WorldWideScience

Sample records for underlying cognition-based models

  1. Chemical model reduction under uncertainty

    KAUST Repository

    Najm, Habib

    2016-01-05

    We outline a strategy for chemical kinetic model reduction under uncertainty. We present highlights of our existing deterministic model reduction strategy, and describe the extension of the formulation to include parametric uncertainty in the detailed mechanism. We discuss the utility of this construction, as applied to hydrocarbon fuel-air kinetics, and the associated use of uncertainty-aware measures of error between predictions from detailed and simplified models.

  2. Modelling microstructural evolution under irradiation

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Microstructural evolution of materials under irradiation is characterised by some unique features that are not typically present in other application environments. While much understanding has been achieved by experimental studies, the ability to model this microstructural evolution for complex materials states and environmental conditions not only enhances understanding, it also enables prediction of materials behaviour under conditions that are difficult to duplicate experimentally. Furthermore, reliable models enable designing materials for improved engineering performance for their respective applications. Thus, development and application of mesoscale microstructural model are important for advancing nuclear materials technologies. In this chapter, the application of the Potts model to nuclear materials will be reviewed and demonstrated, as an example of microstructural evolution processes. (author)

  3. Haldane model under nonuniform strain

    Science.gov (United States)

    Ho, Yen-Hung; Castro, Eduardo V.; Cazalilla, Miguel A.

    2017-10-01

    We study the Haldane model under strain using a tight-binding approach, and compare the obtained results with the continuum-limit approximation. As in graphene, nonuniform strain leads to a time-reversal preserving pseudomagnetic field that induces (pseudo-)Landau levels. Unlike a real magnetic field, strain lifts the degeneracy of the zeroth pseudo-Landau levels at different valleys. Moreover, for the zigzag edge under uniaxial strain, strain removes the degeneracy within the pseudo-Landau levels by inducing a tilt in their energy dispersion. The latter arises from next-to-leading order corrections to the continuum-limit Hamiltonian, which are absent for a real magnetic field. We show that, for the lowest pseudo-Landau levels in the Haldane model, the dominant contribution to the tilt is different from graphene. In addition, although strain does not strongly modify the dispersion of the edge states, their interplay with the pseudo-Landau levels is different for the armchair and zigzag ribbons. Finally, we study the effect of strain in the band structure of the Haldane model at the critical point of the topological transition, thus shedding light on the interplay between nontrivial topology and strain in quantum anomalous Hall systems.

  4. Consistency of the MLE under mixture models

    OpenAIRE

    Chen, Jiahua

    2016-01-01

    The large-sample properties of likelihood-based statistical inference under mixture models have received much attention from statisticians. Although the consistency of the nonparametric MLE is regarded as a standard conclusion, many researchers ignore the precise conditions required on the mixture model. An incorrect claim of consistency can lead to false conclusions even if the mixture model under investigation seems well behaved. Under a finite normal mixture model, for instance, the consis...

  5. Chemical model reduction under uncertainty

    KAUST Repository

    Malpica Galassi, Riccardo

    2017-03-06

    A general strategy for analysis and reduction of uncertain chemical kinetic models is presented, and its utility is illustrated in the context of ignition of hydrocarbon fuel–air mixtures. The strategy is based on a deterministic analysis and reduction method which employs computational singular perturbation analysis to generate simplified kinetic mechanisms, starting from a detailed reference mechanism. We model uncertain quantities in the reference mechanism, namely the Arrhenius rate parameters, as random variables with prescribed uncertainty factors. We propagate this uncertainty to obtain the probability of inclusion of each reaction in the simplified mechanism. We propose probabilistic error measures to compare predictions from the uncertain reference and simplified models, based on the comparison of the uncertain dynamics of the state variables, where the mixture entropy is chosen as progress variable. We employ the construction for the simplification of an uncertain mechanism in an n-butane–air mixture homogeneous ignition case, where a 176-species, 1111-reactions detailed kinetic model for the oxidation of n-butane is used with uncertainty factors assigned to each Arrhenius rate pre-exponential coefficient. This illustration is employed to highlight the utility of the construction, and the performance of a family of simplified models produced depending on chosen thresholds on importance and marginal probabilities of the reactions.

  6. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  7. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2001-12-20

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.

  8. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2001-01-01

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada

  9. Fiber Bundle Model Under Heterogeneous Loading

    Science.gov (United States)

    Roy, Subhadeep; Goswami, Sanchari

    2018-03-01

    The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.

  10. Numerical modeling of materials under extreme conditions

    CERN Document Server

    Brown, Eric

    2014-01-01

    The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.

  11. Modeling of STATCOM under different loading conditions

    DEFF Research Database (Denmark)

    George, G.J.; Ramachandran, Rakesh; Kowsalya, M.

    2012-01-01

    This paper deals with the study and analysis of Flexible AC Transmission Systems (FACTS), mainly the modeling of STATCOM. Reactive Power Compensation plays a very important role in the transmission of Electric Power. A comparative study of how the reactive power is injected into the transmission ...... system with and without STATCOM under different loading condition is also illustrated in this paper. Simulations are performed using MATLAB/SIMULINK software....

  12. Construct Definition Using Cognitively Based Evidence: A Framework for Practice

    Science.gov (United States)

    Ketterlin-Geller, Leanne R.; Yovanoff, Paul; Jung, EunJu; Liu, Kimy; Geller, Josh

    2013-01-01

    In this article, we highlight the need for a precisely defined construct in score-based validation and discuss the contribution of cognitive theories to accurately and comprehensively defining the construct. We propose a framework for integrating cognitively based theoretical and empirical evidence to specify and evaluate the construct. We apply…

  13. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  14. Radionuclide Transport Models Under Ambient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive

  15. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  16. Modelling human eye under blast loading.

    Science.gov (United States)

    Esposito, L; Clemente, C; Bonora, N; Rossi, T

    2015-01-01

    Primary blast injury (PBI) is the general term that refers to injuries resulting from the mere interaction of a blast wave with the body. Although few instances of primary ocular blast injury, without a concomitant secondary blast injury from debris, are documented, some experimental studies demonstrate its occurrence. In order to investigate PBI to the eye, a finite element model of the human eye using simple constitutive models was developed. The material parameters were calibrated by a multi-objective optimisation performed on available eye impact test data. The behaviour of the human eye and the dynamics of mechanisms occurring under PBI loading conditions were modelled. For the generation of the blast waves, different combinations of explosive (trinitrotoluene) mass charge and distance from the eye were analysed. An interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed. The peculiar geometry of the bony orbit (similar to a frustum cone) can induce a resonance cavity effect and generate a pressure standing wave potentially hurtful for eye tissues.

  17. Modeling of porous concrete elements under load

    Science.gov (United States)

    Demchyna, B. H.; Famuliak, Yu. Ye.; Demchyna, Kh. B.

    2017-12-01

    It is known that cell concretes are almost immediately destroyed under load, having reached certain critical stresses. Such kind of destruction is called a "catastrophic failure". Process of crack formation is one of the main factors, influencing process of concrete destruction. Modern theory of crack formation is mainly based on the Griffith theory of destruction. However, the mentioned theory does not completely correspond to the structure of cell concrete with its cell structure, because the theory is intended for a solid body. The article presents one of the possible variants of modelling of the structure of cell concrete and gives some assumptions concerning the process of crack formation in such hollow, not solid environment.

  18. Modeling of porous concrete elements under load

    Directory of Open Access Journals (Sweden)

    Demchyna B.H.

    2017-12-01

    Full Text Available It is known that cell concretes are almost immediately destroyed under load, having reached certain critical stresses. Such kind of destruction is called a “catastrophic failure”. Process of crack formation is one of the main factors, influencing process of concrete destruction. Modern theory of crack formation is mainly based on the Griffith theory of destruction. However, the mentioned theory does not completely correspond to the structure of cell concrete with its cell structure, because the theory is intended for a solid body. The article presents one of the possible variants of modelling of the structure of cell concrete and gives some assumptions concerning the process of crack formation in such hollow, not solid environment.

  19. Multitask Quantile Regression under the Transnormal Model.

    Science.gov (United States)

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2016-01-01

    We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ 1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.

  20. Bioprocess optimization under uncertainty using ensemble modeling

    OpenAIRE

    Liu, Yang; Gunawan, Rudiyanto

    2017-01-01

    The performance of model-based bioprocess optimizations depends on the accuracy of the mathematical model. However, models of bioprocesses often have large uncertainty due to the lack of model identifiability. In the presence of such uncertainty, process optimizations that rely on the predictions of a single “best fit” model, e.g. the model resulting from a maximum likelihood parameter estimation using the available process data, may perform poorly in real life. In this study, we employed ens...

  1. Bioprocess optimization under uncertainty using ensemble modeling.

    Science.gov (United States)

    Liu, Yang; Gunawan, Rudiyanto

    2017-02-20

    The performance of model-based bioprocess optimizations depends on the accuracy of the mathematical model. However, models of bioprocesses often have large uncertainty due to the lack of model identifiability. In the presence of such uncertainty, process optimizations that rely on the predictions of a single "best fit" model, e.g. the model resulting from a maximum likelihood parameter estimation using the available process data, may perform poorly in real life. In this study, we employed ensemble modeling to account for model uncertainty in bioprocess optimization. More specifically, we adopted a Bayesian approach to define the posterior distribution of the model parameters, based on which we generated an ensemble of model parameters using a uniformly distributed sampling of the parameter confidence region. The ensemble-based process optimization involved maximizing the lower confidence bound of the desired bioprocess objective (e.g. yield or product titer), using a mean-standard deviation utility function. We demonstrated the performance and robustness of the proposed strategy in an application to a monoclonal antibody batch production by mammalian hybridoma cell culture. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Evidential Model Validation under Epistemic Uncertainty

    Directory of Open Access Journals (Sweden)

    Wei Deng

    2018-01-01

    Full Text Available This paper proposes evidence theory based methods to both quantify the epistemic uncertainty and validate computational model. Three types of epistemic uncertainty concerning input model data, that is, sparse points, intervals, and probability distributions with uncertain parameters, are considered. Through the proposed methods, the given data will be described as corresponding probability distributions for uncertainty propagation in the computational model, thus, for the model validation. The proposed evidential model validation method is inspired by the idea of Bayesian hypothesis testing and Bayes factor, which compares the model predictions with the observed experimental data so as to assess the predictive capability of the model and help the decision making of model acceptance. Developed by the idea of Bayes factor, the frame of discernment of Dempster-Shafer evidence theory is constituted and the basic probability assignment (BPA is determined. Because the proposed validation method is evidence based, the robustness of the result can be guaranteed, and the most evidence-supported hypothesis about the model testing will be favored by the BPA. The validity of proposed methods is illustrated through a numerical example.

  3. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A.V.; Bezmenov, K.V.; Demchenko, P.F.; Mokhov, I.I.; Petoukhov, V.K. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  4. Modeling of Current Transformers Under Saturation Conditions

    Directory of Open Access Journals (Sweden)

    Martin Prochazka

    2006-01-01

    Full Text Available During a short circuit the input signal of the relay can be distort by the magnetic core saturation of the current transformer. It is useful to verify the behavior of CT by a mathematical model. The paper describes one phase and three phase models and it presents some methods of how to analyze and classify a deformed secondary current

  5. Distinguishing the affective and cognitive bases of implicit attitudes to improve prediction of food choices.

    Science.gov (United States)

    Trendel, Olivier; Werle, Carolina O C

    2016-09-01

    Eating behaviors largely result from automatic processes. Yet, in existing research, automatic or implicit attitudes toward food often fail to predict eating behaviors. Applying findings in cognitive neuroscience research, we propose and find that a central reason why implicit attitudes toward food are not good predictors of eating behaviors is that implicit attitudes are driven by two distinct constructs that often have diverging evaluative consequences: the automatic affective reactions to food (e.g., tastiness; the affective basis of implicit attitudes) and the automatic cognitive reactions to food (e.g., healthiness; the cognitive basis of implicit attitudes). More importantly, we find that the affective and cognitive bases of implicit attitudes directly and uniquely influence actual food choices under different conditions. While the affective basis of implicit attitude is the main driver of food choices, it is the only driver when cognitive resources during choice are limited. The cognitive basis of implicit attitudes uniquely influences food choices when cognitive resources during choice are plentiful but only for participants low in impulsivity. Researchers interested in automatic processes in eating behaviors could thus benefit by distinguishing between the affective and cognitive bases of implicit attitudes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Modeling heat stress under different environmental conditions

    OpenAIRE

    Carabano, Maria-Jesus; Logar, Betka; Bormann, Jeanne; Minet, Julien; Vanrobays, ML; Diaz, Clara; Tychon, Bernard; Gengler, Nicolas; Hammami, Hedi

    2016-01-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across three European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Mi...

  7. Neural mechanisms and models underlying joint action.

    Science.gov (United States)

    Chersi, Fabian

    2011-06-01

    Humans, in particular, and to a lesser extent also other species of animals, possess the impressive capability of smoothly coordinating their actions with those of others. The great amount of work done in recent years in neuroscience has provided new insights into the processes involved in joint action, intention understanding, and task sharing. In particular, the discovery of mirror neurons, which fire both when animals execute actions and when they observe the same actions done by other individuals, has shed light on the intimate relationship between perception and action elucidating the direct contribution of motor knowledge to action understanding. Up to date, however, a detailed description of the neural processes involved in these phenomena is still mostly lacking. Building upon data from single neuron recordings in monkeys observing the actions of a demonstrator and then executing the same or a complementary action, this paper describes the functioning of a biologically constraint neural network model of the motor and mirror systems during joint action. In this model, motor sequences are encoded as independent neuronal chains that represent concatenations of elementary motor acts leading to a specific goal. Action execution and recognition are achieved through the propagation of activity within specific chains. Due to the dual property of mirror neurons, the same architecture is capable of smoothly integrating and switching between observed and self-generated action sequences, thus allowing to evaluate multiple hypotheses simultaneously, understand actions done by others, and to respond in an appropriate way.

  8. Modeling heat stress under different environmental conditions.

    Science.gov (United States)

    Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H

    2016-05-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The

  9. Bootstrap prediction and Bayesian prediction under misspecified models

    OpenAIRE

    Fushiki, Tadayoshi

    2005-01-01

    We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...

  10. Modeling interconnect corners under double patterning misalignment

    Science.gov (United States)

    Hyun, Daijoon; Shin, Youngsoo

    2016-03-01

    Publisher's Note: This paper, originally published on March 16th, was replaced with a corrected/revised version on March 28th. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. Interconnect corners should accurately reflect the effect of misalingment in LELE double patterning process. Misalignment is usually considered separately from interconnect structure variations; this incurs too much pessimism and fails to reflect a large increase in total capacitance for asymmetric interconnect structure. We model interconnect corners by taking account of misalignment in conjunction with interconnect structure variations; we also characterize misalignment effect more accurately by handling metal pitch at both sides of a target metal independently. Identifying metal space at both sides of a target metal.

  11. Biological information systems: Evolution as cognition-based information management.

    Science.gov (United States)

    Miller, William B

    2018-05-01

    An alternative biological synthesis is presented that conceptualizes evolutionary biology as an epiphenomenon of integrated self-referential information management. Since all biological information has inherent ambiguity, the systematic assessment of information is required by living organisms to maintain self-identity and homeostatic equipoise in confrontation with environmental challenges. Through their self-referential attachment to information space, cells are the cornerstone of biological action. That individualized assessment of information space permits self-referential, self-organizing niche construction. That deployment of information and its subsequent selection enacted the dominant stable unicellular informational architectures whose biological expressions are the prokaryotic, archaeal, and eukaryotic unicellular forms. Multicellularity represents the collective appraisal of equivocal environmental information through a shared information space. This concerted action can be viewed as systematized information management to improve information quality for the maintenance of preferred homeostatic boundaries among the varied participants. When reiterated in successive scales, this same collaborative exchange of information yields macroscopic organisms as obligatory multicellular holobionts. Cognition-Based Evolution (CBE) upholds that assessment of information precedes biological action, and the deployment of information through integrative self-referential niche construction and natural cellular engineering antecedes selection. Therefore, evolutionary biology can be framed as a complex reciprocating interactome that consists of the assessment, communication, deployment and management of information by self-referential organisms at multiple scales in continuous confrontation with environmental stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pricing Participating Products under a Generalized Jump-Diffusion Model

    Directory of Open Access Journals (Sweden)

    Tak Kuen Siu

    2008-01-01

    Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.

  13. MODELING OF THE BEHAVIOUR REOLOGICHESKIH TEL UNDER DIFFERENT LAW NAGRUZHENIYA

    Directory of Open Access Journals (Sweden)

    V. V. Bendyukov

    2014-01-01

    Full Text Available The Offered model of the behaviour reologicheskogo bodies (the viscous-elasticity of the materia, designs or systems under controlling influence of the load, acting on given law for some time.

  14. Mathematical modelling of water radiolysis kinetics under reactor conditions

    International Nuclear Information System (INIS)

    Khodulev, L.B.; Shapova, E.A.

    1989-01-01

    Experimental data on coolant radiolysis (RBMK-1000 reactor) were used to construct mathematical model of water radiolysis kinetics under reactor conditions. Good agreement of calculation results with the experiment is noted

  15. Modeling of the bipolar transistor under different pulse ionizing radiations

    Science.gov (United States)

    Antonova, A. M.; Skorobogatov, P. K.

    2017-01-01

    This paper describes a 2D model of the bipolar transistor 2T312 under gamma, X-ray and laser pulse ionizing radiations. Both the Finite Element Discretization and Semiconductor module of Comsol 5.1 are used. There is an analysis of energy deposition in this device under different radiations and the results of transient ionizing current response for some different conditions.

  16. Propagation of Computer Virus under Human Intervention: A Dynamical Model

    OpenAIRE

    Chenquan Gan; Xiaofan Yang; Wanping Liu; Qingyi Zhu; Xulong Zhang

    2012-01-01

    This paper examines the propagation behavior of computer virus under human intervention. A dynamical model describing the spread of computer virus, under which a susceptible computer can become recovered directly and an infected computer can become susceptible directly, is proposed. Through a qualitative analysis of this model, it is found that the virus-free equilibrium is globally asymptotically stable when the basic reproduction number R0≤1, whereas the viral equilibrium is globally asympt...

  17. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for...12211 Research Triangle Park, NC 27709-2211 Online learning , multi-armed bandit, dynamic networks REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S... Online Learning in Dynamic Networks under Unknown Models Report Title This research aims to develop fundamental theories and practical algorithms for

  18. Data-driven Modelling for decision making under uncertainty

    Science.gov (United States)

    Angria S, Layla; Dwi Sari, Yunita; Zarlis, Muhammad; Tulus

    2018-01-01

    The rise of the issues with the uncertainty of decision making has become a very warm conversation in operation research. Many models have been presented, one of which is with data-driven modelling (DDM). The purpose of this paper is to extract and recognize patterns in data, and find the best model in decision-making problem under uncertainty by using data-driven modeling approach with linear programming, linear and nonlinear differential equation, bayesian approach. Model criteria tested to determine the smallest error, and it will be the best model that can be used.

  19. A simplified model of choice behavior under uncertainty

    Directory of Open Access Journals (Sweden)

    Ching-Hung Lin

    2016-08-01

    Full Text Available The Iowa Gambling Task (IGT has been standardized as a clinical assessment tool (Bechara, 2007. Nonetheless, numerous research groups have attempted to modify IGT models to optimize parameters for predicting the choice behavior of normal controls and patients. A decade ago, most researchers considered the expected utility (EU model (Busemeyer and Stout, 2002 to be the optimal model for predicting choice behavior under uncertainty. However, in recent years, studies have demonstrated the prospect utility (PU models (Ahn et al., 2008 to be more effective than the EU models in the IGT. Nevertheless, after some preliminary tests, we propose that Ahn et al. (2008 PU model is not optimal due to some incompatible results between our behavioral and modeling data. This study aims to modify Ahn et al. (2008 PU model to a simplified model and collected 145 subjects’ IGT performance as the benchmark data for comparison. In our simplified PU model, the best goodness-of-fit was found mostly while α approaching zero. More specifically, we retested the key parameters α, λ , and A in the PU model. Notably, the power of influence of the parameters α, λ, and A has a hierarchical order in terms of manipulating the goodness-of-fit in the PU model. Additionally, we found that the parameters λ and A may be ineffective when the parameter α is close to zero in the PU model. The present simplified model demonstrated that decision makers mostly adopted the strategy of gain-stay-loss-shift rather than foreseeing the long-term outcome. However, there still have other behavioral variables that are not well revealed under these dynamic uncertainty situations. Therefore, the optimal behavioral models may not have been found. In short, the best model for predicting choice behavior under dynamic-uncertainty situations should be further evaluated.

  20. Modeling Root Depth Development with time under some Crop and ...

    African Journals Online (AJOL)

    Five empirical models for the prediction of root depth developed with time under four combinations of crop and tillage management systems have been developed by the method of polynomial regression. Root depth predictions by a general model were severally correlated with root depth predictions by the ...

  1. Empirical Analysis of Farm Credit Risk under the Structure Model

    Science.gov (United States)

    Yan, Yan

    2009-01-01

    The study measures farm credit risk by using farm records collected by Farm Business Farm Management (FBFM) during the period 1995-2004. The study addresses the following questions: (1) whether farm's financial position is fully described by the structure model, (2) what are the determinants of farm capital structure under the structure model, (3)…

  2. Modeling Escherichia coli removal in constructed wetlands under pulse loading.

    Science.gov (United States)

    Hamaamin, Yaseen A; Adhikari, Umesh; Nejadhashemi, A Pouyan; Harrigan, Timothy; Reinhold, Dawn M

    2014-03-01

    Manure-borne pathogens are a threat to water quality and have resulted in disease outbreaks globally. Land application of livestock manure to croplands may result in pathogen transport through surface runoff and tile drains, eventually entering water bodies such as rivers and wetlands. The goal of this study was to develop a robust model for estimating the pathogen removal in surface flow wetlands under pulse loading conditions. A new modeling approach was used to describe Escherichia coli removal in pulse-loaded constructed wetlands using adaptive neuro-fuzzy inference systems (ANFIS). Several ANFIS models were developed and validated using experimental data under pulse loading over two seasons (winter and summer). In addition to ANFIS, a mechanistic fecal coliform removal model was validated using the same sets of experimental data. The results showed that the ANFIS model significantly improved the ability to describe the dynamics of E. coli removal under pulse loading. The mechanistic model performed poorly as demonstrated by lower coefficient of determination and higher root mean squared error compared to the ANFIS models. The E. coli concentrations corresponding to the inflection points on the tracer study were keys to improving the predictability of the E. coli removal model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. One-dimensional models of thermal activation under shear stress

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2003-01-01

    Full Text Available - dimensional models presented here may illuminate the study of more realistic models. For the model in which as many dislocations are poised for backward jumps as for forward jumps, the experimental activation volume Vye(C27a) under applied stresses close to C...27a is different from the true activation volume V(C27) evaluated at C27 ?C27a. The relations between the two are developed. A model is then discussed in which fewer dislocations are available for backward than for forward jumps. Finally...

  4. Partitioning uncertainty in streamflow projections under nonstationary model conditions

    Science.gov (United States)

    Chawla, Ila; Mujumdar, P. P.

    2018-02-01

    Assessing the impacts of Land Use (LU) and climate change on future streamflow projections is necessary for efficient management of water resources. However, model projections are burdened with significant uncertainty arising from various sources. Most of the previous studies have considered climate models and scenarios as major sources of uncertainty, but uncertainties introduced by land use change and hydrologic model assumptions are rarely investigated. In this paper an attempt is made to segregate the contribution from (i) general circulation models (GCMs), (ii) emission scenarios, (iii) land use scenarios, (iv) stationarity assumption of the hydrologic model, and (v) internal variability of the processes, to overall uncertainty in streamflow projections using analysis of variance (ANOVA) approach. Generally, most of the impact assessment studies are carried out with unchanging hydrologic model parameters in future. It is, however, necessary to address the nonstationarity in model parameters with changing land use and climate. In this paper, a regression based methodology is presented to obtain the hydrologic model parameters with changing land use and climate scenarios in future. The Upper Ganga Basin (UGB) in India is used as a case study to demonstrate the methodology. The semi-distributed Variable Infiltration Capacity (VIC) model is set-up over the basin, under nonstationary conditions. Results indicate that model parameters vary with time, thereby invalidating the often-used assumption of model stationarity. The streamflow in UGB under the nonstationary model condition is found to reduce in future. The flows are also found to be sensitive to changes in land use. Segregation results suggest that model stationarity assumption and GCMs along with their interactions with emission scenarios, act as dominant sources of uncertainty. This paper provides a generalized framework for hydrologists to examine stationarity assumption of models before considering them

  5. Modeling the Propagation of Mobile Phone Virus under Complex Network

    OpenAIRE

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei; Yao, Yu

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intende...

  6. Fuzzy techniques for subjective workload-score modeling under uncertainties.

    Science.gov (United States)

    Kumar, Mohit; Arndt, Dagmar; Kreuzfeld, Steffi; Thurow, Kerstin; Stoll, Norbert; Stoll, Regina

    2008-12-01

    This paper deals with the development of a computer model to estimate the subjective workload score of individuals by evaluating their heart-rate (HR) signals. The identification of a model to estimate the subjective workload score of individuals under different workload situations is too ambitious a task because different individuals (due to different body conditions, emotional states, age, gender, etc.) show different physiological responses (assessed by evaluating the HR signal) under different workload situations. This is equivalent to saying that the mathematical mappings between physiological parameters and the workload score are uncertain. Our approach to deal with the uncertainties in a workload-modeling problem consists of the following steps: 1) The uncertainties arising due the individual variations in identifying a common model valid for all the individuals are filtered out using a fuzzy filter; 2) stochastic modeling of the uncertainties (provided by the fuzzy filter) use finite-mixture models and utilize this information regarding uncertainties for identifying the structure and initial parameters of a workload model; and 3) finally, the workload model parameters for an individual are identified in an online scenario using machine learning algorithms. The contribution of this paper is to propose, with a mathematical analysis, a fuzzy-based modeling technique that first filters out the uncertainties from the modeling problem, analyzes the uncertainties statistically using finite-mixture modeling, and, finally, utilizes the information about uncertainties for adapting the workload model to an individual's physiological conditions. The approach of this paper, demonstrated with the real-world medical data of 11 subjects, provides a fuzzy-based tool useful for modeling in the presence of uncertainties.

  7. Road Impedance Model Study under the Control of Intersection Signal

    Directory of Open Access Journals (Sweden)

    Yunlin Luo

    2015-01-01

    Full Text Available Road traffic impedance model is a difficult and critical point in urban traffic assignment and route guidance. The paper takes a signalized intersection as the research object. On the basis of traditional traffic wave theory including the implementation of traffic wave model and the analysis of vehicles’ gathering and dissipating, the road traffic impedance model is researched by determining the basic travel time and waiting delay time. Numerical example results have proved that the proposed model in this paper has received better calculation performance compared to existing model, especially in flat hours. The values of mean absolute percentage error (MAPE and mean absolute deviation (MAD are separately reduced by 3.78% and 2.62 s. It shows that the proposed model has feasibility and availability in road traffic impedance under intersection signal.

  8. Asymptotics for Greeks under the constant elasticity of variance model

    OpenAIRE

    Kritski, Oleg L.; Zalmezh, Vladimir F.

    2017-01-01

    This paper is concerned with the asymptotics for Greeks of European-style options and the risk-neutral density function calculated under the constant elasticity of variance model. Formulae obtained help financial engineers to construct a perfect hedge with known behaviour and to price any options on financial assets.

  9. A flexible model for actuarial risks under dependence

    NARCIS (Netherlands)

    Albers, Willem/Wim; Kallenberg, W.C.M.; Lukocius, V.

    Methods for computing risk measures, such as stop-loss premiums, tacitly assume independence of the underlying individual risks. This can lead to huge errors even when only small dependencies occur. In the present paper, a general model is developed which covers what happens in practice in a

  10. UNDER GRADUATE RESEARCH An alternative model of doing ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. UNDER GRADUATE RESEARCH An alternative model of doing science. The main work force is undergraduate students. Using research as a tool in education. Advantages : High risk tolerance. Infinite energy. Uninhibited lateral thinking. Problems: Japanese ...

  11. Optimization of Weibull deteriorating items inventory model under ...

    Indian Academy of Sciences (India)

    In this study, we have discussed the development of an inventory model when the deterioration rate of the item follows Weibull two parameter distributions under the effect of selling price and time dependent demand, since, not only the selling price, but also the time is a crucial factor to enhance the demand in the market as ...

  12. A CHF Model in Narrow Gaps under Saturated Boiling

    International Nuclear Information System (INIS)

    Park, Suki; Kim, Hyeonil; Park, Cheol

    2014-01-01

    Many researchers have paid a great attention to the CHF in narrow gaps due to enormous industrial applications. Especially, a great number of researches on the CHF have been carried out in relation to nuclear safety issues such as in-vessel retention for nuclear power plants during a severe accident. Analytical studies to predict the CHF in narrow gaps have been also reported. Yu et al. (2012) developed an analytical model to predict the CHF on downward facing and inclined heaters based on the model of Kandlikar et al. (2001) for an upward facing heater. A new theoretical model is developed to predict the CHF in narrow gaps under saturated pool boiling. This model is applicable when one side of coolant channels or both sides are heated including the effects of heater orientation. The present model is compared with the experimental CHF data obtained in narrow gaps. A new analytical CHF model is proposed to predict CHF for narrow gaps under saturated pool boiling. This model can be applied to one-side or two-sides heating surface and also consider the effects of heater orientation on CHF. The present model is compared with the experimental data obtained in narrow gaps with one heater. The comparisons indicate that the present model shows a good agreement with the experimental CHF data in the horizontal annular tubes. However, it generally under-predicts the experimental data in the narrow rectangular gaps except the data obtained in the gap thickness of 10 mm and the horizontal downward facing heater

  13. Verification of the karst flow model under laboratory controlled conditions

    Science.gov (United States)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  14. A model for scheduling projects under the condition of inflation and under penalty and reward arrangements

    Directory of Open Access Journals (Sweden)

    J.K. Jolayemi

    2014-01-01

    Full Text Available A zero-one mixed integer linear programming model is developed for the scheduling of projects under the condition of inflation and under penalty and reward arrangements. The effects of inflation on time-cost trade-off curves are illustrated and a modified approach to time-cost trade-off analysis presented. Numerical examples are given to illustrate the model and its properties. The examples show that misleading schedules and inaccurate project-cost estimates will be produced if the inflation factor is neglected in an environment of high inflation. They also show that award of penalty or bonus is a catalyst for early completion of a project, just as it can be expected.

  15. Parameter estimation for groundwater models under uncertain irrigation data

    Science.gov (United States)

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  16. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  17. Misleading prioritizations from modelling range shifts under climate change

    Science.gov (United States)

    Sofaer, Helen R.; Jarnevich, Catherine S.; Flather, Curtis H.

    2018-01-01

    AimConservation planning requires the prioritization of a subset of taxa and geographical locations to focus monitoring and management efforts. Integration of the threats and opportunities posed by climate change often relies on predictions from species distribution models, particularly for assessments of vulnerability or invasion risk for multiple taxa. We evaluated whether species distribution models could reliably rank changes in species range size under climate and land use change.LocationConterminous U.S.A.Time period1977–2014.Major taxa studiedPasserine birds.MethodsWe estimated ensembles of species distribution models based on historical North American Breeding Bird Survey occurrences for 190 songbirds, and generated predictions to recent years given c. 35 years of observed land use and climate change. We evaluated model predictions using standard metrics of discrimination performance and a more detailed assessment of the ability of models to rank species vulnerability to climate change based on predicted range loss, range gain, and overall change in range size.ResultsSpecies distribution models yielded unreliable and misleading assessments of relative vulnerability to climate and land use change. Models could not accurately predict range expansion or contraction, and therefore failed to anticipate patterns of range change among species. These failures occurred despite excellent overall discrimination ability and transferability to the validation time period, which reflected strong performance at the majority of locations that were either always or never occupied by each species.Main conclusionsModels failed for the questions and at the locations of greatest interest to conservation and management. This highlights potential pitfalls of multi-taxa impact assessments under global change; in our case, models provided misleading rankings of the most impacted species, and spatial information about range changes was not credible. As modelling methods and

  18. Modeling ocean wave propagation under sea ice covers

    Science.gov (United States)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  19. Cognition-based and affect-based trust as mediators of leader behavior influences on team performance.

    Science.gov (United States)

    Schaubroeck, John; Lam, Simon S K; Peng, Ann Chunyan

    2011-07-01

    We develop a model in which cognitive and affective trust in the leader mediate the relationship between leader behavior and team psychological states that, in turn, drive team performance. The model is tested on a sample of 191 financial services teams in Hong Kong and the U.S. Servant leadership influenced team performance through affect-based trust and team psychological safety. Transformational leadership influenced team performance indirectly through cognition-based trust. Cognition-based trust directly influenced team potency and indirectly (through affect-based trust) influenced team psychological safety. The effects of leader behavior on team performance were fully mediated through the trust in leader variables and the team psychological states. Servant leadership explained an additional 10% of the variance in team performance beyond the effect of transformational leadership. We discuss implications of these results for research on the relationship between leader behavior and team performance, and for efforts to enhance leader development by combining knowledge from different leadership theories.

  20. Modeling the constitutive behavior of RAFM steels under irradiation conditions

    Science.gov (United States)

    Aktaa, J.; Petersen, C.

    2011-10-01

    A coupled viscoplastic deformation damage model will be presented which is modified to take into account irradiation induced hardening and its recovery due to inelastic deformation and/or high temperature annealing. The model allows the prediction of the constitutive behavior of RAFM steels under arbitrary creep-fatigue and irradiation loading conditions. It can be implemented in commercial finite element codes and thus be used for the lifetime assessment of fusion reactor components. The model is applied to describe the behavior of the RAFM steels, EUROFER 97 and F82H mod, observed in post irradiation examinations of the irradiation programs ARBOR I and ARBOR II. Data from their tensile and low cycle fatigue tests were used to determine the material and temperature dependent parameters of the model and to verify its prediction capability.

  1. Improving the transferability of hydrological model parameters under changing conditions

    Science.gov (United States)

    Huang, Yingchun; Bárdossy, András

    2014-05-01

    Hydrological models are widely utilized to describe catchment behaviors with observed hydro-meteorological data. Hydrological process may be considered as non-stationary under the changing climate and land use conditions. An applicable hydrological model should be able to capture the essential features of the target catchment and therefore be transferable to different conditions. At present, many model applications based on the stationary assumptions are not sufficient for predicting further changes or time variability. The aim of this study is to explore new model calibration methods in order to improve the transferability of model parameters. To cope with the instability of model parameters calibrated on catchments in non-stationary conditions, we investigate the idea of simultaneously calibration on streamflow records for the period with dissimilar climate characteristics. In additional, a weather based weighting function is implemented to adjust the calibration period to future trends. For regions with limited data and ungauged basins, the common calibration was applied by using information from similar catchments. Result shows the model performance and transfer quantity could be well improved via common calibration. This model calibration approach will be used to enhance regional water management and flood forecasting capabilities.

  2. Modeling protein network evolution under genome duplication and domain shuffling

    Directory of Open Access Journals (Sweden)

    Isambert Hervé

    2007-11-01

    Full Text Available Abstract Background Successive whole genome duplications have recently been firmly established in all major eukaryote kingdoms. Such exponential evolutionary processes must have largely contributed to shape the topology of protein-protein interaction (PPI networks by outweighing, in particular, all time-linear network growths modeled so far. Results We propose and solve a mathematical model of PPI network evolution under successive genome duplications. This demonstrates, from first principles, that evolutionary conservation and scale-free topology are intrinsically linked properties of PPI networks and emerge from i prevailing exponential network dynamics under duplication and ii asymmetric divergence of gene duplicates. While required, we argue that this asymmetric divergence arises, in fact, spontaneously at the level of protein-binding sites. This supports a refined model of PPI network evolution in terms of protein domains under exponential and asymmetric duplication/divergence dynamics, with multidomain proteins underlying the combinatorial formation of protein complexes. Genome duplication then provides a powerful source of PPI network innovation by promoting local rearrangements of multidomain proteins on a genome wide scale. Yet, we show that the overall conservation and topology of PPI networks are robust to extensive domain shuffling of multidomain proteins as well as to finer details of protein interaction and evolution. Finally, large scale features of direct and indirect PPI networks of S. cerevisiae are well reproduced numerically with only two adjusted parameters of clear biological significance (i.e. network effective growth rate and average number of protein-binding domains per protein. Conclusion This study demonstrates the statistical consequences of genome duplication and domain shuffling on the conservation and topology of PPI networks over a broad evolutionary scale across eukaryote kingdoms. In particular, scale

  3. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    DEFF Research Database (Denmark)

    Bunea, M.; Perers, Bengt; Eicher, S.

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  4. Grain breakage under uniaxial compression, through 3D DEM modelling

    Science.gov (United States)

    Nader, François; Silvani, Claire; Djeran-Maigre, Irini

    2017-06-01

    A breakable grain model is presented, using the concept of particles assembly. Grains of polyhedral shapes are generated, formed by joining together tetrahedral subgrains using cohesive bonds. Single grain crushing simulations are performed for multiple values of the intra-granular cohesion to study the effect on the grain's strength. The same effect of intra-granular cohesion is studied under oedometric compression on samples of around 800 grains, which allows the evaluation of grain breakage model on the macroscopic behaviour. Grain size distribution curves and grain breakage ratios are monitored throughout the simulations.

  5. Grain breakage under uniaxial compression, through 3D DEM modelling

    Directory of Open Access Journals (Sweden)

    Nader François

    2017-01-01

    Full Text Available A breakable grain model is presented, using the concept of particles assembly. Grains of polyhedral shapes are generated, formed by joining together tetrahedral subgrains using cohesive bonds. Single grain crushing simulations are performed for multiple values of the intra-granular cohesion to study the effect on the grain’s strength. The same effect of intra-granular cohesion is studied under oedometric compression on samples of around 800 grains, which allows the evaluation of grain breakage model on the macroscopic behaviour. Grain size distribution curves and grain breakage ratios are monitored throughout the simulations.

  6. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  7. Model analyses for sustainable energy supply under CO2 restrictions

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Ishitani, Hisashi.

    1995-01-01

    This paper aims at clarifying key points for realizing sustainable energy supply under restrictions on CO 2 emissions. For this purpose, possibility of solar breeding system is investigated as a key technology for the sustainable energy supply. The authors describe their mathematical model simulating global energy supply and demand in ultra-long term. Depletion of non-renewable resources and constraints on CO 2 emissions are taken into consideration in the model. Computed results have shown that present energy system based on non-renewable resources shifts to a system based on renewable resources in the ultra-long term with appropriate incentives

  8. Electricity pricing model in thermal generating stations under deregulation

    International Nuclear Information System (INIS)

    Reji, P.; Ashok, S.; Moideenkutty, K.M.

    2007-01-01

    In regulated public utilities with competitive power markets, deregulation has replaced the monopoly. Under the deregulated power market, the electricity price primarily depends on market mechanism and power demand. In this market, generators generally follow marginal pricing. Each generator fixes the electricity price based on their pricing strategy and it leads to more price volatility. This paper proposed a model to determine the electricity price considering all operational constraints of the plant and economic variables that influenced the price, for a thermal generating station under deregulation. The purpose of the model was to assist existing stations, investors in the power sector, regulatory authorities, transmission utilities, and new power generators in decision-making. The model could accommodate price volatility in the market and was based on performance incentive/penalty considering plant load factor, availability of the plant and peak/ off peak demand. The model was applied as a case study to a typical thermal utility in India to determine the electricity price. It was concluded that the case study of a thermal generating station in a deregulated environment showed that the electricity price mainly depended on the gross calorific value (GCV) of fuel, mode of operation, price of the fuel, and operating charges. 11 refs., 2 tabs., 1 fig

  9. Modeling Malaria Vector Distribution under Climate Change Scenarios in Kenya

    Science.gov (United States)

    Ngaina, J. N.

    2017-12-01

    Projecting the distribution of malaria vectors under climate change is essential for planning integrated vector control strategies for sustaining elimination and preventing reintroduction of malaria. However, in Kenya, little knowledge exists on the possible effects of climate change on malaria vectors. Here we assess the potential impact of future climate change on locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili. Environmental data (Climate, Land cover and elevation) and primary empirical geo-located species-presence data were identified. The principle of maximum entropy (Maxent) was used to model the species' potential distribution area under paleoclimate, current and future climates. The Maxent model was highly accurate with a statistically significant AUC value. Simulation-based estimates suggest that the environmentally suitable area (ESA) for Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis would increase under all two scenarios for mid-century (2016-2045), but decrease for end century (2071-2100). An increase in ESA of An. Funestus was estimated under medium stabilizing (RCP4.5) and very heavy (RCP8.5) emission scenarios for mid-century. Our findings can be applied in various ways such as the identification of additional localities where Anopheles malaria vectors may already exist, but has not yet been detected and the recognition of localities where it is likely to spread to. Moreover, it will help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling

  10. Computational modeling for hexcan failure under core distruptive accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, T.; Ninokata, H.; Shimizu, A. [Tokyo Institute of Technology (Japan)

    1995-09-01

    This paper describes the development of computational modeling for hexcan wall failures under core disruptive accident conditions of fast breeder reactors. A series of out-of-pile experiments named SIMBATH has been analyzed by using the SIMMER-II code. The SIMBATH experiments were performed at KfK in Germany. The experiments used a thermite mixture to simulate fuel. The test geometry of SIMBATH ranged from single pin to 37-pin bundles. In this study, phenomena of hexcan wall failure found in a SIMBATH test were analyzed by SIMMER-II. Although the original model of SIMMER-II did not calculate any hexcan failure, several simple modifications made it possible to reproduce the hexcan wall melt-through observed in the experiment. In this paper the modifications and their significance are discussed for further modeling improvements.

  11. Numerical solution of dynamic equilibrium models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    2013-01-01

    We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations...... of the retarded type. We apply the Waveform Relaxation algorithm, i.e., we provide a guess of the policy function and solve the resulting system of (deterministic) ordinary differential equations by standard techniques. For parametric restrictions, analytical solutions to the stochastic growth model and a novel...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....

  12. Assessment of interfacial heat transfer models under subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: fbraz@ieav.cta.br [Instituto de Estudos Avançados (DCTA/IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear

    2017-07-01

    The present study concerns a detailed analysis of subcooled flow boiling characteristics under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. An uniform heat flux of 570 kW/m2 and saturation pressure of 4.5 MPa were applied to the channel wall, whereas water mass flux of 900 kg/m2s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of CFD technique for the estimation of wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Different sub-models of interfacial heat transfer coefficient were applied and compared, allowing a better prediction of void fraction along the heated channel. (author)

  13. Modeling of Soybean under Present and Future Climates in Mozambique

    Directory of Open Access Journals (Sweden)

    Manuel António Dina Talacuece

    2016-06-01

    Full Text Available This study aims to calibrate and validate the generic crop model (CROPGRO-Soybean and estimate the soybean yield, considering simulations with different sowing times for the current period (1990–2013 and future climate scenario (2014–2030. The database used came from observed data, nine climate models of CORDEX (Coordinated Regional climate Downscaling Experiment-Africa framework and MERRA (Modern Era Retrospective-Analysis for Research and Applications reanalysis. The calibration and validation data for the model were acquired in field experiments, carried out in the 2009/2010 and 2010/2011 growing seasons in the experimental area of the International Institute of Tropical Agriculture (IITA in Angónia, Mozambique. The yield of two soybean cultivars: Tgx 1740-2F and Tgx 1908-8F was evaluated in the experiments and modeled for two distinct CO2 concentrations. Our model simulation results indicate that the fertilization effect leads to yield gains for both cultivars, ranging from 11.4% (Tgx 1908-8F to 15% (Tgx 1740-2Fm when compared to the performance of those cultivars under current CO2 atmospheric concentration. Moreover, our results show that MERRA, the RegCM4 (Regional Climatic Model version 4 and CNRM-CM5 (Centre National de Recherches Météorologiques – Climatic Model version 5 models provided more accurate estimates of yield, while others models underestimate yield as compared to observations, a fact that was demonstrated to be related to the model’s capability of reproducing the precipitation and the surface radiation amount.

  14. Outdoor FSO Communications Under Fog: Attenuation Modeling and Performance Evaluation

    KAUST Repository

    Esmail, Maged Abdullah

    2016-07-18

    Fog is considered to be a primary challenge for free space optics (FSO) systems. It may cause attenuation that is up to hundreds of decibels per kilometer. Hence, accurate modeling of fog attenuation will help telecommunication operators to engineer and appropriately manage their networks. In this paper, we examine fog measurement data coming from several locations in Europe and the United States and derive a unified channel attenuation model. Compared with existing attenuation models, our proposed model achieves a minimum of 9 dB, which is lower than the average root-mean-square error (RMSE). Moreover, we have investigated the statistical behavior of the channel and developed a probabilistic model under stochastic fog conditions. Furthermore, we studied the performance of the FSO system addressing various performance metrics, including signal-to-noise ratio (SNR), bit-error rate (BER), and channel capacity. Our results show that in communication environments with frequent fog, FSO is typically a short-range data transmission technology. Therefore, FSO will have its preferred market segment in future wireless fifth-generation/sixth-generation (5G/6G) networks having cell sizes that are lower than a 1-km diameter. Moreover, the results of our modeling and analysis can be applied in determining the switching/thresholding conditions in highly reliable hybrid FSO/radio-frequency (RF) networks.

  15. Modeling the Propagation of Mobile Phone Virus under Complex Network

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2014-01-01

    Full Text Available Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively.

  16. Modeling the propagation of mobile phone virus under complex network.

    Science.gov (United States)

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei; Yao, Yu

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively.

  17. Modeling the Propagation of Mobile Phone Virus under Complex Network

    Science.gov (United States)

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209

  18. Thermal modelling of PV module performance under high ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.

  19. Modeling Bird Migration under Climate Change: A Mechanistic Approach

    Science.gov (United States)

    Smith, James A.

    2009-01-01

    How will migrating birds respond to changes in the environment under climate change? What are the implications for migratory success under the various accelerated climate change scenarios as forecast by the Intergovernmental Panel on Climate Change? How will reductions or increased variability in the number or quality of wetland stop-over sites affect migratory bird species? The answers to these questions have important ramifications for conservation biology and wildlife management. Here, we describe the use of continental scale simulation modeling to explore how spatio-temporal changes along migratory flyways affect en-route migration success. We use an individually based, biophysical, mechanistic, bird migration model to simulate the movement of shorebirds in North America as a tool to study how such factors as drought and wetland loss may impact migratory success and modify migration patterns. Our model is driven by remote sensing and climate data and incorporates important landscape variables. The energy budget components of the model include resting, foraging, and flight, but presently predation is ignored. Results/Conclusions We illustrate our model by studying the spring migration of sandpipers through the Great Plains to their Arctic breeding grounds. Why many species of shorebirds have shown significant declines remains a puzzle. Shorebirds are sensitive to stop-over quality and spacing because of their need for frequent refueling stops and their opportunistic feeding patterns. We predict bird "hydrographs that is, stop-over frequency with latitude, that are in agreement with the literature. Mean stop-over durations predicted from our model for nominal cases also are consistent with the limited, but available data. For the shorebird species simulated, our model predicts that shorebirds exhibit significant plasticity and are able to shift their migration patterns in response to changing drought conditions. However, the question remains as to whether this

  20. Regional Climate Variability Under Model Simulations of Solar Geoengineering

    Science.gov (United States)

    Dagon, Katherine; Schrag, Daniel P.

    2017-11-01

    Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.

  1. Modeling non-monotonic properties under propositional argumentation

    Science.gov (United States)

    Wang, Geng; Lin, Zuoquan

    2013-03-01

    In the field of knowledge representation, argumentation is usually considered as an abstract framework for nonclassical logic. In this paper, however, we'd like to present a propositional argumentation framework, which can be used to closer simulate a real-world argumentation. We thereby argue that under a dialectical argumentation game, we can allow non-monotonic reasoning even under classical logic. We introduce two methods together for gaining nonmonotonicity, one by giving plausibility for arguments, the other by adding "exceptions" which is similar to defaults. Furthermore, we will give out an alternative definition for propositional argumentation using argumentative models, which is highly related to the previous reasoning method, but with a simple algorithm for calculation.

  2. Development of ionospheric data assimilation model under geomagnetic storm conditions

    Science.gov (United States)

    Lin, C. C. H.; Chen, C. H.; Chen, W.; Matsuo, T.

    2016-12-01

    This study attempts to construct the ionosphere data assimilation model for both quiet and storm time ionosphere. The model assimilates radio occultation and ground-based GNSS observations of global ionosphere using an Ensemble Kalman Filter (EnKF) software of Data Assimilation Research Testbed (DART) together with the theoretical thermosphere-ionosphere-electrodynamic general circulation model (TIEGCM), developed by National Center for Atmospheric Research (NCAR). Using DART-TIEGCM, we investigate the effects of rapid assimilation-forecast cycling for the 26 September 2011 geomagnetic storm period. Effects of various assimilation-forecast cycles, 60-, 30-, and 10-minutes, on the ionospheric forecast are examined by using the global root-mean-square of observation-minus-forecast (OmF) TEC residuals during the entire storm period. Examinations show that the 10-minutes assimilation cycle could greatly improve the quality of model forecast under the storm conditions. Additionally, examinations of storm-time forecast quality for different high latitude forcing given by Heelis and Weimer empirical models are also performed.

  3. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    Science.gov (United States)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M.; Browne, Alan L.; Ulicny, John; Johnson, Nancy

    2013-11-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s-1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R&D Center for nominal drop speeds of up to 6 m s-1.

  4. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    International Nuclear Information System (INIS)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M; Browne, Alan L; Ulicny, John; Johnson, Nancy

    2013-01-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s −1 . Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R and D Center for nominal drop speeds of up to 6 m s −1 . (paper)

  5. Replenishment policy for an inventory model under inflation

    Science.gov (United States)

    Singh, Vikramjeet; Saxena, Seema; Singh, Pushpinder; Mishra, Nitin Kumar

    2017-07-01

    The purpose of replenishment is to keep the flow of inventory in the system. To determine an optimal replenishment policy is a great challenge in developing an inventory model. Inflation is defined as the rate at which the prices of goods and services are rising over a time period. The cost parameters are affected by the rate of inflation. High rate of inflation affects the organizations financial conditions. Based on the above backdrop the present paper proposes the retailers replenishment policy for deteriorating items with different cycle lengths under inflation. The shortages are partially backlogged. At last numerical examples validate the results.

  6. Modeling the Underlying Dynamics of the Spread of Crime

    Science.gov (United States)

    McMillon, David; Simon, Carl P.; Morenoff, Jeffrey

    2014-01-01

    The spread of crime is a complex, dynamic process that calls for a systems level approach. Here, we build and analyze a series of dynamical systems models of the spread of crime, imprisonment and recidivism, using only abstract transition parameters. To find the general patterns among these parameters—patterns that are independent of the underlying particulars—we compute analytic expressions for the equilibria and for the tipping points between high-crime and low-crime equilibria in these models. We use these expressions to examine, in particular, the effects of longer prison terms and of increased incarceration rates on the prevalence of crime, with a follow-up analysis on the effects of a Three-Strike Policy. PMID:24694545

  7. Instrumental variables estimation under a structural Cox model

    DEFF Research Database (Denmark)

    Martinussen, Torben; Nørbo Sørensen, Ditte; Vansteelandt, Stijn

    2017-01-01

    Instrumental variable (IV) analysis is an increasingly popular tool for inferring the effect of an exposure on an outcome, as witnessed by the growing number of IV applications in epidemiology, for instance. The majority of IV analyses of time-to-event endpoints are, however, dominated by heuristic...... and instruments. We propose a novel class of estimators and derive their asymptotic properties. The methodology is illustrated using two real data applications, and using simulated data....... approaches. More rigorous proposals have either sidestepped the Cox model, or considered it within a restrictive context with dichotomous exposure and instrument, amongst other limitations. The aim of this article is to reconsider IV estimation under a structural Cox model, allowing for arbitrary exposure...

  8. Dynamic malware containment under an epidemic model with alert

    Science.gov (United States)

    Zhang, Tianrui; Yang, Lu-Xing; Yang, Xiaofan; Wu, Yingbo; Tang, Yuan Yan

    2017-03-01

    Alerting at the early stage of malware invasion turns out to be an important complement to malware detection and elimination. This paper addresses the issue of how to dynamically contain the prevalence of malware at a lower cost, provided alerting is feasible. A controlled epidemic model with alert is established, and an optimal control problem based on the epidemic model is formulated. The optimality system for the optimal control problem is derived. The structure of an optimal control for the proposed optimal control problem is characterized under some conditions. Numerical examples show that the cost-efficiency of an optimal control strategy can be enhanced by adjusting the upper and lower bounds on admissible controls.

  9. Modelling of Performance of Caisson Type Breakwaters under Extreme Waves

    Science.gov (United States)

    Güney Doǧan, Gözde; Özyurt Tarakcıoǧlu, Gülizar; Baykal, Cüneyt

    2016-04-01

    Many coastal structures are designed without considering loads of tsunami-like waves or long waves although they are constructed in areas prone to encounter these waves. Performance of caisson type breakwaters under extreme swells is tested in Middle East Technical University (METU) Coastal and Ocean Engineering Laboratory. This paper presents the comparison of pressure measurements taken along the surface of caisson type breakwaters and obtained from numerical modelling of them using IH2VOF as well as damage behavior of the breakwater under the same extreme swells tested in a wave flume at METU. Experiments are conducted in the 1.5 m wide wave flume, which is divided into two parallel sections (0.74 m wide each). A piston type of wave maker is used to generate the long wave conditions located at one end of the wave basin. Water depth is determined as 0.4m and kept constant during the experiments. A caisson type breakwater is constructed to one side of the divided flume. The model scale, based on the Froude similitude law, is chosen as 1:50. 7 different wave conditions are applied in the tests as the wave period ranging from 14.6 s to 34.7 s, wave heights from 3.5 m to 7.5 m and steepness from 0.002 to 0.015 in prototype scale. The design wave parameters for the breakwater were 5m wave height and 9.5s wave period in prototype. To determine the damage of the breakwater which were designed according to this wave but tested under swell waves, video and photo analysis as well as breakwater profile measurements before and after each test are performed. Further investigations are carried out about the acting wave forces on the concrete blocks of the caisson structures via pressure measurements on the surfaces of these structures where the structures are fixed to the channel bottom minimizing. Finally, these pressure measurements will be compared with the results obtained from the numerical study using IH2VOF which is one of the RANS models that can be applied to simulate

  10. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  11. Modeling of thermal explosion under pressure in metal ceramic systems

    International Nuclear Information System (INIS)

    Shapiro, M.; Dudko, V.; Skachek, B.; Matvienko, A.; Gotman, I.; Gutmanas, E.Y.

    1998-01-01

    The process of reactive in situ synthesis of dense ceramic matrix composites in Ti-B-C, Ti-B-N, Ti-Si-N systems is modeled. These ceramics are fabricated on the basis of compacted blends of ceramic powders, namely Ti-B 4 C and/or Ti-BN. The objectives of the project are to identify and investigate the optimal thermal conditions preferable for production of fully dense ceramic matrix composites. Towards this goal heat transfer and combustion in dense and porous ceramic blends are investigated during monotonous heating at a constant rate. This process is modeled using a heat transfer-combustion model with kinetic parameters determined from the differential thermal analysis of the experimental data. The kinetic burning parameters and the model developed are further used to describe the thermal explosion synthesis in a restrained die under pressure. It is shown that heat removal from the reaction zone affects the combustion process and the final phase composition

  12. Selection of Representative Models for Decision Analysis Under Uncertainty

    Science.gov (United States)

    Meira, Luis A. A.; Coelho, Guilherme P.; Santos, Antonio Alberto S.; Schiozer, Denis J.

    2016-03-01

    The decision-making process in oil fields includes a step of risk analysis associated with the uncertainties present in the variables of the problem. Such uncertainties lead to hundreds, even thousands, of possible scenarios that are supposed to be analyzed so an effective production strategy can be selected. Given this high number of scenarios, a technique to reduce this set to a smaller, feasible subset of representative scenarios is imperative. The selected scenarios must be representative of the original set and also free of optimistic and pessimistic bias. This paper is devoted to propose an assisted methodology to identify representative models in oil fields. To do so, first a mathematical function was developed to model the representativeness of a subset of models with respect to the full set that characterizes the problem. Then, an optimization tool was implemented to identify the representative models of any problem, considering not only the cross-plots of the main output variables, but also the risk curves and the probability distribution of the attribute-levels of the problem. The proposed technique was applied to two benchmark cases and the results, evaluated by experts in the field, indicate that the obtained solutions are richer than those identified by previously adopted manual approaches. The program bytecode is available under request.

  13. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.

    2009-01-01

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  14. The role of uncertainty in supply chains under dynamic modeling

    Directory of Open Access Journals (Sweden)

    M. Fera

    2017-01-01

    Full Text Available The uncertainty in the supply chains (SCs for manufacturing and services firms is going to be, over the coming decades, more important for the companies that are called to compete in a new globalized economy. Risky situations for manufacturing are considered in trying to individuate the optimal positioning of the order penetration point (OPP. It aims at defining the best level of information of the client’s order going back through the several supply chain (SC phases, i.e. engineering, procurement, production and distribution. This work aims at defining a system dynamics model to assess competitiveness coming from the positioning of the order in different SC locations. A Taguchi analysis has been implemented to create a decision map for identifying possible strategic decisions under different scenarios and with alternatives for order location in the SC levels. Centralized and decentralized strategies for SC integration are discussed. In the model proposed, the location of OPP is influenced by the demand variation, production time, stock-outs and stock amount. Results of this research are as follows: (i customer-oriented strategies are preferable under high volatility of demand, (ii production-focused strategies are suggested when the probability of stock-outs is high, (iii no specific location is preferable if a centralized control architecture is implemented, (iv centralization requires cooperation among partners to achieve the SC optimum point, (v the producer must not prefer the OPP location at the Retailer level when the general strategy is focused on a decentralized approach.

  15. Key management and encryption under the bounded storage model.

    Energy Technology Data Exchange (ETDEWEB)

    Draelos, Timothy John; Neumann, William Douglas; Lanzone, Andrew J.; Anderson, William Erik

    2005-11-01

    There are several engineering obstacles that need to be solved before key management and encryption under the bounded storage model can be realized. One of the critical obstacles hindering its adoption is the construction of a scheme that achieves reliable communication in the event that timing synchronization errors occur. One of the main accomplishments of this project was the development of a new scheme that solves this problem. We show in general that there exist message encoding techniques under the bounded storage model that provide an arbitrarily small probability of transmission error. We compute the maximum capacity of this channel using the unsynchronized key-expansion as side-channel information at the decoder and provide tight lower bounds for a particular class of key-expansion functions that are pseudo-invariant to timing errors. Using our results in combination with Dziembowski et al. [11] encryption scheme we can construct a scheme that solves the timing synchronization error problem. In addition to this work we conducted a detailed case study of current and future storage technologies. We analyzed the cost, capacity, and storage data rate of various technologies, so that precise security parameters can be developed for bounded storage encryption schemes. This will provide an invaluable tool for developing these schemes in practice.

  16. Lure(d) into listening: The potential of cognition-based music information retrieval.

    NARCIS (Netherlands)

    Honing, H.

    2010-01-01

    This paper argues for the potential of cognition-based music retrieval by introducing the notion of a musical ‘hook’ as a key memorization, recall, and search mechanism. A hook is considered the most salient, memorable, and easy to recall moment of a musical phrase or song. Next to its role in

  17. Modeling the vulnerability of hydroelectricity generation under drought scenarios

    Science.gov (United States)

    Yan, E.; Tidwell, V. C.; Bizjack, M.; Espinoza, V.; Jared, A.

    2015-12-01

    Hydroelectricity generation highly relies on in-stream and reservoir water availability. The western US has recently experienced increasingly sever, frequent, and prolonged droughts resulting in significant water availability issues. A large number of hydropower plants in Western Electricity Coordinating Council (WECC) are located in California River Basin and Pacific Northwest River Basin. In supporting the WECC's long-term transmission planning, a drought impact analysis was performed with a series of data and modeling tools. This presentation will demonstrate a case study for California River Basin, which has recently experienced one of the worst droughts in its history. The purpose of this study is to evaluate potential risk for hydroelectricity generation due to projected drought scenarios in the medium-term (through the year of 2030). On the basis of historical droughts and the projected drought year for 2020-2030, three drought scenarios were identified. The hydrologic model was constructed and calibrated to simulate evapotranspiration, streamflow, soil moisture, irrigation as well as reservoir storage and discharge based on various dam operation rules and targets under three drought scenarios. The model also incorporates the projected future water demand in 2030 (e.g. municipal, agricultural, electricity generation). The projected monthly reservoir discharges were used to predict the monthly hydropower generation for hydropower plants with a capacity greater than 50 MW in California River Basin for each drought scenario. The results from this study identify spatial distribution of vulnerable hydropower plants and watersheds as well as the level of potential reduction of electricity generation under various drought scenarios and provide valuable insights into future mitigation strategies and long-term planning.

  18. Challenges in Species Tree Estimation Under the Multispecies Coalescent Model.

    Science.gov (United States)

    Xu, Bo; Yang, Ziheng

    2016-12-01

    The multispecies coalescent (MSC) model has emerged as a powerful framework for inferring species phylogenies while accounting for ancestral polymorphism and gene tree-species tree conflict. A number of methods have been developed in the past few years to estimate the species tree under the MSC. The full likelihood methods (including maximum likelihood and Bayesian inference) average over the unknown gene trees and accommodate their uncertainties properly but involve intensive computation. The approximate or summary coalescent methods are computationally fast and are applicable to genomic datasets with thousands of loci, but do not make an efficient use of information in the multilocus data. Most of them take the two-step approach of reconstructing the gene trees for multiple loci by phylogenetic methods and then treating the estimated gene trees as observed data, without accounting for their uncertainties appropriately. In this article we review the statistical nature of the species tree estimation problem under the MSC, and explore the conceptual issues and challenges of species tree estimation by focusing mainly on simple cases of three or four closely related species. We use mathematical analysis and computer simulation to demonstrate that large differences in statistical performance may exist between the two classes of methods. We illustrate that several counterintuitive behaviors may occur with the summary methods but they are due to inefficient use of information in the data by summary methods and vanish when the data are analyzed using full-likelihood methods. These include (i) unidentifiability of parameters in the model, (ii) inconsistency in the so-called anomaly zone, (iii) singularity on the likelihood surface, and (iv) deterioration of performance upon addition of more data. We discuss the challenges and strategies of species tree inference for distantly related species when the molecular clock is violated, and highlight the need for improving the

  19. Sustainable infrastructure system modeling under uncertainties and dynamics

    Science.gov (United States)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the

  20. Two-fluid model for locomotion under self-confinement

    Science.gov (United States)

    Reigh, Shang Yik; Lauga, Eric

    2017-09-01

    The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solution in which it may self-propel. We develop a two-fluid model for this process of swimming under self-generated confinement. We solve exactly for the flow and the locomotion speed of a spherical swimmer located in a spherically symmetric system of two Newtonian fluids whose boundary moves with the swimmer. We also treat separately the special case of an immobile outer fluid. In all cases, we characterize the flow fields, their spatial decay, and the impact of both the viscosity ratio and the degree of confinement on the locomotion speed of the model swimmer. The spatial decay of the flow retains the same power-law decay as for locomotion in a single fluid but with a decreased magnitude. Independent of the assumption chosen to characterize the impact of confinement on the actuation applied by the swimmer, its locomotion speed always decreases with an increase in the degree of confinement. Our modeling results suggest that a low-viscosity region of at least six times the effective swimmer size is required to lead to swimming with speeds similar to locomotion in an infinite fluid, corresponding to a region of size above ≈25 μ m for Helicobacter pylori.

  1. Stochastic reduced order models for inverse problems under uncertainty.

    Science.gov (United States)

    Warner, James E; Aquino, Wilkins; Grigoriu, Mircea D

    2015-03-01

    This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well.

  2. Model of personal consumption under conditions of modern economy

    Science.gov (United States)

    Rakhmatullina, D. K.; Akhmetshina, E. R.; Ignatjeva, O. A.

    2017-12-01

    In the conditions of the modern economy, in connection with the development of production, the expansion of the market for goods and services, its differentiation, active use of marketing tools in the sphere of sales, changes occur in the system of values and consumer needs. Motives that drive the consumer are transformed, stimulating it to activity. The article presents a model of personal consumption that takes into account modern trends in consumer behavior. The consumer, making a choice, seeks to maximize the overall utility from consumption, physiological and socio-psychological satisfaction, in accordance with his expectations, preferences and conditions of consumption. The system of his preferences is formed under the influence of factors of a different nature. It is also shown that the structure of consumer spending allows us to characterize and predict its further behavior in the market. Based on the proposed model and analysis of current trends in consumer behavior, conclusions and recommendations have been made that can be used by legislative and executive government bodies, business organizations, research centres and other structures to form a methodological and analytical tool for preparing a forecast model of consumption.

  3. Internal modelling under Risk-Based Capital (RBC) framework

    Science.gov (United States)

    Ling, Ang Siew; Hin, Pooi Ah

    2015-12-01

    Very often the methods for the internal modelling under the Risk-Based Capital framework make use of the data which are in the form of run-off triangle. The present research will instead extract from a group of n customers, the historical data for the sum insured si of the i-th customer together with the amount paid yij and the amount aij reported but not yet paid in the j-th development year for j = 1, 2, 3, 4, 5, 6. We model the future value (yij+1, aij+1) to be dependent on the present year value (yij, aij) and the sum insured si via a conditional distribution which is derived from a multivariate power-normal mixture distribution. For a group of given customers with different original purchase dates, the distribution of the aggregate claims liabilities may be obtained from the proposed model. The prediction interval based on the distribution for the aggregate claim liabilities is found to have good ability of covering the observed aggregate claim liabilities.

  4. Modelling crop yield in Iberia under drought conditions

    Science.gov (United States)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia

    2017-04-01

    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining

  5. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  6. Transient modelling of a natural circulation loop under variable pressure

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2017-07-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  7. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  8. A Stone Resource Assignment Model under the Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Liming Yao

    2012-01-01

    to tackle a stone resource assignment problem with the aim of decreasing dust and waste water emissions. On the upper level, the local government wants to assign a reasonable exploitation amount to each stone plant so as to minimize total emissions and maximize employment and economic profit. On the lower level, stone plants must reasonably assign stone resources to produce different stone products under the exploitation constraint. To deal with inherent uncertainties, the object functions and constraints are defuzzified using a possibility measure. A fuzzy simulation-based improved simulated annealing algorithm (FS-ISA is designed to search for the Pareto optimal solutions. Finally, a case study is presented to demonstrate the practicality and efficiency of the model. Results and a comparison analysis are presented to highlight the performance of the optimization method, which proves to be very efficient compared with other algorithms.

  9. Regional modeling of SOA formation under consideration of HOMs

    Science.gov (United States)

    Gatzsche, Kathrin; Iinuma, Yoshiteru; Tilgner, Andreas; Berndt, Torsten; Poulain, Laurent; Wolke, Ralf

    2017-04-01

    Secondary organic aerosol (SOA) is the major burden of the atmospheric organic particulate matter with about 140 - 910 TgC/yr (Hallquist et al., 2009). SOA particles are formed via the oxidation of volatile organic carbons (VOCs), where the volatility of the VOCs is lowered. Therefore, gaseous compounds can either nucleate to form new particles or condense on existing particles. The framework of SOA formation under natural conditions is very complex, because there are a variety of gas-phase precursors, atmospheric degradation pathways and formed oxidation products. Up to now, atmospheric models underpredict the SOA mass. Therefore, improved regional scale model implementations are necessary to achieve a better agreement between model predictions and field measurements. Recently, highly oxidized multifunctional organic compounds (HOMs) were found in the gas phase from laboratory and field studies (Jokinen et al., 2015, Mutzel et al., 2015, Berndt et al., 2016a,b). From box model studies, it is known that HOMs are important for the early aerosol growth, however they are not yet considered in mechanisms applied in regional models. The present study utilizes the state-of-the-art multiscale model system COSMO-MUSCAT (Wolke et al., 2012), which is qualified for process studies in local and regional areas. The established model system was enhanced by a kinetic partitioning approach (Zaveri et al., 2014) for the gas-to-particle transfer of oxidized VOCs. The framework of the partitioning approach and the gas-phase mechanism were tested in a box model and evaluated with chamber studies, before implementing in the 3D model system COSMO-MUSCAT. Moreover, HOMs are implemented in the same way for the regional SOA modeling. 3D simulations were performed with an equilibrium partitioning and diffusion dependent partitioning approach, respectively. The presentation will provide first 3D simulation results including comparisons with field measurements from the TROPOS field site

  10. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    Science.gov (United States)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  11. FEM modelling of soil behaviour under compressive loads

    Science.gov (United States)

    Ungureanu, N.; Vlăduţ, V.; Biriş, S. Şt

    2017-01-01

    Artificial compaction is one of the most dangerous forms of degradation of agricultural soil. Recognized as a phenomenon with multiple negative effects in terms of environment and agricultural production, soil compaction is strongly influenced by the size of external load, soil moisture, size and shape of footprint area, soil type and number of passes. Knowledge of soil behavior under compressive loads is important in order to prevent or minimize soil compaction. In this paper were developed, by means of the Finite Element Method, various models of soil behavior during the artificial compaction produced by the wheel of an agricultural trailer. Simulations were performed on two types of soil (cohesive and non-cohesive) with known characteristics. By applying two loads (4.5 kN and 21 kN) in footprints of different sizes, were obtained the models of the distributions of stresses occuring in the two types of soil. Simulation results showed that soil stresses increase with increasing wheel load and vary with soil type.

  12. Integrated Bali Cattle Development Model Under Oil Palm Plantation

    Directory of Open Access Journals (Sweden)

    Rasali Hakim Matondang

    2015-09-01

    Full Text Available Bali cattle have several advantages such as high fertility and carcass percentage, easy adaptation to the new environment as well. Bali cattle productivity has not been optimal yet. This is due to one of the limitation of feed resources, decreasing of grazing and agricultural land. The aim of this paper is to describe Bali cattle development integrated with oil palm plantations, which is expected to improve productivity and increase Bali cattle population. This integration model is carried out by raising Bali cattle under oil palm plantation through nucleus estate scheme model or individual farmers estates business. Some of Bali cattle raising systems have been applied in the integration of palm plantation-Bali cattle. One of the intensive systems can increase daily weight gain of 0.8 kg/head, calfcrop of 35% per year and has the potency for industrial development of feed and organic fertilizer. In the semi-intensive system, it can improve the production of oil palm fruit bunches (PFB more than 10%, increase harvested-crop area to 15 ha/farmer and reduce the amount of inorganic fertilizer. The extensive system can produce calfcrop ³70%, improve ³30% of PFB, increase business scale ³13 cows/farmer and reduce weeding costs ³16%. Integrated Bali cattle development may provide positive added value for both, palm oil business and cattle business.

  13. Modelling fracture of aged graphite bricks under radiation and temperature

    Directory of Open Access Journals (Sweden)

    Atheer Hashim

    2017-05-01

    Full Text Available The graphite bricks of the UK carbon dioxide gas cooled nuclear reactors are subjected to neutron irradiation and radiolytic oxidation during operation which will affect thermal and mechanical material properties and may lead to structural failure. In this paper, an empirical equation is obtained and used to represent the reduction in the thermal conductivity as a result of temperature and neutron dose. A 2D finite element thermal analysis was carried out using Abaqus to obtain temperature distribution across the graphite brick. Although thermal conductivity could be reduced by up to 75% under certain conditions of dose and temperature, analysis has shown that it has no significant effect on the temperature distribution. It was found that the temperature distribution within the graphite brick is non-radial, different from the steady state temperature distribution used in the previous studies [1,2]. To investigate the significance of this non-radial temperature distribution on the failure of graphite bricks, a subsequent mechanical analysis was also carried out with the nodal temperature information obtained from the thermal analysis. To predict the formation of cracks within the brick and the subsequent propagation, a linear traction–separation cohesive model in conjunction with the extended finite element method (XFEM is used. Compared to the analysis with steady state radial temperature distribution, the crack initiation time for the model with non-radial temperature distribution is delayed by almost one year in service, and the maximum crack length is also shorter by around 20%.

  14. Model evaluation of denitrification under rapid infiltration basin systems.

    Science.gov (United States)

    Akhavan, Maryam; Imhoff, Paul T; Andres, A Scott; Finsterle, Stefan

    2013-09-01

    Rapid Infiltration Basin Systems (RIBS) are used for disposing reclaimed wastewater into soil to achieve additional treatment before it recharges groundwater. Effluent from most new sequenced batch reactor wastewater treatment plants is completely nitrified, and denitrification (DNF) is the main reaction for N removal. To characterize effects of complex surface and subsurface flow patterns caused by non-uniform flooding on DNF, a coupled overland flow-vadose zone model is implemented in the multiphase flow and reactive transport simulator TOUGHREACT. DNF is simulated in two representative soils varying the application cycle, hydraulic loading rate, wastewater quality, water table depth, and subsurface heterogeneity. Simulations using the conventional specified flux boundary condition under-predict DNF by as much as 450% in sand and 230% in loamy sand compared to predictions from the coupled overland flow-vadose zone model, indicating that simulating coupled flow is critical for predicting DNF in cases where hydraulic loading rates are not sufficient to spread the wastewater over the whole basin. Smaller ratios of wetting to drying time and larger hydraulic loading rates result in greater water saturations, more anoxic conditions, and faster water transport in the vadose zone, leading to greater DNF. These results in combination with those from different water table depths explain why reported DNF varied with soil type and water table depth in previous field investigations. Across all simulations, cumulative percent DNF varies between 2 and 49%, indicating that NO₃ removal in RIBS may vary widely depending on operational procedures and subsurface conditions. These modeling results improve understanding of DNF in RIBS and suggest operational procedures that may improve NO₃ removal. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Preliminary Modeling of Accident Tolerant Fuel Concepts under Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle A.; Hales, Jason D.

    2016-12-01

    The catastrophic events that occurred at the Fukushima-Daiichi nuclear power plant in 2011 have led to widespread interest in research of alternative fuels and claddings that are proposed to be accident tolerant. Thus, the United States Department of Energy through its NEAMS (Nuclear Energy Advanced Modeling and Simulation) program has funded an Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The ATF HIP is funded for a three-year period. The purpose of the HIP is to perform research into two potential accident tolerant concepts and provide an in-depth report to the Advanced Fuels Campaign (AFC) describing the behavior of the concepts, both of which are being considered for inclusion in a lead test assembly scheduled for placement into a commercial reactor in 2022. The initial focus of the HIP is on uranium silicide fuel and iron-chromium-aluminum (FeCrAl) alloy cladding. Utilizing the expertise of three national laboratory participants (INL, LANL, and ANL) a comprehensive mulitscale approach to modeling is being used including atomistic modeling, molecular dynamics, rate theory, phase-field, and fuel performance simulations. In this paper, we present simulations of two proposed accident tolerant fuel systems: U3Si2 fuel with Zircaloy-4 cladding, and UO2 fuel with FeCrAl cladding. The simulations investigate the fuel performance response of the proposed ATF systems under Loss of Coolant and Station Blackout conditions using the BISON code. Sensitivity analyses are completed using Sandia National Laboratories’ DAKOTA software to determine which input parameters (e.g., fuel specific heat) have the greatest influence on the output metrics of interest (e.g., fuel centerline temperature). Early results indicate that each concept has significant advantages as well as areas of concern. Further work is required prior to formulating the proposition report for the Advanced Fuels Campaign.

  16. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    be obtained. This paper presents a new approach for system modelling under partial (global) information (or the so called Gray-box modelling) that seeks to perserve the benefits of the global as well as local methodologies sithin a unified framework. While the proposed technique relies on local approximations......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality....

  17. Characteristics and modeling of spruce wood under dynamic compression load

    International Nuclear Information System (INIS)

    Eisenacher, Germar

    2014-01-01

    criterion uses linear interpolation of the strength of constrained and unconstrained spruce wood. Thus multiaxial stress states can be considered. The calculation of the crush tests showed the ability of the model to reproduce the basic strength characteristics of spruce wood. The effect of lateral constraint can be reproduced well due to the uncoupled evolution of the yield surface. On the contrary, the strength is overestimated for load under acute angles, which could be prevented using modified yield surfaces. The effects of strain rate and temperature are generally reproduced well but the scaling factors used should be improved. The calculation of a drop test with a test-package equipped with wood-filled impact limiters confi rmed the model's performance and produced feasible results. However, to create a verified impact limiter model further numerical and experimental investigations are necessary. This work makes an important contribution to the numerical stress analysis in the context of safety cases of transport packages.

  18. Modeling a Hybrid Microgrid Using Probabilistic Reconfiguration under System Uncertainties

    Directory of Open Access Journals (Sweden)

    Hadis Moradi

    2017-09-01

    Full Text Available A novel method for a day-ahead optimal operation of a hybrid microgrid system including fuel cells, photovoltaic arrays, a microturbine, and battery energy storage in order to fulfill the required load demand is presented in this paper. In the proposed system, the microgrid has access to the main utility grid in order to exchange power when required. Available municipal waste is utilized to produce the hydrogen required for running the fuel cells, and natural gas will be used as the backup source. In the proposed method, an energy scheduling is introduced to optimize the generating unit power outputs for the next day, as well as the power flow with the main grid, in order to minimize the operational costs and produced greenhouse gases emissions. The nature of renewable energies and electric power consumption is both intermittent and unpredictable, and the uncertainty related to the PV array power generation and power consumption has been considered in the next-day energy scheduling. In order to model uncertainties, some scenarios are produced according to Monte Carlo (MC simulations, and microgrid optimal energy scheduling is analyzed under the generated scenarios. In addition, various scenarios created by MC simulations are applied in order to solve unit commitment (UC problems. The microgrid’s day-ahead operation and emission costs are considered as the objective functions, and the particle swarm optimization algorithm is employed to solve the optimization problem. Overall, the proposed model is capable of minimizing the system costs, as well as the unfavorable influence of uncertainties on the microgrid’s profit, by generating different scenarios.

  19. Robust nonlinear control of nuclear reactors under model uncertainty

    International Nuclear Information System (INIS)

    Park, Moon Ghu

    1993-02-01

    uncertainty. The performance specification in the boundary layer is also proposed. In the boundary layer, a direct adaptive controller is developed which consists of the adaptive proportional-integral-feed forward (PIF) gains. The essence of the controller is to divide the control into four different terms. Namely, the adaptive P-I-F gains and time-optimal controller are used to accomplish the specific control actions by each term. The robustness of the controller is guaranteed by the feedback of the estimated uncertainty and the performance specification given by the adaptation of PIF gains using the second method of Lyapunov. The newly developed control method is applied to the power tracking control of a nuclear reactor and the simulation results show great improvement in tracking performance compared with the conventional control methods. In addition, a constraint-accommodating adaptive control method is developed. The method is based on a dead-best identified plant model and a simple, but mathematically constructive, adaptation rule for the model-based PI feedback gains. The method is particularly devoted to the considerations on the output constraint. The effectiveness of the controller is shown by application of the method to the power tracking control of Korea Multipurpose Research Reactor (KMRR). The simulation results show robustness against modeling uncertainty and excellent performance under unknown deteriorating actuator condition. It is concluded that the nonlinear control methods developed in this thesis and based on the use of a simple uncertainty estimator and adaptation algorithms for feedback and feedforward gains provide not only robustness against modeling uncertainty but also very fast and smooth performance behavior

  20. Modeling of the response under radiation of electronic dosemeters

    International Nuclear Information System (INIS)

    Menard, S.

    2003-01-01

    The simulation with with calculation codes the interactions and the transport of primary and secondary radiations in the detectors allows to reduce the number of developed prototypes and the number of experiments under radiation. The simulation makes possible the determination of the response of the instrument for exposure configurations more extended that these ones of references radiations produced in laboratories. The M.C.N.P.X. allows to transport, over the photons, electrons and neutrons, the charged particles heavier than the electrons and to simulate the radiation - matter interactions for a certain number of particles. The present paper aims to present the interest of the use of the M.C.N.P.X. code in the study, research and evaluation phases of the instrumentation necessary to the dosimetry monitoring. To do that the presentation gives the results of the modeling of a prototype of a equivalent tissue proportional counter (C.P.E.T.) and of the C.R.A.M.A.L. ( radiation protection apparatus marketed by the Eurisys Mesures society). (N.C.)

  1. Modeling the Underlying Predicting Factors of Tobacco Smoking among Adolescents.

    Science.gov (United States)

    Jafarabadi, M Asghari; Allahverdipour, H; Bashirian, S; Jannati, A

    2012-01-01

    With regard to the willing and starting tobacco smoking among young people in Iran. The aim of the study was to model the underlying factors in predicting the behavior of tobacco smoking among employed youth and students in Iran. In this analytical cross-sectional study, based on a random cluster sampling were recruited 850 high school students, employed and unemployed youth age ranged between 14 and 19 yr from Iran. The data of demographic and tobacco smoking related variables were acquired via a self-administered questionnaire. A series of univariate and multivariate logistic regressions were performed respectively for computing un-adjusted and adjusted Odds Ratios utilizing SPSS 17 software. A number of 189 persons (25.6%) were smoker in the study and the mean smoking initiation age was 13.93 (SD= 2.21). In addition, smoker friend, peer persistence, leaving home, and smoking in one and six month ago were obtained as independent predictors of tobacco smoking. The education programs on resistance skills against the persistence of the peers, improvement in health programs by governmental interference and policy should be implemented.

  2. A unifying model of genome evolution under parsimony.

    Science.gov (United States)

    Paten, Benedict; Zerbino, Daniel R; Hickey, Glenn; Haussler, David

    2014-06-19

    Parsimony and maximum likelihood methods of phylogenetic tree estimation and parsimony methods for genome rearrangements are central to the study of genome evolution yet to date they have largely been pursued in isolation. We present a data structure called a history graph that offers a practical basis for the analysis of genome evolution. It conceptually simplifies the study of parsimonious evolutionary histories by representing both substitutions and double cut and join (DCJ) rearrangements in the presence of duplications. The problem of constructing parsimonious history graphs thus subsumes related maximum parsimony problems in the fields of phylogenetic reconstruction and genome rearrangement. We show that tractable functions can be used to define upper and lower bounds on the minimum number of substitutions and DCJ rearrangements needed to explain any history graph. These bounds become tight for a special type of unambiguous history graph called an ancestral variation graph (AVG), which constrains in its combinatorial structure the number of operations required. We finally demonstrate that for a given history graph G, a finite set of AVGs describe all parsimonious interpretations of G, and this set can be explored with a few sampling moves. This theoretical study describes a model in which the inference of genome rearrangements and phylogeny can be unified under parsimony.

  3. Development of a Soybean Sowing Model Under Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Jan Turan

    2017-01-01

    Full Text Available Sowing is affected by numerous factors, and thus high‑quality sowing is a very important task for agricultural engineers and managers of profitable agricultural production. The primary purpose of sowing is placing seeds at proper depths and in‑row spacings in well‑prepared soil. Plant population particularly gives prominence to sowing as it directly affects the uniformity of plant growth and development. Soybean planting is especially dependent on the quality of planting for yield formation due to the significant vicinity of seeds. Provided all external factors of high‑quality sowing are met, i.e. sowing conditions, the quality of sowing depends upon the planting mechanism. The following features of the planting mechanism are the most important: RPM of the seed disc, the travel speed of a seeder, and the values of gauge and vacuum pressure. This paper presents the results of sowing three different fractions of soybean seeds under laboratory conditions. The quality measurement of sowing was performed at different values of vacuum pressure and RPM of the seed disc. On balance, an increase in vacuum pressure results in improved sowing quality due to a stronger adherence of seeds to the seed disc. Lower values of vacuum pressure do not exert significant effects on the quality of sowing, regardless of the seed fraction. However, higher RPM of the seed disc entail an increase in the coefficient of variation. On the basis of the results obtained, a mathematical model for predicting changes in the coefficient of variation of sowing quality was developed using different operating parameters.

  4. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model.

    Science.gov (United States)

    Suresh, Krithika; Taylor, Jeremy M G; Spratt, Daniel E; Daignault, Stephanie; Tsodikov, Alexander

    2017-11-01

    Dynamic prediction incorporates time-dependent marker information accrued during follow-up to improve personalized survival prediction probabilities. At any follow-up, or "landmark", time, the residual time distribution for an individual, conditional on their updated marker values, can be used to produce a dynamic prediction. To satisfy a consistency condition that links dynamic predictions at different time points, the residual time distribution must follow from a prediction function that models the joint distribution of the marker process and time to failure, such as a joint model. To circumvent the assumptions and computational burden associated with a joint model, approximate methods for dynamic prediction have been proposed. One such method is landmarking, which fits a Cox model at a sequence of landmark times, and thus is not a comprehensive probability model of the marker process and the event time. Considering an illness-death model, we derive the residual time distribution and demonstrate that the structure of the Cox model baseline hazard and covariate effects under the landmarking approach do not have simple form. We suggest some extensions of the landmark Cox model that should provide a better approximation. We compare the performance of the landmark models with joint models using simulation studies and cognitive aging data from the PAQUID study. We examine the predicted probabilities produced under both methods using data from a prostate cancer study, where metastatic clinical failure is a time-dependent covariate for predicting death following radiation therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2014-01-01

    We evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range...... turbines on the row and those using the WAsP recommended value closer to the data for the first turbines. It is generally seen that under stable and unstable atmospheric conditions the power deficits are the highest and lowest, respectively, but the wind conditions under both stability regimes...

  6. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

    DEFF Research Database (Denmark)

    Peña, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole

    2013-01-01

    Here, we evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range...... turbines and those using the WAsP recommended value closer to the data for the first turbines. It is generally seen that under stable and unstable atmospheric conditions the power deficits are the highest and lowest, respectively, but the wind conditions under both stability regimes are different...

  7. Reservoir management under geological uncertainty using fast model update

    NARCIS (Netherlands)

    Hanea, R.; Evensen, G.; Hustoft, L.; Ek, T.; Chitu, A.; Wilschut, F.

    2015-01-01

    Statoil is implementing "Fast Model Update (FMU)," an integrated and automated workflow for reservoir modeling and characterization. FMU connects all steps and disciplines from seismic depth conversion to prediction and reservoir management taking into account relevant reservoir uncertainty. FMU

  8. Finite element modelling of helmeted head impact under frontal ...

    Indian Academy of Sciences (India)

    Abstract. Finite element models of the head and helmet were used to study contact forces during frontal impact of the head with a rigid surface. The finite element model of the head consists of skin, skull, cerebro-spinal fluid (CSF), brain, tentorium and falx. The finite element model of the helmet consists of shell and foam.

  9. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  10. Numerical Simulation of the Heston Model under Stochastic Correlation

    Directory of Open Access Journals (Sweden)

    Long Teng

    2017-12-01

    Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.

  11. Estimation and prediction under local volatility jump-diffusion model

    Science.gov (United States)

    Kim, Namhyoung; Lee, Younhee

    2018-02-01

    Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.

  12. Finite element modelling of helmeted head impact under frontal ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Finite element models of the head and helmet were used to study contact forces during frontal impact of the head with a rigid surface. The finite element model of the head consists of skin, skull, cerebro-spinal fluid (CSF), brain, tentorium and falx. The finite element model of the helmet consists of shell and ...

  13. Development and Validation of a Minichannel Evaporator Model under Dehumidification

    OpenAIRE

    Hassan, Abdelrahman Hussein Abdelhalim

    2016-01-01

    [EN] In the first part of the current thesis, two fundamental numerical models (Fin2D-W and Fin1D-MB) for analyzing the air-side performance of minichannel evaporators were developed and verified. The Fin2D-W model applies a comprehensive two-dimensional scheme to discretize the evaporator. On the other hand, the Fin1D-MB model is based on the one-dimensional fin theory in conjunction with the moving boundaries technique along the fin height. The first objective of the two presented models is...

  14. Multitasking TORT under UNICOS: Parallel performance models and measurements

    International Nuclear Information System (INIS)

    Barnett, A.; Azmy, Y.Y.

    1999-01-01

    The existing parallel algorithms in the TORT discrete ordinates code were updated to function in a UNICOS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead

  15. Multitasking TORT Under UNICOS: Parallel Performance Models and Measurements

    International Nuclear Information System (INIS)

    Azmy, Y.Y.; Barnett, D.A.

    1999-01-01

    The existing parallel algorithms in the TORT discrete ordinates were updated to function in a UNI-COS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead

  16. Modeling delamination of FRP laminates under low velocity impact

    Science.gov (United States)

    Jiang, Z.; Wen, H. M.; Ren, S. L.

    2017-09-01

    Fiber reinforced plastic laminates (FRP) have been increasingly used in various engineering such as aeronautics, astronautics, transportation, naval architecture and their impact response and failure are a major concern in academic community. A new numerical model is suggested for fiber reinforced plastic composites. The model considers that FRP laminates has been constituted by unidirectional laminated plates with adhesive layers. A modified adhesive layer damage model that considering strain rate effects is incorporated into the ABAQUS / EXPLICIT finite element program by the user-defined material subroutine VUMAT. It transpires that the present model predicted delamination is in good agreement with the experimental results for low velocity impact.

  17. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions

    NARCIS (Netherlands)

    Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida III, M.; Nakagawa, H.; Oriol, P.; Ruane, A.C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Yoshida, H.; Zhang, Z.; Bouman, B.

    2015-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We

  18. Lure(d) into listening: The potential of cognition-based music information retrieval

    OpenAIRE

    Henkjan Honing

    2011-01-01

    This paper argues for the potential of cognition-based music retrieval by introducing the notion of a musical ‘hook’ as a key memorization, recall, and search mechanism. A hook is considered the most salient, memorable, and easy to recall moment of a musical phrase or song. Next to its role in searching large data-bases of music, it is proposed as a way to understand and identify which cognitively relevant musical features affect the appreciation, memorization and recall of music. To illustra...

  19. Lure(d) into listening: The potential of cognition-based music information retrieval.

    OpenAIRE

    Honing, H.

    2010-01-01

    This paper argues for the potential of cognition-based music retrieval by introducing the notion of a musical ‘hook’ as a key memorization, recall, and search mechanism. A hook is considered the most salient, memorable, and easy to recall moment of a musical phrase or song. Next to its role in searching large data-bases of music, it is proposed as a way to understand and identify which cognitively relevant musical features affect the appreciation, memorization and recall of music. To illustra...

  20. A model for cooling systems analysis under natural convection

    International Nuclear Information System (INIS)

    Santos, S.J. dos.

    1988-01-01

    The present work analyses thermosyphons and their non dimensional numbers. The mathematical model considers constant pressure, single-phase incompressible flow. It simulates both open and closed thermosyphons, and deals with heat sources like PWR cores of electrical heaters and cold sinks like heat exchangers or reservoirs. A computer code named STRATS was developed based on this model. (author)

  1. Modeling detour behavior of pedestrian dynamics under different conditions

    Science.gov (United States)

    Qu, Yunchao; Xiao, Yao; Wu, Jianjun; Tang, Tao; Gao, Ziyou

    2018-02-01

    Pedestrian simulation approach has been widely used to reveal the human behavior and evaluate the performance of crowd evacuation. In the existing pedestrian simulation models, the social force model is capable of predicting many collective phenomena. Detour behavior occurs in many cases, and the important behavior is a dominate factor of the crowd evacuation efficiency. However, limited attention has been attracted for analyzing and modeling the characteristics of detour behavior. In this paper, a modified social force model integrated by Voronoi diagram is proposed to calculate the detour direction and preferred velocity. Besides, with the consideration of locations and velocities of neighbor pedestrians, a Logit-based choice model is built to describe the detour direction choice. The proposed model is applied to analyze pedestrian dynamics in a corridor scenario with either unidirectional or bidirectional flow, and a building scenario in real-world. Simulation results show that the modified social force model including detour behavior could reduce the frequency of collision and deadlock, increase the average speed of the crowd, and predict more practical crowd dynamics with detour behavior. This model can also be potentially applied to understand the pedestrian dynamics and design emergent management strategies for crowd evacuations.

  2. A model for optimization of process integration investments under uncertainty

    International Nuclear Information System (INIS)

    Svensson, Elin; Stroemberg, Ann-Brith; Patriksson, Michael

    2011-01-01

    The long-term economic outcome of energy-related industrial investment projects is difficult to evaluate because of uncertain energy market conditions. In this article, a general, multistage, stochastic programming model for the optimization of investments in process integration and industrial energy technologies is proposed. The problem is formulated as a mixed-binary linear programming model where uncertainties are modelled using a scenario-based approach. The objective is to maximize the expected net present value of the investments which enables heat savings and decreased energy imports or increased energy exports at an industrial plant. The proposed modelling approach enables a long-term planning of industrial, energy-related investments through the simultaneous optimization of immediate and later decisions. The stochastic programming approach is also suitable for modelling what is possibly complex process integration constraints. The general model formulation presented here is a suitable basis for more specialized case studies dealing with optimization of investments in energy efficiency. -- Highlights: → Stochastic programming approach to long-term planning of process integration investments. → Extensive mathematical model formulation. → Multi-stage investment decisions and scenario-based modelling of uncertain energy prices. → Results illustrate how investments made now affect later investment and operation opportunities. → Approach for evaluation of robustness with respect to variations in probability distribution.

  3. A particle model of rolling grain ripples under waves

    DEFF Research Database (Denmark)

    Andersen, Ken Haste

    2001-01-01

    A simple model for the formation of rolling grain ripples on a flat sand bed by the oscillatory flow generated by a surface wave is presented. An equation of motion is derived for the individual ripples, seen as "particles," on the otherwise flat bed. The model accounts for the initial appearance...... with the square-root of the nondimensional shear stress (the Shields parameter) on a flat bed. The results of the model are compared with measurements, and reasonable agreement between the model and the measurements is demonstrated. ©2001 American Institute of Physics....... of the ripples, the subsequent coarsening of the ripples, and the final equilibrium state. The model is related to the physical parameters of the problem, and an analytical approximation for the equilibrium spacing of the ripples is developed. It is found that the spacing between the ripples scales...

  4. Mathematical Modeling of Column-Base Connections under Monotonic Loading

    Directory of Open Access Journals (Sweden)

    Gholamreza Abdollahzadeh

    2014-12-01

    Full Text Available Some considerable damage to steel structures during the Hyogo-ken Nanbu Earthquake occurred. Among them, many exposed-type column bases failed in several consistent patterns, such as brittle base plate fracture, excessive bolt elongation, unexpected early bolt failure, and inferior construction work, etc. The lessons from these phenomena led to the need for improved understanding of column base behavior. Joint behavior must be modeled when analyzing semi-rigid frames, which is associated with a mathematical model of the moment–rotation curve. The most accurate model uses continuous nonlinear functions. This article presents three areas of steel joint research: (1 analysis methods of semi-rigid joints; (2 prediction methods for the mechanical behavior of joints; (3 mathematical representations of the moment–rotation curve. In the current study, a new exponential model to depict the moment–rotation relationship of column base connection is proposed. The proposed nonlinear model represents an approach to the prediction of M–θ curves, taking into account the possible failure modes and the deformation characteristics of the connection elements. The new model has three physical parameters, along with two curve-fitted factors. These physical parameters are generated from dimensional details of the connection, as well as the material properties. The M–θ curves obtained by the model are compared with published connection tests and 3D FEM research. The proposed mathematical model adequately comes close to characterizing M–θ behavior through the full range of loading/rotations. As a result, modeling of column base connections using the proposed mathematical model can give crucial beforehand information, and overcome the disadvantages of time consuming workmanship and cost of experimental studies.

  5. A conceptual ENSO model under realistic noise forcing

    Directory of Open Access Journals (Sweden)

    J. Saynisch

    2006-01-01

    Full Text Available We investigated the influence of atmospheric noise on the generation of interannual El Niño variability. Therefore, we perturbed a conceptual ENSO delay model with surrogate windstress data generated from tropical windspeed measurements. The effect of the additional stochastic forcing was studied for various parameter sets including periodic and chaotic regimes. The evaluation was based on a spectrum and amplitude-period relation comparison between model and measured sea surface temperature data. The additional forcing turned out to increase the variability of the model output in general. The noise-free model was unable to reproduce the observed spectral bandwidth for any choice of parameters. On the contrary, the stochastically forced model is capable of producing a realistic spectrum. The weakly nonlinear regimes of the model exhibit a proportional relation between amplitude and period matching the relation derived from measurement data. The chaotic regime, however, shows an inversely proportional relation. A stability analysis of the different regimes revealed that the spectra of the weakly nonlinear regimes are robust against slight parameter changes representing disregarded physical mechanisms, whereas the chaotic regime exhibits a very unstable realistic spectrum. We conclude that the model including stochastic forcing in a parameter range of moderate nonlinearity best matches the real conditions. This suggests that atmospheric noise plays an important role in the coupled tropical pacific ocean-atmosphere system.

  6. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  7. Single-arm phase II trial design under parametric cure models.

    Science.gov (United States)

    Wu, Jianrong

    2015-01-01

    The current practice of designing single-arm phase II survival trials is limited under the exponential model. Trial design under the exponential model may not be appropriate when a portion of patients are cured. There is no literature available for designing single-arm phase II trials under the parametric cure model. In this paper, a test statistic is proposed, and a sample size formula is derived for designing single-arm phase II trials under a class of parametric cure models. Extensive simulations showed that the proposed test and sample size formula perform very well under different scenarios. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Vertebral stress of a cervical spine model under dynamic load.

    Science.gov (United States)

    Sadegh, A M; Tchako, A

    2000-01-01

    The objective of this study is to develop cervical spine models that predict the stresses in each vertebra by taking account of the biodynamic characteristics of the neck. The loads and the moments at the head point (Occipital Condyle) used for the models were determined by the rigid body dynamic response of the head due to G-z acceleration. The experimental data used were collected from the biodynamic responses of human volunteers during an acceleration in the z direction on the drop tower facility at Armstrong Laboratory at Wright Patterson Air Force Base (WPAFB). Three finite element models were developed: an elastic local model, viscoelastic local model and complete viscoelastic model. I-DEAS software was used to create the solid models, the loadings and the boundary conditions. Then, ABAQUS finite element software was employed to solve the models, and thus the stresses on each vertebral level were determined. Beam elements with different properties were employed to simulate the ligaments, articular facets and muscles. The complete viscoelastic model was subjected to 11 cases of loadings ranging from 8 G-z to 20 G-z accelerations. The von Mises and Maximum Principal stress fields, which are good indicators of bone failure, were calculated for all the cases. The results indicated that the maximum stress in all cases increased as the magnitude of the acceleration increased. The stresses in the 10 to 12 G-z cases were comfortably below the injury threshold level. The majority of the maximum stresses occurred in C6 and C4 regions.

  9. Economic-mathematical methods and models under uncertainty

    CERN Document Server

    Aliyev, A G

    2013-01-01

    Brief Information on Finite-Dimensional Vector Space and its Application in EconomicsBases of Piecewise-Linear Economic-Mathematical Models with Regard to Influence of Unaccounted Factors in Finite-Dimensional Vector SpacePiecewise Linear Economic-Mathematical Models with Regard to Unaccounted Factors Influence in Three-Dimensional Vector SpacePiecewise-Linear Economic-Mathematical Models with Regard to Unaccounted Factors Influence on a PlaneBases of Software for Computer Simulation and Multivariant Prediction of Economic Even at Uncertainty Conditions on the Base of N-Comp

  10. Finite element modeling of Balsa wood structures under severe loadings

    International Nuclear Information System (INIS)

    Toson, B.; Pesque, J.J.; Viot, P.

    2014-01-01

    In order to compute, in various situations, the requirements for transporting packages using Balsa wood as an energy absorber, a constitutive model is needed that takes into account all of the specific characteristics of the wood, such as its anisotropy, compressibility, softening, densification, and strain rate dependence. Such a model must also include the treatment of rupture of the wood when it is in traction. The complete description of wood behavior is not sufficient: robustness is also necessary because this model has to work in presence of large deformations and of many other external nonlinear phenomena in the surrounding structures. We propose such a constitutive model that we have developed using the commercial finite element package ABAQUS. The necessary data were acquired through an extensive compilation of the existing literature with the augmentation of personal measurements. Numerous validation tests are presented that represent different impact situations that a transportation cask might endure. (authors)

  11. Calibration of CORSIM models under saturated traffic flow conditions.

    Science.gov (United States)

    2013-09-01

    This study proposes a methodology to calibrate microscopic traffic flow simulation models. : The proposed methodology has the capability to calibrate simultaneously all the calibration : parameters as well as demand patterns for any network topology....

  12. Model Justified Search Algorithms for Scheduling Under Uncertainty

    National Research Council Canada - National Science Library

    Howe, Adele; Whitley, L. D

    2008-01-01

    .... We also identified plateaus as a significant barrier to superb performance of local search on scheduling and have studied several canonical discrete optimization problems to discover and model the nature of plateaus...

  13. Finite element modelling of helmeted head impact under frontal ...

    Indian Academy of Sciences (India)

    CSF), brain, tentorium and falx. The finite element model of the helmet consists of shell and foam liner. ... mechanical behaviour of motorcycle helmet. ... the latter authors use a SI (Structural Intensity) approach to study power flow distribution.

  14. Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations

    KAUST Repository

    Markowich, Peter A.

    2016-10-04

    In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present results on the long time asymptotic behavior and numerical evidence and conjectures on periodic, almost periodic, and stochastic uctuations. The numerical simulations extend the theoretical statements and give further insights into price formation dynamics.

  15. Trade-offs underlying maternal breastfeeding decisions: A conceptual model

    OpenAIRE

    Tully, Kristin P.; Ball, Helen L.

    2011-01-01

    This paper presents a new conceptual model that generates predictions about breastfeeding decisions and identifies interactions that affect outcomes. We offer a contextual approach to infant feeding that models multi-directional influences by expanding on the evolutionary parent–offspring conflict and situation-specific breastfeeding theories. The main hypothesis generated from our framework suggests that simultaneously addressing breastfeeding costs and benefits, in relation to how they are ...

  16. Cube Handling In Backgammon Money Games Under a Jump Model

    OpenAIRE

    Higgins, Mark G.

    2012-01-01

    A variation on Janowski's cubeful equity model is proposed for cube handling in backgammon money games. Instead of approximating the cubeful take point as an interpolation between the dead and live cube limits, a new model is developed where the cubeless probability of win evolves through a series of random jumps instead of continuous diffusion. Each jump is drawn from a distribution with zero mean and an expected absolute jump size called the "jump volatility" that can be a function of game ...

  17. Financial strain and cognitive-based smoking processes: The explanatory role of depressive symptoms among adult daily smokers.

    Science.gov (United States)

    Robles, Zuzuky; Anjum, Sahar; Garey, Lorra; Kauffman, Brooke Y; Rodríguez-Cano, Rubén; Langdon, Kirsten J; Neighbors, Clayton; Reitzel, Lorraine R; Zvolensky, Michael J

    2017-07-01

    Little work has focused on the underlying mechanisms that may link financial strain and smoking processes. The current study tested the hypothesis that financial strain would exert an indirect effect on cognitive-based smoking processes via depressive symptoms. Three clinically significant dependent variables linked to the maintenance of smoking were evaluated: negative affect reduction motives, negative mood abstinence expectancies, and perceived barriers for quitting. Participants included 102 adult daily smokers (M age =33.0years, SD=13.60; 35.3% female) recruited from the community to participate in a self-guided (unaided; no psychological or pharmacological intervention) smoking cessation study. Results indicated that depressive symptoms explain, in part, the relation between financial strain and smoking motives for negative affect reduction, negative mood abstinence expectancies, and perceived barriers for quitting. Results indicate that smoking interventions for individuals with high levels of financial strain may potentially benefit from the addition of therapeutic tactics aimed at reducing depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Reflood modeling under oscillatory flow conditions with Cathare

    International Nuclear Information System (INIS)

    Kelly, J.M.; Bartak, J.; Janicot, A.

    1993-01-01

    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs

  19. Triatominae as a model of morphological plasticity under ecological pressure

    OpenAIRE

    Dujardin, Jean-Pierre; Panzera, P.; Schofield, C.J.

    1999-01-01

    The use of biochemical and genetic characters to explore species or population relationships has been applied to taxonomic questions since the 60s. In responding to the central question of the evolutionary history of #Triatominae$, i.e. their monophyletic or polyphyletic origin, two important questions arise (i) to what extent is the morphologically-based classification valid for assessing phylogenetic relationships ? and (ii) what are the main mechanisms underlying speciation in #Triatominae...

  20. Mathematic modelling of circular cylinder deformation under inner grouwth

    Directory of Open Access Journals (Sweden)

    A. V. Siasiev

    2009-09-01

    Full Text Available A task on the intensive deformed state (IDS of a viscoelastic declivous cylinder, which is grown under the action of inner pressure, is considered. The process of continuous increase takes a place on an internal radius so, that a radius and pressure change on set to the given law. The special case of linear law of creeping is considered, and also numeral results are presented as the graphs of temporal dependence of tensions and moving for different points of cylinder.

  1. Multidisciplinary Design Optimization Under Uncertainty: An Information Model Approach (PREPRINT)

    Science.gov (United States)

    2011-03-01

    preferences in his Postulates I-IV to ensure rational decision making . Our approach to decision making satisfies the Savage postulates. Multicriteria ...Challenges associated with decision making for large complex systems in the pres- ence of uncertainty and risk have been of special interest to scientists...is heavily influenced by the government reports cited. Of spe- cial interest to us are the challenges associated with the decision making under

  2. Hydrodynamic modelling of small upland lakes under strong wind forcing

    Science.gov (United States)

    Morales, L.; French, J.; Burningham, H.

    2012-04-01

    Small lakes (Area important source of water supply. Lakes also provide an important sedimentary archive of environmental and climate changes and ecosystem function. Hydrodynamic controls on the transport and distribution of lake sediments, and also seasonal variations in thermal structure due to solar radiation, precipitation, evaporation and mixing and the complex vertical and horizontal circulation patterns induced by the action of wind are not very well understood. The work presented here analyses hydrodynamic motions present in small upland lakes due to circulation and internal scale waves, and their linkages with the distribution of bottom sediment accumulation in the lake. For purpose, a 3D hydrodynamic is calibrated and implemented for Llyn Conwy, a small oligotrophic upland lake in North Wales, UK. The model, based around the FVCOM open source community model code, resolves the Navier-Stokes equations using a 3D unstructured mesh and a finite volume scheme. The model is forced by meteorological boundary conditions. Improvements made to the FVCOM code include a new graphical user interface to pre- and post process the model input and results respectively, and a JONSWAT wave model to include the effects of wind-wave induced bottom stresses on lake sediment dynamics. Modelled internal scale waves are validated against summer temperature measurements acquired from a thermistor chain deployed at the deepest part of the lake. Seiche motions were validated using data recorded by high-frequency level sensors around the lake margins, and the velocity field and the circulation patterns were validated using the data recorded by an ADCP and GPS drifters. The model is shown to reproduce the lake hydrodynamics and reveals well-developed seiches at different frequencies superimposed on wind-driven circulation patterns that appear to control the distribution of bottom sediments in this small upland lake.

  3. Lifelong learning: Foundational models, underlying assumptions and critiques

    Science.gov (United States)

    Regmi, Kapil Dev

    2015-04-01

    Lifelong learning has become a catchword in almost all countries because of its growing influence on education policies in the globalised world. In the Organisation for Economic Cooperation and Development (OECD) and the European Union (EU), the promotion of lifelong learning has been a strategy to speed up economic growth and become competitive. For UNESCO and the World Bank, lifelong learning has been a novel education model to improve educational policies and programmes in developing countries. In the existing body of literature on the topic, various models of lifelong learning are discussed. After reviewing a number of relevant seminal texts by proponents of a variety of schools, this paper argues that the vast number of approaches are actually built on two foundational models, which the author calls the "human capital model" and the "humanistic model". The former aims to increase productive capacity by encouraging competition, privatisation and human capital formation so as to enhance economic growth. The latter aims to strengthen democracy and social welfare by fostering citizenship education, building social capital and expanding capability.

  4. Calibration under uncertainty for finite element models of masonry monuments

    Energy Technology Data Exchange (ETDEWEB)

    Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin

    2010-02-01

    Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, and there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.

  5. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  6. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern

  7. SIS and SIR Epidemic Models Under Virtual Dispersal.

    Science.gov (United States)

    Bichara, Derdei; Kang, Yun; Castillo-Chavez, Carlos; Horan, Richard; Perrings, Charles

    2015-11-01

    We develop a multi-group epidemic framework via virtual dispersal where the risk of infection is a function of the residence time and local environmental risk. This novel approach eliminates the need to define and measure contact rates that are used in the traditional multi-group epidemic models with heterogeneous mixing. We apply this approach to a general n-patch SIS model whose basic reproduction number [Formula: see text] is computed as a function of a patch residence-time matrix [Formula: see text]. Our analysis implies that the resulting n-patch SIS model has robust dynamics when patches are strongly connected: There is a unique globally stable endemic equilibrium when [Formula: see text], while the disease-free equilibrium is globally stable when [Formula: see text]. Our further analysis indicates that the dispersal behavior described by the residence-time matrix [Formula: see text] has profound effects on the disease dynamics at the single patch level with consequences that proper dispersal behavior along with the local environmental risk can either promote or eliminate the endemic in particular patches. Our work highlights the impact of residence-time matrix if the patches are not strongly connected. Our framework can be generalized in other endemic and disease outbreak models. As an illustration, we apply our framework to a two-patch SIR single-outbreak epidemic model where the process of disease invasion is connected to the final epidemic size relationship. We also explore the impact of disease-prevalence-driven decision using a phenomenological modeling approach in order to contrast the role of constant versus state-dependent [Formula: see text] on disease dynamics.

  8. The monster sporadic group and a theory underlying superstring models

    International Nuclear Information System (INIS)

    Chapline, G.

    1996-09-01

    The pattern of duality symmetries acting on the states of compactified superstring models reinforces an earlier suggestion that the Monster sporadic group is a hidden symmetry for superstring models. This in turn points to a supersymmetric theory of self-dual and anti-self-dual K3 manifolds joined by Dirac strings and evolving in a 13 dimensional spacetime as the fundamental theory. In addition to the usual graviton and dilaton this theory contains matter-like degrees of freedom resembling the massless states of the heterotic string, thus providing a completely geometric interpretation for ordinary matter. 25 refs

  9. Triatominae as a model of morphological plasticity under ecological pressure

    Directory of Open Access Journals (Sweden)

    Dujardin JP

    1999-01-01

    Full Text Available The use of biochemical and genetic characters to explore species or population relationships has been applied to taxonomic questions since the 60s. In responding to the central question of the evolutionary history of Triatominae, i.e. their monophyletic or polyphyletic origin, two important questions arise (i to what extent is the morphologically-based classification valid for assessing phylogenetic relationships? and (ii what are the main mechanisms underlying speciation in Triatominae? Phenetic and genetic studies so far developed suggest that speciation in Triatominae may be a rapid process mainly driven by ecological factors.

  10. Modified bond model for shear in slabs under concentrated loads

    NARCIS (Netherlands)

    Lantsoght, E.O.L.; Van der Veen, C.; De Boer, A.

    2015-01-01

    Slabs subjected to concentrated loads close to supports, as occurring for truck loads on slab bridges, are less studied than beams in shear or slab-column connections in punching. To predict the shear capacity for this case, the Bond Model for concentric punching shear was studied initially.

  11. THE FEATURES OF INNOVATIVE ACTIVITY UNDER THE OPEN INNOVATION MODEL

    Directory of Open Access Journals (Sweden)

    Julia P. Kulikova

    2014-01-01

    Full Text Available The article discusses the distinctive characteristics of open and closed models of functioning of the innovation sphere. Justified the use of interaction marketing approach to relationship management of innovation sphere. Two sets of marketing functions - network and process for the effective functioning of innovation networks. Given matrix scorecard marketing functions in the innovation network.

  12. Graphical models for inference under outcome-dependent sampling

    DEFF Research Database (Denmark)

    Didelez, V; Kreiner, S; Keiding, N

    2010-01-01

    We consider situations where data have been collected such that the sampling depends on the outcome of interest and possibly further covariates, as for instance in case-control studies. Graphical models represent assumptions about the conditional independencies among the variables. By including...

  13. The Optimal Portfolio Selection Model under g-Expectation

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    complicated and sophisticated, the optimal solution turns out to be surprisingly simple, the payoff of a portfolio of two binary claims. Also I give the economic meaning of my model and the comparison with that one in the work of Jin and Zhou, 2008.

  14. Characterizing QALYs under a General Rank Dependent Utility Model

    NARCIS (Netherlands)

    H. Bleichrodt (Han); J. Quiggin (John)

    1997-01-01

    textabstractThis paper provides a characterization of QALYs, the most important outcome measure in medical decision making, in the context of a general rank dependent utility model. We show that both for chronic and for nonchronic health states the characterization of QALYs depends on intuitive

  15. Women's Educational Experience under Colonialism: Toward a Diachronic Model.

    Science.gov (United States)

    Barthel, Diane

    1985-01-01

    Introduces a three-stage historical model of female education in Africa during and since the colonial period. Suggests an historical tendency to educate only males, then an attempt to educate a limited number of females for "modern" roles. Contemporary situation presents educational opportunities for more women, but with subtle sexism…

  16. Testing the habituation assumption underlying models of parasitoid foraging behavior

    NARCIS (Netherlands)

    Abram, Paul K.; Cusumano, Antonino; Abram, Katrina; Colazza, Stefano; Peri, Ezio

    2017-01-01

    Background. Habituation, a form of non-associative learning, has several well-defined characteristics that apply to a wide range of physiological and behavioral responses in many organisms. In classic patch time allocation models, habituation is considered to be a major mechanistic component of

  17. Cascading failures in interdependent systems under a flow redistribution model

    Science.gov (United States)

    Zhang, Yingrui; Arenas, Alex; Yaǧan, Osman

    2018-02-01

    Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {LA,i,CA ,i} i =1 n and {LB,i,CB ,i} i =1 n, respectively. When a line fails in system A , a fraction of its load is redistributed to alive lines in B , while remaining (1 -a ) fraction is redistributed equally among all functional lines in A ; a line failure in B is treated similarly with b giving the fraction to be redistributed to A . We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p1 fraction of lines in A and p2 fraction in B . We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b , and robustness is maximized at non-trivial a ,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

  18. Thermomechanics of damageable materials under diffusion: modelling and analysis

    Science.gov (United States)

    Roubíček, Tomáš; Tomassetti, Giuseppe

    2015-12-01

    We propose a thermodynamically consistent general-purpose model describing diffusion of a solute or a fluid in a solid undergoing possible phase transformations and damage, beside possible visco-inelastic processes. Also heat generation/consumption/transfer is considered. Damage is modelled as rate-independent. The applications include metal-hydrogen systems with metal/hydride phase transformation, poroelastic rocks, structural and ferro/para-magnetic phase transformation, water and heat transport in concrete, and if diffusion is neglected, plasticity with damage and viscoelasticity, etc. For the ensuing system of partial differential equations and inclusions, we prove existence of solutions by a carefully devised semi-implicit approximation scheme of the fractional-step type.

  19. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress

    Science.gov (United States)

    Rukhlenko, Oleksii S.; Dudchenko, Olga A.; Zlobina, Ksenia E.; Guria, Georgy Th.

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines. PMID:26222505

  20. A Novel Computer Virus Propagation Model under Security Classification

    Directory of Open Access Journals (Sweden)

    Qingyi Zhu

    2017-01-01

    Full Text Available In reality, some computers have specific security classification. For the sake of safety and cost, the security level of computers will be upgraded with increasing of threats in networks. Here we assume that there exists a threshold value which determines when countermeasures should be taken to level up the security of a fraction of computers with low security level. And in some specific realistic environments the propagation network can be regarded as fully interconnected. Inspired by these facts, this paper presents a novel computer virus dynamics model considering the impact brought by security classification in full interconnection network. By using the theory of dynamic stability, the existence of equilibria and stability conditions is analysed and proved. And the above optimal threshold value is given analytically. Then, some numerical experiments are made to justify the model. Besides, some discussions and antivirus measures are given.

  1. Environmental problems indicator under environmental modeling toward sustainable development

    OpenAIRE

    P. Sutthichaimethee; W. Tanoamchard; P. Sawangwong; P Pachana; N. Witit-Anun

    2015-01-01

    This research aims to apply a model to the study and analysis of environmental and natural resource costs created in supply chains of goods and services produced in Thailand, and propose indicators for environmental problem management, caused by goods and services production, based on concepts of sustainable production and consumer behavior. The research showed that the highest environmental cost in terms of Natural Resource Materials was from pipelines and gas distribution, while the lowest ...

  2. Integrated Modeling of Polymer Composites Under High Energy Laser Irradiation

    Science.gov (United States)

    2015-10-30

    propagation constant. The top and bottom boundaries in Figure 3 are perfect electric conductors (PEC) which causes perfect reflection and simulates a semi...the FEA models were heated by passing a current through the fiber embedded in the dogbone. This is accomplished by placing a small amount of silver ...paint directly into the silicone mold. The paint is dabbed onto the ends of the fiber before the resin is added. After curing, the spot of silver paint

  3. Maintenance cost models in deregulated power systems under opportunity costs

    International Nuclear Information System (INIS)

    Al-Arfaj, K.; Dahal, K.; Azaiez, M.N.

    2007-01-01

    In a centralized power system, the operator is responsible for scheduling maintenance. There are different types of maintenance, including corrective maintenance; predictive maintenance; preventive maintenance; and reliability-centred maintenance. The main cause of power failures is poor maintenance. As such, maintenance costs play a significant role in deregulated power systems. They include direct costs associated with material and labor costs as well as indirect costs associated with spare parts inventory, shipment, test equipment, indirect labor, opportunity costs and cost of failure. In maintenance scheduling and planning, the cost function is the only component of the objective function. This paper presented the results of a study in which different components of maintenance costs were modeled. The maintenance models were formulated as an optimization problem with single and multiple objectives and a set of constraints. The maintenance costs models could be used to schedule the maintenance activities of power generators more accurately and to identify the best maintenance strategies over a period of time as they consider failure and opportunity costs in a deregulated environment. 32 refs., 4 tabs., 4 figs

  4. Modeling the Virtual Machine Launching Overhead under Fermicloud

    Energy Technology Data Exchange (ETDEWEB)

    Garzoglio, Gabriele [Fermilab; Wu, Hao [Fermilab; Ren, Shangping [IIT, Chicago; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Noh, Seo-Young [KISTI, Daejeon

    2014-11-12

    FermiCloud is a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows. The Cloud Bursting module of the FermiCloud enables the FermiCloud, when more computational resources are needed, to automatically launch virtual machines to available resources such as public clouds. One of the main challenges in developing the cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on FermiCloud’s system operational data, the VM launching overhead is not a constant. It varies with physical resource (CPU, memory, I/O device) utilization at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launch overhead reference model is needed. The paper is to develop a VM launch overhead reference model based on operational data we have obtained on FermiCloud and uses the reference model to guide the cloud bursting process.

  5. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice

  6. Microcosm Experiments and Modeling of Microbial Movement Under Unsaturated Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brockman, F.J.; Kapadia, N.; Williams, G.; Rockhold, M.

    2006-04-05

    Colonization of bacteria in porous media has been studied primarily in saturated systems. In this study we examine how microbial colonization in unsaturated porous media is controlled by water content and particle size. This is important for understanding the feasibility and success of bioremediation via nutrient delivery when contaminant degraders are at low densities and when total microbial populations are sparse and spatially discontinuous. The study design used 4 different sand sizes, each at 4 different water contents; experiments were run with and without acetate as the sole carbon source. All experiments were run in duplicate columns and used the motile organism Pseudomonas stutzeri strain KC, a carbon tetrachloride degrader. At a given sand size, bacteria traveled further with increasing volumetric water content. At a given volumetric water content, bacteria generally traveled further with increasing sand size. Water redistribution, solute transport, gas diffusion, and bacterial colonization dynamics were simulated using a numerical finite-difference model. Solute and bacterial transport were modeled using advection-dispersion equations, with reaction rate source/sink terms to account for bacterial growth and substrate utilization, represented using dual Monod-type kinetics. Oxygen transport and diffusion was modeled accounting for equilibrium partitioning between the aqueous and gas phases. The movement of bacteria in the aqueous phase was modeled using a linear impedance model in which the term D{sub m} is a coefficient, as used by Barton and Ford (1995), representing random motility. The unsaturated random motility coefficients we obtained (1.4 x 10{sup -6} to 2.8 x 10{sup -5} cm{sup 2}/sec) are in the same range as those found by others for saturated systems (3.5 x 10{sup -6} to 3.5 x 10{sup -5} cm{sup 2}/sec). The results show that some bacteria can rapidly migrate in well sorted unsaturated sands (and perhaps in relatively high porosity, poorly

  7. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-05-01

    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  8. Price level versus inflation targeting under model uncertainty

    OpenAIRE

    Cateau, Gino

    2008-01-01

    The purpose of this paper is to make a quantitative contribution to the inflation versus price level targeting debate. It considers a policy-maker that can set policy either through an inflation targeting rule or a price level targeting rule to minimize a quadratic loss function using the actual projection model of the Bank of Canada (ToTEM). The paper finds that price level targeting dominates inflation targeting, although it can lead to much more volatile inflation depending on the weight a...

  9. Financial Transaction Tax: Determination of Economic Impact Under DSGE Model

    Directory of Open Access Journals (Sweden)

    Veronika Solilová

    2015-01-01

    Full Text Available The discussion about the possible taxation of the financial sector has started in the European Union as a result of the financial crisis which has spread to the Europe from the United States in 2008 and consequently of the massive financial interventions by governments made in favour of the financial sector. On 14 February 2013, after rejection of the draft of the directive introducing a common system of financial transaction tax in 2011, the European Commission introduced the financial transaction tax through enhanced cooperation. The aim of the paper is to research economic impact of financial transaction tax on EU (EU27 or EU11 with respect to the DSGE model which was used for the determination of impacts. Based on our analysis the DSGE model can be considered as underestimated in case of the impact on economic growth and an overestimated in case of the revenue collection. Particularly, the overall impact of the financial transaction tax considering cascade effects of securities (tax rate 2.2% and derivatives (tax rate 0.2% is ranged between −4.752 and 1.472 percent points of GDP. And further, is assumed that the relocation effects of business/trade can be in average 40% causes a decline of expected tax revenues in the amount of 13bn EUR. Thus, at a time of fragile economic growth across the EU and the increased risk of recession in Europe, the introduction of the FTT should be undesirable.

  10. A thermal model for photovoltaic panels under varying atmospheric conditions

    International Nuclear Information System (INIS)

    Armstrong, S.; Hurley, W.G.

    2010-01-01

    The response of the photovoltaic (PV) panel temperature is dynamic with respect to the changes in the incoming solar radiation. During periods of rapidly changing conditions, a steady state model of the operating temperature cannot be justified because the response time of the PV panel temperature becomes significant due to its large thermal mass. Therefore, it is of interest to determine the thermal response time of the PV panel. Previous attempts to determine the thermal response time have used indoor measurements, controlling the wind flow over the surface of the panel with fans or conducting the experiments in darkness to avoid radiative heat loss effects. In real operating conditions, the effective PV panel temperature is subjected to randomly varying ambient temperature and fluctuating wind speeds and directions; parameters that are not replicated in controlled, indoor experiments. A new thermal model is proposed that incorporates atmospheric conditions; effects of PV panel material composition and mounting structure. Experimental results are presented which verify the thermal behaviour of a photovoltaic panel for low to strong winds.

  11. Modelling of nectarine drying under near infrared - Vacuum conditions.

    Science.gov (United States)

    Alaei, Behnam; Chayjan, Reza Amiri

    2015-01-01

    Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour

  12. GEN-IV Benchmarking of Triso Fuel Performance Models under accident conditions modeling input data

    Energy Technology Data Exchange (ETDEWEB)

    Collin, Blaise Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: • The modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release. • The modeling of the AGR-1 and HFR-EU1bis safety testing experiments. • The comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from “Case 5” of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. “Case 5” of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to “effects of the numerical calculation method rather than the physical model” [IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read

  13. Developing Physiologic Models for Emergency Medical Procedures Under Microgravity

    Science.gov (United States)

    Parker, Nigel; O'Quinn, Veronica

    2012-01-01

    Several technological enhancements have been made to METI's commercial Emergency Care Simulator (ECS) with regard to how microgravity affects human physiology. The ECS uses both a software-only lung simulation, and an integrated mannequin lung that uses a physical lung bag for creating chest excursions, and a digital simulation of lung mechanics and gas exchange. METI s patient simulators incorporate models of human physiology that simulate lung and chest wall mechanics, as well as pulmonary gas exchange. Microgravity affects how O2 and CO2 are exchanged in the lungs. Procedures were also developed to take into affect the Glasgow Coma Scale for determining levels of consciousness by varying the ECS eye-blinking function to partially indicate the level of consciousness of the patient. In addition, the ECS was modified to provide various levels of pulses from weak and thready to hyper-dynamic to assist in assessing patient conditions from the femoral, carotid, brachial, and pedal pulse locations.

  14. Modeling of fracture of protective concrete structures under impact loads

    Science.gov (United States)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-10-01

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  15. Modelling information dissemination under privacy concerns in social media

    Science.gov (United States)

    Zhu, Hui; Huang, Cheng; Lu, Rongxing; Li, Hui

    2016-05-01

    Social media has recently become an important platform for users to share news, express views, and post messages. However, due to user privacy preservation in social media, many privacy setting tools are employed, which inevitably change the patterns and dynamics of information dissemination. In this study, a general stochastic model using dynamic evolution equations was introduced to illustrate how privacy concerns impact the process of information dissemination. Extensive simulations and analyzes involving the privacy settings of general users, privileged users, and pure observers were conducted on real-world networks, and the results demonstrated that user privacy settings affect information differently. Finally, we also studied the process of information diffusion analytically and numerically with different privacy settings using two classic networks.

  16. Phase-field modeling of corrosion kinetics under dual-oxidants

    Science.gov (United States)

    Wen, You-Hai; Chen, Long-Qing; Hawk, Jeffrey A.

    2012-04-01

    A phase-field model is proposed to simulate corrosion kinetics under a dual-oxidant atmosphere. It will be demonstrated that the model can be applied to simulate corrosion kinetics under oxidation, sulfidation and simultaneous oxidation/sulfidation processes. Phase-dependent diffusivities are incorporated in a natural manner and allow more realistic modeling as the diffusivities usually differ by many orders of magnitude in different phases. Simple free energy models are then used for testing the model while calibrated free energy models can be implemented for quantitative modeling.

  17. Genomic value prediction for quantitative traits under the epistatic model

    Directory of Open Access Journals (Sweden)

    Xu Shizhong

    2011-01-01

    Full Text Available Abstract Background Most quantitative traits are controlled by multiple quantitative trait loci (QTL. The contribution of each locus may be negligible but the collective contribution of all loci is usually significant. Genome selection that uses markers of the entire genome to predict the genomic values of individual plants or animals can be more efficient than selection on phenotypic values and pedigree information alone for genetic improvement. When a quantitative trait is contributed by epistatic effects, using all markers (main effects and marker pairs (epistatic effects to predict the genomic values of plants can achieve the maximum efficiency for genetic improvement. Results In this study, we created 126 recombinant inbred lines of soybean and genotyped 80 makers across the genome. We applied the genome selection technique to predict the genomic value of somatic embryo number (a quantitative trait for each line. Cross validation analysis showed that the squared correlation coefficient between the observed and predicted embryo numbers was 0.33 when only main (additive effects were used for prediction. When the interaction (epistatic effects were also included in the model, the squared correlation coefficient reached 0.78. Conclusions This study provided an excellent example for the application of genome selection to plant breeding.

  18. A cognitive-based model of tool use in normal aging.

    Science.gov (United States)

    Lesourd, Mathieu; Baumard, Josselin; Jarry, Christophe; Le Gall, Didier; Osiurak, François

    2017-07-01

    While several cognitive domains have been widely investigated in the field of aging, the age-related effects on tool use are still an open issue and hardly any studies on tool use and aging is available. A significant body of literature has indicated that tool use skills might be supported by at least two different types of knowledge, namely, mechanical knowledge and semantic knowledge. However, neither the contribution of these kinds of knowledge to familiar tool use, nor the effects of aging on mechanical and semantic knowledge have been explored in normal aging. The aim of the present study was to fill this gap. To do so, 98 healthy elderly adults were presented with three tasks: a classical, familiar tool use task, a novel tool use task assessing mechanical knowledge, and a picture matching task assessing semantic knowledge. The results showed that aging has a negative impact on tool use tasks and on knowledge supporting tool use skills. We also found that aging did not impact mechanical and semantic knowledge in the same way, confirming the distinct nature of those forms of knowledge. Finally, our results stressed that mechanical and semantic knowledge are both involved in the ability to use familiar tools.

  19. A spatial stochastic programming model for timber and core area management under risk of fires

    Science.gov (United States)

    Yu Wei; Michael Bevers; Dung Nguyen; Erin Belval

    2014-01-01

    Previous stochastic models in harvest scheduling seldom address explicit spatial management concerns under the influence of natural disturbances. We employ multistage stochastic programming models to explore the challenges and advantages of building spatial optimization models that account for the influences of random stand-replacing fires. Our exploratory test models...

  20. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes

    Directory of Open Access Journals (Sweden)

    N. Romano

    2011-12-01

    Full Text Available We investigate the potential impact of accounting for seasonal variations in the climatic forcing and using different methods to parameterize the soil water content at field capacity on the water balance components computed by a bucket model (BM. The single-layer BM of Guswa et al. (2002 is employed, whereas the Richards equation (RE based Soil Water Atmosphere Plant (SWAP model is used as a benchmark model. The results are analyzed for two differently-textured soils and for some synthetic runs under real-like seasonal weather conditions, using stochastically-generated daily rainfall data for a period of 100 years. Since transient soil-moisture dynamics and climatic seasonality play a key role in certain zones of the World, such as in Mediterranean land areas, a specific feature of this study is to test the prediction capability of the bucket model under a condition where seasonal variations in rainfall are not in phase with the variations in plant transpiration. Reference is made to a hydrologic year in which we have a rainy period (starting 1 November and lasting 151 days where vegetation is basically assumed in a dormant stage, followed by a drier and rainless period with a vegetation regrowth phase. Better agreement between BM and RE-SWAP intercomparison results are obtained when BM is parameterized by a field capacity value determined through the drainage method proposed by Romano and Santini (2002. Depending on the vegetation regrowth or dormant seasons, rainfall variability within a season results in transpiration regimes and soil moisture fluctuations with distinctive features. During the vegetation regrowth season, transpiration exerts a key control on soil water budget with respect to rainfall. During the dormant season of vegetation, the precipitation regime becomes an important climate forcing. Simulations also highlight the occurrence of bimodality in the probability distribution of soil moisture during the season when plants are

  1. Synchronisation under shocks: The Lévy Kuramoto model

    Science.gov (United States)

    Roberts, Dale; Kalloniatis, Alexander C.

    2018-04-01

    We study the Kuramoto model of identical oscillators on Erdős-Rényi (ER) and Barabasi-Alberts (BA) scale free networks examining the dynamics when perturbed by a Lévy noise. Lévy noise exhibits heavier tails than Gaussian while allowing for their tempering in a controlled manner. This allows us to understand how 'shocks' influence individual oscillator and collective system behaviour of a paradigmatic complex system. Skewed α-stable Lévy noise, equivalent to fractional diffusion perturbations, are considered, but overlaid by exponential tempering of rate λ. In an earlier paper we found that synchrony takes a variety of forms for identical Kuramoto oscillators subject to stable Lévy noise, not seen for the Gaussian case, and changing with α: a noise-induced drift, a smooth α dependence of the point of cross-over of synchronisation point of ER and BA networks, and a severe loss of synchronisation at low values of α. In the presence of tempering we observe both analytically and numerically a dramatic change to the α behaviour where synchronisation is sustained over a larger range of values of the 'noise strength' σ, improved compared to the α > 1 tempered cases. Analytically we study the system close to the phase synchronised fixed point and solve the tempered fractional Fokker-Planck equation. There we observe that densities show stronger support in the basin of attraction at low α for fixed coupling, σ and tempering λ. We then perform numerical simulations for networks of size N = 1000 and average degree d ¯ = 10. There, we compute the order parameter r as a function of σ for fixed α and λ and observe values of r ≈ 1 over larger ranges of σ for α < 1 and λ ≠ 0. In addition we observe drift of both positive and negative slopes for different α and λ when native frequencies are equal, and confirm a sustainment of synchronisation down to low values of α. We propose a mechanism for this in terms of the basic shape of the tempered stable L

  2. Online Prediction under Model Uncertainty Via Dynamic Model Averaging: Application to a Cold Rolling Mill

    National Research Council Canada - National Science Library

    Raftery, Adrian E; Karny, Miroslav; Andrysek, Josef; Ettler, Pavel

    2007-01-01

    ... is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the (correct...

  3. From anomalies to forecasts: Toward a descriptive model of decisions under risk, under ambiguity, and from experience.

    Science.gov (United States)

    Erev, Ido; Ert, Eyal; Plonsky, Ori; Cohen, Doron; Cohen, Oded

    2017-07-01

    Experimental studies of choice behavior document distinct, and sometimes contradictory, deviations from maximization. For example, people tend to overweight rare events in 1-shot decisions under risk, and to exhibit the opposite bias when they rely on past experience. The common explanations of these results assume that the contradicting anomalies reflect situation-specific processes that involve the weighting of subjective values and the use of simple heuristics. The current article analyzes 14 choice anomalies that have been described by different models, including the Allais, St. Petersburg, and Ellsberg paradoxes, and the reflection effect. Next, it uses a choice prediction competition methodology to clarify the interaction between the different anomalies. It focuses on decisions under risk (known payoff distributions) and under ambiguity (unknown probabilities), with and without feedback concerning the outcomes of past choices. The results demonstrate that it is not necessary to assume situation-specific processes. The distinct anomalies can be captured by assuming high sensitivity to the expected return and 4 additional tendencies: pessimism, bias toward equal weighting, sensitivity to payoff sign, and an effort to minimize the probability of immediate regret. Importantly, feedback increases sensitivity to probability of regret. Simple abstractions of these assumptions, variants of the model Best Estimate and Sampling Tools (BEAST), allow surprisingly accurate ex ante predictions of behavior. Unlike the popular models, BEAST does not assume subjective weighting functions or cognitive shortcuts. Rather, it assumes the use of sampling tools and reliance on small samples, in addition to the estimation of the expected values. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Simple model for daily evaporation from fallow tilled soil under spring conditions in a temperate climate.

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Stroosnijder, L.

    1986-01-01

    A simple parametric model is presented to estimate daily evaporation from fallow tilled soil under spring conditions in a temperate climate. In this model, cumulative actual evaporation during a drying cycle is directly proportional to the square root of cumulative potential evaporation. The model

  5. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  6. A stochastic multi-agent optimization model for energy infrastructure planning under uncertainty and competition.

    Science.gov (United States)

    2017-07-04

    This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...

  7. Simultaneous Experimentation as a Learning Strategy: Business Model Development Under Uncertainty

    NARCIS (Netherlands)

    Andries, Petra; Debackere, Koenraad; van Looy, Bart

    2013-01-01

    Ventures operating under uncertainty face challenges defining a sustainable value proposition. Six longitudinal case studies reveal two approaches to business model development: focused commitment and simultaneous experimentation. While focused commitment positively affects initial growth, this

  8. A Three-Box Model of Thermohaline Circulation under the Energy Constraint

    International Nuclear Information System (INIS)

    Shen Yang; Guan Yu-Ping; Liang Chu-Jin; Chen Da-Ke

    2011-01-01

    The driving mechanism of thermohaline circulation is still a controversial topic in physical oceanography. Classic theory is based on Stommel's two-box model under buoyancy constraint. Recently, Guan and Huang proposed a new viewpoint in the framework of energy constraint with a two-box model. We extend it to a three-box model, including the effect of wind-driven circulation. Using this simple model, we further study how ocean mixing impacts on thermohaline circulation under the energy constraint. (geophysics, astronomy, and astrophysics)

  9. Lure(d into listening: The potential of cognition-based music information retrieval

    Directory of Open Access Journals (Sweden)

    Henkjan Honing

    2011-04-01

    Full Text Available This paper argues for the potential of cognition-based music retrieval by introducing the notion of a musical ‘hook’ as a key memorization, recall, and search mechanism. A hook is considered the most salient, memorable, and easy to recall moment of a musical phrase or song. Next to its role in searching large data-bases of music, it is proposed as a way to understand and identify which cognitively relevant musical features affect the appreciation, memorization and recall of music. To illustrate the potential of this idea for the computational humanities (Willekens et al., 2010, in the second half of the paper a pilot research project is described. This project, named Listen, Lure & Locate, aims to study the cultural phenomenon of being lured to listen to new unfamiliar music, and especially the role that recent internet-mediated technologies can have in this process. It is argued that a combination of crowd annotation (i.e., social- or crowd-tagging and marking the specific moment (the hook in one’s favorite music, has great potential for improving search engines for music. In addition, these annotations will provide a rich empirical source to music cognition research in determining what makes certain melodic fragments more sticky than others.

  10. [Cognition-based medicine from the viewpoint of evidence-based medicine].

    Science.gov (United States)

    Raspe, Heiner

    2005-01-01

    The anthroposophic medicine plays a prominent role among the special forms of therapy. The concept of a cognition-based medicine (CBM)--in critical analogy to the evidence-based medicine (EBM)--has emerged from the circle of promoters of this type of therapy. The present paper attempts to identify common and different features of EBM and CBM. Criticisms of CBM to EBM are presented and addressed. The central aspect of the CBM concept is the single-case recognition, in analogy to the early gestalt-psychological considerations of Dunckers in the nineteen-thirties. The EBM can certainly accept the critical relevance and justification of this concept, particularly with regard to the constantly educational (self)evaluation of the clinical decision. Individual causal recognition, on the other hand, is unable to replace the summatory evaluation of controlled studies. In certain single cases, the CBM makes "evident" the effect of a given therapy, on the other hand it is unable to establish a generally valid efficacy, which is so critical for the orientation of patients, physicians, and the socially-based healthcare system.

  11. MODELS OF AIR TRAFFIC CONTROLLERS ERRORS PREVENTION IN TERMINAL CONTROL AREAS UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.

  12. Comparison of two potato simulation models under climate change. I. Model calibration and sensitivity analyses

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    To analyse the effects of climate change on potato growth and production, both a simple growth model, POTATOS, and a comprehensive model, NPOTATO, were applied. Both models were calibrated and tested against results from experiments and variety trials in The Netherlands. The sensitivity of model

  13. Behavior and sensitivity of an optimal tree diameter growth model under data uncertainty

    Science.gov (United States)

    Don C. Bragg

    2005-01-01

    Using loblolly pine, shortleaf pine, white oak, and northern red oak as examples, this paper considers the behavior of potential relative increment (PRI) models of optimal tree diameter growth under data uncertainity. Recommendations on intial sample size and the PRI iteractive curve fitting process are provided. Combining different state inventories prior to PRI model...

  14. Modeling Clinic for Industrial Mathematics: A Collaborative Project Under Erasmus+ Program

    DEFF Research Database (Denmark)

    Jurlewicz, Agnieszka; Nunes, Claudia; Russo, Giovanni

    2018-01-01

    Modeling Clinic for Industrial Mathematics (MODCLIM) is a Strategic Partnership for the Development of Training Workshops and Modeling Clinic for Industrial Mathematics, funded through the European Commission under the Erasmus Plus Program, Key Action 2: Cooperation for innovation and the exchange...

  15. A stochastic model of the dynamics of HIV under a combination ...

    African Journals Online (AJOL)

    combined therapeutic treatment by extending the model of HIV pathogenesis under treatment by anti-viral drugs given in ... Key words: Combined therapy, drug resistance, infectious free HIV, stochastic model. 1 Introduction ..... Writing these equations in the matrix form, we therefore obtain the matrix differential equation. ∂.

  16. Physical Modelling of Bucket Foundation Under Long-Term Cyclic Lateral Loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2012-01-01

    functioning. In this article a 1g physical model of bucket foundation under horizontal and moment cyclic loading is described. A testing program including four tests was carried out. Every test was conducted for at least 30000 cycles, each with different loading features. The capability of the model...

  17. Modeling and Compensatory Processes Underlying Involvement in Child Care among Kibbutz-Reared Fathers

    Science.gov (United States)

    Gaunt, Ruth; Bassi, Liat

    2012-01-01

    This study examined modeling and compensatory processes underlying the effects of an early paternal model on father involvement in child care. Drawing on social learning theory, it was hypothesized that father-son relationships would moderate the association between a father's involvement and his own father's involvement. A sample of 136 kibbutz…

  18. Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions

    Science.gov (United States)

    A mathematical model is presented for colloid transport and retention in saturated porous media under unfavorable attachment conditions. The model accounts for colloid transport in the bulk aqueous phase and adjacent to the solid surface, and rates of colloid collision, interaction, release and imm...

  19. Performance of HSPA Vertical Sectorization System under Semi-Deterministic Propagation Model

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; Makinen, Jarmo; Stoermer, Wolfgang

    2013-01-01

    The performance of the Vertical Sectorization (VS) system has been evaluated previously using an empirical propagation model and a regular network layout. In this paper, our aim is to investigate the gain of the VS system under a more realistic scenario. A semi-deterministic path loss model run o...

  20. Modeling of the pyrolysis of biomass under parabolic and exponential temperature increases using the Distributed Activation Energy Model

    International Nuclear Information System (INIS)

    Soria-Verdugo, Antonio; Goos, Elke; Arrieta-Sanagustín, Jorge; García-Hernando, Nestor

    2016-01-01

    Highlights: • Pyrolysis of biomass under parabolic and exponential temperature profiles is modeled. • The model is based on a simplified Distributed Activation Energy Model. • 4 biomasses are analyzed in TGA with parabolic and exponential temperature increases. • Deviations between the model prediction and TGA measurements are under 5 °C. - Abstract: A modification of the simplified Distributed Activation Energy Model is proposed to simulate the pyrolysis of biomass under parabolic and exponential temperature increases. The pyrolysis of pine wood, olive kernel, thistle flower and corncob was experimentally studied in a TGA Q500 thermogravimetric analyzer. The results of the measurements of nine different parabolic and exponential temperature increases for each sample were employed to validate the models proposed. The deviation between the experimental TGA measurements and the estimation of the reacted fraction during the pyrolysis of the four samples under parabolic and exponential temperature increases was lower than 5 °C for all the cases studied. The models derived in this work to describe the pyrolysis of biomass with parabolic and exponential temperature increases were found to be in good agreement with the experiments conducted in a thermogravimetric analyzer.

  1. Numerically pricing American options under the generalized mixed fractional Brownian motion model

    Science.gov (United States)

    Chen, Wenting; Yan, Bowen; Lian, Guanghua; Zhang, Ying

    2016-06-01

    In this paper, we introduce a robust numerical method, based on the upwind scheme, for the pricing of American puts under the generalized mixed fractional Brownian motion (GMFBM) model. By using portfolio analysis and applying the Wick-Itô formula, a partial differential equation (PDE) governing the prices of vanilla options under the GMFBM is successfully derived for the first time. Based on this, we formulate the pricing of American puts under the current model as a linear complementarity problem (LCP). Unlike the classical Black-Scholes (B-S) model or the generalized B-S model discussed in Cen and Le (2011), the newly obtained LCP under the GMFBM model is difficult to be solved accurately because of the numerical instability which results from the degeneration of the governing PDE as time approaches zero. To overcome this difficulty, a numerical approach based on the upwind scheme is adopted. It is shown that the coefficient matrix of the current method is an M-matrix, which ensures its stability in the maximum-norm sense. Remarkably, we have managed to provide a sharp theoretic error estimate for the current method, which is further verified numerically. The results of various numerical experiments also suggest that this new approach is quite accurate, and can be easily extended to price other types of financial derivatives with an American-style exercise feature under the GMFBM model.

  2. Inventory Model for Deteriorating Items with Quadratic Time Dependent Demand under Trade Credits

    Directory of Open Access Journals (Sweden)

    Rakesh Tripathi

    2016-02-01

    Full Text Available In this paper, an EOQ model is developed for a deteriorating item with quadratic time dependent demand rate under trade credit. Mathematical models are also derived under two different situations i.e. Case I; the credit period is less than the cycle time for settling the account and Case II; the credit period is greater than or equal to the cycle time for settling the account. The numerical examples are also given to validate the proposed model. Sensitivity analysis is given to study the effect of various parameters on ordering policy and optimal total profit. Mathematica 7.1 software is used for finding optimal numerical solutions.

  3. Modeling Macrosegregation in Directionally Solidified Aluminum Alloys under Gravitational and Microgravitational Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, Mark A.; Poirier, David R.; Erdmann, Robert G.; Tewari, Surendra N.; Madison, Jonathan D

    2014-09-01

    This report covers the modeling of seven directionally solidified samples, five under normal gravitational conditions and two in microgravity. A model is presented to predict macrosegregation during the melting phases of samples solidified under microgravitational conditions. The results of this model are compared against two samples processed in microgravity and good agreement is found. A second model is presented that captures thermosolutal convection during directional solidification. Results for this model are compared across several experiments and quantitative comparisons are made between the model and the experimentally obtained radial macrosegregation profiles with good agreement being found. Changes in cross section were present in some samples and micrographs of these are qualitatively compared with the results of the simulations. It is found that macrosegregation patterns can be affected by changing the mold material.

  4. Stress-reducing preventive maintenance model for a unit under stressful environment

    International Nuclear Information System (INIS)

    Park, J.H.; Chang, Woojin; Lie, C.H.

    2012-01-01

    We develop a preventive maintenance (PM) model for a unit operated under stressful environment. The PM model in this paper consists of a failure rate model and two cost models to determine the optimal PM scheduling which minimizes a cost rate. The assumption for the proposed model is that stressful environment accelerates the failure of the unit and periodic maintenances reduce stress from outside. The failure rate model handles the maintenance effect of PM using improvement and stress factors. The cost models are categorized into two failure recognition cases: immediate failure recognition and periodic failure detection. The optimal PM scheduling is obtained by considering the trade-off between the related cost and the lifetime of a unit in our model setting. The practical usage of our proposed model is tested through a numerical example.

  5. An estimator of the survival function based on the semi-Markov model under dependent censorship.

    Science.gov (United States)

    Lee, Seung-Yeoun; Tsai, Wei-Yann

    2005-06-01

    Lee and Wolfe (Biometrics vol. 54 pp. 1176-1178, 1998) proposed the two-stage sampling design for testing the assumption of independent censoring, which involves further follow-up of a subset of lost-to-follow-up censored subjects. They also proposed an adjusted estimator for the survivor function for a proportional hazards model under the dependent censoring model. In this paper, a new estimator for the survivor function is proposed for the semi-Markov model under the dependent censorship on the basis of the two-stage sampling data. The consistency and the asymptotic distribution of the proposed estimator are derived. The estimation procedure is illustrated with an example of lung cancer clinical trial and simulation results are reported of the mean squared errors of estimators under a proportional hazards and two different nonproportional hazards models.

  6. Analysis of error-prone survival data under additive hazards models: measurement error effects and adjustments.

    Science.gov (United States)

    Yan, Ying; Yi, Grace Y

    2016-07-01

    Covariate measurement error occurs commonly in survival analysis. Under the proportional hazards model, measurement error effects have been well studied, and various inference methods have been developed to correct for error effects under such a model. In contrast, error-contaminated survival data under the additive hazards model have received relatively less attention. In this paper, we investigate this problem by exploring measurement error effects on parameter estimation and the change of the hazard function. New insights of measurement error effects are revealed, as opposed to well-documented results for the Cox proportional hazards model. We propose a class of bias correction estimators that embraces certain existing estimators as special cases. In addition, we exploit the regression calibration method to reduce measurement error effects. Theoretical results for the developed methods are established, and numerical assessments are conducted to illustrate the finite sample performance of our methods.

  7. Application of growing nested Petri nets for modeling robotic systems operating under risk

    Science.gov (United States)

    Sorokin, E. V.; Senkov, A. V.

    2017-10-01

    The paper studies the peculiarities of modeling robotic systems engaged in mining. Existing modeling mechanisms are considered, which are based on nested Petri nets, and a new formalism of growing Petri nets is presented that allows modeling robotic systems operating under risk. Modeling is provided both for the regular operation mode and for non-standard modes in which individual elements of the system can perform uncharacteristic functions. The example shows growing Petri nets that are used for modeling extraction of flat coal seams by a robotic system consisting of several different-type autonomous robots.

  8. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    International Nuclear Information System (INIS)

    Moral, A. del; Azanza, María J.

    2015-01-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca 2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B 0 ≅0.2–15 mT) AC-MF of frequency f M =50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca 2+ Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons

  9. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moral, A. del, E-mail: delmoral@unizar.es [Laboratorio de Magnetismo, Departamento de Física de Materia Condensada and Instituto de Ciencia de Materiales, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain); Azanza, María J., E-mail: mjazanza@unizar.es [Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain)

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca{sup 2+} Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B{sub 0}≅0.2–15 mT) AC-MF of frequency f{sub M}=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca{sup 2+} Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons.

  10. Measuring and modeling maize evapotranspiration under plastic film-mulching condition

    Science.gov (United States)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Ortega-Farias, Samuel; Li, Fusheng; Du, Taisheng; Tong, Ling; Wang, Sufen; Ingman, Mark; Guo, Weihua

    2013-10-01

    Plastic film-mulching techniques have been widely used over a variety of agricultural crops for saving water and improving yield. Accurate estimation of crop evapotranspiration (ET) under the film-mulching condition is critical for optimizing crop water management. After taking the mulching effect on soil evaporation (Es) into account, our study adjusted the original Shuttleworth-Wallace model (MSW) in estimating maize ET and Es under the film-mulching condition. Maize ET and Es respectively measured by eddy covariance and micro-lysimeter methods during 2007 and 2008 were used to validate the performance of the Penman-Monteith (PM), the original Shuttleworth-Wallace (SW) and the MSW models in arid northwest China. Results indicate that all three models significantly overestimated ET during the initial crop stage in the both years, which may be due to the underestimation of canopy resistance induced by the Jarvis model for the drought stress in the stage. For the entire experimental period, the SW model overestimated half-hourly maize ET by 17% compared with the eddy covariance method (ETEC) and overestimated daily Es by 241% compared with the micro-lysimeter measurements (EL), while the PM model only underestimated daily maize ET by 6%, and the MSW model only underestimated half-hourly maize ET by 2% and Es by 7% during the whole period. Thus the PM and MSW models significantly improved the accuracy against the original SW model and can be used to estimate ET and Es under the film-mulching condition.

  11. Applicability of common stomatal conductance models in maize under varying soil moisture conditions.

    Science.gov (United States)

    Wang, Qiuling; He, Qijin; Zhou, Guangsheng

    2018-07-01

    In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Validity of tests under covariate-adaptive biased coin randomization and generalized linear models.

    Science.gov (United States)

    Shao, Jun; Yu, Xinxin

    2013-12-01

    Some covariate-adaptive randomization methods have been used in clinical trials for a long time, but little theoretical work has been done about testing hypotheses under covariate-adaptive randomization until Shao et al. (2010) who provided a theory with detailed discussion for responses under linear models. In this article, we establish some asymptotic results for covariate-adaptive biased coin randomization under generalized linear models with possibly unknown link functions. We show that the simple t-test without using any covariate is conservative under covariate-adaptive biased coin randomization in terms of its Type I error rate, and that a valid test using the bootstrap can be constructed. This bootstrap test, utilizing covariates in the randomization scheme, is shown to be asymptotically as efficient as Wald's test correctly using covariates in the analysis. Thus, the efficiency loss due to not using covariates in the analysis can be recovered by utilizing covariates in covariate-adaptive biased coin randomization. Our theory is illustrated with two most popular types of discrete outcomes, binary responses and event counts under the Poisson model, and exponentially distributed continuous responses. We also show that an alternative simple test without using any covariate under the Poisson model has an inflated Type I error rate under simple randomization, but is valid under covariate-adaptive biased coin randomization. Effects on the validity of tests due to model misspecification is also discussed. Simulation studies about the Type I errors and powers of several tests are presented for both discrete and continuous responses. © 2013, The International Biometric Society.

  13. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    International Nuclear Information System (INIS)

    Baidillah, Marlin R; Takei, Masahiro

    2017-01-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution. (paper)

  14. A general circuit model for spintronic devices under electric and magnetic fields

    KAUST Repository

    Alawein, Meshal

    2017-10-25

    In this work, we present a circuit model of diffusive spintronic devices capable of capturing the effects of both electric and magnetic fields. Starting from a modified version of the well-established drift-diffusion equations, we derive general equivalent circuit models of semiconducting/metallic nonmagnets and metallic ferromagnets. In contrast to other models that are based on steady-state transport equations which might also neglect certain effects such as thermal fluctuations, spin dissipation in the ferromagnets, and spin precession under magnetic fields, our model incorporates most of the important physics and is based on a time-dependent formulation. An application of our model is shown through simulations of a nonlocal spin-valve under the presence of a magnetic field, where we reproduce experimental results of electrical measurements that demonstrate the phenomena of spin precession and dephasing (“Hanle effect”).

  15. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    Science.gov (United States)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  16. Validity of Weight Estimation Models in Pigs Reared under Different Management Conditions

    Directory of Open Access Journals (Sweden)

    Marvelous Sungirai

    2014-01-01

    Full Text Available A study was carried out to determine the relationship between linear body measurements and live weight in Landrace and Large White pigs reared under different management conditions in Zimbabwe. Data was collected for body length, heart girth, and live weight in 358 pigs reared under intensive commercial conditions. The stepwise multiple linear regression method was done to develop a model using a random selection of 202 records of pigs. The model showed that age, body length, and heart girth were useful predictors of live weight in these pigs with significantly high positive correlations observed. The model was internally validated using records of the remaining 156 pigs and there was a significantly high positive correlation between the actual and predicted weights. The model was then externally validated using 40 market age pigs reared under communal conditions and there was a significantly low positive correlation between the actual and predicted weights. The results of the study show that while linear measurements can be useful in predicting pig weights the appropriateness of the model is also influenced by the management of the pigs. Models can only be applicable to pigs reared under similar conditions of management.

  17. Neural computations underlying arbitration between model-based and model-free learning

    Science.gov (United States)

    Lee, Sang Wan; Shimojo, Shinsuke; O’Doherty, John P.

    2014-01-01

    SUMMARY There is accumulating neural evidence to support the existence of two distinct systems for guiding action-selection in the brain, a deliberative “model-based” and a reflexive “model-free” system. However, little is known about how the brain determines which of these systems controls behavior at one moment in time. We provide evidence for an arbitration mechanism that allocates the degree of control over behavior by model-based and model-free systems as a function of the reliability of their respective predictions. We show that inferior lateral prefrontal and frontopolar cortex encode both reliability signals and the output of a comparison between those signals, implicating these regions in the arbitration process. Moreover, connectivity between these regions and model-free valuation areas is negatively modulated by the degree of model-based control in the arbitrator, suggesting that arbitration may work through modulation of the model-free valuation system when the arbitrator deems that the model-based system should drive behavior. PMID:24507199

  18. An anisotropic damage model for concrete structures under cyclic loading-uniaxial modeling

    Science.gov (United States)

    Long, Yuchuan; He, Yuming

    2017-05-01

    An anisotropic damage model is developed based on conventional rotating crack approach. It uses nonlinear unloading/linear reloading branches to model the hysteretic behavior of concrete. Two damage variables, determined by the ratio of accumulated dissipating energy to fracture energy, are introduced to represent the stiffness degradation in tension and compression. Three cyclic tests are simulated by this model and sensitivity analyses are conducted as well. The numerical responses calculated by the damage model are consistent with those obtained from the experiments. The numerical results reflect the nonlinear behavior observed in those tests, such as the damage-induced stiffness degradation, accumulation of residual deformation, energy dissipation caused by hysteretic behavior and stiffness recovery effect due to crack closure. Sensitivity analyses show that the damage exponents have significant influence on the computational accuracy. It is concluded that the anisotropic damage model is applicable to the nonlinear analyses of concrete structures subjected to cyclic loading.

  19. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    CUI, Yu Jun; DING, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  20. Thermodynamic parameters for mixtures of quartz under shock wave loading in views of the equilibrium model

    International Nuclear Information System (INIS)

    Maevskii, K. K.; Kinelovskii, S. A.

    2015-01-01

    The numerical results of modeling of shock wave loading of mixtures with the SiO 2 component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described

  1. Modified Johnson-Cook model incorporated with electroplasticity for uniaxial tension under a pulsed electric current

    Science.gov (United States)

    Kim, Moon-Jo; Jeong, Hye-Jin; Park, Ju-Won; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    An empirical expression describing the electroplastic deformation behavior is suggested based on the Johnson-Cook (JC) model by adding several functions to consider both thermal and athermal electric current effects. Tensile deformation behaviors are carried out for an AZ31 magnesium alloy and an Al-Mg-Si alloy under pulsed electric current at various current densities with a fixed duration of electric current. To describe the flow curves under electric current, a modified JC model is proposed to take the electric current effect into account. Phenomenological descriptions of the adopted parameters in the equation are made. The modified JC model suggested in the present study is capable of describing the tensile deformation behaviors under pulsed electric current reasonably well.

  2. Optimized production planning model for a multi-plant cultivation system under uncertainty

    Science.gov (United States)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  3. Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening.

    Science.gov (United States)

    Bertsimas, Dimitris; Silberholz, John; Trikalinos, Thomas

    2018-03-01

    Important decisions related to human health, such as screening strategies for cancer, need to be made without a satisfactory understanding of the underlying biological and other processes. Rather, they are often informed by mathematical models that approximate reality. Often multiple models have been made to study the same phenomenon, which may lead to conflicting decisions. It is natural to seek a decision making process that identifies decisions that all models find to be effective, and we propose such a framework in this work. We apply the framework in prostate cancer screening to identify prostate-specific antigen (PSA)-based strategies that perform well under all considered models. We use heuristic search to identify strategies that trade off between optimizing the average across all models' assessments and being "conservative" by optimizing the most pessimistic model assessment. We identified three recently published mathematical models that can estimate quality-adjusted life expectancy (QALE) of PSA-based screening strategies and identified 64 strategies that trade off between maximizing the average and the most pessimistic model assessments. All prescribe PSA thresholds that increase with age, and 57 involve biennial screening. Strategies with higher assessments with the pessimistic model start screening later, stop screening earlier, and use higher PSA thresholds at earlier ages. The 64 strategies outperform 22 previously published expert-generated strategies. The 41 most "conservative" ones remained better than no screening with all models in extensive sensitivity analyses. We augment current comparative modeling approaches by identifying strategies that perform well under all models, for various degrees of decision makers' conservativeness.

  4. Predictive models of poly(ethylene-terephthalate) film degradation under multi-factor accelerated weathering exposures.

    Science.gov (United States)

    Gok, Abdulkerim; Ngendahimana, David K; Fagerholm, Cara L; French, Roger H; Sun, Jiayang; Bruckman, Laura S

    2017-01-01

    Accelerated weathering exposures were performed on poly(ethylene-terephthalate) (PET) films. Longitudinal multi-level predictive models as a function of PET grades and exposure types were developed for the change in yellowness index (YI) and haze (%). Exposures with similar change in YI were modeled using a linear fixed-effects modeling approach. Due to the complex nature of haze formation, measurement uncertainty, and the differences in the samples' responses, the change in haze (%) depended on individual samples' responses and a linear mixed-effects modeling approach was used. When compared to fixed-effects models, the addition of random effects in the haze formation models significantly increased the variance explained. For both modeling approaches, diagnostic plots confirmed independence and homogeneity with normally distributed residual errors. Predictive R2 values for true prediction error and predictive power of the models demonstrated that the models were not subject to over-fitting. These models enable prediction under pre-defined exposure conditions for a given exposure time (or photo-dosage in case of UV light exposure). PET degradation under cyclic exposures combining UV light and condensing humidity is caused by photolytic and hydrolytic mechanisms causing yellowing and haze formation. Quantitative knowledge of these degradation pathways enable cross-correlation of these lab-based exposures with real-world conditions for service life prediction.

  5. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Science.gov (United States)

    Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology

  6. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  7. Examination of atmospheric dynamic model's performance over complex terrain under temporally changing synoptic meteorological conditions

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1995-01-01

    The mesoscale atmospheric dynamic model, a submodel of the numerical atmospheric dispersion model named PHYSIC, was improved and its performance was examined in a coastal area with a complex terrain. To introduce temporally changing synoptic meteorological conditions into the model, the initial and boundary conditions were improved. Moreover, land surface temperature calculations were modified to apply the model to snow-covered areas. These improvements worked effectively in the model simulation of four series of the observations during winter and summer in 1992. The model successfully simulated the wind fields and its temporal variations under the condition of strong westerlies and a land and sea breeze. Limitation of model's performance caused by the temporal and spatial resolutions of input data was also discussed. (author)

  8. Modeling hepatitis C virus kinetics under therapy using pharmacokinetic and pharmacodynamic information

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, Alan S [Los Alamos National Laboratory; Shudo, Emi [Los Alamos National Laboratory; Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Mathematical models have proven helpful in analyzing the virological response to antiviral therapy in hepatitis C virus (HCY) infected subjects. Objective: To summarize the uses and limitations of different models for analyzing HCY kinetic data under pegylated interferon therapy. Methods: We formulate mathematical models and fit them by nonlinear least square regression to patient data in order estimate model parameters. We compare the goodness of fit and parameter values estimated by different models statistically. Results/Conclusion: The best model for parameter estimation depends on the availability and the quality of data as well as the therapy used. We also discuss the mathematical models that will be needed to analyze HCV kinetic data from clinical trials with new antiviral drugs.

  9. Modelling of transit-time ultrasonic flow meters under multi-phase flow conditions

    DEFF Research Database (Denmark)

    Simurda, Matej; Duggen, Lars; Lassen, Benny

    2016-01-01

    of the background flow are included. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the Fast Fourier transform. The method is compared against analytical solutions and experimental measurements. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating......A pseudospectral model for transit time ultrasonic flowmeters under multiphase flow conditions is presented. The method solves first order stress-velocity equations of elastodynamics, with acoustic media being modelled by setting shear modulus to zero. Additional terms to account for the effect...... under multiphase flow conditions is carried out....

  10. Experimental Validation of a Mathematical Model for Seabed Liquefaction Under Waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Kirca, Özgür; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study directed towards the validation of a mathematical model for the buildup of pore water pressure and resulting liquefaction of marine soils under progressive waves. Experiments were conducted under controlled conditions with silt (d(50) = 0.......070 mm) in a wave flume with a soil pit. Waves with wave heights in the range of 7.7-18 cm, 55-cm water depth and 1.6-s wave period enabled us to study both the liquefaction and no-liquefaction regime pore water pressure buildup. The experimental data were used to validate the model. A numerical example...

  11. On the Mathematical Modeling of Line-Start Permanent Magnet Synchronous Motors under Static Eccentricity

    Directory of Open Access Journals (Sweden)

    Ibrahem Hussein

    2018-01-01

    Full Text Available Line start permanent magnet synchronous motors experience different types of failures, including static eccentricity. The first step in detecting such failures is the mathematical modeling of the motor under healthy and failed conditions. In this paper, an attempt to develop an accurate mathematical model for this motor under static eccentricity is presented. The model is based on the modified winding function method and coupled magnetic circuits approach. The model parameters are calculated directly from the motor winding layout and its geometry. Static eccentricity effects are considered in the motor inductances calculation. The performance of the line start permanent magnet synchronous motor using the developed mathematical model is investigated using MATLAB/SIMULINK® software (2013b, MathWorks, Natick, MA, USA under healthy and static eccentricity condition for different loading values. A finite element method analysis is conducted to verify the mathematical model results, using the commercial JMAG® software (16.0.02n, JSOL Corporation, Tokyo, Japan. The results show a fine agreement between JMAG® and the developed mathematical model simulation results.

  12. Predictive Models and Tools for Screening Chemicals under TSCA: Consumer Exposure Models 1.5

    Science.gov (United States)

    CEM contains a combination of models and default parameters which are used to estimate inhalation, dermal, and oral exposures to consumer products and articles for a wide variety of product and article use categories.

  13. Computational modeling and validation of human nasal airflow under various breathing conditions.

    Science.gov (United States)

    Li, Chengyu; Jiang, Jianbo; Dong, Haibo; Zhao, Kai

    2017-11-07

    The human nose serves vital physiological functions, including warming, filtration, humidification, and olfaction. These functions are based on transport phenomena that depend on nasal airflow patterns and turbulence. Accurate prediction of these airflow properties requires careful selection of computational fluid dynamics models and rigorous validation. The validation studies in the past have been limited by poor representations of the complex nasal geometry, lack of detailed airflow comparisons, and restricted ranges of flow rate. The objective of this study is to validate various numerical methods based on an anatomically accurate nasal model against published experimentally measured data under breathing flow rates from 180 to 1100ml/s. The numerical results of velocity profiles and turbulence intensities were obtained using the laminar model, four widely used Reynolds-averaged Navier-Stokes (RANS) turbulence models (i.e., k-ε, standard k-ω, Shear Stress Transport k-ω, and Reynolds Stress Model), large eddy simulation (LES) model, and direct numerical simulation (DNS). It was found that, despite certain irregularity in the flow field, the laminar model achieved good agreement with experimental results under restful breathing condition (180ml/s) and performed better than the RANS models. As the breathing flow rate increased, the RANS models achieved more accurate predictions but still performed worse than LES and DNS. As expected, LES and DNS can provide accurate predictions of the nasal airflow under all flow conditions but have an approximately 100-fold higher computational cost. Among all the RANS models tested, the standard k-ω model agrees most closely with the experimental values in terms of velocity profile and turbulence intensity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. BRISENT: An Entropy-Based Model for Bridge-Pier Scour Estimation under Complex Hydraulic Scenarios

    Directory of Open Access Journals (Sweden)

    Alonso Pizarro

    2017-11-01

    Full Text Available The goal of this paper is to introduce the first clear-water scour model based on both the informational entropy concept and the principle of maximum entropy, showing that a variational approach is ideal for describing erosional processes under complex situations. The proposed bridge–pier scour entropic (BRISENT model is capable of reproducing the main dynamics of scour depth evolution under steady hydraulic conditions, step-wise hydrographs, and flood waves. For the calibration process, 266 clear-water scour experiments from 20 precedent studies were considered, where the dimensionless parameters varied widely. Simple formulations are proposed to estimate BRISENT’s fitting coefficients, in which the ratio between pier-diameter and sediment-size was the most critical physical characteristic controlling scour model parametrization. A validation process considering highly unsteady and multi-peaked hydrographs was carried out, showing that the proposed BRISENT model reproduces scour evolution with high accuracy.

  15. Numerical solution of continuous-time DSGE models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    We propose a simple and powerful method for determining the transition process in continuous-time DSGE models under Poisson uncertainty numerically. The idea is to transform the system of stochastic differential equations into a system of functional differential equations of the retarded type. We...... then use the Waveform Relaxation algorithm to provide a guess of the policy function and solve the resulting system of ordinary differential equations by standard methods and fix-point iteration. Analytical solutions are provided as a benchmark from which our numerical method can be used to explore broader...... classes of models. We illustrate the algorithm simulating both the stochastic neoclassical growth model and the Lucas model under Poisson uncertainty which is motivated by the Barro-Rietz rare disaster hypothesis. We find that, even for non-linear policy functions, the maximum (absolute) error is very...

  16. An accurate European option pricing model under Fractional Stable Process based on Feynman Path Integral

    Science.gov (United States)

    Ma, Chao; Ma, Qinghua; Yao, Haixiang; Hou, Tiancheng

    2018-03-01

    In this paper, we propose to use the Fractional Stable Process (FSP) for option pricing. The FSP is one of the few candidates to directly model a number of desired empirical properties of asset price risk neutral dynamics. However, pricing the vanilla European option under FSP is difficult and problematic. In the paper, built upon the developed Feynman Path Integral inspired techniques, we present a novel computational model for option pricing, i.e. the Fractional Stable Process Path Integral (FSPPI) model under a general fractional stable distribution that tackles this problem. Numerical and empirical experiments show that the proposed pricing model provides a correction of the Black-Scholes pricing error - overpricing long term options, underpricing short term options; overpricing out-of-the-money options, underpricing in-the-money options without any additional structures such as stochastic volatility and a jump process.

  17. Determination of modeling parameters for power IGBTs under pulsed power conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Van Gordon, Jim A [U. OF MISSOURI; Kovaleski, Scott D [U. OF MISSOURI

    2010-01-01

    While the power insulated gate bipolar transistor (IGRT) is used in many applications, it is not well characterized under pulsed power conditions. This makes the IGBT difficult to model for solid state pulsed power applications. The Oziemkiewicz implementation of the Hefner model is utilized to simulate IGBTs in some circuit simulation software packages. However, the seventeen parameters necessary for the Oziemkiewicz implementation must be known for the conditions under which the device will be operating. Using both experimental and simulated data with a least squares curve fitting technique, the parameters necessary to model a given IGBT can be determined. This paper presents two sets of these seventeen parameters that correspond to two different models of power IGBTs. Specifically, these parameters correspond to voltages up to 3.5 kV, currents up to 750 A, and pulse widths up to 10 {micro}s. Additionally, comparisons of the experimental and simulated data will be presented.

  18. Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern Tunisia

    Science.gov (United States)

    Dakhlaoui, H.; Ruelland, D.; Tramblay, Y.; Bargaoui, Z.

    2017-07-01

    To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that must be fairly reliable under changing climate conditions. The aim of this study was thus to assess the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in northern Tunisia under long-term climate variability, in the light of available future climate scenarios for this region. The robustness of the models was evaluated using a differential split sample test based on a climate classification of the observation period that simultaneously accounted for precipitation and temperature conditions. The study catchments include the main hydrographical basins in northern Tunisia, which produce most of the surface water resources in the country. A 30-year period (1970-2000) was used to capture a wide range of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while model transferability was evaluated based on the Nash-Sutcliffe efficiency criterion and volume error. The three hydrological models were shown to behave similarly under climate variability. The models simulated the runoff pattern better when transferred to wetter and colder conditions than to drier and warmer ones. It was shown that their robustness became unacceptable when climate conditions involved a decrease of more than 25% in annual precipitation and an increase of more than +1.75 °C in annual mean temperatures. The reduction in model robustness may be partly due to the climate dependence of some parameters. When compared to precipitation and temperature projections in the region, the limits of transferability obtained in this study are generally respected for short and middle term. For long term projections under the most pessimistic emission gas scenarios, the limits of transferability are generally not respected, which may hamper the

  19. A non-equilibrium model for soil heating and evaporation under extreme conditions

    Science.gov (United States)

    Massman, W. J.

    2014-12-01

    Extreme heating of soils during fires can have long-term and irreversible consequences and given the increasing use of prescribed fire by land managers and the increasing probability of wildfires associated with global warming, one approach to improving understanding of these consequences is to better understand and model the dynamics of the coupled heat, (liquid) moisture, and vapor transport in soils during extreme heating events. The present study describes a model developed to simulate non-equilibrium soil evaporation and the transport of heat, moisture, and water vapor under conditions during fires where the surface heating of the soil often ranges between 10,000 and 100,000 Wm-2 for several minutes to several hours. The Hertz-Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. Model performance is tested against laboratory measurements of soil temperature and moisture changes. Testing the present model with different formulations for soil hydraulic conductivity, water retention curve, water activity, and the non-equilibrium evaporative source term, indicates that virtually all the model's successes result from the use of a temperature dependent condensation coefficient in the evaporative source term, a rather surprising and unexpected result. On the other hand, the model solution is not a completely faithful representation of the laboratory data. Nevertheless, this new non-equilibrium model circumvents many of the problems that plagued an equilibrium model developed for the same purpose (Massman 2012: Water Resources Research 48, WR011710) and provides a much more physically realistic simulation than the earlier model. Finally, the present model should provide insight into modeling of heat and mass transport and evaporation, not only during high temperature and low moisture conditions, but for modeling these soil processes under less extreme environmental conditions as well.

  20. Nonlinear Creep Model for Deep Rock under High Stress and High Pore Water Pressure Condition

    Directory of Open Access Journals (Sweden)

    Xie Yuanguang

    2016-05-01

    Full Text Available Conventional triaxial compression creep experiments for deep sandstone under high confining pressure and high pore water pressure were carried out, in order to predict the creep response of deep rock under these conditions. A nonlinear viscoelastic-plastic creep constitutive model was proposed based on the experimental results. The theory of component model was used as a basis for the formulation of this model. First, by using mathematical fitting and analogy, a new nonlinear viscous component was introduced based on the properties of the creep curves during the tertiary stage. Second, a timer component to judge whether the creep can get into the tertiary stage was presented. Finally, a nonlinear creep model was proposed. Results showed good agreement between theory curves from the nonlinear creep model and experimental data. This model can be applied to predict deep rock creep responses under high stress and high pore water pressure conditions. Hence, the obtained conclusions in this study are beneficial to deep rock engineering.

  1. A model system to give an insight into the behaviour of gold nanoparticles under ion irradiation

    International Nuclear Information System (INIS)

    Ramjauny, Y.

    2010-01-01

    Nano-composites fabricated with ion-based techniques have a number of attractive characteristics. However, the main and most crucial difficulty in obtaining commercial NPs-based devices is the inability to produce a suitable narrow size and spatial NP distributions. The objective of this thesis is twofold: i) to go further in the description of the behavior of the ion-driven NPs and ii) to overcome the limitations related to the ion-beam techniques providing a guideline methodology to rationalize the synthesis of NPs when ion-beams are used. Thus, a model system is fabricated. It consists of chemically synthesized metallic nanoparticles sandwiched between two silica layers. We show how the ion irradiation and the temperature can be used to tune the size distribution of the embedded NPs. Moreover, we show that when an initially large NPs size distribution is considered, the study of the growth kinetic of the NPs under irradiation can be problematic. Our model system is than used to investigate in detail the behavior of the NPs under irradiation. We show that the evolution of the precipitate phase under irradiation is successfully described by an Ostwald ripening mechanism in an open system limited by the diffusion. Moreover, the concentration threshold for nucleation as well as the surface tension and the gold diffusivity in silica under irradiation is estimated. Finally, direct and inverse Ostwald ripening processes under irradiation are systematically investigated and the existing theoretical models experimentally checked. (author)

  2. Investigation of transient models and performances for a doubly fed wind turbine under a grid fault

    DEFF Research Database (Denmark)

    Wang, M.; Zhao, B.; Li, H.

    2011-01-01

    of the grid-side converter and the rotor-side converter of DFIG. Secondly, the transient performances of the presented doubly fed wind turbine under a grid fault were compared and evaluated with different equivalent models, parameters and initial operational conditions. And thirdly, the effects of the active......In order to investigate the impacts of the integration of wind farms into utilities network, it is necessary to analyze the transient performances of wind turbine generation systems (WTGS) with the appropriate transient models. According to the grid code requirements for a wind turbine with doubly...... trip time. Firstly, the different mathematical models of the doubly fed wind turbine were presented, including the electromagnetic transient models of DFIG, a one-mass lumped model, a two-mass shaft flexible model of the wind turbine drive train system, and the power decoupling control strategies...

  3. Conditional Akaike information under generalized linear and proportional hazards mixed models

    Science.gov (United States)

    Donohue, M. C.; Overholser, R.; Xu, R.; Vaida, F.

    2011-01-01

    We study model selection for clustered data, when the focus is on cluster specific inference. Such data are often modelled using random effects, and conditional Akaike information was proposed in Vaida & Blanchard (2005) and used to derive an information criterion under linear mixed models. Here we extend the approach to generalized linear and proportional hazards mixed models. Outside the normal linear mixed models, exact calculations are not available and we resort to asymptotic approximations. In the presence of nuisance parameters, a profile conditional Akaike information is proposed. Bootstrap methods are considered for their potential advantage in finite samples. Simulations show that the performance of the bootstrap and the analytic criteria are comparable, with bootstrap demonstrating some advantages for larger cluster sizes. The proposed criteria are applied to two cancer datasets to select models when the cluster-specific inference is of interest. PMID:22822261

  4. Modeling and analysis of gear tooth crack growth under variable-amplitude loading

    Science.gov (United States)

    Yin, Juliang; Wang, Wenyi; Man, Zhihong; Khoo, Suiyang

    2013-10-01

    The purpose of this paper is to reveal the pattern of gear tooth crack growth under variable-amplitude loading. To this end, a nonlinear dynamic model is proposed to describe the gear tooth crack growth. The state variables of the model are crack length and crack opening stress. The dynamics of crack growth is modeled as a modified Paris equation based on the concept of crack closure. A nonlinear second-order autoregressive equation is developed to model the dynamic behavior of the crack opening stresses. The model parameters are estimated by means of a two-step estimation method because of relatively small sample size of crack length data for G6 gear tests. The model is also validated with the crack growth data of the G6 gear.

  5. Comparison of Predictive Models for Photovoltaic Module Performance under Sudanese-Sahelian Climate

    Directory of Open Access Journals (Sweden)

    Njomo Donatien

    2012-06-01

    Full Text Available This paper investigates various approaches to the modeling of photovoltaic systems and tests their accuracy under tropical climate. Particularly the single diode model is used to estimate the electrical behavior of the cell with respect changes on environmental parameter of temperature and irradiance. A particular typical MXS60 solar panel is used for models evaluation and results are comparing with points taken directly from the experience made on the same panel in tropical climate of the Sudan type . The accuracy of models was computed and the better model was determined for local conditions. The analysis of the curves shows that the single diode model has the better accuracy whereas the Photovoltaic geographical information system (PVGIS approach seems to be not appropriate for the region.

  6. Improving Crop Productions Using the Irrigation & Crop Production Model Under Drought

    Science.gov (United States)

    Shin, Y.; Lee, T.; Lee, S. H.; Kim, J.; Jang, W.; Park, S.

    2017-12-01

    We aimed to improve crop productions by providing optimal irrigation water amounts (IWAs) for various soils and crops using the Irrigation & Crop Production (ICP) model under various hydro-climatic regions. We selected the Little Washita (LW 13/21) and Bangdong-ri sites in Oklahoma (United States of America) and Chuncheon (Republic of Korea) for the synthetic studies. Our results showed that the ICP model performed well for improving crop productions by providing optimal IWAs during the study period (2000 to 2016). Crop productions were significantly affected by the solar radiation and precipitation, but the maximum and minimum temperature showed less impact on crop productions. When we considerd that the weather variables cannot be adjusted by artifical activities, irrigation might be the only solution for improving crop productions under drought. Also, the presence of shallow ground water (SGW) table depths higlhy influences on crop production. Although certainties exist in the synthetic studies, our results showed the robustness of the ICP model for improving crop productions under the drought condition. Thus, the ICP model can contribute to efficient water management plans under drought in regions at where water availability is limited.

  7. A material optimization model to approximate energy bounds for cellular materials under multiload conditions

    DEFF Research Database (Denmark)

    Guedes, J.M.; Rodrigues, H.C.; Bendsøe, Martin P.

    2003-01-01

    This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal...

  8. Drying characteristics and modeling of yam slices under different relative humidity conditions

    Science.gov (United States)

    The drying characteristics of yam slices under different 23 constant relative humidity (RH) and step-down RH levels were studied. A mass transfer model was developed based on Bi-Di correlations containing a drying coefficient and a lag factor to describe the drying process. It was validated using ex...

  9. Modelling the Cost Performance of a Given Logistics Network Operating Under Regular and Irregular Conditions

    NARCIS (Netherlands)

    Janic, M.

    2009-01-01

    This paper develops an analytical model for the assessment of the cost performance of a given logistics network operating under regular and irregular (disruptive) conditions. In addition, the paper aims to carry out a sensitivity analysis of this cost with respect to changes of the most influencing

  10. Intercropping reduces nitrate leaching from under field crops without loss of yield: A modelling study

    NARCIS (Netherlands)

    Whitmore, A.P.; Schröder, J.J.

    2007-01-01

    A model of soil nitrogen dynamics under competing intercrops is described and used to interpret two sets of experimental field data from the literature. In one series of experiments, maize received slurry and mineral nitrogen (N) fertiliser or mineral N alone and was grown either alone or

  11. Can We Efficiently Check Concurrent Programs Under Relaxed Memory Models in Maude?

    DEFF Research Database (Denmark)

    Arrahman, Yehia Abd; Andric, Marina; Beggiato, Alessandro

    2014-01-01

    to the state space explosion. Several techniques have been proposed to mitigate those problems so to make verification under relaxed memory models feasible. We discuss how to adopt some of those techniques in a Maude-based approach to language prototyping, and suggest the use of other techniques that have been...

  12. Effective Strategy Formation Models for Inventory Management under the Conditions of Uncertainty

    Science.gov (United States)

    Kosorukov, Oleg Anatolyevich; Sviridova, Olga Alexandrovna

    2015-01-01

    The article deals with the problem of modeling the commodity flows management of a trading company under the conditions of uncertain demand and long supply. The Author presents an analysis of modifications of diversified inventory management system with random demand, for which one can find the optimal inventory control strategies, including those…

  13. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments

    Science.gov (United States)

    G. Thirel; V. Andreassian; C. Perrin; J.-N. Audouy; L. Berthet; Pamela Edwards; N. Folton; C. Furusho; A. Kuentz; J. Lerat; G. Lindstrom; E. Martin; T. Mathevet; R. Merz; J. Parajka; D. Ruelland; J. Vaze

    2015-01-01

    Testing hydrological models under changing conditions is essential to evaluate their ability to cope with changing catchments and their suitability for impact studies. With this perspective in mind, a workshop dedicated to this issue was held at the 2013 General Assembly of the International Association of Hydrological Sciences (IAHS) in Göteborg, Sweden, in July 2013...

  14. Modelling soil moisture under different land covers in a sub-humid ...

    Indian Academy of Sciences (India)

    cipitation/irrigation and yields output of evapo- transpiration and drainage. Spatial (vertical and lateral) variations in properties and processes are ignored and soil moisture content for the layer as a whole is modelled. Accordingly, application of water balance equation to the soil layer under these assumptions for time period ...

  15. A theoretical model of the evolution of maternal effects under parent-offspring conflict

    NARCIS (Netherlands)

    Uller, Tobias; Pen, Ido

    The evolution of maternal effects on offspring phenotype should depend on the extent of parent-offspring conflict and costs and constraints associated with maternal and offspring strategies. Here, we develop a model of maternal effects on offspring dispersal phenotype under parent-offspring conflict

  16. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    Science.gov (United States)

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  17. NEARSOL - a simple program to model actinide speciation and solubility under waste disposal conditions

    International Nuclear Information System (INIS)

    Leach, S.J.; Pryke, D.C.

    1986-05-01

    A simple program, NearSol, has been written in Fortran 77 on the Harwell Central Computer to model the aqueous speciation and solubility of actinides under near-field conditions for disposal using a simple thermodynamic approach. The methodology and running of the program are described together with a worked example. (author)

  18. A Bingham-plastic model for fluid mud transport under waves and currents

    Science.gov (United States)

    Liu, Chun-rong; Wu, Bo; Huhe, Ao-de

    2014-04-01

    Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.

  19. Key challenges and priorities for modelling European grasslands under climate change.

    Science.gov (United States)

    Kipling, Richard P; Virkajärvi, Perttu; Breitsameter, Laura; Curnel, Yannick; De Swaef, Tom; Gustavsson, Anne-Maj; Hennart, Sylvain; Höglind, Mats; Järvenranta, Kirsi; Minet, Julien; Nendel, Claas; Persson, Tomas; Picon-Cochard, Catherine; Rolinski, Susanne; Sandars, Daniel L; Scollan, Nigel D; Sebek, Leon; Seddaiu, Giovanna; Topp, Cairistiona F E; Twardy, Stanislaw; Van Middelkoop, Jantine; Wu, Lianhai; Bellocchi, Gianni

    2016-10-01

    Grassland-based ruminant production systems are integral to sustainable food production in Europe, converting plant materials indigestible to humans into nutritious food, while providing a range of environmental and cultural benefits. Climate change poses significant challenges for such systems, their productivity and the wider benefits they supply. In this context, grassland models have an important role in predicting and understanding the impacts of climate change on grassland systems, and assessing the efficacy of potential adaptation and mitigation strategies. In order to identify the key challenges for European grassland modelling under climate change, modellers and researchers from across Europe were consulted via workshop and questionnaire. Participants identified fifteen challenges and considered the current state of modelling and priorities for future research in relation to each. A review of literature was undertaken to corroborate and enrich the information provided during the horizon scanning activities. Challenges were in four categories relating to: 1) the direct and indirect effects of climate change on the sward 2) climate change effects on grassland systems outputs 3) mediation of climate change impacts by site, system and management and 4) cross-cutting methodological issues. While research priorities differed between challenges, an underlying theme was the need for accessible, shared inventories of models, approaches and data, as a resource for stakeholders and to stimulate new research. Developing grassland models to effectively support efforts to tackle climate change impacts, while increasing productivity and enhancing ecosystem services, will require engagement with stakeholders and policy-makers, as well as modellers and experimental researchers across many disciplines. The challenges and priorities identified are intended to be a resource 1) for grassland modellers and experimental researchers, to stimulate the development of new research

  20. Linkage Of A Finite Element Flow Model With A Soil Moisture Model: Challanges Under Semiarid Conditions

    Science.gov (United States)

    Roediger, T.; Siebert, C.; Krause, P.

    2008-12-01

    The arid to semiarid Middle East is a region of extreme growth of population. Hence, the rare and over- expoitated water resources in that region have to be more protected against antropogenic and geogenic pollution. One way to help solving that complex issue is to develop an intelligent and integrated strategy to manage all available water resources, which is the aim of the multilateral SMART-project in the Lower Jordan Valley. To generate such an IWRM, all water resources (groundwater, surface runoff, waste water) of the valley and its shoulders have to be quanti- and qualitatively evaluated. The strategy of SMART is to upscale knowledge, extracted from local catchment areas to the project scale, which covers the area between Sea of Galilee, Jerusalem, Dead Sea and Amman. The study areas of the here presented sub-project are the Wadis Qilt (Palestine) and Al Arab (Jordan). The aim of the sub-project is to evaluate natural resources on catchment scale by combining hydrochemical and hydraulical methods to develop a high precision model. Concerning the quantification of the system, two seperated models will be linked: a numerical finite element flow-model for the groundwater passage and a new devolped hydrological model JAMS, which is excellently prepared for humid conditions. The power of JAMS is the highly accurate assessment of soil moisture balance and consequently of surface runoff and groundwater recharge. However, the empirical equations and input parameters have to be adjusted onto the conditions of the semiarid Wadi Al Arab and the arid Wadi Qilt. After the adaption of JAMS, the spatially and temporarily differentiated calculation of runoff and groundwater recharge is possible. Beside climatic gradients, the key issue is, to correctly evaluate the evapotranspiration in respect to the different classes of landuse. In the study area Wadi Al Arab, the groundwater recharge was calculated as area-indicated output parameter of JAMS. This output was used to be the

  1. Intention to Purchase Products under Volume Discount Scheme: A Conceptual Model and Research Propositions

    Directory of Open Access Journals (Sweden)

    Mohammad Iranmanesh

    2014-12-01

    Full Text Available Many standard brands sell products under the volume discount scheme (VDS as more and more consumers are fond of purchasing products under this scheme. Despite volume discount being commonly practiced, there is a dearth of research, both conceptual and empirical, focusing on purchase characteristics factors and consumer internal evaluation concerning the purchase of products under VDS. To attempt to fill this void, this article develops a conceptual model on VDS with the intention of delineating the influence of the purchase characteristics factors on the consumer intention to purchase products under VDS and provides an explanation of their effects through consumer internal evaluation. Finally, the authors discuss the managerial implications of their research and offer guidelines for future empirical research.

  2. A simple heat transfer model for a heat flux plate under transient conditions

    International Nuclear Information System (INIS)

    Ryan, L.; Dale, J.D.

    1985-01-01

    Heat flux plates are used for measuring rates of heat transfer through surfaces under steady state and transient conditions. Their usual construction is to have a resistive layer bounded by thermopiles and an exterior layer for protection. If properly designed and constructed a linear relationship between the thermopile generated voltage and heat flux results and calibration under steady state conditions is straight forward. Under transient conditions however the voltage output from a heat flux plate cannot instantaneously follow the heat flux because of the thermal capacitance of the plate and the resulting time lag. In order to properly interpret the output of a heat flux plate used under transient conditions a simple heat transfer model was constructed and tested. (author)

  3. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Science.gov (United States)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  4. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2014-01-01

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D......) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution...

  5. Physical scale modeling of single free head piles under lateral loading in cohesive soils

    Directory of Open Access Journals (Sweden)

    Edgar Leonardo Salamanca-Medina

    2017-06-01

    Full Text Available This paper presents the results of the small scale modeling of free head wood piles under horizontal loading in cohesive soils, tested in order to compare the results with analytical models proposed by various authors. Characteristic Load (CLM and P-Y Curves methods were used for the prediction of lateral deflections at the head of the piles and the method proposed by Broms for estimating the ultimate lateral load. These predictions were compared with the results of the physical modeling, obtaining a good approximation between them.

  6. APPRAISAL OF THE SNAP MODEL FOR PREDICTING NITROGEN MINERALIZATION IN TROPICAL SOILS UNDER EUCALYPTUS

    Directory of Open Access Journals (Sweden)

    Philip James Smethurst

    2015-04-01

    Full Text Available The Soil Nitrogen Availability Predictor (SNAP model predicts daily and annual rates of net N mineralization (NNM based on daily weather measurements, daily predictions of soil water and soil temperature, and on temperature and moisture modifiers obtained during aerobic incubation (basal rate. The model was based on in situ measurements of NNM in Australian soils under temperate climate. The purpose of this study was to assess this model for use in tropical soils under eucalyptus plantations in São Paulo State, Brazil. Based on field incubations for one month in three, NNM rates were measured at 11 sites (0-20 cm layer for 21 months. The basal rate was determined in in situ incubations during moist and warm periods (January to March. Annual rates of 150-350 kg ha-1 yr-1 NNM predicted by the SNAP model were reasonably accurate (R2 = 0.84. In other periods, at lower moisture and temperature, NNM rates were overestimated. Therefore, if used carefully, the model can provide adequate predictions of annual NNM and may be useful in practical applications. For NNM predictions for shorter periods than a year or under suboptimal incubation conditions, the temperature and moisture modifiers need to be recalibrated for tropical conditions.

  7. Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading

    Science.gov (United States)

    Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.

    2017-12-01

    Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.

  8. Modeling of agent-based complex network under cyber-violence

    Science.gov (United States)

    Huang, Chuanchao; Hu, Bin; Jiang, Guoyin; Yang, Ruixian

    2016-09-01

    Public opinion reversal arises frequently in modern society, due to the continual interactions between individuals and their surroundings. To explore the underlying mechanism of the interesting social phenomenon, we introduce here a new model which takes the relationship between the individual cognitive bias and their corresponding choice behavior into account. Experimental results show that the proposed model can provide an accurate description of the entire process of public opinion reversal under the internet environment and the distribution of cognitive bias plays the role of a measure for the reversal probability. In particular, the application to cyber violence, a typical example of public opinion reversal, suggests that public opinion is prone to be seriously affected by the spread of misleading and harmful information. Furthermore, our model is very robust and thus can be employed to other empirical studies that concern the sudden change of public and personal opinion on internet.

  9. Physics Based Electrolytic Capacitor Degradation Models for Prognostic Studies under Thermal Overstress

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  10. A Petri net-based modelling of replacement strategies under technological obsolescence

    Energy Technology Data Exchange (ETDEWEB)

    Clavareau, Julien [Universite Libre de Bruxelles (U.L.B.), Service de Metrologie Nucleaire, Av. F.D. Roosevelt, 50 (CP165/84), Bruxelles B-1050 (Belgium)], E-mail: jclavare@ulb.ac.be; Labeau, Pierre-Etienne [Universite Libre de Bruxelles (U.L.B.), Service de Metrologie Nucleaire, Av. F.D. Roosevelt, 50 (CP165/84), Bruxelles B-1050 (Belgium)

    2009-02-15

    The technological obsolescence of a unit is characterised by the existence of challenger units displaying identical functionalities, but with higher performances. Though this issue is commonly encountered in practice, it has received little consideration in the literature. Previous exploratory works have treated the problem of replacing old-technology items by new ones, for identical components facing a unique new generation of items. This paper aims to define, in a realistic way, possible replacement policies when several types of challenger units are available and when the performances of these newly available units improve with time. Since no fully generic model can exist in maintenance optimisation, a modular modelling of the problem, allowing easy adaptations to features corresponding to specific applications is highly desirable. This work therefore proposes a modular Petri net model for this problem, underlying a Monte Carlo (MC) estimation of the costs incurred by the different possible replacement strategies under consideration.

  11. An experimental study on cumulative prospect theory learning model of travelers’ dynamic mode choice under uncertainty

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-06-01

    Full Text Available In this paper, we examined travelers’ dynamic mode choice behavior under travel time variability. We found travelers’ inconsistent risk attitudes through a binary mode choice experiment. Although the results deviated from the traditional utility maximization theory and could not be explained by the payoff variability effect, they could be well captured in a cumulative prospect theory (CPT framework. After considering the imperfect memory effect, we found that the prediction ability of the cumulative prospect theory learning (CPTL model could be significantly improved. The experimental results were also compared with the CPTL model and the reinforcement learning (REL model. This study empirically showed the potential of alternative theories to better capture travelers’ day-to-day mode choice behavior under uncertainty. A new definition of willingness to pay (WTP in a CPT framework was provided to explicitly consider travelers’ perceived value increases in travel time.

  12. A theoretical model of virtual water trade under increasing water scarcity conditions

    Science.gov (United States)

    de Vos, Lotte; Pande, Saket

    2016-04-01

    This paper proposes a virtual water trade model to obtain a better understanding of how hydro-climatic change affects societies through changes in virtual water trade. In previous studies it has been shown that global trade patterns can be influenced by water scarcity and vice-versa. The extent to which this relationship holds is still a topic under discussion. With the model introduced in this paper, the dynamics behind these trade patterns are further explored. First, a model is constructed of a society suffering from an increase in water scarcity. This model is shown to be capable of replicating patterns of technological, population, production and consumption per capita changes. In order to incorporate the effects of globalization and trade, the model has been extended to a toy model of virtual water trade between two societies. The two societies are represented by overlapping generations models. The individuals of each generation provide the labour needed for the production of the composite goods. In addition to this labour, water and technology are also incorporated as factors of production. There are two goods being produced; one is labour intensive and the other water intensive. Trade emerges from the principle of comparative advantage, with differences in labour-abundance and water resources availability between the two societies. Using this model of two societies interconnected by trade, it is examined how trade of water-intensive commodities alters under changing scarcity conditions. In particular we explore the conditions under which trade emerges, and to what extent. Furthermore, we present the conditions for the sustainable development within these two societies.

  13. Identifiability of models for time-resolved fluorescence with underlying distributions of rate constants.

    Science.gov (United States)

    Boens, Noël; Van der Auweraer, Mark

    2014-02-01

    The deterministic identifiability analysis of photophysical models for the kinetics of excited-state processes, assuming errorless time-resolved fluorescence data, can verify whether the model parameters can be determined unambiguously. In this work, we have investigated the identifiability of several uncommon models for time-resolved fluorescence with underlying distributions of rate constants which lead to non-exponential decays. The mathematical functions used here for the description of non-exponential fluorescence decays are the stretched exponential or Kohlrausch function, the Becquerel function, the Förster type energy transfer function, decay functions associated with exponential, Gaussian and uniform distributions of rate constants, a decay function with extreme sub-exponential behavior, the Mittag-Leffler function and Heaviside's function. It is shown that all the models are uniquely identifiable, which means that for each specific model there exists a single parameter set that describes its associated fluorescence δ-response function.

  14. Comparison of Color Model in Cotton Image Under Conditions of Natural Light

    Science.gov (United States)

    Zhang, J. H.; Kong, F. T.; Wu, J. Z.; Wang, S. W.; Liu, J. J.; Zhao, P.

    Although the color images contain a large amount of information reflecting the species characteristics, different color models also get different information. The selection of color models is the key to separating crops from background effectively and rapidly. Taking the cotton images collected under natural light as the object, we convert the color components of RGB color model, HSL color model and YIQ color model respectively. Then, we use subjective evaluation and objective evaluation methods, evaluating the 9 color components of conversion. It is concluded that the Q component of the soil, straw and plastic film region gray values remain the same without larger fluctuation when using subjective evaluation method. In the objective evaluation, we use the variance method, average gradient method, gray prediction objective evaluation error statistics method and information entropy method respectively to find the minimum numerical of Q color component suitable for background segmentation.

  15. Evaluation of Reinforced Concrete Structural Members under Uniform Loads Using Truss Model

    Directory of Open Access Journals (Sweden)

    Houshang Dabbagh

    2016-03-01

    Full Text Available Truss model is an analytical approach to predict the strength of reinforced concrete members with geometric or statical discontinuous regions. This study investigates the use of truss model to predict the structural behavior of reinforced concrete members with discontinuity areas under monotonic loading. The estimated failure load and its corresponding deformation are the main objective of this research. Twenty and three samples including short shear walls, short columns and deep beams tested by other researchers throughout the literature have been selected. Then their truss models as well as their three dimensional finite element models are analyzed using ABAQUS software. The comparison of experimental and analytical results shows fair correlation between them. Also, the structural response of samples estimated by truss model analysis is fairly acceptable.

  16. Water loss in table grapes: model development and validation under dynamic storage conditions

    Directory of Open Access Journals (Sweden)

    Ericsem PEREIRA

    2017-09-01

    Full Text Available Abstract Water loss is a critical problem affecting the quality of table grapes. Temperature and relative humidity (RH are essential in this process. Although mathematical modelling can be applied to measure constant temperature and RH impacts, it is proved that variations in storage conditions are normally encountered in the cold chain. This study proposed a methodology to develop a weight loss model for table grapes and validate its predictions in non-constant conditions of a domestic refrigerator. Grapes were maintained under controlled conditions and the weight loss was measured to calibrate the model. The model described the water loss process adequately and the validation tests confirmed its predictive ability. Delayed cooling tests showed that estimated transpiration rates in subsequent continuous temperature treatment was not significantly influenced by prior exposure conditions, suggesting that this model may be useful to estimate the weight loss consequences of interruptions in the cold chain.

  17. Modeling of Pharmaceutical Biotransformation by Enriched Nitrifying Culture under Different Metabolic Conditions

    DEFF Research Database (Denmark)

    Xu, Yifeng; Chen, Xueming; Yuan, Zhiguo

    2018-01-01

    a comprehensive model to describe and evaluate the biodegradation of pharmaceuticals and the formation of their biotransformation products by enriched nitrifying cultures. The biotransformation of parent compounds was linked to the microbial processes via cometabolism induced by ammonium-oxidizing bacteria (AOB......) growth, metabolism by AOB, cometabolism by heterotrophs (HET) growth, and metabolism by HET in the model framework. The model was calibrated and validated using experimental data from pharmaceutical biodegradation experiments at realistic levels, taking two pharmaceuticals as examples, i.e., atenolol...... and acyclovir. Results demonstrated the good predictive performance of the established biotransformation model under different metabolic conditions, as well as the reliability of the established model in predicting different pharmaceutical biotransformations. The linear positive correlation between ammonia...

  18. Mechanisms underlying REBT in mood disordered patients: predicting depression from the hybrid model of learning.

    Science.gov (United States)

    Jackson, Chris J; Izadikah, Zahra; Oei, Tian P S

    2012-06-01

    Jackson's (2005, 2008a) hybrid model of learning identifies a number of learning mechanisms that lead to the emergence and maintenance of the balance between rationality and irrationality. We test a general hypothesis that Jackson's model will predict depressive symptoms, such that poor learning is related to depression. We draw comparisons between Jackson's model and Ellis' (2004) Rational Emotive Behavior Therapy and Theory (REBT) and thereby provide a set of testable learning mechanisms potentially underlying REBT. Results from 80 patients diagnosed with depression completed the learning styles profiler (LSP; Jackson, 2005) and two measures of depression. Results provide support for the proposed model of learning and further evidence that low rationality is a key predictor of depression. We conclude that the hybrid model of learning has the potential to explain some of the learning and cognitive processes related to the development and maintenance of irrational beliefs and depression. Copyright © 2011. Published by Elsevier B.V.

  19. The model of localized business community economic development under limited financial resources: computer model and experiment

    Directory of Open Access Journals (Sweden)

    Berg Dmitry

    2016-01-01

    Full Text Available Globalization processes now affect and are affected by most of organizations, different type resources, and the natural environment. One of the main restrictions initiated by these processes is the financial one: money turnover in global markets leads to its concentration in the certain financial centers, and local business communities suffer from the money lack. This work discusses the advantages of complementary currency introduction into a local economics. By the computer simulation with the engineered program model and the real economic experiment it was proved that the complementary currency does not compete with the traditional currency, furthermore, it acts in compliance with it, providing conditions for the sustainable business community development.

  20. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal [In2Earth Modelling Ltd, Lausanne (Switzerland); Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)

    2012-11-15

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  1. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    International Nuclear Information System (INIS)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal; Jansson, Peter

    2012-11-01

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  2. Establishment of probabilistic model for Salmonella Enteritidis growth and inactivation under acid and osmotic pressure

    Directory of Open Access Journals (Sweden)

    Yujiao Shi

    2017-12-01

    Full Text Available The growth and survival characteristic of Salmonella Enteritidis under acidic and osmotic conditions were studied. Meanwhile, a probabilistic model based on the theory of cell division and mortality was established to predict the growth or inactivation of S. Enteritidis. The experimental results demonstrated that the growth curves of planktonic and detached cells showed a significant difference (p < 0.05 under four conditions, including pH5.0 + 0.0%NaCl, pH7.0 + 4.0%NaCl, pH6.0 + 4.0%NaCl, and pH5.0 + 4.0%NaCl. And the established primary and secondary models could describe the growth of S. enteritis well by estimating four mathematics evaluation indexes, including determination coefficient (R2, root mean square error (RMSE, accuracy factor (Af and bias factor (Bf. Moreover, sequential treatment of 15% NaCl stress followed by pH 4.5 stress was the best condition to inactivate S. Enteritidis in 10 h at 25 °C. The probabilistic model with Logistical or Weibullian form could also predict the inactivation of S. Enteritidis well, thus realize the unification of predictive model to some extent or generalization of inactivation model. Furthermore, the primary 4-parameter probabilistic model or generalized inactivation model had slightly higher applicability and reliability to describe the growth or inactivation of S. Enteritidis than Baranyi model or exponential inactivation model within the experimental range in this study. Keywords: Acid, Osmotic pressure, Salmonella Enteritidis, Probabilistic model, Unification, Generalization

  3. Enriching the hierarchical model of achievement motivation: autonomous and controlling reasons underlying achievement goals.

    Science.gov (United States)

    Michou, Aikaterini; Vansteenkiste, Maarten; Mouratidis, Athanasios; Lens, Willy

    2014-12-01

    The hierarchical model of achievement motivation presumes that achievement goals channel the achievement motives of need for achievement and fear of failure towards motivational outcomes. Yet, less is known whether autonomous and controlling reasons underlying the pursuit of achievement goals can serve as additional pathways between achievement motives and outcomes. We tested whether mastery approach, performance approach, and performance avoidance goals and their underlying autonomous and controlling reasons would jointly explain the relation between achievement motives (i.e., fear of failure and need for achievement) and learning strategies (Study 1). Additionally, we examined whether the autonomous and controlling reasons underlying learners' dominant achievement goal would account for the link between achievement motives and the educational outcomes of learning strategies and cheating (Study 2). Six hundred and six Greek adolescent students (Mage = 15.05, SD = 1.43) and 435 university students (Mage M = 20.51, SD = 2.80) participated in studies 1 and 2, respectively. In both studies, a correlational design was used and the hypotheses were tested via path modelling. Autonomous and controlling reasons underlying the pursuit of achievement goals mediated, respectively, the relation of need for achievement and fear of failure to aspects of learning outcomes. Autonomous and controlling reasons underlying achievement goals could further explain learners' functioning in achievement settings. © 2014 The British Psychological Society.

  4. Estimating Rice Yield under Changing Weather Conditions in Kenya Using CERES Rice Model

    Directory of Open Access Journals (Sweden)

    W. O. Nyang’au

    2014-01-01

    Full Text Available Effects of change in weather conditions on the yields of Basmati 370 and IR 2793-80-1 cultivated under System of Rice Intensification (SRI in Mwea and Western Kenya irrigation schemes were assessed through sensitivity analysis using the Ceres rice model v 4.5 of the DSSAT modeling system. Genetic coefficients were determined using 2010 experimental data. The model was validated using rice growth and development data during the 2011 cropping season. Two SRI farmers were selected randomly from each irrigation scheme and their farms were used as research fields. Daily maximum and minimum temperatures and precipitation were collected from the weather station in each of the irrigation schemes while daily solar radiation was generated using weatherman in the DSSAT shell. The study revealed that increase in both maximum and minimum temperatures affects Basmati 370 and IR 2793-80-1 grain yield under SRI. Increase in atmospheric CO2 concentration led to an increase in grain yield for both Basmati and IR 2793-80-1 under SRI and increase in solar radiation also had an increasing impact on both Basmati 370 and IR 2793-80-1 grain yield. The results of the study therefore show that weather conditions in Kenya affect rice yield under SRI and should be taken into consideration to improve food security.

  5. CoaSim: A Flexible Environment for Simulating Genetic Data under Coalescent Models

    DEFF Research Database (Denmark)

    Mailund; Schierup, Mikkel Heide; Pedersen, Christian Nørgaard Storm

    2005-01-01

    Background Coalescent simulations are playing a large role in interpreting large scale intra- polymorphism surveys and for planning and evaluating association studies. Coalescent of data sets under different models can be compared to the actual data to test different evolutionary factors and thus...... get insight into these. Results We have created the CoaSim application as a flexible environment for Monte various types of genetic data under equilibrium and non-equilibrium coalescent variety of applications. Interaction with the tool is through the Guile version scripting language. Scheme scripts...

  6. Research destruction ice under dynamic loading. Part 1. Modeling explosive ice cover into account the temperature

    Directory of Open Access Journals (Sweden)

    Bogomolov Gennady N.

    2017-01-01

    Full Text Available In the research, the behavior of ice under shock and explosive loads is analyzed. Full-scale experiments were carried out. It is established that the results of 2013 practically coincide with the results of 2017, which is explained by the temperature of the formation of river ice. Two research objects are considered, including freshwater ice and river ice cover. The Taylor test was simulated numerically. The results of the Taylor test are presented. Ice is described by an elastoplastic model of continuum mechanics. The process of explosive loading of ice by emulsion explosives is numerically simulated. The destruction of the ice cover under detonation products is analyzed in detail.

  7. Immune Organs and Haemopoietic System Under Modelling of the Mission Factors

    Science.gov (United States)

    Sapin, M. R.; Grigoriev, A. I.; Erofeeva, L. M.; Grigorenko, D. E.; Fedorenko, B. S.

    1997-07-01

    Literary and experimental data on the character of changes in immune organs and lymphoid tissue of respiratory system and digestive system in laboratory animals during the mission factors model are given. Inhibition of reproductive function in bone marrow, thymus and spleen under irradiation of gamma-rays and accelerated carbon ions, tensity of immune response in the lymphoid structures of larynx, trachea and bronchi under the influence of acetaldehyde vapors and decrease of lymphoid tissue square on histological series in spleen and small intestine with an increase of concentration of microbial bodies in the drinking water were estimated.

  8. Modelling the drying kinetics of green peas in a solar dryer and under open sun

    Energy Technology Data Exchange (ETDEWEB)

    Sunil [Department of Mechanical Engineering, BRCM CET Bahal, Haryana–127028 (India); Varun [Department of Mechanical Engineering, NIT Hamirpur, (H.P.)–177005 (India); Sharma, Naveen [Department of Mechanical and Industrial Engineering, IITR, (U.K.)–247667 (India)

    2013-07-01

    The drying kinetics of green peas was investigated in an indirect solar dryer and under open sun. The entire drying process took place exclusively in falling rate period. The constant rate period was absent from the drying curves. The rehydration capacity was also determined for peas dried in solar dryer and under open sun. The rehydration capacity of solar dried peas was found higher than open sun dried peas. The drying data obtained from experiments were fitted to eight different mathematical models. The performance of these models was examined by comparing the coefficient of correlation (R2), sum of squares error (SSE), mean squared error (MSE) and root mean square error (RMSE) between observed and predicted values of moisture ratios. Among these models, the thin layer drying model developed by Page showed good agreement with the data obtained from experiments for bottom tray. The Midilli et al. model has shown better fit to the experimental data for top tray and open sun than other models.

  9. Decision making under uncertainty in a spiking neural network model of the basal ganglia.

    Science.gov (United States)

    Héricé, Charlotte; Khalil, Radwa; Moftah, Marie; Boraud, Thomas; Guthrie, Martin; Garenne, André

    2016-12-01

    The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.

  10. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    Science.gov (United States)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  11. A cell kinetic model of granulopoiesis under radiation exposure: Extension from rodents to canines and humans

    International Nuclear Information System (INIS)

    Hu, S.; Cucinotta, F. A.

    2011-01-01

    As significant ionising radiation exposure will occur during prolonged space travel in future, it is essential to understand their adverse effects on the radiosensitive organ systems that are important for immediate survival of humans, e.g. the haematopoietic system. In this paper, a bio-mathematical model of granulopoiesis is used to analyse the granulocyte changes seen in the blood of mammalians under acute and continuous radiation exposure. This is one of a set of haematopoietic models that have been successfully utilised to simulate and interpret the experimental data of acute and chronic radiation on rodents. Extension to canine and human systems indicates that the results of the model are consistent with the cumulative experimental and empirical data from various sources, implying the potential to integrate them into one united model system to monitor the haematopoietic response of various species under irradiation. The suppression of granulocytes' level of a space traveller under chronic stress of low-dose irradiation as well as the granulopoietic response when encountering a historically large solar particle event is also discussed. (authors)

  12. Two retailer-supplier supply chain models with default risk under trade credit policy.

    Science.gov (United States)

    Wu, Chengfeng; Zhao, Qiuhong

    2016-01-01

    The purpose of the paper is to formulate two uncooperative replenishment models with demand and default risk which are the functions of the trade credit period, i.e., a Nash equilibrium model and a supplier-Stackelberg model. Firstly, we present the optimal results of decentralized decision and centralized decision without trade credit. Secondly, we derive the existence and uniqueness conditions of the optimal solutions under the two games, respectively. Moreover, we present a set of theorems and corollary to determine the optimal solutions. Finally, we provide an example and sensitivity analysis to illustrate the proposed strategy and optimal solutions. Sensitivity analysis reveals that the total profits of supply chain under the two games both are better than the results under the centralized decision only if the optimal trade credit period isn't too short. It also reveals that the size of trade credit period, demand, retailer's profit and supplier's profit have strong relationship with the increasing demand coefficient, wholesale price, default risk coefficient and production cost. The major contribution of the paper is that we comprehensively compare between the results of decentralized decision and centralized decision without trade credit, Nash equilibrium and supplier-Stackelberg models with trade credit, and obtain some interesting managerial insights and practical implications.

  13. Evaluation of the Aqua‎Crop Model to Simulate Maize Yiled Response under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Aida Mehrazar

    2017-01-01

    Full Text Available Introduction: Limited water resources and its salinity uptrend has caused reducing water and soil quality and consequently reducing the crop production. Thus, use of saline water is the management strategies to decrease drought and water crisis. Furthermore, simulation models are valuable tools for improving on-farm water management and study about the effects of water quality and quantity on crop yield.. The AquaCrop model has recently been developed by the FAO which has the ability to check the production process under different propositions. The initial version of the model was introduced for simulation of crop yield and soil water movement in 2007, that the effect of salinity on crop yield was not considered. Version 4 of the model was released in 2012 in which also considered the effects of salinity on crop yield and simulation of solute Transmission in soil profile. Material and methods: In this project, evaluation of the AquaCrop model and its accuracy was studied in the simulating yield of maize under salt stress. This experiment was conducted in Karaj, on maize hybrid (Zea ma ys L in a sandy soil for investigation of salinity stress on maize yield in 2011-2012. This experiment was conducted in form of randomized complete block design in four replications and five levels of salinity treatments including 0, 4.53, 9.06, 13.59 and 18.13 dS/m at the two times sampling. To evaluate the effect of different levels of salinity on the yield of maize was used Version 4 AquaCrop model and SAS ver 9.1 software .The model calibration was performed by comparing the results of the field studies and the results of simulations in the model. In calculating the yield under different scenarios of salt stress by using AquaCrop, the model needs climate data, soil data, vegetation data and information related to farm management. The effects of salinity on yield and some agronomic and physiological traits of hybrid maize (Shoot length, root length, dry weight

  14. Modeling Bacteria-Water Interactions in Soil: EPS Dynamics Under Evaporative Conditions

    Science.gov (United States)

    Furrer, J.; Hinestroza, H. F.; Guo, Y. S.; Gage, D. J.; Cho, Y. K.; Shor, L. M.

    2017-12-01

    The soil habitat represents a major linkage between the water and carbon cycles: the ability of soils to sequester or release carbon is determined primarily by soil moisture. Water retention and distribution in soils controls the abundance and activity of soil microbes. Microbes in turn impact water retention by creating biofilms, composed of extracellular polymeric substances (EPS). We model the effects of bacterial EPS on water retention at the pore scale. We use the lattice Boltzmann method (LBM), a well-established fluid dynamics modeling platform, and modify it to include the effects of water uptake and release by the swelling/shrinking EPS phase. The LB model is implemented in 2-D, with a non-ideal gas equation of state that allows condensation and evaporation of fluid in pore spaces. Soil particles are modeled according to experimentally determined particle size distributions and include realistic pore geometries, in contrast to many soil models which use spherical soil particles for simplicity. Model results are compared with evaporation experiments in soil micromodels and other simpler experimental systems, and model parameters are tuned to match experimental results. Drying behavior and solid-gel contact angle of EPS produced by the soil bacteria Sinorhizobium meliloti has been characterized and compared to the behavior of deionized water under the same conditions. The difference in behavior between the fluids is used to parameterize the model. The model shows excellent qualitative agreement for soil micromodels with both aggregated and non-aggregated particle arrangements under no-EPS conditions, and reproduces realistic drying behavior for EPS. This work represents a multi-disciplinary approach to understanding microbe-soil interactions at the pore scale.

  15. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry

    International Nuclear Information System (INIS)

    Mathieu, Kelsey B.; Kappadath, S. Cheenu; White, R. Allen; Atkinson, E. Neely; Cody, Dianna D.

    2011-01-01

    Purpose: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. Methods: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semilogarithmic (exponential) and linear interpolation]. Results: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R 2 > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. Conclusions: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).

  16. Applying nonlinear MODM model to supply chain management with quantity discount policy under complex fuzzy environment

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2014-06-01

    Full Text Available Purpose: The aim of this paper is to deal with the supply chain management (SCM with quantity discount policy under the complex fuzzy environment, which is characterized as the bi-fuzzy variables. By taking into account the strategy and the process of decision making, a bi-fuzzy nonlinear multiple objective decision making (MODM model is presented to solve the proposed problem.Design/methodology/approach: The bi-fuzzy variables in the MODM model are transformed into the trapezoidal fuzzy variables by the DMs's degree of optimism ?1 and ?2, which are de-fuzzified by the expected value index subsequently. For solving the complex nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO is designed as the solution method.Findings: The proposed model and algorithm are applied to a typical example of SCM problem to illustrate the effectiveness. Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level ?1.Practical implications: The study focuses on the SCM under complex fuzzy environment in SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-APSO can be further applied in SCM problem with quantity discount policy.Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this work is original. In addition, the hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the DMs's degree of optimism and the expected value index. Since the MODM model consider the bi-fuzzy environment and quantity discount policy, so this paper has a great practical significance.

  17. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI

    2017-08-01

    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  18. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.

    Science.gov (United States)

    Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James

    2015-08-28

    There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of

  19. Pursuing realistic hydrologic model under SUPERFLEX framework in a semi-humid catchment in China

    Science.gov (United States)

    Wei, Lingna; Savenije, Hubert H. G.; Gao, Hongkai; Chen, Xi

    2016-04-01

    Model realism is pursued perpetually by hydrologists for flood and drought prediction, integrated water resources management and decision support of water security. "Physical-based" distributed hydrologic models are speedily developed but they also encounter unneglectable challenges, for instance, computational time with low efficiency and parameters uncertainty. This study step-wisely tested four conceptual hydrologic models under the framework of SUPERFLEX in a small semi-humid catchment in southern Huai River basin of China. The original lumped FLEXL has hypothesized model structure of four reservoirs to represent canopy interception, unsaturated zone, subsurface flow of fast and slow components and base flow storage. Considering the uneven rainfall in space, the second model (FLEXD) is developed with same parameter set for different rain gauge controlling units. To reveal the effect of topography, terrain descriptor of height above the nearest drainage (HAND) combined with slope is applied to classify the experimental catchment into two landscapes. Then the third one (FLEXTOPO) builds different model blocks in consideration of the dominant hydrologic process corresponding to the topographical condition. The fourth one named FLEXTOPOD integrating the parallel framework of FLEXTOPO in four controlled units is designed to interpret spatial variability of rainfall patterns and topographic features. Through pairwise comparison, our results suggest that: (1) semi-distributed models (FLEXD and FLEXTOPOD) taking precipitation spatial heterogeneity into account has improved model performance with parsimonious parameter set, and (2) hydrologic model architecture with flexibility to reflect perceived dominant hydrologic processes can include the local terrain circumstances for each landscape. Hence, the modeling actions are coincided with the catchment behaviour and close to the "reality". The presented methodology is regarding hydrologic model as a tool to test our

  20. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  1. Research on listed bank profit model under the interest rate liberalization

    Directory of Open Access Journals (Sweden)

    Geyao Zhu

    2017-03-01

    Full Text Available With constantly deepening the interest rate liberalization, shrinking the net interest margin and the ever-rising non-performing loan ratio, the traditional commercial banks with the main profit model of credit suffers from a severe challenge. The research significance of this paper lies in helping China’s commercial bank convert management philosophy, developing a new financial business and improving the profit model. Through the empirical research of 80 samples of China’s listed commercial banks: under the condition of interest rate liberalization, the net interest margin is still the current major profit model of the commercial bank, but the intermediate business is the future development model of the commercial banks.

  2. Corporate Responsibility under the ECSI model: An application in the hotel sector

    Directory of Open Access Journals (Sweden)

    María-Ángeles Revilla-Camacho

    2017-01-01

    Full Text Available This article deals with the study of Corporate Responsibility (CR under the European Customer Satisfaction Index (ECSI. The methodology of this empirical study, conducted among 629 customers staying at hotels in the city of Seville, is based on structural equation modeling (PLS. The results obtained demonstrate the applicability of the European model to the hotel sector, although not all the relationships from the original model have been proven. The main contributions are derived from a better understanding of the model's components, a variable not studied before having been incorporated: the importance of Corporate Responsibility (CR. Moreover, it means to contribute to the field of research on CR as, despite the growing interest in the subject, the effects of this construct are still poorly understood.

  3. Anger and the ABC model underlying Rational-Emotive Behavior Therapy.

    Science.gov (United States)

    Ziegler, Daniel J; Smith, Phillip N

    2004-06-01

    The ABC model underlying Ellis's Rational-Emotive Behavior Therapy predicts that people who think more irrationally should display greater trait anger than do people who think less irrationally. This study tested this prediction regarding the ABC model. 186 college students were administered the Survey of Personal Beliefs and the State-Trait Anger Expression Inventory-Second Edition to measure irrational thinking and trait anger, respectively. Students who scored higher on Overall Irrational Thinking and Low Frustration Tolerance scored significantly higher on Trait Anger than did those who scored lower on Overall Irrational Thinking and Low Frustration Tolerance. This indicates support for the ABC model, especially Ellis's construct of irrational beliefs which is central to the model.

  4. 3D Finite Element Modeling of Single Bolt Connections under Static and Dynamic Tension Loading

    Directory of Open Access Journals (Sweden)

    Emily Guzas

    2015-01-01

    Full Text Available The Naval Undersea Warfare Center has funded research to examine a range of finite element approaches used for modeling bolted connections subjected to various loading conditions. Research focused on developing finite element bolt representations that were accurate and computationally efficient. A variety of finite element modeling approaches, from detailed models to simplified ones, were used to represent the behavior of single solid bolts under static and dynamic tension loading. Test cases utilized models of bolted connection test arrangements (static tension and dynamic tension developed for previous research and validated against test data for hollow bore bolts (Behan et al., 2013. Simulation results for solid bolts are validated against experimental data from physical testing of bolts in these load configurations.

  5. A Generic Decomposition Formula for Pricing Vanilla Options under Stochastic Volatility Models

    Directory of Open Access Journals (Sweden)

    Raúl Merino

    2015-01-01

    Full Text Available We obtain a decomposition of the call option price for a very general stochastic volatility diffusion model, extending a previous decomposition formula for the Heston model. We realize that a new term arises when the stock price does not follow an exponential model. The techniques used for this purpose are nonanticipative. In particular, we also see that equivalent results can be obtained by using Functional Itô Calculus. Using the same generalizing ideas, we also extend to nonexponential models the alternative call option price decomposition formula written in terms of the Malliavin derivative of the volatility process. Finally, we give a general expression for the derivative of the implied volatility under both the anticipative and the nonanticipative cases.

  6. The research on optimization of auto supply chain network robust model under macroeconomic fluctuations

    International Nuclear Information System (INIS)

    Guo, Chunxiang; Liu, Xiaoli; Jin, Maozhu; Lv, Zhihan

    2016-01-01

    Considering the uncertainty of the macroeconomic environment, the robust optimization method is studied for constructing and designing the automotive supply chain network, and based on the definition of robust solution a robust optimization model is built for integrated supply chain network design that consists of supplier selection problem and facility location–distribution problem. The tabu search algorithm is proposed for supply chain node configuration, analyzing the influence of the level of uncertainty on robust results, and by comparing the performance of supply chain network design through the stochastic programming model and robustness optimize model, on this basis, determining the rational layout of supply chain network under macroeconomic fluctuations. At last the contrastive test result validates that the performance of tabu search algorithm is outstanding on convergence and computational time. Meanwhile it is indicated that the robust optimization model can reduce investment risks effectively when it is applied to supply chain network design.

  7. A test of the ABC model underlying rational emotive behavior therapy.

    Science.gov (United States)

    Ziegler, Daniel J; Leslie, Yvonne M

    2003-02-01

    The ABC model underlying Ellis's Rational Emotive Behavior Therapy predicts that people who think more irrationally should respond to daily stressors or hassles differently than do people who think less irrationally. This study tested this aspect of the ABC model. 192 college students were administered the Survey of Personal Beliefs and the Hassles Scale to measure irrational thinking and daily hassles, respectively. Students who scored higher on overall irrational thinking reported a significantly higher frequency of hassles than did those who scored lower on overall irrational thinking, while students who scored higher on awfulizing and low frustration tolerance reported a significantly greater intensity of hassles than did those who scored lower on awfulizing and low frustration tolerance. This indicates support for the ABC model, especially Ellis's construct of irrational beliefs central to this model.

  8. Projecting hydropower production under future climates: a review of modelling challenges and open questions

    Science.gov (United States)

    Schaefli, Bettina

    2015-04-01

    Hydropower is a pillar for renewable electricity production in almost all world regions. The planning horizon of major hydropower infrastructure projects stretches over several decades and consideration of evolving climatic conditions plays an ever increasing role. This review of model-based climate change impact assessments provides a synthesis of the wealth of underlying modelling assumptions, highlights the importance of local factors and attempts to identify the most urgent open questions. Based on existing case studies, it critically discusses whether current hydro-climatic modelling frameworks are likely to provide narrow enough water scenario ranges to be included into economic analyses for end-to-end climate change impact assessments including electricity market models. This will be completed with an overview of not or indirectly climate-related boundary conditions, such as economic growth, legal constraints, national subsidy frameworks or growing competition for water, which might locally largely outweigh any climate change impacts.

  9. A robust method for detecting nuclear materials when the underlying model is inexact

    International Nuclear Information System (INIS)

    Kump, Paul; Bai, Er-Wei; Chan, Kung-sik; Eichinger, William

    2013-01-01

    This paper is concerned with the detection and identification of nuclides from weak and poorly resolved gamma-ray energy spectra when the underlying model is not known exactly. The algorithm proposed and tested here pairs an exciting and relatively new model selection algorithm with the method of total least squares. Gamma-ray counts are modeled as Poisson processes where the average part is taken to be the model and the difference between the observed gamma-ray counts and the model is considered random noise. Physics provides a template for the model, but we add uncertainty to this template to simulate real life conditions. Unlike most model selection algorithms whose utilities are demonstrated asymptotically, our method emphasizes selection when data is fixed and finite (after all, detector data is undoubtedly finite). Simulation examples provided here demonstrate the proposed algorithm performs well. -- Highlights: • Identification of nuclides in the presence of large noise/uncertainty. • Algorithm is based on a Poisson model. • Key idea is the regularized total least squares. • Algorithms are tested and compared with existing methods

  10. A tool for efficient, model-independent management optimization under uncertainty

    Science.gov (United States)

    White, Jeremy; Fienen, Michael N.; Barlow, Paul M.; Welter, Dave E.

    2018-01-01

    To fill a need for risk-based environmental management optimization, we have developed PESTPP-OPT, a model-independent tool for resource management optimization under uncertainty. PESTPP-OPT solves a sequential linear programming (SLP) problem and also implements (optional) efficient, “on-the-fly” (without user intervention) first-order, second-moment (FOSM) uncertainty techniques to estimate model-derived constraint uncertainty. Combined with a user-specified risk value, the constraint uncertainty estimates are used to form chance-constraints for the SLP solution process, so that any optimal solution includes contributions from model input and observation uncertainty. In this way, a “single answer” that includes uncertainty is yielded from the modeling analysis. PESTPP-OPT uses the familiar PEST/PEST++ model interface protocols, which makes it widely applicable to many modeling analyses. The use of PESTPP-OPT is demonstrated with a synthetic, integrated surface-water/groundwater model. The function and implications of chance constraints for this synthetic model are discussed.

  11. Modeling the release of Escherichia coli from soil into overland flow under raindrop impact

    Science.gov (United States)

    Wang, C.; Parlange, J.-Y.; Rasmussen, E. W.; Wang, X.; Chen, M.; Dahlke, H. E.; Walter, M. T.

    2017-08-01

    Pathogen transport through the environment is complicated, involving a variety of physical, chemical, and biological processes. This study considered the transfer of microorganisms from soil into overland flow under rain-splash conditions. Although microorganisms are colloidal particles, they are commonly quantified as colony-forming units (CFUs) per volume rather than as a mass or number of particles per volume, which poses a modeling challenge. However, for very small particles that essentially remain suspended after being ejected into ponded water and for which diffusion can be neglected, the Gao model, originally derived for solute transfer from soil, describes particle transfer into suspension and is identical to the Hairsine-Rose particle erosion model for this special application. Small-scale rainfall experiments were conducted in which an Escherichia coli (E. coli) suspension was mixed with a simple soil (9:1 sand-to-clay mass ratio). The model fit the experimental E. coli data. Although re-conceptualizing the Gao solute model as a particle suspension model was convenient for accommodating the unfortunate units of CFU ml-1, the Hairsine-Rose model is insensitive to assumptions about E. coli per CFU as long as the assumed initial mass concentration of E. coli is very small compared to that of the soil particle classes. Although they undoubtedly actively interact with their environment, this study shows that transport of microorganisms from soil into overland storm flows can be reasonably modeled using the same principles that have been applied to small mineral particles in previous studies.

  12. Evaluation of gap heat transfer model in ELESTRES for CANDU fuel element under normal operating conditions

    International Nuclear Information System (INIS)

    Lee, Kang Moon; Ohn, Myung Ryong; Im, Hong Sik; Choi, Jong Hoh; Hwang, Soon Taek

    1995-01-01

    The gap conductance between the fuel and the sheath depends strongly on the gap width and has a significant influence on the amount of initial stored energy. The modified Ross and Stoute gap conductance model in ELESTRES is based on a simplified thermal deformation model for steady-state fuel temperature calculations. A review on a series of experiments reveals that fuel pellets crack, relocate, and are eccentrically positioned within the sheath rather than solid concentric cylinders. In this paper, the two recently-proposed gap conductance models (offset gap model and relocated gap model) are described and are applied to calculate the fuel-sheath gap conductances under experimental conditions and normal operating conditions in CANDU reactors. The good agreement between the experimentally-inferred and calculated gap conductance values demonstrates that the modified Ross and Stoute model was implemented correctly in ELESTRES. The predictions of the modified Ross and Stoute model provide conservative values for gap heat transfer and fuel surface temperature compared to the offset gap and relocated gap models for a limiting power envelope. 13 figs., 3 tabs., 16 refs. (Author)

  13. Analysis of automotive rolling lobe air spring under alternative factors with finite element model

    International Nuclear Information System (INIS)

    Wong, Pak Kin; Xie, Zhengchao; Zhao, Jing; Xu, Tao; He, Feng

    2014-01-01

    Air springs are widely used in automotive suspensions for their superior performance in terms of low friction motion, adjustable load carrying capacity and user-friendly ride height control. However, it has posed great difficulties in constructing an accurate model as well as the analysis of the influence of alternative factors, such as cord angle, cord diameter and initial pressure. In this paper, a numerical model of the rolling lobe air spring (RLAS) is built by using finite element method and compared with an existing analytical model. An experiment with respect to the vertical stiffness of the RLAS is carried out to validate the accuracy of the proposed model. Evaluation result reveals that the existing analytical model cannot represent the performance of the RLAS very well, whereas the accuracy of the numerical model is very good. With the verified numerical model, the impacts of many alternative factors on the characteristics of the RLAS are analyzed. Numerical results show that the newly proposed model is reliable to determine the vertical characteristic and physical dimensions of the RLAS under the alternative factors.

  14. Computational modeling of dynamic mechanical properties of pure polycrystalline magnesium under high loading strain rates

    Directory of Open Access Journals (Sweden)

    Li Qizhen

    2015-01-01

    Full Text Available Computational simulations were performed to investigate the dynamic mechanical behavior of pure polycrystalline magnesium under different high loading strain rates with the values of 800, 1000, 2000, and 3600 s−1. The Johnson-Cook model was utilized in the simulations based on finite element modeling. The results showed that the simulations provided well-matched predictions of the material behavior such as the strain rate-time history, the stress-strain curve, and the temperature increase. Under high loading strain rates, the tested material experienced linear strain hardening at the early stage of plastic deformation, increased strain hardening at the intermediate plastic deformation region, and decreased strain hardening at the region before fracture. The strain hardening rates for the studied high loading strain rate cases do not vary much with the change of strain rates.

  15. Competition for marine space: modelling the Baltic Sea fisheries and effort displacement under spatial restrictions

    DEFF Research Database (Denmark)

    Bastardie, Francois; Nielsen, J. Rasmus; Eigaard, Ole Ritzau

    2015-01-01

    to fishery and from vessel to vessel. The impact assessment of new spatial plans involving fisheries should be based on quantitative bioeconomic analyses that take into account individual vessel decisions, and trade-offs in cross-sector conflicting interests.Weuse a vessel-oriented decision-support tool (the...... DISPLACE model) to combine stochastic variations in spatial fishing activities with harvested resource dynamics in scenario projections. The assessment computes economic and stock status indicators by modelling the activity of Danish, Swedish, and German vessels (.12 m) in the international western Baltic...... Sea commercial fishery, together with the underlying size-based distribution dynamics of the main fishery resources of sprat, herring, and cod. The outcomes of alternative scenarios for spatial effort displacement are exemplified by evaluating the fishers’s abilities to adapt to spatial plans under...

  16. Explicit Solution of Reinsurance-Investment Problem for an Insurer with Dynamic Income under Vasicek Model

    Directory of Open Access Journals (Sweden)

    De-Lei Sheng

    2016-01-01

    Full Text Available Unlike traditionally used reserves models, this paper focuses on a reserve process with dynamic income to study the reinsurance-investment problem for an insurer under Vasicek stochastic interest rate model. The insurer’s dynamic income is given by the remainder after a dynamic reward budget being subtracted from the insurer’s net premium which is calculated according to expected premium principle. Applying stochastic control technique, a Hamilton-Jacobi-Bellman equation is established and the explicit solution is obtained under the objective of maximizing the insurer’s power utility of terminal wealth. Some economic interpretations of the obtained results are explained in detail. In addition, numerical analysis and several graphics are given to illustrate our results more meticulous.

  17. COMPONENT SUPPLY MODEL FOR REPAIR ACTIVITIES NETWORK UNDER CONDITIONS OF PROBABILISTIC INDEFINITENESS.

    Directory of Open Access Journals (Sweden)

    Victor Yurievich Stroganov

    2017-02-01

    Full Text Available This article contains the systematization of the major production functions of repair activities network and the list of planning and control functions, which are described in the form of business processes (BP. Simulation model for analysis of the delivery effectiveness of components under conditions of probabilistic uncertainty was proposed. It has been shown that a significant portion of the total number of business processes is represented by the management and planning of the parts and components movement. Questions of construction of experimental design techniques on the simulation model in the conditions of non-stationarity were considered.

  18. Modelling and simulation of randomly oriented carbon fibre-reinforced composites under thermal load

    Science.gov (United States)

    Treffler, R.; Fröschl, J.; Drechsler, K.; Ladstätter, E.

    2016-03-01

    Carbon fibre-reinforced sheet moulding compounds (CF-SMC) already exhibit a complex material behaviour under uniaxial loads due to the random orientation of the fibres in the matrix resin. Mature material models for metallic materials are generally not transferable. This paper proposes an approach for modelling the fatigue behaviour of CF-SMC based on extensive static and cyclic tests using low cost secondary carbon fibres (SCF). The main focus is on describing the stiffness degradation considering the dynamic modulus of the material. Influence factors such as temperature, orientation, rate dependence and specimen thickness were additionally considered.

  19. Modeling the state dependent impulse control for computer virus propagation under media coverage

    Science.gov (United States)

    Liang, Xiyin; Pei, Yongzhen; Lv, Yunfei

    2018-02-01

    A state dependent impulsive control model is proposed to model the spread of computer virus incorporating media coverage. By the successor function, the sufficient conditions for the existence and uniqueness of order-1 periodic solution are presented first. Secondly, for two classes of periodic solutions, the geometric property of successor function and the analogue of the Poincaré criterion are employed to obtain the stability results. These results show that the number of the infective computers is under the threshold all the time. Finally, the theoretic and numerical analysis show that media coverage can delay the spread of computer virus.

  20. Dynamic modeling and control of DFIG-based wind turbines under balanced network conditions

    DEFF Research Database (Denmark)

    Mehdipour, Cyrous; Hajizadeh, Amin; Mehdipour, Iman

    2016-01-01

    The performance of wind power station is researched by utilizing a detailed model which includes a wind turbine (WT), doubly fed induction generator (DFIG) and power electronic devices. In the initial stage, a comprehensive review and definition of each part of this system are presented....... Then dynamic modeling and simulation of a sample power system are carried out. The operation of a DFIG coupled with WT under balanced condition of a power grid is investigated and stationary reference frame is utilized for analysis of a wind energy conversion system. At the second step, a wind power station...

  1. Experimental modelling of core debris dispersion from the vault under a PWR pressure vessel: Part 1

    International Nuclear Information System (INIS)

    Macbeth, R.V.; Trenberth, R.

    1987-12-01

    Modelling experiments have been done on a 1/25 scale model in Perspex of the vault under a PWR pressure vessel. Various liquids have been used to simulate molten core debris assumed to have fallen on to the vault floor from a breach at the bottom of the pressure vessel. High pressure air and helium have been used to simulate the discharge of steam and gas from the breach. The dispersion of liquid via the vault access shafts has been measured. Photographs have been taken of fluid flow patterns and velocity profiles have been obtained. The requirements for further experiments are indicated. (author)

  2. Capacity fade modelling of lithium-ion battery under cyclic loading conditions

    Science.gov (United States)

    Ashwin, T. R.; Chung, Yongmann M.; Wang, Jihong

    2016-10-01

    A pseudo two-dimensional (P2D) electro-chemical lithium-ion battery model is presented in this paper to study the capacity fade under cyclic charge-discharge conditions. The Newman model [1,2] has been modified to include a continuous solvent reduction reaction responsible for the capacity fade and power fade. The temperature variation inside the cell is accurately predicted using a distributed thermal model coupled with the internal chemical heat generation. The model is further improved by linking the porosity variation with the electrolyte partial molar concentration, thereby proving a stronger coupling between the battery performance and the chemical properties of electrolyte. The solid electrolyte interface (SEI) layer growth is estimated for different cut-off voltages and charging current rates. The results show that the convective heat transfer coefficient as well as the porosity variation influences the SEI layer growth and the battery life significantly. The choice of an electrolyte decides the conductivity and partial molar concentration, which is found to have a strong influence on the capacity fade of the battery. The present battery model integrates all essential electro-chemical processes inside a lithium-ion battery under a strong implicit algorithm, proving a useful tool for computationally fast battery monitoring system.

  3. Modeling and simulation in dose determination for biodefense products approved under the FDA animal rule.

    Science.gov (United States)

    Bergman, Kimberly L; Krudys, K; Seo, S K; Florian, J

    2017-04-01

    Development of effective medical countermeasures for biodefense is vital to United States biopreparedness and response in the age of terrorism, both foreign and domestic. A traditional drug development pathway toward approval is not possible for most biodefense-related indications, creating the need for alternative development pathways such as the FDA's Animal Rule. Under this unique regulatory mechanism, FDA-approval is based on adequate and well-controlled animal studies when it is neither ethical nor feasible to conduct human efficacy studies. Translation of animal efficacy findings to humans is accomplished by use of modeling and simulation techniques. Pharmacokinetic and exposure-response modeling allow effective dosing regimens in humans to be identified, which are expected to produce similar benefit to that observed in animal models of disease. In this review, the role of modeling and simulation in determining the human dose for biodefense products developed under the Food and Drug Administration's Animal Rule regulatory pathway is discussed, and case studies illustrating the utility of modeling and simulation in this area of development are presented.

  4. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  5. Non-lane-discipline-based car-following model under honk environment

    Science.gov (United States)

    Rong, Ying; Wen, Huiying

    2018-04-01

    This study proposed a non-lane-discipline-based car-following model by synthetically considering the visual angles and the timid/aggressive characteristics of drivers under honk environment. We firstly derived the neutral stability condition by the linear stability theory. It showed that the parameters related to visual angles and driving characteristics of drivers under honk environment all have significant impact on the stability of non-lane-discipline traffic flow. For better understanding the inner mechanism among these factors, we further analyzed how each parameter affects the traffic flow and gained further insight into how the visual angles information influences other parameters and then influences the non-lane-discipline traffic flow under honk environment. And the results showed that the other aspects such as driving characteristics of drivers or honk effect are all interacted with the "Visual-Angle Factor". And the effect of visual angle is not just to say simply it has larger stable region or not as the existing studies. Finally, to verify the proposed model, we carried out the numerical simulation under the periodic boundary condition. And the results of numerical simulation are agreed well with the theoretical findings.

  6. Modeling the pyrolysis study of non-charring polymers under reduced pressure environments

    Science.gov (United States)

    Zong, Ruowen; Kang, Ruxue; Hu, Yanghui; Zhi, Youran

    2018-04-01

    In order to study the pyrolysis of non-charring polymers under reduced pressure environments, a series of experiments based on black acrylonitrile butadiene styrene (ABS) was conducted in a reduced pressure chamber under different external heat fluxes. The temperatures of the top surface and the bottom of the sample and the mass loss during the whole process were measured in real time. A one-dimensional numerical model was developed to predict the top surface and the bottom surface temperatures of ABS during the pyrolysis at different reduced pressures and external heat fluxes, and the model was validated by the experimental data. The results of the study indicate that the profiles of the top surface and the bottom surface temperatures are different at different pressures and heat fluxes. The temperature and the mass loss rate of the sample under a lower heat flux decreased significantly as the pressure was increased. However, under a higher heat flux, the temperature and the mass loss rate showed little sensitivity to the pressure. The simulated results fitted the experimental results better at the higher heat flux than at the lower heat flux.

  7. A Dynamic Decision Model of Technology Adoption under Uncertainty: Case of Herbicide-Resistant Rice

    OpenAIRE

    Annou, Mamane Malam; Wailes, Eric J.; Thomsen, Michael R.

    2005-01-01

    Herbicide-resistant (HR) rice technology is a potential tool for control of red rice in commercial rice production. Using an ex ante mathematical programming framework, this research presents an empirical analysis of HR rice technology adoption under uncertainty. The analysis accounts for stochastic germination of red rice and sheath blight to model a profit maximization problem of crop rotation among HR rice, regular rice, and soybeans. The results demonstrate that risk attitudes and technol...

  8. A model of entry-exit decisions and capacity choice under demand uncertainty

    OpenAIRE

    Isik, Murat; Coble, Keith H.; Hudson, Darren; House, Lisa O.

    2003-01-01

    Many investment decisions of agribusiness firms, such as when to invest in an emerging market or whether to expand the capacity of the firm, involve irreversible investment and uncertainty about demand, cost or competition. This paper uses an option-value model to examine the factors affecting an agribusiness firm's decision whether and how much to invest in an emerging market under demand uncertainty. Demand uncertainty and irreversibility of investment make investment less desirable than th...

  9. Modeling and simulating command and control for organizations under extreme situations

    CERN Document Server

    Moon, Il-Chul; Kim, Tag Gon

    2013-01-01

    Commanding and controlling organizations in extreme situations is a challenging task in military, intelligence, and disaster management. Such command and control must be quick, effective, and considerate when dealing with the changing, complex, and risky conditions of the situation. To enable optimal command and control under extremes, robust structures and efficient operations are required of organizations. This work discusses how to design and conduct virtual experiments on resilient organizational structures and operational practices using modeling and simulation. The work illustrates key a

  10. Analysis on Dynamic Decision-Making Model of the Enterprise Technological Innovation Investment under Uncertain Environment

    Directory of Open Access Journals (Sweden)

    Yong Long

    2012-01-01

    Full Text Available Under the environment of fuzzy factors including the return of market, performance of product, and the demanding level of market, we use the method of dynamic programming and establish the model of investment decision, in technology innovation project of enterprise, based on the dynamic programming. Analysis of the influence caused by the changes of fuzzy uncertainty factors to technological innovation project investment of enterprise.

  11. Diffuse and Focal Brain Injury in a Large Animal Model of PTE: Mechanisms Underlying Epileptogenesis

    Science.gov (United States)

    2017-10-01

    Conclusions: A) Contusion injury validation and neuropathology B) Grid electrode development and testing C) Wireless Large Animal Custom Enclosure...In addition, we will test the NF-L and GFAP immunoassay to begin quantification of this biomarkers, as well as collecting serum from the animals pre...AWARD NUMBER: W81XWH-16-1-0675 TITLE: Diffuse and Focal Brain Injury in a Large Animal Model of PTE: Mechanisms Underlying Epileptogenesis

  12. Flood Inundation Modelling Under Uncertainty Using Globally and Freely Available Remote Sensing Data

    Science.gov (United States)

    Yan, K.; Di Baldassarre, G.; Giustarini, L.; Solomatine, D. P.

    2012-04-01

    The extreme consequences of recent catastrophic events have highlighted that flood risk prevention still needs to be improved to reduce human losses and economic damages, which have considerably increased worldwide in recent years. Flood risk management and long term floodplain planning are vital for living with floods, which is the currently proposed approach to cope with floods. To support the decision making processes, a significant issue is the availability of data to build appropriate and reliable models, from which the needed information could be obtained. The desirable data for model building, calibration and validation are often not sufficient or available. A unique opportunity is offered nowadays by globally available data which can be freely downloaded from internet. This might open new opportunities for filling the gap between available and needed data, in order to build reliable models and potentially lead to the development of global inundation models to produce floodplain maps for the entire globe. However, there remains the question of what is the real potential of those global remote sensing data, characterized by different accuracy, for global inundation monitoring and how to integrate them with inundation models. This research aims at contributing to understand whether the current globally and freely available remote sensing data (e.g. SRTM, SAR) can be actually used to appropriately support inundation modelling. In this study, the SRTM DEM is used for hydraulic model building, while ENVISAT-ASAR satellite imagery is used for model validation. To test the usefulness of these globally and freely available data, a model based on the high resolution LiDAR DEM and ground data (high water marks) is used as benchmark. The work is carried out on a data-rich test site: the River Alzette in the north of Luxembourg City. Uncertainties are estimated for both SRTM and LiDAR based models. Probabilistic flood inundation maps are produced under the framework of

  13. On the problem of studying physical properties of rock collectors under conditions modelling layer ones

    Energy Technology Data Exchange (ETDEWEB)

    Petkevich, G.I.

    1972-01-01

    A review is given of the state in studying physical properties of rock collectors under conditions modelling the layer ones. From the theoretical point of view, this direction is determined as petrophysics of multiphase systems and from the practical, as oil field petrophysics. The following aspects of the problem are considered: models of porous media, thermodynamic conditions of deformation process, parameters of stressed state of porous deformed media, and analysis of experimental data. To describe collector behavior under thermodynamic conditions of natural occurrence, it is necessary to construct the model of the porous deformed medium. In connection with heterogeneity and multiphase character of rock collectors, they may be considered as differential-elastic media, and to characterize the stressed state such indices as coefficients of compressibility of skeleton, solid and liquid phase, as well as coefficients of pore compressibility, relaxation, structural parameter, etc. may be used. It is emphasized that only reversable (elastic) parameter changes are studied under laboratory conditions. The results of laboratory measurements of collector parameters are summarized on the basis of different researcher data. (54 refs.)

  14. Posttraumatic stress symptoms and cognitive-based smoking processes among trauma-exposed, treatment-seeking smokers: the role of dysphoria.

    Science.gov (United States)

    Garey, Lorra; Bakhshaie, Jafar; Vujanovic, Anka A; Leventhal, Adam M; Schmidt, Norman B; Zvolensky, Michael J

    2015-01-01

    Despite the co-occurrence and clinically significant relationship between trauma exposure and smoking, there is little understanding of the mechanisms underlying the posttraumatic stress symptoms-smoking relationship. This study examined whether dysphoria (ie, a psychopathologic symptom dimension that reflects depression's core affective, cognitive, and psychomotor features) accounted for the covariance between posttraumatic stress symptom severity and an array of smoking processes among trauma-exposed daily smokers. Participants (n = 189; 47.6% female; Mage = 41.15; SD = 12.47) were trauma-exposed, treatment-seeking daily cigarette smokers who completed measures of posttraumatic stress symptom severity, dysphoria, and 4 cognitive-based smoking processes that interfere with smoking cessation-avoidance/inflexibility to smoking, perceived barriers to smoking cessation, negative affect reduction motivation for smoking, and negative affect reduction/negative reinforcement expectancies from smoking. Dysphoria indirectly and significantly accounted for the relationship between posttraumatic stress symptom severity and smoking outcomes. The present results provide initial empirical support that dysphoria accounts for the covariance between posttraumatic symptom severity and various clinically relevant smoking variables in trauma-exposed, treatment-seeking smokers. The findings suggest the potential importance of targeting dysphoria during smoking cessation among trauma-exposed individuals.

  15. Flood frequency analysis of historical flood data under stationary and non-stationary modelling

    Science.gov (United States)

    Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.

    2015-06-01

    Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency

  16. Water deficit effects on maize yields modeled under current and greenhouse climates

    International Nuclear Information System (INIS)

    Muchow, R.C.; Sinclair, T.R.

    1991-01-01

    The availability of water imposes one of the major limits on rainfed maize (Zea mays L.) productivity. This analysis was undertaken in an attempt to quantify the effects of limited water on maize growth and yield by extending a simple, mechanistic model in which temperature regulates crop development and intercepted solar radiation is used to calculate crop biomass accumulation. A soil water budget was incorporated into the model by accounting for inputs from rainfall and irrigation, and water use by soil evaporation and crop transpiration. The response functions of leaf area development and crop gas exchange to the soil water budget were developed from experimental studies. The model was used to interpret a range of field experiments using observed daily values of temperature, solar radiation, and rainfall or irrigation, where water deficits of varying durations developed at different stages of growth. The relative simplicity of the model and its robustness in simulating maize yields under a range of water-availability conditions allows the model to be readily used for studies of crop performance under alternate conditions. One such study, presented here, was a yield assessment for rainfed maize under possible greenhouse climates where temperature and atmospheric CO 2 concentration were increased. An increase in temperature combined with decreased rainfall lowered grain yield, although the increase in crop water use efficiency associated with elevated CO 2 concentration ameliorated the response to the greenhouse climate. Grain yields for the greenhouse climates as compared to current conditions increased, or decreased only slightly, except when the greenhouse climate was assumed to result in severly decreased rainfall

  17. MHC allele frequency distributions under parasite-driven selection: A simulation model

    Directory of Open Access Journals (Sweden)

    Radwan Jacek

    2010-10-01

    Full Text Available Abstract Background The extreme polymorphism that is observed in major histocompatibility complex (MHC genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage and/or by rare MHC alleles (negative frequency-dependent selection. The Ewens-Watterson test (EW is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately. Results In agreement with simple models of symmetrical overdominance, we found that heterozygote advantage acting alone in populations does, indeed, result in more even allele frequency distributions than expected under neutrality, and this is easily detectable by EW. However, under negative frequency-dependent selection, or under the joint action of negative frequency-dependent selection and heterozygote advantage, distributions of allele frequencies were less predictable: the majority of distributions were indistinguishable from neutral expectations, while the remaining runs resulted in either more even or more skewed distributions than under neutrality. Conclusions Our results indicate that, as long as negative frequency-dependent selection is an important force maintaining MHC variation, the EW test has limited utility in detecting selection acting on these genes.

  18. A framework for modelling the complexities of food and water security under globalisation

    Science.gov (United States)

    Dermody, Brian J.; Sivapalan, Murugesu; Stehfest, Elke; van Vuuren, Detlef P.; Wassen, Martin J.; Bierkens, Marc F. P.; Dekker, Stefan C.

    2018-01-01

    We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share.

  19. Modeling Phytoremediation of Cadmium Contaminated Soil with Sunflower (Helianthus annus) Under Salinity Stress

    International Nuclear Information System (INIS)

    Motesharezadeh, B.; Navabzadeh, M.; Liyaghat, A. M.

    2016-01-01

    This study was carried out as a factorial experiment with 5 levels of cadmium (Cd) (o, 25, 50, 75, and 100 mg/kg), 5 levels of salinity (Control, 4, 5, 6, and 7 dS/m), and two soil textures (sandy loam and clay loam). The results showed that the amount of Cd in root and shoot of sunflower increased as soil salinity and Cd concentration increased. The best concentrations for Cd phytoremediation were 75 mg/kg in sandy loam and 100 mg/kg in clay loam. Mass-Hoffman model in simulating transpiration Cd stress as well as Homaee model in simulating salt stress indicated the best results in light soils. By multiplying the salinity stress model by Cd stress model, the simultaneous model for each soil was calculated. These models in light soil (r2=0.68) and heavy soil (r2=0.81) were compatible with measured values. In the heavy soil, absorbed Cd by plant along with increased salinity reflected low changes, but changes in Cd absorbed by plants in the heavy soil were more uniform than in the light soil. In conclusion, for estimating the Cd uptake, the model had a better performance in the heavy soil (under salt stress).

  20. A framework for modelling the complexities of food and water security under globalisation

    Directory of Open Access Journals (Sweden)

    B. J. Dermody

    2018-01-01

    Full Text Available We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share.

  1. A new prediction model of daily weather elements in Hainan province under the typhoon weather

    Science.gov (United States)

    Zhou, Ruixu; Gao, Wensheng; Zhang, Bowen; Chen, Qinzhu; Liang, Yafeng; Yao, Dong; Han, Laijun; Liao, Xinzheng; Li, Ruihai

    2017-11-01

    This paper proposes a new prediction model for severe natural disasters, especially typhoon using daily weather analysis. Hainan province in China is selected to be a typical application region, where natural disasters, especially typhoons take place frequently. These disasters have great impacts on the life and property safety of the residents, and therefore are in specific need of accurate prediction. A new prediction model of daily weather in Hainan province under the typhoon weather is proposed in this paper based on the best track datasets of typhoons and the corresponding daily weather data. This model utilizes the statistical methods and data mining technology in combination with the dynamic migration information of tropical cyclones and can provide the dynamic prediction of daily weather elements in any designated location. Three surface meteorological observation stations of Hainan province during the years 1951-1920 are used to test the model. Test results show that the prediction equations established for the vast majority of daily weather elements have passed the significant test. Besides, Typhoon Damrey is used as a case to illustrate the whole daily weather prediction model in detail and comparisons between the model and other official forecast (such as JTWC, UKMO and CMA) are performed thoroughly. It is worth noting that the model proposed in this paper is not limited to Hainan province and can be generalized to other areas in the world.

  2. Finite strain formulation of viscoelastic damage model for simulation of fabric reinforced polymers under dynamic loading

    Directory of Open Access Journals (Sweden)

    Treutenaere S.

    2015-01-01

    Full Text Available The use of fabric reinforced polymers in the automotive industry is growing significantly. The high specific stiffness and strength, the ease of shaping as well as the great impact performance of these materials widely encourage their diffusion. The present model increases the predictability of explicit finite element analysis and push the boundaries of the ongoing phenomenological model. Carbon fibre composites made up various preforms were tested by applying different mechanical load up to dynamic loading. This experimental campaign highlighted the physical mechanisms affecting the initial mechanical properties, namely intra- and interlaminar matrix damage, viscoelasticty and fibre failure. The intralaminar behaviour model is based on the explicit formulation of the matrix damage model developed by the ONERA as the given damage formulation correlates with the experimental observation. Coupling with a Maxwell-Wiechert model, the viscoelasticity is included without losing the direct explicit formulation. Additionally, the model is formulated under a total Lagrangian scheme in order to maintain consistency for finite strain. Thus, the material frame-indifference as well as anisotropy are ensured. This allows reorientation of fibres to be taken into account particularly for in-plane shear loading. Moreover, fall within the framework of the total Lagrangian scheme greatly makes the parameter identification easier, as based on the initial configuration. This intralaminar model thus relies upon a physical description of the behaviour of fabric composites and the numerical simulations show a good correlation with the experimental results.

  3. Two-stage stochastic programming model for the regional-scale electricity planning under demand uncertainty

    International Nuclear Information System (INIS)

    Huang, Yun-Hsun; Wu, Jung-Hua; Hsu, Yu-Ju

    2016-01-01

    Traditional electricity supply planning models regard the electricity demand as a deterministic parameter and require the total power output to satisfy the aggregate electricity demand. But in today's world, the electric system planners are facing tremendously complex environments full of uncertainties, where electricity demand is a key source of uncertainty. In addition, electricity demand patterns are considerably different for different regions. This paper developed a multi-region optimization model based on two-stage stochastic programming framework to incorporate the demand uncertainty. Furthermore, the decision tree method and Monte Carlo simulation approach are integrated into the model to simplify electricity demands in the form of nodes and determine the values and probabilities. The proposed model was successfully applied to a real case study (i.e. Taiwan's electricity sector) to show its applicability. Detail simulation results were presented and compared with those generated by a deterministic model. Finally, the long-term electricity development roadmap at a regional level could be provided on the basis of our simulation results. - Highlights: • A multi-region, two-stage stochastic programming model has been developed. • The decision tree and Monte Carlo simulation are integrated into the framework. • Taiwan's electricity sector is used to illustrate the applicability of the model. • The results under deterministic and stochastic cases are shown for comparison. • Optimal portfolios of regional generation technologies can be identified.

  4. Groundwater Withdrawals under Drought: Reconciling GRACE and Models in the United States High Plains Aquifer

    Science.gov (United States)

    Nie, W.; Zaitchik, B. F.; Kumar, S.; Rodell, M.

    2017-12-01

    Advanced Land Surface Models (LSM) offer a powerful tool for studying and monitoring hydrological variability. Highly managed systems, however, present a challenge for these models, which typically have simplified or incomplete representations of human water use, if the process is represented at all. GRACE, meanwhile, detects the total change in water storage, including change due to human activities, but does not resolve the source of these changes. Here we examine recent groundwater declines in the US High Plains Aquifer (HPA), a region that is heavily utilized for irrigation and that is also affected by episodic drought. To understand observed decline in groundwater (well observation) and terrestrial water storage (GRACE) during a recent multi-year drought, we modify the Noah-MP LSM to include a groundwater pumping irrigation scheme. To account for seasonal and interannual variability in active irrigated area we apply a monthly time-varying greenness vegetation fraction (GVF) dataset to the model. A set of five experiments were performed to study the impact of irrigation with groundwater withdrawal on the simulated hydrological cycle of the HPA and to assess the importance of time-varying GVF when simulating drought conditions. The results show that including the groundwater pumping irrigation scheme in Noah-MP improves model agreement with GRACE mascon solutions for TWS and well observations of groundwater anomaly in the southern HPA, including Texas and Kansas, and that accounting for time-varying GVF is important for model realism under drought. Results for the HPA in Nebraska are mixed, likely due to misrepresentation of the recharge process. This presentation will highlight the value of the GRACE constraint for model development, present estimates of the relative contribution of climate variability and irrigation to declining TWS in the HPA under drought, and identify opportunities to integrate GRACE-FO with models for water resource monitoring in heavily

  5. Panic attack history and anxiety sensitivity in relation to cognitive-based smoking processes among treatment-seeking daily smokers.

    Science.gov (United States)

    Johnson, Kirsten A; Farris, Samantha G; Schmidt, Norman B; Smits, Jasper A J; Zvolensky, Michael J

    2013-01-01

    Empirical research has found that panic attacks are related to increased risk of more severe nicotine withdrawal and poor cessation outcome. Anxiety sensitivity (AS; fear of anxiety and related sensations) has similarly been found to be related to an increased risk of acute nicotine withdrawal and poorer cessation outcome. However, research has yet to examine the relative contributions of panic attacks and AS in terms of cognitive-based smoking processes (e.g., negative reinforcement smoking expectancies, addictive and negative affect-based reduction smoking motives, barriers to cessation, problem symptoms experienced while quitting). Participants (n = 242; 57.4% male; M (age) = 38.1) were daily smokers recruited as a part of a larger randomized control trial for smoking cessation. It was hypothesized that both panic attacks and AS would uniquely and independently predict the studied cognitive-based smoking processes. As hypothesized, AS was uniquely and positively associated with all smoking processes after controlling for average number of cigarettes smoked per day, current Axis I diagnosis, and participant sex. However, panic attack history was only significantly related to problem symptoms experienced while quitting smoking. Although past research has demonstrated significant associations between panic attacks and certain aspects of cigarette smoking (e.g., severity of nicotine withdrawal; lower abstinence rates, and negative affect reduction motives), the present findings suggest that AS may be more relevant to understanding beliefs about and motives for smoking behavior as well as perceptions of cessation-related difficulties.

  6. Development of electrical analogue model for studying seepage flow under hydraulic structures - case study: Sukkur barrage

    International Nuclear Information System (INIS)

    Gabriel, H.F.; Umar, I.A.; Khan, G.D.

    2003-01-01

    For the solution of groundwater problem many types of models are used, but electrical analogue model is preferred due to its close response with its prototype hydrological system. This model is easy to construct and is reusable. In the model voltage is correlated to groundwater head electric current to flow and capacitance to groundwater storage. The analogy of the model is derived based on Kirchhoffs law and Finite difference form of Laplace equation. The network is consisting of square and rectangular meshes. Scaling factor for voltage and resistors are selected. All the equipment needed for assembling the model are prepared. Terminal strips and their connectivity are checked. Calculated resistors with accurate values after cutting and molding are inserted in the terminal strips and desired section is completed. A network of resistors in X and Z direction is used to represent the aquifer. Two stabilized power supply are used to provide the electrical potential. The worst condition is maintained by supplying the maximum head at upstream and dry condition at downstream. After the development of the model conclusion derived shows that the model are in a position to express the groundwater potential for seepage distribution under the floor with high degree of accuracy. Moreover there is a very good proportion between sample and the actual prototype in existence. The actual model when tested by model show very clear results for the sheet pile in relation to floor length to control seepage or uplift pressure caused. The existence design of Sukkur barrage and its overestimation and underestimation with reference to their sheet pile have been specifically determined. (author)

  7. Phosphoproteomics-based modeling defines the regulatory mechanism underlying aberrant EGFR signaling.

    Directory of Open Access Journals (Sweden)

    Shinya Tasaki

    Full Text Available BACKGROUND: Mutation of the epidermal growth factor receptor (EGFR results in a discordant cell signaling, leading to the development of various diseases. However, the mechanism underlying the alteration of downstream signaling due to such mutation has not yet been completely understood at the system level. Here, we report a phosphoproteomics-based methodology for characterizing the regulatory mechanism underlying aberrant EGFR signaling using computational network modeling. METHODOLOGY/PRINCIPAL FINDINGS: Our phosphoproteomic analysis of the mutation at tyrosine 992 (Y992, one of the multifunctional docking sites of EGFR, revealed network-wide effects of the mutation on EGF signaling in a time-resolved manner. Computational modeling based on the temporal activation profiles enabled us to not only rediscover already-known protein interactions with Y992 and internalization property of mutated EGFR but also further gain model-driven insights into the effect of cellular content and the regulation of EGFR degradation. Our kinetic model also suggested critical reactions facilitating the reconstruction of the diverse effects of the mutation on phosphoproteome dynamics. CONCLUSIONS/SIGNIFICANCE: Our integrative approach provided a mechanistic description of the disorders of mutated EGFR signaling networks, which could facilitate the development of a systematic strategy toward controlling disease-related cell signaling.

  8. Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector.

    Science.gov (United States)

    Zhou, Lüwen; Zhang, Chen; Zhang, Fan; Lü, Shouqin; Sun, Shujin; Lü, Dongyuan; Long, Mian

    2018-02-01

    Translocation of dense nucleus along gravity vector initiates mechanical remodeling of a eukaryotic cell. In our previous experiments, we quantified the impact of gravity vector on cell remodeling by placing an MC3T3-E1 cell onto upward (U)-, downward (D)-, or edge-on (E)- orientated substrate. Our experimental data demonstrate that orientation dependence of nucleus longitudinal translocation is positively correlated with cytoskeletal (CSK) remodeling of their expressions and structures and also is associated with rearrangement of focal adhesion complex (FAC). However, the underlying mechanism how CSK network and FACs are reorganized in a mammalian cell remains unclear. In this paper, we developed a theoretical biomechanical model to integrate the mechanosensing of nucleus translocation with CSK remodeling and FAC reorganization induced by a gravity vector. The cell was simplified as a nucleated tensegrity structure in the model. The cell and CSK filaments were considered to be symmetrical. All elements of CSK filaments and cytomembrane that support the nucleus were simplified as springs. FACs were simplified as an adhesion cluster of parallel bonds with shared force. Our model proposed that gravity vector-directed translocation of the cell nucleus is mechanically balanced by CSK remodeling and FAC reorganization induced by a gravitational force. Under gravity, dense nucleus tends to translocate and exert additional compressive or stretching force on the cytoskeleton. Finally, changes of the tension force acting on talin by microfilament alter the size of FACs. Results from our model are in qualitative agreement with those from experiments.

  9. An extended car-following model to describe connected traffic dynamics under cyberattacks

    Science.gov (United States)

    Wang, Pengcheng; Yu, Guizhen; Wu, Xinkai; Qin, Hongmao; Wang, Yunpeng

    2018-04-01

    In this paper, the impacts of the potential cyberattacks on vehicles are modeled through an extended car-following model. To better understand the mechanism of traffic disturbance under cyberattacks, the linear and nonlinear stability analysis are conducted respectively. Particularly, linear stability analysis is performed to obtain different neutral stability conditions with various parameters; and nonlinear stability analysis is carried out by using reductive perturbation method to derive the soliton solution of the modified Korteweg de Vries equation (mKdV) near the critical point, which is used to draw coexisting stability lines. Furthermore, by applying linear and nonlinear stability analysis, traffic flow state can be divided into three states, i.e., stable, metastable and unstable states which are useful to describe shockwave dynamics and driving behaviors under cyberattacks. The theoretical results show that the proposed car-following model is capable of successfully describing the car-following behavior of connected vehicles with cyberattacks. Finally, numerical simulation using real values has confirmed the validity of theoretical analysis. The results further demonstrate our model can be used to help avoid collisions and relieve traffic congestion with cybersecurity threats.

  10. A model of disordered zone formation in Cu3Au under cascade-producing irradiation

    International Nuclear Information System (INIS)

    Kapinos, V.G.; Bacon, D.J.

    1995-01-01

    A model to describe the disordering of ordered Cu 3 Au under irradiation is proposed. For the thermal spike phase of a displacement cascade, the processes of heat evolution and conduction in the cascade region are modelled by solving the thermal conduction equation by a discretization method for a medium that can melt and solidify under appropriate conditions. The model considers disordering to result from cascade core melting, with the final disordered zone corresponding to the largest molten zone achieved. The initial conditions for this treatment are obtained by simulation of cascades by the MARLOWE code. The contrast of disordered zones imaged in a superlattice dark-field reflection and projected on the plane parallel to the surface of a thin foil was calculated. The average size of images from hundreds of cascades created by incident Cu + ions were calculated for different ion energies and compared with experimental transmission electron microscopy data. The model is in reasonable quantitative agreement with the experimentally observed trends. (author)

  11. Analytical modelling of acoustic emission from buried or surface-breaking cracks under stress

    International Nuclear Information System (INIS)

    Ben Khalifa, W; Jezzine, K; Hello, G; Grondel, S

    2012-01-01

    Acoustic emission (AE) is a non-destructive testing method used in various industries (aerospace, petrochemical and pressure-vessel industries in general, power generation, civil engineering, mechanical engineering, etc...) for the examination of large structures subjected to various stresses (e.g. mechanical loading).The energy released by a defect under stress (the AE phenomenon) can propagate as guided waves in thin structures or as surface Rayleigh waves in thick ones. Sensors (possibly permanently) are positioned at various locations on the structure under examination and are assumed to be sensitive to these waves. Then, post-processing tools typically based on signal processing and triangulation algorithms can be used to inverse these data, allowing one to estimate the position of the defect from which emanates the waves measured. The French Atomic Energy Commission is engaged in the development of tools for simulating AE examinations. These tools are based on specific models for the AE sources, for the propagation of guided or Rayleigh waves and for the behaviour of AE sensors. Here, the coupling of a fracture mechanics based model for AE source and surface/guided wave propagation models is achieved through an integral formulation relying on the elastodynamic reciprocity principle. As a first approximation, a simple piston-like model is used to predict the sensitivity of AE sensors. Predictions computed by our simulation tool are compared to results from the literature for validation purpose.

  12. Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution

    International Nuclear Information System (INIS)

    Zhang Yu; Wang Guangyi; Lu Xinmiao; Hu Yongcai; Xu Jiangtao

    2016-01-01

    The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result, the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated, and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. (paper)

  13. Multi-Period Dynamic Optimization for Large-Scale Differential-Algebraic Process Models under Uncertainty

    Directory of Open Access Journals (Sweden)

    Ian D. Washington

    2015-07-01

    Full Text Available A technique for optimizing large-scale differential-algebraic process models under uncertainty using a parallel embedded model approach is developed in this article. A combined multi-period multiple-shooting discretization scheme is proposed, which creates a significant number of independent numerical integration tasks for each shooting interval over all scenario/period realizations. Each independent integration task is able to be solved in parallel as part of the function evaluations within a gradient-based non-linear programming solver. The focus of this paper is on demonstrating potential computation performance improvement when the embedded differential-algebraic equation model solution of the multi-period discretization is implemented in parallel. We assess our parallel dynamic optimization approach on two case studies; the first is a benchmark literature problem, while the second is a large-scale air separation problem that considers a robust set-point transition under parametric uncertainty. Results indicate that focusing on the speed-up of the embedded model evaluation can significantly decrease the overall computation time; however, as the multi-period formulation grows with increased realizations, the computational burden quickly shifts to the internal computation performed within the non-linear programming algorithm. This highlights the need for further decomposition, structure exploitation and parallelization within the non-linear programming algorithm and is the subject for further investigation.

  14. Optimal parameters for the Green-Ampt infiltration model under rainfall conditions

    Directory of Open Access Journals (Sweden)

    Chen Li

    2015-06-01

    Full Text Available The Green-Ampt (GA model is widely used in hydrologic studies as a simple, physically-based method to estimate infiltration processes. The accuracy of the model for applications under rainfall conditions (as opposed to initially ponded situations has not been studied extensively. We compared calculated rainfall infiltration results for various soils obtained using existing GA parameterizations with those obtained by solving the Richards equation for variably saturated flow. Results provided an overview of GA model performance evaluated by means of a root-meansquare- error-based objective function across a large region in GA parameter space as compared to the Richards equation, which showed a need for seeking optimal GA parameters. Subsequent analysis enabled the identification of optimal GA parameters that provided a close fit with the Richards equation. The optimal parameters were found to substantially outperform the standard theoretical parameters, thus improving the utility and accuracy of the GA model for infiltration simulations under rainfall conditions. A sensitivity analyses indicated that the optimal parameters may change for some rainfall scenarios, but are relatively stable for high-intensity rainfall events.

  15. Cluster dynamics modeling of Mn-Ni-Si precipitates in ferritic-martensitic steel under irradiation

    Science.gov (United States)

    Ke, Jia-Hong; Ke, Huibin; Odette, G. Robert; Morgan, Dane

    2018-01-01

    Mn-Ni-Si precipitates (MNSPs) are known to be responsible for irradiation-induced hardening and embrittlement in structural alloys used in nuclear reactors. Studies have shown that precipitation of the MNSPs in 9-Cr ferritic-martensitic (F-M) alloys, such as T91, is strongly associated with heterogeneous nucleation on dislocations, coupled with radiation-induced solute segregation to these sinks. Therefore it is important to develop advanced predictive models for Mn-Ni-Si precipitation in F-M alloys under irradiation based on an understanding of the underlying mechanisms. Here we use a cluster dynamics model, which includes multiple effects of dislocations, to study the evolution of MNSPs in a commercial F-M alloy T91. The model predictions are calibrated by data from proton irradiation experiments at 400 °C. Radiation induced solute segregation at dislocations is evaluated by a continuum model that is integrated into the cluster dynamics simulations, including the effects of dislocations as heterogeneous nucleation sites. The result shows that MNSPs in T91 are primarily irradiation-induced and, in particular, both heterogeneous nucleation and radiation-induced segregation at dislocations are necessary to rationalize the experimental observations.

  16. Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging

    Science.gov (United States)

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-02-01

    Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.

  17. Han's model parameters for microalgae grown under intermittent illumination: Determined using particle swarm optimization.

    Science.gov (United States)

    Pozzobon, Victor; Perre, Patrick

    2018-01-21

    This work provides a model and the associated set of parameters allowing for microalgae population growth computation under intermittent lightning. Han's model is coupled with a simple microalgae growth model to yield a relationship between illumination and population growth. The model parameters were obtained by fitting a dataset available in literature using Particle Swarm Optimization method. In their work, authors grew microalgae in excess of nutrients under flashing conditions. Light/dark cycles used for these experimentations are quite close to those found in photobioreactor, i.e. ranging from several seconds to one minute. In this work, in addition to producing the set of parameters, Particle Swarm Optimization robustness was assessed. To do so, two different swarm initialization techniques were used, i.e. uniform and random distribution throughout the search-space. Both yielded the same results. In addition, swarm distribution analysis reveals that the swarm converges to a unique minimum. Thus, the produced set of parameters can be trustfully used to link light intensity to population growth rate. Furthermore, the set is capable to describe photodamages effects on population growth. Hence, accounting for light overexposure effect on algal growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Risk-Based Interval Two-Stage Programming Model for Agricultural System Management under Uncertainty

    Directory of Open Access Journals (Sweden)

    Ye Xu

    2016-01-01

    Full Text Available Nonpoint source (NPS pollution caused by agricultural activities is main reason that water quality in watershed becomes worse, even leading to deterioration. Moreover, pollution control is accompanied with revenue’s fall for agricultural system. How to design and generate a cost-effective and environmentally friendly agricultural production pattern is a critical issue for local managers. In this study, a risk-based interval two-stage programming model (RBITSP was developed. Compared to general ITSP model, significant contribution made by RBITSP model was that it emphasized importance of financial risk under various probabilistic levels, rather than only being concentrated on expected economic benefit, where risk is expressed as the probability of not meeting target profit under each individual scenario realization. This way effectively avoided solutions’ inaccuracy caused by traditional expected objective function and generated a variety of solutions through adjusting weight coefficients, which reflected trade-off between system economy and reliability. A case study of agricultural production management with the Tai Lake watershed was used to demonstrate superiority of proposed model. Obtained results could be a base for designing land-structure adjustment patterns and farmland retirement schemes and realizing balance of system benefit, system-failure risk, and water-body protection.

  19. Electricity supply industry modelling for multiple objectives under demand growth uncertainty

    International Nuclear Information System (INIS)

    Heinrich, G.; Basson, L.; Howells, M.; Petrie, J.

    2007-01-01

    Appropriate energy-environment-economic (E3) modelling provides key information for policy makers in the electricity supply industry (ESI) faced with navigating a sustainable development path. Key challenges include engaging with stakeholder values and preferences, and exploring trade-offs between competing objectives in the face of underlying uncertainty. As a case study we represent the South African ESI using a partial equilibrium E3 modelling approach, and extend the approach to include multiple objectives under selected future uncertainties. This extension is achieved by assigning cost penalties to non-cost attributes to force the model's least-cost objective function to better satisfy non-cost criteria. This paper incorporates aspects of flexibility to demand growth uncertainty into each future expansion alternative by introducing stochastic programming with recourse into the model. Technology lead times are taken into account by the inclusion of a decision node along the time horizon where aspects of real options theory are considered within the planning process. Hedging in the recourse programming is automatically translated from being purely financial, to include the other attributes that the cost penalties represent. From a retrospective analysis of the cost penalties, the correct market signals, can be derived to meet policy goal, with due regard to demand uncertainty. (author)

  20. A Mathematical Model of Prostate Tumor Growth Under Hormone Therapy with Mutation Inhibitor

    Science.gov (United States)

    Tao, Youshan; Guo, Qian; Aihara, Kazuyuki

    2010-04-01

    This paper extends Jackson’s model describing the growth of a prostate tumor with hormone therapy to a new one with hypothetical mutation inhibitors. The new model not only considers the mutation by which androgen-dependent (AD) tumor cells mutate into androgen-independent (AI) ones but also introduces inhibition which is assumed to change the mutation rate. The tumor consists of two types of cells (AD and AI) whose proliferation and apoptosis rates are functions of androgen concentration. The mathematical model represents a free-boundary problem for a nonlinear system of parabolic equations, which describe the evolution of the populations of the above two types of tumor cells. The tumor surface is a free boundary, whose velocity is equal to the cell’s velocity there. Global existence and uniqueness of solutions of this model is proved. Furthermore, explicit formulae of tumor volume at any time t are found in androgen-deprived environment under the assumption of radial symmetry, and therefore the dynamics of tumor growth under androgen-deprived therapy could be predicted by these formulae. Qualitative analysis and numerical simulation show that controlling the mutation may improve the effect of hormone therapy or delay a tumor relapse.

  1. Modelling regional cropping patterns under scenarios of climate and socio-economic change in Hungary.

    Science.gov (United States)

    Li, Sen; Juhász-Horváth, Linda; Pintér, László; Rounsevell, Mark D A; Harrison, Paula A

    2018-05-01

    Impacts of socio-economic, political and climatic change on agricultural land systems are inherently uncertain. The role of regional and local-level actors is critical in developing effective policy responses that accommodate such uncertainty in a flexible and informed way across governance levels. This study identified potential regional challenges in arable land use systems, which may arise from climate and socio-economic change for two counties in western Hungary: Veszprém and Tolna. An empirically-grounded, agent-based model was developed from an extensive farmer household survey about local land use practices. The model was used to project future patterns of arable land use under four localised, stakeholder-driven scenarios of plausible future socio-economic and climate change. The results show strong differences in farmers' behaviour and current agricultural land use patterns between the two regions, highlighting the need to implement focused policy at the regional level. For instance, policy that encourages local food security may need to support improvements in the capacity of farmers to adapt to physical constraints in Veszprém and farmer access to social capital and environmental awareness in Tolna. It is further suggested that the two regions will experience different challenges to adaptation under possible future conditions (up to 2100). For example, Veszprém was projected to have increased fallow land under a scenario with high inequality, ineffective institutions and higher-end climate change, implying risks of land abandonment. By contrast, Tolna was projected to have a considerable decline in major cereals under a scenario assuming a de-globalising future with moderate climate change, inferring challenges to local food self-sufficiency. The study provides insight into how socio-economic and physical factors influence the selection of crop rotation plans by farmers in western Hungary and how farmer behaviour may affect future risks to agricultural

  2. Current models broadly neglect specific needs of biodiversity conservation in protected areas under climate change

    Directory of Open Access Journals (Sweden)

    Moloney Kirk A

    2011-05-01

    Full Text Available Abstract Background Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades. Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research. Results Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably. Conclusion The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the

  3. How Useful Are Species Distribution Models for Managing Biodiversity under Future Climates?

    Directory of Open Access Journals (Sweden)

    Steve J. Sinclair

    2010-03-01

    Full Text Available Climate change presents unprecedented challenges for biological conservation. Agencies are increasingly looking to modeled projections of species' distributions under future climates to inform management strategies. As government scientists with a responsibility to communicate the best available science to our policy colleagues, we question whether current modeling approaches and outputs are practically useful. Here, we synthesize conceptual problems with species distribution models (SDMs associated with interspecific interactions, dispersal, ecological equilibria and time lags, evolution, and the sampling of niche space. Although projected SDMs have undoubtedly been critical in alerting us to the magnitude of climate change impacts, we conclude that until they offer insights that are more precise than what we can derive from basic ecological theory, we question their utility in deciding how to allocate scarce funds to large-scale conservation projects.

  4. A mathematical model in cellular manufacturing system considering subcontracting approach under constraints

    Directory of Open Access Journals (Sweden)

    Kamran Forghani

    2012-10-01

    Full Text Available In this paper, a new mathematical model in cellular manufacturing systems (CMSs has been presented. In order to increase the performance of manufacturing system, the production quantity of parts has been considered as a decision variable, i.e. each part can be produced and outsourced, simultaneously. This extension would be minimized the unused capacity of machines. The exceptional elements (EEs are taken into account and would be totally outsourced to the external supplier in order to remove intercellular material handling cost. The problem has been formulated as a mixed-integer programming to minimize the sum of manufacturing variable costs under budget, machines capacity and demand constraints. Also, to evaluate advantages of the model, several illustrative numerical examples have been provided to compare the performance of the proposed model with the available classical approaches in the literature.

  5. Underlying Predictors of Tobacco Smoking among Iranian Teenagers: Generalized Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Fariba Khayyati

    2016-09-01

    Full Text Available Background: To define underlying predictors of tobacco smoking among Iranian Teenagers in a generalized structural equation model. Materials and Methods: In this cross-sectional study, a Generalized Structural Equation Model based on planned behavioral theory was used to explain the relationship among different factors such as demographic factors, subjective norms, and the intention to tobacco and, in turn, intention with tobacco use. The sample consisted of 4,422 high school students, based on census, in East Azerbaijan province, Iran. The questioner was designed adapting to the objectives of study. It was used global youth tobacco survey to design the queries of tobacco use. Results: The model had a good fit on data. Adjusting for age and gender, there was a statistically significant relationship between the intention to consumption and the following factors: working while studying (P

  6. Cattle and Nematodes Under Global Change: Transmission Models as an Ally.

    Science.gov (United States)

    Verschave, Sien H; Charlier, Johannes; Rose, Hannah; Claerebout, Edwin; Morgan, Eric R

    2016-09-01

    Nematode infections are an important economic constraint to cattle farming. Future risk levels and transmission dynamics will be affected by changes in climate and farm management. The prospect of altered parasite epidemiology in combination with anthelmintic resistance requires the adaptation of current control approaches. Mathematical models that simulate disease dynamics under changing climate and farm management can help to guide the optimization of helminth control strategies. Recent efforts have increasingly employed such models to assess the impact of predicted climate scenarios on future infection pressure for gastrointestinal nematodes (GINs) in cattle, and to evaluate possible adaptive control measures. This review aims to consolidate progress in this field to facilitate further modeling and application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The professional medical ethics model of decision making under conditions of clinical uncertainty.

    Science.gov (United States)

    McCullough, Laurence B

    2013-02-01

    The professional medical ethics model of decision making may be applied to decisions clinicians and patients make under the conditions of clinical uncertainty that exist when evidence is low or very low. This model uses the ethical concepts of medicine as a profession, the professional virtues of integrity and candor and the patient's virtue of prudence, the moral management of medical uncertainty, and trial of intervention. These features combine to justifiably constrain clinicians' and patients' autonomy with the goal of preventing nondeliberative decisions of patients and clinicians. To prevent biased recommendations by the clinician that promote such nondeliberative decisions, medically reasonable alternatives supported by low or very low evidence should be offered but not recommended. The professional medical ethics model of decision making aims to improve the quality of decisions by reducing the unacceptable variation that can result from nondeliberative decision making by patients and clinicians when evidence is low or very low.

  8. PREDICTION OF SITE RESPONSE SPECTRUM UNDER EARTHQUAKE VIBRATION USING AN OPTIMIZED DEVELOPED ARTIFICIAL NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Reza Esmaeilabadi

    2016-06-01

    Full Text Available Site response spectrum is one of the key factors to determine the maximum acceleration and displacement, as well as structure behavior analysis during earthquake vibrations. The main objective of this paper is to develop an optimized model based on artificial neural network (ANN using five different training algorithms to predict nonlinear site response spectrum subjected to Silakhor earthquake vibrations is. The model output was tested for a specified area in west of Iran. The performance and quality of optimized model under all training algorithms have been examined by various statistical, analytical and graph analyses criteria as well as a comparison with numerical methods. The observed adaptabilities in results indicate a feasible and satisfactory engineering alternative method for predicting the analysis of nonlinear site response.

  9. Evaluation of a Model to Simulate Wheat Growth and Development under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    F Hussein Panahi

    2014-12-01

    Full Text Available Modeling is one of the best tools for quantitative analyzing of biological systems that is helpful for understanding physiological basis of crops growth and development especially under limited water. In this study, a model was developed based on FAO Penman-Monteith model to simulate soil water balance (SWB components and linked with wheat growth and development model, which was developed based on basic models SUCROS and LINTUL. A field experiment was conducted in order to presented model validation in 2010-2011 at the Ferdowsi University of Mashhad Research Field. Experimental design was split plots with 5 irrigation treatments (main plot, 2 cultivars (sub plot, and 3 replications. Irrigation treatments included irrigation based on full water requirement (FI, without irrigation during spring (NI, irrigation at the rate of 75% of water requirement (75% FI, irrigation at the rate of 50% of water requirement (50% FI and irrigation at the rate of 25% of water requirement (25% FI and subplots also included Pishgam (drought-resistant and Gascogne (drought-susceptible wheat cultivars. Then simulated results was validated with two methods: fitted linear regression between observed and simulated data and compare with 1:1 line and Root Mean Square Error in percent (RMSE %. The result of LAI-trend simulation was excellent for susceptible cultivar in non-stress condition (FI treatment and medium for drastic stress condition (NI and 25%FI treatments. The simulation accuracy was good for other treatments. The LAI-trend simulation for resistant variety was good in all treatments. The model accuracy in maximum Leaf Area Index (LAImax simulations and its day ripening was excellent for both varieties. Dry matter production of susceptible cultivar was simulated excellent only in FI treatment and good for other treatments. But the model accuracy was gained excellent for resistant variety in all treatments. The model accuracy in yield simulations also was excellent

  10. Agricultural livelihoods in coastal Bangladesh under climate and environmental change--a model framework.

    Science.gov (United States)

    Lázár, Attila N; Clarke, Derek; Adams, Helen; Akanda, Abdur Razzaque; Szabo, Sylvia; Nicholls, Robert J; Matthews, Zoe; Begum, Dilruba; Saleh, Abul Fazal M; Abedin, Md Anwarul; Payo, Andres; Streatfield, Peter Kim; Hutton, Craig; Mondal, M Shahjahan; Moslehuddin, Abu Zofar Md

    2015-06-01

    Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of

  11. Modelling soil water content variations under drought stress on soil column cropped with winter wheat

    Directory of Open Access Journals (Sweden)

    Csorba Szilveszter

    2014-12-01

    Full Text Available Mathematical models are effective tools for evaluating the impact of predicted climate change on agricultural production, but it is difficult to test their applicability to future weather conditions. We applied the SWAP model to assess its applicability to climate conditions, differing from those, for which the model was developed. We used a database obtained from a winter wheat drought stress experiment. Winter wheat was grown in six soil columns, three having optimal water supply (NS, while three were kept under drought-stressed conditions (S. The SWAP model was successfully calibrated against measured values of potential evapotranspiration (PET, potential evaporation (PE and total amount of water (TSW in the soil columns. The Nash-Sutcliffe model efficiency coefficient (N-S for TWS for the stressed columns was 0.92. For the NS treatment, we applied temporally variable soil hydraulic properties because of soil consolidation caused by regular irrigation. This approach improved the N-S values for the wetting-drying cycle from -1.77 to 0.54. We concluded that the model could be used for assessing the effects of climate change on soil water regime. Our results indicate that soil water balance studies should put more focus on the time variability of structuredependent soil properties.

  12. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  13. Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.

    Science.gov (United States)

    Nowak, Joanna; Nowak, Bartosz; Kaczmarek, Mariusz

    2015-01-01

    This paper addresses the diagnostic idea proposed in [11] to measure the parameter called rate of creep of axillary fold of tissue using modified Harpenden skinfold caliper in order to distinguish normal and edematous tissue. Our simulations are intended to help understanding the creep phenomenon and creep rate parameter as a sensitive indicator of edema existence. The parametric analysis shows the tissue behavior under the external load as well as its sensitivity to changes of crucial hydro-mechanical tissue parameters, e.g., permeability or stiffness. The linear viscoelastic and poroelastic models of normal (single phase) and oedematous tissue (twophase: swelled tissue with excess of interstitial fluid) implemented in COMSOL Multiphysics environment are used. Simulations are performed within the range of small strains for a simplified fold geometry, material characterization and boundary conditions. The predicted creep is the result of viscosity (viscoelastic model) or pore fluid displacement (poroelastic model) in tissue. The tissue deformations, interstitial fluid pressure as well as interstitial fluid velocity are discussed in parametric analysis with respect to elasticity modulus, relaxation time or permeability of tissue. The creep rate determined within the models of tissue is compared and referred to the diagnostic idea in [11]. The results obtained from the two linear models of subcutaneous tissue indicate that the form of creep curve and the creep rate are sensitive to material parameters which characterize the tissue. However, the adopted modelling assumptions point to a limited applicability of the creep rate as the discriminant of oedema.

  14. Modeling of the Human - Operator in a Complex System Functioning Under Extreme Conditions

    Science.gov (United States)

    Getzov, Peter; Hubenova, Zoia; Yordanov, Dimitar; Popov, Wiliam

    2013-12-01

    Problems, related to the explication of sophisticated control systems of objects, operating under extreme conditions, have been examined and the impact of the effectiveness of the operator's activity on the systems as a whole. The necessity of creation of complex simulation models, reflecting operator's activity, is discussed. Organizational and technical system of an unmanned aviation complex is described as a sophisticated ergatic system. Computer realization of main subsystems of algorithmic system of the man as a controlling system is implemented and specialized software for data processing and analysis is developed. An original computer model of a Man as a tracking system has been implemented. Model of unmanned complex for operators training and formation of a mental model in emergency situation, implemented in "matlab-simulink" environment, has been synthesized. As a unit of the control loop, the pilot (operator) is simplified viewed as an autocontrol system consisting of three main interconnected subsystems: sensitive organs (perception sensors); central nervous system; executive organs (muscles of the arms, legs, back). Theoretical-data model of prediction the level of operator's information load in ergatic systems is proposed. It allows the assessment and prediction of the effectiveness of a real working operator. Simulation model of operator's activity in takeoff based on the Petri nets has been synthesized.

  15. Optimization of Multi-Cluster Fracturing Model under the Action of Induced Stress in Horizontal Wells

    Directory of Open Access Journals (Sweden)

    Shanyong Liu

    2016-05-01

    Full Text Available Volume fracturing in shale gas forms complex fracture networks and increases stimulated reservoir volume through large-scale fracturing operation with plug-perforation technology. However, some perforation clusters are stimulated unevenly after fracturing. This study aims to solve this problem by analyzing the shortcomings of the conventional fracturing model and developing a coupled model based on the 2D fracture motion equation, energy conservation law, linear elastic mechanics, and stress superposition principle. First, a multi-fracture in-situ stress model was built by studying the induced stress produced by the fracture initiation to deduce the multi-fracture induced stress impact factor on the basis of the stress superposition principle. Then, the classical Perkins–Kern–Nordgren model was utilized with the crustal stress model. Finally, a precise fracturing design method was used to optimize perforation and fracturing parameters under the new model. Results demonstrate that the interference effect among fractures is the major factor causing the non-uniform propagation of each fracture. Compression on the main horizontal stress increases the net pressure. Therefore, both the degree of operation difficulty and the complexity of fracture geometry are improved. After applying the optimal design, the production is increased by 20%, and the cost is reduced by 15%.

  16. Development of systematic models for aerosol agglomeration and spray removal under severe accident conditions

    International Nuclear Information System (INIS)

    Kajimoto, Mitsuhiro

    2008-01-01

    Radionuclide behavior during various severe accident conditions has been addressed as one of the important issues to discuss environmental safety in nuclear power plants. The present paper deals with the development of analytical models and their validations for the agglomeration of multiple-component aerosol and spray removal that controls source terms to the environment of both aerosols and gaseous radionuclides during recirculation mode operation in a containment system for a light water reactor. As for aerosol agglomeration, the single collision kernel model that can cover all types of two-body collision of aerosol was developed. In addition, the dynamic model that can treat aerosol and vapor transfer leading to the equilibrium condition under the containment spray operation was developed. The validations of the present models for multiple-component aerosol growth by agglomeration were performed by comparisons with Nuclear Safety Pilot Plant (NSPP) experiments at Oak Ridge National Laboratory (ORNL) and AB experiments at Hanford Engineering National Laboratory (HEDL). In addition, the spray removal models were applied to the analysis of containment spray experiment (CSE) at HEDL. The results calculated by the models showed good agreements with experimental results. (author)

  17. Last-Train Timetabling under Transfer Demand Uncertainty: Mean-Variance Model and Heuristic Solution

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2017-01-01

    Full Text Available Traditional models of timetable generation for last trains do not account for the fact that decision-maker (DM often incorporates transfer demand variability within his/her decision-making process. This study aims to develop such a model with particular consideration of the decision-makers’ risk preferences in subway systems under uncertainty. First, we formulate an optimization model for last-train timetabling based on mean-variance (MV theory that explicitly considers two significant factors including the number of successful transfer passengers and the running time of last trains. Then, we add the mean-variance risk measure into the model to generate timetables by adjusting the last trains’ departure times and running times for each line. Furthermore, we normalize two heterogeneous terms of the risk measure to provide assistance in getting reasonable results. Due to the complexity of MV model, we design a tabu search (TS algorithm with specifically designed operators to solve the proposed timetabling problem. Through computational experiments involving the Beijing subway system, we demonstrate the computational efficiency of the proposed MV model and the heuristic approach.

  18. Gasification under CO2–Steam Mixture: Kinetic Model Study Based on Shared Active Sites

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-11-01

    Full Text Available In this work, char gasification of two coals (i.e., Shenfu bituminous coal and Zunyi anthracite and a petroleum coke under a steam and CO2 mixture (steam/CO2 partial pressures, 0.025–0.075 MPa; total pressures, 0.100 MPa and CO2/steam chemisorption of char samples were conducted in a Thermogravimetric Analyzer (TGA. Two conventional kinetic models exhibited difficulties in exactly fitting the experimental data of char–steam–CO2 gasification. Hence, a modified model based on Langmuir–Hinshelwood model and assuming that char–CO2 and char–steam reactions partially shared active sites was proposed and had indicated high accuracy for estimating the interactions in char–steam–CO2 reaction. Moreover, it was found that two new model parameters (respectively characterized as the amount ratio of shared active sites to total active sites in char–CO2 and char–steam reactions in the modified model hardly varied with gasification conditions, and the results of chemisorption indicate that these two new model parameters mainly depended on the carbon active sites in char samples.

  19. Differential impairments underlying decision making in anorexia nervosa and bulimia nervosa: a cognitive modeling analysis.

    Science.gov (United States)

    Chan, Trista Wai Sze; Ahn, Woo-Young; Bates, John E; Busemeyer, Jerome R; Guillaume, Sebastien; Redgrave, Graham W; Danner, Unna N; Courtet, Philippe

    2014-03-01

    This study examined the underlying processes of decision-making impairments in individuals with anorexia nervosa (AN) and bulimia nervosa (BN). We deconstructed their performance on the widely used decision task, the Iowa Gambling Task (IGT) into cognitive, motivational, and response processes using cognitive modeling analysis. We hypothesized that IGT performance would be characterized by impaired memory functions and heightened punishment sensitivity in AN, and by elevated sensitivity to reward as opposed to punishment in BN. We analyzed trial-by-trial data of IGT obtained from 224 individuals: 94 individuals with AN, 63 with BN, and 67 healthy comparison individuals (HC). The prospect valence learning model was used to assess cognitive, motivational, and response processes underlying IGT performance. Individuals with AN showed marginally impaired IGT performance compared to HC. Their performance was characterized by impairments in memory functions. Individuals with BN showed significantly impaired IGT performance compared to HC. They showed greater relative sensitivity to gains as opposed to losses than HC. Memory functions in AN were positively correlated with body mass index. This study identified differential impairments underlying IGT performance in AN and BN. Findings suggest that impaired decision making in AN might involve impaired memory functions. Impaired decision making in BN might involve altered reward and punishment sensitivity. Copyright © 2013 Wiley Periodicals, Inc.

  20. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  1. Modeling the global levels and distribution of polychlorinated biphenyls in air under a climate change scenario.

    Science.gov (United States)

    Lamon, Lara; Von Waldow, Harald; Macleod, Matthew; Scheringer, Martin; Marcomini, Antonio; Hungerbühler, Konrad

    2009-08-01

    We used the multimedia chemical fate model BETR Global to evaluate changes in the global distribution of two polychlorinated biphenyls, PCB 28 and PCB 153, under the influence of climate change. This was achieved by defining two climate scenarios based on results from a general circulation model, one scenario representing the last twenty years of the 20th century (20CE scenario) and another representing the global climate under the assumption of strong future greenhouse gas emissions (A2 scenario). The two climate scenarios are defined by four groups of environmental parameters: (1) temperature in the planetary boundary layer and the free atmosphere, (2) wind speeds and directions in the atmosphere, (3) current velocities and directions in the surface mixed layer of the oceans, and (4) rate and geographical pattern of precipitation. As a fifth parameter in our scenarios, we considerthe effect of temperature on primary volatilization emissions of PCBs. Comparison of dynamic model results using environmental parameters from the 20CE scenario against historical long-term monitoring data of concentrations of PCB 28 and PCB 153 in air from 16 different sites shows satisfactory agreement between modeled and measured PCBs concentrations. The 20CE scenario and A2 scenario were compared using steady-state calculations and assuming the same source characteristics of PCBs. Temperature differences between the two scenarios is the dominant factor that determines the difference in PCB concentrations in air. The higher temperatures in the A2 scenario drive increased primary and secondary volatilization emissions of PCBs, and enhance transport from temperate regions to the Arctic. The largest relative increase in concentrations of both PCB congeners in air under the A2 scenario occurs in the high Arctic and the remote Pacific Ocean. Generally, higher wind speeds under the A2 scenario result in more efficient intercontinental transport of PCB 28 and PCB 153 compared to the 20CE

  2. A collaborative computer auditing system under SOA-based conceptual model

    Science.gov (United States)

    Cong, Qiushi; Huang, Zuoming; Hu, Jibing

    2013-03-01

    Some of the current challenges of computer auditing are the obstacles to retrieving, converting and translating data from different database schema. During the last few years, there are many data exchange standards under continuous development such as Extensible Business Reporting Language (XBRL). These XML document standards can be used for data exchange among companies, financial institutions, and audit firms. However, for many companies, it is still expensive and time-consuming to translate and provide XML messages with commercial application packages, because it is complicated and laborious to search and transform data from thousands of tables in the ERP databases. How to transfer transaction documents for supporting continuous auditing or real time auditing between audit firms and their client companies is a important topic. In this paper, a collaborative computer auditing system under SOA-based conceptual model is proposed. By utilizing the widely used XML document standards and existing data transformation applications developed by different companies and software venders, we can wrap these application as commercial web services that will be easy implemented under the forthcoming application environments: service-oriented architecture (SOA). Under the SOA environments, the multiagency mechanism will help the maturity and popularity of data assurance service over the Internet. By the wrapping of data transformation components with heterogeneous databases or platforms, it will create new component markets composed by many software vendors and assurance service companies to provide data assurance services for audit firms, regulators or third parties.

  3. Modeling BTEX migration with soil vapor extraction remediation under low-temperature conditions.

    Science.gov (United States)

    Yang, Yang; Li, Juan; Xi, Beidou; Wang, Ying; Tang, Jun; Wang, Yue; Zhao, Chuanjun

    2017-12-01

    Contaminant spills in vadose zone are frequently encountered in winter, and the temperature at such times is often under 0 °C. Soil vapor extraction (SVE) is typically effective for the removal of volatile contaminants from vadose zone, but temperature influences its effectiveness. A sandbox laboratory evaluation and a TMVOC numerical model were used to investigate BTEX migration that occurred during SVE remediation processes under low temperatures. The simulation results were consistent with the experimental data obtained in the present study, and the following three conclusions were drawn. (i) The SVE removal rates of benzene, toluene, ethylbenzene, and o-xylene were 89.8%, 71.3%, 29.7%, and 14.4%, respectively. (ii) In two extraction processes, the masses of benzene and toluene in the gas-aqueous-NAPL phases decreased by approximately 20%:70%:10%, with the greatest reduction occurring in the aqueous phase. During the period between these two extraction processes, benzene and toluene migrated from the NAPL phase to the gas and aqueous phases, and their fractions were approximately 30%:70%. (iii) The results proved that under low-temperature conditions, namely -10-5 °C, the SVE removal ratio for benzene was highest among the four tested contaminants. It was therefore determined that TMVOC can provide scientific guidance for determining whether to optimize or terminate SVE operations under low-temperature conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A stochastic rainfall model for the assessment of regional water resource systems under changed climatic condition

    Directory of Open Access Journals (Sweden)

    H. J. Fowler

    2000-01-01

    Full Text Available A stochastic model is developed for the synthesis of daily precipitation using conditioning by weather types. Daily precipitation statistics at multiple sites within the region of Yorkshire, UK, are linked to objective Lamb weather types (LWTs and used to split the region into three distinct precipitation sub-regions. Using a variance minimisation criterion, the 27 LWTs are clustered into three physically realistic groups or ‘states'. A semi-Markov chain model is used to synthesise long sequences of weather states, maintaining the observed persistence and transition probabilities. The Neyman-Scott Rectangular Pulses (NSRP model is then fitted for each weather state, using a defined summer and winter period. The combined model reproduces key aspects of the historic precipitation regime at temporal resolutions down to the hourly level. Long synthetic precipitation series are useful in the sensitivity analysis of water resource systems under current and changed climatic conditions. This methodology enables investigation of the impact of variations in weather type persistence or frequency. In addition, rainfall model statistics can be altered to simulate instances of increased intensity or proportion of dry days for example, for individual weather groups. The input of such data into a water resource model, simulating potential atmospheric circulation changes, will provide a valuable tool for future planning of water resource systems. The ability of the model to operate at an hourly level also allows its use in a wider range of hydrological impact studies, e.g. variations in river flows, flood risk estimation etc. Keywords: water resources; climate change; impacts; stochastic rainfall model; Lamb weather types

  5. Expected Shannon Entropy and Shannon Differentiation between Subpopulations for Neutral Genes under the Finite Island Model.

    Science.gov (United States)

    Chao, Anne; Jost, Lou; Hsieh, T C; Ma, K H; Sherwin, William B; Rollins, Lee Ann

    2015-01-01

    Shannon entropy H and related measures are increasingly used in molecular ecology and population genetics because (1) unlike measures based on heterozygosity or allele number, these measures weigh alleles in proportion to their population fraction, thus capturing a previously-ignored aspect of allele frequency distributions that may be important in many applications; (2) these measures connect directly to the rich predictive mathematics of information theory; (3) Shannon entropy is completely additive and has an explicitly hierarchical nature; and (4) Shannon entropy-based differentiation measures obey strong monotonicity properties that heterozygosity-based measures lack. We derive simple new expressions for the expected values of the Shannon entropy of the equilibrium allele distribution at a neutral locus in a single isolated population under two models of mutation: the infinite allele model and the stepwise mutation model. Surprisingly, this complex stochastic system for each model has an entropy expressable as a simple combination of well-known mathematical functions. Moreover, entropy- and heterozygosity-based measures for each model are linked by simple relationships that are shown by simulations to be approximately valid even far from equilibrium. We also identify a bridge between the two models of mutation. We apply our approach to subdivided populations which follow the finite island model, obtaining the Shannon entropy of the equilibrium allele distributions of the subpopulations and of the total population. We also derive the expected mutual information and normalized mutual information ("Shannon differentiation") between subpopulations at equilibrium, and identify the model parameters that determine them. We apply our measures to data from the common starling (Sturnus vulgaris) in Australia. Our measures provide a test for neutrality that is robust to violations of equilibrium assumptions, as verified on real world data from starlings.

  6. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    Science.gov (United States)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  7. Experimental characterization and modelling of the alteration of fractured cement under CO2 storage conditions

    International Nuclear Information System (INIS)

    Abdoulghafour, Halidi

    2012-01-01

    The main purpose of this thesis was to characterize and to model the hydrodynamic and thermochemical processes leading to the alteration of the wellbore cement materials under borehole conditions. Percolation experiments were performed on fractured cement samples under CO 2 storage conditions (60 C and 10 MPa). Injection flow rate was dictated by the fracture aperture of each sample. CO 2 enriched brine was flowed along the fracture aperture, and permeability changes as well as chemical evolution of major cations were continuously acquired during the experiment time. Reaction paths developed by the alteration of the cement were characterized using microtomography and ESEM images. The experiments conducted using samples presenting large fracture apertures during 5 h showed that permeability was maintained constant during the experiment time. Three reacted layers were displaying by the alteration of portlandite and CSH. Long term experiment (26 h) conducted with large initial fracture aperture showed a decrease of the permeability after 15 hours of CO 2 exposure. Otherwise, experiments performed on samples presenting narrow apertures indicated the conversion of portlandite and CSH to calcite leading to the permeability reduction and the fracture clogging. Assemblages of phases and chemical changes were modelled using GEMS-PSI speciation code. We studied also using a coupled transport-reactive model the conditions leading to the cement alteration and the formation of associated layers. (author)

  8. Modeling electroluminescence in insulating polymers under ac stress: effect of excitation waveform

    Energy Technology Data Exchange (ETDEWEB)

    Baudoin, F; Le Roy, S; Teyssedre, G; Laurent, C [University of Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Mills, D H; Lewin, P L, E-mail: fulbert.baudoin@laplace.univ-tlse.fr [University of Southampton, The Tony Davies High Voltage Laboratory (United Kingdom)

    2011-04-27

    A charge transport model allowing the description of electroluminescence in polyethylene films under ac stress is proposed. The fluid model incorporates bipolar charge injection/extraction, transport and recombination. The physics is based on hopping mobility of electronic carriers between traps with an exponential distribution in which trap filling controls the mobility. The computation mesh is very tight close to the electrodes, of the order of 0.4 nm, allowing mapping of the density of positive and negative carriers during sinusoidal, triangular and square 50 Hz voltage waveforms. Experiment and simulation fit nicely and the time dependence of the electroluminescence intensity is accounted for by the charge behaviour. Light emission scales with the injection current. It is shown that space charge affects a layer 10 nm away from the electrode where the mobility is increased as compared with the bulk mobility due to the high density of charge. The approach is very encouraging and opens the way to model space charge under time-varying voltages.

  9. Research on the support model of large equipment emergency spare parts under fuzzy demand

    Directory of Open Access Journals (Sweden)

    JianHua Yang

    2015-05-01

    Full Text Available Purpose: Aim at making a scheme for emergency spare parts the support problem when large equipment spare parts supply network faced with large-scale emergency events. Design/methodology/approach: In order to analyze the model, we establish the spare parts security model under network supply conditions to respond emergency in case of fuzzy demand. And in end of the paper, we adopt an improved genetic algorithms to solve the problem. Findings: Considering emergency spare parts support problem from three aspects including satisfaction of time, satisfaction of demand and emergency cost constraints, which makes decision-making process more accord with reality condition, we can get a more realistic solution for the decision makers. Originality/value: Considering the occurrence of emergency and adopting information entropy theory to order the weight of emergency maintenance station in priority sequence, this paper presented emergency response time and demand satisfaction function, which uses the time, demand satisfaction and the cost restrictor as main objective, we have constructed the spare parts support model under fuzzy demand to solve emergency events, having expanded the scope of solution.

  10. A Propagation Model for Subsurface and Through-Wall Imaging Applications under the Frequency Dispersion Perspective

    Directory of Open Access Journals (Sweden)

    Ana Vazquez Alejos

    2013-01-01

    Full Text Available The frequency-dependent behavior in subsurface and through-the-wall media is analyzed in this paper as well as the formation of the Brillouin precursor waveforms inherently related to this feature. The emergence of these forerunners is presented as a plausible form to explain classical impairments observed in imaging technologies. The evolution of mono- and multicycle rectangular and first derivative Gaussian pulses through two dispersive media—concrete blocks and soil—is analyzed using a frequency-domain technique and the Debye dielectric model to characterize the media, at operating frequencies below 3 GHz. The frequency-domain approach facilitated to check the influence of some parameters considered critical for the precursor emergence—operating frequency, input pulse configuration, and internal structure of the underlying medium—results in a versatile tool suitable for any kind of modulated input signal propagated through any dispersive medium. The internal multireflection model has been considered as the most suitable model to describe the transmission process underlying both subsurface and through-wall imaging technologies. Two different moisture contents have been considered for concrete as a parameter to determine the performance of through-wall imaging radar from the precursor formation perspective. The results reveal that precursor is a phenomenon to take into account for application demanding larger signal-to-noise ratios.

  11. Literature Survey of Copper Corrosion Modelling under Deep Geological Disposal Environment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui-Joo; Kook, Dong-Hak; Lee, Min-Soo; Choi, Heui-Joo

    2008-03-15

    As a one of the solution for the spent nuclear fuel problem, deep repository research have been under way in KAERI. To raise the resistance against repository cask corrosion, copper canister was adopted for the outer material of the cask. Duration of the repository with million year order makes the copper corrosion research under the repository environment very important and the corrosion modelling which could trace the real world precisely and predict the corrosion behavior very well is subsequently necessary. With in progress of plan to manufacture unique copper cask corresponding to our country repository system, survey for the preceding research papers in recent research direction and kernel points is expected to significant. This paper arranged the representative literatures for the important corrosion mechanism which are recently published.

  12. A Damaged Constitutive Model for Rock under Dynamic and High Stress State

    Directory of Open Access Journals (Sweden)

    Yan-Long Li

    2017-01-01

    Full Text Available The main research work of this paper focuses on the theoretical prediction of the constitutive relationship for rock, concrete, and other quasi-brittle materials under dynamic and complex stress state and the influence of dynamic mechanical behavior of rock on practical engineering problems was studied. A damaged elastoplastic model (DEPM is established for the investigation and prediction of static or dynamic mechanical behavior of rock material. The mechanical behavior (brittleness or plasticity and dynamic response (due to underground impact pressure and high-velocity impact of projectile of rock under high in situ stress were investigated via the DEPM combined with the explicit finite element method. This paper suggests the influence of the brittle or plastic mechanical behavior of rock material on deep underground rock engineering.

  13. Bayesian Inference for Step-Stress Partially Accelerated Competing Failure Model under Type II Progressive Censoring

    Directory of Open Access Journals (Sweden)

    Xiaolin Shi

    2016-01-01

    Full Text Available This paper deals with the Bayesian inference on step-stress partially accelerated life tests using Type II progressive censored data in the presence of competing failure causes. Suppose that the occurrence time of the failure cause follows Pareto distribution under use stress levels. Based on the tampered failure rate model, the objective Bayesian estimates, Bayesian estimates, and E-Bayesian estimates of the unknown parameters and acceleration factor are obtained under the squared loss function. To evaluate the performance of the obtained estimates, the average relative errors (AREs and mean squared errors (MSEs are calculated. In addition, the comparisons of the three estimates of unknown parameters and acceleration factor for different sample sizes and different progressive censoring schemes are conducted through Monte Carlo simulations.

  14. A Decision Optimization Model for Leased Manufacturing Equipment with Warranty under Forecasting Production/Maintenance Problem

    Directory of Open Access Journals (Sweden)

    Zied Hajej

    2015-01-01

    Full Text Available Due to the expensive production equipment, many manufacturers usually lease production equipment with a warranty period during a finite leasing horizon, rather than purchasing them. The lease contract contains the possibility of obtaining an extended warranty for a given additional cost. In this paper, based on the forecasting production/maintenance optimization problem, we develop a mathematical model to study the lease contract with basic and extended warranty based on win-win relationship between the lessee and the lessor. The influence of the production rates in the equipment degradation consequently on the total cost by each side during the finite leasing horizon is stated in order to determine a theoretical condition under which a compromise-pricing zone exists under different possibilities of maintenance policies.

  15. Pricing Exotic Options under a High-Order Markovian Regime Switching Model

    Directory of Open Access Journals (Sweden)

    Wai-Ki Ching

    2007-10-01

    Full Text Available We consider the pricing of exotic options when the price dynamics of the underlying risky asset are governed by a discrete-time Markovian regime-switching process driven by an observable, high-order Markov model (HOMM. We assume that the market interest rate, the drift, and the volatility of the underlying risky asset's return switch over time according to the states of the HOMM, which are interpreted as the states of an economy. We will then employ the well-known tool in actuarial science, namely, the Esscher transform to determine an equivalent martingale measure for option valuation. Moreover, we will also investigate the impact of the high-order effect of the states of the economy on the prices of some path-dependent exotic options, such as Asian options, lookback options, and barrier options.

  16. 3D modeling of continuous retreat of Thwaites Glacier, West Antarctica, under enhanced basal melting

    Science.gov (United States)

    Yu, H.; Rignot, E. J.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Thwaites Glacier (TG) is the broadest and second largest ice stream in West Antarctica. Satellite observations have revealed rapid grounding line retreat and mass loss of TG in the past few decades, which has been attributed to enhanced ocean heat advection in the Amundsen Sea Embayment. As TG is resting on a retrograde bed, it has the potential to rapidly collapse according to the marine ice sheet instability theory. Here, we use the UCI/JPL Ice Sheet System Model (ISSM) to simulate the grounding line migration and mass loss of TG for the next 100 years in response to enhanced basal melting. Three models with varying levels of complexity (full-Stokes, higher-order and shallow-shelf approximation) are used and basal melt rate under ice shelf is parameterized as a function of depth. We show that the grounding line of TG will retreat rapidly along the eastern side of the glacier at a speed of 500-1000 m/yr while it will remain relatively stable on the western side due to the presence of a subglacial ridge. TG will continue to lose mass at a rapid rate (50-100 Gt/yr). If the grounding line retreats over this subglacial ridge, the retreat will become unstoppable. We also show that the full-Stokes model exhibits a higher rate of retreat than other models ( 10%). The difference is more significant when the grounding line is on a subglacial ridge, when full-Stokes can retreat over the ridge decades ahead of other models.This work has been performed at UC Irvine and Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program

  17. Modeling Soil Sodicity Problems under Dryland and Irrigated Conditions: Case Studies in Argentina and Colombia

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2014-05-01

    Salt-affected soils, both saline and sodic, my develop both under dryland and irrigated conditions, affecting negatively the physical and chemical soil properties, the crop production and the animal and human health.Among the development processes of salt-affected soils, the processes of sodification have been generally received less attention and is less understood than the development of saline soils. Although in both of them, hydrological processes are involved in their development, in the case of sodic soils we have to consider some additional chemical and physicochemical reactions, making more difficult their modeling and prediction. In this contribution we present two case studies: one related to the development of sodic soils in the lowlands of the Argentina Pampas, under dryland conditions and sub-humid temperate climate, with pastures for cattle production; the other deals with the development of sodic soils in the Colombia Cauca Valley, under irrigated conditions and tropical sub-humid climate, in lands used for sugarcane cropping dedicated to sugar and ethanol production. In both cases the development of sodicity in the surface soil is mainly related to the effects of the composition and level of groundwater, affected in the case of Argentina Pampas by the off-site changes in dryland use and management in the upper zones and by the drainage conditions in the lowlands, and in the case of the Cauca Valley, by the on-site irrigation and drainage management in lands with sugarcane. There is shown how the model SALSODIMAR, developed by the main author, based on the balance of water and soluble componentes of both the irrigation water and groundwater under different water and land management conditions, may be adapted for the diagnosis and prediction of both problems, and for the selection of alternatives for their management and amelioration.

  18. A genetic-algorithm-aided stochastic optimization model for regional air quality management under uncertainty.

    Science.gov (United States)

    Qin, Xiaosheng; Huang, Guohe; Liu, Lei

    2010-01-01

    A genetic-algorithm-aided stochastic optimization (GASO) model was developed in this study for supporting regional air quality management under uncertainty. The model incorporated genetic algorithm (GA) and Monte Carlo simulation techniques into a general stochastic chance-constrained programming (CCP) framework and allowed uncertainties in simulation and optimization model parameters to be considered explicitly in the design of least-cost strategies. GA was used to seek the optimal solution of the management model by progressively evaluating the performances of individual solutions. Monte Carlo simulation was used to check the feasibility of each solution. A management problem in terms of regional air pollution control was studied to demonstrate the applicability of the proposed method. Results of the case study indicated the proposed model could effectively communicate uncertainties into the optimization process and generate solutions that contained a spectrum of potential air pollutant treatment options with risk and cost information. Decision alternatives could be obtained by analyzing tradeoffs between the overall pollutant treatment cost and the system-failure risk due to inherent uncertainties.

  19. A baseline-free procedure for transformation models under interval censorship.

    Science.gov (United States)

    Gu, Ming Gao; Sun, Liuquan; Zuo, Guoxin

    2005-12-01

    An important property of Cox regression model is that the estimation of regression parameters using the partial likelihood procedure does not depend on its baseline survival function. We call such a procedure baseline-free. Using marginal likelihood, we show that an baseline-free procedure can be derived for a class of general transformation models under interval censoring framework. The baseline-free procedure results a simplified and stable computation algorithm for some complicated and important semiparametric models, such as frailty models and heteroscedastic hazard/rank regression models, where the estimation procedures so far available involve estimation of the infinite dimensional baseline function. A detailed computational algorithm using Markov Chain Monte Carlo stochastic approximation is presented. The proposed procedure is demonstrated through extensive simulation studies, showing the validity of asymptotic consistency and normality. We also illustrate the procedure with a real data set from a study of breast cancer. A heuristic argument showing that the score function is a mean zero martingale is provided.

  20. Modal analysis of human body vibration model for Indian subjects under sitting posture.

    Science.gov (United States)

    Singh, Ishbir; Nigam, S P; Saran, V H

    2015-01-01

    Need and importance of modelling in human body vibration research studies are well established. The study of biodynamic responses of human beings can be classified into experimental and analytical methods. In the past few decades, plenty of mathematical models have been developed based on the diverse field measurements to describe the biodynamic responses of human beings. In this paper, a complete study on lumped parameter model derived from 50th percentile anthropometric data for a seated 54- kg Indian male subject without backrest support under free un-damped conditions has been carried out considering human body segments to be of ellipsoidal shape. Conventional lumped parameter modelling considers the human body as several rigid masses interconnected by springs and dampers. In this study, concept of mass of interconnecting springs has been incorporated and eigenvalues thus obtained are found to be closer to the values reported in the literature. Results obtained clearly establish decoupling of vertical and fore-and-aft oscillations. The mathematical modelling of human body vibration studies help in validating the experimental investigations for ride comfort of a sitting subject. This study clearly establishes the decoupling of vertical and fore-and-aft vibrations and helps in better understanding of possible human response to single and multi-axial excitations.

  1. A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez Montoya

    2018-03-01

    Full Text Available Photovoltaic (PV arrays can be connected following regular or irregular connection patterns to form regular configurations (e.g., series-parallel, total cross-tied, bridge-linked, etc. or irregular configurations, respectively. Several reported works propose models for a single configuration; hence, making the evaluation of arrays with different configuration is a considerable time-consuming task. Moreover, if the PV array adopts an irregular configuration, the classical models cannot be used for its analysis. This paper proposes a modeling procedure for PV arrays connected in any configuration and operating under uniform or partial shading conditions. The procedure divides the array into smaller arrays, named sub-arrays, which can be independently solved. The modeling procedure selects the mesh current solution or the node voltage solution depending on the topology of each sub-array. Therefore, the proposed approach analyzes the PV array using the least number of nonlinear equations. The proposed solution is validated through simulation and experimental results, which demonstrate the proposed model capacity to reproduce the electrical behavior of PV arrays connected in any configuration.

  2. Thermal conductivity model for powdered materials under vacuum based on experimental studies

    Directory of Open Access Journals (Sweden)

    N. Sakatani

    2017-01-01

    Full Text Available The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.

  3. A Mathematical Model and Its Application for Hydro Power Units under Different Operating Conditions

    Directory of Open Access Journals (Sweden)

    Weijia Yang

    2015-09-01

    Full Text Available This paper presents a mathematical model of hydro power units, especially the governor system model for different operating conditions, based on the basic version of the software TOPSYS. The mathematical model consists of eight turbine equations, one generator equation, and one governor equation, which are solved for ten unknown variables. The generator and governor equations, which are different under various operating conditions, are presented and discussed in detail. All the essential non-linear factors in the governor system (dead-zone, saturation, rate limiting, and backlash are also considered. Case studies are conducted based on one Swedish hydro power plant (HPP and three Chinese plants. The simulation and on-site measurements are compared for start-up, no-load operation, normal operation, and load rejection in different control modes (frequency, opening, and power feedback. The main error in each simulation is also discussed in detail. As a result, the model application is proved trustworthy for simulating different physical quantities of the unit (e.g., guide vane opening, active power, rotation speed, and pressures at volute and draft tube. The model has already been applied effectively in consultant analyses and scientific studies.

  4. Modelling of soil penetration resistance for an oxisol under no-tillage

    Directory of Open Access Journals (Sweden)

    João Tavares Filho

    2012-02-01

    Full Text Available Soil penetration resistance is an important property that affects root growth and elongation and water movement in the soil. Since no-till systems tend to increase organic matter in the soil, the purpose of this study was to evaluate the efficiency with which soil penetration resistance is estimated using a proposed model based on moisture content, density and organic matter content in an Oxisol containing 665, 221 and 114 g kg-1 of clay, silt and sand respectively under annual no-till cropping, located in Londrina, Paraná State, Brazil. Penetration resistance was evaluated at random locations continually from May 2008 to February 2011, using an impact penetrometer to obtain a total of 960 replications. For the measurements, soil was sampled at depths of 0 to 20 cm to determine gravimetric moisture (G, bulk density (D and organic matter content (M. The penetration resistance curve (PR was adjusted using two non-linear models (PR = a Db Gc and PR' = a Db Gc Md, where a, b, c and d are coefficients of the adjusted model. It was found that the model that included M was the most efficient for estimating PR, explaining 91 % of PR variability, compared to 82 % of the other model.

  5. Modeling and simulation of wetted porous thermal barriers operating under high temperature or high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Costa, V.A.F. [Departamento de Engenharia Mecanica, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Mendonca, M.L. [Escola Superior de Tecnologia e Gestao de Agueda, Universidade de Aveiro, Zona Industrial da Alagoa, Apartado 473, 3754-909 Agueda (Portugal); Figueiredo, A.R. [Departamento de Engenharia Mecanica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-201 Coimbra (Portugal)

    2008-07-01

    Porous media with high water content can be successfully used as thermal barriers to operate under high exposure temperatures and/or high heat fluxes. Modeling and simulation of such systems presents difficulties and challenges, which are pointed and worked out in this work. Liquid water and water vapor transfers are considered, including the capillary effects for the liquid phase, as well as the air transfer inside the porous medium. Heat transfer model includes conduction, radiation, enthalpy convection, sensible heating and phase change. A realistic model is considered at the exposed boundary in what concerns mass transfer: the outflow mass transfer is dictated by the water effusion and not by the convection transfer mechanism between the exposed surface and the environment. A set of numerical aspects is detailed, concerning both the numerical modeling and the solution of the discretization equations, which are crucial to obtain successful simulations. Some illustrative results are presented, showing the potential of the wetted porous media when used as thermal barriers, as well as the capabilities of the presented physical and numerical models to deal with such systems. (author)

  6. Constitutive behavior modeling of steels under hot-rolling conditions. Materials reliability series

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.W.; Tobler, R.L.; Filla, B.J.; Coakley, K.J.

    1999-04-01

    The purpose of this work is to develop constitutive equations that predict the stress-strain curves of steels as functions of hot-rolling process variables, such as temperature, strain rate, and microstructural features. Eight steels, A36, DQSK, HSLA-V, HSLA-Nb, HSLA-50/Ti-Nb, HSLA-80/Ti-Nb and two interstitial-free (IF) grades, were selectively tested at temperatures in the range from 900 to 1200 degrees C, strain rates from 1 to 50/s, and austenite grain sizes from 0.012 to 0.29 mm. The data were analyzed to support the development of constitutive models. Models for predicting stress-strain behaviors for the eight steel grades have been developed. Model predictions correlate well with the experimental data, indicating that the models adequately describe the stress-strain behaviors of various steel grades under hot-rolling conditions. Model predictions for A36 and DQSK are further validated with high strain-rate (up to 150/s) data obtained at CANMET.

  7. Models for ductile crack initiation and tearing resistance under mode 1 loading in pressure vessel steels

    International Nuclear Information System (INIS)

    Jones, M.R.

    1988-06-01

    Micromechanistic models are presented which aim to predict plane strain ductile initiation toughness, tearing resistance and notched bar fracture strains in pressure vessel steels under monotonically increasing tensile (mode 1) loading. The models for initiation toughness and tearing resistance recognize that ductile fracture proceeds by the growth and linkage of voids with the crack-tip. The models are shown to predict the trend of initiation toughness with inclusion spacing/size ratio and can bound the available experimental data. The model for crack growth can reproduce the tearing resistance of a pressure vessel steel up to and just beyond crack growth initiation. The fracture strains of notched bars pulled in tension are shown to correspond to the achievement of a critical volume fraction of voids. This criterion is combined with the true stress - true strain history of a material point ahead of a blunting crack-tip to predict the initiation toughness. An attempt was made to predict the fracture strains of notched tensile bars by adopting a model which predicts the onset of a shear localization phenomenon. Fracture strains of the correct order are computed only if a ''secondary'' void nucleation event at carbide precipitates is taken into account. (author)

  8. Models of psychological service provision under Australia's Better Outcomes in Mental Health Care program.

    Science.gov (United States)

    Pirkis, Jane; Burgess, Philip; Kohn, Fay; Morley, Belinda; Blashki, Grant; Naccarella, Lucio

    2006-08-01

    The Access to Allied Psychological Services component of Australia's Better Outcomes in Mental Health Care program enables eligible general practitioners to refer consumers to allied health professionals for affordable, evidence-based mental health care, via 108 projects conducted by Divisions of General Practice. The current study profiled the models of service delivery across these projects, and examined whether particular models were associated with differential levels of access to services. We found: 76% of projects were retaining their allied health professionals under contract, 28% via direct employment, and 7% some other way; Allied health professionals were providing services from GPs' rooms in 63% of projects, from their own rooms in 63%, from a third location in 42%; and The referral mechanism of choice was direct referral in 51% of projects, a voucher system in 27%, a brokerage system in 24%, and a register system in 25%. Many of these models were being used in combination. No model was predictive of differential levels of access, suggesting that the approach of adapting models to the local context is proving successful.

  9. Comparison of Two Mechanistic Microbial Growth Models to Estimate Shelf Life of Perishable Food Package under Dynamic Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Dong Sun Lee

    2014-01-01

    Full Text Available Two mechanistic microbial growth models (Huang’s model and model of Baranyi and Roberts given in differential and integrated equation forms were compared in predicting the microbial growth and shelf life under dynamic temperature storage and distribution conditions. Literatures consistently reporting the microbial growth data under constant and changing temperature conditions were selected to obtain the primary model parameters, set up the secondary models, and apply them to predict the microbial growth and shelf life under fluctuating temperatures. When evaluated by general estimation behavior, bias factor, accuracy factor, and root-mean-square error, Huang’s model was comparable to Baranyi and Roberts’ model in the capability to estimate microbial growth under dynamic temperature conditions. Its simple form of single differential equation incorporating directly the growth rate and lag time may work as an advantage to be used in online shelf life estimation by using the electronic device.

  10. Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate

    Science.gov (United States)

    Mullan, Donal; Vandaele, Karel; Boardman, John; Meneely, John; Crossley, Laura H.

    2016-10-01

    Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.

  11. An Individual-Based Diploid Model Predicts Limited Conditions Under Which Stochastic Gene Expression Becomes Advantageous

    KAUST Repository

    Matsumoto, Tomotaka

    2015-11-24

    Recent studies suggest the existence of a stochasticity in gene expression (SGE) in many organisms, and its non-negligible effect on their phenotype and fitness. To date, however, how SGE affects the key parameters of population genetics are not well understood. SGE can increase the phenotypic variation and act as a load for individuals, if they are at the adaptive optimum in a stable environment. On the other hand, part of the phenotypic variation caused by SGE might become advantageous if individuals at the adaptive optimum become genetically less-adaptive, for example due to an environmental change. Furthermore, SGE of unimportant genes might have little or no fitness consequences. Thus, SGE can be advantageous, disadvantageous, or selectively neutral depending on its context. In addition, there might be a genetic basis that regulates magnitude of SGE, which is often referred to as “modifier genes,” but little is known about the conditions under which such an SGE-modifier gene evolves. In the present study, we conducted individual-based computer simulations to examine these conditions in a diploid model. In the simulations, we considered a single locus that determines organismal fitness for simplicity, and that SGE on the locus creates fitness variation in a stochastic manner. We also considered another locus that modifies the magnitude of SGE. Our results suggested that SGE was always deleterious in stable environments and increased the fixation probability of deleterious mutations in this model. Even under frequently changing environmental conditions, only very strong natural selection made SGE adaptive. These results suggest that the evolution of SGE-modifier genes requires strict balance among the strength of natural selection, magnitude of SGE, and frequency of environmental changes. However, the degree of dominance affected the condition under which SGE becomes advantageous, indicating a better opportunity for the evolution of SGE in different genetic

  12. Model-free tests of equality in binary data under an incomplete block design.

    Science.gov (United States)

    Lui, Kung-Jong; Zhu, Lixia

    2018-02-16

    Using Prescott's model-free approach, we develop an asymptotic procedure and an exact procedure for testing equality between treatments with binary responses under an incomplete block crossover design. We employ Monte Carlo simulation and note that these test procedures can not only perform well in small-sample cases but also outperform the corresponding test procedures accounting for only patients with discordant responses published elsewhere. We use the data taken as a part of the crossover trial comparing two different doses of an analgesic with placebo for the relief of primary dysmenorrhea to illustrate the use of test procedures discussed here.

  13. Procurement-distribution model for perishable items with quantity discounts incorporating freight policies under fuzzy environment

    Directory of Open Access Journals (Sweden)

    Makkar Sandhya

    2013-01-01

    Full Text Available A significant issue of the supply chain problem is how to integrate different entities. Managing supply chain is a difficult task because of complex integrations, especially when the products are perishable in nature. Little attention has been paid on ordering specific perishable products jointly in uncertain environment with multiple sources and multiple destinations. In this article, we propose a supply chain coordination model through quantity and freight discount policy for perishable products under uncertain cost and demand information. A case is provided to validate the procedure.

  14. Modelling of the diffusion of pollutants in the atmosphere under varying conditions in large cultivated regions

    International Nuclear Information System (INIS)

    Wueneke, C.D.; Schultz, H.

    1975-01-01

    The most important routines of a numerical code based on the particle-in-cell-method for calculating the transport and the turbulent dispersion of inert and radio-active pollutants in the atmosphere have been programmed and have been tested successfully on the CDC computer CYBER 73/76 of the Regional Computer Centre for Niedersachsen in Hanover. Compared to the Gaussian plume model such a numerical code based on the particle-in-cell-method offers several advantages for the computation of the diffusion under varying conditions in large cultivated regions. (orig.) [de

  15. A novel modeling approach for job shop scheduling problem under uncertainty

    Directory of Open Access Journals (Sweden)

    Behnam Beheshti Pur

    2013-11-01

    Full Text Available When aiming on improving efficiency and reducing cost in manufacturing environments, production scheduling can play an important role. Although a common workshop is full of uncertainties, when using mathematical programs researchers have mainly focused on deterministic problems. After briefly reviewing and discussing popular modeling approaches in the field of stochastic programming, this paper proposes a new approach based on utility theory for a certain range of problems and under some practical assumptions. Expected utility programming, as the proposed approach, will be compared with the other well-known methods and its meaningfulness and usefulness will be illustrated via a numerical examples and a real case.

  16. A model for the inverse 1-median problem on trees under uncertain costs

    Directory of Open Access Journals (Sweden)

    Kien Trung Nguyen

    2016-01-01

    Full Text Available We consider the problem of justifying vertex weights of a tree under uncertain costs so that a prespecified vertex become optimal and the total cost should be optimal in the uncertainty scenario. We propose a model which delivers the information about the optimal cost which respect to each confidence level \\(\\alpha \\in [0,1]\\. To obtain this goal, we first define an uncertain variable with respect to the minimum cost in each confidence level. If all costs are independently linear distributed, we present the inverse distribution function of this uncertain variable in \\(O(n^{2}\\log n\\ time, where \\(n\\ is the number of vertices in the tree.

  17. Inference Under a Wright-Fisher Model Using an Accurate Beta Approximation

    DEFF Research Database (Denmark)

    Tataru, Paula; Bataillon, Thomas; Hobolth, Asger

    2015-01-01

    frequencies and the influence of evolutionary pressures, such as mutation and selection. Despite its simple mathematical formulation, exact results for the distribution of allele frequency (DAF) as a function of time are not available in closed analytic form. Existing approximations build...... on the computationally intensive diffusion limit, or rely on matching moments of the DAF. One of the moment-based approximations relies on the beta distribution, which can accurately describe the DAF when the allele frequency is not close to the boundaries (zero and one). Nonetheless, under a Wright-Fisher model...

  18. Unravelling the noise: the discrimination of wave function collapse models under time-continuous measurements

    Science.gov (United States)

    Genoni, Marco G.; Duarte, O. S.; Serafini, Alessio

    2016-10-01

    Inspired by the notion that environmental noise is in principle observable, while fundamental noise due to spontaneous localization would not be, we study the estimation of the diffusion parameter induced by wave function collapse models under continuous monitoring of the environment. We take into account finite measurement efficiencies and, in order to quantify the advantage granted by monitoring, we analyse the quantum Fisher information associated with such a diffusion parameter, identify optimal measurements in limiting cases, and assess the performance of such measurements in more realistic conditions.

  19. A material optimization model to approximate energy bounds for cellular materials under multiload conditions

    DEFF Research Database (Denmark)

    Guedes, J.M.; Rodrigues, H.C.; Bendsøe, Martin P.

    2003-01-01

    This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal...... bounds within this class of composites. A comparison of the computational results with the globally optimal bounds given via rank-N layered composites illustrates the behaviour for tension and shear load situations, as well as the importance of considering the shape of the basic unit cell as part...

  20. Time-constrained mother and expanding market: emerging model of under-nutrition in India

    Directory of Open Access Journals (Sweden)

    S. Chaturvedi

    2016-07-01

    Full Text Available Abstract Background Persistent high levels of under-nutrition in India despite economic growth continue to challenge political leadership and policy makers at the highest level. The present inductive enquiry was conducted to map the perceptions of mothers and other key stakeholders, to identify emerging drivers of childhood under-nutrition. Methods We conducted a multi-centric qualitative investigation in six empowered action group states of India. The study sample included 509 in-depth interviews with mothers of undernourished and normal nourished children, policy makers, district level managers, implementer and facilitators. Sixty six focus group discussions and 72 non-formal interactions were conducted in two rounds with primary caretakers of undernourished children, Anganwadi Workers and Auxiliary Nurse Midwives. Results Based on the perceptions of the mothers and other key stakeholders, a model evolved inductively showing core themes as drivers of under-nutrition. The most forceful emerging themes were: multitasking, time constrained mother with dwindling family support; fragile food security or seasonal food paucity; child targeted market with wide availability and consumption of ready-to-eat market food items; rising non-food expenditure, in the context of rising food prices; inadequate and inappropriate feeding; delayed recognition of under-nutrition and delayed care seeking; and inadequate responsiveness of health care system and Integrated Child Development Services (ICDS. The study emphasized that the persistence of child malnutrition in India is also tied closely to the high workload and consequent time constraint of mothers who are increasingly pursuing income generating activities and enrolled in paid labour force, without robust institutional support for childcare. Conclusion The emerging framework needs to be further tested through mixed and multiple method research approaches to quantify the contribution of time limitation of

  1. Time-constrained mother and expanding market: emerging model of under-nutrition in India.

    Science.gov (United States)

    Chaturvedi, S; Ramji, S; Arora, N K; Rewal, S; Dasgupta, R; Deshmukh, V

    2016-07-25

    Persistent high levels of under-nutrition in India despite economic growth continue to challenge political leadership and policy makers at the highest level. The present inductive enquiry was conducted to map the perceptions of mothers and other key stakeholders, to identify emerging drivers of childhood under-nutrition. We conducted a multi-centric qualitative investigation in six empowered action group states of India. The study sample included 509 in-depth interviews with mothers of undernourished and normal nourished children, policy makers, district level managers, implementer and facilitators. Sixty six focus group discussions and 72 non-formal interactions were conducted in two rounds with primary caretakers of undernourished children, Anganwadi Workers and Auxiliary Nurse Midwives. Based on the perceptions of the mothers and other key stakeholders, a model evolved inductively showing core themes as drivers of under-nutrition. The most forceful emerging themes were: multitasking, time constrained mother with dwindling family support; fragile food security or seasonal food paucity; child targeted market with wide availability and consumption of ready-to-eat market food items; rising non-food expenditure, in the context of rising food prices; inadequate and inappropriate feeding; delayed recognition of under-nutrition and delayed care seeking; and inadequate responsiveness of health care system and Integrated Child Development Services (ICDS). The study emphasized that the persistence of child malnutrition in India is also tied closely to the high workload and consequent time constraint of mothers who are increasingly pursuing income generating activities and enrolled in paid labour force, without robust institutional support for childcare. The emerging framework needs to be further tested through mixed and multiple method research approaches to quantify the contribution of time limitation of the mother on the current burden of child under-nutrition.

  2. An innovative wheel–rail contact model for railway vehicles under degraded adhesion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meli, E., E-mail: enrico.meli@unifi.it; Ridolfi, A., E-mail: a.ridolfi@unifi.it [University of Florence, Department of Industrial Engineering (Italy)

    2015-03-15

    The accurate modelling of the wheel–rail contact plays a fundamental role in the railway field since the contact forces heavily affect the vehicle dynamics, the wear of the contact surfaces and the vehicle safety. Concerning the wheel–rail contact, an important open problem is represented by the degraded adhesion. A realistic adhesion model is quite difficult to obtain because of the complex and highly non-linear behaviour of the adhesion coefficient and the presence of external unknown contaminants (the third body); this is especially true when degraded adhesion and large sliding between the wheel and rail contact surfaces occur.In this work the authors present an adhesion model particularly developed to describe degraded adhesion conditions. The new approach will have to be suitable to be employed within the wheel–rail contact models typical of the multibody applications. In other words, the contact model, comprising the new adhesion model, will have to guarantee a good accuracy and, at the same time, a high numerical efficiency to be implemented directly online inside the general multibody model of the vehicles (e.g. in Matlab-Simulink or Simpack environments) ( www.mathworks.com http://www.mathworks.com , 2012; www.simpack.com http://www.simpack.com , 2012).The model analysed in the paper is based on some of the main phenomena characterising the degraded adhesion, such as large sliding at the contact interface, high energy dissipation, the consequent cleaning effect on the contact surfaces and the final adhesion recovery due to the removal of external unknown contaminants.The adhesion model has been validated because of the experimental data provided by Trenitalia S.p.A. coming from on-track tests performed in Velim (Czech Republic). The tests have been carried out on a straight railway track under degraded adhesion conditions with the railway vehicle UIC-Z1 equipped with a fully-working Wheel Slide Protection (WSP) system.The validation highlighted the

  3. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    Science.gov (United States)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  4. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan.

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Joyner

    Full Text Available Anthrax, caused by the bacterium Bacillus anthracis, is a zoonotic disease that persists throughout much of the world in livestock, wildlife, and secondarily infects humans. This is true across much of Central Asia, and particularly the Steppe region, including Kazakhstan. This study employed the Genetic Algorithm for Rule-set Prediction (GARP to model the current and future geographic distribution of Bacillus anthracis in Kazakhstan based on the A2 and B2 IPCC SRES climate change scenarios using a 5-variable data set at 55 km(2 and 8 km(2 and a 6-variable BioClim data set at 8 km(2. Future models suggest large areas predicted under current conditions may be reduced by 2050 with the A2 model predicting approximately 14-16% loss across the three spatial resolutions. There was greater variability in the B2 models across scenarios predicting approximately 15% loss at 55 km(2, approximately 34% loss at 8 km(2, and approximately 30% loss with the BioClim variables. Only very small areas of habitat expansion into new areas were predicted by either A2 or B2 in any models. Greater areas of habitat loss are predicted in the southern regions of Kazakhstan by A2 and B2 models, while moderate habitat loss is also predicted in the northern regions by either B2 model at 8 km(2. Anthrax disease control relies mainly on livestock vaccination and proper carcass disposal, both of which require adequate surveillance. In many situations, including that of Kazakhstan, vaccine resources are limited, and understanding the geographic distribution of the organism, in tandem with current data on livestock population dynamics, can aid in properly allocating doses. While speculative, contemplating future changes in livestock distributions and B. anthracis spore promoting environments can be useful for establishing future surveillance priorities. This study may also have broader applications to global public health surveillance relating to other diseases in addition to B

  5. Fission product release model for failed plate-type fuel element and storage under water

    International Nuclear Information System (INIS)

    Terremoto, L.A.A.; Zeituni, C.A.; Silva, J.E.R. da; Castanheira, M.; Lucki, G.; Silva, A.T. e; Teodoro, C.A.; Damy, M. de A.

    2005-01-01

    Plate-type fuel elements burned-up inside the core of nuclear research reactors are stored mainly under deionized water of storage pools. When cladding failure occurs in such elements, radioactive fission products are released into the storage pool water. This work proposes a model to describe the release mechanism considering the diffusion through a postulated small cylindrical failure. As a consequence, an analytical expression is obtained for the activity released into the water as a function of the total storage time of a failed fuel plate. The proposed model reproduces the linear increasing of 137 Cs specific activity observed in sipping tests already performed on failed plate-type fuel elements. (author)

  6. A model for release of fission products from a breached fuel plate under wet storage

    International Nuclear Information System (INIS)

    Terremoto, L.A.A.; Seerban, R.S.; Zeituni, C.A.; Silva, J.E.R. da; Silva, A.T. e; Castanheira, M.; Lucki, G.; Damy, M. de A.; Teodoro, C.A.

    2007-01-01

    MTR fuel elements burned-up inside the core of nuclear research reactors are stored worldwide mainly under the water of storage pools. When cladding breach is present in one or more fuel plates of such elements, radioactive fission products are released into the storage pool water. This work proposes a model to describe the release mechanism considering the diffusion of nuclides of a radioactive fission product either through a postulated small cylindrical breach or directly from a large circular hole in the cladding. In each case, an analytical expression is obtained for the activity released into the water as a function of the total storage time of a breached fuel plate. Regarding sipping tests already performed at the IEA-R1 research reactor on breached MTR fuel elements, the proposed model correlates successfully the specific activity of 137 Cs, measured as a function of time, with the evaluated size of the cladding breach. (author)

  7. A model for release of fission products from a breached fuel plate under wet storage

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, L.A.A.; Seerban, R.S.; Zeituni, C.A.; Silva, J.E.R. da; Silva, A.T. e; Castanheira, M.; Lucki, G.; Damy, M. de A.; Teodoro, C.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: laaterre@ipen.br

    2007-07-01

    MTR fuel elements burned-up inside the core of nuclear research reactors are stored worldwide mainly under the water of storage pools. When cladding breach is present in one or more fuel plates of such elements, radioactive fission products are released into the storage pool water. This work proposes a model to describe the release mechanism considering the diffusion of nuclides of a radioactive fission product either through a postulated small cylindrical breach or directly from a large circular hole in the cladding. In each case, an analytical expression is obtained for the activity released into the water as a function of the total storage time of a breached fuel plate. Regarding sipping tests already performed at the IEA-R1 research reactor on breached MTR fuel elements, the proposed model correlates successfully the specific activity of {sup 137}Cs, measured as a function of time, with the evaluated size of the cladding breach. (author)

  8. Recursive Subspace Identification of AUV Dynamic Model under General Noise Assumption

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2014-01-01

    Full Text Available A recursive subspace identification algorithm for autonomous underwater vehicles (AUVs is proposed in this paper. Due to the advantages at handling nonlinearities and couplings, the AUV model investigated here is for the first time constructed as a Hammerstein model with nonlinear feedback in the linear part. To better take the environment and sensor noises into consideration, the identification problem is concerned as an errors-in-variables (EIV one which means that the identification procedure is under general noise assumption. In order to make the algorithm recursively, propagator method (PM based subspace approach is extended into EIV framework to form the recursive identification method called PM-EIV algorithm. With several identification experiments carried out by the AUV simulation platform, the proposed algorithm demonstrates its effectiveness and feasibility.

  9. Inference Under a Wright-Fisher Model Using an Accurate Beta Approximation

    DEFF Research Database (Denmark)

    Tataru, Paula; Bataillon, Thomas; Hobolth, Asger

    2015-01-01

    on the computationally intensive diffusion limit, or rely on matching moments of the DAF. One of the moment-based approximations relies on the beta distribution, which can accurately describe the DAF when the allele frequency is not close to the boundaries (zero and one). Nonetheless, under a Wright-Fisher model......, the probability of being on the boundary can be positive, corresponding to the allele being either lost or fixed. Here, we introduce the beta with spikes, an extension of the beta approximation, which explicitly models the loss and fixation probabilities as two spikes at the boundaries. We show that the addition...... of spikes greatly improves the quality of the approximation. We additionally illustrate, using both simulated and real data, how the beta with spikes can be used for inference of divergence times between populations, with comparable performance to an existing state-of-the-art method....

  10. Particle Tracking Model for Suspended Sediment Transport and Streambed Clogging Under Losing and Gaining Conditions

    Science.gov (United States)

    Preziosi-Ribero, A.; Fox, A.; Packman, A. I.; Escobar-Vargas, J.; Donado-Garzon, L. D.; Li, A.; Arnon, S.

    2017-12-01

    Exchange of mass, momentum and energy between surface water and groundwater is a driving factor for the biology, ecology and chemistry of rivers and water bodies in general. Nonetheless, this exchange is dominated by different factors like topography, bed morphology, and large-scale hydraulic gradient. In the particular case of fine sediments like clay, conservative tracer modeling is impossible because they are trapped in river beds for long periods, thus the normal advection dispersion approach leads to errors and results do not agree with reality. This study proposes a numerical particle tracking model that represents the behavior of kaolinite in a sand flume, and how its deposition varies according to different flow conditions, namely losing and gaining flow. Since fine particles do not behave like solutes, kaolinite dynamics are represented using settling velocity and a filtration coefficient allowing the particles to be trapped in the bed. This approach allows us to use measurable parameters directly related with the fine particle features as size and shape, and hydraulic parameters. Results are then compared with experimental results from lab experiments obtained in a recirculating flume, in order to assess the impact of losing and gaining conditions on sediment transport and deposition. Furthermore, our model is able to identify the zones where kaolinite deposition concentrates over the flume due to the bed geometry, and later relate these results with clogging of the bed and hence changes in the bed's hydraulic conductivity. Our results suggest that kaolinite deposition is higher under losing conditions since the vertical velocity of the flow is added to the deposition velocity of the particles modeled. Moreover, the zones where kaolinite concentrates varies under different flow conditions due to the difference in pressure and velocity in the river bed.

  11. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study

    Directory of Open Access Journals (Sweden)

    Soha Saleh

    2017-01-01

    Full Text Available Mirror visual feedback (MVF is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical or opposite (mirror hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with

  12. A quantitative quasispecies theory-based model of virus escape mutation under immune selection.

    Science.gov (United States)

    Woo, Hyung-June; Reifman, Jaques

    2012-08-07

    Viral infections involve a complex interplay of the immune response and escape mutation of the virus quasispecies inside a single host. Although fundamental aspects of such a balance of mutation and selection pressure have been established by the quasispecies theory decades ago, its implications have largely remained qualitative. Here, we present a quantitative approach to model the virus evolution under cytotoxic T-lymphocyte immune response. The virus quasispecies dynamics are explicitly represented by mutations in the combined sequence space of a set of epitopes within the viral genome. We stochastically simulated the growth of a viral population originating from a single wild-type founder virus and its recognition and clearance by the immune response, as well as the expansion of its genetic diversity. Applied to the immune escape of a simian immunodeficiency virus epitope, model predictions were quantitatively comparable to the experimental data. Within the model parameter space, we found two qualitatively different regimes of infectious disease pathogenesis, each representing alternative fates of the immune response: It can clear the infection in finite time or eventually be overwhelmed by viral growth and escape mutation. The latter regime exhibits the characteristic disease progression pattern of human immunodeficiency virus, while the former is bounded by maximum mutation rates that can be suppressed by the immune response. Our results demonstrate that, by explicitly representing epitope mutations and thus providing a genotype-phenotype map, the quasispecies theory can form the basis of a detailed sequence-specific model of real-world viral pathogens evolving under immune selection.

  13. Human-robot collision detection under modeling uncertainty using frequency boundary of manipulator dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Byung Jin; Koo, Ja Choon; Choi, Hyouk Ryeol; Moon, Hyung Pil [Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-11-15

    This paper presents the development and experimental evaluation of a collision detection method for robotic manipulators sharing a workspace with humans. Fast and robust collision detection is important for guaranteeing safety and preventing false alarms. The main cause of a false alarm is modeling error. We use the characteristic of the maximum frequency boundary of the manipulator's dynamic model. The tendency of the frequency boundary's location in the frequency domain is applied to the collision detection algorithm using a band pass filter (band designed disturbance observer, BdDOB) with changing frequency windows. Thanks to the band pass filter, which considers the frequency boundary of the dynamic model, our collision detection algorithm can extract the collision caused by the disturbance from the mixed estimation signal. As a result, the collision was successfully detected under the usage conditions of faulty sensors and uncertain model data. The experimental result of a collision between a 7-DOF serial manipulator and a human body is reported.

  14. A nonlinear efficient layerwise finite element model for smart piezolaminated composites under strong applied electric field

    International Nuclear Information System (INIS)

    Kapuria, S; Yaqoob Yasin, M

    2013-01-01

    In this work, we present an electromechanically coupled efficient layerwise finite element model for the static response of piezoelectric laminated composite and sandwich plates, considering the nonlinear behavior of piezoelectric materials under strong electric field. The nonlinear model is developed consistently using a variational principle, considering a rotationally invariant second order nonlinear constitutive relationship, and full electromechanical coupling. In the piezoelectric layer, the electric potential is approximated to have a quadratic variation across the thickness, as observed from exact three dimensional solutions, and the equipotential condition of electroded piezoelectric surfaces is modeled using the novel concept of an electric node. The results predicted by the nonlinear model compare very well with the experimental data available in the literature. The effect of the piezoelectric nonlinearity on the static response and deflection/stress control is studied for piezoelectric bimorph as well as hybrid laminated plates with isotropic, angle-ply composite and sandwich substrates. For high electric fields, the difference between the nonlinear and linear predictions is large, and cannot be neglected. The error in the prediction of the smeared counterpart of the present theory with the same number of primary displacement unknowns is also examined. (paper)

  15. Numerical models of delamination behavior in 2G HTS tapes under transverse tension and peel

    Science.gov (United States)

    Duan, Yujie; Ta, Wurui; Gao, Yuanwen

    2018-02-01

    In extreme operating environments, delamination in 2G HTS tapes occurs within and/or near the superconductor layer from high transverse tensile stresses caused by fabrication, Lorentz forces and thermal mismatch, etc. Generally, transverse opening and peeling off are the main delamination modes, and are always studied in anvil and peel tests, respectively. Numerical models of these modes for 2G HTS tape are presented wherein the mixed-mode traction-separation law at the interface of the silver and superconductor layers is considered. Plastic deformations of copper, silver, and Hastelloy® in the HTS tape are taken into account. The results obtained from the transverse opening model show that the maximum average tensile stress is smaller than the delamination tensile strength because delamination is asynchronous in the tape. When a crack appears in the tape, only a small stress ( ≤ 1 MPa) is required to expand the crack to other stress free areas through peeling. Using the peeling model, the dependency of the peel strength on peeling angle is investigated under constant fracture toughness. Peel strength decreases with the peeling angle until the minimum value is reached at 150°, and thereafter increases slightly. Other results indicate that peel strength depends strongly on delamination strength, fracture toughness, and thickness of copper layer. The fracture toughness of the delamination interface, which is difficult to obtain by experiment, can be extracted using the present model.

  16. A mixture model for robust point matching under multi-layer motion.

    Directory of Open Access Journals (Sweden)

    Jiayi Ma

    Full Text Available This paper proposes an efficient mixture model for establishing robust point correspondences between two sets of points under multi-layer motion. Our algorithm starts by creating a set of putative correspondences which can contain a number of false correspondences, or outliers, in addition to the true correspondences (inliers. Next we solve for correspondence by interpolating a set of spatial transformations on the putative correspondence set based on a mixture model, which involves estimating a consensus of inlier points whose matching follows a non-parametric geometrical constraint. We formulate this as a maximum a posteriori (MAP estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS. MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation. We further provide a fast implementation based on sparse approximation which can achieve a significant speed-up without much performance degradation. We illustrate the proposed method on 2D and 3D real images for sparse feature correspondence, as well as a public available dataset for shape matching. The quantitative results demonstrate that our method is robust to non-rigid deformation and multi-layer/large discontinuous motion.

  17. Multi-Model Projections of River Flood Risk in Europe under Global Warming

    Directory of Open Access Journals (Sweden)

    Lorenzo Alfieri

    2018-01-01

    Full Text Available Knowledge on the costs of natural disasters under climate change is key information for planning adaptation and mitigation strategies of future climate policies. Impact models for large scale flood risk assessment have made leaps forward in the past few years, thanks to the increased availability of high resolution climate projections and of information on local exposure and vulnerability to river floods. Yet, state-of-the-art flood impact models rely on a number of input data and techniques that can substantially influence their results. This work compares estimates of river flood risk in Europe from three recent case studies, assuming global warming scenarios of 1.5, 2, and 3 degrees Celsius from pre-industrial levels. The assessment is based on comparing ensemble projections of expected damage and population affected at country level. Differences and common points between the three cases are shown, to point out main sources of uncertainty, strengths, and limitations. In addition, the multi-model comparison helps identify regions with the largest agreement on specific changes in flood risk. Results show that global warming is linked to substantial increase in flood risk over most countries in Central and Western Europe at all warming levels. In Eastern Europe, the average change in flood risk is smaller and the multi-model agreement is poorer.

  18. An Agent-Based Model of School Closing in Under-Vacccinated Communities During Measles Outbreaks.

    Science.gov (United States)

    Getz, Wayne M; Carlson, Colin; Dougherty, Eric; Porco Francis, Travis C; Salter, Richard

    2016-04-01

    The winter 2014-15 measles outbreak in the US represents a significant crisis in the emergence of a functionally extirpated pathogen. Conclusively linking this outbreak to decreases in the measles/mumps/rubella (MMR) vaccination rate (driven by anti-vaccine sentiment) is critical to motivating MMR vaccination. We used the NOVA modeling platform to build a stochastic, spatially-structured, individual-based SEIR model of outbreaks, under the assumption that R 0 ≈ 7 for measles. We show this implies that herd immunity requires vaccination coverage of greater than approximately 85%. We used a network structured version of our NOVA model that involved two communities, one at the relatively low coverage of 85% coverage and one at the higher coverage of 95%, both of which had 400-student schools embedded, as well as students occasionally visiting superspreading sites (e.g. high-density theme parks, cinemas, etc.). These two vaccination coverage levels are within the range of values occurring across California counties. Transmission rates at schools and superspreading sites were arbitrarily set to respectively 5 and 15 times background community rates. Simulations of our model demonstrate that a 'send unvaccinated students home' policy in low coverage counties is extremely effective at shutting down outbreaks of measles.

  19. Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model

    International Nuclear Information System (INIS)

    Edwards, Darrin C.; Kupinski, Matthew A.; Metz, Charles E.; Nishikawa, Robert M.

    2002-01-01

    We have developed a model for FROC curve fitting that relates the observer's FROC performance not to the ROC performance that would be obtained if the observer's responses were scored on a per image basis, but rather to a hypothesized ROC performance that the observer would obtain in the task of classifying a set of 'candidate detections' as positive or negative. We adopt the assumptions of the Bunch FROC model, namely that the observer's detections are all mutually independent, as well as assumptions qualitatively similar to, but different in nature from, those made by Chakraborty in his AFROC scoring methodology. Under the assumptions of our model, we show that the observer's FROC performance is a linearly scaled version of the candidate analysis ROC curve, where the scaling factors are just given by the FROC operating point coordinates for detecting initial candidates. Further, we show that the likelihood function of the model parameters given observational data takes on a simple form, and we develop a maximum likelihood method for fitting a FROC curve to this data. FROC and AFROC curves are produced for computer vision observer datasets and compared with the results of the AFROC scoring method. Although developed primarily with computer vision schemes in mind, we hope that the methodology presented here will prove worthy of further study in other applications as well

  20. Reward optimization in the primate brain: a probabilistic model of decision making under uncertainty.

    Directory of Open Access Journals (Sweden)

    Yanping Huang

    Full Text Available A key problem in neuroscience is understanding how the brain makes decisions under uncertainty. Important insights have been gained using tasks such as the random dots motion discrimination task in which the subject makes decisions based on noisy stimuli. A descriptive model known as the drift diffusion model has previously been used to explain psychometric and reaction time data from such tasks but to fully explain the data, one is forced to make ad-hoc assumptions such as a time-dependent collapsing decision boundary. We show that such assumptions are unnecessary when decision making is viewed within the framework of partially observable Markov decision processes (POMDPs. We propose an alternative model for decision making based on POMDPs. We show that the motion discrimination task reduces to the problems of (1 computing beliefs (posterior distributions over the unknown direction and motion strength from noisy observations in a bayesian manner, and (2 selecting actions based on these beliefs to maximize the expected sum of future rewards. The resulting optimal policy (belief-to-action mapping is shown to be equivalent to a collapsing decision threshold that governs the switch from evidence accumulation to a discrimination decision. We show that the model accounts for both accuracy and reaction time as a function of stimulus strength as well as different speed-accuracy conditions in the random dots task.

  1. Reward optimization in the primate brain: a probabilistic model of decision making under uncertainty.

    Science.gov (United States)

    Huang, Yanping; Rao, Rajesh P N

    2013-01-01

    A key problem in neuroscience is understanding how the brain makes decisions under uncertainty. Important insights have been gained using tasks such as the random dots motion discrimination task in which the subject makes decisions based on noisy stimuli. A descriptive model known as the drift diffusion model has previously been used to explain psychometric and reaction time data from such tasks but to fully explain the data, one is forced to make ad-hoc assumptions such as a time-dependent collapsing decision boundary. We show that such assumptions are unnecessary when decision making is viewed within the framework of partially observable Markov decision processes (POMDPs). We propose an alternative model for decision making based on POMDPs. We show that the motion discrimination task reduces to the problems of (1) computing beliefs (posterior distributions) over the unknown direction and motion strength from noisy observations in a bayesian manner, and (2) selecting actions based on these beliefs to maximize the expected sum of future rewards. The resulting optimal policy (belief-to-action mapping) is shown to be equivalent to a collapsing decision threshold that governs the switch from evidence accumulation to a discrimination decision. We show that the model accounts for both accuracy and reaction time as a function of stimulus strength as well as different speed-accuracy conditions in the random dots task.

  2. A Behavioral Genetic Model of the Mechanisms Underlying the Link Between Obesity and Symptoms of ADHD.

    Science.gov (United States)

    Patte, Karen A; Davis, Caroline A; Levitan, Robert D; Kaplan, Allan S; Carter-Major, Jacqueline; Kennedy, James L

    2016-01-21

    The ADHD-obesity link has been suggested to result from a shared underlying basis of suboptimal dopamine (DA); however, this theory conflicts evidence that an amplified DA signal increases the risk for overeating and weight gain. A model was tested in which ADHD symptoms, predicted by hypodopaminergic functioning in the prefrontal cortex, in combination with an enhanced appetitive drive, predict hedonic eating and, in turn, higher body mass index (BMI). DRD2 and DRD4 markers were genotyped. The model was tested using structural equation modeling in a nonclinical sample (N = 421 adults). The model was a good fit to the data. Controlling for education, all parameter estimates were significant, except for the DRD4-ADHD symptom pathway. The significant indirect effect indicates that overeating mediated the ADHD symptoms-BMI association. Results support the hypothesis that overeating and elevated DA in the ventral striatum-representative of a greater reward response-contribute to the ADHD symptom-obesity relationship. © The Author(s) 2016.

  3. Bayesian Analysis of Evolutionary Divergence with Genomic Data under Diverse Demographic Models.

    Science.gov (United States)

    Chung, Yujin; Hey, Jody

    2017-06-01

    We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coalescent trees without migration paths, and a simple importance sampling distribution without the demography of interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implementation of the new method in the computer program MIST, we demonstrate the method's accuracy, scalability, and other advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.) troglodytes and P. t. verus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Rangeland Livelihood Strategies under Varying Climate Regimes: Model Insights from Southern Kenya

    Directory of Open Access Journals (Sweden)

    Rebecca Kariuki

    2018-04-01

    Full Text Available Rangelands throughout sub-Saharan Africa are currently undergoing two major pressures: climate change (through altered rainfall and seasonality patterns and habitat fragmentation (brought by land use change driven by land demand for agriculture and conservation. Here we explore these dimensions, investigating the impact of land use change decisions, by pastoralists in southern Kenya rangelands, on human well-being and animal densities using an agent-based model. The constructed agent-based model uses input biomass data simulated by the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS dynamic vegetation model and parameterized with data from literature. Scenarios of land use change under different rainfall years, land tenure types and levels of wildlife conservation support were simulated. Reflecting reality, our results show livestock grazing as the predominant land use that changes with precipitation and land tenure leading to varying livelihood strategies. For example, agriculture is the most common livelihood in wet years and conservation levels increase with increasing support of wildlife conservation initiatives. Our model demonstrates the complex and multiple interactions between pastoralists, land management and the environment. We highlight the importance of understanding the conditions driving the sustainability of semi-arid rangelands and the communities they support, and the role of external actors, such as wildlife conservation investors, in East Africa.

  5. An integrated location inventory routing model in supply chain network designing under uncertainty

    Directory of Open Access Journals (Sweden)

    Hojat Angazi

    2016-09-01

    Full Text Available In this study an integrated model is proposed for the location inventory routing problem under uncertainty. This problem involves determining the location of distribution centers (DCs in a three echelon supply chain. The DCs receive orders from the customer and according to a continuous review inventory replenishment policy place orders to the supplier. The products are directly shipped from the supplier to the DCs. The vehicles start from the DCs to fulfill the demands of the customers. Determining the routing of the vehicles is one of the decisions involved in this problem. The demands of customers are stochastically distributed and the capacity of DCs are limited. If one of the DCs undergo a disruption and is unable to fulfill the demands of the customers, shortage may occur. Moreover in the proposed model the shortage is considered as partial backlogging. This means that if shortage occurs, some of the orders result in lost sales and other orders are fulfilled in the next period. In order to optimally solve the proposed model a nonlinear integer programming (INLP model is developed. However, since the problem is NP-hard, the mathematical formulation cannot be efficiently solved for large sized instances of the problem. Therefore an outer approximation method is developed to solve the problem more efficiently. The computational results show the efficiency of the proposed method.

  6. Development of a Zero-Dimensional Particle Generation Model in SFR-Containments under Accidental Conditions

    Energy Technology Data Exchange (ETDEWEB)

    García, M.; Herranz, L.E.

    2015-07-01

    During postulated Beyond Design Basis Accidents (BDBAs) in Sodium-cooled Fast Reactors (SFRs), contaminated-sodium at high temperature may leak into the containment and burns in the presence of oxygen. As a result, large quantities of sodium oxide aerosols are produced. In the frame of the EU-JASMIN project, a particle generation model to calculate the particle generation rate and their primary size during a generic sodium pool fire has been developed to be implemented in ASTEC-Na code. This paper presents the adaptation of the 3-D particle generation model to a 0-D model based on the generation of particles under average system conditions. Deviations between both approaches less than 20% have been found in all the simulated scenarios. From the 0-D model, simple correlations for the particle generation rate and the primary particle size as a function of Na-oxide vapour pressures, temperature and sodium pool characteristics have been derived for its straightforward implementation in the ASTEC-Na code. (Author)

  7. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain

    Directory of Open Access Journals (Sweden)

    Li eShen

    2015-10-01

    Full Text Available Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA. However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron’s best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry.

  8. Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light.

    Science.gov (United States)

    Sebti, Aicha; Souahi, Fatiha; Mohellebi, Faroudja; Igoud, Sadek

    2017-07-01

    This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO 2 concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO 2 powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.

  9. Modelling plant invasion pathways in protected areas under climate change: implication for invasion management

    Directory of Open Access Journals (Sweden)

    C.-J. Wang

    2017-12-01

    Full Text Available Global climate change may enable invasive plant species (IPS to invade protected areas (PAs, but plant invasion on a global scale has not yet been explicitly addressed. Here, we mapped the potential invasion pathways for IPS in PAs across the globe and explored potential factors determining the pathways of plant invasion under climate change. We used species distribution modelling to estimate the suitable habitats of 386 IPS and applied a corridor analysis to compute the potential pathways of IPS in PAs under climate change. Subsequently, we analysed the potential factors affecting the pathways in PAs. According to our results, the main potential pathways of IPS in PAs are in Europe, eastern Australia, New Zealand, southern Africa, and eastern regions of South America and are strongly influenced by changes in temperature and precipitation. Protected areas can play an important role in preventing and controlling the spread of IPS under climate change. This is due to the fact that measures are taken to monitor climate change in detail, to provide effective management near or inside PAs, and to control the introduction of IPS with a high capacity for natural dispersal. A review of conservation policies in PAs is urgently needed.

  10. Computational modeling of dissipation and regeneration of fluvial sand dunes under variable discharges

    Science.gov (United States)

    Nabi, M.; Kimura, I.; Hsu, S. M.; Giri, S.; Shimizu, Y.

    2015-07-01

    It is observed, during flood events, that bed forms initially grow in height and make the riverbed rougher. But later, under high discharge, the bed forms grow longer with the opposite effect of making the riverbed smoother. After the discharge drops to a lower value, new bed forms regenerate on top of the elongated bed forms. This mechanism leads to a significant variation in the bed roughness and the water stage and hence determines the behavior of floods and the risk of flood disasters. This work presents detailed modeling of bed forms under discharge hydrographs and simulates the conditions under which the bed is flattened out in the upper plane bed regime. The flow was simulated by large-eddy simulation, and the sediments were considered as rigid spheres and modeled in a Lagrangian framework. The bed morphodynamics were the result of entrainment and deposition of sediment particles. We examined several discharge hydrographs. In the first case, we increased the discharge linearly and then kept it constant after reaching the upper plane bed condition. The dunes were generated and grew during the rising stage of discharge. When the flow conditions reached the upper plane bed regime, high-frequency ripples were generated and helped to flatten the bed. The results also showed that in contrast with mechanisms in the dune regime, the flattening of the bed was associated with a distinct pattern of sediment transport which deposited sediment mainly in the lee side of the dunes and led to flattening of the bed. After flattening, the sediments were mainly transported in suspension mode. As long as flow conditions stayed in the upper plane bed regime, the bed remained flat with small high-frequency ripples. We also examined two other scenarios: one with an immediate falling stage of discharge after the rising stage and the other with a period of constant discharge between the rising and falling stages. Dunes were regenerated during the falling stage of discharge for both

  11. A mathematical model of weight loss under total starvation: evidence against the thrifty-gene hypothesis

    Directory of Open Access Journals (Sweden)

    John R. Speakman

    2013-01-01

    The thrifty-gene hypothesis (TGH posits that the modern genetic predisposition to obesity stems from a historical past where famine selected for genes that promote efficient fat deposition. It has been previously argued that such a scenario is unfeasible because under such strong selection any gene favouring fat deposition would rapidly move to fixation. Hence, we should all be predisposed to obesity: which we are not. The genetic architecture of obesity that has been revealed by genome-wide association studies (GWAS, however, calls into question such an argument. Obesity is caused by mutations in many hundreds (maybe thousands of genes, each with a very minor, independent and additive impact. Selection on such genes would probably be very weak because the individual advantages they would confer would be very small. Hence, the genetic architecture of the epidemic may indeed be compatible with, and hence support, the TGH. To evaluate whether this is correct, it is necessary to know the likely effects of the identified GWAS alleles on survival during starvation. This would allow definition of their advantage in famine conditions, and hence the likely selection pressure for such alleles to have spread over the time course of human evolution. We constructed a mathematical model of weight loss under total starvation using the established principles of energy balance. Using the model, we found that fatter individuals would indeed survive longer and, at a given body weight, females would survive longer than males, when totally starved. An allele causing deposition of an extra 80 g of fat would result in an extension of life under total starvation by about 1.1–1.6% in an individual with 10 kg of fat and by 0.25–0.27% in an individual carrying 32 kg of fat. A mutation causing a per allele effect of 0.25% would become completely fixed in a population with an effective size of 5 million individuals in 6000 selection events. Because there have probably been about 24

  12. Gap Models as Tools for Sustainable Development under Environmental Changes in Northern Eurasia

    Science.gov (United States)

    Shugart, H. H., Jr.; Wang, B.; Brazhnik, K.; Armstrong, A. H.; Foster, A.

    2017-12-01

    Agent-based models of complex systems or as used in this review, Individual-based Models (IBMs), emerged in the 1960s and early 1970s, across diverse disciplines from astronomy to zoology. IBMs arose from a deeply embedded ecological tradition of understanding the dynamics of ecosystems from a "bottom-up" accounting of the interactions of the parts. In this case, individual trees are principal among the parts. Because they are computationally demanding, these models have prospered as the power of digital computers has increased exponentially over the decades following the 1970s. Forest IBMs are no longer computationally bound from developing continental- or global-scale simulations of responses of forests to climate and other changes. Gap models simulate the changes in forests by simulating the birth, growth and death of each individual tree on small plots of land that in summation comprise a forest (or set of sample plots on a forested landscape or region). Currently, gap models have grown from continental-scale and even global-scale applications to assess the potential consequences of climate change on natural forests. These predictions are valuable in the planning and anticipatory decision-making needed to sustainably manage a vast region such as Northern Eurasia. Modifications to the models have enabled simulation of disturbances including fire, insect outbreak and harvest. These disturbances have significant exogenous drivers, notably weather variables, but their effects are also a function of the endogenous conditions involving the structure of forest itself. This feedback between the forest and its environment can in some cases produce hysteresis and multiple-stable operating-regimes for forests. Such responses, often characterized as "tipping points" could play a significant role in increasing risk under environmental change, notably global warming. Such dynamics in a management context imply regional systems that could be "unforgiving" of management

  13. Modelling the temperature evolution of bone under high intensity focused ultrasound

    Science.gov (United States)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  14. Modelling the temperature evolution of bone under high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Ten Eikelder, H M M; Bošnački, D; Breuer, B J T; Van Wijk, J H; Van Dijk, E V M; Modena, D; Yeo, S Y; Grüll, H; Elevelt, A; Donato, K; Di Tullio, A

    2016-01-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  15. Modeling transport of nutrients & sediment loads into Lake Tahoe under climate change

    Science.gov (United States)

    Riverson, John; Coats, Robert; Costa-Cabral, Mariza; Dettinger, Mike; Reuter, John; Sahoo, Goloka; Schladow, Geoffrey

    2013-01-01

    The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.

  16. Spreading of intolerance under economic stress: Results from a reputation-based model

    Science.gov (United States)

    Martinez-Vaquero, Luis A.; Cuesta, José A.

    2014-08-01

    When a population is engaged in successive prisoner's dilemmas, indirect reciprocity through reputation fosters cooperation through the emergence of moral and action rules. A simplified model has recently been proposed where individuals choose between helping others or not and are judged good or bad for it by the rest of the population. The reputation so acquired will condition future actions. In this model, eight strategies (referred to as "leading eight") enforce a high level of cooperation, generate high payoffs, and are therefore resistant to invasions by other strategies. Here we show that, by assigning each individual one of two labels that peers can distinguish (e.g., political ideas, religion, and skin color) and allowing moral and action rules to depend on the label, intolerant behaviors can emerge within minorities under sufficient economic stress. We analyze the sets of conditions where this can happen and also discuss the circumstances under which tolerance can be restored. Our results agree with empirical observations that correlate intolerance and economic stress and predict a correlation between the degree of tolerance of a population and its composition and ethical stance.

  17. Physical Modeling of Shear Behavior of Infilled Rock Joints Under CNL and CNS Boundary Conditions

    Science.gov (United States)

    Shrivastava, Amit Kumar; Rao, K. Seshagiri

    2018-01-01

    Despite their frequent natural occurrence, filled discontinuities under constant normal stiffness (CNS) boundary conditions have been studied much less systematically, perhaps because of the difficulties arising from the increased number of variable parameters. Because of the lack of reliable and realistic theoretical or empirical relations and the difficulties in obtaining and testing representative samples, engineers rely on judgment and often consider the shear strength of the infilled material itself as shear strength of rock joints. This assumption leads to uneconomical and also sometimes the unsafe design of underground structures, slopes, rock-socketed piles and foundations. To study the effect of infill on the shear behavior of rock joints, tests were performed on the modeled infilled rock joint having different joint roughness under constant normal load (CNL) and CNS boundary conditions at various initial normal stress and varying thickness of the infilled material. The test results indicate that shear strength decreases with an increase in t/ a ratio for both CNL and CNS conditions, but the reduction in shear strength is more for CNL than for CNS condition for a given initial normal stress. The detailed account of the effect of thickness of infilled material on shear and deformation behavior of infilled rock joint is discussed in this paper, and a model is proposed to predict shear strength of infilled rock joint.

  18. Rheological-dynamical continuum damage model for concrete under uniaxial compression and its experimental verification

    Directory of Open Access Journals (Sweden)

    Milašinović Dragan D.

    2015-01-01

    Full Text Available A new analytical model for the prediction of concrete response under uniaxial compression and its experimental verification is presented in this paper. The proposed approach, referred to as the rheological-dynamical continuum damage model, combines rheological-dynamical analogy and damage mechanics. Within the framework of this approach the key continuum parameters such as the creep coefficient, Poisson’s ratio and damage variable are functionally related. The critical values of the creep coefficient and damage variable under peak stress are used to describe the failure mode of the concrete cylinder. The ultimate strain is determined in the post-peak regime only, using the secant stress-strain relation from damage mechanics. The post-peak branch is used for the energy analysis. Experimental data for five concrete compositions were obtained during the examination presented herein. The principal difference between compressive failure and tensile fracture is that there is a residual stress in the specimens, which is a consequence of uniformly accelerated motion of load during the examination of compressive strength. The critical interpenetration displacements and crushing energy are obtained theoretically based on the concept of global failure analysis. [Projekat Ministarstva nauke Republike Srbije, br. ON 174027: Computational Mechanics in Structural Engineering i br. TR 36017: Utilization of by-products and recycled waste materials in concrete composites for sustainable construction development in Serbia: Investigation and environmental assessment of possible applications

  19. Preliminary Computational Hemodynamics Study of Double Aortic Aneurysms under Multistage Surgical Procedures: An Idealised Model Study

    Directory of Open Access Journals (Sweden)

    Yosuke Otsuki

    2013-01-01

    Full Text Available Double aortic aneurysm (DAA falls under the category of multiple aortic aneurysms. Repair is generally done through staged surgery due to low invasiveness. In this approach, one aneurysm is cured per operation. Therefore, two operations are required for DAA. However, post-first-surgery rupture cases have been reported. Although the problems involved with managing staged surgery have been discussed for more than 30 years, investigation from a hemodynamic perspective has not been attempted. Hence, this is the first computational fluid dynamics approach to the DAA problem. Three idealized geometries were prepared: presurgery, thoracic aortic aneurysm (TAA cured, and abdominal aortic aneurysm (AAA cured. By applying identical boundary conditions for flow rate and pressure, the Navier-Stokes equation and continuity equations were solved under the Newtonian fluid assumption. Average pressure in TAA was increased by AAA repair. On the other hand, average pressure in AAA was decreased after TAA repair. Average wall shear stress was decreased at the peak in post-first-surgery models. However, the wave profile of TAA average wall shear stress was changed in the late systole phase after AAA repair. Since the average wall shear stress in the post-first-surgery models decreased and pressure at TAA after AAA repair increased, the TAA might be treated first to prevent rupture.

  20. Configuration model of partial repairable spares under batch ordering policy based on inventory state

    Directory of Open Access Journals (Sweden)

    Ruan Minzhi

    2014-06-01

    Full Text Available Rational planning of spares configuration project is an effective approach to improve equipment availability as well as reduce life cycle cost (LCC. With an analysis of various impacts on support system, the spares demand rate forecast model is constructed. According to systemic analysis method, spares support effectiveness evaluation indicators system is built, and then, initial spares configuration and optimization method is researched. To the issue of discarding and consumption for incomplete repairable items, its expected backorders function is approximated by Laplace demand distribution. Combining the (s−1, s and (R, Q inventory policy, the spares resupply model is established under the batch ordering policy based on inventory state, and the optimization analysis flow for spares configuration is proposed. Through application on shipborne equipment spares configuration, the given scenarios are analyzed under two constraint targets: one is the support effectiveness, and the other is the spares cost. Analysis reveals that the result is consistent with practical regulation; therefore, the model’s correctness, method’s validity as well as optimization project’s rationality are proved to a certain extent.

  1. Multiscale Modeling of Primary Cilium Deformations Under Local Forces and Shear Flows

    Science.gov (United States)

    Peng, Zhangli; Feng, Zhe; Resnick, Andrew; Young, Yuan-Nan

    2017-11-01

    We study the detailed deformations of a primary cilium under local forces and shear flows by developing a multiscale model based on the state-of-the-art understanding of its molecular structure. Most eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, thermosensation, and mechanosensation, but the detailed mechanism for mechanosensation is not well understood. We apply the dissipative particle dynamics (DPD) to model an entire well with a primary cilium and consider its different components, including the basal body, microtubule doublets, actin cortex, and lipid bilayer. We calibrate the mechanical properties of individual components and their interactions from experimental measurements and molecular dynamics simulations. We validate the simulations by comparing the deformation profile of the cilium and the rotation of the basal body with optical trapping experiments. After validations, we investigate the deformation of the primary cilium under shear flows. Furthermore, we calculate the membrane tensions and cytoskeleton stresses, and use them to predict the activation of mechanosensitive channels.

  2. Partitioning of Cotton Field Evapotranspiration under Mulched Drip Irrigation Based on a Dual Crop Coefficient Model

    Directory of Open Access Journals (Sweden)

    Fuqiang Tian

    2016-02-01

    Full Text Available Estimation of field crop evapotranspiration (ETc and its partitioning into evaporation and transpiration, are of great importance in hydrological modeling and agricultural water management. In this study, we used a dual crop coefficient model SIMDualKc to estimate the actual crop evapotranspiration (ETc act and the basal crop coefficients over a cotton field in Northwestern China. A two-year field experiment was implemented in the cotton field under mulched drip irrigation. The simulated ETc act is consistent with observed ETc act as derived based on the eddy covariance system in the field. Basal crop coefficients of cotton for the initial, mid-season, and end-season are 0.20, 0.90, and 0.50, respectively. The transpiration components of ETc  act are 96% (77% and 94% (74% in 2012 and 2013 with (without plastic mulch, respectively. The impact of plastic mulch cover on soil evaporation is significant during drip irrigation ranging from crop development stage to mid-season stage. The extent of the impact depends on the variation of soil moisture, available energy of the soil surface, and the growth of the cotton leaves. Our results show that the SIMDualKc is capable of providing accurate estimation of ETc act for cotton field under mulched drip irrigation, and could be used as a valuable tool to establish irrigation schedule for cotton fields in arid regions as Northwestern China.

  3. A dynamic parking charge optimal control model under perspective of commuters' evolutionary game behavior

    Science.gov (United States)

    Lin, XuXun; Yuan, PengCheng

    2018-01-01

    In this research we consider commuters' dynamic learning effect by modeling the trip mode choice behavior from a new perspective of dynamic evolutionary game theory. We explore the behavior pattern of different types of commuters and study the evolution path and equilibrium properties under different traffic conditions. We further establish a dynamic parking charge optimal control (referred to as DPCOC) model to alter commuters' trip mode choice while minimizing the total social cost. Numerical tests show. (1) Under fixed parking fee policy, the evolutionary results are completely decided by the travel time and the only method for public transit induction is to increase the parking charge price. (2) Compared with fixed parking fee policy, DPCOC policy proposed in this research has several advantages. Firstly, it can effectively turn the evolutionary path and evolutionary stable strategy to a better situation while minimizing the total social cost. Secondly, it can reduce the sensitivity of trip mode choice behavior to traffic congestion and improve the ability to resist interferences and emergencies. Thirdly, it is able to control the private car proportion to a stable state and make the trip behavior more predictable for the transportation management department. The research results can provide theoretical basis and decision-making references for commuters' mode choice prediction, dynamic setting of urban parking charge prices and public transit induction.

  4. Theoretical model of laminar flow in a channel or tube under ocean conditions

    International Nuclear Information System (INIS)

    Yan, B.H.; Yu, L.; Yang, Y.H.

    2011-01-01

    Research highlights: → The theoretical model of laminar flow in channels under ocean conditions is established. → The frictional resistance coefficient and Nusselt number are also obtained. → The theoretical results are in agreement with experimental data. → The oscillation of parameters is induced by the tangential force. -- Abstract: The theoretical model of laminar flow in a channel or tube under ocean conditions is established. The velocity and temperature correlations are derived, and the frictional resistance coefficient and Nusselt number are also obtained. The theoretical results are in agreement with experimental data. The oscillation of parameters is induced by the tangential force due to ocean conditions. The effect of centrifugal and Coriolis forces on the flow is negligible. The effects of several parameters on the frictional resistance coefficient and Nusselt number are investigated. The oscillating amplitude of Nusselt number increases with the increasing of Prandtl number. Both the oscillating amplitudes of frictional resistance coefficient and Nusselt number increase with the increasing of rolling frequency.

  5. Phase-field modeling of thermomechanical damage in tungsten under severe plasma transients

    Science.gov (United States)

    Crosby, Tamer; Ghoniem, Nasr

    2012-08-01

    Tungsten is now a primary candidate for plasma facing components in fusion energy systems because of its numerous superior thermophysical properties. International efforts are currently focused on the development of tungsten surfaces that can intercept ionized plasma and pulsed high heat flux in magnetic fusion confinement devices. Thermal shock under transient operating conditions, such as edge localized modes, have experimentally been shown to lead to severe surface and sub-surface damage. We present here a computational multiphysics model to determine the relationship between the thermomechanical loading conditions and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasto-plasticity constitutive relations, and is developed within the framework of the phase-field method. A coupled set of partial differential equations is solved for the temperature, displacement, and a damage phase fields under severe plasma transient loads. The results clearly show the initiation and propagation of surface and sub-surface cracks as a result of the transient high heat flux. The severity of surface cracking is found to correlate primarily with the magnitude of the near-surface temperature gradient.

  6. A survey report for the biped locomotion model under external force

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Ichiro; Takanishi, Atsuo [Waseda Univ., Tokyo (Japan); Kume, Etsuo

    1993-10-01

    A mechanical design study of biped locomotion robots is being performed at JAERI within the scope of the Human Acts Simulation Program (HASP). The design study at JAERI is of an arbitrarily mobile robot for inspection of nuclear facilities. We have developed the simulation software which has capability of obtaining several types of stable motions for straight walking in terms of design tools. In addition, we are studying more complex walking patterns such as turning. However, in order to realize the robustness of walking, it is also necessary for the robot to have a capability of walking under external force as a disturbance which is caused by touching an object and so on. A survey has been performed for collecting useful information from already existing biped locomotion robots. This is a survey report for the biped locomotion model under external force: the WL-12RIII/IV designed and developed at Waseda University. This report includes the machine model, control system, control method and results of walking experiments. (author).

  7. Modelling shifts in agroclimate and crop cultivar response under climate change.

    Science.gov (United States)

    Rötter, Reimund P; Höhn, Jukka; Trnka, Mirek; Fronzek, Stefan; Carter, Timothy R; Kahiluoto, Helena

    2013-10-01

    (i) to identify at national scale areas where crop yield formation is currently most prone to climate-induced stresses, (ii) to evaluate how the severity of these stresses is likely to develop in time and space, and (iii) to appraise and quantify the performance of two strategies for adapting crop cultivation to a wide range of (uncertain) climate change projections. To this end we made use of extensive climate, crop, and soil data, and of two modelling tools: N-AgriCLIM and the WOFOST crop simulation model. N-AgriCLIM was developed for the automatic generation of indicators describing basic agroclimatic conditions and was applied over the whole of Finland. WOFOST was used to simulate detailed crop responses at four representative locations. N-AgriCLIM calculations have been performed nationally for 3829 grid boxes at a 10 × 10 km resolution and for 32 climate scenarios. Ranges of projected shifts in indicator values for heat, drought and other crop-relevant stresses across the scenarios vary widely - so do the spatial patterns of change. Overall, under reference climate the most risk-prone areas for spring cereals are found in south-west Finland, shifting to south-east Finland towards the end of this century. Conditions for grass are likely to improve. WOFOST simulation results suggest that CO2 fertilization and adjusted sowing combined can lead to small yield increases of current barley cultivars under most climate scenarios on favourable soils, but not under extreme climate scenarios and poor soils. This information can be valuable for appraising alternative adaptation strategies. It facilitates the identification of regions in which climatic changes might be rapid or otherwise notable for crop production, requiring a more detailed evaluation of adaptation measures. The results also suggest that utilizing the diversity of cultivar responses seems beneficial given the high uncertainty in climate change projections.

  8. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    situations, cloudy and windy situations). Based on hourly air temperature data from our measurements in the urban area of Augsburg distinct temperature differences between locations with different urban land use characteristics are revealed. Under clear and calm weather conditions differences between mean hourly air temperatures reach values around 8°C. Whereas during cloudy and windy weather maximum differences in mean hourly air temperatures do not exceed 5°C. Differences appear usually slightly more pronounced in summer than in winter. First results from the application of statistical modeling approaches reveal promising skill of the models in terms of explained variances reaching up to 60% in leave-one-out cross-validation experiments. The contribution depicts the methodology of our approach and presents and discusses first results.

  9. Modeling the yield potential of dryland canola under current and future climates in California

    Science.gov (United States)

    George, N.; Kaffka, S.; Beeck, C.; Bucaram, S.; Zhang, J.

    2012-12-01

    Models predict that the climate of California will become hotter, drier and more variable under future climate change scenarios. This will lead to both increased irrigation demand and reduced irrigation water availability. In addition, it is predicted that most common Californian crops will suffer a concomitant decline in productivity. To remain productive and economically viable, future agricultural systems will need to have greater water use efficiency, tolerance of high temperatures, and tolerance of more erratic temperature and rainfall patterns. Canola (Brassica napus) is the third most important oilseed globally, supporting large and well-established agricultural industries in Canada, Europe and Australia. It is an agronomically useful and economically valuable crop, with multiple end markets, that can be grown in California as a dryland winter rotation with little to no irrigation demand. This gives canola great potential as a new crop for Californian farmers both now and as the climate changes. Given practical and financial limitations it is not always possible to immediately or widely evaluate a crop in a new region. Crop production models are therefore valuable tools for assessing the potential of new crops, better targeting further field research, and refining research questions. APSIM is a modular modeling framework developed by the Agricultural Production Systems Research Unit in Australia, it combines biophysical and management modules to simulate cropping systems. This study was undertaken to examine the yield potential of Australian canola varieties having different water requirements and maturity classes in California using APSIM. The objective of the work was to identify the agricultural regions of California most ideally suited to the production of Australian cultivars of canola and to simulate the production of canola in these regions to estimate yield-potential. This will establish whether the introduction and in-field evaluation of better

  10. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)

    2015-04-22

    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  11. Small-Incision Laparoscopy-Assisted Surgery Under Abdominal Cavity Irrigation in a Porcine Model

    Science.gov (United States)

    Ishii, Takuro; Aoe, Tomohiko; Yu, Wen-Wei; Ebihara, Yuma; Kawahira, Hiroshi; Isono, Shiro; Naya, Yukio

    2016-01-01

    Abstract Background: Laparoscopic and robot-assisted surgeries are performed under carbon dioxide insufflation. Switching from gas to an isotonic irrigant introduces several benefits and avoids some adverse effects of gas insufflation. We developed an irrigating device and apparatus designed for single-incision laparoscopic surgery and tested its advantages and drawbacks during surgery in a porcine model. Materials and Methods: Six pigs underwent surgical procedures under general anesthesia. A 30-cm extracorporeal cistern was placed over a 5–6-cm abdominal incision. The abdomen was irrigated with warm saline that was drained via a suction tube placed near the surgical field and continuously recirculated through a closed circuit equipped with a hemodialyzer as a filter. Irrigant samples from two pigs were cultured to check for bacterial and fungal contamination. Body weight was measured before and after surgery in four pigs that had not received treatments affecting hemodynamics or causing diuresis. Results: One-way flow of irrigant ensured laparoscopic vision by rinsing blood from the surgical field. Through a retroperitoneal approach, cystoprostatectomy was successfully performed in three pigs, nephrectomy in two, renal excision in two, and partial nephrectomy in one, under simultaneous ultrasonographic monitoring. Through a transperitoneal approach, liver excision and hemostasis with a bipolar sealing device were performed in three pigs, and bladder pedicle excision was performed in one pig. Bacterial and fungal contamination of the irrigant was observed on the draining side of the circuit, but the filter captured the contaminants. Body weight increased by a median of 2.1% (range, 1.2–4.4%) of initial weight after 3–5 hours of irrigation. Conclusions: Surgery under irrigation is feasible and practical when performed via a cistern through a small abdominal incision. This method is advantageous, especially in the enabling of continuous and free

  12. Modelling of domestic refrigerators' energy consumption under real life conditions in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Geppert, Jasmin

    2011-05-23

    In recent decades, energy and resource savings have become increasingly important, not only in the industrial, but also the residential sector. As one of the largest energy users in private homes, domestic refrigerators and freezers were among the first appliances to be targeted for energy efficiency improvements. With the aim of encouraging manufacturers to develop and produce more efficient appliances, the European Energy Label was introduced in the mid-nineties. However, the energy use of refrigerators does not only depend on technical components and features. Especially the using conditions in private homes are of a decisive influence. Thus, the present study has been conducted to test the sensitivity of refrigerators' energy consumption to various usage conditions within realistic ranges, which have been determined by means of two empirical studies. Key information gathered from the experiments were used as a base for the development and validation of a simplified model that allows predicting the energy consumption of refrigerators in use. The practical experiments were performed under controlled laboratory conditions with four different refrigerators with an A{sup +} or A{sup ++} energy efficiency rating (two statically cooled built-in fridge-freezers, one dynamically cooled refrigerator and one statically cooled refrigerator). The investigations revealed that the ambient temperature has the greatest impact on a refrigerator's energy consumption, followed by thermostat setting and heat load by insertion of warm items. The refrigerators' load under static conditions as well as the number of door openings have almost no impact on energy consumption. The modelling methodology follows a first-principle approach adjusted by experimental data. When compared to experimental results, model predictions show a reasonable agreement for the whole range of investigated conditions. (orig.)

  13. Mass-spring model used to simulate the sloshing of fluid in the container under the earthquake

    International Nuclear Information System (INIS)

    Wen Jing; Luan Lin; Gao Xiaoan; Wang Wei; Lu Daogang; Zhang Shuangwang

    2005-01-01

    A lumped-mass spring model is given to simulated the sloshing of liquid in the container under the earthquake in the ASCE 4-86. A new mass-spring model is developed in the 3D finite element model instead of beam model in this paper. The stresses corresponding to the sloshing mass could be given directly, which avoids the construction of beam model. This paper presents 3-D Mass-Spring Model for the total overturning moment as well as an example of the model. Moreover the mass-spring models for the overturning moment to the sides and to the bottom of the container are constructed respectively. (authors)

  14. A facility location model for municipal solid waste management system under uncertain environment.

    Science.gov (United States)

    Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K

    2017-12-15

    In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    Science.gov (United States)

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential

  16. Stem breakage of salt marsh vegetation under wave forcing: A field and model study

    Science.gov (United States)

    Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.

    2018-01-01

    One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.

  17. Simulation modelling of a patient surge in an emergency department under disaster conditions

    Directory of Open Access Journals (Sweden)

    Muhammet Gul

    2015-10-01

    Full Text Available The efficiency of emergency departments (EDs in handling patient surges during disaster times using the available resources is very important. Many EDs require additional resources to overcome the bottlenecks in emergency systems. The assumption is that EDs consider the option of temporary staff dispatching, among other options, in order to respond to an increased demand or even the hiring temporarily non-hospital medical staff. Discrete event simulation (DES, a well-known simulation method and based on the idea of process modeling, is used for establishing ED operations and management related models. In this study, a DES model is developed to investigate and analyze an ED under normal conditions and an ED in a disaster scenario which takes into consideration an increased influx of disaster victims-patients. This will allow early preparedness of emergency departments in terms of physical and human resources. The studied ED is located in an earthquake zone in Istanbul. The report on Istanbul’s disaster preparedness presented by the Japan International Cooperation Agency (JICA and Istanbul Metropolitan Municipality (IMM, asserts that the district where the ED is located is estimated to have the highest injury rate. Based on real case study information, the study aims to suggest a model on pre-planning of ED resources for disasters. The results indicate that in times of a possible disaster, when the percentage of red patient arrivals exceeds 20% of total patient arrivals, the number of red area nurses and the available space for red area patients will be insufficient for the department to operate effectively. A methodological improvement presented a different distribution function that was tested for service time of the treatment areas. The conclusion is that the Weibull distribution function used in service process of injection room fits the model better than the Gamma distribution function.

  18. Evaluation of soil contamination risk under climate change scenarios using Pantanal model in a Mediterranean area

    Science.gov (United States)

    Kotb Abd-Elmabod, Sameh; Anaya-Romero, María; Jordán, Antonio; Muñoz-Rojas, Miriam; de la Rosa, Diego

    2013-04-01

    In this research, contamination vulnerability of Mediterranean soils was evaluated, using Andalusia (southern Spain; 87,600 km2) as a pilot area. The following components of the agro-ecological decision support system MicroLEIS DSS have been used: 1) SDBm, soil profile database, 2) CDBm, agroclimate database 3) MDBm, database of agricultural management, and 4) Pantanal model, specific assessment model for the vulnerability of soil contamination focus on nitrogen, phosphorous, heavy metals and pesticides. After the application of the model, results may be grouped into five vulnerability classes: V1-none, V2-low, V3-moderate, V4-high and V5-extreme for each specific contaminant. Physical and chemical data, and morphological description of 62 selected soil profiles from the study area were used in this study. Soil profiles were classified at sub-group level of USDA Soil Taxonomy, resulting in 37 units included in orders Inceptisols (26,9%), Entisols (21.2%), Alfisols (19.8%), Vertisols (17.9%), Mollisols (7.2%), Ultisols (4.3%) and Aridisols (2.8%). The CDBm database contains monthly average values of climate variables: mean temperature, maximum and minimum monthly rainfall, number of days of rain and humidity, collected during a consecutive period of 30 years that represent current climate scenario, and future climate scenarios (2040, 2070 and 2100). These scenarios have been calculated using climate change variation values from the State Meteorological Agency (AEMET, 2011). The MDBm contains information about agricultural use and management of wheat crop. The Pantanal expert model was applied to each soil-unit. Results showed that 9.0%, 11.6%, 29.5% and 50.8% of the total studied area was classified as V1, V2, V3, and V4, respectively, for pesticide contamination under the current climatic scenario. Under the future climate change scenario, 7.7%, 10.0%, 17.7% and 64.6% of the total studied area was classified as V1, V2, V3 and V4, respectively, for pesticide

  19. Towards closure between measured and modelled UV under clear skies at four diverse sites

    Science.gov (United States)

    Badosa, J.; McKenzie, R. L.; Kotkamp, M.; Calbó, J.; González, J. A.; Johnston, P. V.; O'Neill, M.; Anderson, D. J.

    2007-06-01

    The purpose of this work is determine the extent of closure between measurements and models of UV irradiances at diverse sites using state of the art instruments, models, and the best available data as inputs to the models. These include information about aerosol optical depth (unfortunately not extending down as far into the UVB region as desirable because such information is not generally available), ozone column amounts, as well as vertical profiles of temperature. We concentrate on clear-sky irradiances, and report the results in terms of UV Index (UVI). Clear-sky data from one year of measurements at each of four diverse sites (Lauder - New Zealand, Mauna Loa Observatory - Hawaii, Boulder - Colorado, and Melbourne - Australia) have been analysed in detail, also taking account of different measurements of ozone, including satellite-derived values, as well as ground measured values, both from Dobson instruments and as retrieved from the UV spectra under study. Previous studies have generally focussed on data from a single site, and for shorter periods. As such, it is the most comprehensive study of its kind to date. At Lauder, which is the cleanest low altitude site, we obtained agreement between measurement and model at 5% level, which is consistent with the best agreement found previously. At Mauna Loa Observatory, similar agreement was achieved, but model calculations need to allow for reflections from cloud that are present below the observatory. At this site, there are occasional problems with using satellite-derived ozone. At Boulder, mean agreements were similar but the dispersion around the mean was slightly larger, corresponding to larger uncertainties in the aerosol inputs to the model. However, at Melbourne, which is the only non-NDACC (Network for the Detection of Atmospheric Composition Change) site, there remain unexplained discrepancies. The measured values are significantly lower than the calculated values. We investigate the extent to which this

  20. Carbon dioxide sequestration: Modeling the diffusive and convective transport under a CO2 cap

    KAUST Repository

    Allen, Rebecca

    2012-01-01

    A rise in carbon dioxide levels from industrial emissions is contributing to the greenhouse effect and global warming. CO2 sequestration in saline aquifers is a strategy to reduce atmospheric CO2 levels. Scientists and researchers rely on numerical simulators to predict CO2 storage by modeling the fluid transport behaviour. Studies have shown that after CO2 is injected into a saline aquifer, undissolved CO2 rises due to buoyant forces and will spread laterally away from the injection site under an area of low permeability. CO2 from this ‘capped\\' region diffuses into the fluid underlying it, and the resulting CO2-fluid mixture increases in density. This increase in density leads to gravity-driven convection. Accordingly, diffusive-convective transport is important to model since it predicts an enhanced storage capacity of the saline aquifer. This work incorporates the diffusive and convective transport processes into the transport modeling equation, and uses a self-generated code. Discretization of the domain is done with a cell-centered finite difference method. Cases are set up using similar parameters from published literature in order to compare results. Enhanced storage capacity is predicted in this work, similar to work done by others. A difference in the onset of convective transport between this work and published results is noticed and discussed in this paper. A sensitivity analysis is performed on the density model used in this work, and on the diffusivity value assumed. The analysis shows that the density model and diffusivity value is a key component on simulation results. Also, perturbations are added to porosity and permeability in order to see the effect of perturbations on the onset of convection, and results agree with similar findings by others. This work provides a basis for studying other cases, such as the impact of heterogeneity on the diffusion-convective transport. An extension of this work may involve the use of an equation of state to