude smaller than total freshwater flux increases into the North Atlantic basin (the sum of the contribution from changes in precipitation, evaporation, run-off and Greenland meltwater) and do not play an important role in changes in the strength of the North Atlantic Meridional Overturning Circulation (NAMOC). The regional climate change associated with weakening/collapse of the NAMOC drastically reduces the decay rate of the GrIS. The dynamical changes due to GrIS topography modification driven by mass balance changes act first as a negative feedback for the decay of the ice sheet, but accelerate the decay at a later stage. The increase of surface temperature due to reduced topographic heights causes a strong acceleration of the decay of the ice sheet in the long term. Other feedbacks between ice sheet and atmosphere are not important for the mass balance of the GrIS until it is reduced to 3/4 of the original size. From then, the reduction in the albedo of Greenland strongly accelerates the decay of the ice sheet. (orig.)

  5. 49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.

    Science.gov (United States)

    2010-10-01

    ... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect. ...

  6. Off-balance sheet exposures and banking crises in OECD countries

    OpenAIRE

    Barrell, R; Davis, P; Liadze, I; Karim, D

    2012-01-01

    Against the background of the acknowledged importance of off-balance-sheet exposures in the sub prime crisis, we seek to investigate whether this was a new phenomenon or common to earlier crises. Using a logit approach to predicting banking crises in 14 OECD countries we find a significant impact of a proxy for the ratio of banks‟ off-balance-sheet activity to total (off and on balance sheet) activity, as well as capital and liquidity ratios, the current account balance and GDP growth. These ...

  7. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, B. J.; Kazachenko, M. D. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Edmondson, J. K. [Climate and Space Sciences and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Guidoni, S. E. [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratios reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.

  8. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  9. Autism: General Information. Fact Sheet Number 1 = Autismo: Informacion General. Fact Sheet Number 22.

    Science.gov (United States)

    Interstate Research Associates, McLean, VA.

    This fact sheet on autism is offered in both English and Spanish, and is the same in both languages although numbered differently. It provides a definition, information on incidence, typical characteristics, and educational implications. It notes that autism is listed as a separate category under the Individuals with Disabilities Education Act.…

  10. Relative location of a powerful flare, the heliospheric current sheet and the Earth favourable for the onset of a strong geomagnetic storm

    International Nuclear Information System (INIS)

    Ivanov, K.G.; Kharshiladze, A.F.; Romashets, E.P.

    1992-01-01

    Problem of magnetic clouds propagation in regular-nonuniform internal heliosphere is discussed. High dependence of their retardation and consequently intensity of interplanetary and geomagnetic disturbances on mutual location of flares, heliospheric current sheet and the Earth is identified. Eight solar flares, four of which caused strong storms, and another four led to weak disturbances, all of them being in fair agreement with theoretical conclusions, are presented as examples

  11. W-Band Sheet Beam Klystron Design

    International Nuclear Information System (INIS)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.; Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.

    2011-01-01

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons (1). Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  12. Friction and lubrication modelling in sheet metal forming: Influence of lubrication amount, tool roughness and sheet coating on product quality

    Science.gov (United States)

    Hol, J.; Wiebenga, J. H.; Carleer, B.

    2017-09-01

    In the stamping of automotive parts, friction and lubrication play a key role in achieving high quality products. In the development process of new automotive parts, it is therefore crucial to accurately account for these effects in sheet metal forming simulations. This paper presents a selection of results considering friction and lubrication modelling in sheet metal forming simulations of a front fender product. For varying lubrication conditions, the front fender can either show wrinkling or fractures. The front fender is modelled using different lubrication amounts, tool roughness’s and sheet coatings to show the strong influence of friction on both part quality and the overall production stability. For this purpose, the TriboForm software is used in combination with the AutoForm software. The results demonstrate that the TriboForm software enables the simulation of friction behaviour for varying lubrication conditions, i.e. resulting in a generally applicable approach for friction characterization under industrial sheet metal forming process conditions.

  13. Epilepsy: General Information. Fact Sheet Number 6 = La Epilepsia: Informacion General. Fact Sheet Number 20.

    Science.gov (United States)

    Interstate Research Associates, McLean, VA.

    This fact sheet on epilepsy is offered in both English and Spanish. It provides a definition, information on incidence, typical characteristics, and educational implications. It notes that epilepsy is classified as "other health impaired" under the Individuals with Disabilities Education Act and that students with epilepsy are eligible for special…

  14. Localized fast flow disturbance observed in the plasma sheet and in the ionosphere

    Directory of Open Access Journals (Sweden)

    R. Nakamura

    2005-02-01

    Full Text Available An isolated plasma sheet flow burst took place at 22:02 UT, 1 September 2002, when the Cluster footpoint was located within the area covered by the Magnetometers-Ionospheric Radars-All-sky Cameras Large Experiment (MIRACLE. The event was associated with a clear but weak ionospheric disturbance and took place during a steady southward IMF interval, about 1h preceding a major substorm onset. Multipoint observations, both in space and from the ground, allow us to discuss the temporal and spatial scale of the disturbance both in the magnetosphere and ionosphere. Based on measurements from four Cluster spacecraft it is inferred that Cluster observed the dusk side part of a localized flow channel in the plasma sheet with a flow shear at the front, suggesting a field-aligned current out from the ionosphere. In the ionosphere the equivalent current pattern and possible field-aligned current location show a pattern similar to the auroral streamers previously obtained during an active period, except for its spatial scale and amplitude. It is inferred that the footpoint of Cluster was located in the region of an upward field-aligned current, consistent with the magnetospheric observations. The entire disturbance in the ionosphere lasted about 10min, consistent with the time scale of the current sheet disturbance in the magnetosphere. The plasma sheet bulk flow, on the other hand, had a time scale of about 2min, corresponding to the time scale of an equatorward excursion of the enhanced electrojet. These observations confirm that localized enhanced convection in the magnetosphere and associated changes in the current sheet structure produce a signature with consistent temporal and spatial scale at the conjugate ionosphere.

  15. A two-fluid study of oblique tearing modes in a force-free current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lukin, Vyacheslav S. [National Science Foundation, Arlington, Virginia 22230 (United States); Liu, Yi-Hsin [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2016-01-15

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.

  16. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  17. Ice sheets on plastically-yielding beds

    Science.gov (United States)

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  18. The Abandoned Ice Sheet Base at Camp Century, Greenland, in a Warming Climate

    Science.gov (United States)

    Colgan, William; Machguth, Horst; Macferrin, Mike; Colgan, Jeff D.; Van As, Dirk; Macgregor, Joseph A.

    2016-01-01

    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.

  19. ASYMMETRIC SUNSPOT ACTIVITY AND THE SOUTHWARD DISPLACEMENT OF THE HELIOSPHERIC CURRENT SHEET

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Robbrecht, E.

    2011-01-01

    Observations of the interplanetary magnetic field (IMF) have suggested a statistical tendency for the heliospheric current sheet (HCS) to be shifted a few degrees southward of the heliographic equator during the period 1965-2010, particularly in the years near sunspot minimum. Using potential-field source-surface extrapolations and photospheric flux-transport simulations, we demonstrate that this southward displacement follows from Joy's law and the observed hemispheric asymmetry in the sunspot numbers, with activity being stronger in the southern (northern) hemisphere during the declining (rising) phase of cycles 20-23. The hemispheric asymmetry gives rise to an axisymmetric quadrupole field, whose equatorial zone has the sign of the leading-polarity flux in the dominant hemisphere; during the last four cycles, the polarity of the IMF around the equator thus tended to match that of the north polar field both before and after polar field reversal. However, large fluctuations are introduced by the nonaxisymmetric field components, which depend on the longitudinal distribution of sunspot activity in either hemisphere. Consistent with this model, the HCS showed an average northward displacement during cycle 19, when the 'usual' alternation was reversed and the northern hemisphere became far more active than the southern hemisphere during the declining phase of the cycle. We propose a new method for determining the north-south displacement of the HCS from coronal streamer observations.

  20. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    Science.gov (United States)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  1. Heat Exchanger Tube to Tube Sheet Joints Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    M. Iancu

    2013-03-01

    Full Text Available Paper presents the studies made by the authors above the tube to tube sheet fittings of heat exchanger with fixed covers from hydrofining oil reforming unit. Tube fittings are critical zones for heat exchangers failures. On a device made from material tube and tube sheet at real joints dimensions were establish axial compression force and traction force at which tube is extracted from expanded joint. Were used two shapes joints with two types of fittings surfaces, one with smooth hole of tube sheet and other in which on boring surface we made a groove. From extracted expanded tube zones were made samples for corrosion tests in order to establish the corrosion rate, corrosion potential and corrosion current in working mediums such as hydrofining oil and industrial water at different temperatures. The corrosion rate values and the temperature influence are important to evaluate joints durability and also the results obtained shows that the boring tube sheet shape with a groove on hole tube shape presents a better corrosion behavior then the shape with smooth hole tube sheet.

  2. Financing gas plants using off balance sheet structures

    International Nuclear Information System (INIS)

    Best, R.J.; Malcolm, V.

    1999-01-01

    A means by which to finance oil and gas facilities using off balance sheet structures was presented. Off balance sheet facility financing means the sale by an oil and gas producer of a processing and/or transportation facility to a financial intermediary, who under a Management Agreement, appoints the producer as the operator of the facility. The financial intermediary charges a fixed processing fee to the producer and all the benefits and upside of ownership are retained by the producer. This paper deals specifically with a flexible off balance sheet facility financing structure that can be used to make effective use of discretionary capital which is committed to gas processing and to the construction of new gas processing facilities. Off balance sheet financing is an attractive alternative method of ownership that frees up capital that is locked into the facilities while allowing the producer to retain strategic control of the processing facility

  3. Fatigue analysis of a PWR steam generator tube sheet

    International Nuclear Information System (INIS)

    Billon, F.; Buchalet, C.; Poudroux, G.

    1985-01-01

    The fatigue analysis of a PWR steam generator (S.G) tube sheet is threefold. First, the flow, pressure and temperature variations during the design transients are defined for both the primary fluid and the normal and auxiliary feedwater. Second, the flow, velocities, pressure and temperature variations of the secondary fluid at the bottom of the downcomer and above the tube sheet are determined for the transients considered. Finally, the corresponding temperatures and stresses in the tube sheet are calculated and the usage factors determined at various locations in the tube sheet. The currently available standard design transients for the primary fluid and the feedwater are too conservative to be utilized as such in the fatigue analysis of the S.G. tube sheets. Thus, a detailed examination and reappraisal of each operating transient was performed. The revised design conditions are used as inputs to the calculation model TEMPTRON. TEMPTRON determines the mixing conditions between the feedwater and the recirculation fluid from the S.G. feedwater nozzles to the center of the tube sheet via the downcomer. The fluid parameters, flow rate and velocity, temperature and pressure variations, as a function of the time during the transients are obtained. Finally, the usage factors at various locations on the tube sheet are derived using the standard ASME section III method

  4. The quiet evening auroral arc and the structure of the growth phase near-Earth plasma sheet

    Science.gov (United States)

    Coroniti, F. V.; Pritchett, P. L.

    2014-03-01

    The plasma pressure and current configuration of the near-Earth plasma sheet that creates and sustains the quiet evening auroral arc during the growth phase of magnetospheric substorms is investigated. We propose that the quiet evening arc (QEA) connects to the thin near-Earth current sheet, which forms during the development of the growth phase enhancement of convection. The current sheet's large polarization electric fields are shielded from the ionosphere by an Inverted-V parallel potential drop, thereby producing the electron precipitation responsible for the arc's luminosity. The QEA is located in the plasma sheet region of maximal radial pressure gradient and, in the east-west direction, follows the vanishing of the approximately dawn-dusk-directed gradient or fold in the plasma pressure. In the evening sector, the boundary between the Region1 and Region 2 current systems occurs where the pressure maximizes (approximately radial gradient of the pressure vanishes) and where the approximately radial gradient of the magnetic flux tube volume also vanishes in an inflection region. The proposed intricate balance of plasma sheet pressure and currents may well be very sensitive to disruption by the arrival of equatorward traveling auroral streamers and their associated earthward traveling dipolarization fronts.

  5. Spinomotive force induced by a transverse displacement current in a thin metal or doped-semiconductor sheet: Classical and quantum views.

    Science.gov (United States)

    Hu, Chia-Ren

    2004-03-01

    We present classical macroscopic, microscopic, and quantum mechanical arguments to show that in a metallic or electron/hole-doped semiconducting sheet thinner than the screening length, a displacement current applied normal to it can induce a spinomotive force along it. The magnitude is weak but clearly detectable. The classical arguments are purely electromagnetic. The quantum argument, based on the Dirac equation, shows that the predicted effect originates from the spin-orbit interaction, but not of the usual kind. That is, it relies on an external electric field, whereas the usual S-O interaction involves the electric field generated by the ions. Because the Dirac equation incorporatesThomas precession, which is due to relativistic kinematics, the quantum prediction is a factor of two smaller than the classical prediction. Replacing the displacement current by a charge current, and one obtains a new source for the spin-Hall effect. Classical macroscopic argument also predicts its existence, but the other two views are controversial.

  6. The Interaction of C-Band Microwaves with Large Plasma Sheets

    International Nuclear Information System (INIS)

    Ding Liang; Huo Wenqing; Yang Xinjie; Xu Yuemin

    2012-01-01

    A large plasma sheet 60 cm×60 cm×2 cm in size was generated using a hollow cathode, and measurements were conducted for interactions including transmission, reflection and absorption. With different discharge parameters, plasma sheets can vary and influence microwave strength. Microwave reflection decreases when the discharge current rises, and the opposite occurs in transmission. The C-band microwave is absorbed when it is propagated through large plasma sheets at higher pressure. When plasma density and collision frequency are fitted with incident microwave frequency, a large amount of microwave energy is consumed. Reflection, transmission and absorption all exist simultaneously. Plasma sheets are an attractive alternative to microwave steering at low pressure, and the microwave reflection used in receiving radar can be altered by changing the discharge parameters.

  7. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  8. Magnetic reconnection through the current sheets as the universal process for plasma dynamics in nonuniform magnetic fields

    International Nuclear Information System (INIS)

    Frank, A.G.; Bogdanov, S.Yu.; Burilina, V.B.; Kyrie, N.P.

    1997-01-01

    Laboratory experiments are reported, in which we studied the possibilities of the formation of current sheets (CS) in different magnetic configurations, as well as the magnetic reconnection phenomena. In 2D magnetic fields with null-lines the CS formation was shown to be a typical process in both linear and nonlinear regimes. The problem of CS formation is of a fundamental importance in the general case of 3D magnetic configurations. We have revealed experimentally, that the formation of CS occurs in the various 3D configurations, both containing magnetic null-points and without them. At the same time, the CS parameters essentially depend on the local characteristics of the configuration. We may conclude therefore, that the self-organization of CS represents the universal process for the plasma dynamics in the nonuniform magnetic fields. (author)

  9. Numerical Study of the Cascading Energy Conversion of the Reconnecting Current Sheet in Solar Eruptions

    Science.gov (United States)

    Ye, J.; Lin, J.; Raymond, J. C.; Shen, C.

    2017-12-01

    In this paper, we present a resistive magnetohydrodynamical study (2D) of the CME eruption based on the Lin & Forbes model (2000) regarding the cascading reconnection by a high-order Godunov scheme code, to better understand the physical mechanisms responsible for the internal structure of the current sheet (CS) and the high reconnection rate. The main improvements of this work include: 1) large enough spatial scale consistent with the stereo LASCO data that yields an observable current sheet 2) A realistic plasma environment (S&G, 1999) adopted rather than an isothermal atmosphere and higher resolution inside CS 3) The upper boundary condition set to be open. The simulation shows a typical acceleration below 2 R⊙, then its speed slightly fluctuated, and the flux rope velocity is estimated to be 100 km/s-250 km/s for a slow CME. The reconnection rates are around 0.02 estimated from inflow and outflow velocities. The dynamic features show a great consistence with the LASCO observations. Looking into the fine structure of CS, magnetic reconnection initializes with a Sweet-Parker stage, and undergoes the time-dependent Petschek/fractural patterns. While the CME continues climbing up, the outflow region becomes turbulent which enhances the reconnection rates furthermore. The local reconnection rates present a simple linear dependence with the length-width ratio of multiple small-scale CSs. The principal X-point is close to the Sun's surface during the entire eruption, causing the energy partition to be unequal. Energy conversion in the vicinity of the principal X-point has also been addressed by simply employing energy equations. And we demonstrate that the dominant energy transfer consists of a conversion of the incoming Poynting flux to enthalpy flux in the sunward direction and bulk kinetic energy in the CME direction. The spectrum of magnetic energy doesn't follow a simple power law after secondary islands appear, and the spectrum index varies from 1.5 to 2

  10. Neutral sheet crossings in the distant magnetotail

    International Nuclear Information System (INIS)

    Heikkila, W.J.; Slavin, J.A.; Smith, E.J.; Baker, D.N.; Zwickl, R.D.

    1985-01-01

    We have analyzed the magnetic field data from ISEE-3 in the distant magnetotail for 18 crossings of the cross-tail current sheet (or so-called natural sheet) to determine the direction of the normal component B/sub z/. The crossings occurred near the middle of the aberrated magnetotail (0 0.4 nT), consistent with closed field lines connected to the earth. In 3 cases B/sub z/ was very close to zero; in several instances there was structure in B/sub y/, suggesting localized currents with x or z directions. One may have been a magnetopause crossing. The strong preponderance of northward B/sub z/ favors a model of the magnetotail which is dominated by boundary layer plasma, flowing tailward on closed magnetic field lines, which requires the existence of an electric field in the sense from dusk to dawn. 37 refs., 15 figs., 1 tab

  11. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  12. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    Science.gov (United States)

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Control of downy mildew in greenhouse-grown cucumbers using blue photoselective polyethylene sheets

    International Nuclear Information System (INIS)

    Reuveni, R.; Raviv, M.

    1997-01-01

    Six types of polyethylene sheets with or without a blue pigment, having an absorption peak at the yellow part of the spectrum (580 nm), in combination with three levels of UV-B (280 to 320 nm) absorbance, were investigated for their effects on sporangial production and colonization of Pseudoperonospora cubensis on cucumbers in growth chambers. The effect of these photoselective sheets on the epidemiology of downy mildew in greenhouse-grown cucumbers has been investigated in several locations. The addition of the blue pigment to the films resulted in a significant inhibition of colonization and sporangial production of P. cubensis, whereas filtration of the UV spectrum enhanced the colonization but had no effect on the sporangial production. The appearance of the first symptom-bearing plants was delayed under the blue covers, and consequently, a significant reduction in the disease incidence of downy mildew was recorded under all blue sheets at each corresponding level of UV-B transmittance in five different field experiments through four seasons. Regardless of the differences in disease incidence, there were no significant differences among the yields that were obtained under the various sheets, probably due to the lower photosynthetically active radiation transmissivity of the blue films. The optimal features required for a desirable commercial sheet are discussed

  14. Space Charge Effect in the Sheet and Solid Electron Beam

    Science.gov (United States)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  15. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    Science.gov (United States)

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  16. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  17. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  18. Compression deformation behaviors of sheet metals at various clearances and side forces

    Directory of Open Access Journals (Sweden)

    Zhan Mei

    2015-01-01

    Full Text Available Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. In this study, a finite element (FE model was established for the compression process of sheet specimens, to probe the deformation behavior. The results show that: With the decrease of the clearance from a very large value to a very small value, four defects modes, including plastic t-buckling, micro-bending, w-buckling, and in-plane compression deformation will occur. With the increase of the side force from a very small value to a very large value, plastic t-buckling, w-buckling, uniform deformation, and in-plane compression will occur. The difference in deformation behaviors under these two parameters indicates that the successful compression process without failures for sheet specimens only can be carried out under a reasonable side force.

  19. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    Science.gov (United States)

    Golledge, Nicholas R.; Thomas, Zoë A.; Levy, Richard H.; Gasson, Edward G. W.; Naish, Timothy R.; McKay, Robert M.; Kowalewski, Douglas E.; Fogwill, Christopher J.

    2017-07-01

    The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  20. Ice-sheet mass balance and climate change.

    Science.gov (United States)

    Hanna, Edward; Navarro, Francisco J; Pattyn, Frank; Domingues, Catia M; Fettweis, Xavier; Ivins, Erik R; Nicholls, Robert J; Ritz, Catherine; Smith, Ben; Tulaczyk, Slawek; Whitehouse, Pippa L; Zwally, H Jay

    2013-06-06

    Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.

  1. Large-scale Modeling of the Greenland Ice Sheet on Long Timescales

    DEFF Research Database (Denmark)

    Solgaard, Anne Munck

    is investigated as well as its early history. The studies are performed using an ice-sheet model in combination with relevant forcing from observed and modeled climate. Changes in ice-sheet geometry influences atmospheric flow (and vice versa) hereby changing the forcing patterns. Changes in the overall climate...... and climate model is included shows, however, that a Föhn effect is activated and hereby increasing temperatures inland and inhibiting further ice-sheet expansion into the interior. This indicates that colder than present temperatures are needed in order for the ice sheet to regrow to the current geometry....... Accordingto this hypothesis, two stages of uplift since the Late Miocene lead to the present-day topography. The results of the ice-sheet simulations show geometries in line with geologicobservations through the period, and it is found that the uplift events enhance the effect of the climatic deterioration...

  2. Mechanical behavior and modelisation of Ti-6Al-4V titanium sheet under hot stamping conditions

    Science.gov (United States)

    Sirvin, Q.; Velay, V.; Bonnaire, R.; Penazzi, L.

    2017-10-01

    The Ti-6Al-4V titanium alloy is widely used for the manufacture of aeronautical and automotive parts (solid parts). In aeronautics, this alloy is employed for its excellent mechanical behavior associated with low density, outstanding corrosion resistance and good mechanical properties up to 600°C. It is especially used for the manufacture of fuselage frames, on the pylon for carrying out the primary structure (machining forged blocks) and the secondary structure in sheet form. In this last case, the sheet metal forming can be done through various methods: at room temperature by drawing operation, at very high temperature (≃900°C) by superplastic forming (SPF) and at intermediate temperature (≥750°C) by hot forming (HF). In order to reduce production costs and environmental troubles, the cycle times reduction associated with a decrease of temperature levels are relevant. This study focuses on the behavior modelling of Ti-6Al-4V alloy at temperatures above room temperature to obtained greater formability and below SPF condition to reduce tools workshop and energy costs. The displacement field measurement obtained by Digital Image Correlation (DIC) is based on innovative surface preparation pattern adapted to high temperature exposures. Different material parameters are identified to define a model able to predict the mechanical behavior of Ti-6Al-4V alloy under hot stamping conditions. The hardening plastic model identified is introduced in FEM to simulate an omega shape forming operation.

  3. How might the North American ice sheet influence the northwestern Eurasian climate?

    Science.gov (United States)

    Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.

    2015-10-01

    It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the

  4. An ice sheet model validation framework for the Greenland ice sheet

    Science.gov (United States)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  5. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    Science.gov (United States)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  6. Current and future darkening of the Greenland ice sheet

    Science.gov (United States)

    Tedesco, Marco; Stroeve, Julienne; Fettweis, Xavier; Warren, Stephen; Doherty, Sarah; Noble, Erik; Alexander, Patrick

    2015-04-01

    Surface melting over the Greenland ice sheet (GIS) promotes snow grains growth, reducing albedo and further enhancing melting through the increased amount of absorbed solar radiation. Using a combination of remote sensing data and outputs of a regional climate model, we show that albedo over the GIS decreased significantly from 1996 to 2012. Further, we show that most of this darkening can be accounted for by enhanced snow grain growth and the expansion of areas where bare ice is exposed, both of which are driven by increases in snow warming. An analysis of the impact of light-absorbing impurities on albedo trends detected from spaceborne measurements was inconclusive because the estimated impact for concentrations of impurities of order of magnitude found in Greenland is within the albedo uncertainty retrievable from space-based instruments. However, neither models nor observations show an increase in pollutants (black carbon and associated organics) in the atmosphere over the GIS in this time period. Additionally, we could not identify trends in the number of fires over North America and Russia, assumed to be among the sources of soot for Greenland. We did find that a 'dark band' of tilted ice plays a crucial role in decreasing albedo along the west margin, and there is some indication that dust deposition to the GIS may be decreasing albedo in this region but this is not conclusive. In addition to looking at the direct impact of impurities on albedo, we estimated the impact of impurities on albedo via their influence on grain growth and found it is relatively small (~ 1- 2 %), though more sophisticated analysis needs to be carried out. Projections obtained under different warming scenarios consistently point to a continued darkening, with anomalies in albedo driven solely by the effects of climate warming of as much as -0.12 along the west margin of the GIS by the end of this century (with respect to year 2000). Projected darkening is likely underestimated

  7. Synthesis and characterization of large WO{sub 3} sheets synthesized by resistive heating method

    Energy Technology Data Exchange (ETDEWEB)

    Filippo, Emanuela, E-mail: emanuela.filippo@unisalento.it [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Tepore, Marco [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Baldassarre, Francesca [Department of Cultural Heritage, University of Salento, Lecce I-73100 Italy (Italy); Quarta, Gianluca; Calcagnile, Lucio [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 Italy (Italy); Guascito, Maria Rachele [DiSTeBA, University of Salento, Lecce I-73100 Italy (Italy); Tepore, Antonio [Department of Cultural Heritage, University of Salento, Lecce I-73100 Italy (Italy)

    2015-09-01

    A simple, low-cost method is presented to grow tungsten oxide large sheets simply by resistively heating a pure tungsten filament under air/water vapor flow. The obtained structures were studied using scanning and transmission electron microscopy, selected area diffraction, X Ray diffraction, Raman and X-ray photoelectron spectroscopy, photoluminescence and zeta potential measurements. SEM observations revealed that sheets formed by broadening of the wires/belts over longer growth period. Photoluminescence measurements showed that tungsten oxide sheets had an intense visible emission band. - Highlights: • WO{sub 3} large sheets were prepared by resistively heating a W filament. • WO{sub 3} sheets were carefully characterized. • Formation mechanism of sheets was studied. • WO{sub 3} sheets had an intense visible emission band at 462 nm.

  8. Predicting Hot Deformation of AA5182 Sheet

    Science.gov (United States)

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  9. Ardnamurchan 3D cone-sheet architecture explained by a single elongate magma chamber.

    Science.gov (United States)

    Burchardt, Steffi; Troll, Valentin R; Mathieu, Lucie; Emeleus, Henry C; Donaldson, Colin H

    2013-10-08

    The Palaeogene Ardnamurchan central igneous complex, NW Scotland, was a defining place for the development of the classic concepts of cone-sheet and ring-dyke emplacement and has thus fundamentally influenced our thinking on subvolcanic structures. We have used the available structural information on Ardnamurchan to project the underlying three-dimensional (3D) cone-sheet structure. Here we show that a single elongate magma chamber likely acted as the source of the cone-sheet swarm(s) instead of the traditionally accepted model of three successive centres. This proposal is supported by the ridge-like morphology of the Ardnamurchan volcano and is consistent with the depth and elongation of the gravity anomaly underlying the peninsula. Our model challenges the traditional model of cone-sheet emplacement at Ardnamurchan that involves successive but independent centres in favour of a more dynamical one that involves a single, but elongate and progressively evolving magma chamber system.

  10. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dinesh; Bhattacharyya, R. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313001 (India); Smolarkiewicz, P. K. [European Centre for Medium-Range Weather Forecasts, Reading RG2 9AX (United Kingdom)

    2015-01-15

    In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics.

  11. Repetitive formation and decay of current sheets in magnetic loops: An origin of diverse magnetic structures

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Bhattacharyya, R.; Smolarkiewicz, P. K.

    2015-01-01

    In this work, evolution of an incompressible, thermally homogeneous, infinitely conducting, viscous magnetofluid is numerically explored as the fluid undergoes repeated events of magnetic reconnection. The initial magnetic field is constructed by a superposition of two linear force-free fields and has similar morphology as the magnetic loops observed in the solar corona. The results are presented for computations with three distinct sets of footpoint geometries. To onset reconnection, we rely on numerical model magnetic diffusivity, in the spirit of implicit large eddy simulation. It is generally expected that in a high Lundquist number fluid, repeated magnetic reconnections are ubiquitous and hence can lead to a host of magnetic structures with considerable observational importance. In particular, the simulations presented here illustrate formations of magnetic islands, rotating magnetic helices and rising flux ropes—depending on the initial footpoint geometry but through the common process of repeated magnetic reconnections. Further, we observe the development of extended current sheets in two case studies, where the footpoint reconnections generate favorable dynamics

  12. Photocatalytic perfermance of sandwich-like BiVO_4 sheets by microwave assisted synthesis

    International Nuclear Information System (INIS)

    Liu, Suqin; Tang, Huiling; Zhou, Huan; Dai, Gaopeng; Wang, Wanqiang

    2017-01-01

    Graphical abstract: Sandwich-like BiVO_4 sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO_4 sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO_4. • The sandwich-like BiVO_4 sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO_4 sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N_2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO_4 sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO_4 sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO_4 sheets can be attributed to its large surface area over the irregular BiVO_4 particles.

  13. Chlamydia - CDC Fact Sheet

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...

  14. Understanding Greenland ice sheet hydrology using an integrated multi-scale approach

    International Nuclear Information System (INIS)

    Rennermalm, A K; Moustafa, S E; Mioduszewski, J; Robinson, D A; Chu, V W; Smith, L C; Forster, R R; Hagedorn, B; Harper, J T; Mote, T L; Shuman, C A; Tedesco, M

    2013-01-01

    Improved understanding of Greenland ice sheet hydrology is critically important for assessing its impact on current and future ice sheet dynamics and global sea level rise. This has motivated the collection and integration of in situ observations, model development, and remote sensing efforts to quantify meltwater production, as well as its phase changes, transport, and export. Particularly urgent is a better understanding of albedo feedbacks leading to enhanced surface melt, potential positive feedbacks between ice sheet hydrology and dynamics, and meltwater retention in firn. These processes are not isolated, but must be understood as part of a continuum of processes within an integrated system. This letter describes a systems approach to the study of Greenland ice sheet hydrology, emphasizing component interconnections and feedbacks, and highlighting research and observational needs. (letter)

  15. SUITABLE LOCATION OF SHEET PILE UNDER DAM RESTING ON SANDY SOIL WITH CAVITY

    Directory of Open Access Journals (Sweden)

    Laith J. Aziz

    2018-05-01

    Full Text Available This research describes the seepage characteristics of experimental model test of dam with cutoff located at different region (at dam heel, at mid floor of dam, and at dam toe. It is resting on sandy soil with cavity at different locations in X and Y directions (such as in Al-Najaf soil city. Thirty three model tests are performed in laboratory by using steel box to estimate the quantity of the seepage and flow lines direction. It was concluded that the best location of the cutoff wall is at the dam toe for model test with cavity ( Xc B = 0 and 0.5, but for model test with cavity ( Xc B ≥1, the best location of the sheet pile wall becomes at the dam heel. For negative location of the cavity, the best location of the sheet pile wall is at the middle of the floor dam.

  16. Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution

    Science.gov (United States)

    Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi

    2015-05-01

    Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.

  17. Balance Velocities of the Greenland Ice Sheet

    Science.gov (United States)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  18. Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica

    Science.gov (United States)

    Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.

  19. THREE-DIMENSIONAL GEOMETRY OF A CURRENT SHEET IN THE HIGH SOLAR CORONA: EVIDENCE FOR RECONNECTION IN THE LATE STAGE OF THE CORONAL MASS EJECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ryun-Young [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Vourlidas, Angelos [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Webb, David, E-mail: rkwon@gmu.edu [ISR, Boston College, Chestnut Hill, MA (United States)

    2016-07-20

    Motivated by the standard flare model, ray-like structures in the wake of coronal mass ejections (CMEs) have been often interpreted as proxies of the reconnecting current sheet connecting the CME with the postflare arcade. We present the three-dimensional properties of a post-CME ray derived from white light images taken from three different viewing perspectives on 2013 September 21. By using a forward modeling method, the direction, cross section, and electron density are determined within the heliocentric distance range of 5–9 R {sub ⊙}. The width and depth of the ray are 0.42 ± 0.08 R {sub ⊙} and 1.24 ± 0.35 R {sub ⊙}, respectively, and the electron density is (2.0 ± 0.5) × 10{sup 4} cm{sup 3}, which seems to be constant with height. Successive blobs moving outward along the ray are observed around 13 hr after the parent CME onset. We model the three-dimensional geometry of the parent CME with the Gradual Cylindrical Shell model and find that the CME and ray are coaxial. We suggest that coaxial post-CME rays, seen in coronagraph images, with successive formation of blobs could be associated with current sheets undergoing magnetic reconnection in the late stage of CMEs.

  20. Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy.

    Science.gov (United States)

    Amat, Fernando; Keller, Philipp J

    2013-05-01

    Understanding the development of complex multicellular organisms as a function of the underlying cell behavior is one of the most fundamental goals of developmental biology. The ability to quantitatively follow cell dynamics in entire developing embryos is an indispensable step towards such a system-level understanding. In recent years, light-sheet fluorescence microscopy has emerged as a particularly promising strategy for recording the in vivo data required to realize this goal. Using light-sheet fluorescence microscopy, entire complex organisms can be rapidly imaged in three dimensions at sub-cellular resolution, achieving high temporal sampling and excellent signal-to-noise ratio without damaging the living specimen or bleaching fluorescent markers. The resulting datasets allow following individual cells in vertebrate and higher invertebrate embryos over up to several days of development. However, the complexity and size of these multi-terabyte recordings typically preclude comprehensive manual analyses. Thus, new computational approaches are required to automatically segment cell morphologies, accurately track cell identities and systematically analyze cell behavior throughout embryonic development. We review current efforts in light-sheet microscopy and bioimage informatics towards this goal, and argue that comprehensive cell lineage reconstructions are finally within reach for many key model organisms, including fruit fly, zebrafish and mouse. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  1. A mechanism for driving the gross Birkeland current configuration in the auroral oval

    International Nuclear Information System (INIS)

    Rostoker, G.; Bostrom, R.

    1976-01-01

    Birkeland (field-aligned) sheet currents flowing into and out of the auroral oval as reported by Zmuda and Armstrong (1974) are integrally associated with convective motion of plasma in the magnetotail. It is demonstrated that these currents can be driven by energy supplied by the braking of this convective motion of the plasma sheet particles as they drift toward the flanks of the magnetosphere. In the ionosphere the sheet currents close as Pedersen currents, resulting in the dissipation of power, while far from the earth the closure currents, which provide the braking force for the plasma, flow in the plasma sheet approximately normal to the neutral sheet out to radial distances of about 80 R/subE/. During periods of moderate magnetospheric activity the Birkeland currents result in a rate of dissipation of convective energy of the order of 10 GW

  2. An iterative model for the steady state current distribution in oxide-confined vertical-cavity surface-emitting lasers (VCSELs)

    Science.gov (United States)

    Chuang, Hsueh-Hua

    The purpose of this dissertation is to develop an iterative model for the analysis of the current distribution in vertical-cavity surface-emitting lasers (VCSELs) using a circuit network modeling approach. This iterative model divides the VCSEL structure into numerous annular elements and uses a circuit network consisting of resistors and diodes. The measured sheet resistance of the p-distributed Bragg reflector (DBR), the measured sheet resistance of the layers under the oxide layer, and two empirical adjustable parameters are used as inputs to the iterative model to determine the resistance of each resistor. The two empirical values are related to the anisotropy of the resistivity of the p-DBR structure. The spontaneous current, stimulated current, and surface recombination current are accounted for by the diodes. The lateral carrier transport in the quantum well region is analyzed using drift and diffusion currents. The optical gain is calculated as a function of wavelength and carrier density from fundamental principles. The predicted threshold current densities for these VCSELs match the experimentally measured current densities over the wavelength range of 0.83 mum to 0.86 mum with an error of less than 5%. This model includes the effects of the resistance of the p-DBR mirrors, the oxide current-confining layer and spatial hole burning. Our model shows that higher sheet resistance under the oxide layer reduces the threshold current, but also reduces the current range over which single transverse mode operation occurs. The spatial hole burning profile depends on the lateral drift and diffusion of carriers in the quantum wells but is dominated by the voltage drop across the p-DBR region. To my knowledge, for the first time, the drift current and the diffusion current are treated separately. Previous work uses an ambipolar approach, which underestimates the total charge transferred in the quantum well region, especially under the oxide region. However, the total

  3. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    Science.gov (United States)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  4. Rapidly cast crystalline thin sheet materials

    International Nuclear Information System (INIS)

    Warlimont, H.; Emmerich, K.

    1986-01-01

    The current state and progress of casting thin sheet and ribbons directly from the melt are reviewed. First, the solidification phenomena pertinent to the process are outlined. Subsequently, Fe-Si,l Fe-Si-Al, Fe-Nd-B, Ag-Cu-Ti, alloy steels, Ni superalloys and Si are treated as examples. Finally, the information available on process development is critically assessed

  5. Chemically-modified graphene sheets as an active layer for eco-friendly metal electroplating on plastic substrates

    International Nuclear Information System (INIS)

    Oh, Joon-Suk; Hwang, Taeseon; Nam, Gi-Yong; Hong, Jung-Pyo; Bae, Ah-Hyun; Son, Sang-Ik; Lee, Geun-Ho; Sung, Hak kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Nam, Jae-Do

    2012-01-01

    Eco-friendly nickel (Ni) electroplating was carried out on a plastic substrate using chemically modified graphene sheets as an active and conductive layer to initiate electroplating without using conventional pre-treatment or electroless metal-seeding processes. A graphene oxide (GO) solution was self-assembled on a polyethylene terephthalate (PET) film followed by evaporation to give GO layers (thickness around 6.5 μm) on PET (GO/PET) film. Then, the GO/PET film was chemically and thermally reduced to convert the GO layers to reduced graphene oxide (RGO) layers on the PET substrate. The RGO-coated PET (RGO/PET) film showed the sheet resistance of 100 Ω per square. On RGO/PET film, Ni electroplating was conducted under the constant-current condition and the entire surface of the PET film was completely metalized with Ni without any voids.

  6. Development of a low energy micro sheet forming machine

    Science.gov (United States)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  7. The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials

    Science.gov (United States)

    Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre

    Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.

  8. Superfund fact sheet: The remedial program. Fact sheet

    International Nuclear Information System (INIS)

    1992-09-01

    The fact sheet describes what various actions the EPA can take to clean up hazardous wastes sites. Explanations of how the criteria for environmental and public health risk assessment are determined and the role of state and local governments in site remediation are given. The fact sheet is one in a series providing reference information about Superfund issues and is intended for readers with no formal scientific training

  9. Analysis and comparison of magnetic sheet insulation tests

    Science.gov (United States)

    Marion-Péra, M. C.; Kedous-Lebouc, A.; Cornut, B.; Brissonneau, P.

    1994-05-01

    Magnetic circuits of electrical machines are divided into coated sheets in order to limit eddy currents. The surface insulation resistance of magnetic sheets is difficult to evaluate because it depends on parameters like pressure and covers a wide range of values. Two methods of measuring insulation resistance are analyzed: the standardized 'Franklin device' and a tester developed by British Steel Electrical. Their main drawback is poor local repeatability. The Franklin method allows better quality control of industrial process because it measures only one insulating layer at a time. It also gives more accurate images of the distribution of possible defects. Nevertheless, both methods lead to similar classifications of insulation efficiency.

  10. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    Directory of Open Access Journals (Sweden)

    N. R. Golledge

    2017-07-01

    Full Text Available The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm. Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  11. Radiation protecting sheet

    International Nuclear Information System (INIS)

    Makiguchi, Hiroshi.

    1989-01-01

    As protection sheets used in radioactivity administration areas, a thermoplastic polyurethane composition sheet with a thickness of less 0.5 mm, solid content (ash) of less than 5% and a shore D hardness of less than 60 is used. A composite sheet with thickness of less than 0.5 mm laminated or coated with such a thermoplastic polyurethane composition as a surface layer and the thermoplastic polyurethane composition sheet applied with secondary fabrication are used. This can satisfy all of the required properties, such as draping property, abrasion resistance, high breaking strength, necking resistance, endurance strength, as well as chemical resistance and easy burnability in burning furnace. Further, by forming uneveness on the surface by means of embossing, etc. safety problems such as slippage during operation and walking can be overcome. (T.M.)

  12. Large-scale flows, sheet plumes and strong magnetic fields in a rapidly rotating spherical dynamo

    Science.gov (United States)

    Takahashi, F.

    2011-12-01

    Mechanisms of magnetic field intensification by flows of an electrically conducting fluid in a rapidly rotating spherical shell is investigated. Bearing dynamos of the Eartn and planets in mind, the Ekman number is set at 10-5. A strong dipolar solution with magnetic energy 55 times larger than the kinetic energy of thermal convection is obtained. In a regime of small viscosity and inertia with the strong magnetic field, convection structure consists of a few large-scale retrograde flows in the azimuthal direction and sporadic thin sheet-like plumes. The magnetic field is amplified through stretching of magnetic lines, which occurs typically through three types of flow: the retrograde azimuthal flow near the outer boundary, the downwelling flow of the sheet plume, and the prograde azimuthal flow near the rim of the tangent cylinder induced by the downwelling flow. It is found that either structure of current loops or current sheets is accompanied in each flow structure. Current loops emerge as a result of stretching the magnetic lines along the magnetic field, wheres the current sheets are formed to counterbalance the Coriolis force. Convection structure and processes of magnetic field generation found in the present model are distinct from those in models at larger/smaller Ekman number.

  13. Inhomogenous Dislocation Nucleation Based on Atom Potential in Hexagonal Noncentrosymmetric Crystal Sheet

    International Nuclear Information System (INIS)

    Xue-Chuan, Zhao; Xiao-Ming, Liu; Zhuo, Zhuang; Zhan-Li, Liu; Yuan, Gao

    2010-01-01

    By introducing internal degree, the deformation of hexagonal noncentrosymmetric crystal sheet can be described by the revised Cauchy–Born rule based on atomic potential. The instability criterion is deduced to investigate the inhomogeneous dislocation nucleation behavior of the crystal sheet under simple loading. The anisotropic characters of dislocation nucleation under uniaxial tension are studied by using the continuum method associated with the instability criterion. The results show a strong relationship between yield stress and crystal sheet chirality. The results also indicate that the instability criterion has sufficient ability to capture the dislocation nucleation site and expansion. To observe the internal dislocation phenomenon, the prediction of the dislocation nucleation site and expansion domain is illustrated by MD simulations. The developed method is another way to explain the dislocation nucleation phenomenon. (condensed matter: structure, mechanical and thermal properties)

  14. Formation of sheeting joints in Yosemite National Park, California

    Science.gov (United States)

    Martel, S. J.

    2009-04-01

    The formation of sheeting joints (i.e., "exfoliation joints"), opening mode fractures subparallel to the Earth's surface, has been a classic unresolved problem in geology. Diverse new observations and analyses support the hypothesis that sheeting joints develop in response to a near-surface tension induced by compressive stresses parallel to a convex slope (hypothesis 1) rather than the conventional explanation that the joints form as a result of removal of overburden by erosion (hypothesis 2). The opening mode displacements across the joints together with the absence of mineral precipitates within the joints mean that sheeting joints open in response to a near-surface tension normal to the surface (N) rather than a pressurized fluid. An absolute tension must arise in the shallow subsurface if a plot of N as a function of depth normal to the surface (z) has a positive slope at the surface (z=0). The differential equations of static equilibrium require that this slope (derivative) equals k2 P22 + k3 P33 - ?g cosβ, where k2 and k3 are the principal curvatures of the surface, P22 and P33 are the respective surface-parallel normal stresses along the principal curvatures, ? is the material density, g is gravitational acceleration, and β is the slope. This derivative will be positive and sheeting joints can open if the surface-parallel stress in at least one direction is sufficiently compressive (negative) and the curvature in that direction is sufficiently convex (negative). Hypotheses 1 and 2 are being tested using geologic mapping and aerial LIDAR data from Yosemite National Park, California. The abundance of sheeting joints on convex ridges there, where erosion is a local minimum, coupled with their scarcity in the adjacent concave valleys, where erosion is a local maximum, is consistent with hypothesis 1 but inconsistent with hypothesis 2. At several sites with sheeting joints, measurements of the current topographic curvatures and the current surface

  15. Ice shelf fracture parameterization in an ice sheet model

    Science.gov (United States)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  16. Spaceborne measurement of Greenland ice sheet changes: the ESA Greenland CCI project

    DEFF Research Database (Denmark)

    Forsberg, René; Sørensen, Louise Sandberg; Meister, Rakia

    The ESA “Greenland_ice_sheet_cci” project is currently making past and present space measurements of Greenland ice sheet changes available for use by scientists, stakeholders and the general public. The data are part of a large set of ECV’s (Essential Climate Variables) made available by the ESA...... Climate Initiative, as a contribution to the global Climate Observing System. The ECV data produced for the Greenlandice sheet include detailed grids of elevation changes and ice flow velocities, as well as line data of grounding lines and calving front locations for major outlet glaciers. The “ice_sheets......_cci” goal is to generate a consistent, validated, long-term and timely set of ECV’s, a.o. to improve the impact of satellite data on climate research and coupled ice sheet/climate models. Special focus is on use of data from ESA missions such as ERS, Envisat and the new Sentinel missions, but in the 2nd...

  17. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations

    Science.gov (United States)

    Ritz, Catherine; Edwards, Tamsin L.; Durand, Gaël; Payne, Antony J.; Peyaud, Vincent; Hindmarsh, Richard C. A.

    2015-12-01

    Large parts of the Antarctic ice sheet lying on bedrock below sea level may be vulnerable to marine-ice-sheet instability (MISI), a self-sustaining retreat of the grounding line triggered by oceanic or atmospheric changes. There is growing evidence that MISI may be underway throughout the Amundsen Sea embayment (ASE), which contains ice equivalent to more than a metre of global sea-level rise. If triggered in other regions, the centennial to millennial contribution could be several metres. Physically plausible projections are challenging: numerical models with sufficient spatial resolution to simulate grounding-line processes have been too computationally expensive to generate large ensembles for uncertainty assessment, and lower-resolution model projections rely on parameterizations that are only loosely constrained by present day changes. Here we project that the Antarctic ice sheet will contribute up to 30 cm sea-level equivalent by 2100 and 72 cm by 2200 (95% quantiles) where the ASE dominates. Our process-based, statistical approach gives skewed and complex probability distributions (single mode, 10 cm, at 2100; two modes, 49 cm and 6 cm, at 2200). The dependence of sliding on basal friction is a key unknown: nonlinear relationships favour higher contributions. Results are conditional on assessments of MISI risk on the basis of projected triggers under the climate scenario A1B (ref. 9), although sensitivity to these is limited by theoretical and topographical constraints on the rate and extent of ice loss. We find that contributions are restricted by a combination of these constraints, calibration with success in simulating observed ASE losses, and low assessed risk in some basins. Our assessment suggests that upper-bound estimates from low-resolution models and physical arguments (up to a metre by 2100 and around one and a half by 2200) are implausible under current understanding of physical mechanisms and potential triggers.

  18. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  19. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  20. Deformation Analysis of RC Ties Externally Strengthened with FRP Sheets

    Science.gov (United States)

    Gribniak, V.; Arnautov, A. K.; Kaklauskas, G.; Jakstaite, R.; Tamulenas, V.; Gudonis, E.

    2014-11-01

    The current study has two objectives: to validate the ability of the Atena finite-element software to estimate the deformations of reinforced concrete (RC) elements strengthened with fiber-reinforced polymer (FRP) sheets and to assess the effect of FRP-to-concrete bond strength on the results of numerical simulation. It is shown that the bond strength has to be selected according to the overall stiffness of the composite element. The numerical results found are corroborated experimentally by tensile tests of RC elements strengthened with basalt FRP sheets.

  1. Transparent conductive-polymer strain sensors for touch input sheets of flexible displays

    International Nuclear Information System (INIS)

    Takamatsu, Seiichi; Takahata, Tomoyuki; Muraki, Masato; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2010-01-01

    A transparent conductive polymer-based strain-sensor array, designed especially for touch input sheets of flexible displays, was developed. A transparent conductive polymer, namely poly(3, 4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), was utilized owing to its strength under repeated mechanical bending. PEDOT:PSS strain sensors with a thickness of 130 nm exhibited light transmittance of 92%, which is the same as the transmittance of ITO electrodes widely used in flat panel displays. We demonstrated that the sensor array on a flexible sheet was able to sustain mechanical bending 300 times at a bending radius of 5 mm. The strain sensor shows a gauge factor of 5.2. The touch point on a flexible sheet could be detected from histograms of the outputs of the strain sensors when the sheet was pushed with an input force of 5 N. The touch input could be detected on the flexible sheet with a curved surface (radius of curvature of 20 mm). These results show that the developed transparent conductive polymer-based strain-sensor array is applicable to touch input sheets of mechanically bendable displays.

  2. Extraction of volume produced H- or D- ions from a sheet plasma, 2

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1984-02-01

    A development to large area H - or D - ion source is tried by using three extraction electrodes: The first electrode bias voltage is set near the wall potential (floating), the second electrode is set near 13 % of main extraction voltage and the third electrode is the main acceleration electrode. An ion current of 13 mA (3.3 mA/cm 2 ) for H - or 11 mA (2.8 mA/ cm 2 ) for D - at 3 KeV is extracted from 9 apertures of 6 mm phi in 4 cm 2 outside of the sheet plasma (14 cm wide and 1.0 cm thick) under a pressure of 7.7 x 10 -4 H2 or D2 gas and a weak magnetic field 50 gauss. Then, it is noted that the corresponding electron current is suppressed below 1/10 of the H - or D - ion current. (author)

  3. OPA Q's and A's: Overview of the Oil Pollution Act of 1990. Fact sheet

    International Nuclear Information System (INIS)

    1991-12-01

    The OPA Q's and A's are part of a series of fact sheets that provide up-to-date information on EPA's implementation of the OPA. The first fact sheet provides an overview of the various provisions of the OPA and the Agency's responsibilities under the new law

  4. RECONNECTION OUTFLOWS AND CURRENT SHEET OBSERVED WITH HINODE/XRT IN THE 2008 APRIL 9 'CARTWHEEL CME' FLARE

    International Nuclear Information System (INIS)

    Savage, Sabrina L.; McKenzie, David E.; Longcope, Dana W.; Reeves, Katharine K.; Forbes, Terry G.

    2010-01-01

    Supra-arcade downflows (SADs) have been observed with Yohkoh/SXT (soft X-rays (SXR)), TRACE (extreme ultraviolet (EUV)), SOHO/LASCO (white light), SOHO/SUMER (EUV spectra), and Hinode/XRT (SXR). Characteristics such as low emissivity and trajectories, which slow as they reach the top of the arcade, are consistent with post-reconnection magnetic flux tubes retracting from a reconnection site high in the corona until they reach a lower-energy magnetic configuration. Viewed from a perpendicular angle, SADs should appear as shrinking loops rather than downflowing voids. We present X-ray Telescope (XRT) observations of supra-arcade downflowing loops (SADLs) following a coronal mass ejection (CME) on 2008 April 9 and show that their speeds and decelerations are consistent with those determined for SADs. We also present evidence for a possible current sheet observed during this flare that extends between the flare arcade and the CME. Additionally, we show a correlation between reconnection outflows observed with XRT and outgoing flows observed with LASCO.

  5. Residues and world-sheet instantons

    International Nuclear Information System (INIS)

    Beasley, Chris; Witten, Edward

    2003-01-01

    We reconsider the question of which Calabi-Yau compactifications of the heterotic string are stable under world-sheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0; 2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. Here, we show that this cancellation follows directly from a residue theorem, whose proof relies only upon the right-moving world-sheet supersymmetries and suitable compactness properties of the (0; 2) linear sigma model. Our residue theorem also extends to a new class of 'half-linear' sigma models. Using these half-linear models, we show that heterotic compactifications on the quintic hypersurface in CP 4 for which the gauge bundle pulls back from a bundle on CP 4 are stable. Finally, we apply similar ideas to compute the superpotential contributions from families of membrane instantons in M-theory compactifications on manifolds of G 2 holonomy. (author)

  6. Orientation determination of interfacial beta-sheet structures in situ.

    Science.gov (United States)

    Nguyen, Khoi Tan; King, John Thomas; Chen, Zhan

    2010-07-01

    Structural information such as orientations of interfacial proteins and peptides is important for understanding properties and functions of such biological molecules, which play crucial roles in biological applications and processes such as antimicrobial selectivity, membrane protein activity, biocompatibility, and biosensing performance. The alpha-helical and beta-sheet structures are the most widely encountered secondary structures in peptides and proteins. In this paper, for the first time, a method to quantify the orientation of the interfacial beta-sheet structure using a combined attenuated total reflectance Fourier transformation infrared spectroscopic (ATR-FTIR) and sum frequency generation (SFG) vibrational spectroscopic study was developed. As an illustration of the methodology, the orientation of tachyplesin I, a 17 amino acid peptide with an antiparallel beta-sheet, adsorbed to polymer surfaces as well as associated with a lipid bilayer was determined using the regular and chiral SFG spectra, together with polarized ATR-FTIR amide I signals. Both the tilt angle (theta) and the twist angle (psi) of the beta-sheet at interfaces are determined. The developed method in this paper can be used to obtain in situ structural information of beta-sheet components in complex molecules. The combination of this method and the existing methodology that is currently used to investigate alpha-helical structures will greatly broaden the application of optical spectroscopy in physical chemistry, biochemistry, biophysics, and structural biology.

  7. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    Science.gov (United States)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  8. Geometry of thin liquid sheet flows

    Science.gov (United States)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1994-01-01

    Incompresible, thin sheet flows have been of research interest for many years. Those studies were mainly concerned with the stability of the flow in a surrounding gas. Squire was the first to carry out a linear, invicid stability analysis of sheet flow in air and compare the results with experiment. Dombrowski and Fraser did an experimental study of the disintegration of sheet flows using several viscous liquids. They also detected the formulation of holes in their sheet flows. Hagerty and Shea carried out an inviscid stability analysis and calculated growth rates with experimental values. They compared their calculated growth rates with experimental values. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. Brown experimentally investigated thin liquid sheet flows as a method of application of thin films. Clark and Dumbrowski carried out second-order stability analysis for invicid sheet flows. Lin introduced viscosity into the linear stability analysis of thin sheet flows in a vacuum. Mansour and Chigier conducted an experimental study of the breakup of a sheet flow surrounded by high-speed air. Lin et al. did a linear stability analysis that included viscosity and a surrounding gas. Rangel and Sirignano carried out both a linear and nonlinear invisid stability analysis that applies for any density ratio between the sheet liquid and the surrounding gas. Now there is renewed interest in sheet flows because of their possible application as low mass radiating surfaces. The objective of this study is to investigate the fluid dynamics of sheet flows that are of interest for a space radiator system. Analytical expressions that govern the sheet geometry are compared with experimental results. Since a space radiator will operate in a vacuum, the analysis does not include any drag force on the sheet flow.

  9. Reduction of eddy current losses in inductive transmission systems with ferrite sheets.

    Science.gov (United States)

    Maaß, Matthias; Griessner, Andreas; Steixner, Viktor; Zierhofer, Clemens

    2017-01-05

    Improvements in eddy current suppression are necessary to meet the demand for increasing miniaturization of inductively driven transmission systems in industrial and biomedical applications. The high magnetic permeability and the simultaneously low electrical conductivity of ferrite materials make them ideal candidates for shielding metallic surfaces. For systems like cochlear implants the transmission of data as well as energy over an inductive link is conducted within a well-defined parameter set. For these systems, the shielding can be of particular importance if the properties of the link can be preserved. In this work, we investigate the effect of single and double-layered substrates consisting of ferrite and/or copper on the inductance and coupling of planar spiral coils. The examined link systems represent realistic configurations for active implantable systems such as cochlear implants. Experimental measurements are complemented with analytical calculations and finite element simulations, which are in good agreement for all measured parameters. The results are then used to study the transfer efficiency of an inductive link in a series-parallel resonant topology as a function of substrate size, the number of coil turns and coil separation. We find that ferrite sheets can be used to shield the system from unwanted metallic surfaces and to retain the inductive link parameters of the unperturbed system, particularly its transfer efficiency. The required size of the ferrite plates is comparable to the size of the coils, which makes the setup suitable for practical implementations. Since the sizes and geometries chosen for the studied inductive links are comparable to those of cochlear implants, our conclusions apply in particular to these systems.

  10. Flexural Behavior of Self-Compacting RC Continuous Beams Strengthened by CFRP Sheets

    Directory of Open Access Journals (Sweden)

    Sabih Z. Al-Sarraf

    2018-01-01

    Full Text Available This search presented an experimental study of the flexural behavior of self-compacting reinforced concrete continuous beams externally strengthened by carbon fiber reinforced polymer (CFRP Sheets. The practical study contained eight self-compacting reinforced concrete continuous beams (with two span, each span had (1500 mm length and (150x250 mm cross sectional dimensions. Seven of these beams strengthened externally by CFRP sheets with and without external anchorage. The experimental variables included location of CFRP sheets and anchor type and location. The results, shows that the beams strengthened externally by CFRP sheets provided improvement in ultimate loads reached (60.71%. The usage of CFRP in the anchorage zone indicated an effective method in comparison to increasing the CFRP sheets lengths or extending them up to the support or under the loading points. Test results also showed that side strengthening provided an effective tool for increasing the load at the cracking stage and also the load capacity and reducing flexural crack widths.

  11. Influence of magnetostriction on hysteresis loss of electrical steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hirotoshi, E-mail: tada.547.hirotoshi@jp.nssmc.com [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan); Fujimura, Hiroshi; Yashiki, Hiroyoshi [Steel Research Laboratories, Nippon Steel and Sumitomo Metal Corporation, 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan)

    2013-01-15

    To reveal influence of magnetostriction on hysteresis loss of electrical steel sheet, hysteresis loss and magnetostriction of non-oriented electrical steel sheets (NOs) with various Si and Al content and grain size and grain oriented electrical steel sheet (GO) were measured under compressive or tensile stress. Here, Si and Al content and stress were focused on as the way to change magnetostriction. Stress direction and magnetizing direction were parallel to the rolling direction. Following three main results were obtained. The first is hysteresis loss of NO with same grain size which increased with magnetostriction independently of Si and Al content and stress. The second is hysteresis loss of NO was larger than that of GO under same magnetostriction. The third is hysteresis loss of NO at magnetostriction of zero was inversely proportional to grain size. Even if the grain size of NO increased to be similar size of GO without changing texture, the hysteresis loss of NO at magnetostriction of zero would be larger than that of GO because of the difference in texture. - Highlights: Black-Right-Pointing-Pointer Hysteresis loss and magnetostriction of NO and GO were measured under stress. Black-Right-Pointing-Pointer Hysteresis loss of NO was proportional to magnetostriction. Black-Right-Pointing-Pointer Hysteresis loss of GO was proportional to magnetostriction. Black-Right-Pointing-Pointer Hysteresis loss of NO was larger than that of GO under samemagnetostriction. Black-Right-Pointing-Pointer Hysteresis loss was separated into 4 components.

  12. A flexible tactile sensitive sheet using a hetero-core fiber optic sensor

    Science.gov (United States)

    Fujino, S.; Yamazaki, H.; Hosoki, A.; Watanabe, K.

    2014-05-01

    In this report, we have designed a tactile sensitive sheet based on a hetero-core fiber-optic sensor, which realize an areal sensing by using single sensor potion in one optical fiber line. Recently, flexible and wide-area tactile sensing technology is expected to applied to acquired biological information in living space and robot achieve long-term care services such as welfare and nursing-care and humanoid technology. A hetero-core fiber-optic sensor has several advantages such as thin and flexible transmission line, immunity to EMI. Additionally this sensor is sensitive to moderate bending actions with optical loss changes and is independent of temperature fluctuation. Thus, the hetero-core fiber-optic sensor can be suitable for areal tactile sensing. We measure pressure characteristic of the proposed sensitive sheet by changing the pressure position and pinching characteristic on the surface. The proposed tactile sensitive sheet shows monotonic responses on the whole sensitive sheet surface although different sensitivity by the position is observed at the sensitive sheet surface. Moreover, the tactile sensitive sheet could sufficiently detect the pinching motion. In addition, in order to realize the discrimination between pressure and pinch, we fabricated a doubled-over sensor using a set of tactile sensitive sheets, which has different kinds of silicon robbers as a sensitive sheet surface. In conclusion, the flexible material could be given to the tactile sensation which is attached under proposed sensitive sheet.

  13. Photocatalytic perfermance of sandwich-like BiVO{sub 4} sheets by microwave assisted synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suqin, E-mail: liusuqin888@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Xiangyang 441053 (China); Tang, Huiling; Zhou, Huan [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Dai, Gaopeng, E-mail: dgp2000@126.com [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China); Wang, Wanqiang [Department of Chemical engineering and Food Science, Hubei University of arts and science, Xiangyang 441053 (China)

    2017-01-01

    Graphical abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized via a facile microwave-assisted method. The as-prepared samples exhibit a high activity for the degradation of methyl orange under visible light irradiation. - Highlights: • Sandwich-like BiVO{sub 4} sheets were synthesized by a facile microwave-assisted method. • The presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets. • Ostwald ripening is the primary driving force for the formation of sandwich-like BiVO{sub 4}. • The sandwich-like BiVO{sub 4} sheets exhibit a high visible-light photocatalytic activity. - Abstract: Sandwich-like BiVO{sub 4} sheets were successfully synthesized in an aqueous solution containing bismuth nitrate, ammonium metavanadate and polyethylene glycol with a molecular weight of 10,000 (PEG-10000) using a facile microwave-assisted method. The as-prepared samples were characterized by scanning electron microscopy, N{sub 2} adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectroscopy. The results show that the presence of PEG-10000 plays a critical role in the formation of BiVO{sub 4} sheets, and Ostwald ripening is the primary driving force for the formation of sandwich-like structures. The sandwich-like BiVO{sub 4} sheets exhibit a high activity for the degradation of methyl orange under visible light irradiation (λ ≥ 420 nm). The enhancement of photocatalytic activity of sandwich-like BiVO{sub 4} sheets can be attributed to its large surface area over the irregular BiVO{sub 4} particles.

  14. Preparation of Ni(OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors

    International Nuclear Information System (INIS)

    Liu, Y.F.; Yuan, G.H.; Jiang, Z.H.; Yao, Z.P.; Yue, M.

    2015-01-01

    Highlights: • CNT is introduced into graphene to prevent restacking by solvothermal reaction. • Ethanol as a low cost and green solvent is used in solvothermal reaction. • Ni(OH) 2 nanosheets were chemically precipitated into GS-CNT to increase the capacitance. - Abstract: Ni(OH) 2 -graphene sheet-carbon nanotube composite was prepared for supercapacitance materials through a simple two-step process involving solvothermal synthesis of graphene sheet-carbon nanotube composite in ethanol and chemical precipitation of Ni(OH) 2 . According to N 2 adsorption/desorption analysis, the Brunauer–Emmett–Teller surface area of graphene sheet-carbon nanotube composite (109.07 m 2 g −1 ) was larger than that of pure graphene sheets (32.06 m 2 g −1 ), indicating that the added carbon nanotubes (15 wt.%) could prevent graphene sheets from restacking in the solvothermal reaction. The results of field emission scanning electron microscopy and transmission electron microscopy showed that Ni(OH) 2 nanosheets were uniformly loaded into the three-dimensional interconnected network of graphene sheet-carbon nanotube composite. The microstructure enhanced the rate capability and utilization of Ni(OH) 2 . The specific capacitance of Ni(OH) 2 -graphene sheet-carbon nanotube composite was 1170.38 F g −1 at a current density of 0.2 A g −1 in the 6 mol L −1 KOH solution, higher than those provided by pure Ni(OH) 2 (953.67 Fg −1 ) and graphene sheets (178.25 F g −1 ). After 20 cycles at each current density (0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 A g −1 ), the capacitance of Ni(OH) 2 -graphene sheet-carbon nanotube composite decreased 26.96% of initial capacitance compared to 74.52% for pure Ni(OH) 2

  15. TSCA Chemical Data Reporting Fact Sheet: Articles

    Science.gov (United States)

    This fact sheet provides guidance on classifying articles under the Toxic Substances Control Act (TSCA) and determining the applicability of EPA’s articles exclusion policy for purposes of the Chemical Data Reporting (CDR) rule. The primary goal of this document is to help the regulated community comply with the requirements of the CDR rule.

  16. Teenage Pregnancy. Highlights: An ERIC/CAPS Fact Sheet.

    Science.gov (United States)

    Lachance, Laurie L.

    This fact sheet addresses the issue of teenage pregnancy. Six factors contributing to the current attention focused on teenage pregnancy and parenthood are listed and teenage pregnancy and birth rates are discussed. Other areas covered include teenage nonuse of contraception, sex education by schools and parents, family planning services, and the…

  17. In vitro assessment of activity of graphene silver composite sheets ...

    African Journals Online (AJOL)

    International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus ... was cooled to −5 °C. The excess water was removed under ..... Microwave synthesis of graphene sheets supporting.

  18. Estimates on the mean current in a sphere of plasma

    International Nuclear Information System (INIS)

    Nunez, Manuel

    2003-01-01

    Several turbulent dynamo models predict the concentration of the magnetic field in chaotic plasmas in sheets with the field vector pointing alternatively in opposite directions, which should produce strong current sheets. It is proved that if the plasma is contained in a rigid sphere with perfectly conducting boundary the geometry of these sheets must be balanced so that the mean current remains essentially bounded by the Coulomb gauged mean vector potential of the field. This magnitude remains regular even for the sharp field variations expected in a chaotic flow. For resistive plasmas the same arguments imply that the contribution to the total current of the regions near the boundary compensates the current of the central part of the sphere

  19. Mechanical and corrosion properties of AA8011 sheets and foils:

    OpenAIRE

    Asanović, Vanja; Dalijić, Kemal; Radonjić, Dragan

    2006-01-01

    The mechanical and corrosion properties of a twin-roll cast Al-Fe-Si aluminum alloy with 0.74 % Fe and 0.52 % Si (AA8011) were investigated. The influence of the thermo-mehanical processing route on the mechanical behavior of AA8011 sheets was determined. Comparisons were made with AA3003 and A199.5 sheets. The restoration of the mechanical properties was used in the analysis of the recrystallization behavior of the twin-roll cast AA8011 alloy deformed under cold-working conditions and subseq...

  20. Stiffness Matrices and Anisotropy in the Trapezoidal Corrugated Composite Sheets

    Directory of Open Access Journals (Sweden)

    Mohammad Golzar

    2013-10-01

    Full Text Available In the some applications like as morphing technology, high strain and anisotropic behavior are essential design requirements. The corrugated composite sheets due to their special geometries have potential to high deflection under axial loading through longitudinal direction of corrugation. In this research, the strain and the anisotropic behavior of corrugated composite sheets are investigated by fabricating glass/epoxy samples with trapezoidal geometries. For evaluation of the mechanical behavior of the composites the samples were subjected to tension and flexural tests in the longitudinal and transverse directions of corrugation. In order to determine anisotropic behavior of the corrugated sheets, two approaches were introduced: (1 tensile anisotropic (E* and (2 flexural anisotropic (D*. The anisotropic behavior and ultimate deflections were investigated theoretically and experimentally. In this paper, mechanical behaviors based on theoretical and experimental analysis including the elastic constants and stiffness matrices of trapezoidal corrugated composite sheets were studied and the results were verified by finite element method. The results of the numerical and analytical solutions were compared with those of experimental tests. Finally, the load-displacement curves of tensile tests in longitudinal direction of corrugation, the ultimate deflection and anisotropy behavior of these exclusive composite sheets in the corrugated composite sheets were studied experimentally. The experimental results of the trapezoidal corrugated sheets showed that one of the most important parameters in the ultimate strain was amplitude of the corrugation elements. Generally, increasing the amplitude and element per length unit of trapezoidal corrugated specimen led to higher ultimate strain.

  1. Ice shelf fracture parameterization in an ice sheet model

    Directory of Open Access Journals (Sweden)

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  2. Forming properties and springback evaluation of copper beryllium sheets

    International Nuclear Information System (INIS)

    Tseng, A.A.; Jen, K.P.; Chen, T.C.; Kondetimmamhalli, R.

    1995-01-01

    Copper beryllium (CuBe) alloys possess excellent strength and conductivity. They have become the most important materials used for producing high reliability connectors and interconnections for electrical and electronic applications. As demand for high connection density in electrical and electronic products grows, springback behaviors become increasingly critical in fabricating these miniaturized contact components from sheet base materials. In the present article, a study of the springback behavior of CuBe sheets under different heat treatments is presented, with the goal of providing reliable information needed for fabricating more intricate connection parts. Both experimental and analytical techniques were adopted. The tensile tester was first used to study the springback related tensile properties. The governing tensile parameters on springback were identified, and their variations for sheets with different heat treatments were studied. It was found that a bilinear constitutive relationship can be characterize the stress strain behavior of the CuBe alloy. A closed form solution based on this bilinear relationship was formulated to predict the springback for the CuBe sheets at bending conditions. A V-shaped bend tester having an interchangeable punch to accommodate multiple radii was designed and built to evaluate the springback properties of CuBe sheets. A good correlation was found between the analytical predictions and experimental data. A parametric study, as an example, was also performed to provide the springback information needed for designing complicated connectors

  3. Clouds enhance Greenland ice sheet mass loss

    Science.gov (United States)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  4. The Properties of Reconnection Current Sheets in GRMHD Simulations of Radiatively Inefficient Accretion Flows

    Science.gov (United States)

    Ball, David; Özel, Feryal; Psaltis, Dimitrios; Chan, Chi-Kwan; Sironi, Lorenzo

    2018-02-01

    Non-ideal magnetohydrodynamic (MHD) effects may play a significant role in determining the dynamics, thermal properties, and observational signatures of radiatively inefficient accretion flows onto black holes. In particular, particle acceleration during magnetic reconnection events may influence black hole spectra and flaring properties. We use representative general relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion flows to identify and explore the structures and properties of current sheets as potential sites of magnetic reconnection. In the case of standard and normal evolution (SANE) disks, we find that in the reconnection sites, the plasma beta ranges from 0.1 to 1000, the magnetization ranges from 10‑4 to 1, and the guide fields are weak compared with the reconnecting fields. In magnetically arrested (MAD) disks, we find typical values for plasma beta from 10‑2 to 103, magnetizations from 10‑3 to 10, and typically stronger guide fields, with strengths comparable to or greater than the reconnecting fields. These are critical parameters that govern the electron energy distribution resulting from magnetic reconnection and can be used in the context of plasma simulations to provide microphysics inputs to global simulations. We also find that ample magnetic energy is available in the reconnection regions to power the fluence of bright X-ray flares observed from the black hole in the center of the Milky Way.

  5. Development of a current sheet in the wake of a fast coronal mass ejection

    International Nuclear Information System (INIS)

    Ling, A. G.; Webb, D. F.; Burkepile, J. T.; Cliver, E. W.

    2014-01-01

    A bright ray that developed in the wake of a fast coronal mass ejection (CME) on 2005 September 7 presents a unique opportunity to study the early development and physical characteristics of a reconnecting current sheet (CS). Polarization brightness images from the Mk4 K-Coronameter at the Mauna Loa Solar Observatory are used to determine the structure of the ray along its axis low in the corona as it progressed outward. Coverage of the early development of the ray out to ∼1.3 R ☉ for a period of ∼27 hr after the start of the event enables for the first time in white light a measurement of a CME CS from the top of the arcade to the base of the flux rope. Measured widths of the ray are combined to obtain the kinematics of the upper and lower Y- points described in reconnection flux-rope models such as that of Lin and Forbes. The time dependence of these points are used to derive values for the speed and acceleration of the growth of the CS. We note the appearance of a large structure which increases in size as it expands outward in the early development of the ray and an apparent oscillation with a period of ∼0.5 hr in the position angle of the ray.

  6. Description and classification of uranium oxide hydrate sheet topologies

    International Nuclear Information System (INIS)

    Miller, M.L.; Burns, P.C.; Ewing, R.C.; Finch, R.J.

    1996-01-01

    The uranyl oxide hydrates (UOH) are important corrosion products of uraninite and UO 2 in spent nuclear fuel under oxidizing conditions. However, the systematics of the crystal chemistry, thermodynamic parameters, and solubilities of this mineral group are poorly understood. With the exception of the synthetic UO 2 (OH) 2 polymorphs, all UOH crystal structures are based on sheets of edge-sharing 5 and 4-coordinated uranyl dipyramids. This structural similarity suggests that it is possible to develop a model by which to estimate the thermodynamic behavior of UOHs from data on structural endmember phases. Toward this end, a method of quantitatively describing all known UOH sheets has been developed. Only four structural unit chains are required to construct the uranyl oxide hydrate sheets (as well as the structurally similar U 3 O 8 sheets). The H-chain is restricted to α-UO 2 (OH) 2 and is made up of hexagonally coordinated uranyl ions sharing opposing edges. The arrowhead chain composed of pentagonal dipyramids sharing edges and alternating with trigonal vacancies is present in all other UOH sheets. These arrowhead chains are directed and can occur in both an Up-arrow and Down-arrow sense within a single sheet. The P-chain consists of edge-sharing pentagonal dipyramids forming a zigzag chain. The P-chain is flanked on both sides by arrowhead chains of the same sense. The remaining structural unit is a discontinuous chain of rhombic dipyramids. This R-chain is produced when nested adjacent Up-arrow and Down-arrow arrowhead chains are translated by a diagonal shift. This chain occurs in sheets which contain only 4-coordinate uranyl ion and those containing both 4- and 5-coordinate uranyl ions

  7. Best Management Practice, Fact Sheet 2. Sheet Flow to Open Space

    OpenAIRE

    Sample, David; Doumar, Lia

    2013-01-01

    This publication explains what sheet flow to open space is, where and how it is used, their limitations, routine and nonroutine maintenance, expected costs, and a glossary of terms. This fact sheet is one of a 15-part series on urban stormwater management practices.

  8. A high-power millimeter-wave sheet beam free-electron laser amplifier

    International Nuclear Information System (INIS)

    Cheng, S.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M.; Levush, B.; Rodgers, J.; Zhang, Z.X.

    1996-01-01

    The results of experiments with a short period (9.6 mm) wiggler sheet electron beam (1.0 mm x 2.0 cm) millimeter-wave free electron laser (FEL) amplifier are presented. This FEL amplifier utilized a strong wiggler field for sheet beam confinement in the narrow beam dimension and an offset-pole side-focusing technique for the wide dimension beam confinement. The beam analysis herein includes finite emittance and space-charge effects. High-current beam propagation was achieved as a result of extensive analytical studies and experimental optimization. A design optimization resulted in a low sensitivity to structure errors and beam velocity spread, as well as a low required beam energy. A maximum gain of 24 dB was achieved with a 1-kW injected signal power at 86 GHz, a 450-kV beam voltage, 17-A beam current, 3.8-kG wiggler magnetic field, and a 74-period wiggler length. The maximum gain with a one-watt injected millimeter-wave power was observed to be over 30 dB. The lower gain at higher injection power level indicates that the device has approached saturation. The device was studied over a broad range of experimental parameters. The experimental results have a good agreement with expectations from a one-dimensional simulation code. The successful operation of this device has proven the feasibility of the original concept and demonstrated the advantages of the sheet beam FEL amplifier. The results of the studies will provide guidelines for the future development of sheet beam FEL's and/or other kinds of sheet beam devices. These devices have fusion application

  9. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    Science.gov (United States)

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  10. Keyhole shapes during laser welding of thin metal sheets

    International Nuclear Information System (INIS)

    Aalderink, B J; Lange, D F de; Aarts, R G K M; Meijer, J

    2007-01-01

    Camera observations of the full penetration keyhole laser welding process show that the keyhole shape is elongated under certain welding conditions. Under these unfavourable circumstances, the welding process is susceptible to holes in the weld bead. Existing models of the pressure balance at the keyhole wall cannot explain this keyhole elongation. In this paper a new model is presented, accounting for the doubly curved shape of the keyhole wall. In this model, the surface tension pressure has one term that tends to close the keyhole and another term that tries to open it. Model calculations show that when the keyhole diameter is of the same order as the sheet thickness, the latter part can become dominant, causing the keyhole to elongate. Experiments on thin aluminium (AA5182) and mild steel (DC04) sheets verify these model calculations. As the keyhole radius depends on the radius of the focused laser spot, it was found for both materials that the ratio of the spot radius and the sheet thickness must be above a critical value to prevent keyhole elongation. These critical radii are 0.25 for AA5182 and 0.4 for DC04, respectively. Furthermore, differences in appearance of the weld bead between the circular and the elongated keyhole welds could be explained by this model

  11. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    Science.gov (United States)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2016-12-01

    We introduce the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal for dissemination of data, simulation of physical processes, and promotion of climate literacy. The current prototype leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. This will allow for faster publication in peer-reviewed journals and adaption of results for educational applications. Through future application of this concept to multiple aspects of the Earth System, VESL has the potential to broaden data applications in the geosciences and beyond. At this stage, we seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL, as we plan its expansion, and aim to achieve more rapid communication and presentation of scientific results.

  12. Epilepsy. Fact Sheet = Epilepsia. Hojas Informativas Sobre Discapacidades.

    Science.gov (United States)

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet, written in both English and Spanish, provides a definition, information on incidence, typical characteristics, and educational implications of epilepsy. It notes that epilepsy is classified as "other health impaired" under the Individuals with Disabilities Education Act (IDEA) and that children with epilepsy or seizure disorders…

  13. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  14. Rapid model building of beta-sheets in electron-density maps.

    Science.gov (United States)

    Terwilliger, Thomas C

    2010-03-01

    A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.

  15. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. I. DYNAMICS OF MAGNETIC ISLANDS NEAR THE HELIOSPHERIC CURRENT SHEET

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, O. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation); Zank, G. P.; Li, G.; Roux, J. A. le; Webb, G. M.; Dosch, A. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Malandraki, O. E. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-08-01

    Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  16. FDTD modeling of thin impedance sheets

    Science.gov (United States)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  17. Measurement and Analysis of Ultra-Thin Austenitic Stainless Steel Sheet under Biaxial Tensile Loading and In-Plane Reverse Loading

    Science.gov (United States)

    Murakoso, Satoko; Kuwabara, Toshihiko

    Biaxial tensile tests of austenitic stainless steel sheet (SUS304) 0.2mm thick have been carried out using cruciform specimens. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. The successive contours of plastic work in biaxial stress space changed their shapes progressively, exemplifying differential work hardening. The geometry of the entire family of the work contours and the directions of plastic strain rates have been precisely measured and compared with those calculated using conventional yield functions. Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E., International Journal of Plasticity, Vol. 19, (2003), pp. 1297-1319.] with an exponent of 6 was capable of reproducing the general trends of the work contours and the directions of plastic strain rates with good accuracy. Furthermore, in order to quantitatively evaluate the Bauschinger effect of the test material, in-plane tension/compression tests are conducted. It was found that the non-dimensional (σ /σu) - Δɛ /(σu/ E) curves measured during unloading almost fall on a single curve and are not affected by the amount of pre-strain, where σ is the current stress during unloading, σu is the stress immediately before unloading, Δɛ (< 0) is the total strain increment during unloading.

  18. SU-F-BRA-06: Dose Distributions for the CivaSheet Pd-103 Directional Brachytherapy Device

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States)

    2015-06-15

    Purpose: A flexible polymer membrane (CivaSheet) has been developed by CivaTech Oncology, Inc. (Research Triangle Park, NC) for permanent brachytherapy. Distributed throughout the array are small plastic disks containing Pd-103 and gold foil shielding on one side to provide a directional dose distribution and facilitate imaging. This study evaluated dosimetry for the CivaSheet. Methods: Manufacturer-provided dimensional and compositional information for the device were compared to physical samples for validation of design information, then entered into the MCNP6 radiation transport code for dosimetry simulations. Three device sizes (6×6, 6×12, or 6×18 disk-arrays) were simulated as the membrane can be custom-sized preceding surgical placement. Dose to water was estimated with 0.01 cm resolution from the surface to 10 cm on both sides of the device. Because this is a novel device with calibration methods under development, results were normalized using DVHs to provide 90% prescription coverage to a plane positioned 0.5 cm from the front surfaces. This same normalization was used for creating isodose distributions. Results: Planar dose distributions of flat CivaSheets were relatively homogeneous with acceptable dose uniformity variations. Differences in the results between the differently sized CivaSheets were not significant. At 0.5 mm, 87% of the target volume was within the therapeutic dose range. Dose hotspots on the CivaSheet forward surfaces were directly above the disks. However, dose hotspots on the rear-facing surfaces were positioned between the disks. Doses in contact with the front surface were similar to those observed for currently available brachytherapy sources. Maximum doses that occurred on the rear surface were approximately 55 times lower than the dose on the front surface. Conclusion: Monte Carlo calculations validated the directional capabilities and advantageous dosimetry of the new Pd-103 brachytherapy device. It appears feasible to re

  19. Lubricant Test Methods for Sheet Metal Forming

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2008-01-01

    appearing in different sheet forming operations such as stretch forming, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production. Application of the tests for evaluating new lubricants before introducing them in production has......Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...

  20. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    Science.gov (United States)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  1. Greenland Ice Sheet Mass Loss from GRACE Monthly Models

    DEFF Research Database (Denmark)

    Sørensen, Louise Sandberg; Forsberg, René

    2010-01-01

    The Greenland ice sheet is currently experiencing a net mass loss. There are however large discrepancies between the published qualitative mass loss estimates, based on different data sets and methods. There are even large differences between the results based on the same data sources, as is the ...

  2. Safe current injection strategies for a STATCOM under asymmetrical grid faults

    DEFF Research Database (Denmark)

    Rodriguez, Pedro; Medeiros, Gustavo; Luna, Alvaro

    2010-01-01

    This paper explores different strategies to set the reference current of a STATCOM under unbalanced grid voltage conditions and determines the maximum deliverable reactive power in each case to guarantee the injected current is permanently within the STATCOM secure operation limits. The paper...... presents a comprehensive derivation of the proposed STATCOM control strategies to set the reactive current reference under unbalanced grid faults, together with an extensive evaluation using simulation and experimental results from a low-scale laboratory setup in order to verify and validate the dynamic...

  3. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  4. The potential of cell sheet technique on the development of hepatocellular carcinoma in rat models.

    Directory of Open Access Journals (Sweden)

    Alaa T Alshareeda

    Full Text Available Hepatocellular carcinoma (HCC is considered the 3rd leading cause of death by cancer worldwide with the majority of patients were diagnosed in the late stages. Currently, there is no effective therapy. The selection of an animal model that mimics human cancer is essential for the identification of prognostic/predictive markers, candidate genes underlying cancer induction and the examination of factors that may influence the response of cancers to therapeutic agents and regimens. In this study, we developed a HCC nude rat models using cell sheet and examined the effect of human stromal cells (SCs on the development of the HCC model and on different liver parameters such as albumin and urea.Transplanted cell sheet for HCC rat models was fabricated using thermo-responsive culture dishes. The effect of human umbilical cord mesenchymal stromal cells (UC-MSCs and human bone marrow mesenchymal stromal cells (BM-MSCs on the developed tumour was tested. Furthermore, development of tumour and detection of the liver parameter was studied. Additionally, angiogenesis assay was performed using Matrigel.HepG2 cells requires five days to form a complete cell sheet while HepG2 co-cultured with UC-MSCs or BM-MSCs took only three days. The tumour developed within 4 weeks after transplantation of the HCC sheet on the liver of nude rats. Both UC-MSCs and BM-MSCs improved the secretion of liver parameters by increasing the secretion of albumin and urea. Comparatively, the UC-MSCs were more effective than BM-MSCs, but unlike BM-MSCs, UC-MSCs prevented liver tumour formation and the tube formation of HCC.Since this is a novel study to induce liver tumour in rats using hepatocellular carcinoma sheet and stromal cells, the data obtained suggest that cell sheet is a fast and easy technique to develop HCC models as well as UC-MSCs have therapeutic potential for liver diseases. Additionally, the data procured indicates that stromal cells enhanced the fabrication of HepG2

  5. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    Directory of Open Access Journals (Sweden)

    Masao eOhno

    2016-05-01

    Full Text Available Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  6. Compression deformation behaviors of sheet metals at various clearances and side forces

    OpenAIRE

    Zhan Mei; Wang Xianxian; Cao Jian; Yang He

    2015-01-01

    Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. I...

  7. Deglacial to Holocene history of ice-sheet retreat and bottom current strength on the western Barents Sea shelf

    Science.gov (United States)

    Lantzsch, Hendrik; Hanebuth, Till J. J.; Horry, Jan; Grave, Marina; Rebesco, Michele; Schwenk, Tilmann

    2017-10-01

    High-resolution sediment echosounder data combined with radiocarbon-dated sediment cores allowed us to reconstruct the Late Quaternary stratigraphic architecture of the Kveithola Trough and surrounding Spitsbergenbanken. The deposits display the successive deglacial retreat of the Svalbard-Barents Sea Ice Sheet. Basal subglacial till indicates that the grounded ice sheet covered both bank and trough during the Late Weichselian. A glaciomarine blanket inside the trough coinciding with laminated plumites on the bank formed during the initial ice-melting phase from at least 16.1 to 13.5 cal ka BP in close proximity to the ice margin. After the establishment of open-marine conditions at around 13.5 cal ka BP, a sediment drift developed in the confined setting of the Kveithola Trough, contemporary with crudely laminated mud, an overlying lag deposit, and modern bioclastic-rich sand on Spitsbergenbanken. The Kveithola Drift shows a remarkable grain-size coarsening from the moat towards the southern flank of the trough. This trend contradicts the concept of a separated drift (which would imply coarser grain sizes in proximity of the moat) and indicates that the southern bank is the main sediment source for the coarse material building up the Kveithola Drift. This depocenter represents, therefore, a yet undescribed combination of off-bank wedge and confined drift. Although the deposits inside Kveithola Trough and on Spitsbergenbanken display different depocenter geometries, time-equivalent grain-size changes imply a region-wide sediment-dynamic connection. We thus relate a phase of coarsest sediment supply (8.8-6.3 cal ka BP) to an increase in bottom current strength, which might be related to a stronger Atlantic Water inflow from the Southeast across the bank leading to winnowing and off-bank export of sandy sediments.

  8. Antarctic Ice-Sheet Mass Balance from Satellite Altimetry 1992 to 2001

    Science.gov (United States)

    Zwally, H. Jay; Brenner, Anita C.; Cornejo, Helen; Giovinetto, Mario; Saba, Jack L.; Yi, Donghui

    2003-01-01

    A major uncertainty in understanding the causes of the current rate of sea level rise is the potential contributions from mass imbalances of the Greenland and Antarctic ice sheets. Estimates of the current mass balance of the Antarctic ice sheet are derived from surface- elevation changes obtained from 9 years of ERS - 1 & 2 radar altimeter data. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 S. The time series are fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt). On the major Rome-Filchner, Ross, and Amery ice shelves, the W d t are small or near zero. In contrast, the ice shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm per year surface elevation decrease on the Larsen ice shelf and a 65 +/- 4 cm per year decrease on the Dotson ice shelf. On the grounded ice, significant elevation decreases are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers in West Antarctica and inland of Law Dome in East Antarctica. Significant elevation increases are observed within about 200 km of the coast around much of the rest of the ice sheet. Farther inland, the changes are a mixed pattern of increases and decreases with increases of a few centimeters per year at the highest elevations of the East Antarctic plateau. The derived elevation changes are combined with estimates of the bedrock uplift from several models to provide maps of ice thickness change. The ice thickness changes enable estimates of the ice mass balances for the major drainage basins, the overall mass balance, and the current contribution of the ice sheet to global sea level change.

  9. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    International Nuclear Information System (INIS)

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J.

    1994-01-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mmx2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler (λ w =9.6 mm) with a peak wiggler amplitude of 2--5 kG. Linear amplification of a 5--10 W, 94 GHz signal injected in the TE 01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler

  10. 46 CFR 232.4 - Balance sheet accounts.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Balance sheet accounts. 232.4 Section 232.4 Shipping... ACTIVITIES UNIFORM FINANCIAL REPORTING REQUIREMENTS Balance Sheet § 232.4 Balance sheet accounts. (a.... (b) Purpose of balance sheet accounts. The balance sheet accounts are intended to disclose the...

  11. Improving Climate Literacy Using The Ice Sheet System Model (ISSM): A Prototype Virtual Ice Sheet Laboratory For Use In K-12 Classrooms

    Science.gov (United States)

    Halkides, D. J.; Larour, E. Y.; Perez, G.; Petrie, K.; Nguyen, L.

    2013-12-01

    Statistics indicate that most Americans learn what they will know about science within the confines of our public K-12 education system and the media. Next Generation Science Standards (NGSS) aim to remedy science illiteracy and provide guidelines to exceed the Common Core State Standards that most U.S. state governments have adopted, by integrating disciplinary cores with crosscutting ideas and real life practices. In this vein, we present a prototype ';Virtual Ice Sheet Laboratory' (I-Lab), geared to K-12 students, educators and interested members of the general public. I-Lab will allow users to perform experiments using a state-of-the-art dynamical ice sheet model and provide detailed downloadable lesson plans, which incorporate this model and are consistent with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12). The ultimate goal of this website is to improve public climate science literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. The model used will be the Ice Sheet System Model (ISSM), an ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine, that simulates the near-term evolution of polar ice sheets (Greenland and Antarctica) and includes high spatial resolution capabilities and data assimilation to produce realistic simulations of ice sheet dynamics at the continental scale. Open sourced since 2011, ISSM is used in cutting edge cryosphere research around the globe. Thru I-Lab, students will be able to access ISSM using a simple, online graphical interface that can be launched from a web browser on a computer, tablet or smart phone. The interface will allow users to select different climate conditions and watch how the polar ice sheets evolve in time under those conditions. Lesson contents will include links to background material and activities that teach observation recording, concept articulation, hypothesis formulation and testing, and

  12. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  13. Geoologic controls on the architecture of the Antarctic Ice Sheet's basal interface: New results from West and East Antarctica from long range geophysics (Invited)

    Science.gov (United States)

    Young, D. A.; Blankenship, D. D.; Greenbaum, J. S.; Richter, T.; Aitken, A.; Siegert, M. J.; Roberts, J. L.

    2013-12-01

    The ice-rock interface underlying the Antarctic Ice Sheet was shaped by interactions between underlying gondwanan geology and the overlying ice sheet. The ice sheet now preserves from sedimentary infill an incredibly rugged terrain which now plays a critical role in shaping subglacial hydrology, and thus shape ice sheet behavior. This terrain can by imaged through aerogeophysical means, in particular through ice penetrating radar, while airborne potential fields measurements provide insight into the geological framework that controlled erosion. Over the post IPY era, the density of airborne coverage is only now reaching the point where small scale structure can be identified and placed in context. Of particular importance is understanding the formation of focused erosional valleys, 30-50 km wide, representing now buried subglacial fjords. After initial data from the GIMBLE project in West Antarctica, and five years of sustained long range ICECAP surveys over East Antarctica , we now have a better view of the diversity of these features. The local erosion of these valleys, often cutting through significant topographic barriers, irregularly samples the underlying geology, provided a complex story in the sediment to the Antarctic margin. These valleys now provide the subglacial conduits for significant ice sheet catchments, in particular for subglacial water, including the inland catchments of DeVicq, Thwaites, and Pine Island Glaciers in West Antarctica, and Denman Glacier, Totten Glacier, Byrd Glacier and Cook Ice Shelf in East Antarctica. We find that these features, now sometimes hundreds of kilometers inland of the modern grounding line, often nucleate on or are aligned with structure inherited from the assembly of the Antarctic continent. While many of these features currently host active outlet glaciers or their tributaries, some do not, implying avenues for ice sheet change. In West Antarctica, we find a new deep connection between the coast and interior basin

  14. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Ma, Dongyang [Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, BinHe 333 South Road, Lanzhou 730052 (China); Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Chen, Fulin, E-mail: chenfl@nwu.edu.cn [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China)

    2013-04-19

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.

  15. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    International Nuclear Information System (INIS)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin; Chen, Fulin

    2013-01-01

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects

  16. Sheet production apparatus for removing a crystalline sheet from the surface of a melt using gas jets located above and below the crystalline sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter L.; Thronson, Gregory D.

    2017-06-14

    In one embodiment, a sheet production apparatus comprises a vessel configured to hold a melt of a material. A cooling plate is disposed proximate the melt and is configured to form a sheet of the material on the melt. A first gas jet is configured to direct a gas toward an edge of the vessel. A sheet of a material is translated horizontally on a surface of the melt and the sheet is removed from the melt. The first gas jet may be directed at the meniscus and may stabilize this meniscus or increase local pressure within the meniscus.

  17. Bursting reconnection of the two co-rotating current loops

    Science.gov (United States)

    Bulanov, Sergei; Sokolov, Igor; Sakai, Jun-Ichi

    2000-10-01

    Two parallel plasma filaments carrying electric current (current loops) are considered. The Ampere force induces the filaments' coalescence, which is accompanied by the reconnection of the poloidal magnetic field. Initially the loops rotate along the axii of symmetry. Each of the two loops would be in equilibrium in the absence of the other one. The dynamics of the reconnection is numerically simulated using high-resolution numerical scheme for low-resistive magneto-hydrodynamics. The results of numerical simulation are presented in the form of computer movies. The results show that the rotation strongly modifies the reconnection process, resulting in quasi-periodic (bursting) appearance and disappearance of a current sheet. Fast sliding motion of the plasma along the current sheet is a significant element of the complicated structure of reconnection (current-vortex sheet). The magnetic surfaces in the overal flow are strongly rippled by slow magnetosonic perturbations, so that the specific spiral structures form. This should result in the particle transport enhancement.

  18. Linear theory of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam

    International Nuclear Information System (INIS)

    Chen Ye; Wan Xiao-Sheng; Zhao Ding; Liu Wen-Xin; Wang Yong

    2012-01-01

    A three-dimensional model of a dielectric-loaded rectangular Cerenkov maser with a sheet electron beam for the beam-wave interaction is proposed. Based on this model, the hybrid-mode dispersion equation is derived with the Borgnis potential function by using the field-matching method. Its approximate solution is obtained under the assumption of a dilute electron beam. By using the Ansoft high frequency structural simulator (HFSS) code, the electromagnetic field distribution in the interaction structure is given. Through numerical calculations, the effects of beam thickness, beam and dielectric-layer gap distance, beam voltage, and current density on the resonant growth rate are analysed in detail

  19. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden)

    2010-11-15

    possible that soft beds through their ability to deform and be eroded can yield quasi-stable patterns of drainage pathways that with either erosion of critical sills or filling of temporary basins may reorganize itself periodically on time scales much shorter than the reorganization of the driving stresses for ice flow. In areas where the surface generated water (melt and rain), the basally generated fluxes dwarf the influx from the surface and hence the drainage system in such areas will be dominated by surface fluxes and variations therein. Since surface fluxes have a strong seasonal variation with no influx during winter, areas experiencing surface influx will also be subject to large seasonal variations in both flux and pressure. In addition, during the melt season, fluxes and also pressures will also vary on diurnal as well as longer time frames in response to variations in air temperature that drives melt and occurrence of precipitation events. The emerging picture of glacier drainage consists of different types of models applicable to different regimes found beneath an ice sheet (with our without surface influx, ice streams, subglacial lakes). It is not, however, clear how these systems are coupled, or even if they are. This makes it inherently difficult to assess what can be expected beneath a given sector of an ice sheet without some detailed understanding of the underlying geology (geothermal fluxes), geomorphology (possible water routing) and ice properties (cold -temperate base and ice thickness)

  20. Ice sheet hydrology from observations

    International Nuclear Information System (INIS)

    Jansson, Peter

    2010-11-01

    possible that soft beds through their ability to deform and be eroded can yield quasi-stable patterns of drainage pathways that with either erosion of critical sills or filling of temporary basins may reorganize itself periodically on time scales much shorter than the reorganization of the driving stresses for ice flow. In areas where the surface generated water (melt and rain), the basally generated fluxes dwarf the influx from the surface and hence the drainage system in such areas will be dominated by surface fluxes and variations therein. Since surface fluxes have a strong seasonal variation with no influx during winter, areas experiencing surface influx will also be subject to large seasonal variations in both flux and pressure. In addition, during the melt season, fluxes and also pressures will also vary on diurnal as well as longer time frames in response to variations in air temperature that drives melt and occurrence of precipitation events. The emerging picture of glacier drainage consists of different types of models applicable to different regimes found beneath an ice sheet (with our without surface influx, ice streams, subglacial lakes). It is not, however, clear how these systems are coupled, or even if they are. This makes it inherently difficult to assess what can be expected beneath a given sector of an ice sheet without some detailed understanding of the underlying geology (geothermal fluxes), geomorphology (possible water routing) and ice properties (cold -temperate base and ice thickness)

  1. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2015-09-01

    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  2. Intermontane eolian sand sheet development, Upper Tulum Valley, central-western Argentina

    Directory of Open Access Journals (Sweden)

    Patrick Francisco Fuhr Dal' Bó

    Full Text Available ABSTRACTThe intermontane Upper Tulum eolian sand sheet covers an area of ca. 125 km² at north of the San Juan Province, central-western Argentina. The sand sheet is currently an aggrading system where vegetation cover, surface cementation and periodic flooding withhold the development of dunes with slipfaces. The sand sheet surface is divided into three parts according to the distribution of sedimentary features, which reflects the variation in sediment budget, water table level and periodic flooding. The central sand sheet part is the main area of eolian deposition and is largely stabilized by vegetation. The sedimentary succession is 4 m thick and records the vertical interbedding of eolian and subaqueous deposits, which have been deposited for at least 3.6 ky with sedimentation rates of 86.1 cm/ky. The construction of the sand sheet is associated with deflation of the sand-graded debris sourced by San Juan alluvial fan, which is available mainly in drier fall-winter months where water table is lower and wind speeds are periodically above the threshold velocity for sand transport. The accumulation of sedimentary bodies occurs in a stabilized eolian system where vegetation cover, thin mud veneers and surface cementation are the main agents in promoting accumulation. The preservation of the sand sheet accumulations is enabled by the progressive creation of the accommodation space in a tectonically active basin and the continuous burial of geological bodies favored by high rates of sedimentation.

  3. Light manipulation with flat and conformal inhomogeneous dispersive impedance sheets: an efficient FDTD modeling.

    Science.gov (United States)

    Jafar-Zanjani, Samad; Cheng, Jierong; Mosallaei, Hossein

    2016-04-10

    An efficient auxiliary differential equation method for incorporating 2D inhomogeneous dispersive impedance sheets in the finite-difference time-domain solver is presented. This unique proposed method can successfully solve optical problems of current interest involving 2D sheets. It eliminates the need for ultrafine meshing in the thickness direction, resulting in a significant reduction of computation time and memory requirements. We apply the method to characterize a novel broad-beam leaky-wave antenna created by cascading three sinusoidally modulated reactance surfaces and also to study the effect of curvature on the radiation characteristic of a conformal impedance sheet holographic antenna. Considerable improvement in the simulation time based on our technique in comparison with the traditional volumetric model is reported. Both applications are of great interest in the field of antennas and 2D sheets.

  4. Off-balance-sheet financing can generate capital for strategic development.

    Science.gov (United States)

    Campobasso, F D

    2000-06-01

    To manage their real estate portfolios effectively and obtain funding for strategic development, IDSs should consider adopting off-balance-sheet financing strategies, such as sale-and-leaseback transactions, synthetic leases, and joint-venture arrangements. Under these approaches, real estate assets are moved off of the organization's balance sheet via a partial or complete transfer of ownership to a third-party entity. The organization typically retains a satisfactory degree of control over the assets as lessee in sale-and-leaseback and synthetic-lease arrangements, or limited or minority partner in a joint venture, while freeing up cash to use for other strategic purposes.

  5. Determination of the Number of Fixture Locating Points for Sheet Metal By Grey Model

    Directory of Open Access Journals (Sweden)

    Yang Bo

    2017-01-01

    Full Text Available In the process of the traditional fixture design for sheet metal part based on the "N-2-1" locating principle, the number of fixture locating points is determined by trial and error or the experience of the designer. To that end, a new design method based on grey theory is proposed to determine the number of sheet metal fixture locating points in this paper. Firstly, the training sample set is generated by Latin hypercube sampling (LHS and finite element analysis (FEA. Secondly, the GM(1, 1 grey model is constructed based on the established training sample set to approximate the mapping relationship between the number of fixture locating points and the concerned sheet metal maximum deformation. Thirdly, the final number of fixture locating points for sheet metal can be inversely calculated under the allowable maximum deformation. Finally, a sheet metal case is conducted and the results indicate that the proposed approach is effective and efficient in determining the number of fixture locating points for sheet metal.

  6. Multifunctional smart composites with integrated carbon nanotube yarn and sheet

    Science.gov (United States)

    Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark

    2017-04-01

    Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.

  7. Improving process performance in Incremental Sheet Forming (ISF)

    International Nuclear Information System (INIS)

    Ambrogio, G.; Filice, L.; Manco, G. L.

    2011-01-01

    Incremental Sheet Forming (ISF) is a relatively new process in which a sheet clamped along the borders is progressively deformed through a hemispherical tool. The tool motion is CNC controlled and the path is designed using a CAD-CAM approach, with the aim to reproduce the final shape contour such as in the surface milling. The absence of a dedicated setup and the related high flexibility is the main point of strength and the reason why several researchers focused their attentions on the ISF process.On the other hand the process slowness is the most relevant drawback which reduces a wider industrial application. In the paper, a first attempt to overcome this process limitation is presented taking into account a relevant speed increasing respect to the values currently used.

  8. Unraveling metamaterial properties in zigzag-base folded sheets.

    Science.gov (United States)

    Eidini, Maryam; Paulino, Glaucio H

    2015-09-01

    Creating complex spatial objects from a flat sheet of material using origami folding techniques has attracted attention in science and engineering. In the present work, we use the geometric properties of partially folded zigzag strips to better describe the kinematics of known zigzag/herringbone-base folded sheet metamaterials such as Miura-ori. Inspired by the kinematics of a one-degree of freedom zigzag strip, we introduce a class of cellular folded mechanical metamaterials comprising different scales of zigzag strips. This class of patterns combines origami folding techniques with kirigami. Using analytical and numerical models, we study the key mechanical properties of the folded materials. We show that our class of patterns, by expanding on the design space of Miura-ori, is appropriate for a wide range of applications from mechanical metamaterials to deployable structures at small and large scales. We further show that, depending on the geometry, these materials exhibit either negative or positive in-plane Poisson's ratios. By introducing a class of zigzag-base materials in the current study, we unify the concept of in-plane Poisson's ratio for similar materials in the literature and extend it to the class of zigzag-base folded sheet materials.

  9. Effect of Entrainment and Overflow Occurrences on Concentration Profile in PUREX Flow Sheet

    International Nuclear Information System (INIS)

    Ueda, Yoshinori; Ishii, Junichi; Matsumoto, Shiro

    2003-01-01

    A deviation in the operational condition of a mixer settler and a centrifugal contactor causes an entrainment or an overflow, which affects the concentration profile. Although there has been no quantitative study about the effect of such abnormal flows on the concentration profile, the occurrence of such abnormal flows has been severely restricted for a PUREX flow sheet. However, the restriction of abnormal flows can be relaxed when the effect of such flows is limited within the allowable range such that the concentration of the product does not deviate from its specification. This relaxation could serve to benefit a continuous operation under a certain degree of deviation from the operational condition and a smaller design load of a solvent extractor. From this viewpoint, the relationship between the magnitude of abnormal flows and the effect of them on the process was studied quantitatively using a specially developed code in a wide range of PUREX flow sheet conditions, and the possibility of this relaxation was investigated. The results showed that the effect of the abnormal flow on the concentration in the organic outflow or aqueous raffinate was dominated by the leakage fraction under normal conditions regardless of each specific flow sheet condition. The common correlations were found between the leakage fraction of uranium and plutonium under the occurrence of abnormal flows and that under no abnormal flow for the stripping and extracting conditions, respectively. Comparing the given correlations and the usual specification of the leakage fraction of uranium and plutonium suggested that the restriction of the abnormal flows could be relaxed for a usual PUREX flow sheet

  10. Vitamin and Mineral Supplement Fact Sheets

    Science.gov (United States)

    ... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...

  11. Systematic logging utilizing a log sheet designed for drill core descriptions. An example in uranium exploration activities

    International Nuclear Information System (INIS)

    Sasao, Eiji; Tsuruta, Tadahiko; Iida, Yoshimasa

    2000-01-01

    We describe the log sheets used during uranium exploration activities for unconformity-related uranium deposits by JNC. The purpose of using the logging sheets is to standardize the objects which all geologists must observe and for data quality assurance. The log sheets are a three-part set describing basement lithology, sandstone lithology and geotechnics. We devised our own log sheets to describe both the sandstone and the underlying basement rock when we started exploration in Athabasca Basin, Canada. We modified the sheets to gain a better understanding of the geological features related to uranium mineralization, and made final improvements to satisfy required quality based on the criteria of descriptive objects and accuracy. Use of the log sheets resulted in effective performance of core logging and improvement in the display of data. (author)

  12. Tube sheet structural analysis of intermediate heat exchanger for fast breeder reactor 'Monju'

    International Nuclear Information System (INIS)

    Nakagawa, Y.; Ueno, T.; Fukuda, Y.; Ichimiya, M.

    1983-01-01

    The Prototype Fast Breeder Reactor 'Monju' is the first power generating fast breeder reactor in Japan. We have been designing the components of the plant for manufacturing. Among these is the intermediate heat exchanger (IHX) which exchanges heat between primary and secondary sodium loop. The tube sheet of IHX (shell to ligament junction) is a difficult area from the view point of structural strength design under elevated temperature. To validate the structural integrity of tube sheet we performed the series of inelastic analysis and tube sheet thermal shock test using test pieces and half scale model of actual design. The results of inelastic analyses showed there is little progressive deformation around shell to ligament structural discontinuous junction. Furthermore, thermal shock tests showed no increase of an accumulative deformation. By these analyses and experiments, structural reliability of tube sheet could be shown. (author)

  13. Dynamics of Radially Expanding Liquid Sheets

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  14. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    Science.gov (United States)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2017-12-01

    We present the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal. This allows for the dissemination of data, simulation of physical processes, and promotion of climate literacy. The current iteration leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. Moreover, the portal allows for real time visualization and editing of models, cloud based computational simulation, and downloads of relevant data. This allows for faster publication in peer-reviewed journals and adaption of results for educational applications. Through application of this concept to multiple aspects of the Earth System, VESL is able to broaden data applications in the geosciences and beyond. At this stage, we still seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL. As we plan its expansion, we aim to achieve more rapid communication and presentation of scientific results.

  15. Electrochemical bisphenol A sensor based on N-doped graphene sheets

    International Nuclear Information System (INIS)

    Fan Haixia; Li Yan; Wu Dan; Ma Hongmin; Mao Kexia; Fan Dawei; Du Bin; Li He; Wei Qin

    2012-01-01

    Highlights: ► N-doped graphene sheets have catalytic activity towards the BPA oxidation. ► The biosensor based on N-doped graphene sheets and chitosan. ► This method was proposed for determination of BPA utilizing N-doped graphene sheets. - Abstract: Bisphenol A (BPA), which could disrupt endocrine system and cause cancer, has been considered as an endocrine disruptor. Therefore, it is very important and necessary to develop a sensitive and selective method for detection of BPA. Herein, nitrogen-doped graphene sheets (N-GS) and chitosan (CS) were used to prepare electrochemical BPA sensor. Compared with graphene, N-GS has favorable electron transfer ability and electrocatalytic property, which could enhance the response signal towards BPA. CS also exhibits excellent film forming ability and improves the electrochemical behavior of N-GS modified electrode. The sensor exhibits a sensitive response to BPA in the range of 1.0 × 10 −8 –1.3 × 10 −6 mol L −1 with a low detection limit of 5.0 × 10 −9 mol L −1 under the optimal conditions. Finally, this proposed sensor was successfully employed to determine BPA in water samples with satisfactory results.

  16. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    Science.gov (United States)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  17. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Brian L. [Univ. of Texas, Dallas, TX (United States); Martinez, Patricia [Univ. of Texas, Dallas, TX (United States); Zakhidov, Anvar A. [Univ. of Texas, Dallas, TX (United States); Shaner, Eric A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Mark [Univ. of Texas, Dallas, TX (United States)

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  18. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  19. Buckling and stretching of thin viscous sheets

    Science.gov (United States)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  20. Calculation of thermal effects occurring during the manufacture of CR-39 sheets

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, S.; Somogyi, G. (Magyar Tudomanyos Akademia, Debrecen. Atommag Kutato Intezete)

    1984-01-01

    To manufacture a good-quality, uniform CR-39 track detector, the polymerization rate should be chosen below a critical value to avoid the development of undesirable thermal gradients and internal temperature fluctuations in the sheet being cast. To improve curing cycles, especially for thick CR-39 sheets, a computer programme was developed by which we could study the trends of thermal effects under different casting conditions. Our calculations are based on the solution of the one dimensional heat transport equation, taking into account the relations proposed by Dial et al (1955) for describing the chemical kinetics of CR-39 polymerization. We have revised the empirical parameters available to such calculations. With new 'Dial constants' we have calculated the critical initial bath temperature (which results in thermal runaway at the central plane of the sheet being cast) as a function of the CR-39 thickness and IPP initiator concentration. Results are also presented for the temperature profile developing in the depth of cast CR-39 sheets.

  1. Calculation of thermal effects occurring during the manufacture of CR-39 sheets

    International Nuclear Information System (INIS)

    Szilagyi, S.; Somogyi, G.

    1984-01-01

    To manufacture a good-quality, uniform CR-39 track detector, the polymerization rate should be chosen below a critical value to avoid the development of undesirable thermal gradients and internal temperature fluctuations in the sheet being cast. To improve curing cycles, especially for thick CR-39 sheets, a computer programme was developed by which we could study the trends of thermal effects under different casting conditions. Our calculations are based on the solution of the one dimensional heat transport equation, taking into account the relations proposed by Dial et al (1955) for describing the chemical kinetics of CR-39 polymerization. We have revised the empirical parameters available to such calculations. With new 'Dial constants' we have calculated the critical initial bath temperature (which results in thermal runaway at the central plane of the sheet being cast) as a function of the CR-39 thickness and IPP initiator concentration. Results are also presented for the temperature profile developing in the depth of cast CR-39 sheets. (author)

  2. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  3. Modeling the Fracture of Ice Sheets on Parallel Computers

    Energy Technology Data Exchange (ETDEWEB)

    Waisman, Haim [Columbia Univ., New York, NY (United States); Tuminaro, Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  4. Biodegradable Paper Sheeting as Agricultural Covering with Incorporation of Bamboo Pulp Sludge

    Directory of Open Access Journals (Sweden)

    Chuan-Gui Wang

    2014-05-01

    Full Text Available This paper reports the manufacturing process for biodegradable paper sheeting with incorporation of bamboo paper sludge, fibers of poplar woods, and viscose fibers by wet-laid nonwoven technology. The best process conditions included a basis weight of 30 g/m2, a bamboo paper sludge content of 10 wt%, and a polyvinyl alcohol concentration of 4 wt%. The burst strength, tearing resistance, tensile properties, resistance to water, and degradation rate were 220.65 kPa, 60.00 N, 46.10 N, 153 Pa, and 56.18%, respectively, under the best process conditions. The biodegradable paper sheeting can satisfy the demand for replacement of agricultural plastic sheeting used for such purposes as moisture retention of soil and promotion of plant growth.

  5. AC/TiO2/Rubber Composite Sheet Catalysts; Fabrication, Characterization and Photocatalytic Activities

    Directory of Open Access Journals (Sweden)

    Sriwong Chaval

    2015-01-01

    Full Text Available The AC/TiO2/Rubber (ACTR composite sheets weresuccessfully fabricated by a simply mixing of fixed TiO2 suspension and natural rubber latex (60% HA contents withthe varyingamounts of activated carbon (AC suspension, followed by stirring, pouring into apetri dish mold, drying at room temperature (RT, after that taking out from a mold, reversing and drying again at RT. Then, the as-fabricated ACTR composite sheets were characterized by X-ray diffractometer (XRD, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR, energy dispersive X-ray spectroscopy (EDS and scanning electron microscopy (SEMtechniques. The photocatalytic efficiencies of all ACTR composite sheet samples were evaluated by photo degrading of methylene blue (MB dye solution under UV light irradiation. The results showed that the photocatalytic activity of ACTR sheet with10.0wt%AC loading has the highest efficiency for the photo degradation of MB dye than the other sheets. This is due to the fact that it is relatively with the synergistic effect of well-combined titanium dioxide catalyst and activated carbon adsorbent.

  6. Prototypical model for tensional wrinkling in thin sheets

    KAUST Repository

    Davidovitch, B.; Schroll, R. D.; Vella, D.; Adda-Bedia, M.; Cerda, E. A.

    2011-01-01

    The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length--a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lamé, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications.

  7. Prototypical model for tensional wrinkling in thin sheets

    KAUST Repository

    Davidovitch, B.

    2011-10-31

    The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians, and engineers. This activity has been triggered by the growing interest in developing technologies at ever-decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. Although the most basic buckling instability of uniaxially compressed plates was understood by Euler more than two centuries ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length--a sheet under axisymmetric tensile loads. The first study of this geometry, which is attributed to Lamé, allows us to construct a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that the thinner the sheet is, the smaller is the compressive load above which the far-from-threshold regime emerges. This observation emphasizes the relevance of our analysis for nanomechanics applications.

  8. Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction

    Directory of Open Access Journals (Sweden)

    Thierry Belgrand

    2010-10-01

    Full Text Available This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature.

  9. The Economic Risks Arising from the Analysis of the Balance Sheet of an Economic Entity

    Directory of Open Access Journals (Sweden)

    Andreea Mihaela Marin

    2016-01-01

    Full Text Available Any economic entity operates under probability and risk. In a general acceptation, risk means the validity of the result obtained under pressure of the economic environment; in other words, the risk is the potential damage posed to heritage, interests and affect the entity. In this paper we want to capture, the calculation in terms of the balance sheet analysis of the three risks, which can be measured on the basis of the balance sheet data and indicators, namely: the operational risk, financial risk, and the risk of bankruptcy.

  10. A Bingham-plastic model for fluid mud transport under waves and currents

    Science.gov (United States)

    Liu, Chun-rong; Wu, Bo; Huhe, Ao-de

    2014-04-01

    Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.

  11. Preparation of Ni(OH){sub 2}-graphene sheet-carbon nanotube composite as electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.F. [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022 (China); Yuan, G.H., E-mail: ygh@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Jiang, Z.H., E-mail: jiangzhaohua@hit.edu.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yao, Z.P. [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yue, M. [Shenzhen BTR New Energy Materials INC., Shenzhen 528206 (China)

    2015-01-05

    Highlights: • CNT is introduced into graphene to prevent restacking by solvothermal reaction. • Ethanol as a low cost and green solvent is used in solvothermal reaction. • Ni(OH){sub 2} nanosheets were chemically precipitated into GS-CNT to increase the capacitance. - Abstract: Ni(OH){sub 2}-graphene sheet-carbon nanotube composite was prepared for supercapacitance materials through a simple two-step process involving solvothermal synthesis of graphene sheet-carbon nanotube composite in ethanol and chemical precipitation of Ni(OH){sub 2}. According to N{sub 2} adsorption/desorption analysis, the Brunauer–Emmett–Teller surface area of graphene sheet-carbon nanotube composite (109.07 m{sup 2} g{sup −1}) was larger than that of pure graphene sheets (32.06 m{sup 2} g{sup −1}), indicating that the added carbon nanotubes (15 wt.%) could prevent graphene sheets from restacking in the solvothermal reaction. The results of field emission scanning electron microscopy and transmission electron microscopy showed that Ni(OH){sub 2} nanosheets were uniformly loaded into the three-dimensional interconnected network of graphene sheet-carbon nanotube composite. The microstructure enhanced the rate capability and utilization of Ni(OH){sub 2}. The specific capacitance of Ni(OH){sub 2}-graphene sheet-carbon nanotube composite was 1170.38 F g{sup −1} at a current density of 0.2 A g{sup −1} in the 6 mol L{sup −1} KOH solution, higher than those provided by pure Ni(OH){sub 2} (953.67 Fg{sup −1}) and graphene sheets (178.25 F g{sup −1}). After 20 cycles at each current density (0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 A g{sup −1}), the capacitance of Ni(OH){sub 2}-graphene sheet-carbon nanotube composite decreased 26.96% of initial capacitance compared to 74.52% for pure Ni(OH){sub 2}.

  12. Adjustable focus laser sheet module for generating constant maximum width sheets for use in optical flow diagnostics

    International Nuclear Information System (INIS)

    Hult, J; Mayer, S

    2011-01-01

    A general design of a laser light sheet module with adjustable focus is presented, where the maximum sheet width is preserved over a fixed region. In contrast, conventional focusing designs are associated with a variation in maximum sheet width with focal position. A four lens design is proposed here, where the first three lenses are employed for focusing, and the last for sheet expansion. A maximum sheet width of 1100 µm was maintained over a 50 mm long distance, for focal distances ranging from 75 to 500 mm, when a 532 nm laser beam with a beam quality factor M 2 = 29 was used for illumination

  13. Tin Oxide Nanoparticles: Synthesis, Characterization and Study their Particle Size at Different Current Density

    Directory of Open Access Journals (Sweden)

    Karzan A. Omar

    2013-11-01

    Full Text Available Tin oxide nanoparticles are prepared by electrochemical reduction method using tetrapropylammonium bromide (TPAB and tetrabutylammonium bromide (TBAB as structure directing agent in an organic medium viz. tetrahydrofuran (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density and molar concentration of the ligand. The reduction process takes place under an inert atmosphere of nitrogen over a period of 2 h. Such nanoparticles are prepared by using a simple electrolysis cell in which the sacrificial anode as a commercially available in tin metal sheet and platinum (inert sheet act as a cathode. The parameters such as current density, solvent polarity, distance between electrodes and concentration of stabilizers are used to control the size of nanoparticles. The synthesized tin oxide nanoparticles are characterized by using UV–Visible, FT-IR and SEM–EDS analysis techniques. UV-Visible spectroscopy has revealed the optical band gap to be 4.13, 4.16 and 4.24 ev for (8, 10 and 12 mA/cm2 and the effect of current density on theirs particle size, respectively.

  14. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    International Nuclear Information System (INIS)

    Hu, X.; Lu, Q.; Kaplan, D.; Cebe, P.

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  15. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  16. Quantitative Analysis of Graphene Sheet Content in Wood Char Powders during Catalytic Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Yan-Jia Liou; Wu-Jang Huang

    2013-01-01

    The quantitative characterization of the graphene sheet content in carbon-containing materials is arguable and has not yet been developed.The authors report on a feasible method to characterize graphene sheet content quantitatively in pyrolized carbon materials using an X-ray diffraction (XRD) spectrometer.A direct carbonation at 300 ℃ followed by catalytic pyrolysis (heat-treatment temperature was set at 700-1400 ℃)under a vacuum condition was used for turning wood waste into pyrolized wood char powders.The graphene content in the samples was calculated through an analysis of full width at half maximum (FWHM) of the carbon (100) crystal plane at around 42°-43° in XRD.Results showed that the FWHM and the calculated graphene sheet content of pyrolized wood char powders depended on the heat-treatment temperature,and the FWHM of wood char powder with well-developed graphene sheets (100%) was determined to be 5.0.In addition,the trend to 100% graphene sheet-contained pyrolized carbon powder was obtained at a heattreatment temperature of 2700 ℃.The resistivity of the wood char powder with 100% graphene sheets was predicted to be 0.01 Ω cm,close to our experimental data of 0.012 and 0.006 Ω cm for commercial graphite and graphene products,respectively.

  17. The transposition of the balance sheet to financial and functional balance sheet. Research and development

    Directory of Open Access Journals (Sweden)

    Liana GĂDĂU

    2015-09-01

    Full Text Available As the title suggests, through this paper we want to highlight the necessity of treating again the content and the form of the balance sheet in order to adapt it to a more efficient analysis, this way surpassing the informational valences of the classic balance sheet. The functional and the financial balance sheet will be taken into account. These models of balance sheet permit the complex analyses regarding the solvability or the bankruptcy risk of an enterprise to take place, and also other analyses, like the analysis of the structure and the financial/ functional equilibrium, the analysis of the company on operating cycles and their role in the functioning of the company. Through the particularities offered by each of these two models of balance sheet, we want to present the advantages of a superior informing. This content of this material is based on a vast investigation of the specialized literature.

  18. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    International Nuclear Information System (INIS)

    Huang, Lei; Yu, Cong

    2014-01-01

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  19. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  20. Outreach/education interface for Cryosphere models using the Virtual Ice Sheet Laboratory

    Science.gov (United States)

    Larour, E. Y.; Halkides, D. J.; Romero, V.; Cheng, D. L.; Perez, G.

    2014-12-01

    In the past decade, great strides have been made in the development of models capable of projecting the future evolution of glaciers and the polar ice sheets in a changing climate. These models are now capable of replicating some of the trends apparent in satellite observations. However, because this field is just now maturing, very few efforts have been dedicated to adapting these capabilities to education. Technologies that have been used in outreach efforts in Atmospheric and Oceanic sciences still have not been extended to Cryospheric Science. We present a cutting-edge, technologically driven virtual laboratory, geared towards outreach and k-12 education, dedicated to the polar ice sheets on Antarctica and Greenland, and their role as major contributors to sea level rise in coming decades. VISL (Virtual Ice Sheet Laboratory) relies on state-of-the art Web GL rendering of polar ice sheets, Android/iPhone and web portability using Javascript, as well as C++ simulations (back-end) based on the Ice Sheet System Model, the NASA model for simulating the evolution of polar ice sheets. Using VISL, educators and students can have an immersive experience into the world of polar ice sheets, while at the same exercising the capabilities of a state-of-the-art climate model, all of it embedded into an education experience that follows the new STEM standards for education.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  1. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    Science.gov (United States)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  2. Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, J.; Shimomura, N.; Ebinuma, T.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira, Sapporo (Japan). Methane Hydrate Research Lab.

    2008-07-01

    Interest in gas hydrates has increased in recent years due to the discovery of large deposits under the ocean floor and in permafrost regions. Natural gas hydrates, including methane, is expected to become a new energy source and a medium for energy storage and transportation. Gas hydrates consist of an open network of water molecules that are hydrogen-bonded in a similar manner to ice. Gas molecules are interstitially engaged under high pressures and low temperatures. Although the dissociation temperature of methane hydrate under atmospheric pressure is about 193 K, studies have shown that methane hydrate can be stored at atmospheric pressure and 267 K for 2 years. Because of this phenomenon, known as self-preservation, transportation and storage of methane hydrate can occur at temperature conditions milder than those for liquefied methane gas at atmospheric pressure. This study examined the surface changes of methane and ethane hydrates during dissociation using an optical microscope and confocal scanning microscope (CSM). This paper reported on the results when the atmospheric gas pressure was decreased. Ice sheets formed on the surfaces of methane and ethane gas hydrates due to depressurizing dissociation of methane and ethane hydrates when the methane and ethane gas pressures were decreased at designated temperatures. The dissociation of methane gas hydrate below below 237 K resulted in the generation of small ice particles on the hydrate surface. A transparent ice sheet formed on the hydrate surface above 242 K. The thickness of the ice sheet on the methane hydrate surface showed the maximum of ca. 30 {mu}m at 253 K. In the case of ethane hydrates, ice particles and ice sheets formed below 262 and 267 respectively. Since the ice particles and ice sheets were formed by water molecules generated during the gas hydrate dissociation, the mechanism of ice sheet formation depends on the dissociation rate of hydrate, ice particle sintering rate, and water molecule

  3. AI applications in sheet metal forming

    CERN Document Server

    Hussein, Hussein

    2017-01-01

    This book comprises chapters on research work done around the globe in the area of artificial intelligence (AI) applications in sheet metal forming. The first chapter offers an introduction to various AI techniques and sheet metal forming, while subsequent chapters describe traditional procedures/methods used in various sheet metal forming processes, and focus on the automation of those processes by means of AI techniques, such as KBS, ANN, GA, CBR, etc. Feature recognition and the manufacturability assessment of sheet metal parts, process planning, strip-layout design, selecting the type and size of die components, die modeling, and predicting die life are some of the most important aspects of sheet metal work. Traditionally, these activities are highly experience-based, tedious and time consuming. In response, researchers in several countries have applied various AI techniques to automate these activities, which are covered in this book. This book will be useful for engineers working in sheet metal industri...

  4. Airborne Laser Altimetry Mapping of the Greenland Ice Sheet: Application to Mass Balance Assessment

    Science.gov (United States)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.

    2000-01-01

    In 1998 and '99, the Arctic Ice Mapping (AIM) program completed resurveys of lines occupied 5 years earlier revealing elevation changes of the Greenland ice sheet and identifying areas of significant thinning, thickening and balance. In planning these surveys, consideration had to be given to the spatial constraints associated with aircraft operation, the spatial nature of ice sheet behavior, and limited resources, as well as temporal issues, such as seasonal and interannual variability in the context of measurement accuracy. This paper examines the extent to which the sampling and survey strategy is valid for drawing conclusions on the current state of balance of the Greenland ice sheet. The surveys covered the entire ice sheet with an average distance of 21.4 km between each location on the ice sheet and the nearest flight line. For most of the ice sheet, the elevation changes show relatively little spatial variability, and their magnitudes are significantly smaller than the observed elevation change signal. As a result, we conclude that the density of the sampling and the accuracy of the measurements are sufficient to draw meaningful conclusions on the state of balance of the entire ice sheet over the five-year survey period. Outlet glaciers, however, show far more spatial and temporal variability, and each of the major ones is likely to require individual surveys in order to determine its balance.

  5. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  6. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  7. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure

    Directory of Open Access Journals (Sweden)

    T.S. Yang

    2018-01-01

    Full Text Available Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  8. Contact Behavior of Composite CrTiSiN Coated Dies in Compressing of Mg Alloy Sheets under High Pressure.

    Science.gov (United States)

    Yang, T S; Yao, S H; Chang, Y Y; Deng, J H

    2018-01-08

    Hard coatings have been adopted in cutting and forming applications for nearly two decades. The major purpose of using hard coatings is to reduce the friction coefficient between contact surfaces, to increase strength, toughness and anti-wear performance of working tools and molds, and then to obtain a smooth work surface and an increase in service life of tools and molds. In this report, we deposited a composite CrTiSiN hard coating, and a traditional single-layered TiAlN coating as a reference. Then, the coatings were comparatively studied by a series of tests. A field emission SEM was used to characterize the microstructure. Hardness was measured using a nano-indentation tester. Adhesion of coatings was evaluated using a Rockwell C hardness indentation tester. A pin-on-disk wear tester with WC balls as sliding counterparts was used to determine the wear properties. A self-designed compression and friction tester, by combining a Universal Testing Machine and a wear tester, was used to evaluate the contact behavior of composite CrTiSiN coated dies in compressing of Mg alloy sheets under high pressure. The results indicated that the hardness of composite CrTiSiN coating was lower than that of the TiAlN coating. However, the CrTiSiN coating showed better anti-wear performance. The CrTiSiN coated dies achieved smooth surfaces on the Mg alloy sheet in the compressing test and lower friction coefficient in the friction test, as compared with the TiAlN coating.

  9. Cold Forming of Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, Kaung-Jau; Su, Jhe-Yung

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its further application, this study attempts to investigate the feasibility of cold forming its sheet blank especially under a bi-axial tensile stress state. Not only experiments but also a Finite Element Analysis (FEA) with DEFORM 2D was conducted in this study. The material data for FEA was accomplished by the tensile test. An Erichsen-like cupping test was performed as well to determine the process parameter for experiment setup. As a result of the study, the Ni-Ti shape memory alloy sheet has a low formability for cold forming and shows a relative large springback after releasing the forming load.

  10. Transuranium element incorporation into the β-U3O8 uranyl sheet

    International Nuclear Information System (INIS)

    Miller, M.L.; Burns, P.C.; Ewing, R.C.; Finch, R.J.

    1997-01-01

    Spent nuclear fuel (SNF) is unstable under oxidizing conditions. Although recent studies have determined the paragenetic sequence for uranium phases that result from the corrosion of SNF, there are only limited data on the potential of alteration phases for the incorporation of transuranium elements. The crystal chemical characteristics of transuranic elements (TUE) are to a certain extent similar to uranium; thus TUE incorporation into the sheets of uranyl oxide hydrate structures can be assessed by examination of the structural details of the β-U 3 O 8 sheet type. The sheets of uranyl polyhedra observed in the crystal structure of β-U 3 O 8 also occur in the mineral billietite, where they alternate with α-U 3 O 8 type sheets. Preliminary crystal structure determinations for the minerals ianthinite, and wyartite, indicate that these phases also contain β-U 3 O 8 type sheets. The β-U 3 O 8 sheet anion topology contains triangular, rhombic, and pentagonal sites in the proportions 2:1:2. In all structures containing β-U 3 O 8 type sheets, the triangular sites are vacant. The pentagonal sites are filled with U 6+ O 2 forming pentagonal bipyramids. The rhombic dipyramids filling the rhombic sites contain U 6+ O 2 in billietite, U 4+ O 2 in β-U 3 O 8 , U 4+ (H 2 O) 2 in ianthinite, and U 4+ O 3 in wyartite-II. Interlayer species include: H 2 O (billietite, wyartite II, and ianthinite), Ba 2+ (billietite) Ca 2+ wyartite II, and Co 3 2- wyartite II; there is no interlayer in β-U 3 O 8 . The similarity of known TUE coordination polyhedra with those of U suggests that the β-U 3 O 8 sheet will accommodate TUE substitution coupled with variations in apical anion configuration and interlayer population providing the required charge balance

  11. Experimental formability analysis of bondal sandwich sheet

    Science.gov (United States)

    Kami, Abdolvahed; Banabic, Dorel

    2018-05-01

    Metal/polymer/metal sandwich sheets have recently attracted the interests of industries like automotive industry. These sandwich sheets have superior properties over single-layer metallic sheets including good sound and vibration damping and light weight. However, the formability of these sandwich sheets should be enhanced which requires more research. In this paper, the formability of Bondal sheet (DC06/viscoelastic polymer/DC06 sandwich sheet) was studied through different types of experiments. The mechanical properties of Bondal were determined by uniaxial tensile tests. Hemispherical punch stretching and hydraulic bulge tests were carried out to determine the forming limit diagram (FLD) of Bondal. Furthermore, cylindrical and square cup drawing tests were performed in dry and oil lubricated conditions. These tests were conducted at different blank holding forces (BHFs). An interesting observation about Bondal sheet deep drawing was obtaining of higher drawing depths at dry condition in comparison with oil-lubricated condition.

  12. Engineering β-sheet peptide assemblies for biomedical applications.

    Science.gov (United States)

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-03-01

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.

  13. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.

    Science.gov (United States)

    Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-05-01

    In vivo niche plays an important role in regulating differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. This study explored the feasibility that chondrocyte sheet created chondrogenic niche retained chondrogenic phenotype of BMSC engineered cartilage (BEC) in subcutaneous environments. Porcine BMSCs were seeded into biodegradable scaffolds followed by 4weeks of chondrogenic induction in vitro to form BEC, which were wrapped with chondrocyte sheets (Sheet group), acellular small intestinal submucosa (SIS, SIS group), or nothing (Blank group) respectively and then implanted subcutaneously into nude mice to trace the maintenance of chondrogenic phenotype. The results showed that all the constructs in Sheet group displayed typical cartilaginous features with abundant lacunae and cartilage specific matrices deposition. These samples became more mature with prolonged in vivo implantation, and few signs of ossification were observed at all time points except for one sample that had not been wrapped completely. Cell labeling results in Sheet group further revealed that the implanted BEC directly participated in cartilage formation. Samples in both SIS and Blank groups mainly showed ossified tissue at all time points with partial fibrogenesis in a few samples. These results suggested that chondrocyte sheet could create a chondrogenic niche for retaining chondrogenic phenotype of BEC in subcutaneous environment and thus provide a novel research model for stable ectopic cartilage regeneration based on stem cells. In vivo niche plays an important role in directing differentiation fate of stem cells. Due to lack of proper chondrogenic niche, stable cartilage regeneration of bone marrow stromal cells (BMSCs) in subcutaneous environments is always a great challenge. The current study demonstrated that chondrocyte sheet generated by

  14. Study on team evaluation (5). On application of behavior observation-based teamwork evaluation sheet for power plant operator team

    International Nuclear Information System (INIS)

    Sasou, Kunihide; Sugihara, Yoshikuni

    2009-01-01

    This report discusses the range of application of the behavior observation-based teamwork evaluation sheet. Under the concept of this method, teamwork evaluation sheet is developed, which assumes a certain single failure (failure of feed water transmitter). The evaluation sheets are applied to evaluate team work of 26 thermal power plant operator teams in combined under abnormal operating conditions of failure of feed water transmitter, feed draft fan or steam flow governor. As a result of ANOVA, it finds that there are no differences between 3 kinds of single failure. In addition, the similar analysis is executed to 3 kinds of multiple failures (steam generator tube rapture, loss of coolant accident and loss of secondary coolant accident) under which 7 PWR nuclear power plant operator teams are evaluated. As a result, ANOVA shows no differences between 3 kinds of multiple failures. These results indicate that a behavior observation-based team work evaluation sheet, which is designed for a certain abnormal condition, is applicable to the abnormal conditions that have the same development of abnormal conditions. (author)

  15. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjaer, Kurt H.; Bevis, Michael

    2014-01-01

    The Greenland ice sheet has been one of the largest contributors to global sea-level rise over the past 20 years, accounting for 0.5 mm yr(-1) of a total of 3.2 mm yr(-1). A significant portion of this contribution is associated with the speed-up of an increased number of glaciers in southeast...... and northwest Greenland. Here, we show that the northeast Greenland ice stream, which extends more than 600 km into the interior of the ice sheet, is now undergoing sustained dynamic thinning, linked to regional warming, after more than a quarter of a century of stability. This sector of the Greenland ice sheet...... is of particular interest, because the drainage basin area covers 16% of the ice sheet (twice that of Jakobshavn Isbrae) and numerical model predictions suggest no significant mass loss for this sector, leading to an under-estimation of future global sea-level rise. The geometry of the bedrock and monotonic trend...

  16. Disintegration of liquid sheets

    Science.gov (United States)

    Mansour, Adel; Chigier, Norman

    1990-01-01

    The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.

  17. Root-growth-inhibiting sheet

    Science.gov (United States)

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  18. Root-growth-inhibiting sheet

    Science.gov (United States)

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  19. Spatiotemporal Variability of Meltwater Refreezing in Southwest Greenland Ice Sheet Firn

    Science.gov (United States)

    Rennermalm, A. K.; Hock, R.; Tedesco, M.; Corti, G.; Covi, F.; Miège, C.; Kingslake, J.; Leidman, S. Z.; Munsell, S.

    2017-12-01

    A substantial fraction of the summer meltwater formed on the surface of the Greenland ice sheet is retained in firn, while the remaining portion runs to the ocean through surface and subsurface channels. Refreezing of meltwater in firn can create impenetrable ice lenses, hence being a crucial process in the redistribution of surface runoff. To quantify the impact of refreezing on runoff and current and future Greenland surface mass balance, a three year National Science Foundation funded project titled "Refreezing in the firn of the Greenland ice sheet: Spatiotemporal variability and implications for ice sheet mass balance" started this past year. Here we present an overview of the project and some initial results from the first field season in May 2017 conducted in proximity of the DYE-2 site in the percolation zone of the Southwest Greenland ice sheet at elevations between 1963 and 2355 m a.s.l.. During this fieldwork two automatic weather stations were deployed, outfitted with surface energy balance sensors and 16 m long thermistor strings, over 300 km of ground penetrating radar data were collected, and five 20-26 m deep firn cores were extracted and analyzed for density and stratigraphy. Winter snow accumulation was measured along the radar tracks. Preliminary work on the firn-core data reveals increasing frequency and thickness of ice lenses at lower ice-sheet elevations, in agreement with other recent work in the area. Data collected within this project will facilitate advances in our understanding of the spatiotemporal variability of firn refreezing and its role in the hydrology and surface mass balance of the Greenland Ice Sheet.

  20. Mobility Balance Sheet 2009

    International Nuclear Information System (INIS)

    Jorritsma, P.; Derriks, H.; Francke, J.; Gordijn, H.; Groot, W.; Harms, L.; Van der Loop, H.; Peer, S.; Savelberg, F.; Wouters, P.

    2009-06-01

    The Mobility Balance Sheet provides an overview of the state of the art of mobility in the Netherlands. In addition to describing the development of mobility this report also provides explanations for the growth of passenger and freight transport. Moreover, the Mobility Balance Sheet also focuses on a topical theme: the effects of economic crises on mobility. [nl

  1. Estimation of current density distribution under electrodes for external defibrillation

    Directory of Open Access Journals (Sweden)

    Papazov Sava P

    2002-12-01

    Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.

  2. Safety advice sheets

    CERN Multimedia

    HSE Unit

    2013-01-01

    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.

  3. Development of methodological tools for assessing enterprise credit worthiness taking into account off-balance sheet risks

    Directory of Open Access Journals (Sweden)

    N.G. Vygovska

    2017-12-01

    Full Text Available The article is devoted to the improvement of methodical tools for assessing the credit worthiness of enterprises’ legal entities taking into account the impact of off-balance-sheet risks on the definite integral class of a debtor-borrower. The authors substantiate that the non-accounting of off-balance sheet commitments in assessing the borrower’s credit worthiness leads to false managerial decisions on granting a loan and increasing the level of credit risk of the bank. The purpose of the article is to study the questions of methodical tools for assessing the credit worthiness of economic entities and develop directions for improving its analytical support taking into account the impact of off-balance-sheet risks. The object of the research is the analytical support for assessing the credit worthiness of a borrower-legal entity taking into account off-balance-sheet risks. The authors put forward and proved the hypothesis that, acting as the guarantor or principal of another enterprise, the assessment of the borrower's credit worthiness undergoes significant changes. The coefficient analysis of the methodological provision for assessing the borrower's credit rating by the current method number 351 is carried out, as a result of which the influence on the integral index and the debtor class is proved. When determining the reliability class of the borrower, the most affected are solvency ratios (especially for short-term loans and financial sustainability (for long-term loans to the borrower. The current methodology for defining these indicators does not take into account the effect of off-balance sheet risks, which is due to the use of financial reporting data, which does not include data on off-balance sheet instruments. The methodological support of credit-worthiness analysis is proposed, taking into account the impact of off-balance sheet risks on it. The prospects for further research should be formulated in the direction of improving the

  4. Manifold free multiple sheet superplastic forming

    Science.gov (United States)

    Elmer, John W.; Bridges, Robert L.

    2004-01-13

    Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.

  5. 21 CFR 880.5180 - Burn sheet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  6. Sheet-bulk metal forming – forming of functional components from sheet metals

    Directory of Open Access Journals (Sweden)

    Merklein Marion

    2015-01-01

    Full Text Available The paper gives an overview on the application of sheet-bulk metal forming operations in both scientific and industrial environment. Beginning with the need for an innovative forming technology, the definition of this new process class is introduced. The rising challenges of the application of bulk metal forming operations on sheet metals are presented and the demand on a holistic investigation of this topic is motivated. With the help of examples from established production processes, the latest state of technology and the lack on fundamental knowledge is shown. Furthermore, perspectives regarding new research topics within sheet-bulk metal forming are presented. These focus on processing strategies to improve the quality of functional components by the application of process-adapted semi-finished products as well as the local adaption of the tribological system.

  7. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    Science.gov (United States)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  8. Pre-LGM Northern Hemisphere ice sheet topography

    Directory of Open Access Journals (Sweden)

    J. Kleman

    2013-10-01

    Full Text Available We here reconstruct the paleotopography of Northern Hemisphere ice sheets during the glacial maxima of marine isotope stages (MIS 5b and 4.We employ a combined approach, blending geologically based reconstruction and numerical modeling, to arrive at probable ice sheet extents and topographies for each of these two time slices. For a physically based 3-D calculation based on geologically derived 2-D constraints, we use the University of Maine Ice Sheet Model (UMISM to calculate ice sheet thickness and topography. The approach and ice sheet modeling strategy is designed to provide robust data sets of sufficient resolution for atmospheric circulation experiments for these previously elusive time periods. Two tunable parameters, a temperature scaling function applied to a spliced Vostok–GRIP record, and spatial adjustment of the climatic pole position, were employed iteratively to achieve a good fit to geological constraints where such were available. The model credibly reproduces the first-order pattern of size and location of geologically indicated ice sheets during marine isotope stages (MIS 5b (86.2 kyr model age and 4 (64 kyr model age. From the interglacial state of two north–south obstacles to atmospheric circulation (Rocky Mountains and Greenland, by MIS 5b the emergence of combined Quebec–central Arctic and Scandinavian–Barents-Kara ice sheets had increased the number of such highland obstacles to four. The number of major ice sheets remained constant through MIS 4, but the merging of the Cordilleran and the proto-Laurentide Ice Sheet produced a single continent-wide North American ice sheet at the LGM.

  9. Scanning tunneling spectroscopy under large current flow through the sample.

    Science.gov (United States)

    Maldonado, A; Guillamón, I; Suderow, H; Vieira, S

    2011-07-01

    We describe a method to make scanning tunneling microscopy/spectroscopy imaging at very low temperatures while driving a constant electric current up to some tens of mA through the sample. It gives a new local probe, which we term current driven scanning tunneling microscopy/spectroscopy. We show spectroscopic and topographic measurements under the application of a current in superconducting Al and NbSe(2) at 100 mK. Perspective of applications of this local imaging method includes local vortex motion experiments, and Doppler shift local density of states studies.

  10. A System of Test Methods for Sheet Metal Forming Tribology

    DEFF Research Database (Denmark)

    Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson

    2007-01-01

    Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... oils in order to avoid galling. The present paper describes a systematic research in the development of new, environmentally harmless lubricants focusing on the lubricant testing aspects. A system of laboratory tests has been developed to study the lubricant performance under the very varied conditions...... appearing in different sheet forming operations such as stamping, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production....

  11. A study on corrosion resistance of electrodeposited Zn-base alloy steel sheet

    International Nuclear Information System (INIS)

    Park, Hyun Soon

    1986-01-01

    Effects of electrodeposits of Zn-Ni or Zn-Co alloy with small amounts of Mo or W in sulphate bath on the corrosion resistance of plated steel sheet were studied. 1) The electrodeposition of Zn-Ni and Zn-Co alloy shows both anomalous codeposition behavior. The grade of anomalous codeposition of Zn-Co alloy rises with adding Mo or W in bath. 2) The Ni content in Zn-Ni deposits increases with decreasing cathode current density and with increasing bath temperature. 3) In case of electroplating of Zn-Co, the increase of cathodic current density of bath bring on increasing of the Co content, but on decreasing of the Mo content in deposits. And rising bath temperature increases both Co and Mo deposits. 4) The corrosion resistance of the Zn-Ni electrodeposited steel sheet is shown a maximum at the Ni content of 10-17%. The structure of Zn-Ni of these composition range was finegrained γ-phase. 5) The corrosion resistance of the Zn-Co electrodeposited steel sheet is improved with increasing Co content. The corrosion resistance of the Zn-Co-Mo or Zn-Co-W deposits electroplated by proper plating conditions was improved much more than that of Zn-Co deposits. (Author)

  12. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy

    OpenAIRE

    Costa, M.; Cerqueira, Mariana Teixeira; Santos, T. C.; Marques, Belém Sampaio; Ludovico, Paula; Marques, A. P.; Pirraco, Rogério P.; Reis, R. L.

    2017-01-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditi...

  13. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2017-08-01

    Full Text Available The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by taking a constant value for areas with thick perennial snow cover. This is an important reason why the surface mass balance (SMB of the Greenland ice sheet (GrIS is poorly resolved in the model. The purpose of this study is to improve the SMB forcing of the GrIS by evaluating different parameter settings within a snow albedo scheme. By allowing ice-sheet albedo to vary as a function of wet and dry conditions, the spatial distribution of albedo and melt rate improves. Nevertheless, the spatial distribution of SMB in EC-Earth is not significantly improved. As a reason for this, we identify omissions in the current snow albedo scheme, such as separate treatment of snow and ice and the effect of refreezing. The resulting SMB is downscaled from the lower-resolution global climate model topography to the higher-resolution ice-sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice-sheet model simulations. From these ice-sheet simulations we conclude that an albedo scheme with a short response time of decaying albedo during wet conditions performs best with respect to long-term simulated ice-sheet volume. This results in an optimized albedo parameterization that can be used in future EC-Earth simulations with an interactive ice-sheet component.

  14. Electro-thermo-mechanical coupling analysis of deep drawing with resistance heating for aluminum matrix composites sheet

    Science.gov (United States)

    Zhang, Kaifeng; Zhang, Tuoda; Wang, Bo

    2013-05-01

    Recently, electro-plastic forming to be a focus of attention in materials hot processing research area, because it is a sort of energy-saving, high efficient and green manufacturing technology. An electro-thermo-mechanical model can be adopted to carry out the sequence simulation of aluminum matrix composites sheet deep drawing via electro-thermal coupling and thermal-mechanical coupling method. The first step of process is resistance heating of sheet, then turn off the power, and the second step is deep drawing. Temperature distribution of SiCp/2024Al composite sheet by resistance heating and sheet deep drawing deformation were analyzed. During the simulation, effect of contact resistances, temperature coefficient of resistance for electrode material and SiCp/2024Al composite on temperature distribution were integrally considered. The simulation results demonstrate that Sicp/2024Al composite sheet can be rapidly heated to 400° in 30s using resistances heating and the sheet temperature can be controlled by adjusting the current density. Physical properties of the electrode materials can significantly affect the composite sheet temperature distribution. The temperature difference between the center and the side of the sheet is proportional to the thermal conductivity of the electrode, the principal cause of which is that the heat transfers from the sheet to the electrode. SiCp/2024Al thin-wall part can be intactly manufactured at strain rate of 0.08s-1 and the sheet thickness thinning rate is limited within 20%, which corresponds well to the experimental result.

  15. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    Science.gov (United States)

    Sagapuram, Dinakar

    basal slip exhibits ductile tensile-type fracture. A two-fold increase in ductility is also observed for the LSEM sheet under uniaxial tensile testing without significant changes in the strength. Among texture and microstructure (grain size), texture is shown to be more critical for Mg sheet formability. However, in conjunction with a favorable texture, fine recrystallized microstructure provides for additional enhancement of strain-hardening capacity and formability. In-situ imaging of material flow during uniaxial tensile testing revealed new, interesting flow localization phenomena and fracture behavior. It is shown that the deformation behavior of Mg sheet is highly texture dependent, and also radically different from that of conventional ductile metals both in terms of necking and fracture. The implications of these observations for the LDH test results and formability of Mg sheet, in general, are briefly discussed.

  16. Rubella - Fact Sheet for Parents

    Science.gov (United States)

    ... and 4 through 6 years Fact Sheet for Parents Color [2 pages] Español: Rubéola The best way ... according to the recommended schedule. Fact Sheets for Parents Diseases and the Vaccines that Prevent Them Chickenpox ...

  17. Practical implementation of Wilhelm Osbahr’s entrepreneur balance sheet theory assumptions – a case study

    Directory of Open Access Journals (Sweden)

    EWA ŚNIEŻEK , MICHAŁ WIATR

    2015-12-01

    Full Text Available The aim of this study is to present the possibilities of the practical application of Osbahr’s balance sheet theory assumptions, as one of many possible attempts to close the information gap in the financial reporting of the twenty-first century. Wilhelm Osbahr, at the beginning of the 20th century, made an attempt to solve the problem of indicating the balance sheet values (the impact of balance sheet evaluation on the balance sheet items, from the point of view of an entrepreneur or business owner, at the same time clearly emphasizing the necessity to deal with the balance sheet structure through the prism of the objectives pursued by the company. Osbahr postulated highlighting any changes occurring in the economic structure of the company and its components, which do not result directly from its operating activities, and so to present them in the position called “adjustments”. This article uses the deductive method supported by literature studies and a case study method. The authors using the case study method confirm the possibility of using the described balance sheet theory in the current financial reporting based on actual data of the company ABC Ltd. They also show that a balance sheet which is presented according to the new reporting formula discloses new quality of information for the financial reporting users.

  18. Cell sheet technology and cell patterning for biofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Imen Elloumi; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo (Japan)

    2009-06-01

    We have developed cell sheet technology as a modern method for the fabrication of functional tissue-like and organ-like structures. This technology allows for a sheet of interconnected cells and cells in full contact with their natural extracellular environment to be obtained. A cell sheet can be patterned and composed according to more than one cell type. The key technology of cell sheet engineering is that a fabricated cell sheet can be harvested and transplanted utilizing temperature-responsive surfaces. In this review, we summarize different aspects of cell sheet engineering and provide a survey of the application of cell sheets as a suitable material for biofabrication and clinics. Moreover, since cell micropatterning is a key tool for cell sheet engineering, in this review we focus on the introduction of our approaches to cell micropatterning and cell co-culture to the principles of automation and how they can be subjected to easy robotics programming. Finally, efforts towards making cell sheet technology suitable for biofabrication and robotic biofabrication are also summarized. (topical review)

  19. Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation

    International Nuclear Information System (INIS)

    Clyne, John; Mininni, Pablo; Norton, Alan; Rast, Mark

    2007-01-01

    The ever increasing processing capabilities of the supercomputers available to computational scientists today, combined with the need for higher and higher resolution computational grids, has resulted in deluges of simulation data. Yet the computational resources and tools required to make sense of these vast numerical outputs through subsequent analysis are often far from adequate, making such analysis of the data a painstaking, if not a hopeless, task. In this paper, we describe a new tool for the scientific investigation of massive computational datasets. This tool (VAPOR) employs data reduction, advanced visualization, and quantitative analysis operations to permit the interactive exploration of vast datasets using only a desktop PC equipped with a commodity graphics card. We describe VAPORs use in the study of two problems. The first, motivated by stellar envelope convection, investigates the hydrodynamic stability of compressible thermal starting plumes as they descend through a stratified layer of increasing density with depth. The second looks at current sheet formation in an incompressible helical magnetohydrodynamic flow to understand the early spontaneous development of quasi two-dimensional (2D) structures embedded within the 3D solution. Both of the problems were studied at sufficiently high spatial resolution, a grid of 504 2 by 2048 points for the first and 1536 3 points for the second, to overwhelm the interactive capabilities of typically available analysis resources

  20. Thermal modeling of the forced convection Sandwich Greenhouse drying system for rubber sheets

    International Nuclear Information System (INIS)

    Tanwanichkul, B.; Thepa, S.; Rordprapat, W.

    2013-01-01

    Highlights: • Sandwich Greenhouse is designed for better quality and efficiency of rubber sheet drying. • Thermal models are developed to predict the convection heat transfer coefficient. • The models are validated and show good agreement with the actual experimental data. • The proposed greenhouse can maintain 40–60 °C, suitable for rubber sheet drying. • This greenhouse can bring down the moisture content to 2.8% in fewer than 2 days. - Abstract: In this paper, a novel “Sandwich Greenhouse” for rubber sheet drying is proposed. Using solar energy as the only heat source instead of traditional smoke house that requires firewood, it eliminates shortcomings such as skilled labor monitoring requirement, possible fire hazard, and darken-color rubber sheets due to soot particle contamination. Our greenhouse is specially designed to retain solar energy within, while minimizing the heat loss to the outside environment. The mathematical models are developed to predict the convection mass transfer coefficient and to study the thermal behavior during the drying of rubber sheets under our proposed greenhouse design. Validated with experimental observations, the models show good agreement with the actual experimental data. The experiment demonstrates an effectiveness of our proposed Sandwich Greenhouse, as the temperature of the rubber sheet is 15 °C and 5 °C higher than the ambient temperature during the daytime and nighttime, respectively. As a result, the moisture content of the rubber sheets can decrease from 36.4% to 2.8% in fewer than 2 days

  1. Theoretical analysis of sound transmission loss through graphene sheets

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Ni, Qing-Qing

    2014-01-01

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials

  2. Theoretical analysis of sound transmission loss through graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki, E-mail: natsuki@shinshu-u.ac.jp [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan); Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Ni, Qing-Qing [Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan)

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.

  3. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  4. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  5. Gate current for p+-poly PMOS devices under gate injection conditions

    NARCIS (Netherlands)

    Hof, A.J.; Holleman, J.; Woerlee, P.H.

    2001-01-01

    In current CMOS processing both n+-poly and p+-poly gates are used. The I-V –relationship and reliability of n+-poly devices are widely studied and well understood. Gate currents and reliability for p+-poly PMOS devices under gate injection conditions are not well understood. In this paper, the

  6. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    N Hatefi Kargan

    2013-09-01

    Full Text Available  In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.

  7. Modeling the Alzheimer Abeta17-42 fibril architecture: tight intermolecular sheet-sheet association and intramolecular hydrated cavities.

    Science.gov (United States)

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Tsai, Chung-Jun; Nussinov, Ruth

    2007-11-01

    We investigate Abeta(17-42) protofibril structures in solution using molecular dynamics simulations. Recently, NMR and computations modeled the Abeta protofibril as a longitudinal stack of U-shaped molecules, creating an in-parallel beta-sheet and loop spine. Here we study the molecular architecture of the fibril formed by spine-spine association. We model in-register intermolecular beta-sheet-beta-sheet associations and study the consequences of Alzheimer's mutations (E22G, E22Q, E22K, and M35A) on the organization. We assess the structural stability and association force of Abeta oligomers with different sheet-sheet interfaces. Double-layered oligomers associating through the C-terminal-C-terminal interface are energetically more favorable than those with the N-terminal-N-terminal interface, although both interfaces exhibit high structural stability. The C-terminal-C-terminal interface is essentially stabilized by hydrophobic and van der Waals (shape complementarity via M35-M35 contacts) intermolecular interactions, whereas the N-terminal-N-terminal interface is stabilized by hydrophobic and electrostatic interactions. Hence, shape complementarity, or the "steric zipper" motif plays an important role in amyloid formation. On the other hand, the intramolecular Abeta beta-strand-loop-beta-strand U-shaped motif creates a hydrophobic cavity with a diameter of 6-7 A, allowing water molecules and ions to conduct through. The hydrated hydrophobic cavities may allow optimization of the sheet association and constitute a typical feature of fibrils, in addition to the tight sheet-sheet association. Thus, we propose that Abeta fiber architecture consists of alternating layers of tight packing and hydrated cavities running along the fibrillar axis, which might be possibly detected by high-resolution imaging.

  8. Calculation of persistent currents in superconducting magnets

    Directory of Open Access Journals (Sweden)

    C. Völlinger

    2000-12-01

    Full Text Available This paper describes a semianalytical hysteresis model for hard superconductors. The model is based on the critical state model considering the dependency of the critical current density on the varying local field in the superconducting filaments. By combining this hysteresis model with numerical field computation methods, it is possible to calculate the persistent current multipole errors in the magnet taking local saturation effects in the magnetic iron parts into consideration. As an application of the method, the use of soft magnetic iron sheets (coil protection sheets mounted between the coils and the collars for partial compensation of the multipole errors during the ramping of the magnets is investigated.

  9. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration.

    Science.gov (United States)

    Gao, Hui; Li, Bei; Zhao, Lingzhou; Jin, Yan

    2015-01-01

    Periodontal regeneration is an important part of regenerative medicine, with great clinical significance; however, the effects of nanotopography on the functions of periodontal ligament (PDL) stem cells (PDLSCs) and on PDLSC sheet based periodontal regeneration have never been explored. Titania nanotubes (NTs) layered on titanium (Ti) provide a good platform to study this. In the current study, the influence of NTs of different tube size on the functions of PDLSCs was observed. Afterward, an ectopic implantation model using a Ti/cell sheets/hydroxyapatite (HA) complex was applied to study the effect of the NTs on cell sheet based periodontal regeneration. The NTs were able to enhance the initial PDLSC adhesion and spread, as well as collagen secretion. With the Ti/cell sheets/HA complex model, it was demonstrated that the PDLSC sheets were capable of regenerating the PDL tissue, when combined with bone marrow mesenchymal stem cell (BMSC) sheets and HA, without the need for extra soluble chemical cues. Simultaneously, the NTs improved the periodontal regeneration result of the ectopically implanted Ti/cell sheets/HA complex, giving rise to functionally aligned collagen fiber bundles. Specifically, much denser collagen fibers, with abundant blood vessels as well as cementum-like tissue on the Ti surface, which well-resembled the structure of natural PDL, were observed in the NT5 and NT10 sample groups. Our study provides the first evidence that the nanotopographical cues obviously influence the functions of PDLSCs and improve the PDLSC sheet based periodontal regeneration size dependently, which provides new insight to the periodontal regeneration. The Ti/cell sheets/HA complex may constitute a good model to predict the effect of biomaterials on periodontal regeneration.

  10. Resistance spot weldability of 11Cr–ferritic/martensitic steel sheets

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Yano, Yasuhide; Ito, Masahiro

    2012-01-01

    Resistance spot welding of 11Cr–0.4Mo–2W, V, Nb ferritic/martensitic steel sheets with different thicknesses was examined to develop a manufacturing technology for a fast reactor fuel subassembly with an inner duct structure. In the spot welding, welding current, electrode force, welding time and holding time were varied as welding parameters to investigate the appropriate welding conditions. Welding conditions under which spot weld joints did not have either crack or void defects in the nugget could be found when the electrode force was increased to 9.8 kN. It was also found that the electrode cap with a longer tip end length was effective for preventing weld defect formations. Strength of the spot welded joint was characterized from micro hardness and shear tension tests. In addition, the ductile-to-brittle transition temperature of the spot welded joint was measured by Charpy impact tests with specimens that had notches in the welded zone.

  11. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    NARCIS (Netherlands)

    Helsen, Michiel M.; Van De Wal, Roderik S.W.; Reerink, Thomas J.; Bintanja, Richard; Madsen, Marianne S.; Yang, Shuting; Li, Qiang; Zhang, Qiong

    2017-01-01

    The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model ECEarth by

  12. Energy balance in current sheets: From Petschek to gravity driven reconnection

    International Nuclear Information System (INIS)

    Mercier, C.; Heyvaerts, J.

    1980-01-01

    It has been shown earlier that energy balance processes play a very important role in the determination of the reconnection regime in the central diffusive region of a steady Petschek flow (usually considered elsewhere as isothermal and incompressible): as a consequence of the plasma thermal properties, abrupt transitions in the reconnection regime may occur for special external conditions. The regime becomes then a dynamical one, and it was suggested that onset of plasma microturbulence may result and act as a primary triggering mechanism in solar flares. In this paper we will reexamine the problem of onset of such dynamical transition and conclude that plasma microturbulence does not appear in a straightforward way. However it is possible that the canonical Petschek regime may evolute into a new one in which the dissipative sheet is no longer infinitesimal with respect to the dimensions of the structure, and in which gravity plays an important role. Flare triggering, if related to the reconnection regime, must then proceed by more complex processes, possibly related to tearing mode dynamics, or to more global properties of the magnetic structure of the active region. (orig.)

  13. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment; Yoyu Zn-Al-Mg kei gokin mekki koban no sokushin fushoku kankyoka ni okeru taishokusei toi boshoku kiko

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, A.; Izutani, H.; Tsujimura, T.; Ando, A.; Kittaka, T. [NKK Corp., Tokyo (Japan)

    2000-08-01

    Corrosion behavior of hot-dip Zn-6%Al 0-3%Mg alloy coated steel sheets in cyclic corrosion test (CCT) has been investigated. The corrosion resistance was improved with increasing Mg content in the coating layer, and the highest corrosion resistance was observed at 3% Mg. In Zn-6%Al-3%Mg alloy coated steel sheet, the formations of zinc carbonate hydroxide and zinc oxide were suppressed for longer duration compared with Zn-0.2%Al and Zn-4.5%Al-0.l%Mg alloy coated steel sheets. As a result, zinc chloride hydroxide existed stable on the surface of the coating layer. From the polarization behaviors in 5% NaCl aqueous solution after CCT, it was found that the corrosion current density of Zn-6%At-3%Mg alloy coated steel sheet was much smaller than those of Zn-0.2%Al and Zn-4.5%Al-0.1%Mg alloy coated steel sheets. As zinc carbonate hydroxide and zinc oxide had poor adhesion to the coating layer and had porous structures, these corrosion products were considered to have little protective action for the coating layer. Therefore, it was concluded that Mg suppressed the formation of such nonprotective corrosion products. resulting in the remarkable improvement of corrosion resistance. (author)

  14. Intermittent ice sheet discharge events in northeastern North America during the last glacial period

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Brian D.; Mysak, Lawrence A.; Wang, Zhaomin [McGill University, Earth System Modelling Group, Department of Atmospheric and Oceanic Sciences, Montreal, QC (Canada)

    2006-02-01

    The 3D ice sheet model of Marshall and Clarke, which includes both dynamics and thermodynamics, is used to successfully simulate millennial-scale oscillations within an ice sheet under steady external forcing. Such internal oscillations are theorized to be the main cause of quasi-periodic large-scale ice discharges known as Heinrich Events. An analysis of the mechanisms associated with multi-millennial oscillations of the Laurentide Ice Sheet, including the initiation and termination of sliding events, is performed. This analysis involves an examination of the various heat sources and sinks that affect the basal ice temperature, which in turn determines the nature of the ice sheet movement. The ice sheet thickness and surface slope, which affect the pressure-melting point and strain heating, respectively, are found to be critical for the formation and development of fast moving ice streams, which lead to large iceberg calving. Although the main provenance for Heinrich Events is thought to be from Hudson Bay and Hudson Strait, we show that the more northerly regions around Lancaster Strait and Baffin Island may also be important sources for ice discharges during the last glacial period. (orig.)

  15. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    Science.gov (United States)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin H.

    2017-12-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  16. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    Science.gov (United States)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin

    2017-01-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  17. Collagen sheet dressings for cutaneous lesions of toxic epidermal necrolysis

    Directory of Open Access Journals (Sweden)

    S Bhattacharya

    2011-01-01

    Full Text Available Toxic epidermal necrolysis (TEN is associated with a significant mortality of 30-50% and long-term sequelae. Treatment includes early admission to a burn unit, where management with precise fluid, electrolyte, protein, and energy supplementation, moderate mechanical ventilation, and expert wound care can be provided. Specific treatment with immunosuppressive drugs or immunoglobulins did not show an improved outcome in most studies and remains controversial. We have treated the cutaneous lesions of seven patients of TEN with collagen sheet dressings and have found a significant reduction in morbidity. The sheets are a one-time dressing, easy to apply and they reduce fluid loss, prevent infection, reduce pain, avoid repeated dressings and gradually peal off as the underlying lesions heal.

  18. Contact-free sheet resistance determination of large area graphene layers by an open dielectric loaded microwave cavity

    International Nuclear Information System (INIS)

    Shaforost, O.; Wang, K.; Adabi, M.; Guo, Z.; Hanham, S.; Klein, N.; Goniszewski, S.; Gallop, J.; Hao, L.

    2015-01-01

    A method for contact-free determination of the sheet resistance of large-area and arbitrary shaped wafers or sheets coated with graphene and other (semi) conducting ultrathin layers is described, which is based on an open dielectric loaded microwave cavity. The sample under test is exposed to the evanescent resonant field outside the cavity. A comparison with a closed cavity configuration revealed that radiation losses have no significant influence of the experimental results. Moreover, the microwave sheet resistance results show good agreement with the dc conductivity determined by four-probe van der Pauw measurements on a set of CVD samples transferred on quartz. As an example of a practical application, correlations between the sheet resistance and deposition conditions for CVD graphene transferred on quartz wafers are described. Our method has a high potential as measurement standard for contact-free sheet resistance measurement and mapping of large area graphene samples

  19. Basin-scale partitioning of Greenland ice sheet mass balance components (2007-2011)

    DEFF Research Database (Denmark)

    Andersen, M.L.; Stenseng, Lars; Skourup, Henriette

    2015-01-01

    The current deficit in Greenland ice sheet mass balance is due to both a decrease in surface mass balance (SMB) input and an increase in ice discharge (D) output. While SMB processes are beginning to be well captured by observationally-constrained climate modeling, insight into D is relatively...... of the gate. Using a 1961-1990 reference climatology SMB field from the MAR regional climate model, we quantify ice sheet mass balance within eighteen basins. We find a 2007-2011 mean D of 515±57 Gtyr-1. We find a 2007-2011 mean total mass balance of -262±21 Gtyr-1, which is equal to a 0.73 mm yr-1 global sea...... limited. We use InSAR-derived velocities, in combination with ice thickness observations, to quantify the mass flux (F) across a flux perimeter around the ice sheet at ~1700 m elevation. To quantify D, we correct F for SMB, as well as changes in volume due to ice dynamics, in the area downstream...

  20. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets.

    Science.gov (United States)

    Wongin, Sopita; Waikakul, Saranatra; Chotiyarnwong, Pojchong; Siriwatwechakul, Wanwipa; Viravaidya-Pasuwat, Kwanchanok

    2018-03-01

    Cell sheet technology is applied to human articular chondrocytes to construct a tissue-like structure as an alternative treatment for cartilage defect. The effect of a gelatin manipulator, as a cell sheet transfer system, on the quality of the chondrocyte sheets was investigated. The changes of important chondrogenic markers and stress fibers, resulting from the cell sheet manipulation, were also studied. The chondrocyte cell sheets were constructed with patient-derived chondrocytes using a temperature-responsive polymer and a gelatin manipulator as a transfer carrier. The properties of the cell sheets, including sizes, expression levels of collagen type II and I, and the localization of the stress fibers, were assessed and compared with those of the cell sheets harvested without the gelatin manipulator. Using the gelatin manipulator, the original size of the chondrocyte cell sheets was retained with abundant stress fibers, but with a decrease in the expression of collagen type II. Without the gelatin manipulator, although the cell shrinkage occurred, the cell sheet with suppressed stress fiber formation showed significantly higher levels of collagen type II. These results support our observations that stress fiber formation in chondrocyte cell sheets affected the production of chondrogenic markers. These densely packed tissue-like structures possessed a good chondrogenic activity, indicating their potential for use in autologous chondrocyte implantation to treat cartilage defects.

  1. Current Percolation in Medium with Boundaries under Quantum Hall Effect Conditions

    Directory of Open Access Journals (Sweden)

    M. U. Malakeeva

    2012-01-01

    Full Text Available The current percolation has been considered in the medium with boundaries under quantum Hall effect conditions. It has been shown that in that case the effective Hall conductivity has a nonzero value due to percolation of the Hall current through the finite number of singular points (in our model these are corners at the phase joints.

  2. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    NARCIS (Netherlands)

    Helsen, Michiel M.; van de Wal, Roderik S. W.; Reerink, Thomas J.; Bintanja, Richard; Madsen, Marianne S.; Yang, Shuting; Li, Qiang; Zhang, Qiong

    2017-01-01

    The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by

  3. On the reconstruction of palaeo-ice sheets: Recent advances and future challenges

    Science.gov (United States)

    Stokes, Chris R.; Tarasov, Lev; Blomdin, Robin; Cronin, Thomas M.; Fisher, Timothy G.; Gyllencreutz, Richard; Hattestrand, Clas; Heyman, Jakob; Hindmarsh, Richard C. A.; Hughes, Anna L. C.; Jakobsson, Martin; Kirchner, Nina; Livingstone, Stephen J.; Margold, Martin; Murton, Julian B.; Noormets, Riko; Peltier, W. Richard; Peteet, Dorothy M.; Piper, David J. W.; Preusser, Frank; Renssen, Hans; Roberts, David H.; Roche, Didier M.; Saint-Ange, Francky; Stroeven, Arjen P.; Teller, James T.

    2015-01-01

    Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus

  4. Settlement during vibratory sheet piling

    NARCIS (Netherlands)

    Meijers, P.

    2007-01-01

    During vibratory sheet piling quite often the soil near the sheet pile wall will settle. In many cases this is not a problem. For situations with houses, pipelines, roads or railroads at relative short distance these settlements may not be acceptable. The purpose of the research described in this

  5. Experimental Investigation of the Neutral sheet Profile During Magnetic Reconnection

    International Nuclear Information System (INIS)

    Trintchouk, F.; Ji, H.; Yamada, M.; Kulsrud, R.; Hsu, S.; Carter, T.

    1999-01-01

    During magnetic reconnection, a ''neutral sheet'' current is induced, heating the plasma. The resultant plasma thermal pressure forms a stationary equilibrium with the opposing magnetic fields. The reconnection layer profile holds significant clues about the physical mechanisms which control reconnection. On the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)], a quasi steady-state and axisymmetric neutral sheet profile has been measured precisely using a magnetic probe array with spatial resolution equal to one quarter of the ion gyro-radius. It was found that the reconnecting field profile fits well with a Harris-type profile [E. G. Harris, Il Nuovo Cimento 23, 115 (1962)], B(x) approximately tanh(x/delta). This agreement is remarkable since the Harris theory does not take into account reconnection and associated electric fields and dissipation. An explanation for this agreement is presented. The sheet thickness delta is found to be approximately 0.4 times the ion skin depth, which agrees with a generalized Harris theory incorporating non-isothermal electron and ion temperatures and finite electric field. The detailed study of additional local features of the reconnection region is also presented

  6. Modelling of rational economic proportions of the balance sheet structure of the petrochemical enterprises

    Directory of Open Access Journals (Sweden)

    G. S. Tsvetkova

    2016-01-01

    Full Text Available The paper provides the assessment of the balance sheet structure of rival companies of a petrochemical complex of the Russian Federation. J. Aubert-Kriye's method is chosen as a main methodical tool. Practical demonstration of the method is offered on the example of the enterprises of petrochemical business of PJSC “Sibur”, PJSC “Nizhnekamskneftekhim” and JSC “Sterlitamak Petrochemical Plant”. The analysis of balance sheets showed that the enterprises have elements of irrational structure. “Sibur” differs in a low share of owner’s equity and a high share of long-term liabilities. “Nizhnekamskneftekhim” is characterized by the high share of owner’s equity which use for the purposes of development of the company and it is more expensive in comparison with liabilities. “Sterlitamak Petrochemical Plant” has excessive values of liquidity rates that demonstrates accumulation of a money, their derivation in receivables. At the same time, processes of ongoing investment in upgrade of the equipment and expansion of capacities require cause necessity of support of a rational balance sheet structure of the enterprises of a petrochemical complex. On the example of “Nizhnekamskneftekhim” modeling of a rational balance sheet structure of the company is carried out. The sequence of calculations included performing diagnostics of structural distribution of current assets and sources of means; determination of structure of financial and active elements of the entity; establishment of permissible limit of change of basic proportions and ratios by criterion of solvency and financial stability. Modeling of structure of a liability and current assets on the basis of the J. Aubert-Kriye's method showed a possibility of improvement of economic indicators of “Nizhnekamskneftekhim”. Further determination of range of tolerance for elements of the liabilities and current assets will allow to provide balance of economic proportions and

  7. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    Science.gov (United States)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  8. Mechanical characterization and constitutive modeling of Mg alloy sheets

    International Nuclear Information System (INIS)

    Mekonen, M. Nebebe; Steglich, D.; Bohlen, J.; Letzig, D.; Mosler, J.

    2012-01-01

    Highlights: ► Material characterization of the Mg alloys AZ31 and ZE10 at elevated temperatures. ► Distortion of the yield locus does not depend on the strain rate. ► Novel constitutive model suitable for the analysis of sheet forming of magnesium. ► Strain-dependent r-values are included within the model. ► The model is thermodynamically consistent and accounts for distortional hardening. - Abstract: In this paper, an experimental mechanical characterization of the magnesium alloys ZE10 and AZ31 is performed and a suitable constitutive model is established. The mechanical characterization is based on uniaxial tensile tests. In order to avoid poor formability at room temperature, the tests were conducted at elevated temperature (200 °C). The uniaxial tensile tests reveal sufficient ductility allowing sheet forming processes at this temperature. The differences in yield stresses and plastic strain ratios (r-values) confirm the anisotropic response of the materials under study. The constitutive model is established so that the characteristic mechanical features observed in magnesium alloys such as anisotropy and compression-tension asymmetry can be accommodated. This model is thermodynamically consistent, incorporates rate effect, is formulated based on finite strain plasticity theory and is applicable in sheet forming simulations of magnesium alloys. More precisely, a model originally proposed by Cazacu and Barlat in 2004 and later modified to account for the evolution of the material anisotropy is rewritten in a thermodynamically consistent framework. The calibrated constitutive model is shown to capture the characteristic mechanical features observed in magnesium alloy sheets.

  9. 49 CFR 1243.2 - Condensed balance sheet.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Condensed balance sheet. 1243.2 Section 1243.2... § 1243.2 Condensed balance sheet. Commencing with reports for the 3 months beginning January 1, 1972, and... hereby, required to compile and file quarterly reports of balance sheet items in accordance with...

  10. Bessel light sheet structured illumination microscopy

    Science.gov (United States)

    Noshirvani Allahabadi, Golchehr

    Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in

  11. Current exposure method for CCP’s under Basel III

    Directory of Open Access Journals (Sweden)

    Antonie Kotzé

    2013-04-01

    Full Text Available Exposure-at-default is one of the most interesting and most difficult parameters to estimate in counterparty credit risk. Basel I offered only the non-internal Current Exposure Method for estimating this quantity whilst Basel II further introduced the Standardized Method and an Internal Model Method. Under new Basel III rules a central counterparty is defined as being a financial institution. New principles set out by the Basel Committee on Banking Supervision forces Central Counterparties in using the Current Exposure Method when estimating the credit exposures to Clearing Member banks notwithstanding its shortcomings. The Current Exposure Method relies on the Value-at-Risk methodology and its characteristics are discussed in this note. We will particularly investigate exposures to SAFCOM, the South African clearing house and point to a mathematical discrepancy on how netting is effected through the Basel accord.

  12. Whose Balance Sheet is this? Neural Networks for Banks' Pattern Recognition

    NARCIS (Netherlands)

    Leon Rincon, Carlos; Moreno, José Fernando; Cely, Jorge

    2017-01-01

    The balance sheet is a snapshot that portraits the financial position of a firm at a specific point of time. Under the reasonable assumption that the financial position of a firm is unique and representative, we use a basic artificial neural network pattern recognition method on Colombian banks’

  13. Tube sheet design for PFBR steam generator

    International Nuclear Information System (INIS)

    Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1991-01-01

    Top and bottom tube sheets of PFBR Steam Generators have been analysed with 3D and axisymmetric models using CASTEM Programs. Analysis indicates that the effects of piping reactions at the inlet/outlet nozzles on the primary stresses in the tube sheets are negligible and the asymmetricity of the deformation pattern introduced in the tube sheet by the presence of inlet/outlet and manhole nozzles is insignificant. The minimum tube sheet thicknesses for evaporator and reheater are 135 mm and 75 mm respectively. Further analysis has indicated the minimum fillet radius at the junction of tube sheet and dished end should be 20 mm. Simplified methodology has been developed to arrive at the number of thermal baffles required to protect the tube sheet against fatigue damage due to thermal transient. This method has been applied to PFBR steam generators to determine the required number of thermal baffles. For protecting the bottom tube sheet of evaporator against the thermal shock due to feed water and secondary pump trip, one thermal shield is found to be sufficient. Further analysis is required to decide upon the actual number to take care of the severe thermal transient, following the event of sudden dumping of water/steam, immediately after the sodium-water reaction. (author)

  14. 17 CFR 210.5-02 - Balance sheets.

    Science.gov (United States)

    2010-04-01

    ... customers at the date of the balance sheet. Include a general description of the prerequisites for billing... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.5-02... Balance sheets. The purpose of this rule is to indicate the various line items and certain additional...

  15. Interpretation of magnetosonic waves in the boundary regions of the plasma sheet as seen by the ISEE 3 spacecraft

    International Nuclear Information System (INIS)

    Smith, P.R.; Hopcraft, K.I.; Murphy, N.

    1987-01-01

    Recent calculations that derive the normal-mode spectrum of an idealized magnetic current sheet are discussed. The Harris neutral-sheet equilibrium is perturbed with an ideal MHD displacement. The longitudinal polarization of the fundamental modes is calculated as a function of the position in the sheet. Using data from the energetic-ion instrument aboard ISEE 3, the thickness of the plasma sheet in the deep geomagnetic tail is estimated. This parameter enables a quantitative comparison between the boundary oscillations reported by Tsurutani and Smith (1984) and the normal mode oscillations derived by Hopcraft and Smith (1985) to be performed. The normal-mode solutions are found to be consistent with observation. Further aspects of the MHD wave spectrum that may lead to an observable variation of the mode character across the boundary of the plasma sheet are pointed out. 12 references

  16. Initiation and long-term instability of the East Antarctic Ice Sheet.

    Science.gov (United States)

    Gulick, Sean P S; Shevenell, Amelia E; Montelli, Aleksandr; Fernandez, Rodrigo; Smith, Catherine; Warny, Sophie; Bohaty, Steven M; Sjunneskog, Charlotte; Leventer, Amy; Frederick, Bruce; Blankenship, Donald D

    2017-12-13

    Antarctica's continental-scale ice sheets have evolved over the past 50 million years. However, the dearth of ice-proximal geological records limits our understanding of past East Antarctic Ice Sheet (EAIS) behaviour and thus our ability to evaluate its response to ongoing environmental change. The EAIS is marine-terminating and grounded below sea level within the Aurora subglacial basin, indicating that this catchment, which drains ice to the Sabrina Coast, may be sensitive to climate perturbations. Here we show, using marine geological and geophysical data from the continental shelf seaward of the Aurora subglacial basin, that marine-terminating glaciers existed at the Sabrina Coast by the early to middle Eocene epoch. This finding implies the existence of substantial ice volume in the Aurora subglacial basin before continental-scale ice sheets were established about 34 million years ago. Subsequently, ice advanced across and retreated from the Sabrina Coast continental shelf at least 11 times during the Oligocene and Miocene epochs. Tunnel valleys associated with half of these glaciations indicate that a surface-meltwater-rich sub-polar glacial system existed under climate conditions similar to those anticipated with continued anthropogenic warming. Cooling since the late Miocene resulted in an expanded polar EAIS and a limited glacial response to Pliocene warmth in the Aurora subglacial basin catchment. Geological records from the Sabrina Coast shelf indicate that, in addition to ocean temperature, atmospheric temperature and surface-derived meltwater influenced East Antarctic ice mass balance under warmer-than-present climate conditions. Our results imply a dynamic EAIS response with continued anthropogenic warming and suggest that the EAIS contribution to future global sea-level projections may be under-estimated.

  17. A statistical study on the correlations between plasma sheet and solar wind based on DSP explorations

    Directory of Open Access Journals (Sweden)

    G. Q. Yan

    2005-11-01

    Full Text Available By using the data of two spacecraft, TC-1 and ACE (Advanced Composition Explorer, a statistical study on the correlations between plasma sheet and solar wind has been carried out. The results obtained show that the plasma sheet at geocentric distances of about 9~13.4 Re has an apparent driving relationship with the solar wind. It is found that (1 there is a positive correlation between the duskward component of the interplanetary magnetic field (IMF and the duskward component of the geomagnetic field in the plasma sheet, with a proportionality constant of about 1.09. It indicates that the duskward component of the IMF can effectively penetrate into the near-Earth plasma sheet, and can be amplified by sunward convection in the corresponding region at geocentric distances of about 9~13.4 Re; (2 the increase in the density or the dynamic pressure of the solar wind will generally lead to the increase in the density of the plasma sheet; (3 the ion thermal pressure in the near-Earth plasma sheet is significantly controlled by the dynamic pressure of solar wind; (4 under the northward IMF condition, the ion temperature and ion thermal pressure in the plasma sheet decrease as the solar wind speed increases. This feature indicates that plasmas in the near-Earth plasma sheet can come from the magnetosheath through the LLBL. Northward IMF is one important condition for the transport of the cold plasmas of the magnetosheath into the plasma sheet through the LLBL, and fast solar wind will enhance such a transport process.

  18. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  19. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    Science.gov (United States)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  20. Pressure balance between lobe and plasma sheet

    International Nuclear Information System (INIS)

    Baumjohann, W.; Paschmann, G.; Luehr, H.

    1990-01-01

    Using eight months of AMPTE/IRM plasma and magnetic field data, the authors have done a statistical survey on the balance of total (thermal and magnetic) pressure in the Earth's plasma sheet and tail lobe. About 300,000 measurements obtained in the plasma sheet and the lobe were compared for different levels of magnetic activity as well as different distances from the Earth. The data show that lobe and plasma sheet pressure balance very well. Even in the worst case they do not deviate by more than half of the variance in the data itself. Approximately constant total pressure was also seen during a quiet time pass when IRM traversed nearly the whole magnetotail in the vertical direction, from the southern hemisphere lobe through the neutral sheet and into the northern plasma sheet boundary layer