WorldWideScience

Sample records for underlying community dynamics

  1. Belowground Water Dynamics Under Contrasting Annual and Perennial Plant Communities in an Agriculturally-Dominated Landscape

    Science.gov (United States)

    Mora, G.; Asbjornsen, H.; Helmers, M. J.; Shepherd, G. W.

    2005-12-01

    The conversion from grasslands and forests to row-crops in the Midwest has affected soil water cycling because plant characteristics are one of the main parameters determining soil storage capacity, infiltration rates, and surface runoff. Little is known, however, about the extent of modification of soil water dynamics under different plant communities. To address this important issue, we are documenting soil water dynamics under contrasting perennial and annual plant communities in an agriculturally-dominated landscape. Measurements of soil moisture and depths of uptake of source water were obtained for six vegetative cover types (corn and soybean field, brome pasture, degraded savanna, restored savanna, and restored prairie) at the Neal Smith National Wildlife Refuge in Prairie City, Iowa. The depths of uptake of soil water were determined on the basis of oxygen isotope composition of soil water and stem water. Measurements were performed once a month during an entire growing season. Preliminary results indicate that soil water present under the different vegetation types show similar profiles with depth during the dry months. Soil water in the upper 5 cm is enriched in oxygen-18 by about 5 per mil relative to soil water at 100 cm. Our preliminary results also indicate that the isotopic composition of stem water from annual plants is typically higher by about 2 per mil relative to that of stem water from perennial plants during the dry period. Whereas the oxygen isotopic composition for corn stem water is -5.49 per mil, that for elm and oak stem water is -7.62 and -7.51 per mil, respectively. The higher isotope values for corn suggest that annual crop plants are withdrawing water from shallower soil horizons relative to perennial plants. Moreover, our preliminary data suggest lower moisture content in soil under annual plant cover. We propose that the presence of deeper roots in the perennial vegetation allows these plants to tap into deeper water sources when

  2. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes

    Directory of Open Access Journals (Sweden)

    Florine Degrune

    2017-06-01

    Full Text Available Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage either with or without crop residue retention. Soil samples were collected over the growing season of two crops (Vicia faba and Triticum aestivum below the seedbed (15–20 cm. Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional

  3. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes.

    Science.gov (United States)

    Degrune, Florine; Theodorakopoulos, Nicolas; Colinet, Gilles; Hiel, Marie-Pierre; Bodson, Bernard; Taminiau, Bernard; Daube, Georges; Vandenbol, Micheline; Hartmann, Martin

    2017-01-01

    Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil microbiome, we have a limited understanding of the temporal dynamics of these effects. Here, we used high-throughput sequencing of bacterial and fungal ribosomal markers to explore changes in soil microbial community structure under two contrasting tillage regimes (conventional and reduced tillage) either with or without crop residue retention. Soil samples were collected over the growing season of two crops ( Vicia faba and Triticum aestivum ) below the seedbed (15-20 cm). Tillage, crop and growing stage were significant determinants of microbial community structure, but the impact of tillage showed only moderate temporal dependency. Whereas the tillage effect on soil bacteria showed some temporal dependency and became less strong at later growing stages, the tillage effect on soil fungi was more consistent over time. Crop residue retention had only a minor influence on the community. Six years after the conversion from conventional to reduced tillage, soil moisture contents and nutrient levels were significantly lower under reduced than under conventional tillage. These changes in edaphic properties were related to specific shifts in microbial community structure. Notably, bacterial groups featuring copiotrophic lifestyles or potentially carrying the ability to degrade more recalcitrant compounds were favored under conventional tillage, whereas

  4. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, Emily B.; Gentry, Terry J. [Texas A and M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Forrest, Andrea K.; Holtzapple, Mark T. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Wilkinson, Heather H.; Ebbole, Daniel J. [Texas A and M Univ., College Station, TX (United States). Dept. of Plant Pathology and Microbiology; Malfatti, Stephanie A.; Tringe, Susannah G. [DOE Joint Genome Institute, Walnut Creek, CA (United States)

    2010-09-15

    The carboxylate platform utilizes a mixed microbial community to convert lignocellulosic biomass into chemicals and fuels. While much of the platform is well understood, little is known about its microbiology. Mesophilic (40 C) and thermophilic (55 C) fermentations employing a sorghum feedstock and marine sediment inoculum were profiled using 16S rRNA tag-pyrosequencing over the course of a 30-day incubation. The contrasting fermentation temperatures converted similar amounts of biomass, but the mesophilic community was significantly more productive, and the two temperatures differed significantly with respect to propionic and butyric acid production. Pyrotag sequencing revealed the presence of dynamic communities that responded rapidly to temperature and changed substantially over time. Both temperatures were dominated by bacteria resembling Clostridia, but they shared few taxa in common. The species-rich mesophilic community harbored a variety of Bacteroidetes, Actinobacteria, and {gamma}-Proteobacteria, whereas the thermophilic community was composed mainly of Clostridia and Bacilli. Despite differences in composition and productivity, similar patterns of functional class dynamics were observed. Over time, organisms resembling known cellulose degraders decreased in abundance, while organisms resembling known xylose degraders increased. Improved understanding of the carboxylate platform's microbiology will help refine platform performance and contribute to our growing knowledge regarding biomass conversion and biofuel production processes. (orig.)

  5. Dynamics of bacterial communities in soils of rainforest fragments under restoration processes

    Science.gov (United States)

    Vasconcellos, Rafael; Zucchi, Tiago; Taketani, Rodrigo; Andreote, Fernando; Cardoso, Elke

    2014-05-01

    The Brazilian Atlantic Forest ("Mata Atlântica") has been largely studied due to its valuable and unique biodiversity. Unfortunately, this priceless ecosystem has been widely deforested and only 10% of its original area still remains. Many projects have been successfully implemented to restore its fauna and flora but there is a lack of information on how the soil bacterial communities respond to this process. Thus, our aim was to evaluate the influence of soil attributes and seasonality on soil bacterial communities of rainforest fragments under restoration processes. Soil samples from a native site and two ongoing restoration fragments with different ages of implementation (10 and 20 years) were collected and assayed by using culture-independent approaches. Our findings demonstrate that seasonality barely altered the bacterial distribution whereas soil chemical attributes and plant diversity highly influenced the bacterial community structure during the restoration process. Moreover, the strict relationship observed for two bacterial groups, Solibacteriaceae and Verrucomicrobia, one with the youngest (10 years) and the other with the oldest (native) site suggests their use as bioindicators of soil quality and soil recovery of forest fragments under restoration.

  6. Bacterial community dynamics during cold storage of minced meat packaged under modified atmosphere and supplemented with different preservatives.

    Science.gov (United States)

    Stoops, J; Ruyters, S; Busschaert, P; Spaepen, R; Verreth, C; Claes, J; Lievens, B; Van Campenhout, L

    2015-06-01

    Since minced meat is very susceptible for microbial growth, characterisation of the bacterial community dynamics during storage is important to optimise preservation strategies. The purpose of this study was to investigate the effect of different production batches and the use of different preservatives on the composition of the bacterial community in minced meat during 9 days of cold storage under modified atmosphere (66% O2, 25% CO2 and 9% N2). To this end, both culture-dependent (viable aerobic and anaerobic counts) and culture-independent (454 pyrosequencing) analyses were performed. Initially, microbial counts of fresh minced meat showed microbial loads between 3.5 and 5.0 log cfu/g. The observed microbial diversity was relatively high, and the most abundant bacteria differed among the samples. During storage an increase of microbial counts coincided with a dramatic decrease in bacterial diversity. At the end of the storage period, most samples showed microbial counts above the spoilage level of 7 log cfu/g. A relatively similar bacterial community was obtained regardless of the manufacturing batch and the preservative used, with Lactobacillus algidus and Leuconostoc sp. as the most dominant microorganisms. This suggests that both bacteria played an important role in the spoilage of minced meat packaged under modified atmosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Community dynamics and metabolite target analysis of spontaneous, backslopped barley sourdough fermentations under laboratory and bakery conditions.

    Science.gov (United States)

    Harth, Henning; Van Kerrebroeck, Simon; De Vuyst, Luc

    2016-07-02

    Barley flour is not commonly used for baking because of its negative effects on bread dough rheology and loaf volume. However, barley sourdoughs are promising ingredients to produce improved barley-based breads. Spontaneous barley sourdough fermentations were performed through backslopping (every 24h, 10days) under laboratory (fermentors, controlled temperature of 30°C, high dough yield of 400) and bakery conditions (open vessels, ambient temperature of 17-22°C, low dough yield of 200), making use of the same batch of flour. They differed in pH evolution, microbial community dynamics, and lactic acid bacteria (LAB) species composition. After ten backsloppings, the barley sourdoughs were characterized by the presence of the LAB species Lactobacillus fermentum, Lactobacillus plantarum, and Lactobacillus brevis in the case of the laboratory productions (fast pH decrease, pHbakery productions (slow pH decrease, pH4.0 after eight backslopping steps). In both sourdough productions, Saccharomyces cerevisiae was the sole yeast species. Breads made with wheat flour supplemented with 20% (on flour basis) barley sourdough displayed a firmer texture, a smaller volume, and an acceptable flavour compared with all wheat-based reference breads. Hence, representative strains of the LAB species mentioned above, adapted to the environmental conditions they will be confronted with, may be selected as starter cultures for the production of stable barley sourdoughs and flavourful breads. Copyright © 2016. Published by Elsevier B.V.

  8. Temporal dynamics of soil microbial communities under different moisture regimes: high-throughput sequencing and bioinformatics analysis

    Science.gov (United States)

    Semenov, Mikhail; Zhuravleva, Anna; Semenov, Vyacheslav; Yevdokimov, Ilya; Larionova, Alla

    2017-04-01

    Recent climate scenarios predict not only continued global warming but also an increased frequency and intensity of extreme climatic events such as strong changes in temperature and precipitation regimes. Microorganisms are well known to be more sensitive to changes in environmental conditions than to other soil chemical and physical parameters. In this study, we determined the shifts in soil microbial community structure as well as indicative taxa in soils under three moisture regimes using high-throughput Illumina sequencing and range of bioinformatics approaches for the assessment of sequence data. Incubation experiments were performed in soil-filled (Greyic Phaeozems Albic) rhizoboxes with maize and without plants. Three contrasting moisture regimes were being simulated: 1) optimal wetting (OW), a watering 2-3 times per week to maintain soil moisture of 20-25% by weight; 2) periodic wetting (PW), with alternating periods of wetting and drought; and 3) constant insufficient wetting (IW), while soil moisture of 12% by weight was permanently maintained. Sampled fresh soils were homogenized, and the total DNA of three replicates was extracted using the FastDNA® SPIN kit for Soil. DNA replicates were combined in a pooled sample and the DNA was used for PCR with specific primers for the 16S V3 and V4 regions. In order to compare variability between different samples and replicates within a single sample, some DNA replicates treated separately. The products were purified and submitted to Illumina MiSeq sequencing. Sequence data were evaluated by alpha-diversity (Chao1 and Shannon H' diversity indexes), beta-diversity (UniFrac and Bray-Curtis dissimilarity), heatmap, tagcloud, and plot-bar analyses using the MiSeq Reporter Metagenomics Workflow and R packages (phyloseq, vegan, tagcloud). Shannon index varied in a rather narrow range (4.4-4.9) with the lowest values for microbial communities under PW treatment. Chao1 index varied from 385 to 480, being a more flexible

  9. Wildlife Population Dynamics in Human-Dominated Landscapes under Community-Based Conservation: The Example of Nakuru Wildlife Conservancy, Kenya.

    Science.gov (United States)

    Ogutu, Joseph O; Kuloba, Bernard; Piepho, Hans-Peter; Kanga, Erustus

    2017-01-01

    increased overall whereas that of herbivores first increased from 1996 to 2006 and then levelled off thereafter. Aggregate herbivore biomass increased linearly with increasing cumulative wet season rainfall. The densities of the 30 most abundant species were either strongly positively or negatively correlated with cumulative past rainfall, most commonly with the early wet season component. The collaborative wildlife conservation and management initiatives undertaken on the mosaic of private, communal and public lands were thus associated with increase or no decrease in numbers of 32 and decrease in numbers of 12 of the 44 species. Despite the decline by some species, effective community-based conservation is central to the future of wildlife in the NWC and other rangelands of Kenya and beyond and is crucially dependent on the good will, effective engagement and collective action of local communities, working in partnerships with various organizations, which, in NWC, operated under the umbrella of the Nakuru Wildlife Forum.

  10. Wildlife Population Dynamics in Human-Dominated Landscapes under Community-Based Conservation: The Example of Nakuru Wildlife Conservancy, Kenya.

    Directory of Open Access Journals (Sweden)

    Joseph O Ogutu

    carnivores increased overall whereas that of herbivores first increased from 1996 to 2006 and then levelled off thereafter. Aggregate herbivore biomass increased linearly with increasing cumulative wet season rainfall. The densities of the 30 most abundant species were either strongly positively or negatively correlated with cumulative past rainfall, most commonly with the early wet season component. The collaborative wildlife conservation and management initiatives undertaken on the mosaic of private, communal and public lands were thus associated with increase or no decrease in numbers of 32 and decrease in numbers of 12 of the 44 species. Despite the decline by some species, effective community-based conservation is central to the future of wildlife in the NWC and other rangelands of Kenya and beyond and is crucially dependent on the good will, effective engagement and collective action of local communities, working in partnerships with various organizations, which, in NWC, operated under the umbrella of the Nakuru Wildlife Forum.

  11. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  12. Metagenomic and Metatranscriptomic Analyses Reveal the Structure and Dynamics of a Dechlorinating Community Containing Dehalococcoides mccartyi and Corrinoid-Providing Microorganisms under Cobalamin-Limited Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Men, Yujie; Yu, Ke; Bælum, Jacob; Gao, Ying; Tremblay, Julien; Prestat, Emmanuel; Stenuit, Ben; Tringe, Susannah G.; Jansson, Janet; Zhang, Tong; Alvarez-Cohen, Lisa; Liu, Shuang-Jiang

    2017-02-10

    ABSTRACT

    The aim of this study is to obtain a systems-level understanding of the interactions betweenDehalococcoidesand corrinoid-supplying microorganisms by analyzing community structures and functional compositions, activities, and dynamics in trichloroethene (TCE)-dechlorinating enrichments. Metagenomes and metatranscriptomes of the dechlorinating enrichments with and without exogenous cobalamin were compared. Seven putative draft genomes were binned from the metagenomes. At an early stage (2 days), more transcripts of genes in theVeillonellaceaebin-genome were detected in the metatranscriptome of the enrichment without exogenous cobalamin than in the one with the addition of cobalamin. Among these genes, sporulation-related genes exhibited the highest differential expression when cobalamin was not added, suggesting a possible release route of corrinoids from corrinoid producers. Other differentially expressed genes include those involved in energy conservation and nutrient transport (including cobalt transport). The most highly expressed corrinoidde novobiosynthesis pathway was also assigned to theVeillonellaceaebin-genome. Targeted quantitative PCR (qPCR) analyses confirmed higher transcript abundances of those corrinoid biosynthesis genes in the enrichment without exogenous cobalamin than in the enrichment with cobalamin. Furthermore, the corrinoid salvaging and modification pathway ofDehalococcoideswas upregulated in response to the cobalamin stress. This study provides important insights into the microbial interactions and roles played by members of dechlorinating communities under cobalamin-limited conditions.

    IMPORTANCEThe key

  13. Memory dynamics under stress.

    Science.gov (United States)

    Quaedflieg, Conny W E M; Schwabe, Lars

    2018-03-01

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  14. Dynamic provisioning for community services

    CERN Document Server

    Qi, Li

    2013-01-01

    Dynamic Provisioning for Community Services outlines a dynamic provisioning and maintenance mechanism in a running distributed system, e.g. the grid, which can be used to maximize the utilization of computing resources and user demands. The book includes a complete and reliable maintenance system solution for the large-scale distributed system and an interoperation mechanism for the grid middleware deployed in the United States, Europe, and China. The experiments and evaluations have all been practically implemented for ChinaGrid, and the best practices established can help readers to construc

  15. Epistemic communities and cluster dynamics

    DEFF Research Database (Denmark)

    Håkanson, Lars

    2003-01-01

    This paper questions the prevailing notions that firms within industrial clusters have privi-leged access to `tacit knowledge' that is unavailable - or available only at high cost - to firms located elsewhere, and that such access provides competitive advantages that help to explain the growth...... and development of both firms and regions. It outlines a model of cluster dynam-ics emphasizing two mutually interdependent processes: the concentration of specialized and complementary epistemic communities, on the one hand, and entrepreneurship and a high rate of new firm formation on the other....

  16. Temporal dynamics of in-situ fiber-adherent bacterial community under ruminal acidotic conditions determined by 16S rRNA gene profiling.

    Directory of Open Access Journals (Sweden)

    Renee M Petri

    Full Text Available Subacute rumen acidotic (SARA conditions are a consequence of high grain feeding. Recent work has shown that the pattern of grain feeding can significantly impact the rumen epimural microbiota. In a continuation of these works, the objective of this study was to determine the role of grain feeding patterns on the colonization and associated changes in predicted functional properties of the fiber-adherent microbial community over a 48 h period. Eight rumen-cannulated Holstein cows were randomly assigned to interrupted or continuous 60%-grain challenge model (n = 4 per model to induce SARA conditions. Cows in the continuous model were challenged for 4 weeks, whereas cows of interrupted model had a 1-wk break in between challenges. To determine dynamics of rumen fiber-adherent microbial community we incubated the same hay from the diet samples for 24 and 48 h in situ during the baseline (no grain fed, week 1 and 4 of the continuous grain feeding model as well as during the week 1 following the break in the interrupted model. Microbial DNA was extracted and 16SrRNA amplicon (V3-V5 region sequencing was done with the Illumina MiSeq platform. A significant decrease (P 0.1% relative abundance in the rumen, 18 of which were significantly impacted by the feeding challenge model. Correlation analysis of the significant OTUs to rumen pH as an indicator of SARA showed genus Succiniclasticum had a positive correlation to SARA conditions regardless of treatment. Predictive analysis of functional microbial properties suggested that the glyoxylate/dicarboxylate pathway was increased in response to SARA conditions, decreased between 24h to 48h of incubation, negatively correlated with propanoate metabolism and positively correlated to members of the Veillonellaceae family including Succiniclasticum spp. This may indicate an adaptive response in bacterial metabolism under SARA conditions. This research clearly indicates that changes to the colonizing fiber

  17. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  18. Dynamics of culturable soil microbial communities during ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Dynamics of culturable soil microbial communities during decomposition of some ... semi-arid and arid agroecozones of West Africa to measure the dynamics of culturable bacterial and fungal communities in the ... fauna activities, depending on the chemical composition of the residue; C/N ratio, lignin and ...

  19. Understanding Microbial Communities: Function, Structure and Dynamics

    Science.gov (United States)

    2015-02-11

    microbial communities: Function, structure and dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to...dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to December 2014. The programme involved over 150...Communities: Function, Structure and Dynamics’, at the Isaac Newton Institute, Cambridge University, UK, from 19th August 2014 – 19th December 2014

  20. Speckle dynamics under ergodicity breaking

    Science.gov (United States)

    Sdobnov, Anton; Bykov, Alexander; Molodij, Guillaume; Kalchenko, Vyacheslav; Jarvinen, Topias; Popov, Alexey; Kordas, Krisztian; Meglinski, Igor

    2018-04-01

    Laser speckle contrast imaging (LSCI) is a well-known and versatile approach for the non-invasive visualization of flows and microcirculation localized in turbid scattering media, including biological tissues. In most conventional implementations of LSCI the ergodic regime is typically assumed valid. However, most composite turbid scattering media, especially biological tissues, are non-ergodic, containing a mixture of dynamic and static centers of light scattering. In the current study, we examined the speckle contrast in different dynamic conditions with the aim of assessing limitations in the quantitative interpretation of speckle contrast images. Based on a simple phenomenological approach, we introduced a coefficient of speckle dynamics to quantitatively assess the ratio of the dynamic part of a scattering medium to the static one. The introduced coefficient allows one to distinguish real changes in motion from the mere appearance of static components in the field of view. As examples of systems with static/dynamic transitions, thawing and heating of Intralipid samples were studied by the LSCI approach.

  1. Trait diversity promotes stability of community dynamics

    DEFF Research Database (Denmark)

    Zhang, Lai; Thygesen, Uffe Høgsbro; Knudsen, Kim

    2013-01-01

    body size. The dynamic properties of the models are described by a stability analysis of equilibrium solutions and by the non-equilibrium dynamics. We find that the introduction of trait diversity expands the set of parameters for which the equilibrium is stable and, if the community is unstable, makes...

  2. Evolutionary dynamics under interactive diversity

    Science.gov (United States)

    Su, Qi; Li, Aming; Wang, Long

    2017-10-01

    As evidenced by many cases in human societies, individuals often make different behavior decisions in different interactions, and adaptively adjust their behavior in changeable interactive scenarios. However, up to now, how such diverse interactive behavior affects cooperation dynamics has still remained unknown. Here we develop a general framework of interactive diversity, which models individuals’ separated behavior against distinct opponents and their adaptive adjustment in response to opponents’ strategies, to explore the evolution of cooperation. We find that interactive diversity enables individuals to reciprocate every single opponent, and thus sustains large-scale reciprocal interactions. Our work witnesses an impressive boost of cooperation for a notably extensive range of parameters and for all pairwise games. These results are robust against well-mixed and various networked populations, and against degree-normalized and cumulative payoff patterns. From the perspective of network dynamics, distinguished from individuals competing for nodes in most previous work, in this paper, the system evolves in the form of behavior disseminating along edges. We propose a theoretical method based on evolution of edges, which predicts well both the frequency of cooperation and the compact cooperation clusters. Our thorough investigation clarifies the positive role of interactive diversity in resolving social dilemmas and highlights the significance of understanding evolutionary dynamics from the viewpoint of edge dynamics.

  3. Beryllium strain under dynamic loading

    Directory of Open Access Journals (Sweden)

    Pushkov Victor

    2015-01-01

    Full Text Available There are some data (not much on dynamic characteristics of beryllium that are important, for example, when estimating construction performance at NPP emergencies. A number of data on stress-strain curves, spall strength, shear strength, fracture and structure responses of shock loaded beryllium have obtained in US and Russian laboratories. For today the model description of this complex metal behavior does not have a reasonable agreement with the experimental data, thus a wider spectrum of experimental data is required. This work presents data on dynamic compression-test diagrams of Russian beryllium. Experiments are performed using Hopkinson bar method (SHPB. Strain rates were ε ∼ 103 s−1.

  4. Dynamic graphs, community detection, and Riemannian geometry

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Craig; Halappanavar, Mahantesh; Visweswara Sathanur, Arun

    2018-03-29

    A community is a subset of a wider network where the members of that subset are more strongly connected to each other than they are to the rest of the network. In this paper, we consider the problem of identifying and tracking communities in graphs that change over time {dynamic community detection} and present a framework based on Riemannian geometry to aid in this task. Our framework currently supports several important operations such as interpolating between and averaging over graph snapshots. We compare these Riemannian methods with entry-wise linear interpolation and that the Riemannian methods are generally better suited to dynamic community detection. Next steps with the Riemannian framework include developing higher-order interpolation methods (e.g. the analogues of polynomial and spline interpolation) and a Riemannian least-squares regression method for working with noisy data.

  5. Dynamic social community detection and its applications.

    Science.gov (United States)

    Nguyen, Nam P; Dinh, Thang N; Shen, Yilin; Thai, My T

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  6. Dynamic social community detection and its applications.

    Directory of Open Access Journals (Sweden)

    Nam P Nguyen

    Full Text Available Community structure is one of the most commonly observed features of Online Social Networks (OSNs in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA, an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1 A social-aware message forwarding strategy in MANETs, and (2 worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  7. Global change and terrestrial plant community dynamics.

    Science.gov (United States)

    Franklin, Janet; Serra-Diaz, Josep M; Syphard, Alexandra D; Regan, Helen M

    2016-04-05

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.

  8. Strength of concrete structures under dynamic loading

    Science.gov (United States)

    Kumpyak, O. G.; Galyautdinov, Z. R.; Kokorin, D. N.

    2016-01-01

    The use of elastic supports is one the efficient methods of decreasing the dynamic loading. The paper describes the influence of elastic supports on the stress-strain state of steel concrete structures exposed to one-time dynamic loading resulting in failure. Oblique bending beams on elastic supports and their elastic, elastoplastic, and elastoplastic consolidation behavior are considered in this paper. For numerical calculations the developed computer program is used based on the finite element method. Research findings prove high efficiency of elastic supports under dynamic loading conditions. The most effective behavior of elastic supports is demonstrated at the elastoplastic stage. A good agreement is observed between the theoretical and experimental results.

  9. Biologically Driven Differences in Decomposition Dynamics Under Changing Ecosystems (Invited)

    Science.gov (United States)

    Grandy, S.

    2010-12-01

    Predicting the effects of environmental changes on soil organic matter dynamics remains difficult. Here I explore the possibility that differences in decomposition and soil organic matter dynamics are due in part to links between litter decomposition processes, changes in litter chemistry, and variation in decomposer communities. I explored these relationships under three types of ecosystem changes: 1) N enrichment of forest ecosystems; 2) elevated atmospheric carbon dioxide concentrations in forest ecosystems; and 3) agricultural land-use intensification. My overarching hypothesis was that litter mass loss and litter chemistry would vary under different environmental conditions, and those differences would correlate with ecosystem-specific variations in decomposer community structure and function. In three separate field experiments, I found strong evidence that decomposer communities influenced the chemistry of decomposing litter. In a related laboratory study I found that the presence of the oribatid mite Scheloribates moestus Banks (Acari: Oribatida) can substantially change litter decomposition dynamics and the molecular chemistry of decomposing litter. Most current conceptual models estimate changes in litter chemistry over the course of decomposition from initial litter chemistry and the extent of mass loss. These models suggest consistent and predictable changes in the chemical structure of organic matter during decomposition and do not explicitly consider the potential effects of variations in decomposer community structure on decomposition. In contrast, my results show that differences in decomposer communities lead to changes in litter chemistry during decomposition. Accurately predicting management effects on litter chemistry. and thus also soil organic matter dynamics, through time may require accounting for the degree to which variations in decomposer community composition influence organic matter chemistry.

  10. Microbial communities in Cerrado soils under native vegetation subjected to prescribed fire and under pasture

    OpenAIRE

    Viana,Laura Tillmann; Bustamante,Mercedes Maria da Cunha; Molina,Marirosa; Pinto,Alexandre de Siqueira; Kisselle,Keith; Zepp,Richard; Burke,Roger A

    2011-01-01

    The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerrado stricto sensu" and "campo sujo"), under different fire regimes, and a 20-year-old active palisadegrass pasture in the Central Plateau of Brazil. Microbial biomass was higher in the native plots than in the pasture,...

  11. Optimal Portfolios Under Dynamic Shortfall Constraints | Akume ...

    African Journals Online (AJOL)

    industry standard with regulatory authorities enforcing its use in risk measurement and management. Despite its widespread acceptance, VaR is not coherent. Tail Conditional Expectation (TCE), on the other hand, for an underlying continuous distribution, is a coherent risk measures. Our focus in this paper is the dynamic ...

  12. Optimal Portfolios Under Dynamic Shortfall Constraints

    African Journals Online (AJOL)

    industry standard with regulatory authorities enforcing its use in risk measure- ment and management. Despite its widespread acceptance, VaR is not coherent. Tail Conditional Expectation (TCE), on the other hand, for an underlying con- tinuous distribution, is a coherent risk measures. Our focus in this paper is the dynamic ...

  13. Food-web dynamics under climate change

    DEFF Research Database (Denmark)

    Zhang, L.; Takahashi, M.; Hartvig, Martin

    2017-01-01

    Climate change affects ecological communities through its impact on the physiological performance of individuals. However, the population dynamic of species well inside their thermal niche is also determined by competitors, prey and predators, in addition to being influenced by temperature changes....... We use a trait-based food-web model to examine how the interplay between the direct physiological effects from temperature and the indirect effects due to changing interactions between populations shapes the ecological consequences of climate change for populations and for entire communities. Our...... climatically well-adapted species may be brought to extinction by the changed food-web topology. Our results highlight that the impact of climate change on specific populations is largely unpredictable, and apparently well-adapted species may be severely impacted...

  14. Food-web dynamics under climate change

    DEFF Research Database (Denmark)

    Zhang, L.; Takahashi, M.; Hartvig, Martin

    2017-01-01

    . We use a trait-based food-web model to examine how the interplay between the direct physiological effects from temperature and the indirect effects due to changing interactions between populations shapes the ecological consequences of climate change for populations and for entire communities. Our......Climate change affects ecological communities through its impact on the physiological performance of individuals. However, the population dynamic of species well inside their thermal niche is also determined by competitors, prey and predators, in addition to being influenced by temperature changes...... climatically well-adapted species may be brought to extinction by the changed food-web topology. Our results highlight that the impact of climate change on specific populations is largely unpredictable, and apparently well-adapted species may be severely impacted...

  15. Lattice dynamics of solid xenon under pressure.

    Science.gov (United States)

    Dewhurst, J K; Ahuja, R; Li, S; Johansson, B

    2002-02-18

    We use density-functional perturbation theory to obtain the phonon spectrum of fcc xenon under pressure. Thermodynamic properties obtained within the quasiharmonic approximation are in fair to good agreement with experiment at zero pressure. The transition pressure from the fcc to hcp phase is predicted to occur at 5 GPa. The fcc structure is found to be dynamically stable up to a pressure of 100 GPa, beyond which the phonon modes at the X and L symmetry points soften. We attribute the observed sluggish kinetics of the fcc-hcp transition to the small energy difference between the phases as well as to the high dynamical stability of the fcc phase.

  16. Trust and community. Exploring the meanings, contexts and dynamics of community renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Gordon [University of Lancaster, Department of Geography, Lancaster LA1 4YN (United Kingdom); Devine-Wright, Patrick [University of Manchester, The School of Environment and Development, Humanities Bridgeford Street Building, Oxford Road, Manchester M13 9PL (United Kingdom); Hunter, Sue; High, Helen; Evans, Bob [University of Lancaster, Department of Geography, Lancaster LA1 4YN (United Kingdom); University of Manchester, The School of Environment and Development, Humanities Bridgeford Street Building, Oxford Road, Manchester M13 9PL (United Kingdom)

    2010-06-15

    Community renewable energy projects have recently been promoted and supported in the UK by government policy. A community approach, it is argued in the rhetoric of both government and grassroots activists will change the experience and outcomes of the energy sustainable technology implementation. In this paper, we consider how interpersonal and social trust is implicated in the different meanings given to community in RE programmes and projects, and in the qualities and outcomes that are implied or assumed by taking a community approach. We examine how these meanings play out in examples of projects on the ground, focusing on two contrasting cases in which the relationships between those involved locally have exhibited different patterns of cohesiveness and fracture. We argue that trust does have a necessary part to play in the contingencies and dynamics of community RE projects and in the outcomes they can achieve. Trust between local people and groups that take projects forward is part of the package of conditions which can help projects work. Whilst trust may therefore be functional for the development of community RE and potentially can be enhanced by the adoption of a community approach, this cannot be either assured or assumed under the wide diversity of contexts, conditions and arrangements under which community RE is being pursued and practiced. (author)

  17. Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Gordon, E-mail: g.p.walker@lancaster.ac.u [University of Lancaster, Department of Geography, Lancaster LA1 4YN (United Kingdom); Devine-Wright, Patrick [University of Manchester, School of Environment and Development, Humanities Bridgeford Street Building, Oxford Road, Manchester M13 9PL (United Kingdom); Hunter, Sue; High, Helen; Evans, Bob [University of Lancaster, Department of Geography, Lancaster LA1 4YN (United Kingdom); University of Manchester, School of Environment and Development, Humanities Bridgeford Street Building, Oxford Road, Manchester M13 9PL (United Kingdom)

    2010-06-15

    Community renewable energy projects have recently been promoted and supported in the UK by government policy. A community approach, it is argued in the rhetoric of both government and grassroots activists will change the experience and outcomes of the energy sustainable technology implementation. In this paper, we consider how interpersonal and social trust is implicated in the different meanings given to community in RE programmes and projects, and in the qualities and outcomes that are implied or assumed by taking a community approach. We examine how these meanings play out in examples of projects on the ground, focusing on two contrasting cases in which the relationships between those involved locally have exhibited different patterns of cohesiveness and fracture. We argue that trust does have a necessary part to play in the contingencies and dynamics of community RE projects and in the outcomes they can achieve. Trust between local people and groups that take projects forward is part of the package of conditions which can help projects work. Whilst trust may therefore be functional for the development of community RE and potentially can be enhanced by the adoption of a community approach, this cannot be either assured or assumed under the wide diversity of contexts, conditions and arrangements under which community RE is being pursued and practiced.

  18. Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy

    International Nuclear Information System (INIS)

    Walker, Gordon; Devine-Wright, Patrick; Hunter, Sue; High, Helen; Evans, Bob

    2010-01-01

    Community renewable energy projects have recently been promoted and supported in the UK by government policy. A community approach, it is argued in the rhetoric of both government and grassroots activists will change the experience and outcomes of the energy sustainable technology implementation. In this paper, we consider how interpersonal and social trust is implicated in the different meanings given to community in RE programmes and projects, and in the qualities and outcomes that are implied or assumed by taking a community approach. We examine how these meanings play out in examples of projects on the ground, focusing on two contrasting cases in which the relationships between those involved locally have exhibited different patterns of cohesiveness and fracture. We argue that trust does have a necessary part to play in the contingencies and dynamics of community RE projects and in the outcomes they can achieve. Trust between local people and groups that take projects forward is part of the package of conditions which can help projects work. Whilst trust may therefore be functional for the development of community RE and potentially can be enhanced by the adoption of a community approach, this cannot be either assured or assumed under the wide diversity of contexts, conditions and arrangements under which community RE is being pursued and practiced.

  19. Benthic freshwater nematode community dynamics under conditions ...

    African Journals Online (AJOL)

    Studies of the influence of fish aquaculture on benthic freshwater nematode assemblages are scarce, but could provide a way of gauging environmental effects. The abundance and diversity of nematode assemblages in response to Oreochromis niloticus aquaculture were investigated in Kafr El-Sheikh Governorate, Egypt, ...

  20. Chernozems microbial community under anthropogenic impact (Russia)

    Science.gov (United States)

    Ivashchenko, Kristina; Ananyeva, Nadezhda; Sushko, Sofia; Vasenev, Viacheslav

    2017-04-01

    Chernozems is important natural resource, which in the last decade under intense influence as a result of plowing and urbanization. The parameters of soil microbial community functioning might be identify some soil deterioration under the impacts. Our research was focused on assessment of microbial community status in different soil layers of virgin steppe, bare fallow and urban ecosystems (Kursk region). In each ecosystem, we chose randomly 3-5 spatially distributed sites, where soil samples were collected by auguring up to 0.5 m depth (each layer 10 cm thickness) and up to 1.5 m depth (0-10, 10-50, 50-100, 100-150 cm layers), totally 127 samples. The bulk density was measured for these soil layers. In all soil samples the microbial biomass carbon content (Cmic) was analyzed by substrate-induced respiration (SIR) method and basal respiration (BR) was assessed by CO2 rate production. The fungi-to-bacteria ratio (selective inhibition technique with antibiotics) was determined and portion of Cmic in soil organic carbon (Corg) content was calculated in topsoil (0-10 cm). The Corg (dichromate oxidation) and pHw (potentiometry) values were measured. The Cmic and BR profile pools were calculated using bulk density and thickness of studied layers. The Cmic (0-10 cm) was varied from 84 to 1954 µg C g-1 soil, in steppe it was on average 3-4 times higher than those in bare fallow and urban. The BR rate was amounted from 0.20 to 1.57 µg CO2-C g-1 soil h-1, however no significant difference between studied ecosystems was found. It was shown the relationship between Cmic, BR and Corg (the linear regression, R2=0.92 and 0.75, respectively, pecosystems row: virgin steppe>bare fallow>urban, and it was on average 6.0, 5.2 and 1.8, respectively. The Cmic profile pool (0.5 m) of steppe was reached up on average 206 g C m-2, and it was 2.0 and 2.5 times higher those bare fallow and urban, respectively. The BR profile pool (0.5 m) in steppe and bare fallow was reached up 5.9 and 5

  1. Soil fungi colony growth and community dynamics

    Science.gov (United States)

    Falconer, Ruth E.; Kravchenko, Alexandra; Otten, Wilfred

    2010-05-01

    Fungi are a major player in soil functioning, they contribute to soil structure formation and shaping of plant communities through their role in nutrient cycling, pathogenesis and symbiosis. Theoretical approaches which have emerged over the years and improved considerably our understanding of above ground plant communities are still lacking below ground. A theoretical framework is needed, such that links soil physics, fungal biology and mathematical biology in order to understand fungal community dynamics and diversity in undisturbed soils. Such a framework is essential if we are to understand how environmental change or soil manipulation impacts biodiversity. Different land use and management practices significantly affect soil environmental characteristics crucial for fungal communities by contributing different quantities and qualities of biomass inputs, generating different levels of soil disturbance, influencing soil temperature and moisture regimes, and affecting structure and geometry of soil pore space. Differences in pore structures generated by long-term differences in land use and management are reflected in notable changes in soil physical and hydraulic properties, including soil porosity, hydraulic conductivity and water retention (Brye and Pirani, 2005). Changes in numbers, shapes, and distributions of soil macropores have been often observed (e.g., Pachepsky et al., 1996; Giménez et al., 1997; Udawatta et al., 2008). However, specific implications of these differences in pore structure and geometries for ability of pathogenic as well as non-pathogenic fungi to colonize soil have not yet been addressed. Recent advances in computed tomography and microscopy facilitate detailed examination of the inner pore structures of undisturbed soil samples as well as visualization of fungal mycelia. Such tools together with modelling generate a new level of understanding of the mechanisms governing fungal behaviour at microscopic scales, and for the first time

  2. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  3. Fundamental Dynamical Modes Underlying Human Brain Synchronization

    Directory of Open Access Journals (Sweden)

    Catalina Alvarado-Rojas

    2012-01-01

    Full Text Available Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle. Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively activated across wake-sleep states.

  4. Semiotic Dynamics in Online Social Communities

    Science.gov (United States)

    Cattuto, C.

    2007-11-01

    A distributed classification paradigm known as collaborative tagging has been successfully deployed in large-scale web applications designed to manage and share diverse online resources. Users of these applications organize resources by associating with them freely chosen text labels, or tags. Here we regard tags as basic dynamical entities and study the semiotic dynamics underlying collaborative tagging. We collect data from a popular system and focus on tags associated with a given resource. We find that the frequencies of tags obey to a generalized Zipf's law and show that a Yule-Simon process with memory can be used to explain the observed frequency distributions in terms of a simple model of user behavior.

  5. Neural dynamics underlying emotional transmissions between individuals.

    Science.gov (United States)

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-08-01

    Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social-emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional feedback to participants who viewed a movie in the scanner. Participants in the social group (but not in the control group) believed that the feedback was coming from another person who was co-viewing the same movie. We found that social-emotional feedback significantly affected the neural dynamics both in the core affect and in the medial pre-frontal regions. Specifically, the response time-courses in those regions exhibited increased similarity across recipients and increased neural alignment with the timeline of the feedback in the social compared with control group. Taken in conjunction with previous research, this study suggests that emotional cues from others shape the neural dynamics across the whole neural continuum of emotional processing in the brain. Moreover, it demonstrates that interpersonal neural alignment can serve as a neural mechanism through which affective information is conveyed between individuals. © The Author (2017). Published by Oxford University Press.

  6. Reliability of dynamic systems under limited information.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr. (.,; .); Grigoriu, Mircea

    2006-09-01

    A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.

  7. The stochastic network dynamics underlying perceptual discrimination

    Directory of Open Access Journals (Sweden)

    Genis Prat-Ortega

    2015-04-01

    Full Text Available The brain is able to interpret streams of high-dimensional ambiguous information and yield coherent percepts. The mechanisms governing sensory integration have been extensively characterized using time-varying visual stimuli (Britten et al. 1996; Roitman and Shadlen 2002, but some of the basic principles regarding the network dynamics underlying this process remain largely unknown. We captured the basic features of a neural integrator using three canonical one-dimensional models: (1 the Drift Diffusion Model (DDM, (2 the Perfect Integrator (PI which is a particular case of the DDM where the bounds are set to infinity and (3 the double-well potential (DW which captures the dynamics of the attractor networks (Wang 2002; Roxin and Ledberg 2008. Although these models has been widely studied (Bogacz et al. 2006; Roxin and Ledberg 2008; Gold and Shadlen 2002, it has been difficult to experimentally discriminate among them because most of the observables measured are only quantitatively different among these models (e.g. psychometric curves. Here we aim to find experimentally measurable quantities that can yield qualitatively different behaviors depending on the nature of the underlying network dynamics. We examined the categorization dynamics of these models in response to fluctuating stimuli of different duration (T. On each time step, stimuli are drawn from a Gaussian distribution N(μ, σ and the two stimulus categories are defined by μ > 0 and μ < 0. Psychometric curves can therefore be obtained by quantifying the probability of the integrator to yield one category versus μ . We find however that varying σ can reveal more clearly the differences among the different integrators. In the small σ regime, both the DW and the DDM perform transient integration and exhibit a decaying stimulus reverse correlation kernel revealing a primacy effect (Nienborg and Cumming 2009; Wimmer et al. 2015 . In the large σ regime, the integration in the DDM

  8. A Dynamic Metadata Community Profile for CUAHSI

    Science.gov (United States)

    Bermudez, L.; Piasecki, M.

    2004-12-01

    Common Metadata standards typically lack of domain specific elements, have limited extensibility and do not always resolve semantic heterogeneities that could occur in the annotations. To facilitate the use and extension of metadata specifications a methodology called Dynamic Community Profiles, DCP, is presented. The methodology allows to overwrite elements definitions and to specify core elements as metadata tree paths. DCP uses the Web Ontology Language (OWL), the Resource Description Framework (RDF) and XML syntax to formalize specifications and to create controlled vocabularies in ontologies, which enhances interoperability. This methodology was employed to create a metadata profile for the Consortium of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI). The profile was created by extending ISO-19115:2003 geographic metadata standard and restricting the permissible values of some elements. The values used as controlled vocabularies were inferred from hydrologic keywords found in the Global Change Master Directory (GCMD) and from measurement units found in the Hydrologic Handbook. Also, a core metadata set for CUAHSI was formally expressed as tree paths, containing the ISO core set plus additional elements. Finally a tool was developed to test the extension and to allow creation of metadata instances in RDF/XML which conforms to the profile. Also this tool is able to export the core elements to other schema formats such as Metadata Template Files (MTF).

  9. Neural Population Dynamics Underlying Motor Learning Transfer.

    Science.gov (United States)

    Vyas, Saurabh; Even-Chen, Nir; Stavisky, Sergey D; Ryu, Stephen I; Nuyujukian, Paul; Shenoy, Krishna V

    2018-03-07

    Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Microbial communities in Cerrado soils under native vegetation subjected to prescribed fire and under pasture

    Directory of Open Access Journals (Sweden)

    Laura Tillmann Viana

    2011-12-01

    Full Text Available The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA analysis. Comparisons were made between native areas with different woody covers ("cerrado stricto sensu" and "campo sujo", under different fire regimes, and a 20-year-old active palisadegrass pasture in the Central Plateau of Brazil. Microbial biomass was higher in the native plots than in the pasture, and the highest monthly values were observed during the rainy season in the native plots. No significant differences were observed between fire regimes or between communities from the two native vegetation types. However, the principal component (PC analysis separated the microbial communities by vegetation cover (native x pasture and season (wet x dry, accounting for 45.8% (PC1 and PC3 and 25.6% (PC2 and PC3, respectively, of the total PLFA variability. Changes in land cover and seasonal rainfall in Cerrado ecosystems have significant effects on the total density of soil microorganisms and on the abundance of microbial groups, especially Gram-negative and Gram-positive bacteria.

  11. Multi-level opinion dynamics under bounded confidence.

    Science.gov (United States)

    Kou, Gang; Zhao, Yiyi; Peng, Yi; Shi, Yong

    2012-01-01

    Opinion dynamics focuses on the opinion evolution in a social community. Recently, some models of continuous opinion dynamics under bounded confidence were proposed by Deffuant and Krause, et al. In the literature, agents were generally assumed to have a homogeneous confidence level. This paper proposes an extended model for a group of agents with heterogeneous confidence levels. First, a social differentiation theory is introduced and a social group is divided into opinion subgroups with distinct confidence levels. Second, a multi-level heterogeneous opinion formation model is formulated under the framework of bounded confidence. Finally, computer simulations are conducted to study the collective opinion evolution, focusing on three key factors: the fractions of heterogeneous agents, the initial opinions, and the group size. The simulation results demonstrate that the number of final opinions depends on the fraction of close-minded agents when the group size and the initial opinions are fixed; the final opinions converge more easily when the initial opinions are closer; and the number of final opinions can be approximately modeled by a linear increasing function of the group size and the increasing rate is the fraction of close-minded agents.

  12. Evolution properties of the community members for dynamic networks

    Science.gov (United States)

    Yang, Kai; Guo, Qiang; Li, Sheng-Nan; Han, Jing-Ti; Liu, Jian-Guo

    2017-03-01

    The collective behaviors of community members for dynamic social networks are significant for understanding evolution features of communities. In this Letter, we empirically investigate the evolution properties of the new community members for dynamic networks. Firstly, we separate data sets into different slices, and analyze the statistical properties of new members as well as communities they joined in for these data sets. Then we introduce a parameter φ to describe community evolution between different slices and investigate the dynamic community properties of the new community members. The empirical analyses for the Facebook, APS, Enron and Wiki data sets indicate that both the number of new members and joint communities increase, the ratio declines rapidly and then becomes stable over time, and most of the new members will join in the small size communities that is s ≤ 10. Furthermore, the proportion of new members in existed communities decreases firstly and then becomes stable and relatively small for these data sets. Our work may be helpful for deeply understanding the evolution properties of community members for social networks.

  13. Ammonia oxidizing bacteria community dynamics in a pilot-scale wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available BACKGROUND: Chemoautotrophic ammonia oxidizing bacteria (AOB have the metabolic ability to oxidize ammonia to nitrite aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from wastewater in wastewater treatment plants (WWTPs. However, the relative influence of specific deterministic environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB community dynamics and nitrification stability and how they are related are also poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The community dynamics of ammonia oxidizing bacteria (AOB in a pilot-scale WWTP were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP. During the study period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were not stable, and the average change rate (every 15 days of AOB community structures was 10% ± 8%. The correlations between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis (CCA and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved Oxygen (DO, effluent ammonia, effluent Biochemical Oxygen Demand (BOD and temperature. CONCLUSIONS/SIGNIFICANCE: This study suggests that nitrification stability is not necessarily accompanied by a stable AOB community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable nitrification.

  14. Linking community and ecosystem dynamics through spatial ecology.

    Science.gov (United States)

    Massol, François; Gravel, Dominique; Mouquet, Nicolas; Cadotte, Marc W; Fukami, Tadashi; Leibold, Mathew A

    2011-03-01

    Classical approaches to food webs focus on patterns and processes occurring at the community level rather than at the broader ecosystem scale, and often ignore spatial aspects of the dynamics. However, recent research suggests that spatial processes influence both food web and ecosystem dynamics, and has led to the idea of 'metaecosystems'. However, these processes have been tackled separately by 'food web metacommunity' ecology, which focuses on the movement of traits, and 'landscape ecosystem' ecology, which focuses on the movement of materials among ecosystems. Here, we argue that this conceptual gap must be bridged to fully understand ecosystem dynamics because many natural cases demonstrate the existence of interactions between the movements of traits and materials. This unification of concepts can be achieved under the metaecosystem framework, and we present two models that highlight how this framework yields novel insights. We then discuss patches, limiting factors and spatial explicitness as key issues to advance metaecosystem theory. We point out future avenues for research on metaecosystem theory and their potential for application to biological conservation. © 2011 Blackwell Publishing Ltd/CNRS.

  15. Disturbance and the dynamics of fynbos biome communities

    CSIR Research Space (South Africa)

    Cowling, RM

    1987-01-01

    Full Text Available This volume comprises invited review and research papers dealing with the effects of disturbance on the dynamics of fynbos biome communities. Since fire is the most important disturbance factor in the biome, most contributions concentrate...

  16. Behavior of Brittle Materials Under Dynamic Loading

    National Research Council Canada - National Science Library

    Kanel, G

    2000-01-01

    Dynamic loading of brittle materials is related to many applications, including explosive excavation of rocks, design of ceramic armor, meteor impact on spacecraft windows, particle damage to turbine blades, etc...

  17. Dynamics of social balance under temporal interaction

    Science.gov (United States)

    Nishi, Ryosuke; Masuda, Naoki

    2014-08-01

    Real social contacts are often intermittent such that a link between a pair of nodes in a social network is only temporarily used. The effects of such temporal networks on social dynamics have been investigated for several phenomenological models such as epidemic spreading, linear diffusion processes, and nonlinear oscillations. Here, we numerically investigate nonlinear social balance dynamics in such a situation. Social balance is a classical psychological theory, which dictates that a triad is balanced if the three agents are mutual friends or if the two of them are the friends of each other and hostile to the other agent. We show that the social balance dynamics is slowed down on the temporal complete graph as compared to the corresponding static complete graph.

  18. Evolution of entanglement under echo dynamics

    International Nuclear Information System (INIS)

    Prosen, Tomaz; Znidaric, Marko; Seligman, Thomas H.

    2003-01-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model

  19. The Underlying Social Dynamics of Paradigm Shifts.

    Directory of Open Access Journals (Sweden)

    Carlos Rodriguez-Sickert

    Full Text Available We develop here a multi-agent model of the creation of knowledge (scientific progress or technological evolution within a community of researchers devoted to such endeavors. In the proposed model, agents learn in a physical-technological landscape, and weight is attached to both individual search and social influence. We find that the combination of these two forces together with random experimentation can account for both i marginal change, that is, periods of normal science or refinements on the performance of a given technology (and in which the community stays in the neighborhood of the current paradigm; and ii radical change, which takes the form of scientific paradigm shifts (or discontinuities in the structure of performance of a technology that is observed as a swift migration of the knowledge community towards the new and superior paradigm. The efficiency of the search process is heavily dependent on the weight that agents posit on social influence. The occurrence of a paradigm shift becomes more likely when each member of the community attaches a small but positive weight to the experience of his/her peers. For this parameter region, nevertheless, a conservative force is exerted by the representatives of the current paradigm. However, social influence is not strong enough to seriously hamper individual discovery, and can act so as to empower successful individual pioneers who have conquered the new and superior paradigm.

  20. The Underlying Social Dynamics of Paradigm Shifts.

    Science.gov (United States)

    Rodriguez-Sickert, Carlos; Cosmelli, Diego; Claro, Francisco; Fuentes, Miguel Angel

    2015-01-01

    We develop here a multi-agent model of the creation of knowledge (scientific progress or technological evolution) within a community of researchers devoted to such endeavors. In the proposed model, agents learn in a physical-technological landscape, and weight is attached to both individual search and social influence. We find that the combination of these two forces together with random experimentation can account for both i) marginal change, that is, periods of normal science or refinements on the performance of a given technology (and in which the community stays in the neighborhood of the current paradigm); and ii) radical change, which takes the form of scientific paradigm shifts (or discontinuities in the structure of performance of a technology) that is observed as a swift migration of the knowledge community towards the new and superior paradigm. The efficiency of the search process is heavily dependent on the weight that agents posit on social influence. The occurrence of a paradigm shift becomes more likely when each member of the community attaches a small but positive weight to the experience of his/her peers. For this parameter region, nevertheless, a conservative force is exerted by the representatives of the current paradigm. However, social influence is not strong enough to seriously hamper individual discovery, and can act so as to empower successful individual pioneers who have conquered the new and superior paradigm.

  1. Oral microbial community assembly under the influence of periodontitis.

    Science.gov (United States)

    Chen, Hongju; Peng, Shuting; Dai, Lin; Zou, Quan; Yi, Bin; Yang, Xianghong; Ma, Zhanshan Sam

    2017-01-01

    Several ecological hypotheses (e.g., specific plaque, non-specific plaque and keystone pathogen) regarding the etiology of periodontitis have been proposed since the 1990s, most of which have been centered on the concept of dysbiosis associated with periodontitis. Nevertheless, none of the existing hypotheses have presented mechanistic interpretations on how and why dysbiosis actually occurs. Hubbell's neutral theory of biodiversity offers a powerful null model to test hypothesis regarding the mechanism of community assembly and diversity maintenance from the metagenomic sequencing data, which can help to understand the forces that shape the community dynamics such as dysbiosis. Here we reanalyze the dataset from Abusleme et al.'s comparative study of the oral microbial communities from periodontitis patients and healthy individuals. Our study demonstrates that 14 out of 61 communities (23%) passed the neutrality test, a percentage significantly higher than the previous reported neutrality rate of 1% in human microbiome (Li & Ma 2016, Scientific Reports). This suggests that, while the niche selection may play a predominant role in the assembly and diversity maintenance in oral microbiome, the effect of neutral dynamics may not be ignored. However, no statistically significant differences in the neutrality passing rates were detected between the periodontitis and healthy treatments with Fisher's exact probability test and multiple testing corrections, suggesting that the mechanism of community assembly is robust against disturbances such as periodontitis. In addition, our study confirmed previous finding that periodontitis patients exhibited higher biodiversity. These findings suggest that while periodontitis may significantly change the community composition measured by diversity (i.e., the exhibition or 'phenotype' of community assembly), it does not seem to cause the 'mutation' of the 'genotype" (mechanism) of community assembly. We argue that the 'phenotypic

  2. Composition and dynamic of benthic macroinvertebrates community ...

    African Journals Online (AJOL)

    The canonical correspondance analysis (CCA) revealed a strong correlationship between Chironomidae, Syrphidae, Culicidae, Psychodidae, as well as the Pulmonates molluscs and organic nutriments feeding dynamics. These findings showed the sensitivity of benthic macroinvertebrates at different level: sensitivity which ...

  3. Dynamically loaded beam failure under corroded conditions

    NARCIS (Netherlands)

    Veerman, R.P.; Koenders, E.A.B.

    2014-01-01

    De-icing salts, used on roads in heavy winters, may enter reinforced concrete (RC) structures via its capillary pore system or via cracks, initiating reinforcement corrosion and reducing its remaining service-life. Vehicles passing real bridges exert a dynamic impact action that might activate a

  4. Material properties under intensive dynamic loading

    CERN Document Server

    Cherne, Frank J; Zhernokletov, Mikhail V; Glushak, B L; Zocher, Marvin A

    2007-01-01

    Understanding the physical and thermomechanical response of materials subjected to intensive dynamic loading is a challenge of great significance in engineering today. This volume assumes the task of gathering both experimental and diagnostic methods in one place, since not much information has been previously disseminated in the scientific literature.

  5. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for...12211 Research Triangle Park, NC 27709-2211 Online learning , multi-armed bandit, dynamic networks REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S... Online Learning in Dynamic Networks under Unknown Models Report Title This research aims to develop fundamental theories and practical algorithms for

  6. Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling.

    Science.gov (United States)

    Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N

    2016-04-26

    More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected

  7. Dynamics of Hyperbranched Polymers under Confinement

    Science.gov (United States)

    Androulaki, Krystallenia; Chrissopoulou, Kiriaki; Anastasiadis, Spiros H.; Prevosto, Daniele; Labardi, Massimiliano

    2015-03-01

    The effect of severe confinement on the dynamics of three different generations of hyperbranched polyesters (Boltorns) is investigated by Dielectric Spectroscopy. The polymers are intercalated within the galleries of natural Na+-MMT, thus, forming 1nm polymer films confined between solid walls. The Tg's of the polymers determined by DSC show a clear dependence on the generation whereas the transition is completely suppressed when all the polymer chains are intercalated. The dynamic investigation of the bulk polymers reveals two sub-Tg processes, with similar behavior for the three polymers with the segmental relaxation observed above the Tg of each. For the nanocomposites, where all polymers are severely confined, the dynamics show significant differences compared to that of the bulk polymers. The sub-Tg processes are similar for the three generations but significantly faster and with weaker temperature dependence than those in the bulk. The segmental process appears at temperatures below the bulk polymer Tg, it exhibits an Arrhenius temperature dependence and shows differences for the three generations. A slow process that appears at higher temperatures is due to interfacial polarization. Co-financed by the EU and Greek funds through the Operational Program ``Education and Lifelong Learning'' of the NSRF-Research Funding Program: THALES-Investing in knowledge society through the Eur. Social Fund (MIS 377278) and COST Action MP0902-COINAPO.

  8. Seasonal dynamics of plankton communities coupled with ...

    African Journals Online (AJOL)

    In this study, we studied the influence of the physical-chemical and biological factors (bacterioplankton and phytoplankton abundances) for zooplankton dynamics in a Sidi Saâd reservoir in Centre of Tunisia. The samplings were carried out in spring, summer, autumn and winter (2005 to 2006) in the deepest station (surface ...

  9. Similarity between community structures of different online social networks and its impact on underlying community detection

    Science.gov (United States)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  10. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  11. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    Science.gov (United States)

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Dynamic topic modelling for cryptocurrency community forums

    OpenAIRE

    Linton, Marco; Teo, Ernie Gin Swee; Bommes, Elisabeth; Chen, Cathy Yi-Hsuan; Härdle, Wolfgang

    2016-01-01

    Cryptocurrencies are more and more used in official cash flows and exchange of goods. Bitcoin and the underlying blockchain technology have been looked at by big companies that are adopting and investing in this technology. The CRIX Index of cryptocurrencies hu.berlin/CRIX indicates a wider acceptance of cryptos. One reason for its prosperity certainly being a security aspect, since the underlying network of cryptos is decentralized. It is also unregulated and highly volatile, ...

  13. Foraging traits modulate stingless bee community disassembly under forest loss.

    Science.gov (United States)

    Lichtenberg, Elinor M; Mendenhall, Chase D; Brosi, Berry

    2017-10-01

    Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid. Understanding how anthropogenic changes alter community composition and functioning has been hampered by high variability in responses of individual species. Trait-based approaches, however, are emerging as a potential method for understanding responses of ecologically similar species to global change. We studied how communities of tropical, eusocial stingless bees (Apidae: Meliponini) disassemble when forest is lost. These bees are vital tropical pollinators that exhibit high trait diversity, but are under considerable threat from human activities. We compared functional traits of stingless bee species found in pastures surrounded by differing amounts of forest in an extensively deforested landscape in southern Costa Rica. Our results suggest that foraging traits modulate competitive interactions that underlie community disassembly patterns. In contrast to both theoretical predictions and temperate bee communities, we found that stingless bee species with the widest diet breadths were less likely to persist in sites with less forest. These wide-diet-breadth species also tend to be solitary foragers, and are competitively subordinate to group-foraging stingless bee species. Thus, displacement by dominant, group-foraging species may make subordinate species more dependent on the larger or more diversified resource pool that natural habitats offer. We also found that traits that may reduce reliance on trees-nesting in the ground or inside nests of other species-correlated with persistence in highly deforested landscapes. The functional trait perspective we employed enabled capturing community

  14. Dynamics of anisotropic particles under waves

    Science.gov (United States)

    Dibenedetto, Michelle; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    We present results on anisotropic particles in wavy flows in order to gain insight into the transport and mixing of microplastic particles in the near-shore environment. From theory and numerical simulations, we find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We find that this dispersion is a function of the particle's eccentricity and the ratio of the settling and wave time scales. Experiments in which non-spherical particles of various shapes are released under surface gravity waves were also performed. Our main goal is to explore the effects of particle shape under various wave scenarios. We vary the aspect ratio of the particle in our experiments while holding other variables constant. Our results demonstrate that particle shape can be important when predicting transport.

  15. Neural dynamics underlying emotional transmissions between individuals

    OpenAIRE

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-01-01

    Abstract Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social–emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional...

  16. Microbial Communities in Cerrado Soils under Native Vegetation Subjected to Prescribed Fires and Under Pasture

    Science.gov (United States)

    The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerra...

  17. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities

    DEFF Research Database (Denmark)

    Frelat, Romain; Lindegren, Martin; Dencker, Tim Spaanheden

    2017-01-01

    it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered......Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account...... for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends...

  18. Continuous Opinion Dynamics Under Bounded Confidence:. a Survey

    Science.gov (United States)

    Lorenz, Jan

    Models of continuous opinion dynamics under bounded confidence have been presented independently by Krause and Hegselmann and by Deffuant et al. in 2000. They have raised a fair amount of attention in the communities of social simulation, sociophysics and complexity science. The researchers working on it come from disciplines such as physics, mathematics, computer science, social psychology and philosophy. In these models agents hold continuous opinions which they can gradually adjust if they hear the opinions of others. The idea of bounded confidence is that agents only interact if they are close in opinion to each other. Usually, the models are analyzed with agent-based simulations in a Monte Carlo style, but they can also be reformulated on the agent's density in the opinion space in a master equation style. The contribution of this survey is fourfold. First, it will present the agent-based and density-based modeling frameworks including the cases of multidimensional opinions and heterogeneous bounds of confidence. Second, it will give the bifurcation diagrams of cluster configuration in the homogeneous model with uniformly distributed initial opinions. Third, it will review the several extensions and the evolving phenomena which have been studied so far, and fourth it will state some open questions.

  19. Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    International Nuclear Information System (INIS)

    Mosher, Jennifer J.; Drake, Meghan M.; Carroll, Susan L.; Yang, Zamin K.; Schadt, Christopher W.; Brown, Stephen D.; Podar, Mircea; Hazen, Terry C.; Arkin, Adam P.; Phelps, Tommy J.; Palumbo, Anthony V.; Faybishenko, Boris A.; Elias, Dwayne A.

    2010-01-01

    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which

  20. Community, culture and sustainability in multilevel dynamic systems intervention science.

    Science.gov (United States)

    Schensul, Jean J

    2009-06-01

    This paper addresses intertwined issues in the conceptualization, implementation and evaluation of multilevel dynamic systems intervention science (MDSIS). Interventions are systematically planned, conducted and evaluated social science-based cultural products intercepting the lives of people and institutions in the context of multiple additional events and processes (which also may be referred to as interventions) that may speed, slow or reduce change towards a desired outcome. Multilevel interventions address change efforts at multiple social levels in the hope that effects at each level will forge synergistic links, facilitating movement toward desired change. This paper utilizes an ecological framework that identifies macro (policy and regulatory institutions), meso (organizations and agencies with resources, and power) and micro (individuals, families and friends living in communities) interacting directly and indirectly. An MDSIS approach hypothesizes that change toward a goal will occur faster and more effectively when synchronized and supported across levels in a social system. MDSIS approaches by definition involve "whole" communities and cannot be implemented without the establishments of working community partnerships This paper takes a dynamic systems approach to science as conducted in communities, and discusses four concepts that are central to MDSIS--science, community, culture, and sustainability. These concepts are important in community based participatory research and to the targeting, refinement, and adaptation of enduring interventions. Consistency in their meaning and use can promote forward movement in the field of MDSIS, and in community-based prevention science.

  1. SCOUT: simultaneous time segmentation and community detection in dynamic networks

    Science.gov (United States)

    Hulovatyy, Yuriy; Milenković, Tijana

    2016-11-01

    Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging.

  2. Stochastic population dynamics under resource constraints

    Energy Technology Data Exchange (ETDEWEB)

    Gavane, Ajinkya S., E-mail: ajinkyagavane@gmail.com; Nigam, Rahul, E-mail: rahul.nigam@hyderabad.bits-pilani.ac.in [BITS Pilani Hyderabad Campus, Shameerpet, Hyd - 500078 (India)

    2016-06-02

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.

  3. Stochastic population dynamics under resource constraints

    International Nuclear Information System (INIS)

    Gavane, Ajinkya S.; Nigam, Rahul

    2016-01-01

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.

  4. Some aspects of animal behavior and community dynamics

    Directory of Open Access Journals (Sweden)

    Vikas Rai

    2011-09-01

    Full Text Available We simulate the dynamical behavior of a few two - dimensional predator - prey systems in two - dimensional parameter spaces to gain insight into how functional responses affect community dynamics. The insight gained helps us design three dimensional systems. We construct models for a few ecosystems with three species and study them using computer simulations. The models have been developed by linking food chains which have both kinds of predators: specialist as well as generalist. The linking functions are weakly non-linear. The three dimensional model ecosystems have sexually reproducing top - predators. We perform extensive simulations to figure out dynamics of dynamical possibilities caused by changes in animal behavior. The animals change the foraging strategies and behave differently in different environments. At the end of the paper, we examine how diseases can govern transitions in meandering of dynamical models in bounded volume of their phase spaces.

  5. Zooplankton community structure and dynamics during the transition ...

    African Journals Online (AJOL)

    This study investigates the zooplankton community structure and dynamics of Kufena Rock Pool during the transition from dry season (March to April) to rainy season (May to June) in Zaria, Nigeria. Physicochemical parameters such as temperature, hydrogen ion concentration, electrical conductivity and total dissolved ...

  6. Microbial community dynamics in diesel waste biodegradation using ...

    African Journals Online (AJOL)

    Microbial community dynamics in diesel waste biodegradation using sequencing batch bioreactor operation mode (SBR) ... African Journal of Biotechnology ... Oxygen uptake rate (OUR) indicated increases in microbial activity from cycle one to cycle two (124.9 to 252.9 mgO2/L/h) and decreases in cycles three and four ...

  7. Predicting population and community dynamics: the type of aggregation matters

    NARCIS (Netherlands)

    Meyer, K.; Schiffers, T.; Münkemüller, T.; Schädler, M.; Calabrese, J.; Basset, A.; Breulmann, M.; Duquesne, S.; Hidding, B.; Huth, A.; Schöb, C.; Voorde, van de T.F.J.

    2010-01-01

    When investigating complex ecological dynamics at the population or community level, we necessarily need to abstract and aggregate ecological information. The way in which information is aggregated may be crucial for the outcome of the study. In this paper, we suggest that in addition to the

  8. Dynamic Stability of Euler Beams under Axial Unsteady Wind Force

    Directory of Open Access Journals (Sweden)

    You-Qin Huang

    2014-01-01

    Full Text Available Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not.

  9. Coastal bacterioplankton community dynamics in response to a natural disturbance.

    Directory of Open Access Journals (Sweden)

    Sara K Yeo

    Full Text Available In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition.

  10. System dynamics of manpower planning strategies under various demand scenarios

    Directory of Open Access Journals (Sweden)

    Michael Mutingi

    2012-09-01

    Full Text Available The development of human resources recruitment and training strategies in a dynamic environment poses a challenge to many policy makers in various organisations. The goal of every human resource manager is to recruit, train and deploy the right personnel at the right place and at the right time in order to meet organizational requirements. We develop a system dynamics simulation model that captures the dynamic behaviour of a typical corporate manpower system. Three major strategies are indentified and simulated under different manpower demand scenarios. Based on a set of performance indices, the impact of the strategies is simulated under assumed demand scenarios including steady increasing, fluctuating, and s-shaped demand. Useful managerial insights are derived from the study. The model is a decision support tool for developing reliable dynamic manpower policies in terms of recruitment, training capacity, available skills, and attrition. This approach can assist organizations to design effective manpower strategies.

  11. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    International Nuclear Information System (INIS)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-01-01

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S in in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages

  12. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    Science.gov (United States)

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  13. Forest fragmentation and bird community dynamics: inference at regional scales

    Science.gov (United States)

    Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction and turnover rates, which could explain higher temporal variability in species richness. To investigate such potential landscape effects at a regional scale, we merged two independent, large-scale monitoring efforts: the North American Breeding Bird Survey (BBS) and the Land Use and Land Cover Classification data from the U.S. Geological Survey. We used methods that accounted for heterogeneity in the probability of detecting species to estimate species richness and temporal changes in the bird communities for BBS routes in three mid-Atlantic U.S. states. Forest breeding bird species were grouped prior to the analyses into area-sensitive and non-area-sensitive species according to previous studies. We tested predictions relating measures of forest structure at one point in time (1974) to species richness at that time and to parameters of forest bird community change over the following 22-yr-period (1975-1996). We used the mean size of forest patches to characterize landscape structure, as high correlations among landscape variables did not allow us to disentangle the relative roles of habitat fragmentation per se and habitat loss. As predicted, together with lower species richness for area-sensitive species on routes surrounded by landscapes with lower mean forest-patch size, we found higher mean year-to-year rates of local extinction. Moreover, the mean year-to-year rates of local turnover (proportion of locally new species) for area-sensitive species were also higher in landscapes with lower mean forest-patch size. These associations were not observed for the non-area-sensitive species group. These

  14. Uncovering the community structure associated with the diffusion dynamics on networks

    International Nuclear Information System (INIS)

    Cheng, Xue-Qi; Shen, Hua-Wei

    2010-01-01

    As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associated with the dynamics on complex networks. In this paper, through investigating the diffusion process taking place on networks, we demonstrate that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that such community structure can be directly identified through the optimization of the conductance of the network, which measures how easily the diffusion among different communities occurs. Tests on benchmark networks indicate that the conductance optimization method significantly outperforms the modularity optimization methods in identifying the community structure of networks. Applications to real world networks also demonstrate the effectiveness of the conductance optimization method. This work provides insights into the multiple topological scales of complex networks, and the community structure obtained can naturally reflect the diffusion capability of the underlying network

  15. The Dynamics of Concepts in a Homogeneous Community

    Directory of Open Access Journals (Sweden)

    Eugene Khmelnitsky

    2013-05-01

    Full Text Available The paper addresses informational interactions in a community and considers the dynamics of concepts that represent distribution of knowledge among the individuals. The evolution of a set of concepts maintained by a community is derived by the use of the concepts’ significance in the communication between “cognoscenti” and “dilettanti” and of birth-death processes. The dynamics of concepts depend on the allocation of communication resources and can be governed by an informational principle that requires minimum self-information of the set of concepts over a time horizon. With respect to that principle, the introduction of a new concept into a community’s disposal is shown to lead to a steady-state self-information, which is smaller than that before the introduction of the new concept.

  16. Noah’s Ark Conservation Will Not Preserve Threatened Ecological Communities under Climate Change

    Science.gov (United States)

    Harris, Rebecca Mary Bernadette; Carter, Oberon; Gilfedder, Louise; Porfirio, Luciana Laura; Lee, Greg; Bindoff, Nathaniel Lee

    2015-01-01

    Background Effective conservation of threatened ecological communities requires knowledge of where climatically suitable habitat is likely to persist into the future. We use the critically endangered Lowland Grassland community of Tasmania, Australia as a case study to identify options for management in cases where future climatic conditions become unsuitable for the current threatened community. Methods We model current and future climatic suitability for the Lowland Themeda and the Lowland Poa Grassland communities, which make up the listed ecological community. We also model climatic suitability for the structurally dominant grass species of these communities, and for closely related grassland and woodland communities. We use a dynamically downscaled regional climate model derived from six CMIP3 global climate models, under the A2 SRES emissions scenario. Results All model projections showed a large reduction in climatically suitable area by mid-century. Outcomes are slightly better if closely related grassy communities are considered, but the extent of suitable area is still substantially reduced. Only small areas within the current distribution are projected to remain climatically suitable by the end of the century, and very little of that area is currently in good condition. Conclusions As the climate becomes less suitable, a gradual change in the species composition, structure and habitat quality of the grassland communities is likely. Conservation management will need to focus on maintaining diversity, structure and function, rather than attempting to preserve current species composition. Options for achieving this include managing related grassland types to maintain grassland species at the landscape-scale, and maximising the resilience of grasslands by reducing further fragmentation, weed invasion and stress from other land uses, while accepting that change is inevitable. Attempting to maintain the status quo by conserving the current structure and

  17. Noah's Ark conservation will not preserve threatened ecological communities under climate change.

    Directory of Open Access Journals (Sweden)

    Rebecca Mary Bernadette Harris

    Full Text Available Effective conservation of threatened ecological communities requires knowledge of where climatically suitable habitat is likely to persist into the future. We use the critically endangered Lowland Grassland community of Tasmania, Australia as a case study to identify options for management in cases where future climatic conditions become unsuitable for the current threatened community.We model current and future climatic suitability for the Lowland Themeda and the Lowland Poa Grassland communities, which make up the listed ecological community. We also model climatic suitability for the structurally dominant grass species of these communities, and for closely related grassland and woodland communities. We use a dynamically downscaled regional climate model derived from six CMIP3 global climate models, under the A2 SRES emissions scenario.All model projections showed a large reduction in climatically suitable area by mid-century. Outcomes are slightly better if closely related grassy communities are considered, but the extent of suitable area is still substantially reduced. Only small areas within the current distribution are projected to remain climatically suitable by the end of the century, and very little of that area is currently in good condition.As the climate becomes less suitable, a gradual change in the species composition, structure and habitat quality of the grassland communities is likely. Conservation management will need to focus on maintaining diversity, structure and function, rather than attempting to preserve current species composition. Options for achieving this include managing related grassland types to maintain grassland species at the landscape-scale, and maximising the resilience of grasslands by reducing further fragmentation, weed invasion and stress from other land uses, while accepting that change is inevitable. Attempting to maintain the status quo by conserving the current structure and composition of Lowland

  18. Yeast Communities of Chestnut Soils under Vineyards in Dagestan

    Science.gov (United States)

    Abdullabekova, D. A.; Magomedova, E. S.; Magomedov, G. G.; Aliverdieva, D. A.; Kachalkin, A. V.

    2017-12-01

    The study of yeast communities in chestnut soils (Kastanozems) under vineyards in the Republic of Dagestan made it possible to isolate 20 yeast species. Most of the yeasts under vineyards belonged to ascomycetes, among which species of the Saccharomycetaceae family (in particular, Saccharomyces cerevisiae) comprised a significant part. The obtained results indicate that the soils under vineyards keep the pool of microbial diversity and ensure preservation of many species typical for grapes. The method of enrichment culture on grape juice medium proved to be more efficient than other methods of analysis with respect to the number of isolated species and the rate of their detection. However, implementation of different techniques to study yeasts' diversity can give somewhat different results; a set of methods should be used for an integrated analysis.

  19. Propagation of Computer Virus under Human Intervention: A Dynamical Model

    OpenAIRE

    Chenquan Gan; Xiaofan Yang; Wanping Liu; Qingyi Zhu; Xulong Zhang

    2012-01-01

    This paper examines the propagation behavior of computer virus under human intervention. A dynamical model describing the spread of computer virus, under which a susceptible computer can become recovered directly and an infected computer can become susceptible directly, is proposed. Through a qualitative analysis of this model, it is found that the virus-free equilibrium is globally asymptotically stable when the basic reproduction number R0≤1, whereas the viral equilibrium is globally asympt...

  20. Ananke: temporal clustering reveals ecological dynamics of microbial communities

    Directory of Open Access Journals (Sweden)

    Michael W. Hall

    2017-09-01

    Full Text Available Taxonomic markers such as the 16S ribosomal RNA gene are widely used in microbial community analysis. A common first step in marker-gene analysis is grouping genes into clusters to reduce data sets to a more manageable size and potentially mitigate the effects of sequencing error. Instead of clustering based on sequence identity, marker-gene data sets collected over time can be clustered based on temporal correlation to reveal ecologically meaningful associations. We present Ananke, a free and open-source algorithm and software package that complements existing sequence-identity-based clustering approaches by clustering marker-gene data based on time-series profiles and provides interactive visualization of clusters, including highlighting of internal OTU inconsistencies. Ananke is able to cluster distinct temporal patterns from simulations of multiple ecological patterns, such as periodic seasonal dynamics and organism appearances/disappearances. We apply our algorithm to two longitudinal marker gene data sets: faecal communities from the human gut of an individual sampled over one year, and communities from a freshwater lake sampled over eleven years. Within the gut, the segregation of the bacterial community around a food-poisoning event was immediately clear. In the freshwater lake, we found that high sequence identity between marker genes does not guarantee similar temporal dynamics, and Ananke time-series clusters revealed patterns obscured by clustering based on sequence identity or taxonomy. Ananke is free and open-source software available at https://github.com/beiko-lab/ananke.

  1. Secondary production of a zoobenthic community under metal stress.

    Science.gov (United States)

    Faupel, Michael; Traunspurger, Walter

    2012-06-15

    Little is known about the influence of toxicants on the function of freshwater sediments. To better understand these effects, a long-term microcosm experiment was carried out with cadmium (Cd) as the model pollutant (50 and 400 mg Cd kg(-1) dw). In a seven-month study the effect of Cd was examined on secondary production of the zoobenthos (higher taxonomic level) and specifically of the nematode community (species level). Production of almost all taxa decreased under low Cd stress, with rotifers as the only taxon that was able to thrive under this condition. High Cd stress resulted in a decrease in secondary production of all groups with strong differences between taxa. Nematode production likewise decreased, with strongest effects in the higher Cd concentration. Interestingly, at the end of the study, several bacteria-feeding species had benefited from the low Cd stress, probably due to their rapid development in relation to other species and/or the high bacterial density under this condition. Taken together, the results of this study provide insight into secondary production of sediment communities and the important effects of a toxicant thereon. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Dynamics of Deformable Active Particles under External Flow Field

    Science.gov (United States)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  3. Nonlinear dynamics of a sliding beam on two supports under ...

    Indian Academy of Sciences (India)

    Abstract. This study deals with the nonlinear dynamics associated with large deformation of a beam sliding on two-knife edge supports under external excitation. The beam is referred to as a Gospodnetic–Frisch-Fay beam, after the researchers who reported its static deformation in closed form. The freedom of the beam to ...

  4. Wideband impedance measurements of DC motors under dynamic load conditions

    NARCIS (Netherlands)

    Diouf, F.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes; Duval, Fabrice; Bensetti, Mohamed

    2013-01-01

    One of the principal conducted EMI(electromagnetic interferences) sources of low voltage DC (direct current) motors is the commutation occurring during rotation. In this paper the small-signal impedance of low voltage DC motors under different functioning modes, including the dynamic one is studied

  5. Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover

    Science.gov (United States)

    Ochsner, T.; Venterea, R. T.

    2009-12-01

    Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching

  6. Fracture characterisation of float glass under static and dynamic loading

    Directory of Open Access Journals (Sweden)

    A. Nyounguè

    2016-12-01

    Full Text Available This paper presents the study of float glass fracture under static and dynamic loading, with the use of experimental and numerical fracture mechanics methods. It has been shown that the value of notch fracture toughness under static loading depends neither on the kind of test nor on specimen geometry. This makes it possible to replace the three-points-bending specimens with the Brazilian discs which are, under certain test conditions, simpler and convenient to study. For both types of specimens, an analysis of the fracture strength, the notch stress intensity factor and fragmentation of specimens was carried out.

  7. Mineralogical composition changes of postagrogenic soils under different plant communities.

    Science.gov (United States)

    Churilin, Nikita; Chizhikova, Natalia; Varlamov, Evgheni; Churilina, Alexandra

    2017-04-01

    Plant communities play the leading role in transformation of soil. The need of studying former arable lands increases due to large number of abandoned lands in Russia. It is necessary to study mineralogical composition of soils involved into natural processes to understand the trends of their development after agricultural activities in the past. The aim of the study is to identify changes in mineralogical composition of soils under the influence of different plant communities. Soils were sampled in the south of Arkhangelsk region, Ustyansky district, near Akichkin Pochinok village. Soils are formed on clay moraine of Moscow glaciation. Soil profiles were dug on interfluve. We selected 4 plant communities on different stages of succession: upland meadow with domination of sod grasses (Phleum pratense, Agrostis tenuis), 16-year-old birch forest where dominants are herbaceous plants such as Poa sp., Chamerion angustiflium, Agrostis tenuis, 16-year-old spruce forest with no herbaceous vegetation and 70-year-old bilberry spruce forest with domination of Vaccinium myrtillus and Vaccinium vitis-idaea. To separate soil fractions mineral content. We noticed a clear differentiation of studied soils both in the content of fraction and composition of minerals. Mineralogical composition and major mineral phases correlation of profiles under 70 years and 16 years of spruce forests are different. Mineralogical content in upper part of profile under the young spruce is more differentiated than in old spruce forest: the amount of quartz and kaolinite increases in upper horizon, although in this case the overall pattern of profile formation of clay material during podzolization remains unchanged. There is more substantial desilting under the birch forest, compared with profile under the spruce of same age within top 50 cm. Under the meadow vegetation we've discovered differentiation in mineral composition. Upper horizons contain smectite phase and differ from the underlying

  8. Processes underlying treatment success and failure in assertive community treatment.

    Science.gov (United States)

    Stull, Laura G; McGrew, John H; Salyers, Michelle P

    2012-02-01

    Processes underlying success and failure in assertive community treatment (ACT), a widely investigated treatment model for persons with severe mental illness, are poorly understood. The purpose of the current study was to examine processes in ACT by (1) understanding how consumers and staff describe the processes underlying treatment success and failure and (2) comparing processes identified by staff and consumers. Investigators conducted semi-structured interviews with 25 staff and 23 consumers from four ACT teams. Both staff and consumers identified aspects of the ACT team itself as the most critical in the process of consumer success. For failure, consumers identified consumer characteristics as most critical and staff identified lack of social relationships. Processes underlying failure were not viewed as merely the opposite of processes underlying success. In addition, there was notable disagreement between staff and consumers on important processes. Findings overlap with critical ingredients identified in previous studies, including aspects of the ACT team, social involvement and employment. In contrast to prior studies, there was little emphasis on hospitalizations and greater emphasis on not abusing substances, obtaining wants and desires, and consumer characteristics.

  9. Vegetation Dynamics and Community Assembly in Post-Agricultural Heathland

    DEFF Research Database (Denmark)

    Kepfer Rojas, Sebastian

    Summary This PhD study aims at understanding how biotic, abiotic and stochastic factors interact to structure a heathland vegetation community managed under different traditional land-use practices for centuries prior to abandonment ca. 120 years ago. This study is part of one of the longest...... for the proximity to external seed sources, was an important factor affecting different components of the structure of the vegetation, demonstrating the importance of dispersal in the development of the community. My results indicate that the effect of the biotic interactions varies along abiotic gradients (e...

  10. Thermomechanical behavior of EUV pellicle under dynamic exposure conditions

    Science.gov (United States)

    Goldfarb, Dario L.; Bloomfield, Max O.; Colburn, Matthew

    2016-03-01

    The utilization of EUV pellicles as protective layers for EUV masks requires the use of refractory materials that can tolerate large temperature excursions due to the non-negligible absorption of EUV radiation during exposure. Additionally, the mechanical stress induced on the EUV pellicle by the thermal load is dependent on the thermal expansion of the material which can be responsible for transient wrinkling. In this study, an ultrathin (20 nm), free-standing membrane based on silicon nitride is utilized as a learning vehicle to understand the material requirements of EUV pellicles under dynamic exposure conditions that are typical of commercial EUV scanners. First, the nanoscale radiative properties (emissivity) and thermo-mechanical failure temperature of the dielectric film under vacuum conditions are experimentally investigated utilizing a pulsed ArF (193 nm) probing laser. The silicon nitride membrane is found to be marginally compatible with an equivalent 80W EUV source power under steady state illumination conditions. Next, the thermal behavior of the EUV pellicle under dynamic exposure conditions is simulated using a finite element solver. The transient temperature profile and stress distribution across the membrane under stationary state conditions are extracted for an equivalent 60W EUV power source and the pellicle wrinkling due to heating and consequent impact on CD uniformity is estimated. The present work provides a generalized methodology to anticipate the thermal response of a EUV pellicle under realistic exposure conditions.

  11. Phytoplankton and bacterioplankton abundances and community dynamics in Lake Erhai.

    Science.gov (United States)

    Mingming, Hu; Yanhui, Li; Yuchun, Wang; Huaidong, Zhou; Yongding, Liu; Gaofeng, Zhao

    2013-01-01

    The composition and seasonal variation of the phytoplankton and bacterioplankton community were investigated, and SPSS and redundancy analysis (RDA) were used to explore the relationship between the phytoplankton and bacterioplankton community dynamics in the typical plateau Lake of Lake Erhai from July 2009 to April 2010. Obvious seasonal variation of phytoplankton was observed, and the abundance of phytoplankton ranged from 2.02 × 10(6) to 57.9 × 10(6) cells/L. The dominant species in autumn and summer was Microcystis sp., Psephonema aenigmaticum Skuja was dominant in winter, and Microcystis sp., Aphanizonmenon flos-aquae, Asterionella sp., P. aenigmaticum, etc. were dominant in spring. The abundance of bacterioplankton in the whole lake changed between 1.93 × 10(9) and 4.61 × 10(9) cells/L showing distinct seasonal variation characteristics. The results of correlation and RDA indicated that the abundance and community diversity of bacterioplankton were significantly correlated with the abundance of phytoplankton, and the group of Bacteroidetes had obvious correlation with Microcystis sp. and other cyanobacteria, which might have some links with the harmful algal blooms in Lake Erhai. Further research is needed to study the mechanisms of interactions between phytoplankton and bacterioplankton communities.

  12. Exploring Twitter communication dynamics with evolving community analysis

    Directory of Open Access Journals (Sweden)

    Konstantinos Konstantinidis

    2017-02-01

    Full Text Available Online Social Networks (OSNs have been widely adopted as a means of news dissemination, event reporting, opinion expression and discussion. As a result, news and events are being constantly reported and discussed online through OSNs such as Twitter. However, the variety and scale of all the information renders manual analysis extremely cumbersome, and therefore creating a storyline for an event or news story is an effort-intensive task. The main challenge pertains to the magnitude of data to be analyzed. To this end, we propose a framework for ranking the resulting communities and their metadata on the basis of structural, contextual and evolutionary characteristics such as community centrality, textual entropy, persistence and stability. We apply the proposed framework on three Twitter datasets and demonstrate that the analysis that followed enables the extraction of new insights with respect to influential user accounts, topics of discussion and emerging trends. These insights could primarily assist the work of social and political analysis scientists and the work of journalists in their own story telling, but also highlight the limitations of existing analysis methods and pose new research questions. To our knowledge, this study is the first to investigate the ranking of dynamic communities. In addition, our findings suggest future work regarding the determination of the general context of the communities based on structure and evolutionary behavior alone.

  13. Traits underlying community consequences of plant intra-specific diversity.

    Directory of Open Access Journals (Sweden)

    Luis Abdala-Roberts

    Full Text Available A plant's performance and interactions with other trophic levels are recorgnized to be contingent upon plant diversity and underlying associational dynamics, but far less is known about the plant traits driving such phenomena. We manipulated diversity in plant traits using pairs of plant and a substitutive design to elucidate the mechanisms underlying diversity effects operating at a fine spatial scale. Specifically, we measured the effects of diversity in sex (sexual monocultures vs. male and female genotypes together and growth rate (growth rate monocultures vs. fast- and slow-growing genotypes together on growth of the shrub Baccharis salicifolia and on above- and belowground consumers associated with this plant. We compared effects on associate abundance (# associates per plant vs. density (# associates per kg plant biomass to elucidate the mechanisms underlying diversity effects; effects on abundance but not density suggest diversity effects are mediated by resource abundance (i.e. plant biomass alone, whereas effects on density suggest diversity effects are mediated by plant-based heterogeneity or quality. Sexual diversity increased root growth but reduced the density (but not abundance of the dietary generalist aphid Aphis gossypii and its associated aphid-tending ants, suggesting sex mixtures were of lower quality to this herbivore (e.g. via reduced plant quality, and that this effect indirectly influenced ants. Sexual diversity had no effect on the abundance or density of parasitoids attacking A. gossypii, the dietary specialist aphid Uroleucon macolai, or mycorrhizae. In contrast, growth rate diversity did not influence plant growth or any associates except for the dietary specialist aphid U. macolai, which increased in both abundance and density at high diversity, suggesting growth rate mixtures were of higher quality to this herbivore. These results highlight that plant associational and diversity effects on consumers are contingent

  14. Dynamic control of a bistable wing under aerodynamic loading

    International Nuclear Information System (INIS)

    Bilgen, Onur; Arrieta, Andres F; Friswell, Michael I; Hagedorn, Peter

    2013-01-01

    The aerodynamic evaluation of a dynamic control technique applied to a bistable unsymmetrical cross-ply composite plate with surface bonded piezoelectric actuators is presented. The plate is clamped on one end to form a low-aspect-ratio wing. A previously proposed dynamic control method, utilizing bending resonance in different stable equilibrium positions, is used to induce snap-through between the two equilibrium states. Compared to quasi-static actuation, driving the bistable plate near resonance using surface bonded piezoelectric materials requires, theoretically, a lower peak excitation voltage to achieve snap-through. First, a set of extensive wind tunnel experiments are conducted on the passive bistable wing to understand the change in the dynamic behavior under various aerodynamic conditions. The passive wing demonstrated sufficient bending stiffness to sustain its shape under aerodynamic loading while preserving the desired bistable behavior. Next, by the use of the resonant control technique, the plate is turned into an effectively monostable structure, or alternatively, both stable equilibrium positions can be reached actively from the other stable equilibrium. Dynamic forward and reverse snap-through is demonstrated in the wind tunnel which shows both the effectiveness of the piezoelectric actuation as well as the load carrying capability of both states of the bistable wing. (paper)

  15. Dynamic Pricing Competition with Strategic Customers Under Vertical Product Differentiation

    OpenAIRE

    Qian Liu; Dan Zhang

    2013-01-01

    We consider dynamic pricing competition between two firms offering vertically differentiated products to strategic customers who are intertemporal utility maximizers. We show that price skimming arises as the unique pure-strategy Markov perfect equilibrium in the game under a simple condition. Our results highlight the asymmetric effect of strategic customer behavior on quality-differentiated firms. Even though the profit of either firm decreases as customers become more strategic, the low-qu...

  16. Dynamics and stability of electron plasma vortices under external strain

    Science.gov (United States)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2017-10-01

    The behavior of an initially axisymmetric 2D ideal vortex under an externally imposed strain flow is studied experimentally. The experiments are carried out using pure electron plasmas confined in a Penning-Malmberg trap; here, the dynamics of the plasma density transverse to the field are directly analogous to the dynamics of vorticity in a 2D ideal fluid. An external strain flow is applied using boundary conditions in a way that is consistent with 2D fluid dynamics. Primarily, elliptical distortions of the vortex core are studied, including dynamical orbits, equilibria, and stability properties. In the case of a quasi-flat vorticity profile, the results are in good agreement with a simple theory of a piecewise elliptical vorticity distribution. For smooth vorticity profiles, deviations from this theory are discussed. Results for time-dependent strain and tests of adiabatic behavior will also be discussed. These experiments may be relevant to many types of quasi-2D fluid behavior, including the dynamics of geophysical fluids, other types of strongly magnetized plasma, and various astrophysical scenarios. This work supported by NSF Grant PHY-1414570 and DOE Grants DE-SC0002451 and DE-SC0016532.

  17. Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils.

    Directory of Open Access Journals (Sweden)

    Michele C Pereira E Silva

    Full Text Available BACKGROUND: Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. METHODOLOGY/PRINCIPAL FINDINGS: In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K, indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season were affiliated with Bradyrhizobium, Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. CONCLUSIONS: Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil.

  18. Demographic Mechanisms of Reef Coral Species Winnowing from Communities under Increased Environmental Stress

    Directory of Open Access Journals (Sweden)

    Bernhard Riegl

    2017-10-01

    Full Text Available Winnowing of poorly-adapted species from local communities causes shifts/declines in species richness, making ecosystems increasingly ecologically depauperate. Low diversity can be associated with marginality of environments, which is increasing as climate change impacts ecosystems globally. This paper demonstrates the demographic mechanisms (size-specific mortality, growth, fertility; and metapopulation connectivity associated with population-level changes due to thermal stress extremes for five zooxanthellate reef-coral species. Effects vary among species, leading to predictable changes in population size and, consequently, community structure. The Persian/Arabian Gulf (PAG is an ecologically marginal reef environment with a subset of Indo-Pacific species, plus endemics. Local heating correlates with changes in coral population dynamics and community structure. Recent population dynamics of PAG corals were quantified in two phases (medium disturbed MD 1998–2010 and 2013–2017, severely disturbed SD 1996/8, 2010/11/12 with two stable states of declining coral frequency and cover. The strongest changes in life-dynamics, as expressed by transition matrices solved for MD and SD periods were in Acropora downingi and Porites harrisoni, which showed significant partial and whole-colony mortality (termed “shrinkers”. But in Dipsastrea pallida, Platygyra daedalea, Cyphastraea microphthalma the changes to life dynamics were more subtle, with only partial tissue mortality (termed “persisters”. Metapopulation models suggested recovery predominantly in species experiencing partial rather than whole-colony mortality. Increased frequency of disturbance caused progressive reduction in coral size, cover, and population fecundity. Also, the greater the frequency of disturbance, the more larval connectivity is required to maintain the metapopulation. An oceanographic model revealed important local larval retention and connectivity primarily between

  19. Process evaluation of community monitoring under national health mission at Chandigarh, union territory: Methodology and challenges

    Directory of Open Access Journals (Sweden)

    Jaya Prasad Tripathy

    2015-01-01

    Full Text Available Background: Community monitoring was introduced on a pilot mode in 36 selected districts of India in a phased manner. In Chandigarh, it was introduced in the year 2009-2010. A preliminary evaluation of the program was undertaken with special emphasis on the inputs and the processes. Methodology: Quantitative methods included verification against checklists and record reviews. Nonparticipant observation was used to evaluate the conduct of trainings, interviews, and group discussions. Health system had trained health system functionaries (nursing students and Village Health Sanitation Committee [VHSC] members to generate village-based scorecards for assessing community needs. Community needs were assessed independently for two villages under the study area to validate the scores generated by the health system. Results: VHSCs were formed in all 22 villages but without a chairperson or convener. The involvement of VHSC members in the community monitoring process was minimal. The conduct of group discussions was below par due to poor moderation and unequal responses from the group. The community monitoring committees at the state level had limited representation from the non-health sector, lower committees, and the nongovernmental organizations/civil societies. Agreement between the report cards generated by the investigator and the health system in the selected villages was found to be to be fair (0.369 whereas weighted kappa (0.504 was moderate. Conclusion: In spite of all these limitations and challenges, the government has taken a valiant step by trying to involve the community in the monitoring of health services. The dynamic nature of the community warrants incorporation of an evaluation framework into the planning of such programs.

  20. Effects of high latitude protected areas on bird communities under rapid climate change.

    Science.gov (United States)

    Santangeli, Andrea; Rajasärkkä, Ari; Lehikoinen, Aleksi

    2017-06-01

    Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human-driven land-use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate-driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold-dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late. © 2016 John Wiley & Sons Ltd.

  1. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    Directory of Open Access Journals (Sweden)

    Zak Frentz

    2015-10-01

    Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  2. Dynamic response of multiple nanobeam system under a moving nanoparticle

    Directory of Open Access Journals (Sweden)

    Shahrokh Hosseini Hashemi

    2018-03-01

    Full Text Available In this article, nonlocal continuum based model of multiple nanobeam system (MNBS under a moving nanoparticle is investigated using Eringen’s nonlocal theory. Beam layers are assumed to be coupled by winkler elastic medium and the nonlocal Euler-Bernoulli beam theory is used to model each layer of beam. The Hamilton’s principle, Eigen function technique and the Laplace transform method are employed to solve the governing equations. Analytical solutions of the transverse displacements for MNBs with simply supported boundary condition are presented for double layered and three layered MNBSs. For higher number of layers, the governing set of equations is solved numerically and the results are presented. This study shows that small-scale parameter has a significant effect on dynamic response of MNBS under a moving nanoparticle. Sensitivity of dynamical deflection to variation of nonlocal parameter, stiffness of Winkler elastic medium and number of nanobeams are presented in nondimensional form for each layer. Keywords: Dynamic response, Analytical solution, Moving particle, Nanobeam, Multi-layered nanobeam

  3. Effect of support conditions on structural response under dynamic loading

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.

    2008-01-01

    In design practice, dynamic structural analysis is carried out with base of structure considered as fixed; this means that foundation is placed on rock like soil material. While conducting this type of analyses the role of foundation and soil behaviour is totally neglected. The actions in members and loads transferred at foundation level obtained in this manner do not depict the true structural behaviour. FEM (Finite Element Methods) analysis where both superstructure and foundation soil are coupled together is quite complicated and expensive for design environments. A simplified model is required to depict dynamic response of structures with foundations based on flexible soils. The primary purpose of this research is to compare the superstructure dynamic responses of structural systems with fixed base to that of simple soil model base. The selected simple soil model is to be suitable for use in a design environment to give more realistic results. For this purpose building models are idealized with various heights and structural systems in both 2D (Two Dimensional) and 3D (Three Dimensional) space. These models are then provided with visco-elastic supports representing three soil bearing capacities and the analysis results are compared to that of fixed supports models. The results indicate that fixed support system underestimates natural time period of the structures. Dynamic behavior and force response of visco-elastic support is different from fixed support model. Fixed support models result in over designed base columns and under designed beams. (author)

  4. Plant community dynamics and restoring Louisiana's wetland ecosystems

    Science.gov (United States)

    Duke-Sylvester, S. M.; Visser, J.

    2017-12-01

    We have developed a computational model of plant community dynamics. Our model is designed to evaluate the effects of management actions on the structure and health of Louisiana's coastal wetland plant communities. A number of projects have been initiated or proposed to preserve and restore this ecosystem while still allowing the area to support Louisiana's economy. These projects involve both modification of the flow of freshwater as well as restoring natural wetlands. Evaluating the long term effects of these projects is complex and involves numerous moving pieces operating over an extensive and diverse landscape. The situation is further complicated by in sea level rise and climate change associated with global warming. The vegetation model is part of a larger set of linked models that include hydrology and soil morphology. Using hydrological conditions projected by the linked hydrology models, we are able to evaluate the effects of anthropogenic and climatic changes on Louisiana's wetland plant communities. Unique features of our model include replacing the division of wetlands into coarse groups defined by salinity conditions with species level responses to environmental conditions and extending the spatial scale of modeling to encompass the entirety of Louisiana's Gulf coast. Model results showing the potential impact of alternative management and climate change scenarios are presented.

  5. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy.

    Science.gov (United States)

    Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin; Lamendella, Regina

    2016-06-15

    Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial

  6. Display of high dynamic range images under varying viewing conditions

    Science.gov (United States)

    Borer, Tim

    2017-09-01

    Recent demonstrations of high dynamic range (HDR) television have shown that superb images are possible. With the emergence of an HDR television production standard (ITU-R Recommendation BT.2100) last year, HDR television production is poised to take off. However research to date has focused principally on HDR image display only under "dark" viewing conditions. HDR television will need to be displayed at varying brightness and under varying illumination (for example to view sport in daytime or on mobile devices). We know, from common practice with conventional TV, that the rendering intent (gamma) should change under brighter conditions, although this is poorly quantified. For HDR the need to render images under varying conditions is all the more acute. This paper seeks to explore the issues surrounding image display under varying conditions. It also describes how visual adaptation is affected by display brightness, surround illumination, screen size and viewing distance. Existing experimental results are presented and extended to try to quantify these effects. Using the experimental results it is described how HDR images may be displayed so that they are perceptually equivalent under different viewing conditions. A new interpretation of the experimental results is reported, yielding a new, luminance invariant model for the appropriate display "gamma". In this way the consistency of HDR image reproduction should be improved, thereby better maintaining "creative intent" in television.

  7. Modeling the Underlying Dynamics of the Spread of Crime

    Science.gov (United States)

    McMillon, David; Simon, Carl P.; Morenoff, Jeffrey

    2014-01-01

    The spread of crime is a complex, dynamic process that calls for a systems level approach. Here, we build and analyze a series of dynamical systems models of the spread of crime, imprisonment and recidivism, using only abstract transition parameters. To find the general patterns among these parameters—patterns that are independent of the underlying particulars—we compute analytic expressions for the equilibria and for the tipping points between high-crime and low-crime equilibria in these models. We use these expressions to examine, in particular, the effects of longer prison terms and of increased incarceration rates on the prevalence of crime, with a follow-up analysis on the effects of a Three-Strike Policy. PMID:24694545

  8. Numerical solution of dynamic equilibrium models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    2013-01-01

    We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations...... of the retarded type. We apply the Waveform Relaxation algorithm, i.e., we provide a guess of the policy function and solve the resulting system of (deterministic) ordinary differential equations by standard techniques. For parametric restrictions, analytical solutions to the stochastic growth model and a novel...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....

  9. DYNAMIC HYBRIDS UNDER SOLVENCY II: RISK ANALYSIS AND MODIFICATION POSSIBILITIES

    Directory of Open Access Journals (Sweden)

    Christian Maier

    2017-06-01

    Full Text Available In this study, we investigate the new and standardized European system of supervisory called Solvency II. In essence, asymmetric distribution of information between policyholder and insurer triggered this new regulation which aims at better protecting policyholders. Its three-pillar model is about to challenge both, insurers as well as policyholders. The first pillar includes quantitative aspects, the second pillar contains qualitative aspects and the third pillar comprises market transparency and reporting obligations. Underwriting risks, the default risk of a bank and market risks can be identified for the dynamic hybrid. Solvency II covers all these risks in the first pillar and insurers shall deposit sufficient risk-bearing capital. In our analysis, we first identify the dynamic hybrid specific risks under the Solvency II regime und then develop product modifications to reduce this risk.

  10. Aerobic storage under dynamic conditions in activated sludge processes

    DEFF Research Database (Denmark)

    Majone, M.; Dircks, K.

    1999-01-01

    In activated sludge processes, several plant configurations (like plug-flow configuration of the aeration tanks, systems with selectors, contact-stabilization processes or SBR processes) impose a concentration gradient of the carbon sources to the biomass. As a consequence, the biomass grows under...... mechanisms can also contribute to substrate removal, depending on the microbial composition and the previous "history" of the biomass. In this paper the type and the extent of this dynamic response is discussed by review of experimental studies on pure cultures, mixed cultures and activated sludges...... and with main reference to its relevance on population dynamics in the activated sludge. Possible conceptual approaches to storage modelling are also presented, including both structured and unstructured modelling. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  11. Kombucha Multimicrobial Community under Simulated Spaceflight and Martian Conditions

    Science.gov (United States)

    Podolich, O.; Zaets, I.; Kukharenko, O.; Orlovska, I.; Reva, O.; Khirunenko, L.; Sosnin, M.; Haidak, A.; Shpylova, S.; Rabbow, E.; Skoryk, M.; Kremenskoy, M.; Demets, R.; Kozyrovska, N.; de Vera, J.-P.

    2017-05-01

    Kombucha microbial community (KMC) produces a cellulose-based biopolymer of industrial importance and a probiotic beverage. KMC-derived cellulose-based pellicle film is known as a highly adaptive microbial macrocolony—a stratified community of prokaryotes and eukaryotes. In the framework of the multipurpose international astrobiological project "BIOlogy and Mars Experiment (BIOMEX)," which aims to study the vitality of prokaryotic and eukaryotic organisms and the stability of selected biomarkers in low Earth orbit and in a Mars-like environment, a cellulose polymer structural integrity will be assessed as a biomarker and biotechnological nanomaterial. In a preflight assessment program for BIOMEX, the mineralized bacterial cellulose did not exhibit significant changes in the structure under all types of tests. KMC members that inhabit the cellulose-based pellicle exhibited a high survival rate; however, the survival capacity depended on a variety of stressors such as the vacuum of space, a Mars-like atmosphere, UVC radiation, and temperature fluctuations. The critical limiting factor for microbial survival was high-dose UV irradiation. In the tests that simulated a 1-year mission of exposure outside the International Space Station, the core populations of bacteria and yeasts survived and provided protection against UV; however, the microbial density of the populations overall was reduced, which was revealed by implementation of culture-dependent and culture-independent methods. Reduction of microbial richness was also associated with a lower accumulation of chemical elements in the cellulose-based pellicle film, produced by microbiota that survived in the post-test experiments, as compared to untreated cultures that populated the film.

  12. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters

    2016-03-01

    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  13. Cracks dynamics under tensional stress - a DEM approach

    Science.gov (United States)

    Debski, Wojciech; Klejment, Piotr; Kosmala, Alicja; Foltyn, Natalia; Szpindler, Maciej

    2017-04-01

    Breaking and fragmentation of solid materials is an extremely complex process involving scales ranging from an atomic scale (breaking inter-atomic bounds) up to thousands of kilometers in case of catastrophic earthquakes (in energy scale it ranges from single eV up to 1024 J). Such a large scale span of breaking processes opens lot of questions like, for example, scaling of breaking processes, existence of factors controlling final size of broken area, existence of precursors, dynamics of fragmentation, to name a few. The classical approach to study breaking process at seismological scales, i.e., physical processes in earthquake foci, is essentially based on two factors: seismic data (mostly) and the continuum mechanics (including the linear fracture mechanics). Such approach has been gratefully successful in developing kinematic (first) and dynamic (recently) models of seismic rupture and explaining many of earthquake features observed all around the globe. However, such approach will sooner or latter face a limitation due to a limited information content of seismic data and inherit limitations of the fracture mechanics principles. A way of avoiding this expected limitation is turning an attention towards a well established in physics method of computational simulations - a powerful branch of contemporary physics. In this presentation we discuss preliminary results of analysis of fracturing dynamics under external tensional forces using the Discrete Element Method approach. We demonstrate that even under a very simplified tensional conditions, the fragmentation dynamics is a very complex process, including multi-fracturing, spontaneous fracture generation and healing, etc. We also emphasis a role of material heterogeneity on the fragmentation process.

  14. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  15. Dynamic robustness of knowledge collaboration network of open source product development community

    Science.gov (United States)

    Zhou, Hong-Li; Zhang, Xiao-Dong

    2018-01-01

    As an emergent innovative design style, open source product development communities are characterized by a self-organizing, mass collaborative, networked structure. The robustness of the community is critical to its performance. Using the complex network modeling method, the knowledge collaboration network of the community is formulated, and the robustness of the network is systematically and dynamically studied. The characteristics of the network along the development period determine that its robustness should be studied from three time stages: the start-up, development and mature stages of the network. Five kinds of user-loss pattern are designed, to assess the network's robustness under different situations in each of these three time stages. Two indexes - the largest connected component and the network efficiency - are used to evaluate the robustness of the community. The proposed approach is applied in an existing open source car design community. The results indicate that the knowledge collaboration networks show different levels of robustness in different stages and different user loss patterns. Such analysis can be applied to provide protection strategies for the key users involved in knowledge dissemination and knowledge contribution at different stages of the network, thereby promoting the sustainable and stable development of the open source community.

  16. Dynamic performance of slender suspension footbridges under eccentric walking dynamic loads

    Science.gov (United States)

    Huang, Ming-Hui; Thambiratnam, David P.; Perera, Nimal J.

    2007-06-01

    This paper treats the vibration of slender suspension footbridges caused by eccentrically distributed walking dynamic loads. A suspension footbridge model with reverse profiled cables in both the vertical and horizontal planes was used in this conceptual study, while SAP2000 package is adopted in the numerical analysis. The dynamic behaviour of slender footbridges under walking dynamic loads is simulated by resonant vibration caused by synchronous excitations. It is found that slender suspension footbridges with shallow cable profiles often have coupled vibration modes such as coupled lateral-torsional or coupled torsional-lateral modes. When these coupled vibration modes are excited by walking pedestrians, excessive lateral vibration can be induced. Results also show that the effects of the reverse profiled cables on the dynamic performance in different vibration modes are complex. Reverse profiled cables in the horizontal plane can significantly suppress the lateral vibration in coupled lateral-torsional modes, but slightly increase the lateral vibration in coupled torsional-lateral modes.

  17. The tank's dynamic response under nuclear explosion blast wave

    International Nuclear Information System (INIS)

    Xu Mei; Wang Lianghou; Li Xiaotian; Yu Suyuan; Zhang Zhengming; Wan Li

    2005-01-01

    To weapons and equipment, blast wave is the primary destructive factor. In this paper, taken the real model-59 tank as an example, we try to transform the damage estimation problem into computing a fluid structure interaction problem with finite element method. The response of tank under nuclear explosion blast wave is computed with the general-coupling algorithm. Also, the dynamical interaction of blast wave and tank is reflected in real time. The deformation of each part of the tank is worked out and the result corresponds to the real-measured data. (authors)

  18. Colonisation processes and the role of coralline algae in rocky shore community dynamics

    Science.gov (United States)

    Asnaghi, Valentina; Thrush, Simon F.; Hewitt, Judi E.; Mangialajo, Luisa; Cattaneo-Vietti, Riccardo; Chiantore, Mariachiara

    2015-01-01

    Recovery from disturbance is an important attribute of community dynamics. Temperate rocky shores will experience increases in both the type and intensity of impacts under future expected global change. To gauge the community response to these potential changes in the disturbance regime it is important to assess space occupancy and the temporal dynamics of key species over the recovery process. We experimentally disturbed replicated 1 m2 plots in the lower intertidal at 5 sites along the Ligurian rocky coast (North-western Mediterranean) and assessed early succession processes over 18 months. To identify colonisation processes and role of key species in affecting species richness on recovery trajectories, we monitored species composition at the cm-scale along fixed transects within the plots. Our results highlighted the role of a limited number of taxa in driving the recovery of species richness across sites, despite site variation in community composition. Settlement of new propagules and overgrowth were the principal pathway of space occupancy. We detected an important role for coralline algae, particularly the articulated Corallina elongata, in promoting the colonisation of a diverse range of colonists. The present study highlights the important role played by calcifying coralline macroalgae as substrate providers for later colonists, favouring recovery of biodiversity after disturbance. This pivotal role may be compromised in a future scenario of elevated cumulative disturbance, where ocean acidification will likely depress the role of coralline algae in recovery, leading to a general loss in biodiversity and community complexity.

  19. Spatio-temporal dynamics of species richness in coastal fish communities

    Science.gov (United States)

    Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.

    2002-01-01

    Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.

  20. Species composition, community and population dynamics of two gallery forests from the Brazilian Cerrado domain

    OpenAIRE

    Gastauer,Markus; Almado,Roosevelt; Miazaki,Angela; Souza,Écio; Moreira,Luis; Meira-Neto,João

    2016-01-01

    Abstract Background To understand the impacts of global changes on future community compositions, knowledge of community dynamics is of crucial importance. To improve our knowledge of community composition, biomass stock and maintenance of gallery forests in the Brazilian Cerrado, we provide two datasets from the 0.5 ha Corrego Fazendinha Gallery Forest Dynamics Plot and the Corrego Fundo Gallery Forest Dynamics Plot situated in the Bom Despacho region, Minas Gerais, Southeastern Brazil. New ...

  1. Dynamics of spins in semiconductor quantum wells under drift

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2009-01-01

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P PL ) was measured at different temperatures. The P PL was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P PL was also found to depend on the temperature. The P PL in the presence of a transverse magnetic field was also studied. The results showed that P PL in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  2. Dynamics of spins in semiconductor quantum wells under drift

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-15

    The dynamics of spins in semiconductor quantum wells under applied electric bias has been investigated by photoluminescence (PL) spectroscopy. The bias-dependent polarization of PL (P{sub PL}) was measured at different temperatures. The P{sub PL} was found to decay with an enhancement of increasing the strength of the negative bias, with an exception occurred for a low value of the negative bias. The P{sub PL} was also found to depend on the temperature. The P{sub PL} in the presence of a transverse magnetic field was also studied. The results showed that P{sub PL} in the magnetic field oscillates under an applied bias, demonstrating that the dephasing of electron spin occurs during the drift transport in semiconductor quantum wells.

  3. Interaction Between Ecohydrologic Dynamics and Microtopographic Variability Under Climate Change

    Science.gov (United States)

    Le, Phong V. V.; Kumar, Praveen

    2017-10-01

    Vegetation acclimation resulting from elevated atmospheric CO2 concentration, along with response to increased temperature and altered rainfall pattern, is expected to result in emergent behavior in ecologic and hydrologic functions. We hypothesize that microtopographic variability, which are landscape features typically of the length scale of the order of meters, such as topographic depressions, will play an important role in determining this dynamics by altering the persistence and variability of moisture. To investigate these emergent ecohydrologic dynamics, we develop a modeling framework, Dhara, which explicitly incorporates the control of microtopographic variability on vegetation, moisture, and energy dynamics. The intensive computational demand from such a modeling framework that allows coupling of multilayer modeling of the soil-vegetation continuum with 3-D surface-subsurface flow processes is addressed using hybrid CPU-GPU parallel computing framework. The study is performed for different climate change scenarios for an intensively managed agricultural landscape in central Illinois, USA, which is dominated by row-crop agriculture, primarily soybean (Glycine max) and maize (Zea mays). We show that rising CO2 concentration will decrease evapotranspiration, thus increasing soil moisture and surface water ponding in topographic depressions. However, increased atmospheric demand from higher air temperature overcomes this conservative behavior resulting in a net increase of evapotranspiration, leading to reduction in both soil moisture storage and persistence of ponding. These results shed light on the linkage between vegetation acclimation under climate change and microtopography variability controls on ecohydrologic processes.

  4. Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.

  5. HAWT dynamic stall response asymmetries under yawed flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, S.; Robinson, M.; Hand, M.; Simms, D.

    2000-02-28

    Horizontal axis wind turbines can experience significant time varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components, and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modeling advances, in turn, will rely on more thorough comprehension of the three-dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle of attack excursions above the static stall threshold. Stall vortices occupied approximately one-half of the blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location, and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated.

  6. Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions

    Science.gov (United States)

    Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah

    2018-03-01

    This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.

  7. Dynamics of Under Ice Boundary Layers Below Floating Ice Shelves

    Science.gov (United States)

    Shaw, W. J.; Stanton, T. P.

    2016-02-01

    Pine Island Glacier (PIG), a major outlet stream of the Western Antarctic Ice Sheet, has dramatically thinned and accelerated in recent decades. It is believed that a weakening of the floating portion of the glacier, known as the ice shelf, due to increased ocean thermal forcing is a primary cause of the observed increasing discharge of PIG. In order to better understand the controls on the exchange of heat between the PIG shelf and the underlying ocean cavity, a numerical model, MITgcm, has been configured to study the dynamics of the sloping, meltwater-forced, buoyant boundary layer below the ice shelf A 2-D approximation allows for high vertical resolution that resolves well the under shelf ocean boundary layer. We are particularly interested in the dynamical balance between buoyancy along the sloping ice shelf base, drag, and entrainment/detrainment and the associated feedback of basal melting of the ice shelf. Numerical results will be compared to in-situ observations obtained through a field campaign in 2013.

  8. Dynamic Root Distribution in the Community Land Model

    Science.gov (United States)

    Drewniak, B. A.

    2015-12-01

    Roots are responsible for water and nutrient uptake for plant needs, functioning to couple the above and belowground ecosystems as a photosynthesis driver. Roots respond to their environment with foraging strategies to maximize nutrient acquisition. However, roots have one of the simplest representations in Earth System Models (ESMs). Most root algorithms in ESMs consist of a fixed rooting depth and distribution, which varies only with plant functional type (PFT). Although this method works in general for many ecosystems, there are several regions (e.g., arid, boreal) where root distribution is either overestimated or underestimated resulting in plant stress induced lost productivity. In order to allow ecosystems to respond to changes in environment such as from climate change, roots require a time varying structure to adapt to heterogeneity of water and nitrogen in the soil. This work presents a new approach to representing roots in the Community Land Model. The methodology is designed to optimize root distribution for both water and nitrogen uptake, with a priority given to plant water needs. The roots can respond to the soil vertical profile of nutrients, influencing the plant extractable resources and therefore the above ground vegetation dynamics. The dynamic root profile results in an increase in gross primary productivity and crop yield.

  9. Design improvement and dynamic finite element analysis of novel ITI dental implant under dynamic chewing loads.

    Science.gov (United States)

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lee, Shyh-Yuan

    2015-01-01

    The main aim of this article was to introduce the application of a uniform design for experimental methods to drop the micromotion of a novel ITI dental implant model under the dynamic loads. Combining the characteristics of the traditional ITI and Nano-Tite implants, a new implant with concave holes has been constructed. Compared to the traditional ITI dental implant model, the micromotion of the new dental implant model was significantly reduced by explicit dynamic finite element analysis. From uniform design of experiments, the dynamic finite element analysis method was applied to caluculated the maximum micromotion of the full model. Finally, the chief design in all the experiment simulations which cause the minimum micromotion is picked as the advanced model of the design. Related to the original design, which was associated with a micromotion of 45.11 μm, the micromotion of the improved version was 31.37 μm, for an improvement rate of 30.5%.

  10. Soil mineral assemblage influences on microbial communities and carbon cycling under fresh organic matter input

    Science.gov (United States)

    Finley, B. K.; Schwartz, E.; Koch, B.; Dijkstra, P.; Hungate, B. A.

    2017-12-01

    The interactions between soil mineral assemblages and microbial communities are important drivers of soil organic carbon (SOC) cycling and storage, although the mechanisms driving these interactions remain unclear. There is increasing evidence supporting the importance of associations with poorly crystalline, short-range order (SRO) minerals in protection of SOC from microbial utilization. However, how the microbial processing of SRO-associated SOC may be influenced by fresh organic matter inputs (priming) remains poorly understood. The influence on SRO minerals on soil microbial community dynamics is uncertain as well. Therefore, we conducted a priming incubation by adding either a simulated root exudate mixture or conifer needle litter to three soils from a mixed-conifer ecosystem. The parent material of the soils were andesite, basalt, and granite and decreased in SRO mineral content, respectively. We also conducted a parallel quantitative stable isotope probing incubation by adding 18O-labelled water to the soils to isotopically label microbial DNA in situ. This allowed us to characterize and identify the active bacterial and archaeal community and taxon-specific growth under fresh organic matter input. While the granite soil (lowest SRO content), had the largest total mineralization, the least priming occurred. The andesite and basalt soils (greater SRO content) had lower total respiration, but greater priming. Across all treatments, the granite soil, while having the lowest species richness of the entire community (249 taxa, both active and inactive), had a larger active community (90%) in response to new SOC input. The andesite and basalt soils, while having greater total species richness of the entire community at 333 and 325 taxa, respectively, had fewer active taxa in response to new C compared to the granite soil (30% and 49% taxa, respectively). These findings suggest that the soil mineral assemblage is an important driver on SOC cycling under fresh

  11. Community treatment orders: exploring the paradox of personalisation under compulsion

    NARCIS (Netherlands)

    Banks, Laura Catherine; Stroud, Julia; Doughty, Karolina

    2016-01-01

    The introduction of supervised community treatment, delivered through community treatment orders (CTOs) in England and Wales, contrasts with the policy of personalisation, which aims to provide service users autonomy and choice over services. This article draws upon findings from a primarily

  12. Perspectives of Community Co-Researchers About Group Dynamics and Equitable Partnership Within a Community-Academic Research Team.

    Science.gov (United States)

    Vaughn, Lisa M; Jacquez, Farrah; Zhen-Duan, Jenny

    2018-04-01

    Equitable partnership processes and group dynamics, including individual, relational, and structural factors, have been identified as key ingredients to successful community-based participatory research partnerships. The purpose of this qualitative study was to investigate the key aspects of group dynamics and partnership from the perspectives of community members serving as co-researchers. Semistructured, in-depth interviews were conducted with 15 Latino immigrant co-researchers from an intervention project with Latinos Unidos por la Salud (LU-Salud), a community research team composed of Latino immigrant community members and academic investigators working in a health research partnership. A deductive framework approach guided the interview process and qualitative data analysis. The LU-Salud co-researchers described relationships, personal growth, beliefs/identity motivation (individual dynamics), coexistence (relational dynamics), diversity, and power/resource sharing (structural dynamics) as key foundational aspects of the community-academic partnership. Building on existing CBPR and team science frameworks, these findings demonstrate that group dynamics and partnership processes are fundamental drivers of individual-level motivation and meaning making, which ultimately sustain efforts of community partners to engage with the research team and also contribute to the achievement of intended research outcomes.

  13. Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration

    KAUST Repository

    Rao, Hari Ananda

    2017-07-20

    Microbial electrolysis cells (MECs) are widely considered as a next generation wastewater treatment system. However, fundamental insight on the temporal dynamics of microbial communities associated with MEC performance under different organic types with varied loading concentrations is still unknown, nevertheless this knowledge is essential for optimizing this technology for real-scale applications. Here, the temporal dynamics of anodic microbial communities associated with MEC performance was examined at low (0.5 g COD/L) and high (4 g COD/L) concentrations of acetate or propionate, which are important intermediates of fermentation of municipal wastewaters and sludge. The results showed that acetate-fed reactors exhibited higher performance in terms of maximum current density (I: 4.25 ± 0.23 A/m), coulombic efficiency (CE: 95 ± 8%), and substrate degradation rate (98.8 ± 1.2%) than propionate-fed reactors (I: 2.7 ± 0.28 A/m; CE: 68 ± 9.5%; substrate degradation rate: 84 ± 13%) irrespective of the concentrations tested. Despite of the repeated sampling of the anodic biofilm over time, the high-concentration reactors demonstrated lower and stable performance in terms of current density (I: 1.1 ± 0.14 to 4.2 ± 0.21 A/m), coulombic efficiency (CE: 44 ± 4.1 to 103 ± 7.2%) and substrate degradation rate (64.9 ± 6.3 to 99.7 ± 0.5%), while the low-concentration reactors produced higher and dynamic performance (I: 1.1 ± 0.12 to 4.6 ± 0.1 A/m; CE: 52 ± 2.5 to 105 ± 2.7%; substrate degradation rate: 87.2 ± 0.2 to 99.9 ± 0.06%) with the different substrates tested. Correlating reactor\\'s performance with temporal dynamics of microbial communities showed that relatively similar anodic microbial community composition but with varying relative abundances was observed in all the reactors despite differences in the substrate and concentrations tested. Particularly, Geobacter was the predominant bacteria on the anode biofilm of all MECs over time suggesting its

  14. A technique for measuring dynamic friction coefficient under impact loading.

    Science.gov (United States)

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  15. Strength of coffee beans under static and dynamic loading

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2013-01-01

    Full Text Available Paper deals with experimental research on the crushing of coffee beans of different kinds under quasi-static and dynamic compression. The process of the crushing is described in details. It has been shown that there is variability in the crushing strength values. A relation between crushing strength and the coffee grain shape is also studied. Roasted Arabica coffee (Coffea arabica beans were used for analyses. Arabica coffees were produced in different countries. All Arabica samples were submitted to a light roast. The detail analysis of the experimental data shows that there is no significant relation between parameters describing the fracture behaviour of the grains and grain geometry. These parameters are also independent on the grain weight. Compression of the coffee grains leads to their crushing. The fracture force is different for the different kinds of the coffee. The same is fact valid also for the strain at the fracture and for the energy absorbed during the grain crushing. Dynamic loading leads to the increase in the fracture force of coffee grains in comparison with the quasi static loading.

  16. Prototypes for the dynamics underlying precipitation and temperature extremes

    Science.gov (United States)

    Neelin, J. David

    Projecting changes in precipitation and temperature extreme events can be aided by a deeper understanding of the dynamics underlying such variations. For precipitation, this is closely connected to the interaction of fast, small-scale motions with variability of large-scale climate. Simple prototype models from the physics and applied math literature can point to analysis methods, connections among related quantities, and hypotheses for the dynamics, especially when the prototype models can be derived from climate-model equations. An overview will be provided including recent work with a number of collaborators. For distributions of precipitation-related variables, prototypes including Fokker-Planck solutions and first-passage problems for variations across an onset threshold yield insights into the form of present-day observed distributions and predictions for the form of the global warming change to evaluate in climate models. In distributions of water vapor and temperature, the widespread occurrence of non-Gaussian tails is likely explained in part by prototypes for tracer advection across a maintained gradient. The shape of these tails can have substantial implications for regional changes in probabilities of precipitation and temperature extremes with large-scale warming. Supported in part by the National Science Foundation.

  17. Dynamical anisotropic response of black phosphorus under magnetic field

    Science.gov (United States)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  18. Planar dynamics of large-deformation rods under moving loads

    Science.gov (United States)

    Zhao, X. W.; van der Heijden, G. H. M.

    2018-01-01

    We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.

  19. Dynamics of Microbeams under Multi-Frequency Excitations

    KAUST Repository

    Ibrahim, Alwathiqbellah

    2017-01-24

    This paper presents an investigation of the dynamics of microbeams under multiple harmonic electrostatic excitation frequencies. First, the response of a cantilever microbeam to two alternating current (AC) source excitation is examined. We show by simulations the response of the microbeam at primary resonance (near the fundamental natural frequency) and at secondary resonances (near half, superharmonic, and twice, subharmonic, the fundamental natural frequency). A multimode Galerkin method combined with the Euler-Bernoulli beam equation, accounting for the nonlinear electrostatic force, has been used to develop a reduced order model. The response of the cantilever microbeam to three AC source excitation is also investigated and shown as a promising technique to enhance the bandwidth of resonators. Finally, an experimental study of a clamped-clamped microbeam is conducted, demonstrating the multi-frequency excitation resonances using two, three, and four AC sources.

  20. Dynamics of Microbeams under Multi-Frequency Excitations

    Directory of Open Access Journals (Sweden)

    Alwathiqbellah Ibrahim

    2017-01-01

    Full Text Available This paper presents an investigation of the dynamics of microbeams under multiple harmonic electrostatic excitation frequencies. First, the response of a cantilever microbeam to two alternating current (AC source excitation is examined. We show by simulations the response of the microbeam at primary resonance (near the fundamental natural frequency and at secondary resonances (near half, superharmonic, and twice, subharmonic, the fundamental natural frequency. A multimode Galerkin method combined with the Euler-Bernoulli beam equation, accounting for the nonlinear electrostatic force, has been used to develop a reduced order model. The response of the cantilever microbeam to three AC source excitation is also investigated and shown as a promising technique to enhance the bandwidth of resonators. Finally, an experimental study of a clamped-clamped microbeam is conducted, demonstrating the multi-frequency excitation resonances using two, three, and four AC sources.

  1. Dynamic malware containment under an epidemic model with alert

    Science.gov (United States)

    Zhang, Tianrui; Yang, Lu-Xing; Yang, Xiaofan; Wu, Yingbo; Tang, Yuan Yan

    2017-03-01

    Alerting at the early stage of malware invasion turns out to be an important complement to malware detection and elimination. This paper addresses the issue of how to dynamically contain the prevalence of malware at a lower cost, provided alerting is feasible. A controlled epidemic model with alert is established, and an optimal control problem based on the epidemic model is formulated. The optimality system for the optimal control problem is derived. The structure of an optimal control for the proposed optimal control problem is characterized under some conditions. Numerical examples show that the cost-efficiency of an optimal control strategy can be enhanced by adjusting the upper and lower bounds on admissible controls.

  2. Dynamic Group Diffie-Hellman Key Exchange under standard assumptions

    International Nuclear Information System (INIS)

    Bresson, Emmanuel; Chevassut, Olivier; Pointcheval, David

    2002-01-01

    Authenticated Diffie-Hellman key exchange allows two principals communicating over a public network, and each holding public-private keys, to agree on a shared secret value. In this paper we study the natural extension of this cryptographic problem to a group of principals. We begin from existing formal security models and refine them to incorporate major missing details (e.g., strong-corruption and concurrent sessions). Within this model we define the execution of a protocol for authenticated dynamic group Diffie-Hellman and show that it is provably secure under the decisional Diffie-Hellman assumption. Our security result holds in the standard model and thus provides better security guarantees than previously published results in the random oracle model

  3. Microbial Character Related Sulfur Cycle under Dynamic Environmental Factors Based on the Microbial Population Analysis in Sewerage System.

    Science.gov (United States)

    Dong, Qian; Shi, Hanchang; Liu, Yanchen

    2017-01-01

    The undesired sulfur cycle derived by microbial population can ultimately causes the serious problems of sewerage systems. However, the microbial community characters under dynamic environment factors in actual sewerage system is still not enough. This current study aimed to character the distributions and compositions of microbial communities that participate in the sulfur cycle under the dynamic environmental conditions in a local sewerage system. To accomplish this, microbial community compositions were assessed using 454 high-throughput sequencing (16S rDNA) combined with dsrB gene-based denaturing gradient gel electrophoresis. The results indicated that a higher diversity of microbial species was present at locations in sewers with high concentrations of H 2 S. Actinobacteria and Proteobacteria were dominant in the sewerage system, while Actinobacteria alone were dominant in regions with high concentrations of H 2 S. Specifically, the unique operational taxonomic units could aid to characterize the distinct microbial communities within a sewerage manhole. The proportion of sulfate-reducing bacteria, each sulfur-oxidizing bacteria (SOB) were strongly correlated with the liquid parameters (DO, ORP, COD, Sulfide, NH 3 -N), while the Mycobacterium and Acidophilic SOB (M&A) was strongly correlated with gaseous factors within the sewer, such as H 2 S, CH 4 , and CO. Identifying the distributions and proportions of critical microbial communities within sewerage systems could provide insights into how the microbial sulfur cycle is affected by the dynamic environmental conditions that exist in sewers and might be useful for explaining the potential sewerage problems.

  4. Delegation of Authority Under the Community Environmental Response Facilitation Act (CERFA) - Decision Memorandum

    Science.gov (United States)

    This memorandum concerns how the Office of Enforcement (OE) proposed that two new authorities under the Community Environmental Response Facilitation Act (CERFA) be delegated to the Regional Administrators.

  5. Environmental Stress, Bottom-up Effects, and Community Dynamics: Integrating Molecular-Physiological and Ecological Approaches.

    Science.gov (United States)

    Menge, Bruce A; Olson, Annette M; Dahlhoff, Elizabeth P

    2002-08-01

    Environmental stress and nutrient/productivity models predict the responses of community structure along gradients of physical conditions and bottom-up effects. Although both models have succeeded in helping to understand variation in ecological communities, most tests have been qualitative. Until recently, two roadblocks to more quantitative tests in marine environments have been a lack of (1) inexpensive, field-deployable technology for quantifying (e.g.) temperature, light, salinity, chlorophyll, and productivity, and (2) methods of quantifying the sub-organismal mechanisms linking environmental conditions to their ecological expression. The advent of inexpensive remote-sensing technology, adoption of molecular techniques such as quantification of heat-shock proteins and RNA:DNA ratios, and the formation of interdisciplinary alliances between ecologists and physiologists has begun to overcome these roadblocks. An integrated eco-physiological approach focuses on the determinants of: distributional limits among microhabitat patches and along (local-scale) environmental gradients (e.g., zonation); among-site (mesoscale) differences in community pattern; and geographic (macroscale) differences in ecosystem structure. These approaches promise new insights into the physiological mechanisms underlying variation in processes such as species interactions, physical disturbance, survival and growth. Here, we review two classes of models for community dynamics, and present examples of ecological studies of these models in consumer-prey systems. We illustrate the power of new molecular tools to characterize the sub-organismal responses of some of the same consumers and prey to thermal stress and food concentration. Ecological and physiological evidence tends to be consistent with model predictions, supporting our argument that we are poised to make major advances in the mechanistic understanding of community dynamics along key environmental gradients.

  6. Temporal dynamics in microbial soil communities at anthrax carcass sites.

    Science.gov (United States)

    Valseth, Karoline; Nesbø, Camilla L; Easterday, W Ryan; Turner, Wendy C; Olsen, Jaran S; Stenseth, Nils Chr; Haverkamp, Thomas H A

    2017-09-26

    Anthrax is a globally distributed disease affecting primarily herbivorous mammals. It is caused by the soil-dwelling and spore-forming bacterium Bacillus anthracis. The dormant B. anthracis spores become vegetative after ingestion by grazing mammals. After killing the host, B. anthracis cells return to the soil where they sporulate, completing the lifecycle of the bacterium. Here we present the first study describing temporal microbial soil community changes in Etosha National Park, Namibia, after decomposition of two plains zebra (Equus quagga) anthrax carcasses. To circumvent state-associated-challenges (i.e. vegetative cells/spores) we monitored B. anthracis throughout the period using cultivation, qPCR and shotgun metagenomic sequencing. The combined results suggest that abundance estimation of spore-forming bacteria in their natural habitat by DNA-based approaches alone is insufficient due to poor recovery of DNA from spores. However, our combined approached allowed us to follow B. anthracis population dynamics (vegetative cells and spores) in the soil, along with closely related organisms from the B. cereus group, despite their high sequence similarity. Vegetative B. anthracis abundance peaked early in the time-series and then dropped when cells either sporulated or died. The time-series revealed that after carcass deposition, the typical semi-arid soil community (e.g. Frankiales and Rhizobiales species) becomes temporarily dominated by the orders Bacillales and Pseudomonadales, known to contain plant growth-promoting species. Our work indicates that complementing DNA based approaches with cultivation may give a more complete picture of the ecology of spore forming pathogens. Furthermore, the results suggests that the increased vegetation biomass production found at carcass sites is due to both added nutrients and the proliferation of microbial taxa that can be beneficial for plant growth. Thus, future B. anthracis transmission events at carcass sites may be

  7. Numerical optimization of piezolaminated beams under static and dynamic excitations

    Directory of Open Access Journals (Sweden)

    Rajan L. Wankhade

    2017-06-01

    Full Text Available Shape and vibration controls of smart structures in structural applications have gained much attraction due to their ability of actuation and sensing. The response of structure to bending, vibration, and buckling can be controlled by the use of this ability of a piezoelectric material. In the present work, the static and dynamic control of smart piezolaminated beams is presented. The optimal locations of piezoelectric patches are found out and then a detailed analysis is performed using finite element modeling considering the higher order shear deformation theory. In the first part, for an extension mode, the piezolaminated beam with stacking sequence PZT5/Al/PZT5 is considered. The length of the beam is 100 mm, whereas the thickness of an aluminum core is 16 mm and that of the piezo layer is of 1 mm. The PZT actuators are positioned with an identical poling direction along the thickness and are excited by a direct current voltage of 10 V. For the shear mode, the stacking sequence Al/PZT5/Al is adopted. The length of the beam is kept the same as the extension mechanism i.e. 100 mm, whereas the thickness of the aluminum core is 8 mm and that of the piezo layer is of 2 mm. The actuator is excited by a direct current voltage of 20 V. In the second part, the control of the piezolaminated beam with an optimal location of the actuator is investigated under a dynamic excitation. Electromechanical loading is considered in the finite element formulation for the analysis purpose. Results are provided for beams with different boundary conditions and loading for future references. Both the extension and shear actuation mechanisms are employed for the piezolaminated beam. These results may be used to identify the response of a beam under static and dynamic excitations. From the present work, the optimal location of a piezoelectric patch can be easily identified for the corresponding boundary condition of the beam.

  8. Sustainable infrastructure system modeling under uncertainties and dynamics

    Science.gov (United States)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the

  9. Empirical phylogenies and species abundance distributions are consistent with pre-equilibrium dynamics of neutral community models with gene flow

    KAUST Repository

    Bonnet-Lebrun, Anne-Sophie

    2017-03-17

    Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modelled communities - i.e., with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities - from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in pre-equilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under pre-equilibrium conditions. This article is protected by copyright. All rights reserved.

  10. Simulations of long-term community dynamics in coral reefs--how perturbations shape trajectories.

    Directory of Open Access Journals (Sweden)

    Andreas Kubicek

    Full Text Available Tropical coral reefs feature extraordinary biodiversity and high productivity rates in oligotrophic waters. Due to increasing frequencies of perturbations--anthropogenic and natural--many reefs are under threat. Such perturbations often have devastating effects on these unique ecosystems and especially if they occur simultaneously and amplify each other's impact, they might trigger a phase shift and create irreversible conditions.We developed a generic, spatially explicit, individual-based model in which competition drives the dynamics of a virtual benthic reef community--comprised of scleractinian corals and algae--under different environmental settings. Higher system properties, like population dynamics or community composition arise through self-organization as emergent properties. The model was parameterized for a typical coral reef site at Zanzibar, Tanzania and features coral bleaching and physical disturbance regimes as major sources of perturbations. Our results show that various types and modes (intensities and frequencies of perturbations create diverse outcomes and that the switch from high diversity to single species dominance can be evoked by small changes in a key parameter. Here we extend the understanding of coral reef resilience and the identification of key processes, drivers and respective thresholds, responsible for changes in local situations. One future goal is to provide a tool which may aid decision making processes in management of coral reefs.

  11. Thermographic measurement of thermal bridges in buildings under dynamic behavior

    Science.gov (United States)

    Ferrarini, G.; Bison, P.; Bortolin, A.; Cadelano, G.; De Carli, M.

    2016-05-01

    The accurate knowledge of the thermal performance could reduce significantly the impact of buildings on global energy consumption. Infrared thermography is widely recognized as one of the key technologies for building surveys, thanks to its ability to acquire at a glance thermal images of the building envelope. However, a spot measurement could be misleading when the building is under dynamic thermal conditions. In this case data should be acquired for hours or days, depending on the thermal properties of the walls. Long term thermographic monitoring are possible but imply strong challenges from a practical standpoint. This work investigates the possibilities and limitations of spot thermographic surveys coupled with contact probes, that are able to acquire continuously the thermal signal for days, to investigate the thermal bridges of a building. The goal is the estimation of the reliability and accuracy of the measurement under realistic environmental conditions. Firstly, numerical simulations are performed to determine the reference value of an experimental case. Then a long term thermographic survey is performed and integrated with the contact probe measurement, assessing the feasibility of the method.

  12. The role of uncertainty in supply chains under dynamic modeling

    Directory of Open Access Journals (Sweden)

    M. Fera

    2017-01-01

    Full Text Available The uncertainty in the supply chains (SCs for manufacturing and services firms is going to be, over the coming decades, more important for the companies that are called to compete in a new globalized economy. Risky situations for manufacturing are considered in trying to individuate the optimal positioning of the order penetration point (OPP. It aims at defining the best level of information of the client’s order going back through the several supply chain (SC phases, i.e. engineering, procurement, production and distribution. This work aims at defining a system dynamics model to assess competitiveness coming from the positioning of the order in different SC locations. A Taguchi analysis has been implemented to create a decision map for identifying possible strategic decisions under different scenarios and with alternatives for order location in the SC levels. Centralized and decentralized strategies for SC integration are discussed. In the model proposed, the location of OPP is influenced by the demand variation, production time, stock-outs and stock amount. Results of this research are as follows: (i customer-oriented strategies are preferable under high volatility of demand, (ii production-focused strategies are suggested when the probability of stock-outs is high, (iii no specific location is preferable if a centralized control architecture is implemented, (iv centralization requires cooperation among partners to achieve the SC optimum point, (v the producer must not prefer the OPP location at the Retailer level when the general strategy is focused on a decentralized approach.

  13. Nanomaterials under extreme environments: A study of structural and dynamic properties using reactive molecular dynamics simulations

    Science.gov (United States)

    Shekhar, Adarsh

    Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in

  14. Dynamics of bacterial community in the gut of Cornu aspersum

    Directory of Open Access Journals (Sweden)

    ZDRAVKA KOLEVA

    2015-12-01

    Full Text Available The dynamics of the bacterial community in the intestinal tract of Cornu aspersum was investigated during different states of its life cycle. Two approaches were applied – culture and non-culture. The non-culture approach was performed by ARDRA of 16S rDNA using two of the six tested endonucleases. Data were analyzed by hierarchical cluster analysis. The restriction of 16S rDNA samples from the snail of different physiological states with endonucleases HinfI and Csp6I resulted in generation of different profiles depending on the snail states. By the culture approach we found that the total number of cultivable bacteria, representatives of Enterobacteriaceae, lactic acid bacteria, amylolitic and cellulolytic bacteria were the most abundant in active state of the snails. Cellulolytic bacteria were not detected in juveniles of C. aspersum. Escherichia coli, Clostridium perfringens as well as bacteria from the genus Salmonella, Shigella and Pseudomonas were not detected. Bacteria of the genus Aeromonas were found in juveniles of C. aspersum, after that their number decrease and were not found in hibernating snails. On the base of the two applied approaches this study shows that the bacterial flora in the intestinal tract of C. aspersum is affected by the seasonal and environmental variations and undergoes quantitative and qualitative changes during the different states of the life cycle. The snails harbor in their gut intestinal bacteria, which possess biochemical potentiality to degrade the plant components.

  15. An approach of community evolution based on gravitational relationship refactoring in dynamic networks

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guisheng; Chi, Kuo, E-mail: chik89769@hrbeu.edu.cn; Dong, Yuxin; Dong, Hongbin

    2017-04-25

    In this paper, an approach of community evolution based on gravitational relationship refactoring between the nodes in a dynamic network is proposed, and it can be used to simulate the process of community evolution. A static community detection algorithm and a dynamic community evolution algorithm are included in the approach. At first, communities are initialized by constructing the core nodes chains, the nodes can be iteratively searched and divided into corresponding communities via the static community detection algorithm. For a dynamic network, an evolutionary process is divided into three phases, and behaviors of community evolution can be judged according to the changing situation of the core nodes chain in each community. Experiments show that the proposed approach can achieve accuracy and availability in the synthetic and real world networks. - Highlights: • The proposed approach considers both the static community detection and dynamic community evolution. • The approach of community evolution can identify the whole 6 common evolution events. • The proposed approach can judge the evolutionary events according to the variations of the core nodes chains.

  16. Community Project Funding in Malawi under the Malawi Social ...

    African Journals Online (AJOL)

    This paper gives an overview of the kind of community development projects that the Malawi Social Action Fund (MASAF) has supported since its inception in July 1996. The MASAF has tended to subscribe to a demand-driven approach in its evaluation of projects, thereby introducing an element of competition in commu ...

  17. Community risk assessment of rainfall variability under rain-fed ...

    African Journals Online (AJOL)

    However, a nuanced understanding of the perspectives of climate related risks among local populations affected is often lacking and or seldom explored in vulnerability assessments due to the dominance of top-down approaches. This paper explores the potential of Community Risk Assessment (CRA) and local knowledge ...

  18. BEHAVIOR OF STEEL DP 600 UNDER DYNAMIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    Miroslav Német

    2014-01-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Dynamic tensile testing of sheet steels is becoming more important. Experimental dynamic tensile technique is depending on the strain rate. For experiments was used two testing method servo hydraulic and single bar method. Experiments was realized on steel grade DP 600. Steel were performed and evaluated static and dynamic tests. Was investigated substructure in static and dynamic loading conditions.

  19. European seaweeds under pressure: Consequences for communities and ecosystem functioning

    Science.gov (United States)

    Mineur, Frédéric; Arenas, Francisco; Assis, Jorge; Davies, Andrew J.; Engelen, Aschwin H.; Fernandes, Francisco; Malta, Erik-jan; Thibaut, Thierry; Van Nguyen, Tu; Vaz-Pinto, Fátima; Vranken, Sofie; Serrão, Ester A.; De Clerck, Olivier

    2015-04-01

    Seaweed assemblages represent the dominant autotrophic biomass in many coastal environments, playing a central structural and functional role in several ecosystems. In Europe, seaweed assemblages are highly diverse systems. The combined seaweed flora of different European regions hold around 1550 species (belonging to nearly 500 genera), with new species continuously uncovered, thanks to the emergence of molecular tools. In this manuscript we review the effects of global and local stressors on European seaweeds, their communities, and ecosystem functioning. Following a brief review on the present knowledge on European seaweed diversity and distribution, and the role of seaweed communities in biodiversity and ecosystem functioning, we discuss the effects of biotic homogenization (invasive species) and global climate change (shifts in bioclimatic zones and ocean acidification) on the distribution of individual species and their effect on the structure and functioning of seaweed communities. The arrival of new introduced species (that already account for 5-10% of the European seaweeds) and the regional extirpation of native species resulting from oceans' climate change are creating new diversity scenarios with undetermined functional consequences. Anthropogenic local stressors create additional disruption often altering dramatically assemblage's structure. Hence, we discuss ecosystem level effects of such stressors like harvesting, trampling, habitat modification, overgrazing and eutrophication that impact coastal communities at local scales. Last, we conclude by highlighting significant knowledge gaps that need to be addressed to anticipate the combined effects of global and local stressors on seaweed communities. With physical and biological changes occurring at unexpected pace, marine phycologists should now integrate and join their research efforts to be able to contribute efficiently for the conservation and management of coastal systems.

  20. Low enrolment in Ugandan Community Health Insurance Schemes: underlying causes and policy implications

    Directory of Open Access Journals (Sweden)

    Criel Bart

    2007-07-01

    Full Text Available Abstract Background Despite the promotion of Community Health Insurance (CHI in Uganda in the second half of the 90's, mainly under the impetus of external aid organisations, overall membership has remained low. Today, some 30,000 persons are enrolled in about a dozen different schemes located in Central and Southern Uganda. Moreover, most of these schemes were created some 10 years ago but since then, only one or two new schemes have been launched. The dynamic of CHI has apparently come to a halt. Methods A case study evaluation was carried out on two selected CHI schemes: the Ishaka and the Save for Health Uganda (SHU schemes. The objective of this evaluation was to explore the reasons for the limited success of CHI. The evaluation involved review of the schemes' records, key informant interviews and exit polls with both insured and non-insured patients. Results Our research points to a series of not mutually exclusive explanations for this under-achievement at both the demand and the supply side of health care delivery. On the demand side, the following elements have been identified: lack of basic information on the scheme's design and operation, limited understanding of the principles underlying CHI, limited community involvement and lack of trust in the management of the schemes, and, last but not least, problems in people's ability to pay the insurance premiums. On the supply-side, we have identified the following explanations: limited interest and knowledge of health care providers and managers of CHI, and the absence of a coherent policy framework for the development of CHI. Conclusion The policy implications of this study refer to the need for the government to provide the necessary legislative, technical and regulative support to CHI development. The main policy challenge however is the need to reconcile the government of Uganda's interest in promoting CHI with the current policy of abolition of user fees in public facilities.

  1. Performance of HEPA filters under hot dynamic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Frankum, D.P.; Costigan, G. [AEA Technology, Oxfordshire (United Kingdom)

    1995-02-01

    Accidents in nuclear facilities involving fires may have implications upon the ventilation systems where high efficiency particulate air (HEPA) filters are used to minimise the airborne release of radioactive or toxic particles. The Filter Development Section at Harwell Laboratory has been investigating the effect of temperature on the performance of HEPA filters under hot dynamic conditions[{sub 1}] for a number of years. The test rig is capable of delivering air flows of 10001/s (at ambient conditions) at temperatures up to 500{degrees}C, where measurements of the penetration and pressure drop across the filter are obtained. This paper reports the experiments on different constructions of HEPA filters; rectangular and circular. The filters were tested at an air temperature of 200{degrees}C for up to 48 hours at the rated airflow to assess their performance. The penetration measurements for rectangular filters were observed to be below 0.021% after prolonged operation. In a number of cases, holes appeared along the pleat creases of circular filters although the penetration remained below 1%. The sealing gasket for these filters was noted to deform with temperature, permitting a leakage path. A prototype high strength circular filter was evaluated at temperatures of up to 400{degrees}C with a penetration less than 0.65%.

  2. Analysis of Dynamic Properties of Piezoelectric Structure under Impact Load

    Directory of Open Access Journals (Sweden)

    Taotao Zhang

    2015-10-01

    Full Text Available An analytical model of the dynamic properties is established for a piezoelectric structure under impact load, without considering noise and perturbations in this paper. Based on the general theory of piezo-elasticity and impact mechanics, the theoretical solutions of the mechanical and electrical fields of the smart structure are obtained with the standing and traveling wave methods, respectively. The comparisons between the two methods have shown that the standing wave method is better for studying long-time response after an impact load. In addition, good agreements are found between the theoretical and the numerical results. To simulate the impact load, both triangle and step pulse loads are used and comparisons are given. Furthermore, the influence of several parameters is discussed so as to provide some advices for practical use. It can be seen that the proposed analytical model would benefit, to some extent, the design and application (especially the airport runway of the related smart devices by taking into account their impact load performance.

  3. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    Science.gov (United States)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  4. Cooperation of axisymmetric connection elements under dynamic load

    Directory of Open Access Journals (Sweden)

    Kołodziej Andrzej

    2018-01-01

    Full Text Available The article presents a method for determining the parameters that define the cooperation of the elements in the axisymmetic connection. The connection, which constitutes a shaft cooperating with a sleeve, has been tested for reaction forces in the connection during shaft rotation in the static sleeve. The shaft was characterized by deliberately modelled roundness deviations in the form of ovality, triangularity and quadrangularity. In addition, the research programme has taken into account the determination of the impact of tolerance of the outside diameter of the shaft. Determination of reaction forces has been carried out using the FEM software. The shaft has been modelled as a rigid element that rotates with a given rotational speed in the deformable sleeve. The conclusions present the impact of roundness deviation types and the tolerance value on reaction forces in the connection restraint. The method presented in the article can be used to predict the behaviour of the elements of axisymmetic connections under dynamic load, which can contribute to forecasting the durability of the connection.

  5. Growth dynamics of Dracaena cinnabari under controlled conditions as the most effective way to protect endangered species

    OpenAIRE

    Hubálková, Irena; Maděra, Petr; Volařík, Daniel

    2015-01-01

    Dracaena cinnabari Balf. fil. is an endangered endemic species growing on the Yemeni island of Soqotra. Dracaena woodlands are considered as one of the oldest forest communities on Earth. Uncontrolled grazing unfortunately caused a lack of naturally occurring regeneration. Our two-year research was focused on the growth dynamics of Dracaena seedlings from two separate populations. One hundred of germinated seeds from two different altitudes from the island were sown and planted under the same...

  6. Wildfires Dynamics in Mid-Siberian Larch Dominated Communities

    Science.gov (United States)

    Kharuk, V. I.; Ranson. K. J.; Dvinskaya, M. L.

    2003-01-01

    The longterm wildfire dynamics, including fire return interval (FRI), in Siberian larch communities were examined. A wildfire chronology encompassing the 15th through the 20th centuries was developed from analyzing tree stem fire scars. Two methods were used to calculate the time interval between fires: 1) direct counting of annual tree growth rings between stem fire scars and 2) the next earlier fire date was estimated from growth ring analysis and added to the first estimate. Average FRI determined from stem fire scar dating was 82 plus or minus 7 using Method I or 95 plus or minus 7 when age of the next earlier fire was inferred from observed larch regeneration structure (Method II). FRI was also found to be dependent on site topography. FRI on north-east facing slopes was 86 plus or minus 11 years (105 plus or minus 12). FRI on south-west facing slopes was significantly less at 61 plus or minus 8 (73 plus ot minus 8) years. Flat terrain showed little difference between methods 68 plus or minus 14 (70 plus or minus 13). This was also the case for bogs, but FRI was much longer; 139 plus or minus 17 (138 plus ot minus 18). The maximum number of annual fires occurred with periods of 36 and 82 years on average. The temporal trend in the FRI decreased from 101 years in the 19 th century to 65 years in the 20th century. The effect of post-fire forest recovery on depth to permafrost was also estimated. After initial melting from increased local temperatures permafrost depth decreased at a rate of 0.3 cm/yr on average as forest canopies developed.

  7. Benthic communities under anthropogenic pressure show resilience across the Quaternary.

    Science.gov (United States)

    Martinelli, Julieta C; Soto, Luis P; González, Jorge; Rivadeneira, Marcelo M

    2017-09-01

    The Southeast Pacific is characterized by rich upwelling systems that have sustained and been impacted by human groups for at least 12 ka. Recent fishing and aquaculture practices have put a strain on productive coastal ecosystems from Tongoy Bay, in north-central Chile. We use a temporal baseline to determine whether potential changes to community structure and composition over time are due to anthropogenic factors, natural climatic variations or both. We compiled a database ( n  = 33 194) with mollusc species abundances from the Mid-Pleistocene, Late Pleistocene, Holocene, dead shell assemblages and live-sampled communities. Species richness was not significantly different, neither were diversity and evenness indices nor rank abundance distributions. There is, however, an increase in relative abundance for the cultured scallop Argopecten , while the previously dominant clam Mulinia is locally very rare. Results suggest that impacts from both natural and anthropogenic stressors need to be better understood if benthic resources are to be preserved. These findings provide the first Pleistocene temporal baseline for the south Pacific that shows that this highly productive system has had the ability to recover from past alterations, suggesting that if monitoring and management practices continue to be implemented, moderately exploited communities from today have hopes for recovery.

  8. Benthic communities under anthropogenic pressure show resilience across the Quaternary

    Science.gov (United States)

    Martinelli, Julieta C.; Soto, Luis P.; González, Jorge; Rivadeneira, Marcelo M.

    2017-09-01

    The Southeast Pacific is characterized by rich upwelling systems that have sustained and been impacted by human groups for at least 12 ka. Recent fishing and aquaculture practices have put a strain on productive coastal ecosystems from Tongoy Bay, in north-central Chile. We use a temporal baseline to determine whether potential changes to community structure and composition over time are due to anthropogenic factors, natural climatic variations or both. We compiled a database (n = 33 194) with mollusc species abundances from the Mid-Pleistocene, Late Pleistocene, Holocene, dead shell assemblages and live-sampled communities. Species richness was not significantly different, neither were diversity and evenness indices nor rank abundance distributions. There is, however, an increase in relative abundance for the cultured scallop Argopecten, while the previously dominant clam Mulinia is locally very rare. Results suggest that impacts from both natural and anthropogenic stressors need to be better understood if benthic resources are to be preserved. These findings provide the first Pleistocene temporal baseline for the south Pacific that shows that this highly productive system has had the ability to recover from past alterations, suggesting that if monitoring and management practices continue to be implemented, moderately exploited communities from today have hopes for recovery.

  9. Game theory and extremal optimization for community detection in complex dynamic networks.

    Science.gov (United States)

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  10. Species composition, community and population dynamics of two gallery forests from the Brazilian Cerrado domain.

    Science.gov (United States)

    Gastauer, Markus; Almado, Roosevelt P; Miazaki, Angela S; Diniz, Écio S; Moreira, Luis C B; Meira-Neto, João A A

    2016-01-01

    To understand the impacts of global changes on future community compositions, knowledge of community dynamics is of crucial importance. To improve our knowledge of community composition, biomass stock and maintenance of gallery forests in the Brazilian Cerrado, we provide two datasets from the 0.5 ha Corrego Fazendinha Gallery Forest Dynamics Plot and the Corrego Fundo Gallery Forest Dynamics Plot situated in the Bom Despacho region, Minas Gerais, Southeastern Brazil. We report diameter at breast height, basal area and height measurements of 3417 trees and treelets identified during three censuses in both areas.

  11. De novo biofilm community assembly from tap water source communities favors Nitrotoga over Nitrospira under elevated nitrite surface loading

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen

    -through biofilm system to continuous immigration from a tap water metacommunity while applying different nitrite surface loading rates. After 63 days of operation, we extracted biofilms and analyzed the community composition via Illumina MiSeq targeting the 16S rRNA gene. Previous studies have shown...... in the metacommunity, Nitrotoga and Nitrospira were found at near equal abundances, in the biofilm community, elevated nitrite loading strongly selected for Nitrotoga over Nitrospira. The biofilms were also significantly different in their alpha-diversity (p... of the biofilm community decreased significantly (p=0.004) compared to the metacommunity. These observations indicate that the selection towards Nitrotoga and Nitrospira dominated community assembly under different nitrite loadings. Lastly, we compared our observations of community composition...

  12. Dynamic characteristics of multi-walled carbon nanotubes under a ...

    Indian Academy of Sciences (India)

    Abstract. This paper reports the results of an investigation into the effect of transverse magnetic fields on dynamic characteristics of multi-walled carbon nanotubes (MWNTs). Couple dynamic equations of MWNTs subjected to a transverse magnetic field are derived and solved by considering the Lorentz magnetic forces ...

  13. Information dynamics algorithm for detecting communities in networks

    Science.gov (United States)

    Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro

    2012-11-01

    The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.

  14. Bacterial Community Dynamics and Biocement Formation during Stimulation and Augmentation: Implications for Soil Consolidation

    Directory of Open Access Journals (Sweden)

    Navdeep K. Dhami

    2017-07-01

    Full Text Available Microbially-induced CaCO3 precipitation (MICP is a naturally occurring process wherein durable carbonates are formed as a result of microbial metabolic activities. In recent years, MICP technology has been widely harnessed for applications in civil engineering wherein synthesis of calcium carbonate crystals occurs at ambient temperature paving way for low energy biocement. MICP using pure urease (UA and carbonic anhydrase (CA producing bacteria has been promising in laboratory conditions. In the current study we enriched ureolytic and carbonic anhydrase communities in calcareous soil under biostimulation and bioaugmentation conditions and investigated the effect of microbial dynamics on carbonate precipitation, calcium carbonate polymorph selection and consolidation of biological sand column under nutrient limited and rich conditions. All treatments for stimulation and augmentation led to significant changes in the composition of indigenous bacterial population. Biostimulation as well as augmentation through the UA route was found to be faster and more effective compared to the CA route in terms of extracellular enzyme production and carbonate precipitation. Synergistic role of augmented cultures along with indigenous communities was recorded via both the routes of UA and CA as more effective calcification was seen in case of augmentation compared to stimulation. The survival of supplemented isolates in presence of indigenous bacterial communities was confirmed through sequencing of total diversity and it was seen that both UA and CA isolate had the potential to survive along with native communities under high nutrient conditions. Nutrient conditions played significant role in determining calcium carbonate polymorph fate as calcitic crystals dominated under high carbon supplementation. Finally, the consolidation of sand columns via stimulation and augmentation was successfully achieved through both UA and CA route under high nutrient conditions

  15. Epiphytic lichen community dynamics in deciduous forests around a phosphorus fertiliser factory in Central Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Motiejunaite, Jurga [Department of Mycology, Institute of Botany, LT-08406 Vilnius 21 (Lithuania)]. E-mail: mikojm@botanika.lt

    2007-03-15

    The detailed dynamics of epiphytic lichen communities were observed while studying permanent quadrats in the zone of influence of a phosphorus fertiliser factory in central Lithuania. The most significant changes were induced by several factors: changes in macroenvironment (increase of illumination), bark scaling, succession processes, individual growth characteristics of the community members, and influence of fungal infection and invertebrate grazing. None of these changes could be directly linked with air pollution. These observations have shown that in conditions of more or less stable pollution, epiphytic community dynamics should be evaluated with care, the best indicators of the characteristics of the communities being species richness and presence/absence and abundance of indicator (nitrophilous or acidophilous) species. - Biotic factors are important when evaluating dynamics of epiphytic communities in polluted areas.

  16. Epiphytic lichen community dynamics in deciduous forests around a phosphorus fertiliser factory in Central Lithuania

    International Nuclear Information System (INIS)

    Motiejunaite, Jurga

    2007-01-01

    The detailed dynamics of epiphytic lichen communities were observed while studying permanent quadrats in the zone of influence of a phosphorus fertiliser factory in central Lithuania. The most significant changes were induced by several factors: changes in macroenvironment (increase of illumination), bark scaling, succession processes, individual growth characteristics of the community members, and influence of fungal infection and invertebrate grazing. None of these changes could be directly linked with air pollution. These observations have shown that in conditions of more or less stable pollution, epiphytic community dynamics should be evaluated with care, the best indicators of the characteristics of the communities being species richness and presence/absence and abundance of indicator (nitrophilous or acidophilous) species. - Biotic factors are important when evaluating dynamics of epiphytic communities in polluted areas

  17. Multi-Relational Characterization of Dynamic Social Network Communities

    Science.gov (United States)

    Lin, Yu-Ru; Sundaram, Hari; Kelliher, Aisling

    The emergence of the mediated social web - a distributed network of participants creating rich media content and engaging in interactive conversations through Internet-based communication technologies - has contributed to the evolution of powerful social, economic and cultural change. Online social network sites and blogs, such as Facebook, Twitter, Flickr and LiveJournal, thrive due to their fundamental sense of "community". The growth of online communities offers both opportunities and challenges for researchers and practitioners. Participation in online communities has been observed to influence people's behavior in diverse ways ranging from financial decision-making to political choices, suggesting the rich potential for diverse applications. However, although studies on the social web have been extensive, discovering communities from online social media remains challenging, due to the interdisciplinary nature of this subject. In this article, we present our recent work on characterization of communities in online social media using computational approaches grounded on the observations from social science.

  18. Behaviour of steel arch supports under dynamic effects of rockbursts

    Czech Academy of Sciences Publication Activity Database

    Horyl, P.; Šňupárek, Richard

    2007-01-01

    Roč. 116, č. 3 (2007), s. 119-128 ISSN 0371-7844 Institutional research plan: CEZ:AV0Z30860518 Keywords : steel arch support * rockbursts * dynamic loading Subject RIV: DH - Mining , incl. Coal Mining

  19. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2009-03-01

    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  20. Dynamics of bloggers’ communities: Bipartite networks from empirical data and agent-based modeling

    Science.gov (United States)

    Mitrović, Marija; Tadić, Bosiljka

    2012-11-01

    We present an analysis of the empirical data and the agent-based modeling of the emotional behavior of users on the Web portals where the user interaction is mediated by posted comments, like Blogs and Diggs. We consider the dataset of discussion-driven popular Diggs, in which all comments are screened by machine-learning emotion detection in the text, to determine positive and negative valence (attractiveness and aversiveness) of each comment. By mapping the data onto a suitable bipartite network, we perform an analysis of the network topology and the related time-series of the emotional comments. The agent-based model is then introduced to simulate the dynamics and to capture the emergence of the emotional behaviors and communities. The agents are linked to posts on a bipartite network, whose structure evolves through their actions on the posts. The emotional states (arousal and valence) of each agent fluctuate in time, subject to the current contents of the posts to which the agent is exposed. By an agent’s action on a post its current emotions are transferred to the post. The model rules and the key parameters are inferred from the considered empirical data to ensure their realistic values and mutual consistency. The model assumes that the emotional arousal over posts drives the agent’s action. The simulations are preformed for the case of constant flux of agents and the results are analyzed in full analogy with the empirical data. The main conclusions are that the emotion-driven dynamics leads to long-range temporal correlations and emergent networks with community structure, that are comparable with the ones in the empirical system of popular posts. In view of pure emotion-driven agents actions, this type of comparisons provide a quantitative measure for the role of emotions in the dynamics on real blogs. Furthermore, the model reveals the underlying mechanisms which relate the post popularity with the emotion dynamics and the prevalence of negative

  1. Factors underlying variable DNA methylation in a human community cohort.

    Science.gov (United States)

    Lam, Lucia L; Emberly, Eldon; Fraser, Hunter B; Neumann, Sarah M; Chen, Edith; Miller, Gregory E; Kobor, Michael S

    2012-10-16

    Epigenetics is emerging as an attractive mechanism to explain the persistent genomic embedding of early-life experiences. Tightly linked to chromatin, which packages DNA into chromosomes, epigenetic marks primarily serve to regulate the activity of genes. DNA methylation is the most accessible and characterized component of the many chromatin marks that constitute the epigenome, making it an ideal target for epigenetic studies in human populations. Here, using peripheral blood mononuclear cells collected from a community-based cohort stratified for early-life socioeconomic status, we measured DNA methylation in the promoter regions of more than 14,000 human genes. Using this approach, we broadly assessed and characterized epigenetic variation, identified some of the factors that sculpt the epigenome, and determined its functional relation to gene expression. We found that the leukocyte composition of peripheral blood covaried with patterns of DNA methylation at many sites, as did demographic factors, such as sex, age, and ethnicity. Furthermore, psychosocial factors, such as perceived stress, and cortisol output were associated with DNA methylation, as was early-life socioeconomic status. Interestingly, we determined that DNA methylation was strongly correlated to the ex vivo inflammatory response of peripheral blood mononuclear cells to stimulation with microbial products that engage Toll-like receptors. In contrast, our work found limited effects of DNA methylation marks on the expression of associated genes across individuals, suggesting a more complex relationship than anticipated.

  2. Benefit sharing and community participation dynamics in forest management

    DEFF Research Database (Denmark)

    Antony, Bindu; Treue, Thorsten; Salim, Shyam S.

    2014-01-01

    Community forestry has a significant role in the lives of people in Nepal as it serves the livelihood security of people to a greater extent. It is central in ensuring community participation in all the stages of CF (Community forestry) process and thus reach the objectives of sustainable forest......, in Chitwan district of Nepal. The results revealed that availabilty of the benefits do not have direct relation with neither paricipation in activities nor in decision making. Though motivation is a prerequisite to activate participation of people in any activity, other methods of persuasion is also vital...

  3. Modelling community dynamics based on species-level abundance models from detection/nondetection data

    Science.gov (United States)

    Yamaura, Yuichi; Royle, J. Andrew; Kuboi, Kouji; Tada, Tsuneo; Ikeno, Susumu; Makino, Shun'ichi

    2011-01-01

    1. In large-scale field surveys, a binary recording of each species' detection or nondetection has been increasingly adopted for its simplicity and low cost. Because of the importance of abundance in many studies, it is desirable to obtain inferences about abundance at species-, functional group-, and community-levels from such binary data. 2. We developed a novel hierarchical multi-species abundance model based on species-level detection/nondetection data. The model accounts for the existence of undetected species, and variability in abundance and detectability among species. Species-level detection/nondetection is linked to species- level abundance via a detection model that accommodates the expectation that probability of detection (at least one individuals is detected) increases with local abundance of the species. We applied this model to a 9-year dataset composed of the detection/nondetection of forest birds, at a single post-fire site (from 7 to 15 years after fire) in a montane area of central Japan. The model allocated undetected species into one of the predefined functional groups by assuming a prior distribution on individual group membership. 3. The results suggest that 15–20 species were missed in each year, and that species richness of communities and functional groups did not change with post-fire forest succession. Overall abundance of birds and abundance of functional groups tended to increase over time, although only in the winter, while decreases in detectabilities were observed in several species. 4. Synthesis and applications. Understanding and prediction of large-scale biodiversity dynamics partly hinge on how we can use data effectively. Our hierarchical model for detection/nondetection data estimates abundance in space/time at species-, functional group-, and community-levels while accounting for undetected individuals and species. It also permits comparison of multiple communities by many types of abundance-based diversity and similarity

  4. Exploring the dynamics of ownership in community-oriented design projects

    DEFF Research Database (Denmark)

    Light, Ann; Hansen, Nicolai Brodersen; Halskov, Kim

    2013-01-01

    This paper contributes an exploration of ownership as a dynamic process in community-oriented projects. We use case study accounts of two design projects to consider participation in contexts where social structure is relevant to design outcomes. In studying these dynamics, we consider four aspects...

  5. Building a Community of Research Practice: Intragroup Team Social Dynamics in Interdisciplinary Mixed Methods

    Science.gov (United States)

    Hemmings, Annette; Beckett, Gulbahar; Kennerly, Susan; Yap, Tracey

    2013-01-01

    This article explicates the intragroup social dynamics and work of a nursing and education research team as a community of research practice interested in organizational cultures and occupational subcultures. Dynamics were characterized by processes of socialization through reeducation and group social identity formation that enabled members to…

  6. Climate impacts on fungal community and trait dynamics

    Czech Academy of Sciences Publication Activity Database

    Andrew, C.; Heegaard, E.; Halvorsen, R.; Martinez-Pena, F.; Egli, S.; Kirk, P.M.; Baessler, C.; Büntgen, Ulf; Aldea, J.; Hoiland, K.; Boddy, L.; Kauserud, H.

    2016-01-01

    Roč. 22, aug (2016), s. 17-25 ISSN 1754-5048 Institutional support: RVO:67179843 Keywords : nonlinear dimensionality reduction * root-tip communities * ectomycorrhizal fungi * environmental drivers * resource availability * mycorrhizal fungi * fruit bodies * soil * forest * patterns * Community structure * Fungi-forest-climate interactions * Life-history traits * Long-term data * Successional models Subject RIV: EH - Ecology, Behaviour Impact factor: 3.219, year: 2016

  7. Dynamics of range margins for metapopulations under climate change

    Science.gov (United States)

    Anderson, B.J.; Akçakaya, H.R.; Araújo, M.B.; Fordham, D.A.; Martinez-Meyer, E.; Thuiller, W.; Brook, B.W.

    2009-01-01

    We link spatially explicit climate change predictions to a dynamic metapopulation model. Predictions of species' responses to climate change, incorporating metapopulation dynamics and elements of dispersal, allow us to explore the range margin dynamics for two lagomorphs of conservation concern. Although the lagomorphs have very different distribution patterns, shifts at the edge of the range were more pronounced than shifts in the overall metapopulation. For Romerolagus diazi (volcano rabbit), the lower elevation range limit shifted upslope by approximately 700 m. This reduced the area occupied by the metapopulation, as the mountain peak currently lacks suitable vegetation. For Lepus timidus (European mountain hare), we modelled the British metapopulation. Increasing the dispersive estimate caused the metapopulation to shift faster on the northern range margin (leading edge). By contrast, it caused the metapopulation to respond to climate change slower, rather than faster, on the southern range margin (trailing edge). The differential responses of the leading and trailing range margins and the relative sensitivity of range limits to climate change compared with that of the metapopulation centroid have important implications for where conservation monitoring should be targeted. Our study demonstrates the importance and possibility of moving from simple bioclimatic envelope models to second-generation models that incorporate both dynamic climate change and metapopulation dynamics. PMID:19324811

  8. Optimized maritime emergency resource allocation under dynamic demand.

    Directory of Open Access Journals (Sweden)

    Wenfen Zhang

    Full Text Available Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.

  9. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    KAUST Repository

    Zhang, Weipeng

    2014-04-14

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  10. Toward understanding the dynamics of microbial communities in an estuarine system.

    Directory of Open Access Journals (Sweden)

    Weipeng Zhang

    Full Text Available Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE. The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.

  11. Numerical dynamic analysis of stiffened plates under blast loading

    Directory of Open Access Journals (Sweden)

    H.R. Tavakoli

    Full Text Available Using the general purpose finite element package Abaqus, an investigation has been carried out to examine the dynamic response of steel stiffened plates subjected to uniform blast loading. The main objective of this study is to determine the dynamic response of the stiffened plates considering the effect of stiffener configurations. Several parameters, such as boundary conditions, mesh dependency and strain rate, have been considered in this study. Special emphasis is focused on the evaluation of midpoint displacements and energy of models. The modeling techniques were described in details. The numerical results provide better insight into the effect of stiffener configurations on the nonlinear dynamic response of the stiffened plates subjected to uniform blast loading.

  12. Dynamic Pricing for Airline Revenue Management under Passenger Mental Accounting

    Directory of Open Access Journals (Sweden)

    Yusheng Hu

    2015-01-01

    Full Text Available Mental accounting is a far-reaching concept, which is often used to explain various kinds of irrational behaviors in human decision making process. This paper investigates dynamic pricing problems for single-flight and multiple flights settings, respectively, where passengers may be affected by mental accounting. We analyze dynamic pricing problems by means of the dynamic programming method and obtain the optimal pricing strategies. Further, we analytically show that the passenger mental accounting depth has a positive effect on the flight’s expected revenue for the single flight and numerically illustrate that the passenger mental accounting depth has a positive effect on the optimal prices for the multiple flights.

  13. A Markov random walk under constraint for discovering overlapping communities in complex networks

    International Nuclear Information System (INIS)

    Jin, Di; Yang, Bo; Liu, Dayou; He, Dongxiao; Liu, Jie; Baquero, Carlos

    2011-01-01

    The detection of overlapping communities in complex networks has motivated recent research in relevant fields. Aiming to address this problem, we propose a Markov-dynamics-based algorithm, called UEOC, which means 'unfold and extract overlapping communities'. In UEOC, when identifying each natural community that overlaps, a Markov random walk method combined with a constraint strategy, which is based on the corresponding annealed network (degree conserving random network), is performed to unfold the community. Then, a cutoff criterion with the aid of a local community function, called conductance, which can be thought of as the ratio between the number of edges inside the community and those leaving it, is presented to extract this emerged community from the entire network. The UEOC algorithm depends on only one parameter whose value can be easily set, and it requires no prior knowledge of the hidden community structures. The proposed UEOC has been evaluated both on synthetic benchmarks and on some real-world networks, and has been compared with a set of competing algorithms. The experimental result has shown that UEOC is highly effective and efficient for discovering overlapping communities

  14. Cellular-automata model of the dwarf shrubs populations and communities dynamics

    Directory of Open Access Journals (Sweden)

    A. S. Komarov

    2015-06-01

    Full Text Available The probabilistic cellular-automata model of development and long-time dynamics of dwarf shrub populations and communities is developed. It is based on the concept of discrete description of the plant ontogenesis and joint model approaches in terms of probabilistic cellular automata and L-systems by Lindenmayer. Short representation of the basic model allows evaluation of the approach and software implementation. The main variables of the model are a number of partial bushes in clones or area projective cover. The model allows us to investigate the conditions of self-maintenance and sustainability population under different environmental conditions (inaccessibility of the territory for settlement, mosaic moisture conditions of soil and wealth. The model provides a forecast of the total biomass dynamics shrubs and their fractions (stems, leaves, roots, fine roots, fruits on the basis of the data obtained in the discrete description of ontogenesis and further information on the productivity of the plant fractions. The inclusion of the joint dynamics of biomass of shrubs and soil in EFIMOD models cycle of carbon and nitrogen to evaluate the role of shrubs in these circulations, especially at high impact, such as forest fires and clear cutting, allow forecasting of the dynamics of populations and ecosystem functions of shrubs (regulation of biogeochemical cycles maintaining biodiversity, participation in the creation of non-wood products with changing climatic conditions and strong damaging effects (logging, fires; and application of the models developed to investigate the stability and productivity of shrubs and their participation in the cycle of carbon and nitrogen in different climatic and edaphic conditions.

  15. Characteristics and modeling of spruce wood under dynamic compression load

    International Nuclear Information System (INIS)

    Eisenacher, Germar

    2014-01-01

    Spruce wood is frequently used as an energy absorbing material in impact limiters of packages for the transportation of radioactive material. A 9m drop test onto an unyielding target is mandatory for the packages. The impact results in a dynamic compression load of the spruce wood inside the impact limiter. The lateral dilation of the wood is restrained thereby due to encasing steel sheets. This work's objective was to provide a material model for spruce wood based on experimental investigations to enable the calculation of such loading conditions. About 600 crush tests with cubical spruce wood specimens were performed to characterize the material. The compression was up to 70% and the material was assumed to be transversely isotropic. Particularly the lateral constraint showed to have an important effect: the material develops a high lateral dilation without lateral constraint. The force-displacement characteristics show a comparably low force level and no or only slight hardening. Distinctive softening occurs after the linear-elastic region when loaded parallel to the fiber. On the other hand, using a lateral constraint results in significantly higher general force levels, distinctive hardening and lateral forces. The softening effect when loaded parallel to the fiber is less distinctive. Strain rate and temperature raise or lower the strength level, which was quantified for the applicable ranges of impact limiters. The hypothesis of an uncoupled evolution of the yield surface was proposed based on the experimental findings. It postulates an independent strength evolution with deviatoric and volumetric deformation. The hypothesis could be established using the first modeling approach, the modified LS-DYNA material model MAT075. A transversely isotropic material model was developed based thereupon and implemented in LS-DYNA. The material characteristics of spruce wood were considered using a multi-surface yield criterion and a non-associated flow rule. The yield

  16. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3

    Science.gov (United States)

    Carrie Andrew; Erik A. Lilleskov

    2009-01-01

    Sporocarp production is essential for ectomycorrhizal fungal recombination and dispersal, which influences fungal community dynamics. Increasing atmospheric carbon dioxide (CO2) and ozone (O3) affect host plant carbon gain and allocation, which may in turn influence ectomycorrhizal sporocarp production if the carbon...

  17. Entanglement dynamics of two interacting qubits under the influence ...

    Indian Academy of Sciences (India)

    2016-06-21

    qubit system in the non-Markovian setting. A quantum ... time-scales in an open system exist to characterize non-. Markovian dynamics: (i) the ...... [15] H P Beuer and F Petruccione, The theory of open quantum systems (Oxford ...

  18. Plant species dynamics in the Southern Tall Grassveld under ...

    African Journals Online (AJOL)

    An analysis of temporal changes in botanical composition in a long-term grazing trial indicates that species dynamics in the Southern Tall Grassveld of Natal are determined by the specific combination of grazing, mowing and fire impacts. Species composition of a grazing systems trial was recorded at intervals during 16 ...

  19. Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force

    KAUST Repository

    Xu, Tiantian

    2015-06-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

  20. NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE

    KAUST Repository

    Xu, Tiantian

    2015-06-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

  1. Scalable Static and Dynamic Community Detection Using Grappolo

    Energy Technology Data Exchange (ETDEWEB)

    Halappanavar, Mahantesh; Lu, Hao; Kalyanaraman, Anantharaman; Tumeo, Antonino

    2017-09-12

    Graph clustering, popularly known as community detection, is a fundamental kernel for several applications of relevance to the Defense Advanced Research Projects Agency’s (DARPA) Hierarchical Identify Verify Exploit (HIVE) Pro- gram. Clusters or communities represent natural divisions within a network that are densely connected within a cluster and sparsely connected to the rest of the network. The need to compute clustering on large scale data necessitates the development of efficient algorithms that can exploit modern architectures that are fundamentally parallel in nature. How- ever, due to their irregular and inherently sequential nature, many of the current algorithms for community detection are challenging to parallelize. In response to the HIVE Graph Challenge, we present several parallelization heuristics for fast community detection using the Louvain method as the serial template. We implement all the heuristics in a software library called Grappolo. Using the inputs from the HIVE Challenge, we demonstrate superior performance and high quality solutions based on four parallelization heuristics. We use Grappolo on static graphs as the first step towards community detection on streaming graphs.

  2. Soil ecosystem functioning under climate change: plant species and community effects.

    Science.gov (United States)

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the

  3. Linking environmental variability to population and community dynamics: Chapter 7

    Science.gov (United States)

    Pantel, Jelena H.; Pendleton, Daniel E.; Walters, Annika W.; Rogers, Lauren A.

    2014-01-01

    Linking population and community responses to environmental variability lies at the heart of ecology, yet methodological approaches vary and existence of broad patterns spanning taxonomic groups remains unclear. We review the characteristics of environmental and biological variability. Classic approaches to link environmental variability to population and community variability are discussed as are the importance of biotic factors such as life history and community interactions. In addition to classic approaches, newer techniques such as information theory and artificial neural networks are reviewed. The establishment and expansion of observing networks will provide new long-term ecological time-series data, and with it, opportunities to incorporate environmental variability into research. This review can help guide future research in the field of ecological and environmental variability.

  4. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  5. COPEWELL: A Conceptual Framework and System Dynamics Model for Predicting Community Functioning and Resilience After Disasters.

    Science.gov (United States)

    Links, Jonathan M; Schwartz, Brian S; Lin, Sen; Kanarek, Norma; Mitrani-Reiser, Judith; Sell, Tara Kirk; Watson, Crystal R; Ward, Doug; Slemp, Cathy; Burhans, Robert; Gill, Kimberly; Igusa, Tak; Zhao, Xilei; Aguirre, Benigno; Trainor, Joseph; Nigg, Joanne; Inglesby, Thomas; Carbone, Eric; Kendra, James M

    2018-02-01

    Policy-makers and practitioners have a need to assess community resilience in disasters. Prior efforts conflated resilience with community functioning, combined resistance and recovery (the components of resilience), and relied on a static model for what is inherently a dynamic process. We sought to develop linked conceptual and computational models of community functioning and resilience after a disaster. We developed a system dynamics computational model that predicts community functioning after a disaster. The computational model outputted the time course of community functioning before, during, and after a disaster, which was used to calculate resistance, recovery, and resilience for all US counties. The conceptual model explicitly separated resilience from community functioning and identified all key components for each, which were translated into a system dynamics computational model with connections and feedbacks. The components were represented by publicly available measures at the county level. Baseline community functioning, resistance, recovery, and resilience evidenced a range of values and geographic clustering, consistent with hypotheses based on the disaster literature. The work is transparent, motivates ongoing refinements, and identifies areas for improved measurements. After validation, such a model can be used to identify effective investments to enhance community resilience. (Disaster Med Public Health Preparedness. 2018;12:127-137).

  6. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Directory of Open Access Journals (Sweden)

    S. N. Ladd

    2017-09-01

    Full Text Available The hydrogen isotopic composition (δ2H of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H∕1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early

  7. Interplay of community dynamics, temperature, and productivity on the hydrogen isotope signatures of lipid biomarkers

    Science.gov (United States)

    Nemiah Ladd, S.; Dubois, Nathalie; Schubert, Carsten J.

    2017-09-01

    The hydrogen isotopic composition (δ2H) of lipid biomarkers has diverse applications in the fields of paleoclimatology, biogeochemistry, and microbial community dynamics. Large changes in hydrogen isotope fractionation have been observed among microbes with differing core metabolisms, while environmental factors including temperature and nutrient availability can affect isotope fractionation by photoautotrophs. Much effort has gone into studying these effects under laboratory conditions with single species cultures. Moving beyond controlled environments and quantifying the natural extent of these changes in freshwater lacustrine settings and identifying their causes is essential for robust application of δ2H values of common short-chain fatty acids as a proxy of net community metabolism and of phytoplankton-specific biomarkers as a paleohydrologic proxy. This work targets the effect of community dynamics, temperature, and productivity on 2H/1H fractionation in lipid biomarkers through a comparative time series in two central Swiss lakes: eutrophic Lake Greifen and oligotrophic Lake Lucerne. Particulate organic matter was collected from surface waters at six time points throughout the spring and summer of 2015, and δ2H values of short-chain fatty acids, as well as chlorophyll-derived phytol and the diatom biomarker brassicasterol, were measured. We paired these measurements with in situ incubations conducted with NaH13CO3, which were used to calculate the production rates of individual lipids in lake surface water. As algal productivity increased from April to June, net discrimination against 2H in Lake Greifen increased by as much as 148 ‰ for individual fatty acids. During the same time period in Lake Lucerne, net discrimination against 2H increased by as much as 58 ‰ for individual fatty acids. A large portion of this signal is likely due to a greater proportion of heterotrophically derived fatty acids in the winter and early spring, which are displaced by

  8. The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform

    Science.gov (United States)

    Overeem, I.; Hutton, E.; Kettner, A.; Peckham, S. D.; Syvitski, J. P.

    2012-12-01

    The Community Surface Dynamics Modeling System - CSDMS- develops a software platform with shared and coupled modules for modeling earth surface processes as a community resource. The framework allows prediction of water, sediment and nutrient transport through the landscape and seacape. The underlying paradigm is that the Earth surface we live on is a dynamic system; topography changes with seasons, with landslides and earthquakes, with erosion and deposition. The Earth Surface changes due to storms and floods, and important boundaries, like the coast, are ever-moving features. CSDMS sets out to make better predictions of these changes. Earth surface process modeling bridges the terrestrial, coastal and marine domains and requires understanding of the system over a range of time scales, which inherently needs interdisciplinarity. Members of CSDMS (~830 in July 2012) are largely from academic institutions (˜75%), followed by federal agencies (˜17%), and oil and gas companies (˜5%). Members and governmental bodies meet once annually and rely additionally on web-based information for communication. As an organization that relies on volunteer participation, CSDMS faces challenges to scientific collaboration. Encouraging volunteerism among its members to provide and adapt metadata and model code to be sufficiently standardized for coupling is crucial to building an integrated community modeling system. We here present CSDMS strategies aimed at providing the appropriate technical tools and cyberinfrastructure to support a variety of user types, ranging from advanced to novice modelers. Application of these advances in science is key, both into the educational realm and for managers and decision-makers. We discuss some of the implemented ideas to further organizational transparency and user engagement in small-scale governance, such as advanced trackers and voting systems for model development prioritization through the CSDMS wiki. We analyzed data on community

  9. Competition under capacitated dynamic lot-sizing with capacity acquisition

    DEFF Research Database (Denmark)

    Li, Hongyan; Meissner, Joern

    2011-01-01

    Lot-sizing and capacity planning are important supply chain decisions, and competition and cooperation affect the performance of these decisions. In this paper, we look into the dynamic lot-sizing and resource competition problem of an industry consisting of multiple firms. A capacity competition...... model combining the complexity of time-varying demand with cost functions and economies of scale arising from dynamic lot-sizing costs is developed. Each firm can replenish inventory at the beginning of each period in a finite planning horizon. Fixed as well as variable production costs incur for each...... production setup, along with inventory carrying costs. The individual production lots of each firm are limited by a constant capacity restriction, which is purchased up front for the planning horizon. The capacity can be purchased from a spot market, and the capacity acquisition cost fluctuates...

  10. Dynamic capability in an under-researched cultural environment

    Directory of Open Access Journals (Sweden)

    Fatemeh Rezaee

    2016-02-01

    Full Text Available During the past few years, dynamic capability (DC has been considered as an important issue in banking industry. This paper presents a survey on dynamic capability and its role on reaching sustainable competitive advantage (SCA within Mellat bank of Iran (MBI. A valid research instrument is utilized to conduct a survey among 150 managers from MBI. The study utilizes structural equation modelling to examine different hypotheses based on an integrated model of DC and SCA. According to literature studies, expert opinions and exploratory factor analysis, DC is classified into sensing, learning, reconfiguration, and coordination. Furthermore, SCA of the banking industry is classified into three dimensions: market, customer, and financial performance. The results indicate that DC had the greatest effect on the market centered, while it had the least influence on the customer centered.

  11. Stability and dynamics of electron plasma vortex under external strain

    Science.gov (United States)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2016-11-01

    The behavior of two-dimensional vortex structures is of key interest in a number of important physical systems, including geophysical fluids and strongly magnetized plasmas. Studied here is the case of an initially axisymmetric vortex subjected to a simple strain flow. Experiments are performed using pure electron plasmas confined in a Penning-Malmberg trap to model the dynamics of an ideal two-dimensional fluid. Vortex-In-Cell simulations are also conducted to complement the laboratory results. The dynamical behavior and stability threshold of the strained vortex are measured, showing good agreement with Kida's elliptical patch model for relatively flat vorticity profiles. However, non-flat profiles feature a reduced stability threshold, apparently due to filamentation at the vortex periphery.

  12. Dynamic asset allocation for bank under stochastic interest rates.

    OpenAIRE

    Chakroun, Fatma; Abid, Fathi

    2014-01-01

    This paper considers the optimal asset allocation strategy for bank with stochastic interest rates when there are three types of asset: Bank account, loans and securities. The asset allocation problem is to maximize the expected utility from terminal wealth of a bank's shareholders over a finite time horizon. As a consequence, we apply a dynamic programming principle to solve the Hamilton-Jacobi-Bellman (HJB) equation explicitly in the case of the CRRA utility function. A case study is given ...

  13. Dynamics underlying Box-office: Movie Competition on Recommender Systems

    OpenAIRE

    Yeung, C. H.; Cimini, G.; Jin, C. -H.

    2010-01-01

    We introduce a simple model to study movie competition in the recommender systems. Movies of heterogeneous quality compete against each other through viewers' reviews and generate interesting dynamics of box-office. By assuming mean-field interactions between the competing movies, we show that run-away effect of popularity spreading is triggered by defeating the average review score, leading to hits in box-office. The average review score thus characterizes the critical movie quality necessar...

  14. Forward dynamics simulation of human body under tilting perturbations

    Science.gov (United States)

    Naderi, D.; Pasha Zanoosi, A. A.; Sadeghi-Mehr, M.

    2012-02-01

    Human body uses different strategies to maintain its stability and these strategies vary from fixed-foot strategies to strategies which foot is moved in order to increase the support base. Tilting movement of foot is one type of the perturbations usually is exposed to human body. In the presence of such perturbations human body must employ appropriate reactions to prevent threats like falling. But it is not clear that how human body maintains its stability by central nervous system (CNS). At present study it is tried that by presenting a musculoskeletal model of human lower extremity with four links, three degrees of freedom (DOF) and eight skeletal muscles, the level of muscle activations causes the maintenance of stability, be investigated. Using forward dynamics solution, leads to a more general problem, rather than inverse dynamics. Hence, forward dynamics solution by forward optimization has been used for solving this highly nonlinear problem. To this end, first the system's equations of motion has been derived using lagrangian dynamics. Eight Hill-type muscles as actuators of the system were modeled. Because determination of muscle forces considering their number is an undetermined problem, optimization of an appropriate goal function should be practiced. For optimization problem, the characteristics of genetic algorithms as a method based on direct search, and the direct collocation method, has been profited. Also by considering requirements of problem, some constraints such as conservation of model stability are entered into optimization procedure. Finally to investigate validation of model, the results from optimization and experimental data are compared and good agreements are obtained.

  15. Dynamic Decision Making under Uncertainty and Partial Information

    Science.gov (United States)

    2017-01-30

    ABSTRACT This project is concerned with the study of basic questions aimed at meeting challenges in information superiority, logistics , and planning for the...arising in planning, logistics , and risk management. The proposed research resulted in (i) new mathematical tools and theories for dynamic decision making...technical, interim, memorandum, master’s thesis, progress, quarterly, research, special, group study, etc. 3. DATES COVERED. Indicate the time during which

  16. Dynamic response of the target container under pulsed heating

    Energy Technology Data Exchange (ETDEWEB)

    Liping Ni [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The structural mechanics of a liquid target container for pulsed spallation sources have been simulated using both a commercial code and a PSI-developed program. Results from the transient thermal-structural analysis showed that, due to inertia effects, the dynamic stress in the target container is contributed mainly from direct heating in the initial time stage, and later from the pressure wave in the target liquid once it reaches the wall. (author) figs., tab., refs.

  17. Community Collectivism : A social dynamic approach to conceptualizing culture

    NARCIS (Netherlands)

    Akkus, Birol; Postmes, Tom; Stroebe, Katherine

    2017-01-01

    Culture shapes individuals, but the measurement of cultural differences has proven a challenge. Traditional measures of cultural values focus on individual perceptions. We suggest that values are established and maintained within social communities of proximate others, such as the family and its

  18. Dynamic simulation of variable capacity refrigeration systems under abnormal conditions

    International Nuclear Information System (INIS)

    Liang Nan; Shao Shuangquan; Tian Changqing; Yan Yuying

    2010-01-01

    There are often abnormal working conditions at evaporator outlet of a refrigeration system, such as two-phase state in transient process, and it is essential to investigate such transient behaviours for system design and control strategy. In this paper, a dynamic lumped parameter model is developed to simulate the transient behaviours of refrigeration system with variable capacity in both normal and abnormal working conditions. The appropriate discriminant method is adopted to switch the normal and abnormal conditions smoothly and to eliminate the simulated data oscillation. In order to verify the dynamic model, we built a test system with variable frequency compressor, water-cooling condenser, evaporator and electronic expansion valve. Calculated values from the mathematical model show reasonable agreement with the experimental data. The simulation results show that the transient behaviours of the variable capacity refrigeration system in the abnormal working conditions can be calculated reliably with the dynamic model when the compressor rotary speed or the opening of electronic expansion valve changes abruptly.

  19. Modeling detour behavior of pedestrian dynamics under different conditions

    Science.gov (United States)

    Qu, Yunchao; Xiao, Yao; Wu, Jianjun; Tang, Tao; Gao, Ziyou

    2018-02-01

    Pedestrian simulation approach has been widely used to reveal the human behavior and evaluate the performance of crowd evacuation. In the existing pedestrian simulation models, the social force model is capable of predicting many collective phenomena. Detour behavior occurs in many cases, and the important behavior is a dominate factor of the crowd evacuation efficiency. However, limited attention has been attracted for analyzing and modeling the characteristics of detour behavior. In this paper, a modified social force model integrated by Voronoi diagram is proposed to calculate the detour direction and preferred velocity. Besides, with the consideration of locations and velocities of neighbor pedestrians, a Logit-based choice model is built to describe the detour direction choice. The proposed model is applied to analyze pedestrian dynamics in a corridor scenario with either unidirectional or bidirectional flow, and a building scenario in real-world. Simulation results show that the modified social force model including detour behavior could reduce the frequency of collision and deadlock, increase the average speed of the crowd, and predict more practical crowd dynamics with detour behavior. This model can also be potentially applied to understand the pedestrian dynamics and design emergent management strategies for crowd evacuations.

  20. Dynamic reorganization of open chromatin underlies diverse transcriptomes during spermatogenesis

    Science.gov (United States)

    Maezawa, So; Yukawa, Masashi; Alavattam, Kris G; Barski, Artem

    2018-01-01

    Abstract During spermatogenesis, germ cells undergo massive cellular reconstruction and dynamic chromatin remodeling to facilitate highly diverse transcriptomes, which are required for the production of functional sperm. However, it remains unknown how germline chromatin is organized to promote the dynamic, complex transcriptomes of spermatogenesis. Here, using ATAC-seq, we establish the varied landscape of open chromatin during spermatogenesis. We identify the reorganization of accessible chromatin in intergenic and intronic regions during the mitosis-to-meiosis transition. During the transition, mitotic-type open chromatin is closed while the de novo formation of meiotic-type open chromatin takes place. Contrastingly, differentiation processes such as spermatogonial differentiation and the meiosis-to-postmeiosis transition involve chromatin closure without the de novo formation of accessible chromatin. In spermiogenesis, the germline-specific Polycomb protein SCML2 promotes the closure of open chromatin at autosomes for gene suppression. Paradoxically, we identify the massive de novo formation of accessible chromatin when the sex chromosomes undergo meiotic sex chromosome inactivation, and this is also mediated by SCML2. These results reveal meiotic sex chromosome inactivation as an active process for chromatin organization. Together, our results unravel the genome-wide, dynamic reorganization of open chromatin and reveal mechanisms that underlie diverse transcriptomes during spermatogenesis. PMID:29126117

  1. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    Science.gov (United States)

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The Effect of Initial Inoculum Source on the Microbial Community Structure and Dynamics in Laboratory-Scale Sequencing Batch Reactors

    KAUST Repository

    Hernandez, Susana

    2011-07-01

    Understanding the factors that shapes the microbial community assembly in activated sludge wastewater treatment processes provide a conceptual foundation for improving process performance. The aim of this study was to compare two major theories (deterministic theory and neutral theory) regarding the assembly of microorganisms in activated sludge: Six lab-scale activated sludge sequencing batch reactors were inoculated with activated sludge collected from three different sources (domestic, industrial, and sugar industry WWTP). Additionally, two reactors were seeded with equal proportion of sludge from the three WWTPs. Duplicate reactors were used for each sludge source (i.e. domestic, industrial, sugar and mix). Reactors were operated in parallel for 11 weeks under identical conditions. Bacterial diversity and community structure in the eight SBRs were assessed by 16S rRNA gene pyrosequencing. The 16S rRNA gene sequences were analyzed using taxonomic and clustering analysis and by measuring diversity indices (Shannon-weaver and Chao1 indices). Cluster analysis revealed that the microbial community structure was dynamic and that replicate reactors evolved differently. Also the microbial community structure in the SBRs seeded with a different sludge did not converge after 11 weeks of operation under identical conditions. These results suggest that history and distribution of taxa in the source inoculum were stronger regulating factors in shaping bacterial community structure than environmental factors. This supports the neutral theory which states that the assembly of the local microbial community from the metacommunity is random and is regulated by the size and diversity of the metacommunity. Furthermore, sludge performance, measured by COD and ammonia removal, confirmed that broad-scale functions (e.g. COD removal) are not influenced by dynamics in the microbial composition, while specific functions (e.g. nitrification) are more susceptible to these changes.

  3. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change.

    Science.gov (United States)

    Bonfante, A; Monaco, E; Langella, G; Mercogliano, P; Bucchignani, E; Manna, P; Terribile, F

    2018-05-15

    Climate change (CC) directly influences agricultural sectors, presenting the need to identify both adaptation and mitigation actions that can make local farming communities and crop production more resilient. In this context, the viticultural sector is one of those most challenged by CC due to the need to combine grape quality, grapevine cultivar adaptation and therefore farmers' future incomes. Thus, understanding how suitability for viticulture is changing under CC is of primary interest in the development of adaptation strategies in traditional wine-growing regions. Considering that climate is an essential part of the terroir system, the expected variability in climate change could have a marked influence on terroir resilience with important effects on local farming communities in viticultural regions. From this perspective, the aim of this paper is to define a new dynamic viticultural zoning procedure that is able to integrate the effects of CC on grape quality responses and evaluate terroir resilience, providing a support tool for stakeholders involved in viticultural planning (winegrowers, winegrower consortiums, policy makers etc.). To achieve these aims, a Hybrid Land Evaluation System, combining qualitative (standard Land Evaluation) and quantitative (simulation model) approaches, was applied within a traditional region devoted to high quality wine production in Southern Italy (Valle Telesina, BN), for a specific grapevine cultivar (Aglianico). The work employed high resolution climate projections that were derived under two different IPCC scenarios, namely RCP 4.5 and RCP 8.5. The results obtained indicate that: (i) only 2% of the suitable area of Valle Telesina expresses the concept of terroir resilience orientated towards Aglianico ultra quality grape production; (ii) within 2010-2040, it is expected that 41% of the area suitable for Aglianico cultivation will need irrigation to achieve quality grape production; (iii) by 2100, climate change benefits

  4. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Zhilan Feng; Rongsong Liu; Donald L. DeAngelis; John P. Bryant; Knut Kielland; F. Stuart Chapin; Robert K. Swihart

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of...

  5. Enduring ambiguity: Sunni community-Syrian regime dynamics

    NARCIS (Netherlands)

    Donker, T.H.

    2010-01-01

    The paper's central thesis is that authoritarian regimes can benefit from the presence of domestic (Sunni) civil activism; through a social dynamic that creates an incentive for Sunni activists to actively approach regime actors. The article poses that they thereby imply a subservience to the regime

  6. Dynamics of the Thermohaline Circulation under Wind forcing

    OpenAIRE

    Gao, Hongjun; Duan, Jinqiao

    2001-01-01

    The ocean thermohaline circulation, also called meridional overturning circulation, is caused by water density contrasts. This circulation has large capacity of carrying heat around the globe and it thus affects the energy budget and further affects the climate. We consider a thermohaline circulation model in the meridional plane under external wind forcing. We show that, when there is no wind forcing, the stream function and the density fluctuation (under appropriate metrics) tend to zero ex...

  7. Integrating Dynamic Pricing and Replenishment Decisions Under Supply Capacity Uncertainty

    OpenAIRE

    Qi Feng

    2010-01-01

    This paper examines an integrated decision-making process regarding pricing for uncertain demand and sourcing from uncertain supply, which are often studied separately in the literature. Our analysis of the integrated system suggests that the base stock list price policy fails to achieve optimality even under deterministic demand. Instead, the optimal policy is characterized by two critical values: a reorder point and a target safety stock. Under this policy, a positive order is issued if and...

  8. Biological signatures of dynamic river networks from a coupled landscape evolution and neutral community model

    Science.gov (United States)

    Stokes, M.; Perron, J. T.

    2017-12-01

    Freshwater systems host exceptionally species-rich communities whose spatial structure is dictated by the topology of the river networks they inhabit. Over geologic time, river networks are dynamic; drainage basins shrink and grow, and river capture establishes new connections between previously separated regions. It has been hypothesized that these changes in river network structure influence the evolution of life by exchanging and isolating species, perhaps boosting biodiversity in the process. However, no general model exists to predict the evolutionary consequences of landscape change. We couple a neutral community model of freshwater organisms to a landscape evolution model in which the river network undergoes drainage divide migration and repeated river capture. Neutral community models are macro-ecological models that include stochastic speciation and dispersal to produce realistic patterns of biodiversity. We explore the consequences of three modes of speciation - point mutation, time-protracted, and vicariant (geographic) speciation - by tracking patterns of diversity in time and comparing the final result to an equilibrium solution of the neutral model on the final landscape. Under point mutation, a simple model of stochastic and instantaneous speciation, the results are identical to the equilibrium solution and indicate the dominance of the species-area relationship in forming patterns of diversity. The number of species in a basin is proportional to its area, and regional species richness reaches its maximum when drainage area is evenly distributed among sub-basins. Time-protracted speciation is also modeled as a stochastic process, but in order to produce more realistic rates of diversification, speciation is not assumed to be instantaneous. Rather, each new species must persist for a certain amount of time before it is considered to be established. When vicariance (geographic speciation) is included, there is a transient signature of increased

  9. On learning dynamics underlying the evolution of learning rules.

    Science.gov (United States)

    Dridi, Slimane; Lehmann, Laurent

    2014-02-01

    In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Shearographic System for Dynamic Analysis of Materials under Heat Stress

    Directory of Open Access Journals (Sweden)

    Nelson A. Correa-Rojas

    2013-11-01

    Full Text Available Shearography is a tool for monitoring and inspecting of structural flaws and imperfections in different types of industrial, automotive and aeronautics applications. It is based on digital correlation of two speckle patterns in two states of interest: with and without load. The technique has the special quality of being very robust against environmental disturbances. We present a shearographic system to analyze the dynamic behavior of the strain that suffers a material in response to changes in temperature throughout the thermal load process.

  11. Short-term community dynamics in seasonal and hyperseasonal cerrados

    Directory of Open Access Journals (Sweden)

    MV. Cianciaruso

    Full Text Available In South America, the largest seasonal savanna region is the Brazilian cerrado. Our aim was to study temporal changes in some community descriptors, such as floristic composition, richness, species density, plant density, and cylindrical volume, in a seasonal cerrado, comparing it to a nearby hyperseasonal cerrado. In four different seasons, we placed randomly ten 1 m² quadrats in each vegetation form and sampled all the vascular plants. Seasonal changes in floristic composition, species density, and plant density were less pronounced in the seasonal than in the hyperseasonal cerrado. Floristic similarity between the vegetation forms was lower when the hyperseasonal cerrado was waterlogged. Richness and species density were higher in the seasonal cerrado, which reached its biomass peak at mid rainy season. The hyperseasonal cerrado, in turn, reached its biomass peak at early rainy season and, despite the waterlogging, maintained it until late rainy season. In the hyperseasonal cerrado, waterlogging acts as an environmental filter restricting the number of cerrado species able to withstand it. The seasonal cerrado community was more stable than the hyperseasonal one. Our results corroborated the idea that changes in the environmental filters will affect floristic composition and community structure in savannas.

  12. Dynamical Response of Networks Under External Perturbations: Exact Results

    Science.gov (United States)

    Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.

    2015-04-01

    We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.

  13. The Response of Simple Polymer Structures Under Dynamic Loading

    Science.gov (United States)

    Proud, William; Ellison, Kay; Yapp, Su; Cole, Cloe; Galimberti, Stefano; Institute of Shock Physics Team

    2017-06-01

    The dynamic response of polymeric materials has been widely studied with the effects of degree of crystallinity, strain rate, temperature and sample size being commonly reported. This study uses a simple PMMA structure, a right cylindrical sample, with structural features such as holes. The features are added an varied in a systematic fashion. Samples were dynamically loaded using a Split Hopkinson Pressure Bar up to failure. The resulting stress-strain curves are presented showing the change in sample response. The strain to failure is shown to increase initially with the presence of holes, while failure stress is relatively unaffected. The fracture patterns seen in the failed samples change, with tensile cracks, Hertzian cones, shear effects being dominant for different holes sizes and geometries. The sample were prepared by laser cutting and checked for residual stress before experiment. The data is used to validate predictive model predictions where material, structure and damage are included.. The Institute of Shock Physics acknowledges the support of Imperial College London and the Atomic Weapons Establishment.

  14. Dynamics of Gut-Brain Communication Underlying Hunger.

    Science.gov (United States)

    Beutler, Lisa R; Chen, Yiming; Ahn, Jamie S; Lin, Yen-Chu; Essner, Rachel A; Knight, Zachary A

    2017-10-11

    Communication between the gut and brain is critical for homeostasis, but how this communication is represented in the dynamics of feeding circuits is unknown. Here we describe nutritional regulation of key neurons that control hunger in vivo. We show that intragastric nutrient infusion rapidly and durably inhibits hunger-promoting AgRP neurons in awake, behaving mice. This inhibition is proportional to the number of calories infused but surprisingly independent of macronutrient identity or nutritional state. We show that three gastrointestinal signals-serotonin, CCK, and PYY-are necessary or sufficient for these effects. In contrast, the hormone leptin has no acute effect on dynamics of these circuits or their sensory regulation but instead induces a slow modulation that develops over hours and is required for inhibition of feeding. These findings reveal how layers of visceral signals operating on distinct timescales converge on hypothalamic feeding circuits to generate a central representation of energy balance. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Performance of community health workers under integrated community case management of childhood illnesses in eastern Uganda

    Directory of Open Access Journals (Sweden)

    Kalyango Joan N

    2012-08-01

    Full Text Available Abstract Background Curative interventions delivered by community health workers (CHWs were introduced to increase access to health services for children less than five years and have previously targeted single illnesses. However, CHWs in the integrated community case management of childhood illnesses strategy adopted in Uganda in 2010 will manage multiple illnesses. There is little documentation about the performance of CHWs in the management of multiple illnesses. This study compared the performance of CHWs managing malaria and pneumonia with performance of CHWs managing malaria alone in eastern Uganda and the factors influencing performance. Methods A mixed methods study was conducted among 125 CHWs providing either dual malaria and pneumonia management or malaria management alone for children aged four to 59 months. Performance was assessed using knowledge tests, case scenarios of sick children, review of CHWs’ registers, and observation of CHWs in the dual management arm assessing respiratory symptoms. Four focus group discussions with CHWs were also conducted. Results CHWs in the dual- and single-illness management arms had similar performance with respect to: overall knowledge of malaria (dual 72%, single 70%; eliciting malaria signs and symptoms (50% in both groups; prescribing anti-malarials based on case scenarios (82% dual, 80% single; and correct prescription of anti-malarials from record reviews (dual 99%, single 100%. In the dual-illness arm, scores for malaria and pneumonia differed on overall knowledge (72% vs 40%, p vs 96%, p  Conclusion CHWs providing dual-illness management handled malaria cases as well as CHWs providing single-illness management, and also performed reasonably well in the management of pneumonia. With appropriate training that emphasizes pneumonia assessment, adequate supervision, and provision of drugs and necessary supplies, CHWs can provide integrated treatment for malaria and pneumonia.

  16. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    Science.gov (United States)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  17. Dynamic behavior of porous concretes under drop weight impact testing

    NARCIS (Netherlands)

    Agar Ozbek, A.S.; Weerheijm, J.; Schlangen, E.; Breugel, K. van

    2013-01-01

    Porous concrete is used as a construction material in various applications mainly as a permeable cementitious material. However, its response under impact loading is generally not considered. Due to the high percentage of its intentional meso-size air pores, porous concrete has a moderate static

  18. Optimal Dynamic Advertising Strategy Under Age-Specific Market Segmentation

    Science.gov (United States)

    Krastev, Vladimir

    2011-12-01

    We consider the model proposed by Faggian and Grosset for determining the advertising efforts and goodwill in the long run of a company under age segmentation of consumers. Reducing this model to optimal control sub problems we find the optimal advertising strategy and goodwill.

  19. Dynamic simulation of crime perpetration and reporting to examine community intervention strategies.

    Science.gov (United States)

    Yonas, Michael A; Burke, Jessica G; Brown, Shawn T; Borrebach, Jeffrey D; Garland, Richard; Burke, Donald S; Grefenstette, John J

    2013-10-01

    To develop a conceptual computational agent-based model (ABM) to explore community-wide versus spatially focused crime reporting interventions to reduce community crime perpetrated by youth. Agents within the model represent individual residents and interact on a two-dimensional grid representing an abstract nonempirically grounded community setting. Juvenile agents are assigned initial random probabilities of perpetrating a crime and adults are assigned random probabilities of witnessing and reporting crimes. The agents' behavioral probabilities modify depending on the individual's experience with criminal behavior and punishment, and exposure to community crime interventions. Cost-effectiveness analyses assessed the impact of activating different percentages of adults to increase reporting and reduce community crime activity. Community-wide interventions were compared with spatially focused interventions, in which activated adults were focused in areas of highest crime prevalence. The ABM suggests that both community-wide and spatially focused interventions can be effective in reducing overall offenses, but their relative effectiveness may depend on the intensity and cost of the interventions. Although spatially focused intervention yielded localized reductions in crimes, such interventions were shown to move crime to nearby communities. Community-wide interventions can achieve larger reductions in overall community crime offenses than spatially focused interventions, as long as sufficient resources are available. The ABM demonstrates that community-wide and spatially focused crime strategies produce unique intervention dynamics influencing juvenile crime behaviors through the decisions and actions of community adults. It shows how such models might be used to investigate community-supported crime intervention programs by integrating community input and expertise and provides a simulated setting for assessing dimensions of cost comparison and intervention effect

  20. Dynamics of a Levitron under a periodic magnetic forcing

    Science.gov (United States)

    Pérez, Alberto T.; García-Sánchez, Pablo

    2015-02-01

    The Levitron is a toy that consists of a spinning top that levitates over a magnetic base for a few minutes, until air drag decreases the spin rate below a certain limit. Stable levitation, lasting hours or even days, has been achieved for Levitrons that were externally driven by either an air jet or an alternating magnetic field. We report measurements of stable levitation for the latter case. We show that the top precession couples with the frequency of the alternating field, so that the precession period equals the period of the field. In addition, the top rotates around itself with the same period. We present numerical simulations that reproduce the essential features of this dynamics. It is also shown that the magnetic torque that drives the top is due to a misalignment between the magnetic dipole moment and the mechanical axis of the top.

  1. A New Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Complex Networks

    Directory of Open Access Journals (Sweden)

    Guoqiang Chen

    2013-01-01

    Full Text Available Community detection in dynamic networks is an important research topic and has received an enormous amount of attention in recent years. Modularity is selected as a measure to quantify the quality of the community partition in previous detection methods. But, the modularity has been exposed to resolution limits. In this paper, we propose a novel multiobjective evolutionary algorithm for dynamic networks community detection based on the framework of nondominated sorting genetic algorithm. Modularity density which can address the limitations of modularity function is adopted to measure the snapshot cost, and normalized mutual information is selected to measure temporal cost, respectively. The characteristics knowledge of the problem is used in designing the genetic operators. Furthermore, a local search operator was designed, which can improve the effectiveness and efficiency of community detection. Experimental studies based on synthetic datasets show that the proposed algorithm can obtain better performance than the compared algorithms.

  2. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    Directory of Open Access Journals (Sweden)

    Jingjing Ma

    2014-01-01

    Full Text Available Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  3. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    Science.gov (United States)

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806

  4. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    Science.gov (United States)

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  5. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    Directory of Open Access Journals (Sweden)

    Maren Stella Müller

    Full Text Available Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG, pyrrolnitrin (PRN and hydrogen cyanide (HCN in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks, as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  6. Larval Mosquito Habitat Utilization and Community Dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae)

    Science.gov (United States)

    2012-01-01

    Community Dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae ) Author(s): Kristen Bartlett-Healy, Isik Unlu, Peter Obenauer, Tony Hughes...japonicus (Diptera: Culicidae ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...Community Dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae ) KRISTEN BARTLETT-HEALY,1,2,3 ISIK UNLU,1,3,4 PETER OBENAUER,5 TONY HUGHES,6

  7. UNDER-UTILIZATION OF COMMUNITY HEALTH CENTERS IN PURWOREJO REGENCY, CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Atik Triratnawati

    2006-06-01

    Full Text Available The basic strategy of the Ministry of Health to achieve Health For All In Indonesia 2010 is through health paradigm, decentralization, professionalism and health service management. Community health centers play an important role to achieve the goal. Unfortunately, underutilization of community health centers is still a problem in Purworejo. The purpose of this study was to know the utilization of community health centers using a sociological health approach. Qualitative research by observation, in-depth interview and focus group discussion were done among different types of group. The study was done in Purworejo District on February and March 2000. The main problems related to underutilization of community health centers are mostly on administration (less quality services, un-efficient, long hours waiting, strong bureaucratic system (physician has a dominant power, overlapping programs, poor coordination and integration with other divisions and cultural behavior of the community (labeling/stigma, self-care dominant, lack of community participation. To overcome under-utilization of community health centers the administration and bureaucracy should be changed into more efficient, not bureaucratic management. In addition social changes of the community culture is needed. As a consequence through these changes the staff of the health centers will be more efficient and effective.

  8. Habitat Heterogeneity Determines Climate Impact on Zooplankton Community Structure and Dynamics

    OpenAIRE

    Otto, Saskia A.; Diekmann, Rabea; Flinkman, Juha; Kornilovs, Georgs; Möllmann, Christian

    2014-01-01

    Understanding and predicting species distribution in space and time and consequently community structure and dynamics is an important issue in ecology, and particularly in climate change research. A crucial factor determining the composition and dynamics of animal populations is habitat heterogeneity, i.e., the number of structural elements in a given locality. In the marine pelagic environment habitat heterogeneity is represented by the distribution of physical oceanographic parameters such ...

  9. Integrating ecological theories and traits in process-based modeling of macroinvertebrate community dynamics in streams.

    Science.gov (United States)

    Mondy, Cédric P; Schuwirth, Nele

    2017-06-01

    Predicting the composition and dynamics of communities is a challenging but useful task to efficiently support ecosystem management. Community ecology has developed a number of promising theories, including food webs, metabolic theory, ecological stoichiometry, and environmental filtering. Their joint implementation in a mechanistic modeling framework should help us to bring community ecology to a new level by improving its predictive abilities. One of the challenges lies in the proper consideration of model uncertainty. In this paper, we contribute to this challenging task by modeling the temporal dynamics of macroinvertebrate communities in a stream subjected to hydropeaking in Switzerland. To this end, we extended the mechanistic model Streambugs regarding flood-induced drift processes and the use of trait information to define performance filters. Model predictions without any calibration were in the right order of magnitude but did not reflect the dynamics of most of the invertebrate taxa well. Bayesian inference drastically improved the model fit. It revealed that a large share of total model output uncertainty can be attributed to observation errors, which exceeded model parameter uncertainty. Observed and simulated community-aggregated traits helped to identify and understand model deficits. The combination of different ecological theories and trait information in a single mechanistic modeling framework combined with Bayesian inference can thus help to predict responses of communities to environmental changes, which can support ecosystem management. © 2017 by the Ecological Society of America.

  10. Physical investigation of square cylinder array dynamical response under single-phase cross-flow

    International Nuclear Information System (INIS)

    Longatte, E.; Baj, F.

    2014-01-01

    Fluid structure interaction and flow-induced vibration in square cylinder arrangement under single-phase incompressible laminar cross flow are investigated in the present paper. Dynamic instability governed by damping generation is studied without any consideration about mixing with turbulence effects. Conservative and non-conservative effects are pointed out and dynamical stability limit sensitivity to physical parameters is analyzed. Finally the influence of key physical parameters on fluid solid dynamics interaction is quantified. (authors)

  11. Kinetic analysis of oxygen dynamics under a variable work rate.

    Science.gov (United States)

    Artiga Gonzalez, Alexander; Bertschinger, Raphael; Brosda, Fabian; Dahmen, Thorsten; Thumm, Patrick; Saupe, Dietmar

    2017-09-14

    Measurements of oxygen uptake are central to methods for the assessment of physical fitness and endurance capabilities in athletes. Two important parameters extracted from such data of incremental exercise tests are the maximal oxygen uptake and the critical power. A commonly accepted model of the dynamics of oxygen uptake during exercise at a constant work rate comprises a constant baseline oxygen uptake, an exponential fast component, and another exponential slow component for heavy and severe work rates. We have generalized this model to variable load protocols with differential equations that naturally correspond to the standard model for a constant work rate. This provides the means for predicting the oxygen uptake response to variable load profiles including phases of recovery. The model parameters have been fitted for individual subjects from a cycle ergometer test, including the maximal oxygen uptake and critical power. The model predictions have been validated by data collected in separate tests. Our findings indicate that the oxygen kinetics for a variable exercise load can be predicted using the generalized mathematical standard model. Such models can be applied in the field where the constant work rate assumption generally is not valid. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Holographic otoscope for nanodisplacement measurements of surfaces under dynamic excitation.

    Science.gov (United States)

    Flores-Moreno, J M; Furlong, Cosme; Rosowski, John J; Harrington, Ellery; Cheng, Jeffrey T; Scarpino, C; Santoyo, F Mendoza

    2011-01-01

    We describe a novel holographic otoscope system for measuring nanodisplacements of objects subjected to dynamic excitation. Such measurements are necessary to quantify the mechanical deformation of surfaces in mechanics, acoustics, electronics, biology, and many other fields. In particular, we are interested in measuring the sound-induced motion of biological samples, such as an eardrum. Our holographic otoscope system consists of laser illumination delivery (IS), optical head (OH), and image processing computer (IP) systems. The IS delivers the object beam (OB) and the reference beam (RB) to the OH. The backscattered light coming from the object illuminated by the OB interferes with the RB at the camera sensor plane to be digitally recorded as a hologram. The hologram is processed by the IP using the Fresnel numerical reconstruction algorithm, where the focal plane can be selected freely. Our holographic otoscope system is currently deployed in a clinic, and is packaged in a custom design. It is mounted in a mechatronic positioning system to increase its maneuverability degrees to be conveniently positioned in front of the object to be measured. We present representative results highlighting the versatility of our system to measure deformations of complex elastic surfaces in the wavelength scale including a copper foil membrane and postmortem tympanic membrane. SCANNING 33: 342-352, 2011. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  13. The centrality of community dynamics in the socio-economic recovery of devastated communities.

    Science.gov (United States)

    Gomez, A; Atallah, W; Bidaisee, S; Patel, C; Amuleru-Marshall, O

    2009-11-01

    To assess and explore the health and socio-economic outcomes of Jubilee, a community on the Caribbean island of Grenada hit by Hurricane Ivan in 2004 and to identify remaining barriers to recovery. The assessment consisted of a mixed methods approach employing observations, household surveys, in-depth interviews and focus groups. Eighty-five per cent of the residents live in a single-family home type dwelling which is occupied by multiple families. Twenty-seven per cent of the respondents depended on a river or stream for water and 83% utilized an outdoor pit latrine. Construction accounted for 28% of the employment while 16% reported having no occupation. Public and private transportation was limited and 48% of the residents lived on less than one United States of America (US) dollar per day. Access to healthcare was reported by 89% and the prevalence of diabetes and hypertension was identified by 13% and 30% of the residents respectively. Social fragmentation within the community represents a barrier that keeps the community from developing common goals leading to full economic recovery. Jubilee has not fully recovered from the effects of Hurricane Ivan, but progress has been made in the reconstruction effort. These efforts have addressed the most immediate and basic needs of the community, mainly utility service infrastructure and home repairs. However issues related to the community's economic recovery are still unresolved.

  14. Leaf Dynamics of Panicum maximum under Future Climatic Changes.

    Science.gov (United States)

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.

  15. Spatial competition dynamics between reef corals under ocean acidification

    OpenAIRE

    Rael Horwitz; Mia O. Hoogenboom; Maoz Fine

    2017-01-01

    Climate change, including ocean acidification (OA), represents a major threat to coral-reef ecosystems. Although previous experiments have shown that OA can negatively affect the fitness of reef corals, these have not included the long-term effects of competition for space on coral growth rates. Our multispecies year-long study subjected reef-building corals from the Gulf of Aqaba (Red Sea) to competitive interactions under present-day ocean pH (pH 8.1) and predicted end-of-century ocean pH (...

  16. Numerical simulation of void growth under dynamic loading

    International Nuclear Information System (INIS)

    Iqbal, A.

    1996-01-01

    Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)

  17. Motor Coordination Dynamics Underlying Graphic Motion in 7- to 11-Year-Old Children

    Science.gov (United States)

    Danna, Jeremy; Enderli, Fabienne; Athenes, Sylvie; Zanone, Pier-Giorgio

    2012-01-01

    Using concepts and tools of a dynamical system approach in order to understand motor coordination underlying graphomotor skills, the aim of the current study was to establish whether the basic coordination dynamics found in adults is already established in children at elementary school, when handwriting is trained and eventually acquired. In the…

  18. Bayesian networks for clinical decision support: A rational approach to dynamic decision-making under uncertainty

    NARCIS (Netherlands)

    Gerven, M.A.J. van

    2007-01-01

    This dissertation deals with decision support in the context of clinical oncology. (Dynamic) Bayesian networks are used as a framework for (dynamic) decision-making under uncertainty and applied to a variety of diagnostic, prognostic, and treatment problems in medicine. It is shown that the proposed

  19. Bayesian networks for clinical decision support: A rational approach to dynamic decision-making under uncertainty

    OpenAIRE

    Gerven, M.A.J. van

    2007-01-01

    This dissertation deals with decision support in the context of clinical oncology. (Dynamic) Bayesian networks are used as a framework for (dynamic) decision-making under uncertainty and applied to a variety of diagnostic, prognostic, and treatment problems in medicine. It is shown that the proposed models perform well in realistic settings

  20. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  1. An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios.

    Directory of Open Access Journals (Sweden)

    Jennifer K Costanza

    Full Text Available The composition of tree species occurring in a forest is important and can be affected by global change drivers such as climate change. To inform assessment and projection of global change impacts at broad extents, we used hierarchical cluster analysis and over 120,000 recent forest inventory plots to empirically define forest tree assemblages across the U.S., and identified the indicator and dominant species associated with each. Cluster typologies in two levels of a hierarchy of forest assemblages, with 29 and 147 groups respectively, were supported by diagnostic criteria. Groups in these two levels of the hierarchy were labeled based on the top indicator species in each, and ranged widely in size. For example, in the 29-cluster typology, the sugar maple-red maple assemblage contained the largest number of plots (30,068, while the butternut-sweet birch and sourwood-scarlet oak assemblages were both smallest (6 plots each. We provide a case-study demonstration of the utility of the typology for informing forest climate change impact assessment. For five assemblages in the 29-cluster typology, we used existing projections of changes in importance value (IV for the dominant species under one low and one high climate change scenario to assess impacts to the assemblages. Results ranged widely for each scenario by the end of the century, with each showing an average decrease in IV for dominant species in some assemblages, including the balsam fir-quaking aspen assemblage, and an average increase for others, like the green ash-American elm assemblage. Future work should assess adaptive capacity of these forest assemblages and investigate local population- and community-level dynamics in places where dominant species may be impacted. This typology will be ideal for monitoring, assessing, and projecting changes to forest communities within the emerging framework of macrosystems ecology, which emphasizes hierarchies and broad extents.

  2. [Comparison of bacterial and archaeal community of mangrove soil under different vegetation in Dongzhaigang, Hainan Island].

    Science.gov (United States)

    Ren, Jian; Yan, Bing; Hong, Kui

    2012-06-04

    We compared bacterial and archaeal diversity and community structure of mangrove soil under different vegetation, and to reveal better understanding of microbial resources. Bacterial and archaeal 16S rRNA gene libraries were constructed and analyzed for soils under Kandelia candel trees, Sonneratia apetala trees, and naked tideland, in Dongzhaigang Mangrove National Nature Reserve of Hainan Island. Template DNA was directly extracted from soil samples. PCR were amplified using primers 27F/1492R (bacterial) and Arch21F/Arch958R (archaeal). A total of 16 phyla dominated by Proteobacteria and Chloroflexi were detected in bacterial libraries, and 6 groups of Crenarchaeota and 7 groups of Euryarchaeota, predominated by Marine Benthic Group C and Marine Benthic Group D, respectively were found in archaeal libraries. Shannon-Wiener index (H') and S(chao1) estimator indicated that soil microbial diversity under the introduced species Sonneratia apetala was much lower than indigenous species Kandelia candel, even lower than naked tidal flat sediment near mangrove. Distinct differences in microbial community structure under different vegetation were observed. Soil microbial community structure under Kandelia candel was much similar with that of naked tideland. Mangrove soil contained rich population of bacteria and archaea; there existed distinct differences in mangrove soil microbial community structure and diversity among different vegetation.

  3. Nonlinear friction dynamics on polymer surface under accelerated movement

    Directory of Open Access Journals (Sweden)

    Yuuki Aita

    2017-04-01

    Full Text Available Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  4. On Impact Dynamics under Complex or Extreme Conditions

    KAUST Repository

    Kouraytem, Nadia

    2016-11-01

    The impact of a spherical object onto a surface of a liquid, solid or granular material, is a configuration which occurs in numerous industrial and natural phenomena. The resulting dynamics can produce complex outcomes and often occur on very short time-scales. Their study thereby requires high-speed video imaging, as is done herein. This three-part dissertation investigates widely disparate but kindred impact configurations, where the impacting object is a solid steel sphere, or a molten metal droplet. The substrate, on the other hand, is either granular material, a liquid, or solid ice. Therefore both fluid mechanics and thermodynamics play a key role in some of these dynamics. Part I, investigates the penetration depth of a steel sphere which impacts onto a granular bed containing a mixture of grains of two different sizes. The addition of smaller grains within a bed of larger grains can promote a “lubrication” effect and deeper penetration of the sphere. However, there needs to be enough mass fraction of the smaller grains so that they get lodged between the larger grains and are not simply like isolated rattlers inside the voids between the larger grains. This lubrication occurs even though the addition of the small grains increases the overall packing fraction of the bed. We compare the enhanced penetration for the mixtures to a simple interpolative model based on the results for monodispersed media of the constitutive sizes. The strongest lubrication is observed for large irregular shaped Ottawa sand grains, which are seeded with small spherical glass beads. Part II, tackles the topic of a molten metal drop impacting onto a pool of water. When the drop temperature is far above the boiling temperature of water, a continuous vapor layer can form at the interface between the metal and water, in what is called the Leidenfrost phenomenon. This vapor layer can become unstable forming what is called a vapor explosion, which can break up the molten metal drop

  5. Dynamic Simulation of Community Crime and Crime-Reporting Behavior

    Science.gov (United States)

    Yonas, Michael A.; Borrebach, Jeffrey D.; Burke, Jessica G.; Brown, Shawn T.; Philp, Katherine D.; Burke, Donald S.; Grefenstette, John J.

    An agent-based model was developed to explore the effectiveness of possible interventions to reduce neighborhood crime and violence. Both offenders and non-offenders (or citizens) were modeled as agents living in neighborhoods, with a set of rules controlling changes in behavior based on individual experience. Offenders may become more or less inclined to actively commit criminal offenses, depending on the behavior of the neighborhood residents and other nearby offenders, and on their arrest experience. In turn, citizens may become more or less inclined to report crimes, based on the observed prevalence of criminal activity within their neighborhood. This paper describes the basic design and dynamics of the model, and how such models might be used to investigate practical crime intervention programs.

  6. Conservation planning under uncertainty in urban development and vegetation dynamics

    Science.gov (United States)

    Carmel, Yohay

    2018-01-01

    Systematic conservation planning is a framework for optimally locating and prioritizing areas for conservation. An often-noted shortcoming of most conservation planning studies is that they do not address future uncertainty. The selection of protected areas that are intended to ensure the long-term persistence of biodiversity is often based on a snapshot of the current situation, ignoring processes such as climate change. Scenarios, in the sense of being accounts of plausible futures, can be utilized to identify conservation area portfolios that are robust to future uncertainty. We compared three approaches for utilizing scenarios in conservation area selection: considering a full set of scenarios (all-scenarios portfolio), assuming the realization of specific scenarios, and a reference strategy based on the current situation (current distributions portfolio). Our objective was to compare the robustness of these approaches in terms of their relative performance across future scenarios. We focused on breeding bird species in Israel’s Mediterranean region. We simulated urban development and vegetation dynamics scenarios 60 years into the future using DINAMICA-EGO, a cellular-automata simulation model. For each scenario, we mapped the target species’ available habitat distribution, identified conservation priority areas using the site-selection software MARXAN, and constructed conservation area portfolios using the three aforementioned strategies. We then assessed portfolio performance based on the number of species for which representation targets were met in each scenario. The all-scenarios portfolio consistently outperformed the other portfolios, and was more robust to ‘errors’ (e.g., when an assumed specific scenario did not occur). On average, the all-scenarios portfolio achieved representation targets for five additional species compared with the current distributions portfolio (approximately 33 versus 28 species). Our findings highlight the importance

  7. Moderately nonlinear diffuse-charge dynamics under an ac voltage

    Science.gov (United States)

    Stout, Robert F.; Khair, Aditya S.

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  8. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    Science.gov (United States)

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  9. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-05-01

    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  10. Vertebral stress of a cervical spine model under dynamic load.

    Science.gov (United States)

    Sadegh, A M; Tchako, A

    2000-01-01

    The objective of this study is to develop cervical spine models that predict the stresses in each vertebra by taking account of the biodynamic characteristics of the neck. The loads and the moments at the head point (Occipital Condyle) used for the models were determined by the rigid body dynamic response of the head due to G-z acceleration. The experimental data used were collected from the biodynamic responses of human volunteers during an acceleration in the z direction on the drop tower facility at Armstrong Laboratory at Wright Patterson Air Force Base (WPAFB). Three finite element models were developed: an elastic local model, viscoelastic local model and complete viscoelastic model. I-DEAS software was used to create the solid models, the loadings and the boundary conditions. Then, ABAQUS finite element software was employed to solve the models, and thus the stresses on each vertebral level were determined. Beam elements with different properties were employed to simulate the ligaments, articular facets and muscles. The complete viscoelastic model was subjected to 11 cases of loadings ranging from 8 G-z to 20 G-z accelerations. The von Mises and Maximum Principal stress fields, which are good indicators of bone failure, were calculated for all the cases. The results indicated that the maximum stress in all cases increased as the magnitude of the acceleration increased. The stresses in the 10 to 12 G-z cases were comfortably below the injury threshold level. The majority of the maximum stresses occurred in C6 and C4 regions.

  11. Dynamics of Dark-Fly Genome Under Environmental Selections

    Directory of Open Access Journals (Sweden)

    Minako Izutsu

    2016-02-01

    Full Text Available Environmental adaptation is one of the most fundamental features of organisms. Modern genome science has identified some genes associated with adaptive traits of organisms, and has provided insights into environmental adaptation and evolution. However, how genes contribute to adaptive traits and how traits are selected under an environment in the course of evolution remain mostly unclear. To approach these issues, we utilize “Dark-fly”, a Drosophila melanogaster line maintained in constant dark conditions for more than 60 years. Our previous analysis identified 220,000 single nucleotide polymorphisms (SNPs in the Dark-fly genome, but did not clarify which SNPs of Dark-fly are truly adaptive for living in the dark. We found here that Dark-fly dominated over the wild-type fly in a mixed population under dark conditions, and based on this domination we designed an experiment for genome reselection to identify adaptive genes of Dark-fly. For this experiment, large mixed populations of Dark-fly and the wild-type fly were maintained in light conditions or in dark conditions, and the frequencies of Dark-fly SNPs were compared between these populations across the whole genome. We thereby detected condition-dependent selections toward approximately 6% of the genome. In addition, we observed the time-course trajectory of SNP frequency in the mixed populations through generations 0, 22, and 49, which resulted in notable categorization of the selected SNPs into three types with different combinations of positive and negative selections. Our data provided a list of about 100 strong candidate genes associated with the adaptive traits of Dark-fly.

  12. Red Sea Acropora hemprichii Bacterial Population Dynamics under Adverse Anthropogenic Conditions

    KAUST Repository

    Lizcano, Javier

    2012-08-01

    Reef-building corals are cornerstones of life in the oceans. Understanding their interactions with microorganisms and their surrounding physicochemical conditions is important to comprehend reef functioning and ultimately protect coral reef ecosystems. Corals associate with a complex and specific array of microorganisms that supposedly affect their physiology and therefore can significantly determine the condition of a coral ecosystem. As environmental conditions may shape bacterial diversity and ecology in the coral symbiosis, ecosystem changes might have unfavorable consequences for the holobiont, to date poorly understood. Here, we were studying microbial community changes in A. hemprichii as a consequence of simulated eutrophication and overfishing over a period of 16 weeks by using in situ caging and slow release fertilizer treatments in an undisturbed Red Sea reef (22.18ºN, 38.57ºW). We used 16S rDNA amplicon sequencing to evaluate the individual and combined effects of overnutrification and fishing pressure, two of the most common local threats to coral reefs. With our data we hope to better understand bacterial population dynamics under anthropogenic influences and its role in coral resilience. Projecting further, this data will be useful to better predict the consequences of human activity on reef ecosystems.

  13. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes.

    Science.gov (United States)

    Zhang, Yuanchen; Kastman, Erik K; Guasto, Jeffrey S; Wolfe, Benjamin E

    2018-01-23

    Most studies of bacterial motility have examined small-scale (micrometer-centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes.

  14. Landscape-scale disturbances modified bird community dynamics in successional forest environment.

    Science.gov (United States)

    Zhao, Qing; Azeria, Ermias T; Le Blanc, Mélanie-Louise; Lemaître, Jérôme; Fortin, Daniel

    2013-01-01

    Ecosystem-based forest management strives to develop silvicultural practices that best emulate natural disturbances such as wildfire to conserve biodiversity representative of natural forest ecosystems. Yet, current logging practices alter forest structure and reduce the proportion of old-growth forest and, consequently, can exert long-term effects on the dynamics of forest biota. The stand- and landscape-scale factors driving bird community dynamics in post-disturbance environment remain poorly understood. In this study, we examined bird community dynamics along successional gradients in boreal ecosystems originating from fire and logging in landscapes dominated by old-growth forest. We tested if bird species richness and community compositions in clear-cutting stands became comparable to those in natural stands after 70 years, and identified the relative contributions of stand- and landscape-scale forest attributes in bird community dynamics. Based on records of bird occurrences at 185 field sites in natural and clearcutting stands, we demonstrate that (1) both forest structures and bird communities underwent evident changes along successional gradients in post-clearcutting environment; (2) bird species richness and community composition in 60- to 70-years-old clearcutting stands still differed from those in 50- to 79-years-old natural stands, in spite of the fact that most forest attributes of clearcutting stands became comparable to those of natural stands after 40 years; and (3) landscape disturbances contributed more than stand characteristics in explaining the lack of convergence of mature forest species, residents, and short-distance migrants in post-clearcutting environment. Our study points out that more regards should be paid to improve the landscape configuration of the managed forests, and implies that old-growth forest retention within logged areas, combined with selection cutting and prolonged logging rotations, can better emulate fire and alleviate

  15. Landscape-scale disturbances modified bird community dynamics in successional forest environment.

    Directory of Open Access Journals (Sweden)

    Qing Zhao

    Full Text Available Ecosystem-based forest management strives to develop silvicultural practices that best emulate natural disturbances such as wildfire to conserve biodiversity representative of natural forest ecosystems. Yet, current logging practices alter forest structure and reduce the proportion of old-growth forest and, consequently, can exert long-term effects on the dynamics of forest biota. The stand- and landscape-scale factors driving bird community dynamics in post-disturbance environment remain poorly understood. In this study, we examined bird community dynamics along successional gradients in boreal ecosystems originating from fire and logging in landscapes dominated by old-growth forest. We tested if bird species richness and community compositions in clear-cutting stands became comparable to those in natural stands after 70 years, and identified the relative contributions of stand- and landscape-scale forest attributes in bird community dynamics. Based on records of bird occurrences at 185 field sites in natural and clearcutting stands, we demonstrate that (1 both forest structures and bird communities underwent evident changes along successional gradients in post-clearcutting environment; (2 bird species richness and community composition in 60- to 70-years-old clearcutting stands still differed from those in 50- to 79-years-old natural stands, in spite of the fact that most forest attributes of clearcutting stands became comparable to those of natural stands after 40 years; and (3 landscape disturbances contributed more than stand characteristics in explaining the lack of convergence of mature forest species, residents, and short-distance migrants in post-clearcutting environment. Our study points out that more regards should be paid to improve the landscape configuration of the managed forests, and implies that old-growth forest retention within logged areas, combined with selection cutting and prolonged logging rotations, can better emulate

  16. Market dynamics of community pharmacies in Minnesota, U.S. from 1992 through 2012.

    Science.gov (United States)

    Schommer, Jon C; Yusuf, Akeem A; Hadsall, Ronald S

    2014-01-01

    An understanding of community pharmacy market dynamics is important for monitoring access points for pharmacist services. The purpose of this study was to describe (1) changes in pharmacy mix (independent versus chain) between 1992 and 2002 and between 2002 and 2012 for 87 counties in Minnesota (state in U.S.) and (2) the number (and proportion) of community pharmacies in Minnesota for the years 1992, 2002, and 2012 using a new categorization method developed specifically for this study. Data included licensure records for 1992, 2002, and 2012 from the State of Minnesota Board of Pharmacy and county level demographics for 1990, 2000 and 2010 from the US Census Bureau. Descriptive statistics were used to summarize findings over time and to describe associations between study variables. The ratio of independent pharmacies to chain pharmacies changed from approximately 2:1 in 1992 to 1:2 in 2012. The primary market factors associated with changes in the number of community pharmacies per county were (1) the metropolitan designation of the county and (2) whether the population density (persons/square mile) was increasing or decreasing. The face of community pharmacy in Minnesota changed between 1992 and 2012. By 2012, pharmacies were located in traditional retail pharmacies, mass merchandiser outlets, supermarkets, and clinics/medical centers. Furthermore, specialty pharmacies grew in proportion to meet patient needs. Between 1992 and 2012, the market dynamics of community pharmacies in Minnesota was characterized by vigorous market entry and exit. In light of recent health reform that is exhibiting characteristics such as continuity-of-care models, performance-based payment, technology advances, and the care of patients becoming more "ambulatory" (versus in-patient), we suggest that the market dynamics of community pharmacies will continue to exhibit vigorous market entry and exit in this new environment. It is proposed that the community pharmacy categories developed

  17. Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins

    Science.gov (United States)

    Jackson, Timothy N. W.; Sunagar, Kartik; Undheim, Eivind A. B.; Koludarov, Ivan; Chan, Angelo H. C.; Sanders, Kate; Ali, Syed A.; Hendrikx, Iwan; Dunstan, Nathan; Fry, Bryan G.

    2013-01-01

    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz

  18. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator

    Science.gov (United States)

    Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.

    2016-11-01

    Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.

  19. The Ecological Dynamics of Natural Selection: Traits and the Coevolution of Community Structure.

    Science.gov (United States)

    McPeek, Mark A

    2017-05-01

    Natural selection has both genetic and ecological dynamics. The fitnesses of individuals change with their ecological context, and so the form and strength of selective agents change with abiotic factors and the phenotypes and abundances of interacting species. I use standard models of consumer-resource interactions to explore the ecological dynamics of natural selection and how various trait types influence these dynamics and the resulting structure of a community of coevolving species. Evolutionary optima favored by natural selection depend critically on the abundances of interacting species, and the traits of species can undergo dynamic cycling in limited areas of parameter space. The ecological dynamics of natural selection can also drive shifts from one adaptive peak to another, and these ecologically driven adaptive peak shifts are fundamental to the dynamics of niche differentiation. Moreover, this ecological differentiation is fostered in more productive and more benign environments where species interactions are stronger and where the selection gradients generated by species interactions are stronger. Finally, community structure resulting from coevolution depends fundamentally on the types of traits that underlie species interactions. The ecological dynamics of the process cannot be simplified, neglected, or ignored if we are to build a predictive theory of natural selection.

  20. A multistate dynamic site occupancy model for spatially aggregated sessile communities

    Science.gov (United States)

    Fukaya, Keiichi; Royle, J. Andrew; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2017-01-01

    Estimation of transition probabilities of sessile communities seems easy in principle but may still be difficult in practice because resampling error (i.e. a failure to resample exactly the same location at fixed points) may cause significant estimation bias. Previous studies have developed novel analytical methods to correct for this estimation bias. However, they did not consider the local structure of community composition induced by the aggregated distribution of organisms that is typically observed in sessile assemblages and is very likely to affect observations.We developed a multistate dynamic site occupancy model to estimate transition probabilities that accounts for resampling errors associated with local community structure. The model applies a nonparametric multivariate kernel smoothing methodology to the latent occupancy component to estimate the local state composition near each observation point, which is assumed to determine the probability distribution of data conditional on the occurrence of resampling error.By using computer simulations, we confirmed that an observation process that depends on local community structure may bias inferences about transition probabilities. By applying the proposed model to a real data set of intertidal sessile communities, we also showed that estimates of transition probabilities and of the properties of community dynamics may differ considerably when spatial dependence is taken into account.Results suggest the importance of accounting for resampling error and local community structure for developing management plans that are based on Markovian models. Our approach provides a solution to this problem that is applicable to broad sessile communities. It can even accommodate an anisotropic spatial correlation of species composition, and may also serve as a basis for inferring complex nonlinear ecological dynamics.

  1. Soil microbial communities under cacao agroforestry and cover crop systems in Peru

    Science.gov (United States)

    Cacao (Theobroma cacao) trees are grown in tropical regions worldwide for chocolate production. We studied the effects of agroforestry management systems and cover cropping on soil microbial communities under cacao in two different replicated field experiments in Peru. Two agroforestry systems, Imp...

  2. The Dynamics of an Online Community of Practice Involving Teachers and Researchers

    Science.gov (United States)

    Marques, Margarida Morais; Loureiro, Maria João; Marques, Luís

    2016-01-01

    In the literature, communities of practice (CoPs) are recognised as having potential to promote teachers' professional development. However, the study of the dynamics of CoPs with teachers and researchers, and their impact on teachers' professional development, is still scarce. Contributing to fill this gap, this paper presents a single case study…

  3. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming in Alabama

    Directory of Open Access Journals (Sweden)

    Zachary Senwo

    2011-07-01

    Full Text Available Evaluation of the soil rhizosphere has been limited by the lack of robust assessments that can explore the vast complex structure and diversity of soil microbial communities. Our objective was to combine fatty acid methyl ester (FAME and pyrosequencing techniques to evaluate soil microbial community structure and diversity. In addition, we evaluated biogeochemical functionality of the microbial communities via enzymatic activities of nutrient cycling. Samples were taken from a silt loam at 0–10 and 10–20 cm in an organic farm under lettuce (Lactuca sativa, potato (Solanum tuberosum, onion (Allium cepa L, broccoli (Brassica oleracea var. botrytis and Tall fescue pasture grass (Festuca arundinacea. Several FAMEs (a15:0, i15:0, i15:1, i16:0, a17:0, i17:0, 10Me17:0, cy17:0, 16:1ω5c and 18:1ω9c varied among the crop rhizospheres. FAME profiles of the soil microbial community under pasture showed a higher fungal:bacterial ratio compared to the soil under lettuce, potato, onion, and broccoli. Soil under potato showed higher sum of fungal FAME indicators compared to broccoli, onion and lettuce. Microbial biomass C and enzyme activities associated with pasture and potato were higher than the other rhizospheres. The lowest soil microbial biomass C and enzyme activities were found under onion. Pyrosequencing revealed significant differences regarding the maximum operational taxonomic units (OTU at 3% dissimilarity level (roughly corresponding to the bacterial species level at 0–10 cm (581.7–770.0 compared to 10–20 cm (563.3–727.7 soil depths. The lowest OTUs detected at 0–10 cm were under broccoli (581.7; whereas the lowest OTUs found at 10–20 cm were under potato (563.3. The predominant phyla (85% in this soil at both depths were Bacteroidetes (i.e., Flavobacteria, Sphingobacteria, and Proteobacteria. Flavobacteriaceae and Xanthomonadaceae were predominant under broccoli. Rhizobiaceae, Hyphomicrobiaceae, and Acidobacteriaceae were more

  4. PCR-DGGE analysis of bacterial community dynamics in kava beverages during refrigeration.

    Science.gov (United States)

    Dong, J; Kandukuru, P; Huang, A S; Li, Y

    2011-07-01

    Kava beverages are highly perishable even under refrigerated conditions. This study aimed to investigate the bacterial community dynamics in kava beverages during refrigeration.  Four freshly made kava beverages were obtained from kava bars and stored at 4°C. On days 0, 3 and 6, the aerobic plate count (APC), lactic acid bacteria (LAB) count and yeast and mould count (YMC) of the samples were determined. Meanwhile, bacterial DNA was extracted from each sample and subjected to the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Moreover, species-specific PCR assays were employed to identify predominant Pseudomonas spp. involved in kava spoilage. Over the storage period, the APC, LAB count and YMC of the four kava beverages all increased, whereas their pH values decreased. The DGGE profile revealed diverse bacterial populations in the samples. LAB, such as Weissella soli, Lactobacillus spp. and Lactococcus lactis, were found in the kava beverages. Species-specific PCR assays detected Pseudomonas putida and Pseudomonas fluorescens in the samples; Ps. fluorescens became dominant during refrigeration. LAB and Pseudomonas may play a significant role in the spoilage of kava beverages. This study provides important information that may be used to extend the shelf life of kava beverages. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  5. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  6. [Dynamics of parasite communities in an age series of Arctic Cisco Coregonus migratorius (Georgi, 1775)].

    Science.gov (United States)

    Dugarov, Zh N; Pronin, N M

    2013-01-01

    Parasite communities of Arctic cisco from Chivyrkui Bay of Lake Baikal have been analyzed at levels of a host individual (infracommunity), a individual age group of a host-(assemblages of infracommunities), and a host population (component community). Significant positive correlations of parameters of species richness (number of parasite species, Margalef and Menhinick indices) with the age of Arctic cisco were recorded only at the level of parasite inffacommunities. The absence of linear positive correlations between the parameters of species richness and the age of Arctic cisco at the level of assemblages of parasite infracommunities were revealed for the first time for fish of Lake Baikal. The peculiarity of the dynamics of parasite communities of. Arctic cisco is determined by specific features of the host physiology and ecology, primarily by the age dynamics of the feeding spectrum.

  7. Short-term under-ice variability of prokaryotic plankton communities in coastal Antarctic waters (Cape Hallett, Ross Sea)

    Science.gov (United States)

    Celussi, Mauro; Paoli, Alessandro; Crevatin, Erica; Bergamasco, Andrea; Margiotta, Francesca; Saggiomo, Vincenzo; Umani, Serena Fonda; Del Negro, Paola

    2009-03-01

    During the 2006 Italian Antarctic expedition a diel sampling was performed close to Cape Hallett (Ross Sea) during the Austral summer. Under-ice seawater samples (˜4 m) were collected every 2 h for 28 h in order to estimate prokaryotic processes' variability and community structure dynamics. Prokaryotic and viral abundances, exoenzymatic activities (β-glucosidase, chitinase, lipase, alkaline phosphatase and leucine aminopeptidase), prokaryotic carbon production ( 3H-leucine incorporation) and community structure (Denaturing Gradient Gel Electrophoresis - DGGE fingerprints) were analysed. Results showed that the diel variability of the prokaryotic activity followed a variation in salinity, probably as a consequence of the periodical thawing of sea ice (driven by solar radiation and air temperature cycles), while negligible variation in viral and prokaryotic abundances occurred. The Bacterial and Archaeal community structures underwent an Operational Taxonomic Units (OTUs) temporal shift from the beginning to the end of the sampling, while Flavobacteria-specific primers highlighted high variations in this group possibly related to sea ice melting and substrate release.

  8. The population and evolutionary dynamics of Vibrio cholerae and its bacteriophage: conditions for maintaining phage-limited communities.

    Science.gov (United States)

    Wei, Yan; Kirby, Amy; Levin, Bruce R

    2011-12-01

    Although bacteriophage have been reported to be the most abundant organisms on earth, little is known about their contribution to the ecology of natural communities of their host bacteria. Most importantly, what role do these viral parasitoids play in regulating the densities of bacterial populations? To address this question, we use experimental communities of Vibrio cholerae and its phage in continuous culture, and we use mathematical models to explore the population dynamic and evolutionary conditions under which phage, rather than resources, will limit the densities of these bacteria. The results of our experiments indicate that single species of bacterial viruses cannot maintain the density of V. cholerae populations at levels much lower than that anticipated on the basis of resources alone. On the other hand, as few as two species of phage can maintain these bacteria at densities more than two orders of magnitude lower than the densities of the corresponding phage-free controls for extensive periods. Using mathematical models and short-term experiments, we explore the population dynamic processes responsible for these results. We discuss the implications of this experimental and theoretical study for the population and evolutionary dynamics of natural populations of bacteria and phage.

  9. Comfort monitoring? Environmental assessment follow-up under community-industry negotiated environmental agreements

    International Nuclear Information System (INIS)

    Noble, Bram; Birk, Jasmine

    2011-01-01

    Negotiated environmental agreements are becoming common practice in the mining industry. In principle, negotiated environmental agreements are said to respond to many of the shortcomings of environmental impact assessment by providing for improved follow-up of project impacts through, among other things, data provision, engaging stakeholders in the monitoring and management of project impacts, and building capacity at the local level to deal with project-induced environmental change. In practice, however, little is known about the efficacy of follow-up under negotiated environmental agreements between proponents and communities and the demonstrated value added to project impact management. This paper examines follow-up practice under negotiated environmental agreements with a view to understanding whether and how community-based monitoring under privatized agreements actually contributes to improved follow-up and impact management. Based on lessons emerging from recent experiences with environmental agreements in Canada's uranium industry, we show that follow-up under negotiated agreements may be described as 'comfort monitoring'. While such monitoring does improve community-industry relations and enhance corporate image, it does little to support effects-based management. If follow-up under negotiated agreements is to be credible over the long term, there is a need to ensure that monitoring results are useful for, and integrated with, regulatory-based monitoring and project impact management practices.

  10. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  11. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  12. Shedding Light on the Mechanisms Underlying Health Disparities Through Community Participatory Methods: The Stress Pathway

    Science.gov (United States)

    Schetter, Christine Dunkel; Schafer, Peter; Lanzi, Robin Gaines; Clark-Kauffman, Elizabeth; Raju, Tonse N. K.; Hillemeier, Marianne M.

    2015-01-01

    Health disparities are large and persistent gaps in the rates of disease and death between racial/ethnic and socioeconomic status subgroups in the population. Stress is a major pathway hypothesized to explain such disparities. The Eunice Kennedy Shriver National Institute of Child Health and Human Development formed a community/research collaborative—the Community Child Health Network—to investigate disparities in maternal and child health in five high-risk communities. Using community participation methods, we enrolled a large cohort of African American/Black, Latino/Hispanic, and non-Hispanic/White mothers and fathers of newborns at the time of birth and followed them over 2 years. A majority had household incomes near or below the federal poverty level. Home interviews yielded detailed information regarding multiple types of stress such as major life events and many forms of chronic stress including racism. Several forms of stress varied markedly by racial/ethnic group and income, with decreasing stress as income increased among Caucasians but not among African Americans; other forms of stress varied by race/ethnicity or poverty alone. We conclude that greater sophistication in studying the many forms of stress and community partnership is necessary to uncover the mechanisms underlying health disparities in poor and ethnic-minority families and to implement community health interventions. PMID:26173227

  13. Cellulolytic potential under environmental changes in microbial communities from grassland litter

    Directory of Open Access Journals (Sweden)

    Renaud eBerlemont

    2014-11-01

    Full Text Available In many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of two years to place environmental change responses into the context of natural variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and constituted ~18.2% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.

  14. Dynamic structure of stock communities: a comparative study between stock returns and turnover rates

    Science.gov (United States)

    Su, Li-Ling; Jiang, Xiong-Fei; Li, Sai-Ping; Zhong, Li-Xin; Ren, Fei

    2017-07-01

    The detection of community structure in stock market is of theoretical and practical significance for the study of financial dynamics and portfolio risk estimation. We here study the community structures in Chinese stock markets from the aspects of both price returns and turnover rates, by using a combination of the PMFG and infomap methods based on a distance matrix. An empirical study using the overall data set shows that for both returns and turnover rates the largest communities are composed of specific industrial or conceptional sectors and the correlation inside a sector is generally larger than the correlation between different sectors. However, the community structure for turnover rates is more complex than that for returns, which indicates that the interactions between stocks revealed by turnover rates may contain more information. This conclusion is further confirmed by the analysis of the changes in the dynamics of community structures over five sub-periods. Sectors like banks, real estate, health care and New Shanghai take turns to comprise a few of the largest communities in different sub-periods, and more interestingly several specific sectors appear in the communities with different rank orders for returns and turnover rates even in the same sub-period. To better understand their differences, a comparison between the evolution of the returns and turnover rates of the stocks from these sectors is conducted. We find that stock prices only had large changes around important events while turnover rates surged after each of these events relevant to specific sectors, which shows strong evidence that the turnover rates are more susceptible to exogenous shocks than returns and its measurement for community detection may contain more useful information about market structure.

  15. Independent Effects of Invasive Shrubs and Deer Herbivory on Plant Community Dynamics

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Ward

    2016-12-01

    Full Text Available Both invasive species and deer herbivory are recognized as locally important drivers of plant community dynamics. However, few studies have examined whether their effects are synergistic, additive, or antagonistic. At three study areas in southern New England, we examined the interaction of white-tailed deer (Odocoileus virginianus Zimmermann herbivory and three levels of invasive shrub control over seven growing seasons on the dynamics of nine herbaceous and shrub guilds. Although evidence of synergistic interactions was minimal, the separate effects of invasive shrub control and deer herbivory on plant community composition and dynamics were profound. Plant communities remained relatively unchanged where invasive shrubs were not treated, regardless if deer herbivory was excluded or not. With increasing intensity of invasive shrub control, native shrubs and forbs became more dominant where deer herbivory was excluded, and native graminoids became progressively more dominant where deer herbivory remained severe. While deer exclusion and intensive invasive shrub control increased native shrubs and forbs, it also increased invasive vines. Restoring native plant communities in areas with both established invasive shrub thickets and severe deer browsing will require an integrated management plan to eliminate recalcitrant invasive shrubs, reduce deer browsing intensity, and quickly treat other opportunistic invasive species.

  16. Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor

    DEFF Research Database (Denmark)

    Ziegler, Anja Sloth; McIlroy, Simon Jon; Larsen, Poul

    2016-01-01

    Membrane fouling presents the greatest challenge to the application of membrane bioreactor (MBR) technology. Formation of biofilms on the membrane surface is the suggested cause, yet little is known of the composition or dynamics of the microbial community responsible. To gain an insight into thi......Membrane fouling presents the greatest challenge to the application of membrane bioreactor (MBR) technology. Formation of biofilms on the membrane surface is the suggested cause, yet little is known of the composition or dynamics of the microbial community responsible. To gain an insight...... into this important question, we applied 16S rRNA gene amplicon sequencing with a curated taxonomy and fluorescent in situ hybridization to monitor the community of a pilot-scale MBR carrying out enhanced biological nitrogen and phosphorus removal with municipal wastewater. In order to track the dynamics...... of the fouling process, we concurrently investigated the communities of the biofilm, MBR bulk sludge, and the conventional activated sludge system used to seed the MBR system over several weeks from start-up. As the biofilm matured the initially abundant betaproteobacterial genera Limnohabitans, Hydrogenophaga...

  17. The experience and influence of social support and social dynamics on cardiovascular disease prevention in migrant Pakistani communities: A qualitative synthesis.

    Science.gov (United States)

    Kokab, Farina; Greenfield, Sheila; Lindenmeyer, Antje; Sidhu, Manbinder; Tait, Lynda; Gill, Paramjit

    2017-10-04

    The objective of this research was to synthesise qualitative literature about the perceived influence and experience of social support, in relation to cardiovascular disease (CVD) prevention in migrant Pakistani communities. Articles were systematically reviewed, critically appraised, and analysed using an adapted meta-ethnography approach. Sixteen qualitative studies on health behaviours related to CVD prevention were included. include four sub-themes under two substantive thematic areas that focus on: 1) family dynamics and 2) community dynamics influenced by discrimination. For members of the Pakistani community, gendered family dynamics and discrimination from outside and within community networks influenced behaviour change. The authors of the synthesis developed multi-layered, contextualised interpretations of the care needs of an established multi-generational community. Future qualitative studies taking an intersectional approach to interpreting the role of social networks in migrant communities should take into account gender, identity, culture and faith. Health care providers should focus on cultural awareness and sensitivity during consultations. In particular, general practitioners can benefit from the insight they gain from patient experiences, allowing for more appropriate recommendations. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. Processes and challenges of community mobilisation for latrine promotion under Nirmal Bharat Abhiyan in rural Odisha, India.

    Science.gov (United States)

    Routray, Parimita; Torondel, Belen; Jenkins, Marion W; Clasen, Thomas; Schmidt, Wolf-Peter

    2017-05-16

    Despite efforts to eradicate it, open defecation remains widely practiced in India, especially in rural areas. Between 2013 and 2014, 50 villages in one district of Odisha, India, received a sanitation programme under the Nirmal Bharat Abhiyan (NBA - "Clean India Campaign"), the successor of India's Total Sanitation Campaign. This paper documents the strategies and processes of NBA community mobilisation for latrine promotion in these villages and assesses the strengths and limitations of the mobilisation activities. NBA's community mobilisation activities were observed and assessed against the programme's theory of change in 10 randomly selected programme villages from start to finish. Additional data was collected through review of documents, individual interviews (n = 80) and focus group discussions (n = 26) with staff of the implementing NGOs and community members. Our study revealed the lack of a consistent implementation strategy, lack of capacities and facilitation skills of NGO staff to implement sanitation programmes, political interference, challenges in accessing government financial incentives for latrine construction, and lack of clarity on the roles and responsibilities among government and NGO staff, leading to failure in translating government policies into sustainable actions. Social divisions and village dynamics related to gender and caste further constrained the effectiveness of mobilisation activities. Meetings were often dominated by male members of upper caste households, and excluded low caste community members and views of women. Community discussions revolved largely around the government's cash incentive for latrines. Activities aimed at creating demand for sanitation and use of latrines often resonated poorly with community members. An assessment by the implementers, 1 year after community mobilisation found 19% of households had a completed latrine across the 50 villages, a marginal increase of 7 percentage points over baseline. In

  19. Processes and challenges of community mobilisation for latrine promotion under Nirmal Bharat Abhiyan in rural Odisha, India

    Directory of Open Access Journals (Sweden)

    Parimita Routray

    2017-05-01

    Full Text Available Abstract Background Despite efforts to eradicate it, open defecation remains widely practiced in India, especially in rural areas. Between 2013 and 2014, 50 villages in one district of Odisha, India, received a sanitation programme under the Nirmal Bharat Abhiyan (NBA – “Clean India Campaign”, the successor of India’s Total Sanitation Campaign. This paper documents the strategies and processes of NBA community mobilisation for latrine promotion in these villages and assesses the strengths and limitations of the mobilisation activities. Methods NBA’s community mobilisation activities were observed and assessed against the programme’s theory of change in 10 randomly selected programme villages from start to finish. Additional data was collected through review of documents, individual interviews (n = 80 and focus group discussions (n = 26 with staff of the implementing NGOs and community members. Results Our study revealed the lack of a consistent implementation strategy, lack of capacities and facilitation skills of NGO staff to implement sanitation programmes, political interference, challenges in accessing government financial incentives for latrine construction, and lack of clarity on the roles and responsibilities among government and NGO staff, leading to failure in translating government policies into sustainable actions. Social divisions and village dynamics related to gender and caste further constrained the effectiveness of mobilisation activities. Meetings were often dominated by male members of upper caste households, and excluded low caste community members and views of women. Community discussions revolved largely around the government’s cash incentive for latrines. Activities aimed at creating demand for sanitation and use of latrines often resonated poorly with community members. An assessment by the implementers, 1 year after community mobilisation found 19% of households had a completed latrine across the 50

  20. A Damaged Constitutive Model for Rock under Dynamic and High Stress State

    Directory of Open Access Journals (Sweden)

    Yan-Long Li

    2017-01-01

    Full Text Available The main research work of this paper focuses on the theoretical prediction of the constitutive relationship for rock, concrete, and other quasi-brittle materials under dynamic and complex stress state and the influence of dynamic mechanical behavior of rock on practical engineering problems was studied. A damaged elastoplastic model (DEPM is established for the investigation and prediction of static or dynamic mechanical behavior of rock material. The mechanical behavior (brittleness or plasticity and dynamic response (due to underground impact pressure and high-velocity impact of projectile of rock under high in situ stress were investigated via the DEPM combined with the explicit finite element method. This paper suggests the influence of the brittle or plastic mechanical behavior of rock material on deep underground rock engineering.

  1. Power output and carrier dynamics studies of perovskite solar cells under working conditions.

    Science.gov (United States)

    Yu, Man; Wang, Hao-Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Zhang, Jian-Ping; Ai, Xi-Cheng

    2017-08-02

    Perovskite solar cells have emerged as promising photovoltaic systems with superb power conversion efficiency. For the practical application of perovskite devices, the greatest concerns are the power output density and the related dynamics under working conditions. In this study, the working conditions of planar and mesoscopic perovskite solar cells are simulated and the power output density evolutions with the working voltage are highlighted. The planar device exhibits higher capability of outputting power than the mesoscopic one. The transient photoelectric conversion dynamics are investigated under the open circuit, short circuit and working conditions. It is found that the power output and dynamic processes are correlated intrinsically, which suggests that the power output is the competitive result of the charge carrier recombination and transport. The present work offers a unique view to elucidating the relationship between the power output and the charge carrier dynamics for perovskite solar cells in a comprehensive manner, which would be beneficial to their future practical applications.

  2. [Spatial and temporal dynamics of the weed community in the Zoysia matrella lawn].

    Science.gov (United States)

    Liu, Jia-Qi; Li, You-Han; Zeng, Ying; Xie, Xin-Ming

    2014-02-01

    The heterogeneity of species composition is one of the main attributes in weed community dynamics. Based on species frequency and power law, this paper studied the variations of weed community species composition and spatial heterogeneity in a Zoysia matrella lawn in Guangzhou at different time. The results showed that there were 43 weed species belonging to 19 families in the Z. matrella lawn from 2007 to 2009, in which Gramineae, Compositae, Cyperaceae and Rubiaceae had a comparative advantage. Perennial weeds accounted for the largest proportion of weeds and increased gradually in the three years. Weed communities distributed in higher heterogeneity than in a random model. Dominant weeds varied with season and displayed regularity in the order of 'dicotyledon-monocotyledon-dicotyledon weeds' and 'perennial-annual-perennial weeds'. The spatial heterogeneity of weed community in Z. matrella lawn was higher in summer than in winter. The diversity and evenness of weed community were higher in summer and autumn than in winter and spring. The number of weed species with high heterogeneity in summer was higher than in the other seasons. The spatial heterogeneity and diversity of weed community had no significant change in the three years, while the evenness of weed community had the tendency to decline gradually.

  3. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Science.gov (United States)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  4. Characterization of bacterial community dynamics in a full-scale drinking water treatment plant.

    Science.gov (United States)

    Li, Cuiping; Ling, Fangqiong; Zhang, Minglu; Liu, Wen-Tso; Li, Yuxian; Liu, Wenjun

    2017-01-01

    Understanding the spatial and temporal dynamics of microbial communities in drinking water systems is vital to securing the microbial safety of drinking water. The objective of this study was to comprehensively characterize the dynamics of microbial biomass and bacterial communities at each step of a full-scale drinking water treatment plant in Beijing, China. Both bulk water and biofilm samples on granular activated carbon (GAC) were collected over 9months. The proportion of cultivable cells decreased during the treatment processes, and this proportion was higher in warm season than cool season, suggesting that treatment processes and water temperature probably had considerable impact on the R2A cultivability of total bacteria. 16s rRNA gene based 454 pyrosequencing analysis of the bacterial community revealed that Proteobacteria predominated in all samples. The GAC biofilm harbored a distinct population with a much higher relative abundance of Acidobacteria than water samples. Principle coordinate analysis and one-way analysis of similarity indicated that the dynamics of the microbial communities in bulk water and biofilm samples were better explained by the treatment processes rather than by sampling time, and distinctive changes of the microbial communities in water occurred after GAC filtration. Furthermore, 20 distinct OTUs contributing most to the dissimilarity among samples of different sampling locations and 6 persistent OTUs present in the entire treatment process flow were identified. Overall, our findings demonstrate the significant effects that treatment processes have on the microbial biomass and community fluctuation and provide implications for further targeted investigation on particular bacteria populations. Copyright © 2016. Published by Elsevier B.V.

  5. Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor.

    Science.gov (United States)

    Ziegler, Anja S; McIlroy, Simon J; Larsen, Poul; Albertsen, Mads; Hansen, Aviaja A; Heinen, Nicolas; Nielsen, Per Halkjær

    2016-01-01

    Membrane fouling presents the greatest challenge to the application of membrane bioreactor (MBR) technology. Formation of biofilms on the membrane surface is the suggested cause, yet little is known of the composition or dynamics of the microbial community responsible. To gain an insight into this important question, we applied 16S rRNA gene amplicon sequencing with a curated taxonomy and fluorescent in situ hybridization to monitor the community of a pilot-scale MBR carrying out enhanced biological nitrogen and phosphorus removal with municipal wastewater. In order to track the dynamics of the fouling process, we concurrently investigated the communities of the biofilm, MBR bulk sludge, and the conventional activated sludge system used to seed the MBR system over several weeks from start-up. As the biofilm matured the initially abundant betaproteobacterial genera Limnohabitans, Hydrogenophaga and Malikia were succeeded by filamentous Chloroflexi and Gordonia as the abundant species. This study indicates that, although putative pioneer species appear, the biofilm became increasingly similar to the bulk community with time. This suggests that the microbial population in bulk water will largely determine the community structure of the mature biofilm.

  6. Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor.

    Directory of Open Access Journals (Sweden)

    Anja S Ziegler

    Full Text Available Membrane fouling presents the greatest challenge to the application of membrane bioreactor (MBR technology. Formation of biofilms on the membrane surface is the suggested cause, yet little is known of the composition or dynamics of the microbial community responsible. To gain an insight into this important question, we applied 16S rRNA gene amplicon sequencing with a curated taxonomy and fluorescent in situ hybridization to monitor the community of a pilot-scale MBR carrying out enhanced biological nitrogen and phosphorus removal with municipal wastewater. In order to track the dynamics of the fouling process, we concurrently investigated the communities of the biofilm, MBR bulk sludge, and the conventional activated sludge system used to seed the MBR system over several weeks from start-up. As the biofilm matured the initially abundant betaproteobacterial genera Limnohabitans, Hydrogenophaga and Malikia were succeeded by filamentous Chloroflexi and Gordonia as the abundant species. This study indicates that, although putative pioneer species appear, the biofilm became increasingly similar to the bulk community with time. This suggests that the microbial population in bulk water will largely determine the community structure of the mature biofilm.

  7. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition.

    Science.gov (United States)

    Purahong, Witoon; Wubet, Tesfaye; Lentendu, Guillaume; Schloter, Michael; Pecyna, Marek J; Kapturska, Danuta; Hofrichter, Martin; Krüger, Dirk; Buscot, François

    2016-08-01

    Microorganisms play a crucial role in the biological decomposition of plant litter in terrestrial ecosystems. Due to the permanently changing litter quality during decomposition, studies of both fungi and bacteria at a fine taxonomic resolution are required during the whole process. Here we investigated microbial community succession in decomposing leaf litter of temperate beech forest using pyrotag sequencing of the bacterial 16S and the fungal internal transcribed spacer (ITS) rRNA genes. Our results reveal that both communities underwent rapid changes. Proteobacteria, Actinobacteria and Bacteroidetes dominated over the entire study period, but their taxonomic composition and abundances changed markedly among sampling dates. The fungal community also changed dynamically as decomposition progressed, with ascomycete fungi being increasingly replaced by basidiomycetes. We found a consistent and highly significant correlation between bacterial richness and fungal richness (R = 0.76, P kingdom co-occurrence pattern of their communities from the early to the later stages of decomposition. During this process, macronutrients, micronutrients, C:N ratio and pH were significantly correlated with the fungal and bacterial communities, while bacterial richness positively correlated with three hydrolytic enzymes important for C, N and P acquisition. Overall, we provide evidence that the complex litter decay is the result of a dynamic cross-kingdom functional succession. © 2016 John Wiley & Sons Ltd.

  8. Temporal dynamics of bacterioplankton communities in response to excessive nitrate loading in oligotrophic coastal water.

    Science.gov (United States)

    Dong, Zhiying; Wang, Kai; Chen, Xinxin; Zhu, Jianlin; Hu, Changju; Zhang, Demin

    2017-01-30

    Coastal ecosystems are receiving elevated loads of nitrogen (N) from anthropogenic sources. Understanding how excessive N loading affects bacterioplankton communities is critical to predict the biodiversity of marine ecosystems under conditions of eutrophic disturbance. In this study, oligotrophic coastal water microcosms were perturbed with nitrate in two loading modes: 1) one-off loading at the beginning of the incubation period; and 2) periodic loading every two days for 16days. Turnover in the bacterioplankton community was investigated by 16S rDNA gene amplicon sequencing. The alpha diversity of the bacterioplankton community showed great temporal variability and similar responses to the different treatments. Bacterioplankton community composition was influenced remarkably by time and N loading mode. The effects of N loading on bacterioplankton community structure showed obvious temporal variation, probably because of the great temporal variation in environmental parameters. This study provides insights into the effects of N pollution in anthropogenically perturbed marine environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Applying a System Dynamics Approach for Modeling Groundwater Dynamics to Depletion under Different Economical and Climate Change Scenarios

    Directory of Open Access Journals (Sweden)

    Hamid Balali

    2015-09-01

    Full Text Available In the recent decades, due to many different factors, including climate change effects towards be warming and lower precipitation, as well as some structural policies such as more intensive harvesting of groundwater and low price of irrigation water, the level of groundwater has decreased in most plains of Iran. The objective of this study is to model groundwater dynamics to depletion under different economic policies and climate change by using a system dynamics approach. For this purpose a dynamic hydro-economic model which simultaneously simulates the farmer’s economic behavior, groundwater aquifer dynamics, studied area climatology factors and government economical policies related to groundwater, is developed using STELLA 10.0.6. The vulnerability of groundwater balance is forecasted under three scenarios of climate including the Dry, Nor and Wet and also, different scenarios of irrigation water and energy pricing policies. Results show that implementation of some economic policies on irrigation water and energy pricing can significantly affect on groundwater exploitation and its volume balance. By increasing of irrigation water price along with energy price, exploitation of groundwater will improve, in so far as in scenarios S15 and S16, studied area’s aquifer groundwater balance is positive at the end of planning horizon, even in Dry condition of precipitation. Also, results indicate that climate change can affect groundwater recharge. It can generally be expected that increases in precipitation would produce greater aquifer recharge rates.

  10. Dynamic Response of Acrylonitrile Butadiene Styrene Under Impact Loading (Open Access)

    Science.gov (United States)

    2016-03-16

    ORIGINAL ARTICLE Open Access Dynamic response of acrylonitrile butadiene styrene under impact loading Gbadebo Owolabi1*, Alex Peterson1, Ed Habtour2...Tensile tests were conducted on 3-D printed acrylonitrile butadiene styrene (ABS) at differentstrain rates, according to the ASTM D638 standard, to assess... butadiene styrene, High strain rates, Dynamic response Background Through the use of direct digital manufacturing (DDM), more commonly known as

  11. Analysis on Dynamic Decision-Making Model of the Enterprise Technological Innovation Investment under Uncertain Environment

    Directory of Open Access Journals (Sweden)

    Yong Long

    2012-01-01

    Full Text Available Under the environment of fuzzy factors including the return of market, performance of product, and the demanding level of market, we use the method of dynamic programming and establish the model of investment decision, in technology innovation project of enterprise, based on the dynamic programming. Analysis of the influence caused by the changes of fuzzy uncertainty factors to technological innovation project investment of enterprise.

  12. Challenges in microbial ecology: Building predictive understanding of community function and dynamics

    DEFF Research Database (Denmark)

    Widder, Stefanie; Allen, Rosalind J.; Pfeiffer, Thomas

    2016-01-01

    The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth's soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly...... complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development...

  13. Effect Analysis of Service Supply Chain with Dynamic Game under the Condition of Sensitive Demand

    Directory of Open Access Journals (Sweden)

    Guanglan Zhou

    2015-01-01

    Full Text Available Under the real circumstances of service supply chain, there is one demand appearing as the sensitive feature, to face the increasing uncertainty. It could be elaborated upon the decision variables such as price, quantity, and efforts. The member behaviors are operated and coordinated in the process of multiperiod dynamic game. Based on the multiperiod dynamic game theory, the service demand and price, quantity of goods, and efforts of members in the secondary service supply chain are considered. The paper discusses the reputation effect and ratchet effect in the multiperiod dynamic game service supply chain. Additionally, the paper describes this problem, builds a programming model based on the multiperiod dynamic game, and deduces the optimal solution. Furthermore, the paper analyzes the impact of reputation effect and ratchet effect on the agent’s revenue. Through the simulation, it is found that the agency efforts are a combination result of reputation effect and ratchet effect in the process of multiperiod dynamic game. Through the long-term dynamic game, the short-term moral risk in service supply chain can be restrained so that the result under the asymmetric information is the same as that under the complete information.

  14. Numerical Simulations of Dynamic Behavior of Polyurea Toughened Steel Plates under Impact Loading

    Directory of Open Access Journals (Sweden)

    Chien-Chung Chen

    2014-01-01

    Full Text Available The objective of the work discussed herein is to develop a nonlinear 3D finite element model to simulate dynamic behavior of polyurea toughened steel plates under impact loading. Experimental and numerical work related to model development are presented. Material properties are incorporated into numerical models to account for strain-rate effects on the dynamic behavior of polyurea and steel. One bare steel plate and four polyurea toughened steel plates were tested under impact loading using a pendulum impact device. Displacement time-history data from experimental work was used to validate the numerical models. Details on material model construction, finite element model development, and model validation are presented and discussed. Results indicate that the developed numerical models can reasonably predict dynamic response of polyurea toughened steel plates under impact loading.

  15. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient.

    Science.gov (United States)

    Pillsbury, Finn C; Miller, James R

    2008-07-01

    Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.

  16. Acclimation of Culturable Bacterial Communities under the Stresses of Different Organic Compounds

    Science.gov (United States)

    Wang, Hui; Zhang, Shuangfei; Pratush, Amit; Ye, Xueying; Xie, Jinli; Wei, Huan; Sun, Chongran; Hu, Zhong

    2018-01-01

    The phylogenetic diversity of bacterial communities in response to environmental disturbances such as organic pollution has been well studied, but little is known about the way in which organic contaminants influence the acclimation of functional bacteria. In the present study, tolerance assays for bacterial communities from the sediment in the Pearl River Estuary were conducted with the isolation of functional bacteria using pyrene and different estrogens as environmental stressors. Molecular ecological networks and phylogenetic trees were constructed using both 16S rRNA gene sequences of cultured bacterial strains and 16S rRNA gene-based pyrosequencing data to illustrate the successions of bacterial communities and their acclimations to the different organic compounds. A total of 111 bacterial strains exhibiting degradation and endurance capabilities in response to the pyrene estrogen-induced stress were successfully isolated and were mainly affiliated with three orders, Pseudomonadales, Vibrionales, and Rhodobacterales. Molecular ecological networks and phylogenetic trees showed various adaptive abilities of bacteria to the different organic compounds. For instance, some bacterial OTUs could be found only in particular organic compound-treated groups while some other OTUs could tolerate stresses from different organic compounds. Furthermore, the results indicated that some new phylotypes were emerged under stresses of different organic pollutions and these new phylotypes could adapt to the contaminated environments and contribute significantly to the microbial community shifts. Overall, this study demonstrated a crucial role of the community succession and the acclimation of functional bacteria in the adaptive responses to various environmental disturbances. PMID:29520254

  17. Being Explicit about Underlying Values, Assumptions and Views when Designing for Children in the IDC Community

    DEFF Research Database (Denmark)

    Skovbjerg, Helle Marie; Bekker, Tilde; Barendregt, Wolmet

    2016-01-01

    In this full-day workshop we want to discuss how the IDC community can make underlying assumptions, values and views regarding children and childhood in making design decisions more explicit. What assumptions do IDC designers and researchers make, and how can they be supported in reflecting......, and intends to share different approaches for uncovering and reflecting on values, assumptions and views about children and childhood in design....

  18. Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment.

    Science.gov (United States)

    Maza-Márquez, P; Vilchez-Vargas, R; Kerckhof, F M; Aranda, E; González-López, J; Rodelas, B

    2016-11-15

    Community structure, population dynamics and diversity of fungi were monitored in a full-scale membrane bioreactor (MBR) operated throughout four experimental phases (Summer 2009, Autumn 2009, Summer 2010 and Winter, 2012) under different conditions, using the 18S-rRNA gene and the intergenic transcribed spacer (ITS2-region) as molecular markers, and a combination of temperature-gradient gel electrophoresis and 454-pyrosequencing. Both total and metabolically-active fungal populations were fingerprinted, by amplification of molecular markers from community DNA and retrotranscribed RNA, respectively. Fingerprinting and 454-pyrosequencing evidenced that the MBR sheltered a dynamic fungal community composed of a low number of species, in accordance with the knowledge of fungal diversity in freshwater environments, and displaying a medium-high level of functional organization with few numerically dominant phylotypes. Population shifts were experienced in strong correlation with the changes of environmental variables and operation parameters, with pH contributing the highest level of explanation. Phylotypes assigned to nine different fungal Phyla were detected, although the community was mainly composed of Ascomycota, Basidiomycota and Chytridiomycota/Blastocladiomycota. Prevailing fungal phylotypes were affiliated to Saccharomycetes and Chytridiomycetes/Blastocladiomycetes, which displayed antagonistic trends in their relative abundance throughout the experimental period. Fungi identified in the activated sludge were closely related to genera of relevance for the degradation of organic matter and trace-organic contaminants, as well as genera of dimorphic fungi potentially able to produce plant operational issues such as foaming or biofouling. Phylotypes closely related to genera of human and plant pathogenic fungi were also detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Molecular dynamics simulation of the rheological and dynamical properties of a model alkane fluid under confinement

    International Nuclear Information System (INIS)

    Cui, S.T.; Cummings, P.T.; Cochran, H.D.

    1999-01-01

    We study the effect of wall endash fluid interactions on the state conditions and the effective properties of a model dodecane fluid confined between parallel solid walls. A significant increase in the effective density of the confined fluid is observed with increasing strength of the wall endash fluid interaction. The effect of the wall endash fluid interaction on the rotational relaxation and diffusional relaxation of the fluid is seen in the significant slowing down of the relaxation with increasing wall endash fluid interaction strength. The difference between the confined fluid and the three-dimensional bulk fluid is demonstrated by the strong anisotropy of the dynamical properties, the molecular rotation, and self-diffusion. The viscosity of the confined fluid shows a large difference between weak and strong wall endash fluid interactions, and a significant difference from bulk fluid at low shear rate. copyright 1999 American Institute of Physics

  20. B-Vitamin Competition: Intracellular and Dissolved B-Vitamins Provide Insight into Marine Microbial Community Dynamics

    Science.gov (United States)

    Suffridge, C.; Gomez-Consarnau, L.; Qu, P.; Tenenbaum, N.; Fu, F.; Hutchins, D. A.; Sanudo-Wilhelmy, S. A.

    2016-02-01

    The availability of B-vitamins has the ability to directly affect the dynamics of the marine microbial community. Here we show, for the first time, the connection between dissolved and intracellular B-vitamins in a marine environmental community. Two incubation experiments were conducted at a long-term study site (SPOT) in the San Pedro Basin off the coast of Los Angeles, CA. Experiments were conducted in oligotrophic, preupwelling conditions. Due to the 2015 El Niño event, the seasonal upwelling at SPOT did not occur, creating unusually nutrient depleted conditions. Vitamins B1, B7, and B12 were added in addition to macronutrients at concentrations similar to typical SPOT upwelling conditions. Intracellular and dissolved B-vitamin analyses were conducted to determine shifts in cellular B-vitamin requirements as a function of growth rate. We observed a significant bacterioplankton and phytoplankton growth responses with the addition of B-vitamins in a manner that appears to match the enzymatic requirements for these compounds (e.g. B1>B7>B12). Intracellular B-vitamin analysis of T0 samples support this observation, as all four forms of B12 were not detectable within cells, yet multiple forms of B1 and B7 were detected at or near levels previously reported. Treatments with B12 and macronutrients were observed to have the greatest growth rates. This finding, in addition to the apparent lack of intracellular B12 in the initial community, appears to indicate that the initial microbial community was limited by B12. The addition of each vitamin caused a distinct shift in the blooming microbial community. Our results demonstrate that B-vitamins strongly influence not only the growth rate, but also the species composition and species succession of the microbial community as a whole. Large-scale changes to upwelling regimes are predicted in the future ocean; our results indicate that B-vitamins will have a substantial role in controlling microbial community dynamics under

  1. Dynamic fracture initiation in brittle materials under combined mode I/II loading

    International Nuclear Information System (INIS)

    Nakano, M.; Kishida, K.; Yamauchi, Y.; Sogabe, Y.

    1994-01-01

    A new test method has been developed to measure the resistance of dynamic fracture initiation in brittle materials under combined mode I/II loadings. The Brazilian disks with center-cracks have been fractured under oblique impact loadings in diametral-compression. The dynamic stress intensity factors of mode I and II are evaluated from the superposition integrals of the step response functions for the cracked disk. The experimental results are presented to elucidate the influence of loading rate on the combined mode fracture toughness for ceramics and glasses. (orig.)

  2. Expertise in action: Insights into the dynamic nature of expertise in community-based nursing.

    Science.gov (United States)

    Dickson, Caroline A W; McVittie, Chris; Kapilashrami, Anuj

    2018-02-01

    To gain insight into community nurses' experiences and how they make sense of the expertise they offer in their role. Globally, the spotlight is currently on community nursing expertise because of the movement of hospital-based to community-based care. Caring for people at home is no longer solely concerned with prevention, but delivering complex care to patients who are acutely unwell or at the end of their life. Little is known about the distinct expertise of community nurses, or their contribution to patient outcomes. There is a need to examine expertise in this group in order to inform current and future care provision within community settings. A hermeneutic, phenomenological study. Semistructured interviews were conducted with eight community nurses in Scotland, UK, who hold an additional postregistration, professional qualification. Participants also kept audio-journals. Data were analysed using interpretive phenomenological analysis. Participants described their expertise in three themes: negotiating a "way in" to care, managing complexity and "thinking on your feet." They did not refer to themselves as specialist practitioners, nor did they perceive that they were viewed as specialist by colleagues or management. They appeared to dismiss their range of expertise which included forming trusting relationships, anticipating care needs and problem-solving, enabling them to undertake complex care management. Expertise of community nurses in this study is dynamic, contextualised and action-oriented enabling them to be creative problem-solvers. It reflects engagement with patients and families and all aspects of the setting where care is provided, rather than being solely an identifiable set of specialist skills. It is vital to recognise community-based expertise internationally, especially if current WHO aims for community-based health care are to be achieved. Highlighting this expertise contributes to current discourse and may be considered in education and

  3. Optimal Sizing of Energy Storage for Community Microgrids Considering Building Thermal Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [ORNL; Li, Zhi [ORNL; Starke, Michael R. [ORNL; Ollis, Ben [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2017-07-01

    This paper proposes an optimization model for the optimal sizing of energy storage in community microgrids considering the building thermal dynamics and customer comfort preference. The proposed model minimizes the annualized cost of the community microgrid, including energy storage investment, purchased energy cost, demand charge, energy storage degradation cost, voluntary load shedding cost and the cost associated with customer discomfort due to room temperature deviation. The decision variables are the power and energy capacity of invested energy storage. In particular, we assume the heating, ventilation and air-conditioning (HVAC) systems can be scheduled intelligently by the microgrid central controller while maintaining the indoor temperature in the comfort range set by customers. For this purpose, the detailed thermal dynamic characteristics of buildings have been integrated into the optimization model. Numerical simulation shows significant cost reduction by the proposed model. The impacts of various costs on the optimal solution are investigated by sensitivity analysis.

  4. Dynamic investigation of a locomotive with effect of gear transmissions under tractive conditions

    Science.gov (United States)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-11-01

    Locomotive is used to drag trailers to move or supply the braking forces to slow the running speed of a train. The electromagnetic torque of the motor is always transmitted by the gear transmission system to the wheelset for generation of the tractive or braking forces at the wheel-rail contact interface. Consequently, gear transmission system is significant for power delivery of a locomotive. This paper develops a comprehensive locomotive-track vertical-longitudinal coupled dynamics model with dynamic effect of gear transmissions. This dynamics model enables considering the coupling interactions between the gear transmission motion, the vertical and the longitudinal motions of the vehicle, and the vertical vibration of the track structure. In this study, some complicated dynamic excitations, such as the gear time-varying mesh stiffness, nonlinear gear tooth backlash, the nonlinear wheel-rail normal contact force and creep force, and the rail vertical geometrical irregularity, are considered. Then, the dynamic responses of the locomotive under the tractive conditions are demonstrated by numerical simulations based on the established dynamics model and by experimental test. The developed dynamics model is validated by the good agreement between the experimental and the theoretical results. The calculated results reveal that the gear transmission system has strong dynamic interactions with the wheel-rail contact interface including both the vertical and the longitudinal motions, and it has negligible effect on the vibrations of the bogie frame and carbody.

  5. Community Microgrid Scheduling Considering Network Operational Constraints and Building Thermal Dynamics

    OpenAIRE

    Guodong Liu; Thomas B. Ollis; Bailu Xiao; Xiaohu Zhang; Kevin Tomsovic

    2017-01-01

    This paper proposes a Mixed Integer Conic Programming (MICP) model for community microgrids considering the network operational constraints and building thermal dynamics. The proposed multi-objective optimization model optimizes not only the operating cost, including fuel cost, electricity purchasing/selling, storage degradation, voluntary load shedding and the cost associated with customer discomfort as a result of the room temperature deviation from the customer setting point, but also seve...

  6. Evolution and spatial structure interact to influence plant–herbivore population and community dynamics

    OpenAIRE

    Hartvigsen, G.; Levin, S.

    1997-01-01

    An individual-based model of plant–herbivore interactions was developed to test the potentially interactive effects of explicit space and coevolution on population and community dynamics. Individual plants and herbivores resided in cells on a lattice and carried linked interaction genes. Interaction strength between individual plants and herbivores depended on concordance between these genes (gene-for-gene coevolution). Mating and dispersal among individuals were controlled spatially within v...

  7. Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina.

    Science.gov (United States)

    Vega-Avila, A D; Gumiere, T; Andrade, P A M; Lima-Perim, J E; Durrer, A; Baigori, M; Vazquez, F; Andreote, F D

    2015-02-01

    Plants interact with a myriad of microbial cells in the rhizosphere, an environment that is considered to be important for plant development. However, the differential structuring of rhizosphere microbial communities due to plant cultivation under differential agricultural practices remains to be described for most plant species. Here we describe the rhizosphere microbiome of grapevine cultivated under conventional and organic practices, using a combination of cultivation-independent approaches. The quantification of bacterial 16S rRNA and nifH genes, by quantitative PCR (qPCR), revealed similar amounts of these genes in the rhizosphere in both vineyards. PCR-DGGE was used to detect differences in the structure of bacterial communities, including both the complete whole communities and specific fractions, such as Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and those harboring the nitrogen-fixing related gene nifH. When analyzed by a multivariate approach (redundancy analysis), the shifts observed in the bacterial communities were poorly explained by variations in the physical and chemical characteristics of the rhizosphere. These approaches were complemented by high-throughput sequencing (67,830 sequences) based on the V6 region of the 16S rRNA gene, identifying the major bacterial groups present in the rhizosphere of grapevines: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes, Acidobacteria, Cloroflexi, Verrucomicrobia and Planctomycetes, which occur in distinct proportions in the rhizosphere from each vineyard. The differences might be related to the selection of plant metabolism upon distinct reservoirs of microbial cells found in each vineyard. The results fill a gap in the knowledge of the rhizosphere of grapevines and also show distinctions in these bacterial communities due to agricultural practices.

  8. Seasonal Dynamics of Enzymatic Activities and Functional Diversity in Soils under Different Organic Management

    Science.gov (United States)

    Soil microbial activity and diversity fluctuate seasonally under annual organic amendment for improving soil quality. We investigated the effects of municipal compost (MC), poultry litter (PL), and cover crops of spring oats and red clover (RC) on soil enzyme activities, and soil bacterial community...

  9. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Linking seasonal inorganic nitrogen shift to the dynamics of microbial communities in the Chesapeake Bay.

    Science.gov (United States)

    Hong, Yiguo; Xu, Xiongrong; Kan, Jinjun; Chen, Feng

    2014-04-01

    Seasonal shifts of dissolved inorganic nitrogen (DIN) and the dynamics of microbial communities for nitrogen transformation were investigated in the water column of Chesapeake Bay. The relative abundance of nitrogen over phosphorus (N) showed a strong seasonal and spatial pattern: gradually decreased from upstream to downstream; high in winter and low in summer. Because the phosphorus concentration remained relatively stable, the spatiotemporal pattern of N implied that a substantial fraction of DIN was removed in the bay, especially in summer. Correlation analyses indicated the functional microbial communities and environmental variables, such as temperature, dissolved oxygen, salinity, played important roles for connecting the seasonal variation of N. Among them, temperature was the trigger factor. High temperature in the summer induced the growth of functional microbes, which subsequently consumed a large portion of DIN inputted from the tributaries and reduced the N. The current study provided the relative importance of microbial communities and environmental variables in driving the DIN loss in the bay.

  11.  Marine derived dinoflagellates in Antarctic saline lakes: Community composition and annual dynamics

    DEFF Research Database (Denmark)

    Rengefors, K.; Layborn-Parry, L.; Logares, R.

    2008-01-01

    leaving a small number of well-adapted species. Our objective was to investigate the species composition and annual dynamics of dinoflagellate communities in three saline Antarctic lakes. We observed that dinoflagellates occur year-round despite extremely low PAR during the southern winter, which suggests...... polar dinoflagellate community, and not freshwater species. Polarella glacialis Montresor, Procaccini et Stoecker, a bipolar marine species, was for the first time described in a lake habitat and was an important phototrophic component in the higher salinity lakes. In the brackish lakes, we found a new......The saline lakes of the Vestfold Hills in Antarctica offer a remarkable natural laboratory where the adaptation of planktonic protists to a range of evolving physiochemical conditions can be investigated. This study illustrates how an ancestral marine community has undergone radical simplification...

  12. Decline in the deepwater benthic communities abundance in the Onego Lake under multifactor influence

    Directory of Open Access Journals (Sweden)

    Kalinkina Nataliya Michailovna

    2016-06-01

    Full Text Available The dynamics of deepwater benthic communities state between 1988 and 2015 was analyzed. In the last decade the decline in the deepwater benthic communities development indicators is observed in Petrozavodskaya Bay and contiguous central area of the Lake Onego. The abundance of benthos decreased by 6-7 times, biomass dropped in 2-4 times. At the same time the changes in sedimentation processes of organic matter, nutrients, iron and manganese are observed in the water ecosystem. This has resulted in an increase in the concentrations of Fe and Mn in the sediment surface layers; in pore waters up to 13 mg Fe/l and 7 mg Mn/l. The sharp increase in the content of iron and manganese in the bottom sediment can be considered as a possible factor of benthos oppression. Another reason of the benthos decrease is the reduction of anthropogenic load. Now Petrozavodskaya bay receives 3 times less light organic substances than 10 years ago. The third possible reason for the reduction of benthic communities is invasion of baikalian amphipods Gmelinoides fasciatus, resulting in the redistribution of organic matter flow from the littoral zone to the pelagic zone and depletion of deepwater benthic food resources.

  13. In situ dynamics of microbial communities during decomposition of wheat, rape, and alfalfa residues.

    Science.gov (United States)

    Pascault, Noémie; Cécillon, Lauric; Mathieu, Olivier; Hénault, Catherine; Sarr, Amadou; Lévêque, Jean; Farcy, Pascal; Ranjard, Lionel; Maron, Pierre-Alain

    2010-11-01

    Microbial communities are of major importance in the decomposition of soil organic matter. However, the identities and dynamics of the populations involved are still poorly documented. We investigated, in an 11-month field experiment, how the initial biochemical quality of crop residues could lead to specific decomposition patterns, linking biochemical changes undergone by the crop residues to the respiration, biomass, and genetic structure of the soil microbial communities. Wheat, alfalfa, and rape residues were incorporated into the 0-15 cm layer of the soil of field plots by tilling. Biochemical changes in the residues occurring during degradation were assessed by near-infrared spectroscopy. Qualitative modifications in the genetic structure of the bacterial communities were determined by bacterial-automated ribosomal intergenic spacer analysis. Bacterial diversity in the three crop residues at early and late stages of decomposition process was further analyzed from a molecular inventory of the 16S rDNA. The decomposition of plant residues in croplands was shown to involve specific biochemical characteristics and microbial community dynamics which were clearly related to the quality of the organic inputs. Decay stage and seasonal shifts occurred by replacement of copiotrophic bacterial groups such as proteobacteria successful on younger residues with those successful on more extensively decayed material such as Actinobacteria. However, relative abundance of proteobacteria depended greatly on the composition of the residues, with a gradient observed from alfalfa to wheat, suggesting that this bacterial group may represent a good indicator of crop residues degradability and modifications during the decomposition process.

  14. The structure and dynamics of a rhinolophid bat community of Latium (Central Italy (Chiroptera

    Directory of Open Access Journals (Sweden)

    Pierangelo Crucitti

    1998-12-01

    Full Text Available Abstract The present paper summarizes the results of 3 years of observation made at six month intervals for six months at a time (18 field surveys in a man-made cave in Northern Latium (Central Italy from April 1992 to April 1995. Its aim is to analyze the main structural and dynamic features of a bat community which hibernates at the shelter. Rhinolophus ferrumequinum and especially Rhinolophus euryale are the most abundant species. Population dynamics of both species as well as that of Rhinoluphus hipposideros show higher levels of abundance between December and February of each semester. In mid-winter, large and sometimes mixed aggregations of Rhinolophus ferrumequinum and Rhinolophus euryale in deep hypothermia occur. A small number of Rhinolophus hipposideros, mainly adult males, was observed. The paper compares the structure of this community to the structure of another community of the same district which has been previously analyzed, in which Vespertilionidae, especially Miniopterus schreibersi, are much more abundant. Despite the difference in species composition, body size was found to be a significant and common feature (as highlighted by forearm length, of the dominant species in both communities, Rhinolophus euryale and Miniopterus schreibersi respectively.

  15. Temporal Dynamics of Bacterial and Fungal Community Composition in the Atmospheric Boundary Layer

    Science.gov (United States)

    Emerson, J. B.; Perring, A. E.; Schwarz, J. P.; Fahey, D. W.; Fierer, N.

    2014-12-01

    There is increasing evidence for significant microbial influences on atmospheric chemistry, cloud condensation, and ice nuclei concentrations, with known health impacts, yet we have a limited understanding of the types, abundances, and spatiotemporal dynamics of bacteria and fungi in the atmosphere. Here we use culture-independent molecular approaches, including targeted gene sequencing and quantitative PCR, to characterize bacterial and fungal community composition and abundance in the atmospheric boundary layer. We present results from 32 air samples, collected via vacuum filtration at 10 m and 250 m on the Boulder Atmospheric Observatory tower (Erie, CO) between November 2013 and April 2014. Samples were collected at night, and each sample was integrated over consecutive nights for approximately two weeks. Significant temporal shifts in bacterial and fungal community composition were observed over the course of the study, corresponding to changing bacterial and fungal concentrations. Within the same sampling time periods, bacterial and fungal communities from the near-surface atmosphere (10 m) were generally similar to those aloft (250 m), although coupled temporal and altitudinal effects were observed in some cases, particularly for fungi. Overall, our results indicate that bacterial and fungal communities exhibit minimal vertical stratification throughout the nocturnal atmospheric boundary layer but show a high degree of variability on two-week timescales. This study paves the way for further research into the connections between boundary layer microbiology, atmospheric dynamics, emissions, and local meteorology.

  16. A NASTRAN DMAP alter for linear buckling analysis under dynamic loading

    Science.gov (United States)

    Aiello, Robert A.; Grady, Joseph E.

    1989-01-01

    A modification to the NASTRAN solution sequence for transient analysis with direct time integration (COSMIC NASTRAN rigid format 9) was developed and incorporated into a DMAP alter. This DMAP alter calculates the buckling stability of a dynamically loaded structure, and is used to predict the onset of structural buckling under stress-wave loading conditions. The modified solution sequence incorporates the linear buckling analysis capability (rigid format 5) of NASTRAN into the existing Transient solution rigid format in such a way as to provide a time dependent eigensolution which is used to assess the buckling stability of the structure as it responds to the impulsive load. As a demonstration of the validity of this modified solution procedure, the dynamic buckling of a prismatic bar subjected to an impulsive longitudinal compression is analyzed and compared to the known theoretical solution. In addition, a dynamic buckling analysis is performed for the analytically less tractable problem of the localized dynamic buckling of an initially flawed composite laminate under transverse impact loading. The addition of this DMAP alter to the transient solution sequence in NASTRAN facilitates the computational prediction of both the time at which the onset of dynamic buckling occurs in an impulsively loaded structure, and the dynamic buckling mode shapes of that structure.

  17. Dynamic Performance Analysis for an Absorption Chiller under Different Working Conditions

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-08-01

    Full Text Available Due to the merits of energy saving and environmental protection, the absorption chiller (AC has attracted a lot of attention, and previous studies only concentrated on the dynamic response of the AC under a single working condition. However, the working conditions are usually variable, and the dynamic performance under different working conditions is beneficial for the adjustment of AC and the control of the whole system, of which the stabilization can be affected by the AC transient process. Therefore, the steady and dynamic models of a single-effect H2O-LiBr absorption chiller are built up, the thermal inertia and fluid storage are also taken into consideration. And the dynamic performance analyses of the AC are completed under different external parameters. Furthermore, a whole system using AC in a process plant is analyzed. As a conclusion, the time required to reach a new steady-state (relaxation time increases when the step change of the generator inlet temperature becomes large, the cooling water inlet temperature rises, or the evaporator inlet temperature decreases. In addition, the control strategy considering the AC dynamic performance is favorable to the operation of the whole system.

  18. Microbial Community Dynamics in Soil Depth Profiles Over 120,000 Years of Ecosystem Development

    Directory of Open Access Journals (Sweden)

    Stephanie Turner

    2017-05-01

    Full Text Available Along a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR and community composition (pyrosequencing as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand. Additionally, in a microcosm incubation experiment the effects of particular soil properties, i.e., soil age, soil organic matter fraction (mineral-associated vs. particulate, O2 status, and carbon and phosphorus additions, on microbial abundances (quantitative PCR and community patterns (T-RFLP were analyzed. The archaeal to bacterial abundance ratio not only increased with soil depth but also with soil age along the chronosequence, coinciding with mineralogical changes and increasing phosphorus limitation. Results of the incubation experiment indicated that archaeal abundances were less impacted by the tested soil parameters compared to Bacteria suggesting that Archaea may better cope with mineral-induced substrate restrictions in subsoils and older soils. Instead, archaeal communities showed a soil age-related compositional shift with the Bathyarchaeota, that were frequently detected in nutrient-poor, low-energy environments, being dominant at the oldest site. However, bacterial communities remained stable with ongoing soil development. In contrast to the abundances, the archaeal compositional shift was associated with the mineralogical gradient. Our study revealed, that archaeal and bacterial communities in whole soil profiles are differently affected by long-term soil development with archaeal communities probably being better adapted to

  19. Dynamics of Bacterial Community Abundance and Structure in Horizontal Subsurface Flow Wetland Mesocosms Treating Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Kristjan Oopkaup

    2016-10-01

    Full Text Available Dynamics of bacterial community abundance and structure of a newly established horizontal subsurface flow (HSSF pilot-scale wetland were studied using high-throughput sequencing and quantitative polymerase chain reaction (PCR methods. Bacterial community abundance increased rapidly within one month and stabilised thereafter in three replicate HSSF constructed wetland (CW mesocosms. The most dominant phylum was Proteobacteria, followed by Bacteroidetes in wetland media biofilms and Firmicutes in influent wastewater. CW bacterial community diversity increased over time and was positively related to the wastewater treatment efficiency. Increase in the abundance of total bacteria in the community was accompanied with the abundance of denitrifying bacteria that promoted nitrate and nitrite removal from the wastewater. During the 150-day study period, similar patterns of bacterial community successions were observed in replicate HSSF CW mesocosms. The data indicate that successions in the bacterial community in HSSF CW are shaped by biotic interactions, with a significant contribution made by external abiotic factors such as influent chemical parameters. Network analysis of the bacterial community revealed that organic matter and nitrogen removal in HSSF CW could be, in large part, allocated to a small subset of tightly interconnected bacterial species. The diversity of bacterial community and abundance of denitrifiers were good predictors of the removal efficiency of ammonia, nitrate and total organic C in HSSF CW mesocosms, while the removal of the seven-day biochemical oxygen demand (BOD7 was best predicted by the abundance of a small set of bacterial phylotypes. The results suggest that nitrogen removal in HSSF CW consist of two main pathways. The first is heterotrophic nitrification, which is coupled with aerobic denitrification and mediated by mixotrophic nitrite-oxidizers. The second pathway is anaerobic denitrification, which leads to gaseous

  20. Biocrusts role on nitrogen cycle and microbial communities from underlying soils in drylands

    Science.gov (United States)

    Anguita-Maeso, Manuel; Miralles*, Isabel; van Wesemael, Bas; Lázaro, Roberto; Ortega, Raúl; Garcia-Salcedo, José Antonio; Soriano**, Miguel

    2017-04-01

    Biocrusts are distributed in arid areas widely covering most of the soil surface and playing an essential role in the functioning of nitrogen cycle. The absence of biocrust coverage might affect the soil nitrogen content and the quantity and diversity of microbial communities in underlying biocrust soils. To analyse this mater, we have collected three underlying soils biocrusts samples dominated by the lichen Diploschistes diacapsis and Squamarina lentigera from Tabernas desert (southeast of Spain) at two extremes of its spatial distribution range: one with a high percentage of biocrust coverage and other with a huge degradation and low percentage of biocrust coverage in order to determine differences on the total nitrogen content and microbial communities from these underlying soils. DNA from these samples was isolated though a commercial kit and it was used as template for metagenomic analysis. We accomplished a sequencing of the amplicons V4-V5 of the 16S rRNA gene with Next-Generation Sequencing (NGS) Illumina MiSeq platform and a relative quantity of bacteria (rRNA 16S) and fungi (ITS1-5.8S) were conducted by quantitative qPCR. Total nitrogen was measured by the Kjeldahl method. Statistical analyses were based on ANOVAs, heatmap and Generalized Linear Models (GLM). The results showed 1.89E+09 bacteria per gram of soil in the high biocrust coverage position while 6.98E+08 microorganisms per gram of soil were found in the less favourable position according to the lower percentage of biocrust coverage. Similarly, 1.19E+12 was the amount of fungi per gram of soil located in the favourable position with higher biocrust coverage and 7.62E+11 was found in the unfavourable position. Furthermore, the soil under high percentage of biocrust coverage showed the greatest total nitrogen content (1.1 g kg-1) whereas the soil sampled under depressed percentage of biocrust coverage displayed the fewest quantity of total nitrogen content (0.9 g kg-1). Metagenomic and

  1. Comparison of riparian plant communities under four land management systems in southwestern Wisconsin

    Science.gov (United States)

    Paine, L.K.; Ribic, C.A.

    2002-01-01

    Riparian plant community composition is influenced by moisture, erosion, original native plant communities, and current and past land use. This study compared riparian plant communities under four types of management: woody buffer strip, grassy buffer strip, rotational grazing, and continuous grazing. Study sites were located along spring-fed streams in the unglaciated region of southwestern Wisconsin, USA. At each site, plant community surveys were conducted using a point transect method. Among the treatments, woody buffer strips, rotationally grazed and continuously grazed riparian areas had greater plant species richness than grassy buffer strips, and woody buffer strips had the greatest native plant species richness. Reed canary grass (Phalaris arundinacea L.) was prevalent in grassy buffer strips (44% of all observations), common in woody buffer strips (15%), and rare in sites that were rotationally or continuously grazed (3 and 5%, respectively). Pasture sites had greater proportions of native grasses and grass relatives and moderate levels of overall native species richness. Considered a water quality best management practice, well-managed rotational grazing may be a reasonable alternative to buffer strips which can contribute to protection and enhancement of native vegetation biodiversity. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. Explicit Solution of Reinsurance-Investment Problem for an Insurer with Dynamic Income under Vasicek Model

    Directory of Open Access Journals (Sweden)

    De-Lei Sheng

    2016-01-01

    Full Text Available Unlike traditionally used reserves models, this paper focuses on a reserve process with dynamic income to study the reinsurance-investment problem for an insurer under Vasicek stochastic interest rate model. The insurer’s dynamic income is given by the remainder after a dynamic reward budget being subtracted from the insurer’s net premium which is calculated according to expected premium principle. Applying stochastic control technique, a Hamilton-Jacobi-Bellman equation is established and the explicit solution is obtained under the objective of maximizing the insurer’s power utility of terminal wealth. Some economic interpretations of the obtained results are explained in detail. In addition, numerical analysis and several graphics are given to illustrate our results more meticulous.

  3. Dynamics and stability of a 2D ideal vortex under external strain

    Science.gov (United States)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2017-11-01

    The behavior of an initially axisymmetric 2D ideal vortex under an externally imposed strain flow is studied experimentally. The experiments are carried out using electron plasmas confined in a Penning-Malmberg trap; here, the dynamics of the plasma density transverse to the field are directly analogous to the dynamics of vorticity in a 2D ideal fluid. An external strain flow is applied using boundary conditions in a way that is consistent with 2D fluid dynamics. Data are compared to predictions from a theory assuming a piecewise constant elliptical vorticity distribution. Excellent agreement is found for quasi-flat profiles, whereas the dynamics of smooth profiles feature modified stability limits and inviscid damping of periodic elliptical distortions. This work supported by U.S. DOE Grants DE-SC0002451 and DE-SC0016532, and NSF Grant PHY-1414570.

  4. Dynamic Analysis of Helical Planetary Gear Sets under Combined Force and Moment Loading

    Directory of Open Access Journals (Sweden)

    Yanfang Liu

    2017-01-01

    Full Text Available The dynamic behavior of a single-stage planetary gear set with helical gears of multishaft automotive automatic transmissions has been studied, in which one component of the planetary gear set is imposed by additional external vertical and axial loading from countershaft gear pair in addition to the moment. Under these combined loading conditions, the contributions of the deflections of the ring gear and the carrier cannot be neglected. A three-dimensional nonlinear time-variant dynamic model considering not only the transverse, torsional, axial, and rotational motions of the gears but also the elasticity of the mounted shafts has been developed by combining the lumped parameter method with finite element method. The natural modes and the forced vibration responses due to static transmission errors have been obtained. The proposed dynamic model is employed to describe the effects of the combined external loading condition and positioning on the dynamic behavior of a four-planet system.

  5. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions.

    Science.gov (United States)

    Johnson, Jamie M; Wawrik, Boris; Isom, Catherine; Boling, Wilford B; Callaghan, Amy V

    2015-02-01

    Based on the transient exposure of Chesapeake Bay sediments to hydrocarbons and the metabolic versatility of known anaerobic alkane-degrading microorganisms, it was hypothesized that distinct Bay sediment communities, governed by geochemical gradients, would have intrinsic alkane-utilizing potential under sulfate-reducing and/or methanogenic conditions. Sediment cores were collected along a transect of the Bay. Community DNA was interrogated via pyrosequencing of 16S rRNA genes, PCR of anaerobic hydrocarbon activation genes, and qPCR of 16S rRNA genes and genes involved in sulfate reduction/methanogenesis. Site sediments were used to establish microcosms amended with n-hexadecane under sulfate-reducing and methanogenic conditions. Sequencing of 16S rRNA genes indicated that sediments associated with hypoxic water columns contained significantly greater proportions of Bacteria and Archaea consistent with syntrophic degradation of organic matter and methanogenesis compared to less reduced sediments. Microbial taxa frequently associated with hydrocarbon-degrading communities were found throughout the Bay, and the genetic potential for hydrocarbon metabolism was demonstrated via the detection of benzyl-(bssA) and alkylsuccinate synthase (assA) genes. Although microcosm studies did not indicate sulfidogenic alkane degradation, the data suggested that methanogenic conversion of alkanes was occurring. These findings highlight the potential role that anaerobic microorganisms could play in the bioremediation of hydrocarbons in the Bay. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  7. Changes in dynamics processes of the muscles’ traction under influence of stress-factors

    Directory of Open Access Journals (Sweden)

    D. M. Nozdrenko

    2006-01-01

    Full Text Available Change of fibers’ dynamic parameters of the frog Rana temporaria skeletal muscle m. tibialis traction under influence of modulated stimulation and aluminium chloride solutions was studied. At 10-4,5·10-4 and 10‑3 M·l-1 concentrations of aluminium chloride the nonlinear decrease of the muscle fibers’ traction parameters was observed.

  8. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    DEFF Research Database (Denmark)

    Man, E. A.; Sera, D.; Mathe, L.

    2016-01-01

    of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated...

  9. Dynamic Resource Management under Weak Property Rights : A Tale of Thieves and Trespassers

    NARCIS (Netherlands)

    Rodriguez Acosta, Mauricio; Smulders, Sjak

    Using a dynamic framework with strategic interactions, we study the management of a non-renewable natural resource when property rights are generally weak. Under generally weak property rights both the resource stock and the revenues from exploiting it are imperfectly protected, due to trespassing

  10. Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations

    Directory of Open Access Journals (Sweden)

    Kleessen Sabrina

    2012-03-01

    Full Text Available Abstract Background Flux balance analysis (FBA together with its extension, dynamic FBA, have proven instrumental for analyzing the robustness and dynamics of metabolic networks by employing only the stoichiometry of the included reactions coupled with adequately chosen objective function. In addition, under the assumption of minimization of metabolic adjustment, dynamic FBA has recently been employed to analyze the transition between metabolic states. Results Here, we propose a suite of novel methods for analyzing the dynamics of (internally perturbed metabolic networks and for quantifying their robustness with limited knowledge of kinetic parameters. Following the biochemically meaningful premise that metabolite concentrations exhibit smooth temporal changes, the proposed methods rely on minimizing the significant fluctuations of metabolic profiles to predict the time-resolved metabolic state, characterized by both fluxes and concentrations. By conducting a comparative analysis with a kinetic model of the Calvin-Benson cycle and a model of plant carbohydrate metabolism, we demonstrate that the principle of regulatory on/off minimization coupled with dynamic FBA can accurately predict the changes in metabolic states. Conclusions Our methods outperform the existing dynamic FBA-based modeling alternatives, and could help in revealing the mechanisms for maintaining robustness of dynamic processes in metabolic networks over time.

  11. Maternal and child under-nutrition in rural and urban communities of Lagos state, Nigeria: the relationship and risk factors

    Science.gov (United States)

    2013-01-01

    Background Poor nutritional status of mothers has a direct and indirect consequence on their own health and that of their children. The objective of this study was to determine the relationship between nutritional status of mothers and their children and the risk factors for under-nutrition among mothers and children in rural and urban communities of Lagos State, Nigeria. Methods This was a cross sectional survey conducted using the multistage random sampling technique. A total of 300 mother-child pairs were studied, consisting of 150 each from rural and urban communities. Under-nutrition in mothers and children was determined using standard criteria. Results The prevalence of under-nutrition among mothers was significantly higher in rural than urban communities (10.7% vs. 2.7%, p = 0.014). The prevalences of underweight and stunted children were also significantly higher in rural than urban communities (19.4% vs. 9.3%, p maternal and child under nutrition differs across rural and urban communities. Conclusions The prevalence of maternal and child under-nutrition is high in both communities although higher in rural communities. Efforts at reducing the vicious cycle of under-nutrition among mothers and children should concentrate on addressing risk factors specific for each community. PMID:23880121

  12. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network

    KAUST Repository

    El Chakhtoura, Joline

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic.

  13. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network.

    Science.gov (United States)

    El-Chakhtoura, Joline; Prest, Emmanuelle; Saikaly, Pascal; van Loosdrecht, Mark; Hammes, Frederik; Vrouwenvelder, Hans

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Persistence, Seasonal Dynamics and Pathogenic Potential of Vibrio Communities from Pacific Oyster Hemolymph

    Science.gov (United States)

    Wendling, Carolin C.; Batista, Frederico M.; Wegner, K. Mathias

    2014-01-01

    Bacteria of the genus Vibrio occur at a continuum from free-living to symbiotic life forms, including opportunists and pathogens, that can contribute to severe diseases, for instance summer mortality events of Pacific oysters Crassostrea gigas. While most studies focused on Vibrio isolated from moribund oysters during mortality outbreaks, investigations of the Vibrio community in healthy oysters are rare. Therefore, we characterized the persistence, diversity, seasonal dynamics, and pathogenicity of the Vibrio community isolated from healthy Pacific oysters. In a reciprocal transplant experiment we repeatedly sampled hemolymph from adult Pacific oysters to differentiate population from site-specific effects during six months of in situ incubation in the field. We characterized virulence phenotypes and genomic diversity based on multilocus sequence typing in a total of 70 Vibrio strains. Based on controlled infection experiments we could show that strains with the ability to colonize healthy adult oysters can also have the potential to induce high mortality rates on larvae. Diversity and abundance of Vibrio varied significantly over time with highest values during and after spawning season. Vibrio communities from transplanted and stationary oysters converged over time, indicating that communities were not population specific, but rather assemble from the surrounding environment forming communities, some of which can persist over longer periods. PMID:24728233

  15. Assessment of community - based monitoring under NRHM in Nainital district of Uttarakhand

    Directory of Open Access Journals (Sweden)

    S Kumar

    2013-12-01

    Full Text Available Background: The government of India started the Community-Based Monitoring (CBM under National Rural Health Mission (NRHM which allow the community and its representatives to directly give feedback about the functioning of public health services. Uttarakhand was the 10th state where CBM system under NRHM implemented in 2010 in all 13 districts as pilot project. Objective: To assess the composition and training of Community Monitoring Groups (CMGs at sub-centre and block level, the capability of the CMG to prepare the report card at sub-centre and facility score card at PHC and to study the improvement in quantitative aspects of health services in study areas. Methodology: This community based prospective study was carried out in two selected Haldwani and Bhimtal blocks of Nainital district. The period of study was from July 2011 to June 2013. Multi-stage random sample design was adopted to select 54 CMG members.  Results: About 91% CMG members belong to General Category. Out of 54 CMG members, majority 45(83.3% had received training and among them 80% did not have clarity about training guideline. The activities of preparing Report cards, Facility score cards and conducting Jan-Sunwais were done once in a year. Concurrent reductions in yellow (partially satisfactory and red (bad rating of series were not seen in 2011-12 to 2012-13 at all centres. Conclusion: The composition and training of the CMGs at all sub-centres and at PHCs were not as per guidelines of NRHM. The activities of preparing the Report card, the Facility score card and conducting Jan-sunwais were not done as per guidelines by NRHM. Majority of sub-centre indicators scored yellow colour and only few scored green. 

  16. Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers.

    Science.gov (United States)

    Stralis-Pavese, Nancy; Sessitsch, Angela; Weilharter, Alexandra; Reichenauer, Thomas; Riesing, Johann; Csontos, József; Murrell, J Colin; Bodrossy, Levente

    2004-04-01

    Landfill sites are responsible for 6-12% of global methane emission. Methanotrophs play a very important role in decreasing landfill site methane emissions. We investigated the methane oxidation capacity and methanotroph diversity in lysimeters simulating landfill sites with different plant vegetations. Methane oxidation rates were 35 g methane m-2 day-1 or higher for planted lysimeters and 18 g methane m-2 day-1 or less for bare soil controls. Best methane oxidation, as displayed by gas depth profiles, was found under a vegetation of grass and alfalfa. Methanotroph communities were analysed at high throughput and resolution using a microbial diagnostic microarray targeting the particulate methane monooxygenase (pmoA) gene of methanotrophs and functionally related bacteria. Members of the genera Methylocystis and Methylocaldum were found to be the dominant members in landfill site simulating lysimeters. Soil bacterial communities in biogas free control lysimeters, which were less abundant in methanotrophs, were dominated by Methylocaldum. Type Ia methanotrophs were found only in the top layers of bare soil lysimeters with relatively high oxygen and low methane concentrations. A competetive advantage of type II methanotrophs over type Ia methanotrophs was indicated under all plant covers investigated. Analysis of average and individual results from parallel samples was used to identify general trends and variations in methanotroph community structures in relation to depth, methane supply and plant cover. The applicability of the technology for the detection of environmental perturbations was proven by an erroneous result, where an unexpected community composition detected with the microarray indicated a potential gas leakage in the lysimeter being investigated.

  17. Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xueju; McKinley, James P.; Resch, Charles T.; Kaluzny, Rachael M.; Lauber, C.; Fredrickson, Jim K.; Knight, Robbie C.; Konopka, Allan

    2012-03-29

    Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater Bacteria and Archaea over 10 months within 3 well clusters separated by ~30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained 3 wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all 9 wells over the 10 month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated to river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (e.g.methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment, but also by top-down biological control.

  18. Dynamic behaviors of ferroelectric liquid crystal molecules under an applied electric field

    Science.gov (United States)

    Kawaguchi, Masato; Takei, Misaki; Yamashita, Masafumi

    2009-03-01

    The dynamic changes in ferroelectric liquid crystal (FLC) molecular alignments under an applied electric field are examined by observing the formation of conoscopic figures with a time resolution of 0.1 ms. Close agreements between observed and simulated conoscopic figures under low voltage (30 V) were obtained. Under high voltage (120 V), however, the observed conoscopic figures became blurred between 0.8 ms and 1.1 ms after reversal of the electric field. The light scattering producing the blurriness occurred due to the development of fast transient molecular alignments during the switching transition above the applied voltage 70 V.

  19. Dynamics and Control of the GyrpPTO Wave Energy Point Absorber under Sea Waves

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2017-01-01

    out based on analytical rigid body dynamics, and a 3-DOF nonlinear model is established. Simulation results show that synchronization of the device is maintained under harmonic sea wave, but is lost easily under non-harmonic sea waves.To overcome this problem, a magnetic coupling mechanism is added...... between the spin axis and the flywheel, which also makes semi-active control of the device possible. A 4-DOF model is then established, and simulation results show the introduced magnetic coupling successfully enables synchronization of the device under non-harmonic sea waves....

  20. Effects of organic amendments and mulches on soil microbial communities in quarry restoration under semiarid climate

    Science.gov (United States)

    Luna Ramos, Lourdes; Pastorelli, Roberta; Miralles Mellado, Isabel; Fabiani, Arturo; Bastida López, Felipe; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2015-04-01

    Mining activities generate loss of the quality of the environment and landscape specially in arid and semiarid Mediterranean regions. A precondition for ecosystem reclamation in such highly disturbed mining areas is the development of functional soils with appropriate levels of organic matter. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, 9 plots 15 x 5 m were prepared to test organic amendments (compost from solid urban residues-DOW-, sludge from urban water treatment-SS-, control-NA-) and different mulches (fine gravel-GM-, wood chips-WM-, control-NM-) with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot, 75 native plants (Macrochloa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. After 5 years from the start of the experiment, we evaluated how microbial community composition responded to the organic amendments and mulches. Microbial community composition of both bacteria and fungi was determined by phospholipid fatty acid (PLFA) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. The results of the two-way ANOVA showed that PLFAs were significantly affected by organic amendments but not by the mulches or interaction of both factors. Experimental plots with DOW showed significantly higher level of fungal PLFAs than those with SS and NA, even higher than the reference undisturbed soil. However, any plot with organic amendments did not reach the content of bacterial PLFAs of the reference soils. The bacterial diversity (evaluated by diversity indices calculated from DGGE profiles) was greater in soil samples taken under NA and GM. Comparing these indices in fungal DGGE, we found greater values for soil samples taken under DOW and without mulches. Results from UPGMA analysis showed significant differences in the structure of soil bacterial communities from the different treatments

  1. Responses of spatial-temporal dynamics of bacterioplankton community to large-scale reservoir operation: a case study in the Three Gorges Reservoir, China.

    Science.gov (United States)

    Li, Zhe; Lu, Lunhui; Guo, Jinsong; Yang, Jixiang; Zhang, Jiachao; He, Bin; Xu, Linlin

    2017-02-13

    Large rivers are commonly regulated by damming, yet the effects of such disruption on bacterioplankton community structures have not been adequately studied. The aim of this study was to explore the biogeographical patterns present under dam regulation and to uncover the major drivers structuring bacterioplankton communities. Bacterioplankton assemblages in the Three Gorges Reservoir (TGR) were analyzed using Illumina Miseq sequencing by comparing seven sites located within the TGR before and after impoundment. This approach revealed ecological and spatial-temporal variations in bacterioplankton community composition along the longitudinal axis. The community was dynamic and dominated by Proteobacteria and Actinobacteria phyla, encompassing 39.26% and 37.14% of all sequences, respectively, followed by Bacteroidetes (8.67%) and Cyanobacteria (3.90%). The Shannon-Wiener index of the bacterioplankton community in the flood season (August) was generally higher than that in the impoundment season (November). Principal Component Analysis of the bacterioplankton community compositions showed separation between different seasons and sampling sites. Results of the relationship between bacterioplankton community compositions and environmental variables highlighted that ecological processes of element cycling and large dam disturbances are of prime importance in driving the assemblages of riverine bacterioplankton communities.

  2. Robustness of trait distribution metrics for community assembly studies under the uncertainties of assembly processes.

    Science.gov (United States)

    Aiba, Masahiro; Katabuchi, Masatoshi; Takafumi, Hino; Matsuzaki, Shin-Ichiro S; Sasaki, Takehiro; Hiura, Tsutom

    2013-12-01

    Numerous studies have revealed the existence of nonrandom trait distribution patterns as a sign of environmental filtering and/or biotic interactions in a community assembly process. A number of metrics with various algorithms have been used to detect these patterns without any clear guidelines. Although some studies have compared their statistical powers, the differences in performance among the metrics under the conditions close to actual studies are not clear. Therefore, the performances of five metrics of convergence and 16 metrics of divergence under alternative conditions were comparatively analyzed using a suite of simulated communities. We focused particularly on the robustness of the performances to conditions that are often uncertain and uncontrollable in actual studies; e.g., atypical trait distribution patterns stemming from the operation of multiple assembly mechanisms, a scaling of trait-function relationships, and a sufficiency of analyzed traits. Most tested metrics, for either convergence or divergence, had sufficient statistical power to distinguish nonrandom trait distribution patterns without uncertainty. However, the performances of the metrics were considerably influenced by both atypical trait distribution patterns and other uncertainties. Influences from these uncertainties varied among the metrics of different algorithms and their performances were often complementary. Therefore, under the uncertainties of an assembly process, the selection of appropriate metrics and the combined use of complementary metrics are critically important to reliably distinguish nonrandom patterns in a trait distribution. We provide a tentative list of recommended metrics for future studies.

  3. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria...

  4. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-01-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720

  5. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities.

    Science.gov (United States)

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-02-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery.

  6. Summary of work completed under the Environmental and Dynamic Equipment Qualification research program (EDQP)

    International Nuclear Information System (INIS)

    Steele, R. Jr.; Bramwell, D.L.; Watkins, J.C.; DeWall, K.G.

    1994-02-01

    This report documents the results of the main projects undertaken under the Environmental and Dynamic Equipment Qualification Research Program (EDQP) sponsored by the U.S. Nuclear Regulatory Commission (NRC) under FIN A6322. Lasting from fiscal year 1983 to 1987, the program dealt with environmental and dynamic (including seismic) equipment qualification issues for mechanical and electromechanical components and systems used in nuclear power plants. The research results have since been used by both the NRC and industry. The program included seven major research projects that addressed the following issues: (a) containment purge and vent valves performing under design basis loss of coolant accident loads, (b) containment piping penetrations and isolation valves performing under seismic loadings and design basis and severe accident containment wall displacements, (c) shaft seals for primary coolant pumps performing under station blackout conditions, (d) electrical cabinet internals responding to in-structure generated motion (rattling), and (e) in situ piping and valves responding to seismic loadings. Another project investigating whether certain containment isolation valves will close under design basis conditions was also started under this program. This report includes eight main section, each of which provides a brief description of one of the projects, a summary of the findings, and an overview of the application of the results. A bibliography lists the journal articles, papers, and reports that document the research

  7. Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2016-10-01

    Full Text Available A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. With the increase of initial permanent deflection length, the instability speed of the system gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the rod fastening rotor bearing system.

  8. Dynamics of bacterial metabolic profile and community structure during the mineralization of organic carbon in intensive swine farm wastewater

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ma

    2015-06-01

    Full Text Available Land application of intensive swine farm wastewater has raised serious environmental concerns due to the accumulation and microbially mediated transformation of large amounts of swine wastewater organic C (SWOC. Therefore, the study of SWOC mineralization and dynamics of wastewater microorganisms is essential to understand the environmental impacts of swine wastewater application. We measured the C mineralization of incubated swine wastewaters with high (wastewater H and low (wastewater L organic C concentrations. The dynamics of bacteria metabolic profile and community structure were also investigated. The results showed that SWOC mineralization was properly fitted by the two-simultaneous reactions model. The initial potential rate of labile C mineralization of wastewater H was 46% higher than that of wastewater L, whereas the initial potential rates of recalcitrant C mineralization of wastewaters H and L were both around 23 mg L-1 d-1. The bacterial functional and structural diversities significantly decreased for both the wastewaters during SWOC mineralization, and were all negatively correlated to specific UV absorbance (SUVA254; P < 0.01. The bacteria in the raw wastewaters exhibited functional similarity, and both metabolic profile and community structure changed with the mineralization of SWOC, mainly under the influence of SUVA254 (P < 0.001. These results suggested that SWOC mineralization was characterized by rapid mineralization of labile C and subsequent slow decomposition of recalcitrant C pool, and the quality of SWOC varied between the wastewaters with different amounts of organic C. The decreased bio-availability of dissolved organic matter affected the dynamics of wastewater bacteria during SWOC mineralization.

  9. Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light

    Energy Technology Data Exchange (ETDEWEB)

    Aryal, Uma K.; Stockel, Jana; Welsh, Eric A.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2012-02-03

    Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a 13C15N-L-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 422 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly and degradation showed higher levels of isotope incorporation suggesting that these biochemical pathways are important for growth under non-diazotrophic conditions. Calculation of relative isotope abundances (RIA) values allowed to measure actual active protein synthesis over time for different biochemical pathways under non-diazotrophic conditions. Overall results demonstrated the utility of 'non-steady state' pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.

  10. A call to insect scientists: Challenges and opportunities of managing insect communities under climate change

    Science.gov (United States)

    Hellmann, Jessica J.; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W.

    2016-01-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.

  11. A call to insect scientists: challenges and opportunities of managing insect communities under climate change.

    Science.gov (United States)

    Hellmann, Jessica J; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W

    2016-10-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us to revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dynamic Phase Transitions In The Spin-2 Ising System Under An Oscillating Magnetic Field Within The Effective-Field Theory

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2010-01-01

    The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.

  13. Conformational dependence of hemoglobin reactivity under high viscosity conditions: the role of solvent slaved dynamics.

    Science.gov (United States)

    Samuni, Uri; Roche, Camille J; Dantsker, David; Friedman, Joel M

    2007-10-24

    The concept of protein dynamic states is introduced. This concept is based on (i) protein dynamics being organized hierarchically with respect to solvent slaving and (ii) which tier of dynamics is operative over the time window of a given measurement. The protein dynamic state concept is used to analyze the kinetic phases derived from the recombination of carbon monoxide to sol-gel-encapsulated human adult hemoglobin (HbA) and select recombinant mutants. The temperature-dependent measurements are made under very high viscosity conditions obtained by bathing the samples in an excess of glycerol. The results are consistent with a given tier of solvent slaved dynamics becoming operative at a time delay (with respect to the onset of the measurement) that is primarily solvent- and temperature-dependent. However, the functional consequences of the dynamics are protein- and conformation-specific. The kinetic traces from both equilibrium populations and trapped allosteric intermediates show a consistent progression that exposes the role of both conformation and hydration in the control of reactivity. Iron-zinc symmetric hybrid forms of HbA are used to show the dramatic difference between the kinetic patterns for T state alpha and beta subunits. The overall results support a model for allostery in HbA in which the ligand-binding-induced transition from the deoxy T state to the high -affinity R state proceeds through a progression of T state intermediates.

  14. Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing under Dynamic Loading Conditions

    International Nuclear Information System (INIS)

    Seo, Jin Ju; Yoon, Hanvit; Kim, Dong Yeon; Hong, Dong Pyo; Kim, Won Tae

    2011-01-01

    Fault detection for dynamic loading conditions of rotational machineries was considered from the contactless, non-destructive infrared thermographic method, rather than the traditional diagnosis method. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiment was performed as an alternative way proceeding the traditional fault monitoring. In addition, the thermographic experiments were compared with the vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results, it was concluded the temperature characteristics of the ball bearing under dynamic loading conditions were analyzed thoroughly

  15. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation.

    Science.gov (United States)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S

    2016-01-01

    Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in 4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dynamic PMU Compliance Test under C37.118.1aTM-2014

    DEFF Research Database (Denmark)

    Ghiga, Radu; Wu, Qiuwei; Martin, K.

    2015-01-01

    This paper presents a flexible testing methodology and the dynamic compliance of PMUs as per the new C37.118.1a amendment published in 2014. The test platform consists of test signal generator, a Doble F6150 amplifier, PMUs under test, and a PMU test result analysis kit. The Doble amplifier is used...... for providing three phase voltage and current injections to the PMUs. Three PMUs from different vendors were tested simultaneously in order to provide a fair comparison of the devices. The new 2014 amendment comes with significant changes over the C37.118.1 - 2011 standard regarding the dynamic tests....

  17. The Tragedy of the Commons : The Dynamic Adjustment under Unregulated Population Growth

    OpenAIRE

    早川 弘晃

    2015-01-01

    The tragedy of the commons is often represented in terms of Nash equilibrium of a static game of complete information. Such elucidation is misleading since it does not capture the dynamics of an underlying process that eventually invites the tragedy as the number of the users increases without limit. Using a bucolic case as an example, this paper examines Hardin’s thesis from the standpoint of a dynamic process by elucidating the inherent logic of entry that is inevitable.The key to this proc...

  18. Trophic dynamics in an aquatic community: interactions among primary producers, grazers, and a pathogenic fungus.

    Science.gov (United States)

    Buck, Julia C; Scholz, Katharina I; Rohr, Jason R; Blaustein, Andrew R

    2015-05-01

    Free-living stages of parasites are consumed by a variety of predators, which might have important consequences for predators, parasites, and hosts. For example, zooplankton prey on the infectious stage of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen responsible for amphibian population declines and extinctions worldwide. Predation on parasites is predicted to influence community structure and function, and affect disease risk, but relatively few studies have explored its consequences empirically. We investigated interactions among Rana cascadae tadpoles, zooplankton, and Bd in a fully factorial experiment in outdoor mesocosms. We measured growth, development, survival, and infection of amphibians and took weekly measurements of the abundance of zooplankton, phytoplankton (suspended algae), and periphyton (attached algae). We hypothesized that zooplankton might have positive indirect effects on tadpoles by consuming Bd zoospores and by consuming phytoplankton, thus reducing the shading of a major tadpole resource, periphyton. We also hypothesized that zooplankton would have negative effects on tadpoles, mediated by competition for algal resources. Mixed-effects models, repeated-measures ANOVAs, and a structural equation model revealed that zooplankton significantly reduced phytoplankton but had no detectable effects on Bd or periphyton. Hence, the indirect positive effects of zooplankton on tadpoles were negligible when compared to the indirect negative effect mediated by competition for phytoplankton. We conclude that examination of host-pathogen dynamics within a community context may be necessary to elucidate complex community dynamics.

  19. Imaging the Population Dynamics of Bacterial Communities in the Zebrafish Gut

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Zac Stephens, W.; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer

    2013-03-01

    The vertebrate gut is home to a diverse microbial ecosystem whose composition has a strong influence on the development and health of the host organism. While researchers are increasingly able to identify the constituent members of the microbiome, very little is known about the spatial and temporal dynamics of commensal microbial communities, including the mechanisms by which communities nucleate, grow, and interact. We address these issues using a model organism: the larval zebrafish (Danio rerio) prepared microbe-free and inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging with light sheet fluorescence microscopy enables visualization of individual bacterial cells as well as growing colonies over the entire volume of the gut over periods up to 24 hours. We analyze the structure and dynamics of imaged bacterial communities, uncovering correlations between population size, growth rates, and the timing of inoculations that suggest the existence of active changes in the host environment induced by early bacterial exposure. Our data provide the first visualizations of gut microbiota development over an extended period of time in a vertebrate.

  20. The movement ecology and dynamics of plant communities in fragmented landscapes.

    Science.gov (United States)

    Damschen, Ellen I; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Orrock, John L; Tewksbury, Joshua J

    2008-12-09

    A conceptual model of movement ecology has recently been advanced to explain all movement by considering the interaction of four elements: internal state, motion capacity, navigation capacities, and external factors. We modified this framework to generate predictions for species richness dynamics of fragmented plant communities and tested them in experimental landscapes across a 7-year time series. We found that two external factors, dispersal vectors and habitat features, affected species colonization and recolonization in habitat fragments and their effects varied and depended on motion capacity. Bird-dispersed species richness showed connectivity effects that reached an asymptote over time, but no edge effects, whereas wind-dispersed species richness showed steadily accumulating edge and connectivity effects, with no indication of an asymptote. Unassisted species also showed increasing differences caused by connectivity over time, whereas edges had no effect. Our limited use of proxies for movement ecology (e.g., dispersal mode as a proxy for motion capacity) resulted in moderate predictive power for communities and, in some cases, highlighted the importance of a more complete understanding of movement ecology for predicting how landscape conservation actions affect plant community dynamics.

  1. Subsurface ecosystem resilience: long-term attenuation of subsurface contaminants supports a dynamic microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, J.M.; Neuhauser, E.F.; Ripp, J.A.; Mauro, D.M.; Madsen, E.L. [Cornell University, Ithaca, NY (United States). Dept. of Microbiology

    2010-01-15

    The propensity for groundwater ecosystems to recover from contamination by organic chemicals (in this case, coal-tar waste) is of vital concern for scientists and engineers who manage polluted sites. The microbially mediated cleanup processes are also of interest to ecologists because they are an important mechanism for the resilience of ecosystems. In this study we establish the long-term dynamic nature of a coal-tar waste-contaminated site and its microbial community. We present 16 years of chemical monitoring data, tracking responses of a groundwater ecosystem to organic contamination (naphthalene, xylenes, toluene, 2-methyl naphthalene and acenaphthylene) associated with coal-tar waste. In addition, we analyzed small-subunit (SSU) ribosomal RNA (rRNA) genes from two contaminated wells at multiple time points over a 2-year period. Principle component analysis of community rRNA fingerprints (terminal-restriction fragment length polymorphism (T-RFLP)) showed that the composition of native microbial communities varied temporally, yet remained distinctive from well to well. After screening and analysis of 1178 cloned SSU rRNA genes from Bacteria, Archaea and Eukarya, we discovered that the site supports a robust variety of eukaryotes (for example, alveolates (especially anaerobic and predatory ciliates), stramenopiles, fungi, even the small metazoan flatworm, Suomina) that are absent from an uncontaminated control well. This study links the dynamic microbial composition of a contaminated site with the long-term attenuation of its subsurface contaminants.

  2. Influence of attapulgite addition on the biological performance and microbial communities of submerged dynamic membrane bioreactor

    Directory of Open Access Journals (Sweden)

    Wensong Duan

    2017-12-01

    Full Text Available A submerged dynamic membrane bioreactor (sDMBR was developed to test the influence of attapulgite (AT addition on the treatment performances and the microbial community structure and function. The batch experimental results displayed the highest UV254 and dissolved organic carbon (DOC removal efficiencies with 5% AT/mixed liquid suspended solids addition dosage. The continuous sDMBR results showed that the removal efficiencies of chemical oxygen demand, NH4+-N, total nitrogen and total phosphorus significantly increased in the AT added sDMBR. Excitation emission matrix analysis demonstrated that the protein-like peaks and fulvic acid-like peaks were significantly decreased in both in the mixed liquid and the effluent of the AT added reactor. The obligate anaerobes were observed in the sDMBR with AT addition, such as Bacteroidetes and Gamma proteobacterium in the dynamic membrane, which played an important role in the process of sludge granulation. Bacterial community richness significantly increased after AT addition with predominated phyla of Proteobacteria and Bacteroidetes. Similarly, species abundance significantly increased in the AT added sDMBR. Further investigations with cluster proved that AT was a favorite biological carrier for the microbial ecology, which enriched microbial abundance and community diversity of the sDMBR.

  3. Ibuprofen removal in horizontal subsurface flow constructed wetlands: treatment performance and fungal community dynamics.

    Science.gov (United States)

    Zhang, Dongqing; Luo, Jinxue; Lee, Zarraz May Ping; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2016-01-01

    The treatment performance of ibuprofen (IBP)-enriched wastewater by horizontal subsurface flow constructed wetlands planted with cattail (Typha angustifolia) and unplanted control mesocosms was investigated. Removal efficiencies of IBP were significantly (p fungal community in these wetland systems. The overall diversity of the fungal community was reduced under the IBP exposure. Taxonomic analysis revealed that 62.2% of the fungal sequences were affiliated with Basidiomycota, followed by Ascomycota (37.4%) at the phylum level. Uncultured fungus (48.2%), Chaetomium sp. (14.2%), Aspergillus sp. (12.4%), Trichoderma sp. (5.7%), Cladosporium sp. (5.4%), and Emericellopsis sp. (5.2%) were identified as dominant genera. At the genus level, a distinct profile of the fungal community in the IBP-enriched mesocosms was observed as compared to the control beds, and as well specific fungal genera were enhanced in the planted beds, regardless of IBP enrichment. However, despite these differences, the composition of the fungal community (as measured by Bray-Curtis similarity) was mostly unaffected by the significant IBP enrichment. On the other hand, a consistent similarity pattern of fungal community structure in the planted mesocosms suggests that the presence of higher macrophytes in the wetland systems may well help shape the fungal community structure.

  4. The System Dynamics of Forest Cover in the Developing World: Researcher Versus Community Perspectives

    Directory of Open Access Journals (Sweden)

    Laura Schmitt Olabisi

    2010-06-01

    Full Text Available Efforts to increase forest cover in the developing world will only succeed if the root causes of deforestation are addressed. Researchers designing reforestation initiatives tend to emphasize macro-level drivers of deforestation, about which they have extensive data and knowledge. On the other hand, local people have contextually based knowledge of forest cover dynamics in their region—about which external researchers may be largely ignorant. This type of perception gap between researchers and community members has led to many failed or insufficiently implemented projects. An emerging tool—group model-building with system dynamics—shows promise in its ability to integrate different perspectives on a complex problem such as forest cover loss. In this study, I use system dynamics modeling methodology to compare causal loop diagrams of forest cover dynamics on Negros Island, Philippines generated by researchers working for the World Wildlife Fund with causal loop diagrams generated by community members in upland Negros. The diagrams were significantly different, with very few variables in common, but both illuminate critical aspects of the deforestation problem on the island. I conclude that reforestation initiatives in the Philippines would benefit from incorporating all relevant information into a single, coherent model.

  5. Growth dynamics of Dracaena cinnabari under controlled conditions as the most effective way to protect endangered species

    Directory of Open Access Journals (Sweden)

    Irena Hubálková

    2017-11-01

    Full Text Available Dracaena cinnabari Balf. fil. is an endangered endemic species growing on the Yemeni island of Soqotra. Dracaena woodlands are considered as one of the oldest forest communities on Earth. Uncontrolled grazing unfortunately caused a lack of naturally occurring regeneration. Our two-year research was focused on the growth dynamics of Dracaena seedlings from two separate populations. One hundred of germinated seeds from two different altitudes from the island were sown and planted under the same conditions. Average increment and difference between the growth dynamics of plants from the two localities were investigated. The observed data on this plant species revealed very interesting, hitherto unknown results. (1 The seedlings germinated within a time period from four to ten weeks. Germination rate was 90% on the Firmihin highland plateau and 78% on the Scand Mountain. (2 Average plant length from both localities was almost the same (24.9 cm at the end of measurement. Differences in values between the two populations proved as non-significant. (3 A significant difference was found in the number of leaves and in the sum of lengths of all leaves on one plant. While the seedlings from Firmihin featured a wide spreading above-ground part with a large number of leaves, the plants from Scand invested more energy into faster leaves elongation rate. (4 Growth dynamics reflected seasonal changes. Increments were slower or ceased during the period of vegetative rest from autumn to spring. (5 Average mortality rate was 13%. Most of the plants died during the period of vegetative rest. Further study on germination and regeneration under artificial conditions seems like the only way to prevent species extinction.

  6. Underlying mechanisms for syntrophic metabolism of essential enzyme cofactors in microbial communities.

    Science.gov (United States)

    Romine, Margaret F; Rodionov, Dmitry A; Maezato, Yukari; Osterman, Andrei L; Nelson, William C

    2017-06-01

    Many microorganisms are unable to synthesize essential B vitamin-related enzyme cofactors de novo. The underlying mechanisms by which such microbes survive in multi-species communities are largely unknown. We previously reported the near-complete genome sequence of two ~18-member unicyanobacterial microbial consortia that maintain stable membership on defined medium lacking vitamins. Here we have used genome analysis and growth studies on isolates derived from the consortia to reconstruct pathways for biogenesis of eight essential cofactors and predict cofactor usage and precursor exchange in these communities. Our analyses revealed that all but the two Halomonas and cyanobacterial community members were auxotrophic for at least one cofactor. We also observed a mosaic distribution of salvage routes for a variety of cofactor precursors, including those produced by photolysis. Potentially bidirectional transporters were observed to be preferentially in prototrophs, suggesting a mechanism for controlled precursor release. Furthermore, we found that Halomonas sp. do not require cobalamin nor control its synthesis, supporting the hypothesis that they overproduce and export vitamins. Collectively, these observations suggest that the consortia rely on syntrophic metabolism of cofactors as a survival strategy for optimization of metabolic exchange within a shared pool of micronutrients.

  7. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  8. Dynamic Pricing in Cloud Manufacturing Systems under Combined Effects of Consumer Structure, Negotiation, and Demand

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2017-01-01

    Full Text Available In this study, we proposed a game-theory based framework to model the dynamic pricing process in the cloud manufacturing (CMfg system. We considered a service provider (SP, a broker agent (BA, and a dynamic service demander (SD population that is composed of price takers and bargainers in this study. The pricing processes under linear demand and constant elasticity demand were modeled, respectively. The combined effects of SD population structure, negotiation, and demand forms on the SP’s and the BA’s equilibrium prices and expected revenues were examined. We found that the SP’s optimal wholesale price, the BA’s optimal reservation price, and posted price all increase with the proportion of price takers under linear demand but decrease with it under constant elasticity demand. We also found that the BA’s optimal reservation price increases with bargainers’ power no matter under what kind of demand. Through analyzing the participants’ revenues, we showed that a dynamic SD population with a high ratio of price takers would benefit the SP and the BA.

  9. The Influence of Individual Variability on Zooplankton Population Dynamics under Different Environmental Conditions

    Science.gov (United States)

    Bi, R.; Liu, H.

    2016-02-01

    Understanding how biological components respond to environmental changes could be insightful to predict ecosystem trajectories under different climate scenarios. Zooplankton are key components of marine ecosystems and changes in their dynamics could have major impact on ecosystem structure. We developed an individual-based model of a common coastal calanoid copepod Acartia tonsa to examine how environmental factors affect zooplankton population dynamics and explore the role of individual variability in sustaining population under various environmental conditions consisting of temperature, food concentration and salinity. Total abundance, egg production and proportion of survival were used to measure population success. Results suggested population benefits from high level of individual variability under extreme environmental conditions including unfavorable temperature, salinity, as well as low food concentration, and selection on fast-growers becomes stronger with increasing individual variability and increasing environmental stress. Multiple regression analysis showed that temperature, food concentration, salinity and individual variability have significant effects on survival of A. tonsa population. These results suggest that environmental factors have great influence on zooplankton population, and individual variability has important implications for population survivability under unfavorable conditions. Given that marine ecosystems are at risk from drastic environmental changes, understanding how individual variability sustains populations could increase our capability to predict population dynamics in a changing environment.

  10. Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area.

    Directory of Open Access Journals (Sweden)

    Javier Alba-Tercedor

    Full Text Available Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96% inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area.

  11. The peculiarity of dynamic of helminth community of wild ungulate animals in the condition of Poles'e reserve

    International Nuclear Information System (INIS)

    Odintsova, T.M.

    1998-01-01

    It was analysed the dynamic of helminth community of wild animals in the condition of Poles'e reserve and it was shown that radiation contamination had great influence at the settled community of parasite worms resulting in disappearance or sharp diminution of species quantity that were common for wild ungulate animals and domestics cattle. It was concluded that stabilisation of helminth community of wild ungulate animals had not yet achieved

  12. Host-Specificity and Dynamics in Bacterial Communities Associated with Bloom-Forming Freshwater Phytoplankton

    Science.gov (United States)

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  13. Host-specificity and dynamics in bacterial communities associated with Bloom-forming freshwater phytoplankton.

    Directory of Open Access Journals (Sweden)

    Inessa Lacativa Bagatini

    Full Text Available Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways.

  14. Soil and biomass carbon pools in model communities of tropical plants under elevated CO2.

    Science.gov (United States)

    Arnone, J A; Körner, Ch

    1995-09-01

    The experimental data presented here relate to the question of whether terrestrial ecosystems will sequester more C in their soils, litter and biomass as atmospheric CO 2 concentrations rise. Similar to our previous study with relatively fertile growth conditions (Körner and Arnone 1992), we constructed four rather nutrient-limited model communities of moist tropical plant species in greenhouses (approximately 7 m 2 each). Plant communities were composed of seven species (77 individuals per community) representing major taxonomic groups and various life forms found in the moist tropics. Two ecosystems were exposed to 340 μl CO 2 l -1 and two to 610 μl l -1 for 530 days of humid tropical growth conditions. In order to permit precise determination of C deposition in the soil, plant communities were initially established in C-free unwashed quartz sand. Soils were then amended with known amounts of organic matter (containing C and nutrients). Mineral nutrients were also supplied over the course of the experiment as timed-release full-balance fertilizer pellets. Soils represented by far the largest repositories for fixed C in all ecosystems. Almost 5 times more C (ca. 80% of net C fixation) was sequestered in the soil than in the biomass, but this did not differ between CO 2 treatments. In addition, at the whole-ecosystem level we found a remarkably small and statistically non-significant increase in C sequestration (+4%; the sum of C accretion in the soil, biomass, litter and necromass). Total community biomass more than quadrupled during the experiment, but at harvest was, on average, only 8% greater (i.e. 6% per year; n.s.) under elevated CO 2 , mainly due to increased root biomass (+15%, P=0.12). Time courses of leaf area index of all ecosystems suggested that canopy expansion was approaching steady state by the time systems were harvested. Net primary productivity (NPP) of all ecosystems-i.e. annual accumulation of biomass, necromass, and leaf litter (but not

  15. An experimental and mathematical analysis of lymphopoiesis dynamics under continuous irradiation

    International Nuclear Information System (INIS)

    Zukhbaya, T.M.; Smirnova, O.A.

    1991-01-01

    A mathematical model describing the dynamics of lymphopoiesis in mammals continuously exposed to ionizing radiation has been developed. It is based on the theory of chalone regulation of hematopoiesis. The model comprises a system of nine differential equations. Results from the model were compared with our experimental data for bone marrow and blood lymphocytes of rats continuously exposed to gamma radiation in a wide range of dose rates. The model reproduces the lymphopoiesis dynamics that we observed in our experiment, in particular, the radiation hormesis at low dose rates, the reduction of lymphopoiesis at intermediate dose rates, and extinction of lymphopoiesis at high dose rates of continuous radiation. The possible explanation of the hormesis is suggested by the framework of the model. The model can be used for predicting the lymphopoiesis dynamics in mammals under continuous irradiation

  16. Robust dynamic output feedback control for switched polytopic systems under asynchronous switching

    Directory of Open Access Journals (Sweden)

    Yang Tingting

    2015-08-01

    Full Text Available The robust controller design problem for switched polytopic systems under asynchronous switching is addressed. These systems exist in many aviation applications, such as dynamical systems involving rapid variations. A switched polytopic system is established to describe the highly maneuverable technology vehicle within the full flight envelope and a robust dynamic output feedback control method is designed for the switched polytopic system. Combining the Lyapunov-like function method and the average dwell time method, a sufficient condition is derived for the switched polytopic system with asynchronous switching and data dropout to be globally, uniformly and asymptotically stable in terms of linear matrix inequality. The robust dynamic output feedback controller is then applied to the highly maneuverable technology vehicle to illustrate the effectiveness of the proposed approach. The simulation results show that the angle of attack tracking performance is acceptable over the time history and the control surface responses are all satisfying along the full flight trajectory.

  17. Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load

    Science.gov (United States)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.

  18. Complex Nonlinear Dynamic System of Oligopolies Price Game with Heterogeneous Players Under Noise

    Science.gov (United States)

    Liu, Feng; Li, Yaguang

    A nonlinear four oligopolies price game with heterogeneous players, that are boundedly rational and adaptive, is built using two different special demand costs. Based on the theory of complex discrete dynamical system, the stability and the existing equilibrium point are investigated. The complex dynamic behavior is presented via bifurcation diagrams, the Lyapunov exponents to show equilibrium state, bifurcation and chaos with the variation in parameters. As disturbance is ubiquitous in economic systems, this paper focuses on the analysis of delay feedback control method under noise circumstances. Stable dynamics is confirmed to depend mainly on the low price adjustment speed, and if all four players have limited opportunities to stabilize the market, the new adaptive player facing profits of scale are found to be higher than the incumbents of bounded rational.

  19. Application backwards characteristics analysis method to dynamic response of metals under high pressure

    Directory of Open Access Journals (Sweden)

    Pan Hao

    2015-01-01

    Full Text Available Dynamic yield strength of metals/alloys depends on loading pressure and rates sensitively. With the development of laser interferometer measurement system, extracting strength information from window/free surface velocity profiles in shock and ramp loading experiments is becoming an important method to investigate materials’ dynamic response under high pressure and high strain rates. Backwards characteristics analysis method (BCAM can analyze the velocity profiles more reasonable because it accounts for bending of the incoming characteristics due to impedance mismatch between the sample and window. Synthetic analyses of reverse impact experiment and graded-density impactor loading-releasing experiment suggest that BCAM can give more accurate results including sound speed-particle velocity and yield strength at high pressure than incremental impedance matching method. We use BCAM to analyze velocity profiles of Sn in shock-release experiments and obtain its shear modulus and yield strength at different shock pressure and investigate its phase transition and dynamic unloading response.

  20. Community resilience under multi-hazards: time series measurement and it's strategies for improvement

    Science.gov (United States)

    Tian, Cong-shan; Fang, Yi-ping

    2017-04-01

    Multi - hazards stress is a big obsession that hampers the social and economic development in disaster - prone areas. There is a need to understand and manage drivers of vulnerability and adaptive capacity to the system of multiple geological hazards. Here we pilot three methods namely the multi - hazards resilience assessment model (new framework), the entropy weight method, and the assess social resilience to flood hazards model to measure the resilience to natural hazards of landslide and debris flow on community scale. Using one typical multi - hazards affected county in southwest China, 32 resilience indicators belonging to antecedent conditions, coping responses, adaptation (including learning), and hazard exposure are selected, and a composite index was calculated under the three methods mentioned above. Results show that the new framework reflected a more detailed fluctuation among the 16 years, despite of the overall similar trend between 2000 and 2015 under the three methods. Medical insurance coverage, unemployment insurance coverage, education degree, and hazard exposure are the main drivers of resilience. The most effective strategies for improving community resilience to multiple hazards are likely to be accelerating the development of education, improving the level of medical security, increasing unemployment insurance, and establishing multi - hazards prevention and mitigation systems.

  1. Soil oribatid mite communities under three species of legumes in an ultisol in Brazil.

    Science.gov (United States)

    Badejo, M Adetola; Espindola, Jose Antonio Azevedo; Guerra, Jose Guilherme Marinho; De Aquino, Adriana Maria; Correa, Maria Elizabeth Fernandes

    2002-01-01

    Oribatid mite densities in the topsoil and their activity at the soil surface were monitored under three species of perennial legume cover crops namely, Arachis pintoi, Macroptilium atropupureum and Pueraria phaseoloides, grass (Panicum maximum) and bare plots on three occasions in 1998 and 1999 in a derived savanna zone in Brazil. Both densities and activity at the soil surface were higher in the early but cool dry season in April 1998 than in the early wet but warm season in November 1998 and 1999. Three taxonomic groups of macropyline oribatid mites, namely Nothrus, Archegozetes and Masthermannia as well as a brachypyline taxon, Scheloribates were suggested as possible indicators of effect of legumes on soil biota because their populations increased under the legumes and/or the irresidues. Nothrus in particular increased in abundance more than any other taxon in the presence of residues of A. pintoi. Each legume supported a unique oribatid mite community in terms of species composition and relative abundance. The large numbers of Archegozeres trapped from all the legume and grass plots in April and November 1998 were also attributed to highly conducive conditions provided by the vegetation cover and their residues. The results suggest that the oribatid mite community of the study area was numerically stable as the peak populations of different species were not synchronized. Many taxonomic groups of pycnonotic brachypyline mites were absent. Legume cover crops, especially A. pintoi, and their residues have potential in restoring oribatid mite populations to precultivation levels.

  2. A novel test rig to investigate under-platform damper dynamics

    Science.gov (United States)

    Botto, Daniele; Umer, Muhammad

    2018-02-01

    In the field of turbomachinery, vibration amplitude is often reduced by dissipating the kinetic energy of the blades with devices that utilize dry friction. Under-platform dampers, for example, are often placed in the underside of two consecutive turbine blades. Dampers are kept in contact with the under-platform of the respective blades by means of the centrifugal force. If the damper is well designed, vibration of blades instigate a relative motion between the under-platform and the damper. A friction force, that is a non-conservative force, arises in the contact and partly dissipates the vibration energy. Several contact models are available in the literature to simulate the contact between the damper and the under-platform. However, the actual dynamics of the blade-damper interaction have not fully understood yet. Several test rigs have been previously developed to experimentally investigate the performance of under-platform dampers. The majority of these experimental setups aim to evaluate the overall damper efficiency in terms of reduction in response amplitude of the blade for a given exciting force that simulates the aerodynamic loads. Unfortunately, the experimental data acquired on the blade dynamics do not provide enough information to understand the damper dynamics. Therefore, the uncertainty on the damper behavior remains a big issue. In this work, a novel experimental test rig has been developed to extensively investigate the damper dynamic behavior. A single replaceable blade is clamped in the rig with a specific clamping device. With this device the blade root is pressed against a groove machined in the test rig. The pushing force is controllable and measurable, to better simulate the actual centrifugal load acting on the blade. Two dampers, one on each side of the blade, are in contact with the blade under-platforms and with platforms on force measuring supports. These supports have been specifically designed to measure the contact forces on the

  3. Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils

    International Nuclear Information System (INIS)

    Peng Jingjing; Cai Chao; Qiao Min; Li Hong; Zhu Yongguan

    2010-01-01

    This study investigates the dynamics of pyrene degradation rates, microbial communities, and functional gene copy numbers during the incubation of pyrene-spiked soils. Spiking pyrene to the soil was found to have negligible effects on the bacterial community present. Our results demonstrated that there was a significant difference in nidA gene copy numbers between sampling dates in QZ soil. Mycobacterium 16S rDNA clone libraries showed that more than 90% mycobacteria detected were closely related to fast-growing PAH-degrading Mycobacterium in pyrene-spiked soil, while other sequences related to slow-growing Mycobacterium were only detected in the control soil. It is suggested that nidA gene copy number and fast-growing PAH-degrading Mycobacterium could be used as indicators to predict pyrene contamination and its degradation activity in soils. - nidA gene and fast-growing PAH-degrading Mycobacterium can serve as indicators for pyrene contamination.

  4. A spectral transform dynamical core option within the Community Atmosphere Model (CAM4)

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Katherine J [ORNL; Mahajan, Salil [ORNL; Branstetter, Marcia L [ORNL; McClean, Julie L. [Scripps Institute of Oceanography; Caron, Julie M. [National Center for Atmospheric Research (NCAR); Maltrud, Matthew E. [Los Alamos National Laboratory (LANL); Hack, James J [ORNL; Bader, David C [ORNL; Neale, Rich [National Center for Atmospheric Research (NCAR)

    2014-01-01

    A spectral transform dynamical core with an 85 spectral truncation resolution (T85) within the Community Atmosphere Model (CAM), version 4, is evaluated within the recently released Community Earth System Model, version 1.0 (CESM) global climate model. The spectral dynamical core option provides a well-known base within the climate model community from which to assess climate behavior and statistics, and its relative computational efficiency for smaller computing platforms allows it to be extended to perform climate length simulations using high-resolution configurations in the near term. To establish the characteristics of the CAM4 T85, an ensemble of simulations covering the present day observational period using forced sea surface temperatures and prescribed sea-ice extent are evaluated. Overall, the T85 ensemble attributes and biases are similar to a companion ensemble of simulations using the one degree finite volume (FV1) dynamical core, relative to observed and model derived datasets. Notable improvements with T85 compared to FV1 include the representation of wintertime Arctic sea level pressure and summer precipitation over the Western Indian subcontinent. The mean and spatial patterns of the land surface temperature trends over the AMIP period are generally well simulated with the T85 ensemble relative to observations, however the model is not able to capture the extent nor magnitude of changes in temperature extremes over the boreal summer, where the changes are most dramatic. Biases in the wintertime Arctic surface temperature and annual mean surface stress fields persist with T85 as with the CAM3 version of T85.

  5. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics

    Science.gov (United States)

    Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne

    2014-01-01

    Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.

  6. Alternative models for carbon payments to communities under REDD+: A comparison using the Polis model of actor inducements

    NARCIS (Netherlands)

    Skutsch, Margaret; Vickers, Ben; Georgiadou, P.Y.; McCall, M.K.

    2011-01-01

    Many tropical developing countries are considering using a form of Payments for Environmental Services (PES) to reward communities involved in Community Forest Management (CFM) for reducing carbon emissions and increasing carbon sequestration. Such payments would fall under the scope of national

  7. Microbial Community Structures and Dynamics in the O3/BAC Drinking Water Treatment Process

    Science.gov (United States)

    Tian, Jian; Lu, Jun; Zhang, Yu; Li, Jian-Cheng; Sun, Li-Chen; Hu, Zhang-Li

    2014-01-01

    Effectiveness of drinking water treatment, in particular pathogen control during the water treatment process, is always a major public health concern. In this investigation, the application of PCR-DGGE technology to the analysis of microbial community structures and dynamics in the drinking water treatment process revealed several dominant microbial populations including: α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, Actinobacteria Firmicutes and Cyanobacteria. α-Proteobacteria and β-Proteobacteria were the dominant bacteria during the whole process. Bacteroidetes and Firmicutes were the dominant bacteria before and after treatment, respectively. Firmicutes showed season-dependent changes in population dynamics. Importantly, γ-Proteobacteria, which is a class of medically important bacteria, was well controlled by the O3/biological activated carbon (BAC) treatment, resulting in improved effluent water bio-safety. PMID:24937529

  8. Virulence and biodegradation potential of dynamic microbial communities associated with decaying Cladophora in Great Lakes

    Science.gov (United States)

    Chun, Chan Lan; Peller, Julie R.; Shively, Dawn; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Staley, Christopher; Zhang, Qian; Ishii, Satoshi; Sadowsky, Michael J.

    2017-01-01

    Cladophora mats that accumulate and decompose along shorelines of the Great Lakes create potential threats to the health of humans and wildlife. The decaying algae create a low oxygen and redox potential environment favoring growth and persistence of anaerobic microbial populations, including Clostridium botulinum, the causal agent of botulism in humans, birds, and other wildlife. In addition to the diverse population of microbes, a dynamic chemical environment is generated, which involves production of numerous organic and inorganic substances, many of which are believed to be toxic to the sand and aquatic biotic communities. In this study, we used 16S-rDNA-based-amplicon sequencing and microfluidic-based quantitative PCR approaches to characterize the bacterial community structure and the abundances of human pathogens associated with Cladophora at different stages (up to 90 days) of algal decay in laboratory microcosms. Oxygen levels were largely depleted after a few hours of incubation. As Cladophora decayed, the algal microbial biodiversity decreased within 24 h, and the mat transitioned from an aerobic to anaerobic environment. There were increasing abundances of enteric and pathogenic bacteria during decomposition of Cladophora, including Acinetobacter, Enterobacter, Kluyvera, Cedecea, and others. In contrast, there were no or very few sequences (< 0.07%) assigned to such groups in fresh Cladophora samples. Principal coordinate analysis indicated that the bacterial community structure was dynamic and changed significantly with decay time. Knowledge of microbial communities and chemical composition of decaying algal mats is critical to our further understanding of the role that Cladophora plays in a beach ecosystem's structure and function, including the algal role in trophic interactions. Based on these findings, public and environmental health concerns should be considered when decaying Cladophora mats accumulate Great Lakes shorelines.

  9. Dynamics of colloidal systems of magnetic nanoparticles under influence of magnetic fields investigated by XPCS

    International Nuclear Information System (INIS)

    Schavkan, Alexander

    2017-05-01

    This thesis investigates structural properties and the underlying microscopic dynamics of suspensions of α-FeOOH goethite platelets in water under the influence of magnetic fields. Goethite particles show unusual physical properties and a rich phase diagram, which makes their suspensions an object of high interest for research in the area of ''smart nanoparticles''. Five nanoparticle concentrations were chosen such that different liquid crystal phases could be studied. The suspensions of platelets of these chosen concentrations were exposed to magnetic fields of varying strength. Small angle X-ray scattering and X-ray photon correlation spectroscopy data were taken and evaluated. The appearing phases and phase transitions were studied as a function of concentration and applied magnetic field. For this purpose, order parameters, ellipticity, radial and azimuthal peak positions and widths of scattering features were investigated to clarify the structural properties in detail. For the analysis of the underlying dynamics, the relaxation rates and the shape of measured time correlation functions were evaluated. The results show that with increasing magnetic field a partial realignment of the platelets occurs. This realignment is connected to the magnetic properties of the particles. The dynamics of the corresponding phases revealed a dependence on the concentration of nanoparticles in the suspension. At a concentration of c=20 vol% the transition from the nematic to the anti-nematic phase traverses a mixed state. The nematic and anti-nematic phases show ballistic motion and very similar properties, even though a realignment of the particles from an orientation with the long axis parallel to the applied magnetic field in the nematic phase to an orientation with the long axis perpendicular to the magnetic field in the anti-nematic phase occurs. The mixed state of 20 vol%-suspension exhibits a diffusive motion of the particles and different

  10. Dynamics of colloidal systems of magnetic nanoparticles under influence of magnetic fields investigated by XPCS

    Energy Technology Data Exchange (ETDEWEB)

    Schavkan, Alexander

    2017-05-15

    This thesis investigates structural properties and the underlying microscopic dynamics of suspensions of α-FeOOH goethite platelets in water under the influence of magnetic fields. Goethite particles show unusual physical properties and a rich phase diagram, which makes their suspensions an object of high interest for research in the area of ''smart nanoparticles''. Five nanoparticle concentrations were chosen such that different liquid crystal phases could be studied. The suspensions of platelets of these chosen concentrations were exposed to magnetic fields of varying strength. Small angle X-ray scattering and X-ray photon correlation spectroscopy data were taken and evaluated. The appearing phases and phase transitions were studied as a function of concentration and applied magnetic field. For this purpose, order parameters, ellipticity, radial and azimuthal peak positions and widths of scattering features were investigated to clarify the structural properties in detail. For the analysis of the underlying dynamics, the relaxation rates and the shape of measured time correlation functions were evaluated. The results show that with increasing magnetic field a partial realignment of the platelets occurs. This realignment is connected to the magnetic properties of the particles. The dynamics of the corresponding phases revealed a dependence on the concentration of nanoparticles in the suspension. At a concentration of c=20 vol% the transition from the nematic to the anti-nematic phase traverses a mixed state. The nematic and anti-nematic phases show ballistic motion and very similar properties, even though a realignment of the particles from an orientation with the long axis parallel to the applied magnetic field in the nematic phase to an orientation with the long axis perpendicular to the magnetic field in the anti-nematic phase occurs. The mixed state of 20 vol%-suspension exhibits a diffusive motion of the particles and different

  11. Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion

    International Nuclear Information System (INIS)

    Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai

    2017-01-01

    In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.

  12. A dynamic parking charge optimal control model under perspective of commuters' evolutionary game behavior

    Science.gov (United States)

    Lin, XuXun; Yuan, PengCheng

    2018-01-01

    In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.

  13. Effect of the alien invasive bivalve Corbicula fluminea on the nutrient dynamics under climate change scenarios

    Science.gov (United States)

    Coelho, J. P.; Lillebø, A. I.; Crespo, D.; Leston, S.; Dolbeth, M.

    2018-05-01

    The main aim of this study was to evaluate the impact of the alien invasive bivalve Corbicula fluminea (Müller, 1774) in the nutrient dynamics of temperate estuarine systems (oligohaline areas) under climate change scenarios. The scenarios simulated shifts in climatic conditions, following salinity (0 or 5) and temperature (24 or 30 °C) changes, usual during drought and heat wave events. The effect of the individual size/age (different size classes with fixed biomass) and density (various densities of <1 cm clams) on the bioturbation-associated nutrient dynamics were also evaluated under an 18-day laboratory experimental setup. Results highlight the significant effect of C. fluminea on the ecosystem nutrient dynamics, enhancing the efflux of both phosphate and dissolved inorganic nitrogen (DIN) from the sediments to the water column. Both drought and heat wave events will have an impact on the DIN dynamics within C. fluminea colonized systems, favouring a higher NH4-N efflux. The population structure of C. fluminea will have a decisive role on the impact of the species, with stronger nutrient effluxes associated with a predominantly juvenile population structure.

  14. Nonlinear dynamic response of cable-suspended systems under swinging and heaving motion

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guohua; Wang, Naige; Wang, Lei; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China)

    2017-07-15

    In order to enhance the fidelity, convenient and flexibility of swinging motion, the structure of incompletely restrained cablesuspended system controlled by two drums was proposed, and the dynamic response of the system under swinging and heaving motion were investigated in this paper. The cables are spatially discretized using the assumed modes method and the system equations of motion are derived by Lagrange equations of the first kind. Based on geometric boundary conditions and linear complementary theory, the differential algebraic equations are transformed to a set of classical difference equations. Nonlinear dynamic behavior occurs under certain range of rotational velocity and frequency. The results show that asynchronous motion of suspension platform is easily caused imbalance for cable tension. Dynamic response of different swing frequencies were obtained via power frequency analysis, which could be used in the selection of the working frequency of the swing motion. The work will contribute to a better understanding of the swing frequency, cable tension and posture with dynamic characteristics of unilateral geometric and kinematic constraints in this system, and it is also useful to investigate the accuracy and reliability of instruments in future.

  15. Experimental identification of dynamic coefficients of lightly loaded tilting-pad bearings under several lubrication regimes

    DEFF Research Database (Denmark)

    Salazar, Jorge G.; Santos, Ilmar F.

    2016-01-01

    This paper presents the identified dynamic coefficients of a lightly loaded actively lubricated bearing under three lubrication regimes: passive, hybrid and feedback-controlled. The goal is to experimentally demonstrate the feasibility of modifying the bearing dynamic properties via active...... lubrication. Dominated by the latest two regimes, the bearing properties become adjustable or controllable due to the injection of either a constant or variable pressurized oil flow. Such a flow is regulated by a hydraulic control system composed of (a) a high-pressure oil supply unit, (b) servovalves, (c......) radial injection nozzles, (d) displacement sensors and (e) well-tuned digital controllers. A scaled-down industrial rotor featuring active lubrication, composed of a flexible rotor supported by a four-rocker load-between-pads tilting-pad bearing under light load condition, is used for this objective...

  16. Nonlinear Dynamic Response of Functionally Graded Rectangular Plates under Different Internal Resonances

    Directory of Open Access Journals (Sweden)

    Y. X. Hao

    2010-01-01

    Full Text Available The nonlinear dynamic response of functionally graded rectangular plates under combined transverse and in-plane excitations is investigated under the conditions of 1 : 1, 1 : 2 and 1 : 3 internal resonance. The material properties are assumed to be temperature-dependent and vary along the thickness direction. The thermal effect due to one-dimensional temperature gradient is included in the analysis. The governing equations of motion for FGM rectangular plates are derived by using Reddy's third-order plate theory and Hamilton's principle. Galerkin's approach is utilized to reduce the governing differential equations to a two-degree-of-freedom nonlinear system including quadratic and cubic nonlinear terms, which are then solved numerically by using 4th-order Runge-Kutta algorithm. The effects of in-plane excitations on the internal resonance relationship and nonlinear dynamic response of FGM plates are studied.

  17. Dynamic response characteristics analysis of the doubly-fed wind power system under grid voltage drop

    Science.gov (United States)

    Chen, Y.; Wang, J.; Wang, H. H.; Yang, L.; Chen, W.; Xu, Y. T.

    2016-08-01

    Double-fed induction generator (DFIG) is sensitive to the disturbances of grid, so the security and stability of the grid and the DFIG itself are under threat with the rapid increase of DFIG. Therefore, it is important to study dynamic response of the DFIG when voltage drop failure is happened in power system. In this paper, firstly, mathematical models and the control strategy about mechanical and electrical response processes is respectively introduced. Then through the analysis of response process, it is concluded that the dynamic response characteristics are related to voltage drop level, operating status of DFIG and control strategy adapted to rotor side. Last, the correctness of conclusion is validated by the simulation about mechanical and electrical response processes in different voltage levels drop and different DFIG output levels under DIgSILENT/PowerFactory software platform.

  18. Emergent dynamics of Cucker-Smale particles under the effects of random communication and incompressible fluids

    Science.gov (United States)

    Ha, Seung-Yeal; Xiao, Qinghua; Zhang, Xiongtao

    2018-04-01

    We study the dynamics of infinitely many Cucker-Smale (C-S) flocking particles under the interplay of random communication and incompressible fluids. For the dynamics of an ensemble of flocking particles, we use the kinetic Cucker-Smale-Fokker-Planck (CS-FP) equation with a degenerate diffusion, whereas for the fluid component, we use the incompressible Navier-Stokes (N-S) equations. These two subsystems are coupled via the drag force. For this coupled model, we present the global existence of weak and strong solutions in Rd (d = 2 , 3). Under the extra regularity assumptions of the initial data, the unique solvability of strong solutions is also established in R2. In a large coupling regime and periodic spatial domain T2 : =R2 /Z2, we show that the velocities of C-S particles and fluids are asymptotically aligned to two constant velocities which may be different.

  19. Dynamic gait stability, clinical correlates, and prognosis of falls among community-dwelling older adults.

    Science.gov (United States)

    Bhatt, Tanvi; Espy, Debbie; Yang, Feng; Pai, Yi-Chung

    2011-05-01

    To establish an accurate measure for prognostic assessment of fall risk in community-dwelling older adults, this study examined the prediction accuracy of a dynamic gait stability measure and common clinical tests for slip-related falls among these adults. Participants were tested for their fall-risk likelihood on a slip-test. Biomechanics research laboratory. Community-dwelling older adults (N=119; ≥65y). Not applicable. Participants performed a battery of clinical tests, including Berg Balance Scale, Timed Up & Go (TUG) test, static posturography, isometric muscle strength, and bone density. They were then exposed to an unannounced slip during gait. The dynamic stability during unperturbed gait was measured based on the center of mass position and velocity relative to the limits of stability against backward falling. Accuracy of each measure was examined for prediction of slip outcome (fall or recovery). On the slip, 59 participants fell, 56 recovered their balance, and 4 were harness-assisted. Dynamic stability predicted fall outcome with 69% accuracy. Except for TUG and bone density, no other measure could differentiate fallers from nonfallers; TUG predicted 56% of fall outcomes. Reproduction of actual falls provides a new benchmark for evaluating the prognostic power of different performance-based assessment tools. The TUG was able to better predict fall outcome than other clinical measures; however, the new dynamic gait stability measure was more sensitive than TUG in its prediction of falls. Ultrasound bone scan could be used to screen older adults for fall risk. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Markov dynamics as a zooming lens for multiscale community detection: non clique-like communities and the field-of-view limit.

    Directory of Open Access Journals (Sweden)

    Michael T Schaub

    Full Text Available In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the 'right' split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted 'field-of-view' limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the

  1. Combustion Dynamic Characteristics Identification in a 9-point LDI Combustor Under Choked Outlet Boundary Conditions

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.

    2017-01-01

    Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.

  2. Normal dynamic deformation characteristics of non-consecutive jointed rock masses under impact loads

    Science.gov (United States)

    Zeng, Sheng; Jiang, Bowei; Sun, Bing

    2017-08-01

    In order to study deformation characteristics of non-consecutive single jointed rock masses under impact loads, we used the cement mortar materials to make simulative jointed rock mass samples, and tested the samples under impact loads by the drop hammer. Through analyzing the time-history signal of the force and the displacement, first we find that the dynamic compression displacement of the jointed rock mass is significantly larger than that of the intact jointless rock mass, the compression displacement is positively correlated with the joint length and the impact height. Secondly, the vertical compressive displacement of the jointed rock mass is mainly due to the closure of opening joints under small impact loads. Finally, the peak intensity of the intact rock mass is larger than that of the non-consecutive jointed rock mass and negatively correlated with the joint length under the same impact energy.

  3. Soil macrofauna communities under plant cover in a no-till system in Thailand

    Directory of Open Access Journals (Sweden)

    Phakphoom Tantachasatid

    2017-02-01

    Full Text Available The impact of no-till cropping systems with plant cover on soil macrofauna communities was assessed according to their abundance and biomass. The study was carried out in northeastern Thailand under a conventional cropping system (plow-based tillage, no-till cropping systems with plant cover (Brachiaria ruziziensis, Stylosanthes guianensis, S. guianensis associated with B. ruziziensis, rice straw and under a natural dipterocarp forest. Soil macrofauna populations were sampled in 2007 (June and October during the rainy season and at a beginning of the dry season, respectively. The results revealed that in the short term, the biological compartment responded quickly to the presence of plant cover, as shown by a significant increase in soil macrofauna abundance and total biomass. The highest mean total abundance (MTA of 4224 individuals/m2 at the end of planting period (October 2007 was observed under S. guianensis cover and also the highest mean total soil macrofauna biomass (MTB of 14.63 g/m2 was observed in the forest system in the same period. However, in the system of cultivation, the highest MTB of 11.33 g/m2 was observed under S. guianensis cover. Moreover, the change rate of soil macrofauna MTA was the highest under S. guianensis cover (+751.61% and the change rate of soil macrofauna MTB revealed that this change rate was highest in forest (+430.07%. However, in the other systems of cultivation, the highest change rate of MTB was under S. guianensis cover (+12.96%.

  4. Dynamic pattern of prices under price-cap regulation; Price cap kiseika no ryokin hendo pattern

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-07-01

    In this analysis, a power rate determination model was developed for numerical experiment, a dynamic pattern of prices under price-cap regulation (PCR) which has been overlooked in the analysis, and a study was made on if the Ramsey pricing can be realized. A power rate determination simulation model was developed which maximizes a total amount of profits from corporate acts under PCR. By expanding the model in future, policy simulations on PCR under various conditions became possible. With relation to the rate determination act under PCR, two cases were assumed for the simulational comparison: the case in which competition is introduced into the power sector, and the case in which both the power sector and lighting sector are monopolistic for comparison with the former case. As a result, it was confirmed that in any cases the rate of power demand which is relatively price-dynamic under PCR largely declined and contrarily the lighting rate soars. 12 refs., 5 figs., 13 tabs.

  5. Temporal bird community dynamics are strongly affected by landscape fragmentation in a Central American tropical forest region

    Science.gov (United States)

    Blandón, A.C.; Perelman, S.B.; Ramírez, M.; López, A.; Javier, O.; Robbins, Chandler S.

    2016-01-01

    Habitat loss and fragmentation are considered the main causes of species extinctions, particularly in tropical ecosystems. The objective of this work was to evaluate the temporal dynamics of tropical bird communities in landscapes with different levels of fragmentation in eastern Guatemala. We evaluated five bird community dynamic parameters for forest specialists and generalists: (1) species extinction, (2) species turnover, (3) number of colonizing species, (4) relative species richness, and (5) a homogeneity index. For each of 24 landscapes, community dynamic parameters were estimated from bird point count data, for the 1998–1999 and 2008–2009 periods, accounting for species’ detection probability. Forest specialists had higher extinction rates and a smaller number of colonizing species in landscapes with higher fragmentation, thus having lower species richness in both time periods. Alternatively, forest generalists elicited a completely different pattern, showing a curvilinear association to forest fragmentation for most parameters. Thus, greater community dynamism for forest generalists was shown in landscapes with intermediate levels of fragmentation. Our study supports general theory regarding the expected negative effects of habitat loss and fragmentation on the temporal dynamics of biotic communities, particularly for forest specialists, providing strong evidence from understudied tropical bird communities.

  6. Numerical study on a single bladed vertical axis wind turbine under dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)

    2017-01-15

    The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.

  7. Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions.

    Science.gov (United States)

    Kalz, Kai F; Kraehnert, Ralph; Dvoyashkin, Muslim; Dittmeyer, Roland; Gläser, Roger; Krewer, Ulrike; Reuter, Karsten; Grunwaldt, Jan-Dierk

    2017-01-09

    In the future, (electro-)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power-to-chemical processes require a shift from steady-state operation towards operation under dynamic reaction conditions. This brings along a number of demands for the design of both catalysts and reactors, because it is well-known that the structure of catalysts is very dynamic. However, in-depth studies of catalysts and catalytic reactors under such transient conditions have only started recently. This requires studies and advances in the fields of 1) operando spectroscopy including time-resolved methods, 2) theory with predictive quality, 3) kinetic modelling, 4) design of catalysts by appropriate preparation concepts, and 5) novel/modular reactor designs. An intensive exchange between these scientific disciplines will enable a substantial gain of fundamental knowledge which is urgently required. This concept article highlights recent developments, challenges, and future directions for understanding catalysts under dynamic reaction conditions.

  8. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  9. Moving alcohol prevention research forward-Part II: new directions grounded in community-based system dynamics modeling.

    Science.gov (United States)

    Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller

    2018-02-01

    Given the complexity of factors contributing to alcohol misuse, appropriate epistemologies and methodologies are needed to understand and intervene meaningfully. We aimed to (1) provide an overview of computational modeling methodologies, with an emphasis on system dynamics modeling; (2) explain how community-based system dynamics modeling can forge new directions in alcohol prevention research; and (3) present a primer on how to build alcohol misuse simulation models using system dynamics modeling, with an emphasis on stakeholder involvement, data sources and model validation. Throughout, we use alcohol misuse among college students in the United States as a heuristic example for demonstrating these methodologies. System dynamics modeling employs a top-down aggregate approach to understanding dynamically complex problems. Its three foundational properties-stocks, flows and feedbacks-capture non-linearity, time-delayed effects and other system characteristics. As a methodological choice, system dynamics modeling is amenable to participatory approaches; in particular, community-based system dynamics modeling has been used to build impactful models for addressing dynamically complex problems. The process of community-based system dynamics modeling consists of numerous stages: (1) creating model boundary charts, behavior-over-time-graphs and preliminary system dynamics models using group model-building techniques; (2) model formulation; (3) model calibration; (4) model testing and validation; and (5) model simulation using learning-laboratory techniques. Community-based system dynamics modeling can provide powerful tools for policy and intervention decisions that can result ultimately in sustainable changes in research and action in alcohol misuse prevention. © 2017 Society for the Study of Addiction.

  10. Influence of biocrusts coverage on microbial communities from underlying arid lands soils

    Science.gov (United States)

    Anguita-Maeso, Manuel; Miralles*, Isabel; van Wesemael, Bas; Lázaro, Roberto; Ortega, Raúl; García-Salcedo, José Antonio; Soriano**, Miguel

    2017-04-01

    In regions where the water availability limits the plant cover, biological soil crusts are especially essential in the development of an almost continuous living skin mediating the inputs and outputs across the soil surface boundary. However, the entire area is not covered equally and microbial communities from underlying soils might be influenced by biocrust type and the percentage of biocrust coverage. To clarify this question, we have collected underlying soils from biocrusts samples dominated by i) incipient colonization by cyanobacteria, ii) cyanobacteria, biocrusts formed by the lichens: iii) Diploschistes diacapsis and Squamarina lentigera and iv) Lepraria issidiata from Tabernas desert (southeast of Spain) so as to determine the differences in the microbial communities from these underlying soils at two extremes of its spatial distribution range: one with a high percentage of biocrust coverage and fewer degradation and other with a huge degradation and less percentage of biocrust coverage. DNA from these samples was isolated by using a commercial kit and it was taken as template for metagenomic analysis. We conducted a sequencing of the amplicons V4-V5 of the 16S rRNA gene with Next-Generation Sequencing (NGS) Illumina MiSeq platform and a relative quantity of bacteria and fungi were accomplished by quantitative qPCR of rRNA 16S and ITS1-5.8S, respectively. The high biocrust coverage position revealed the highest number of bacteria per gram of soil (1.64E+09 in L. issidiata, in 1.89E+09 D. diacapsis and S. lentigera, 1.63E+09 in cyanobacteria and 2.08E+09 in incipient colonization by cyanobacteria) whereas the less favourable position according to the percentage of biocrust coverage showed fewer amount (1.16E+09 in L. issidiata, 6.98E+08 in D. diacapsis and S. lentigera, 1.46E+09 in cyanobacteria and 7.92E+08 in incipient cyanobacteria biocrust). Similarly, the amount of fungi per gram of soil presented identical correlation ranging from the favourable

  11. Potato cultivar type affects the structure of ammonia oxidizer communities in field soil under potato beyond the rhizosphere

    NARCIS (Netherlands)

    Cavalcante Franco Dias, A.; Hoogwout, E.F.; de Cassia Pereira e Silva, M.; Falcão Salles, J.; van Overbeek, L.S.; van Elsas, J.D.

    The effects of plants on the microbiota involved in the oxidation of ammonia in soils have been controversial. Here, we investigated the dynamics in the abundances and community structures of the bacterial and archaeal ammonia oxidizers (AOB and AOA, respectively) in two fields that were cropped

  12. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming.

    Science.gov (United States)

    Hülber, Karl; Wessely, Johannes; Gattringer, Andreas; Moser, Dietmar; Kuttner, Michael; Essl, Franz; Leitner, Michael; Winkler, Manuela; Ertl, Siegrun; Willner, Wolfgang; Kleinbauer, Ingrid; Sauberer, Norbert; Mang, Thomas; Zimmermann, Niklaus E; Dullinger, Stefan

    2016-07-01

    Correlative species distribution models have long been the predominant approach to predict species' range responses to climate change. Recently, the use of dynamic models is increasingly advocated for because these models better represent the main processes involved in range shifts and also simulate transient dynamics. A well-known problem with the application of these models is the lack of data for estimating necessary parameters of demographic and dispersal processes. However, what has been hardly considered so far is the fact that simulating transient dynamics potentially implies additional uncertainty arising from our ignorance of short-term climate variability in future climatic trends. Here, we use endemic mountain plants of Austria as a case study to assess how the integration of decadal variability in future climate affects outcomes of dynamic range models as compared to projected long-term trends and uncertainty in demographic and dispersal parameters. We do so by contrasting simulations of a so-called hybrid model run under fluctuating climatic conditions with those based on a linear interpolation of climatic conditions between current values and those predicted for the end of the 21st century. We find that accounting for short-term climate variability modifies model results nearly as differences in projected long-term trends and much more than uncertainty in demographic/dispersal parameters. In particular, range loss and extinction rates are much higher when simulations are run under fluctuating conditions. These results highlight the importance of considering the appropriate temporal resolution when parameterizing and applying range-dynamic models, and hybrid models in particular. In case of our endemic mountain plants, we hypothesize that smoothed linear time series deliver more reliable results because these long-lived species are primarily responsive to long-term climate averages. © 2016 John Wiley & Sons Ltd.

  13. Population dynamics of genetically diverse Plasmodium falciparum lineages: community-based prospective study in rural Amazonia

    Science.gov (United States)

    ORJUELA-SÁNCHEZ, P.; SILVA-NUNES, M. DA; DA SILVA, N. S.; SCOPEL, K.K.G.; GONÇALVES, R. M.; MALAFRONTE, R. S.; FERREIRA, M. U.

    2010-01-01

    SUMMARY Temporal changes in the prevalence of antigenic variants in Plasmodium falciparum populations have been interpreted as evidence of immune-mediated frequency-dependent selection, but evolutively neutral processes may generate similar patterns of serotype replacement. Over 4 years, we investigated the population dynamics of P. falciparum polymorphisms at the community level by using 11 putatively neutral microsatellite markers. Plasmodium falciparum populations were less diverse than sympatric P. vivax isolates, with less multiple-clone infections, lower number of alleles per locus and lower virtual heterozygosity, but both species showed significant multilocus linkage disequilibrium. Evolutively neutral P. falciparum polymorphisms showed a high turnover rate, with few lineages persisting for several months in the population. Similar results had previously been obtained, in the same community, for sympatric P. vivax isolates. In contrast, the prevalence of the 2 dimorphic types of a major antigen, MSP-2, remained remarkably stable throughout the study period. We suggest that the relatively fast turnover of parasite lineages represents the typical population dynamics of neutral polymorphisms in small populations, with clear implications for the detection of frequency-dependent selection of polymorphisms. PMID:19631016

  14. Geometrical envelopes: Extending graphical contemporary niche theory to communities and eco-evolutionary dynamics.

    Science.gov (United States)

    Koffel, Thomas; Daufresne, Tanguy; Massol, François; Klausmeier, Christopher A

    2016-10-21

    Contemporary niche theory is a powerful structuring framework in theoretical ecology. First developed in the context of resource competition, it has been extended to encompass other types of regulating factors such as shared predators, parasites or inhibitors. A central component of contemporary niche theory is a graphical approach popularized by Tilman that illustrates the different outcomes of competition along environmental gradients, like coexistence and competitive exclusion. These food web modules have been used to address species sorting in community ecology, as well as adaptation and coexistence on eco-evolutionary time scales in adaptive dynamics. Yet, the associated graphical approach has been underused so far in the evolutionary context. In this paper, we provide a rigorous approach to extend this graphical method to a continuum of interacting strategies, using the geometrical concept of the envelope. Not only does this approach provide community and eco-evolutionary bifurcation diagrams along environmental gradients, it also sheds light on the similarities and differences between those two perspectives. Adaptive dynamics naturally merges with this ecological framework, with a close correspondence between the classification of singular strategies and the geometrical properties of the envelope. Finally, this approach provides an integrative tool to study adaptation between levels of organization, from the individual to the ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions.

    Directory of Open Access Journals (Sweden)

    Sven Herrmann

    Full Text Available Constant high rates of dislocation-related complications of total hip replacements (THRs show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients.

  16. Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri.

    Science.gov (United States)

    Guo, X S; Ke, W C; Ding, W R; Ding, L M; Xu, D M; Wang, W W; Zhang, P; Yang, F Y

    2018-01-10

    Using gas chromatography mass spectrometry and the PacBio single molecule with real-time sequencing technology (SMRT), we analyzed the detailed metabolomic profiles and microbial community dynamics involved in ensiled Medicago sativa (alfalfa) inoculated without or with the homofermenter Lactobacillus plantarum or heterofermenter Lactobacillus buchneri. Our results revealed that 280 substances and 102 different metabolites were present in ensiled alfalfa. Inoculation of L. buchneri led to remarkable up-accumulation in concentrations of 4-aminobutyric acid, some free amino acids, and polyols in ensiled alfalfa, whereas considerable down-accumulation in cadaverine and succinic acid were observed in L. plantarum-inoculated silages. Completely different microbial flora and their successions during ensiling were observed in the control and two types of inoculant-treated silages. Inoculation of the L. plantarum or L. buchneri alters the microbial composition dynamics of the ensiled forage in very different manners. Our study demonstrates that metabolomic profiling analysis provides a deep insight in metabolites in silage. Moreover, the PacBio SMRT method revealed the microbial composition and its succession during the ensiling process at the species level. This provides information regarding the microbial processes underlying silage formation and may contribute to target-based regulation methods to achieve high-quality silage production.

  17. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  18. TRBUCKL - A NASTRAN DMAP ALTER FOR LINEAR BUCKLING ANALYSIS UNDER DYNAMIC LOADING

    Science.gov (United States)

    Aiello, R. A.

    1994-01-01

    Delaminations near the outer surface of a laminate are susceptible to local buckling and buckling-induced delamination propagation when the laminate is subjected to transverse impact loading. This results in a loss of stiffness and strength. TRBUCKL is an unique dynamic delamination buckling and delamination propagation analysis capability that can be incorporated into the structural analysis program, NASTRAN. This capability will aid engineers in the design of structures incorporating composite laminates. The capability consists of: (1) a modification of the direct time integration solution sequence which provides a new analysis algorithm that can be used to predict delamination buckling in a laminate subjected to dynamic loading; and (2) a new method of modeling the composite laminate using plate bending elements and multipoint constraints. The capability now exists to predict the time at which the onset of dynamic delamination buckling occurs, the dynamic buckling mode shape, and the dynamic delamination strain energy release rate. A procedure file for NASTRAN, TRBUCKL predicts both impact induced buckling in composite laminates with initial delaminations and the strain energy release rate due to extension of the delamination. In addition, the file is useful in calculating the dynamic delamination strain energy release rate for a composite laminate under impact loading. This procedure simplifies the simulation of progressive crack extension. TRBUCKL has been incorporated into COSMIC NASTRAN. TRBUCKL is a DMAP Alter for NASTRAN. It is intended for use only with the COSMIC NASTRAN Direct Transient Analysis (RF 9) solution sequence. The program is available as a listing only. TRBUCKL was developed in 1987.

  19. An Agent-Based Model of School Closing in Under-Vacccinated Communities During Measles Outbreaks.

    Science.gov (United States)

    Getz, Wayne M; Carlson, Colin; Dougherty, Eric; Porco Francis, Travis C; Salter, Richard

    2016-04-01

    The winter 2014-15 measles outbreak in the US represents a significant crisis in the emergence of a functionally extirpated pathogen. Conclusively linking this outbreak to decreases in the measles/mumps/rubella (MMR) vaccination rate (driven by anti-vaccine sentiment) is critical to motivating MMR vaccination. We used the NOVA modeling platform to build a stochastic, spatially-structured, individual-based SEIR model of outbreaks, under the assumption that R 0 ≈ 7 for measles. We show this implies that herd immunity requires vaccination coverage of greater than approximately 85%. We used a network structured version of our NOVA model that involved two communities, one at the relatively low coverage of 85% coverage and one at the higher coverage of 95%, both of which had 400-student schools embedded, as well as students occasionally visiting superspreading sites (e.g. high-density theme parks, cinemas, etc.). These two vaccination coverage levels are within the range of values occurring across California counties. Transmission rates at schools and superspreading sites were arbitrarily set to respectively 5 and 15 times background community rates. Simulations of our model demonstrate that a 'send unvaccinated students home' policy in low coverage counties is extremely effective at shutting down outbreaks of measles.

  20. [Microbial community structure of the alpine meadow under different grazing styles in Naqu prefecture of Tibet].

    Science.gov (United States)

    Niu, Lei; Liu, Ying-hui; Li, Yue; Ouyang, Sheng-nan

    2015-08-01

    To clarify the effects of grazing styles on the soil microbial community in the alpine meadow, we explored the changes of soil microbial community structure in the alpine meadow located in Naqu district of Tibet Autonomous Region by analyzing the soil chemical properties and phospholipid fatty acids (PLFAs). The results showed that the contents of soil total organic carbon, total phosphate and nitrate nitrogen under the different grazing styles followed the trend of 7-year rest grazing > free grazing > grazing prohibition. Except for the ratio of fungal PLFAs/bacterial PLFAs, total PLFAs, the bacterial PLFAs, the fungal PLFAs, the gram negative bacterial and the gram positive bacterial PLFAs over the different grazing types were in the order of 7-year rest grazing > 5-year grazing prohibition > 7-year and 9-year grazing prohibition. The principal component analysis (PCA) presented that the first principal component (PC1 = 74.6%) was mainly composed of monounsaturated fatty acids, polyunsaturated fatty acids and branched fatty acids, and the second principal component (PC2 = 13.2%) was mainly composed of saturated fatty acids and some monounsaturated fatty acids. Total PLFAs content was significantly positively correlated with microbial biomass carbon content. Compared with grazing prohibition, fallow grazing was best for the alpine meadow in Naqu district, and free grazing with light intensity was good for the alpine meadow.

  1. The lipid response of aerobic marine methanotroph communities under changing environmental conditions.

    Science.gov (United States)

    Rush, D.; Villanueva, L.; van der Meer, M.; S Sinninghe Damsté, J.

    2017-12-01

    Methane (CH4) originating from marine environments accounts for a significant amount of atmospheric greenhouse gas. Aerobic methanotrophs, which convert CH4 to CO­2, are responsible for quenching a part of this methane before its release. Modern-day climate projections show a rapid shift towards a warmer, more acidic ocean. How do these important methanotrophic communities respond to such changes to their environment? Here, we present the results of microcosm experiments from three marine regions influenced by CH4. Particulate organic matter and sediment were collected from the Black Sea, the Baltic Sea, and the North Sea, at depths ideal for aerobic methanotroph communities at the time of sampling (e.g. oxic, in area of active CH4 release). These were incubated under different temperatures, pHs, and labelled 13CH4 concentrations. We monitored methane concentration in these microcosms as an indication of 13CH4 consumption by methanotrophs. Once the methane concentration was history, especially at times when CH4 concentrations were higher than they are at present.

  2. Source-sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities.

    Science.gov (United States)

    Hall, James P J; Wood, A Jamie; Harrison, Ellie; Brockhurst, Michael A

    2016-07-19

    Horizontal gene transfer is a fundamental process in bacterial evolution that can accelerate adaptation via the sharing of genes between lineages. Conjugative plasmids are the principal genetic elements mediating the horizontal transfer of genes, both within and between bacterial species. In some species, plasmids are unstable and likely to be lost through purifying selection, but when alternative hosts are available, interspecific plasmid transfer could counteract this and maintain access to plasmid-borne genes. To investigate the evolutionary importance of alternative hosts to plasmid population dynamics in an ecologically relevant environment, we established simple soil microcosm communities comprising two species of common soil bacteria, Pseudomonas fluorescens and Pseudomonas putida, and a mercury resistance (Hg(R)) plasmid, pQBR57, both with and without positive selection [i.e., addition of Hg(II)]. In single-species populations, plasmid stability varied between species: although pQBR57 survived both with and without positive selection in P. fluorescens, it was lost or replaced by nontransferable Hg(R) captured to the chromosome in P. putida A simple mathematical model suggests these differences were likely due to pQBR57's lower intraspecific conjugation rate in P. putida By contrast, in two-species communities, both models and experiments show that interspecific conjugation from P. fluorescens allowed pQBR57 to persist in P. putida via source-sink transfer dynamics. Moreover, the replacement of pQBR57 by nontransferable chromosomal Hg(R) in P. putida was slowed in coculture. Interspecific transfer allows plasmid survival in host species unable to sustain the plasmid in monoculture, promoting community-wide access to the plasmid-borne accessory gene pool and thus potentiating future evolvability.

  3. Bacterial Community Structure and Dynamics During Corn-Based Bioethanol Fermentation.

    Science.gov (United States)

    Li, Qing; Heist, E Patrick; Moe, Luke A

    2016-02-01

    Corn-based fuel ethanol facilities mix enzymatically treated, gelatinized corn starch with water to generate a "mash" that is used as the substrate in large-scale (∼500,000 gallon) yeast-based fermentations. In contrast to other food and beverage fermentations (e.g., cheese, wine), bioethanol production is presumed to be optimal when bacteria are absent from the fermentation-thus maximizing conversion of glucose to ethanol-yet the facilities are not sterilized. Culture-based analysis has suggested that lactic acid bacteria occupy this niche and, under certain circumstances, can outcompete the dedicated fermentation yeast for nutrients. Here, we use 16S rRNA gene amplicon sequencing to probe bacterial community structure during bioethanol fermentation. Nineteen total batches from five corn-based fuel ethanol fermentation facilities were analyzed. From each batch, five samples were taken. This includes the contents of the yeast propagation tank at inoculation, three samples taken at intervals during the fermentation, and a sample taken at the end of fermentation. Bacterial community structure was compared with time, between facility, between fermentor, between batches from the same fermentor, and against environmental variables within each fermentation. Communities were dominated by members of the Firmicutes and Proteobacteria phyla, with lactic acid bacteria dominating the communities in two of the five facilities. In the other facilities, Proteobacteria (largely members of the Pseudomonas and Escherichia-Shigella genera) outcompete the lactic acid bacteria. In most cases, the yeast propagation tank inoculum imparted a rich bacterial community, but the batches vary regarding whether this inoculum was the primary driver of the fermentation community structure.

  4. Sourdough microbial community dynamics: An analysis during French organic bread-making processes.

    Science.gov (United States)

    Lhomme, Emilie; Urien, Charlotte; Legrand, Judith; Dousset, Xavier; Onno, Bernard; Sicard, Delphine

    2016-02-01

    Natural sourdoughs are commonly used in bread-making processes, especially for organic bread. Despite its role in bread flavor and dough rise, the stability of the sourdough microbial community during and between bread-making processes is debated. We investigated the dynamics of lactic acid bacteria (LAB) and yeast communities in traditional organic sourdoughs of five French bakeries during the bread-making process and several months apart using classical and molecular microbiology techniques. Sourdoughs were sampled at four steps of the bread-making process with repetition. The analysis of microbial density over 68 sourdough/dough samples revealed that both LAB and yeast counts changed along the bread-making process and between bread-making runs. The species composition was less variable. A total of six LAB and nine yeast species was identified from 520 and 1675 isolates, respectively. The dominant LAB species was Lactobacillus sanfranciscensis, found for all bakeries and each bread-making run. The dominant yeast species changed only once between bread-making processes but differed between bakeries. They mostly belonged to the Kazachstania clade. Overall, this study highlights the change of population density within the bread-making process and between bread-making runs and the relative stability of the sourdough species community during bread-making process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dynamic Effects of Biochar on the Bacterial Community Structure in Soil Contaminated with Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Song, Yang; Bian, Yongrong; Wang, Fang; Xu, Min; Ni, Ni; Yang, Xinglun; Gu, Chenggang; Jiang, Xin

    2017-08-16

    Amending soil with biochar is an effective soil remediation strategy for organic contaminants. This study investigated the dynamic effects of wheat straw biochar on the bacterial community structure during remediation by high-throughput sequencing. The wheat straw biochar amended into the soil significantly reduced the bioavailability and toxicity of polycyclic aromatic hydrocarbons (PAHs). Biochar amendment helped to maintain the bacterial diversity in the PAH-contaminated soil. The relationship between the immobilization of PAHs and the soil bacterial diversity fit a quadratic model. Before week 12 of the incubation, the incubation time was the main factor contributing to the changes in the soil bacterial community structure. However, biochar greatly affected the bacterial community structure after 12 weeks of amendment, and the effects were dependent upon the biochar type. Amendment with biochar mainly facilitated the growth of rare bacterial genera (relative abundance of 0.01-1%) in the studied soil. Therefore, the application of wheat straw biochar into PAH-contaminated soil can reduce the environmental risks of PAHs and benefit the soil microbial ecology.

  6. Plankton community dynamics in a subtropical lagoonal system and related factors

    Directory of Open Access Journals (Sweden)

    LETÍCIA DONADEL

    2016-03-01

    Full Text Available ABSTRACT Changes of the plankton community in a shallow, subtropical lagoonal system and its relation to environmental conditions were investigated during an annual cycle to provide information on its spatial and seasonal variation pattern. The study carried out at four sites (three in the Peixe lagoon and one in the Ruivo lagoon, which are located in the Lagoa do Peixe National Park, southern Brazil. The system has a temporary connection to the Atlantic Ocean by a narrow channel. The phytoplankton density was higher in the Peixe lagoon whereas the specific richness was higher in the Ruivo lagoon which is also a site with the lower salinity. The phytoplankton biomass near the channel showed seasonal variation with the highest value in fall and lowest in winter. Zooplankton richness was inversely correlated with salinity, and had the highest values in the Ruivo lagoon. Ordination analysis indicated seasonal and spatial patterns in plankton community in this lagoonal system, related to variation in salinity. In addition, the wind action and precipitation were important factors on the spatial and seasonal salinity changes in the lagoon with direct influence on the plankton community dynamics.

  7. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2012-04-01

    Full Text Available Abstract Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera wood-chips and mown lawn grass clippings (85:15 in dry-weight and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP and solid-state fermentation for the production of cellulolytic enzymes and biofuels.

  8. Start-up of hydrogen bioproduction reactor seeded with sewage sludge and its microbial community dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, N.Q; Gong, M.L.; Xing, D.F. [Harbin Inst. of Technology, Harbin, HL (China). School of Municipal and Environmental Engineering

    2004-07-01

    Various types of reactors have been used to bio-produce hydrogen gas continuously. The startup phase is always long due to the slow growth rate of anaerobic microbes. The authors report on a study into start-up dynamics in three continuously stirred tank reactors (CSTRs). Organic loading rates of 3.0, 7.0, and 10 kg of chemical oxygen demand (COD)/cubic metre/day were used. Sewage sludge was used as an inoculum. Molasses wastewater formed the substrate. The effect of organic loading rate on the formation of fermentation types and the structure of microbial communities during startup was assessed while the hydraulic retention time was kept at 6 hours. When a loading rate of 7.0 kg COD/cubic metre/day was used, an equilibrium microbial community of ethanol fermentation was established in 30 days provided an initial biomass of 6.24 g of volatile suspended solids per litre was also used. The observed average specific hydrogen production rate at this organic loading rate was 40 per cent higher than when a loading rate of 3.0 kg COD/cubic metre/day was used. For the duration of the study, denaturing gradient gel electrophoresis (DGGE) was used to measure the composition of the microbe community. Based on this, the authors conclude that significant changes in population makeup occurred during the first 15 days, but that 30 days was required to establish population with stable metabolic activity. 13 refs., 6 figs.

  9. Mapping Heat-related Risks for Community-based Adaptation Planning under Uncertainty

    Science.gov (United States)

    Bai, Yingjiu; Kaneko, Ikuyo; Kobayashi, Hikaru; Kurihara, Kazuo; Sasaki, Hidetaka; Murata, Akihiko; Takayabu, Izuru

    2016-04-01

    Climate change is leading to more frequent and intense heat waves. Recently, epidemiologic findings on heat-related health impacts have reinforced our understanding of the mortality impacts of extreme heat. This research has several aims: 1) to promote climate prediction services with spatial and temporal information on heat-related risks, using GIS (Geographical Information System), and digital mapping techniques; 2) to propose a visualization approach to articulating the evolution of local heat-health responses over time and the evaluation of new interventions for the implementation of valid community-based adaptation strategies and reliable actionable planning; and 3) to provide an appropriate and simple method of adjusting bias and quantifying the uncertainty in future outcomes, so that regional climate projections may be transcribed into useful forms for a wide variety of different users. Following the 2003 European heat wave, climatologists, medical specialists, and social scientists expedited efforts to revise and integrate risk governance frameworks for communities to take appropriate and effective actions themselves. Recently, the Coupled Model Intercomparison Project (CMIP) methodology has made projections possible for anyone wanting to openly access state-of-the-art climate model outputs and climate data to provide the backbone for decisions. Furthermore, the latest high-solution regional climate model (RCM) has been a huge increase in the volumes of data available. In this study, we used high-quality hourly projections (5-km resolution) from the Non-Hydrostatic Regional Climate Model (NHRCM-5km), following the SRES-A1B scenario developed by the Meteorological Research Institute (MRI) and observational data from the Automated Meteorological Data Acquisition System, Japan Meteorological Agency (JMA). The NHRCM-5km is a dynamic downscaling of results from the MRI-AGCM3.2S (20-km resolution), an atmospheric general circulation model (AGCM) driven by the

  10. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics.

    Science.gov (United States)

    Atkinson, Carla L; Vaughn, Caryn C; Forshay, Kenneth J; Cooper, Joshua T

    2013-06-01

    Nutrient cycling is a key process linking organisms in ecosystems. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high-biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in three rivers (Kiamichi, Little, and Mountain Fork Rivers, south-central United States). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with -26% higher relative abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms. These results corroborated the results of our excretion experiments; our path analysis indicated that mussel excretion has a strong influence on stream water column N:P. Due to the high N:P of mussel excretion, strict N-limitation was alleviated, and the system switched to being co-limited by both N and P. This shows that translocation of nutrients by mussel aggregations is important to nutrient dynamics and algal species composition in these rivers. Our study highlights the

  11. A dynamic processes study of PM retention by trees under different wind conditions.

    Science.gov (United States)

    Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan

    2018-02-01

    Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The resilience of microbial community under drying and rewetting cycles of three forest soils

    Directory of Open Access Journals (Sweden)

    Xue Zhou

    2016-07-01

    Full Text Available Forest soil ecosystems are associated with large pools and fluxes of carbon (C and nitrogen (N, which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycles influence the metabolic state of indigenous soil microbes is crucial to predicting forest soil responses to future climate change. We used 454 pyrosequencing and quantitative PCR to explore the response pattern of present (DNA-based and potentially active (RNA-based soil bacterial communities to the changes in water availability in three different forest types located across two continents (Africa and Asia under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria and Acidobacteria were the most responsive phyla to changes in water availability. Here in this study, the ratio of rRNA transcript to rRNA gene abundance was defined as the indicator of potential activity of microorganisms, we found that the ratio was increased by dry-down and declined by rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and was linked to increases in soil nitrate levels suggesting greater nitrification rates when soil water is available. The different response pattern of the relative abundance in phyla and class level as well as of the abundance in 16S and amoA gene were both site-specific and taxa-specific and might be driven by different life-strategies of microorganism. Overall, we found that, upon rewetting, the present and potentially active bacterial community structure as well as the abundance of bacterial (16S, archaeal (16S and ammonia oxidizers (amoA, all returned to pre-dry-down levels, suggesting that taxa have the ability to recover from desiccation, contributes to the maintenance of microbial biodiversity in harsh ecosystems with continues environmental perturbations, such as the change of water

  13. Dynamics of Plug Formation in a Circular Cylinder Under Low Bond Number Conditions: Experiment and Simulation

    Science.gov (United States)

    Hallaby, Ghazi; Kizito, John P.

    2016-08-01

    The goal of the current study is to investigate the dynamics of two phase interface under a low Bond number condition. Silicone oil is injected into a cylinder under a Bond number of about 0.47 via a side tube forming a T-junction with the former. The time evolution of the interface of silicon oil in a cylinder is captured using a high speed camera. The volume at which the plug is formed is then determined using an image processing tool to analyze the captured images. A numerical simulation is carried out where fluid is injected into a cylinder, under a less than unity Bond number condition, via a side tube. Numerical and experimental results are then compared.

  14. STAMINA OF A GASKETED BOLTED FLANGED PIPE JOINT UNDER DYNAMIC LOADING

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2016-11-01

    Full Text Available Gasketed bolted flange joints are the most critical components in pipelines for their sealing and strength under operating conditions. Most of the work available in literature is under static loading, whereas in industry, cyclic loads are applied due to the vibrating machinery such as motors, pumps, sloshing in offshore applications and in the ships etc. In this study a three dimensional finite element analysis of a gasketed joint is carried out using a spiral wound gasket under bolt up and dynamic operating conditions (internal pressure, axial and bending singly and in combination. The cyclic axial loads are concluded relatively more challenging for both the sealing and strength of the joint. Higher magnitudes of loads and frequencies are also observed more challenging to the joints performance.

  15. Electron-Ion Dynamics in Semiconductors with Defects under Ion Irradiation

    Science.gov (United States)

    Lee, Cheng-Wei; Schleife, André

    Long-term stability is challenging for semiconductor devices under ion radiation such as solar panels in outer space. Exposure to ion radiation induces formation of defects that ultimately reduce solar cell efficiency. It is well-known in the literature that high-energy ion radiation transfers energy to the materials mostly via electronic excitation which is traditionally hard to model. Previously, we demonstrated that Ehrenfest molecular dynamics based on time-dependent density functional theory correctly describes electronic stopping of semiconductors. To better understand the effect of excited electrons on evolution of defects during ion irradiation, we further investigate the time-evolution of occupation number and found that it is correlated to long-term ion dynamics after passage of proton. Furthermore, we found that the presence of excited electrons significantly reduces the atomic diffusion barrier, indicating this effect is essential for the analysis of defect formation and ion dynamics under ion radiation conditions. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

  16. Evaluation of seismic behavior of soils under nuclear containment structures via dynamic centrifuge test

    International Nuclear Information System (INIS)

    Ha, Jeong Gon; Kim, Dong-Soo

    2014-01-01

    Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI

  17. Thermal dynamic simulation of wall for building energy efficiency under varied climate environment

    Science.gov (United States)

    Wang, Xuejin; Zhang, Yujin; Hong, Jing

    2017-08-01

    Aiming at different kind of walls in five cities of different zoning for thermal design, using thermal instantaneous response factors method, the author develops software to calculation air conditioning cooling load temperature, thermal response factors, and periodic response factors. On the basis of the data, the author gives the net work analysis about the influence of dynamic thermal of wall on air-conditioning load and thermal environment in building of different zoning for thermal design regional, and put forward the strategy how to design thermal insulation and heat preservation wall base on dynamic thermal characteristic of wall under different zoning for thermal design regional. And then provide the theory basis and the technical references for the further study on the heat preservation with the insulation are in the service of energy saving wall design. All-year thermal dynamic load simulating and energy consumption analysis for new energy-saving building is very important in building environment. This software will provide the referable scientific foundation for all-year new thermal dynamic load simulation, energy consumption analysis, building environment systems control, carrying through farther research on thermal particularity and general particularity evaluation for new energy -saving walls building. Based on which, we will not only expediently des