WorldWideScience

Sample records for underlying cardiac remodeling

  1. Exercise-induced cardiac remodeling.

    Science.gov (United States)

    Weiner, Rory B; Baggish, Aaron L

    2012-01-01

    Early investigations in the late 1890s and early 1900s documented cardiac enlargement in athletes with above-normal exercise capacity and no evidence of cardiovascular disease. Such findings have been reported for more than a century and continue to intrigue scientists and clinicians. It is well recognized that repetitive participation in vigorous physical exercise results in significant changes in myocardial structure and function. This process, termed exercise-induced cardiac remodeling (EICR), is characterized by structural cardiac changes including left ventricular hypertrophy with sport-specific geometry (eccentric vs concentric). Associated alterations in both systolic and diastolic functions are emerging as recognized components of EICR. The increasing popularity of recreational exercise and competitive athletics has led to a growing number of individuals exhibiting these findings in routine clinical practice. This review will provide an overview of EICR in athletes. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  3. Cardiac remodeling indicators in adolescent athletes

    OpenAIRE

    Castanheira, Joaquim; Valente-dos-Santos, João; Costa, Daniela; Martinho, Diogo; Fernandes, Jorge; Duarte, João; Sousa, Nuno; Vaz, Vasco; Rama, Luis; Figueiredo, António; Coelho-e-Silva, Manuel

    2017-01-01

    Summary Objective: The idea that different sports and physical training type results in different cardiac adaptations has been widely accepted. However, this remodelling process among different sport modalities is still not fully understood. Thus, the current study aims to investigate the heart morphology variation associated with a set of different modalities characterized by distinct models of preparation and different methods and demands of training and completion. Method: The sample com...

  4. Pitx2-mediated cardiac outflow tract remodeling.

    Science.gov (United States)

    Ma, Hsiao-Yen; Xu, Jun; Eng, Diana; Gross, Michael K; Kioussi, Chrissa

    2013-05-01

    Heart morphogenesis involves sequential anatomical changes from a linear tube of a single channel peristaltic pump to a four-chamber structure with two channels controlled by one-way valves. The developing heart undergoes continuous remodeling, including septation. Pitx2-null mice are characterized by cardiac septational defects of the atria, ventricles, and outflow tract. Pitx2-null mice also exhibited a short outflow tract, including unseptated conus and deformed endocardial cushions. Cushions were characterized with a jelly-like structure, rather than the distinct membrane-looking leaflets, indicating that endothelial mesenchymal transition was impaired in Pitx2(-/-) embryos. Mesoderm cells from the branchial arches and neural crest cells from the otic region contribute to the development of the endocardial cushions, and both were reduced in number. Members of the Fgf and Bmp families exhibited altered expression levels in the mutants. We suggest that Pitx2 is involved in the cardiac outflow tract septation by promoting and/or maintaining the number and the remodeling process of the mesoderm progenitor cells. Pitx2 influences the expression of transcription factors and signaling molecules involved in the differentiation of the cushion mesenchyme during heart development. Copyright © 2013 Wiley Periodicals, Inc.

  5. Cardiac remodeling indicators in adolescent athletes.

    Science.gov (United States)

    Castanheira, Joaquim; Valente-Dos-Santos, João; Costa, Daniela; Martinho, Diogo; Fernandes, Jorge; Duarte, João; Sousa, Nuno; Vaz, Vasco; Rama, Luis; Figueiredo, António; Coelho-E-Silva, Manuel

    2017-05-01

    The idea that different sports and physical training type results in different cardiac adaptations has been widely accepted. However, this remodelling process among different sport modalities is still not fully understood. Thus, the current study aims to investigate the heart morphology variation associated with a set of different modalities characterized by distinct models of preparation and different methods and demands of training and completion. The sample comprises 42 basketball players, 73 roller hockey players, 28 judo athletes and 21 swimmers. Anthropometry was assessed by a single and experienced anthropometrist and the same technician performed the echocardiographic exams. Analysis of variance was used to study age, body size and echocardiograph parameters as well as different sport athlete's comparison. Basketball players are taller (F=23.448; pjudo athletes (F=3.865; p=0.011; ES-r=0.316). Interventricular end-diastolic septal thickness (F=7.287; pmorphology are for the most part associated with sport-specific training and competition and the specific dynamics and adaptive mechanisms imposed by each sport.

  6. Downregulation of β-Adrenoceptors in Isoproterenol-Induced Cardiac Remodeling through HuR.

    Directory of Open Access Journals (Sweden)

    Qian Yin

    Full Text Available β-adrenergic receptors (β-ARs play an important role in cardiac remodeling, which is the key pathological process in various heart diseases and leads to heart failure. However, the regulation of β-AR expression in remodeling hearts is still unclear. This study aims to clarify the possible mechanisms underlying the regulation of β1- and β2-AR expression in cardiac remodeling. The rat model of cardiac remodeling was established by subcutaneous injection of isoproterenol(ISO at the dose of 0.25 mg·kg(-1·d(-1 for 7 days. We found that the expression of β1- and β2-ARs decreased in the remodeling heart. The mechanisms may include the inhibition of DNA transcription and the increase of mRNA degradation. cAMP-response element binding protein(CREB is a well-known transcription factor of β-AR. However, the expression and activation of CREB was not changed in the remodeling heart. Further, human Antigen-R (HuR, a RNA binding protein, which binds to the 3'-untranslated region of the β-AR mRNA and promotes RNA degradation, was increased in the remodeling model. And in vitro, HuR deficiency reversed the reduction of β-AR mRNA induced by ISO. Therefore, the present findings indicate that HuR, but not CREB, is responsible for the reduction of β-AR expression in ISO induced cardiac remodeling.

  7. Cardiac remodeling indicators in adolescent athletes

    Directory of Open Access Journals (Sweden)

    Joaquim Castanheira

    Full Text Available Summary Objective: The idea that different sports and physical training type results in different cardiac adaptations has been widely accepted. However, this remodelling process among different sport modalities is still not fully understood. Thus, the current study aims to investigate the heart morphology variation associated with a set of different modalities characterized by distinct models of preparation and different methods and demands of training and completion. Method: The sample comprises 42 basketball players, 73 roller hockey players, 28 judo athletes and 21 swimmers. Anthropometry was assessed by a single and experienced anthropometrist and the same technician performed the echocardiographic exams. Analysis of variance was used to study age, body size and echocardiograph parameters as well as different sport athlete's comparison. Results: Basketball players are taller (F=23.448; p<0.001; ES-r=0.553, heavier (F=6.702; p<0.001; ES-r=0.334 and have a greater body surface area (F=11.896; p<0.001; ES-r=0.427. Basketball and hockey players have larger left auricle diameters compared with judo athletes (F=3.865; p=0.011; ES-r=0.316. Interventricular end-diastolic septal thickness (F=7.287; p<0.001; ES-r=0.347 and left ventricular posterior wall thickness (F=8.038; p<0.001; ES-r=0.362 of the judokas are smaller compared to the mean values of other sports participants. In addition, relative left parietal ventricular wall thickness is lower among swimmers compared with judokas (F=4.127; p=0.008; ES-r=0.268. Conclusion: The major contributors to changes in heart morphology are for the most part associated with sport-specific training and competition and the specific dynamics and adaptive mechanisms imposed by each sport.

  8. Hypothyroidism and its rapid correction alter cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Georges Hajje

    Full Text Available The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10 group and a group treated with 6-propyl-2-thiouracil (PTU (n = 20 to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP, tumor necrosis factor alpha (TNF-α, interleukin 6 (IL6 and pro-fibrotic transforming growth factor beta 1 (TGF-β1, were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP and cardiac troponin T (cTnT were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

  9. Hypothyroidism and its rapid correction alter cardiac remodeling.

    Science.gov (United States)

    Hajje, Georges; Saliba, Youakim; Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim

    2014-01-01

    The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.

  10. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  11. Bioactive Extracellular Matrix Scaffold Promotes Adaptive Cardiac Remodeling and Repair

    Directory of Open Access Journals (Sweden)

    Holly E.M. Mewhort, MD, PhD

    2017-08-01

    Full Text Available Structural cardiac remodeling after ischemic injury can induce a transition to heart failure from progressive loss of cardiac function. Cellular regenerative therapies are promising but face significant translational hurdles. Tissue extracellular matrix (ECM holds the necessary environmental cues to stimulate cell-based endogenous myocardial repair pathways and promote adaptive remodeling toward functional recovery. Heart epicardium has emerged as an important anatomic niche for endogenous repair pathways including vasculogenesis and cardiogenesis. We show that acellular ECM scaffolds surgically implanted on the epicardium following myocardial infarction (MI can attenuate structural cardiac remodeling and improve functional recovery. We assessed the efficacy of this strategy on post-MI functional recovery by comparing intact bioactive scaffolds with biologically inactivated ECM scaffolds. We confirm that bioactive properties within the acellular ECM biomaterial are essential for the observed functional benefits. We show that interaction of human cardiac fibroblasts with bioactive ECM can induce a robust cell-mediated vasculogenic paracrine response capable of functional blood vessel assembly. Fibroblast growth factor-2 is uncovered as a critical regulator of this novel bioinductive effect. Acellular bioactive ECM scaffolds surgically implanted on the epicardium post-MI can reprogram resident fibroblasts and stimulate adaptive pro-reparative pathways enhancing functional recovery. We introduce a novel surgical strategy for tissue repair that can be performed as an adjunct to conventional surgical revascularization with minimal translational challenges.

  12. Intradialytic Hypotension and Cardiac Remodeling: A Vicious Cycle

    Directory of Open Access Journals (Sweden)

    Chia-Ter Chao

    2015-01-01

    Full Text Available Hemodynamic instability during hemodialysis is a common but often underestimated issue in the nephrologist practice. Intradialytic hypotension, namely, a decrease of systolic or mean blood pressure to a certain level, prohibits the safe and smooth achievement of ultrafiltration and solute removal goal in chronic dialysis patients. Studies have elucidated the potential mechanisms involved in the development of Intradialytic hypotension, including excessive ultrafiltration and loss of compensatory mechanisms for blood pressure maintenance. Cardiac remodeling could also be one important piece of the puzzle. In this review, we intend to discuss the role of cardiac remodeling, including left ventricular hypertrophy, in the development of Intradialytic hypotension. In addition, we will also provide evidence that a bidirectional relationship might exist between Intradialytic hypotension and left ventricular hypertrophy in chronic dialysis patients. A more complete understanding of the complex interactions in between could assist the readers in formulating potential solutions for the reduction of both phenomena.

  13. Apocynin improving cardiac remodeling in chronic renal failure disease is associated with up-regulation of epoxyeicosatrienoic acids.

    Science.gov (United States)

    Zhang, Kun; Liu, Yu; Liu, Xiaoqiang; Chen, Jie; Cai, Qingqing; Wang, Jingfeng; Huang, Hui

    2015-09-22

    Cardiac remodeling is one of the most common cardiac abnormalities and associated with a high mortality in chronic renal failure (CRF) patients. Apocynin, a nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase inhibitor, has been showed cardio-protective effects. However, whether apocynin can improve cardiac remodeling in CRF and what is the underlying mechanism are unclear. In the present study, we enrolled 94 participants. In addition, we used 5/6 nephrectomized rats to mimic cardiac remodeling in CRF. Serum levels of epoxyeicosatrienoic acids (EETs) and its mainly metabolic enzyme-soluble epoxide hydrolase (sEH) were measured. The results showed that the serum levels of EETs were significantly decreased in renocardiac syndrome participants (P < 0.05). In 5/6 nephrectomized CRF model, the ratio of left ventricular weight / body weight, left ventricular posterior wall thickness, and cardiac interstitial fibrosis were significantly increased while ejection fraction significantly decreased (P < 0.05). All these effects could partly be reversed by apocynin. Meanwhile, we found during the process of cardiac remodeling in CRF, apocynin significantly increased the reduced serum levels of EETs and decreased the mRNA and protein expressions of sEH in the heart (P < 0.05). Our findings indicated that the protective effect of apocynin on cardiac remodeling in CRF was associated with the up-regulation of EETs. EETs may be a new mediator for the injury of kidney-heart interactions.

  14. Right ventricular remodelling in systemic hypertension: a cardiac MRI study.

    Science.gov (United States)

    Todiere, Giancarlo; Neglia, Danilo; Ghione, Sergio; Fommei, Enza; Capozza, Paola; Guarini, Giacinta; Dell'omo, Giulia; Aquaro, Giovanni Donato; Marzilli, Mario; Lombardi, Massimo; Camici, Paolo; Pedrinelli, Roberto

    2011-08-01

    Consistent evidence shows an impact of systemic haemodynamic overload on the right ventricle, but its functional and structural consequences have received scarce attention for several reasons including the difficult application of conventional imaging techniques due to the complex shape and orientation of that cardiac chamber. To evaluate whether mild to moderate, uncomplicated hypertension associates with abnormal right ventricular structure and function and how those changes relate to homologous changes in the left ventricle. Data were acquired by steady-state free-precession cardiac MRI, the state of the art tool for the morphological and functional evaluation of the right ventricle. Twenty-five (12 women) uncomplicated, untreated, essential hypertensive patients were compared with 24 (13 women) sedentary normotensive controls of comparable age. Wall thickness, indexed ventricular mass, end-diastolic volumes, early peak filling rate, a correlate of diastolic relaxation, and ejection fraction were measured at both ventricles. Remodelling index, the ratio of ventricular mass to end-diastolic volume, was used as an index of concentricity. Right ventricular mass index, ventricular wall thickness and remodelling index were greater in hypertensive subjects and associated with reduced peak filling rate, a pattern consistent with concentric right ventricular remodelling. In the hypertensive group, positive, highly significant biventricular correlations existed between indexed mass, early peak filling rate and ejection fraction. Systemic hypertension associates with concentric right ventricular remodelling and impaired diastolic function, confirming that the unstressed ventricle is not immune to the effects of systemic hypertension. Structural and functional right ventricular adaptation to systemic hypertension tends to parallel the homologous modifications induced by systemic haemodynamic overload on the left ventricle.

  15. Myocardial infarction: A critical role of macrophages in cardiac remodeling

    Directory of Open Access Journals (Sweden)

    Tobias eWeinberger

    2015-04-01

    Full Text Available Ischemic heart disease is a common condition and a leading cause of mortality and morbidity. Macrophages, besides their role in host defense and tissue homeostasis, are critical players in the pathophysiological processes induced by myocardial infarction. In this article we will summarize the current understanding of the role of monocytes and macrophages in myocardial damage and cardiac remodeling in relation to their origin and developmental paths. Furthermore, we describe their potential implications in therapeutic strategies to modulate myocardial healing and regeneration.

  16. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.

  17. Cardiac eccentric remodeling in patients with rheumatoid arthritis.

    Science.gov (United States)

    Pascale, Valeria; Finelli, Rosa; Giannotti, Rocco; Coscioni, Enrico; Izzo, Raffaele; Rozza, Francesco; Caputo, Dario; Moscato, Paolo; Iaccarino, Guido; Ciccarelli, Michele

    2018-04-12

    It is known that patients with rheumatoid arthritis (RA) have a higher risk of coronary heart disease and sudden cardiac death. Abnormalities in cardiac geometry appear to be involved in the setting of the cardiovascular risk, but it has never been specifically investigated in RA. We enrolled 44 patients with RA compared to 131 subjects without RA (normal, N): The RA aged between 18 and 70 years (mean 48.3 ± 2.1), 25 females, BMI 27.6 ± 0.9; N, of equal age (48.6 ± 1.2, n.s.), included 80 females (BMI 26.7 ± 0.2, ns). Cardiac Ultrasounds showed an increase of the diameter of the left ventricle but not in the septum with reduction of relative wall thickness (RWT) in the RA population compared to N. Relative wall thickness inversely correlates with biochemical parameters of inflammatory response (gamma globulin, p < 0.03; F = 5,660) and anti citrullinated peptides antibody (anti-CCP Ab) (p < 0.02; F = 7,1620) We conclude that unfavorable cardiac remodeling can increase cardiovascular risk in patients with RA.

  18. Genetic Dissection of Cardiac Remodeling in an Isoproterenol-Induced Heart Failure Mouse Model.

    Directory of Open Access Journals (Sweden)

    Jessica Jen-Chu Wang

    2016-07-01

    Full Text Available We aimed to understand the genetic control of cardiac remodeling using an isoproterenol-induced heart failure model in mice, which allowed control of confounding factors in an experimental setting. We characterized the changes in cardiac structure and function in response to chronic isoproterenol infusion using echocardiography in a panel of 104 inbred mouse strains. We showed that cardiac structure and function, whether under normal or stress conditions, has a strong genetic component, with heritability estimates of left ventricular mass between 61% and 81%. Association analyses of cardiac remodeling traits, corrected for population structure, body size and heart rate, revealed 17 genome-wide significant loci, including several loci containing previously implicated genes. Cardiac tissue gene expression profiling, expression quantitative trait loci, expression-phenotype correlation, and coding sequence variation analyses were performed to prioritize candidate genes and to generate hypotheses for downstream mechanistic studies. Using this approach, we have validated a novel gene, Myh14, as a negative regulator of ISO-induced left ventricular mass hypertrophy in an in vivo mouse model and demonstrated the up-regulation of immediate early gene Myc, fetal gene Nppb, and fibrosis gene Lgals3 in ISO-treated Myh14 deficient hearts compared to controls.

  19. AVE 3085, a novel endothelial nitric oxide synthase enhancer, attenuates cardiac remodeling in mice through the Smad signaling pathway.

    Science.gov (United States)

    Chen, Yili; Chen, Cong; Feng, Cong; Tang, Anli; Ma, Yuedong; He, Xin; Li, Yanhui; He, Jiangui; Dong, Yugang

    2015-03-15

    AVE 3085 is a novel endothelial nitric oxide synthase enhancer. Although AVE 3085 treatment has been shown to be effective in spontaneously restoring endothelial function in hypertensive rats, little is known about the effects and mechanisms of AVE 3085 with respect to cardiac remodeling. The present study was designed to examine the effects of AVE 3085 on cardiac remodeling and the mechanisms underlying the effects of this compound. Mice were subjected to aortic banding to induce cardiac remodeling and were then administered AVE 3085 (10 mg kg day(-1), orally) for 4 weeks. At the end of the treatment, the aortic banding-treated mice exhibited significant elevations in cardiac remodeling, characterized by an increase in left ventricular weight relative to body weight, an increase in the area of collagen deposition, an increase in the mean myocyte diameter, and increases in the gene expressions of the hypertrophic markers atrial natriuretic peptide (ANP) and β-MHC. These indexes were significantly decreased in the AVE 3085-treated mice. Furthermore, AVE 3085 treatment reduced the expression and activation of the Smad signaling pathway in the aortic banding-treated mice. Our data showed that AVE 3085 attenuated cardiac remodeling, and this effect was possibly mediated through the inhibition of Smad signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Aggravated Cardiac Remodeling post Aortocaval Fistula in Unilateral Nephrectomized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Wu

    Full Text Available Aortocaval fistula (AV in rat is a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Living donor kidney transplantation is regarded as beneficial to allograft recipients and not particularly detrimental to the donors. Impact of AV on animals with mild renal dysfunction is not fully understood. In this study, we explored the effects of AV in unilateral nephrectomized (UNX rats.Adult male Sprague-Dawley (SD rats were divided into Sham (n = 10, UNX (right kidney remove, n = 10, AV (AV established between the levels of renal arteries and iliac bifurcation, n = 18 and UNX+AV (AV at one week after UNX, n = 22, respectively. Renal outcome was measured by glomerular filtration rate, effective renal plasma flow, fractional excretion of sodium, albuminuria, plasma creatinine, and cystatin C. Focal glomerulosclerosis (FGS incidence was evaluated by renal histology. Cardiac function was measured by echocardiography and hemodynamic measurements.UNX alone induced compensatory left kidney enlargement, increased plasma creatinine and cystatin C levels, and slightly reduced glomerular filtration rate and increased FGS. AV induced significant cardiac enlargement and hypertrophy and reduced cardiac function and increased FGS, these changes were aggravated in UNX+AV rats.Although UNX only induces minor renal dysfunction, additional chronic volume overload placement during the adaptation phase of the remaining kidney is associated with aggravated cardiac dysfunction and remodeling in UNX rats, suggesting special medical care is required for UNX or congenital monokidney subjects in case of chronic volume overload as in the case of pregnancy and hyperthyroidism to prevent further adverse cardiorenal events in these individuals.

  1. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes

    OpenAIRE

    Mihl, C.; Dassen, W.R.M.; Kuipers, H.

    2008-01-01

    Cardiac remodelling is commonly defined as a physiological or pathological state that may occur after conditions such as myocardial infarction, pressure overload, idiopathic dilated cardiomyopathy or volume overload. When training excessively, the heart develops several myocardial adaptations causing a physiological state of cardiac remodelling. These morphological changes depend on the kind of training and are clinically characterised by modifications in cardiac size and shape due to increas...

  2. Myocardial remodeling in diabetic cardiomyopathy associated with cardiac mast cell activation.

    Directory of Open Access Journals (Sweden)

    Zhi Gang Huang

    Full Text Available Diabetic cardiomyopathy is a specific disease process distinct from coronary artery disease and hypertension. The disease features cardiac remodeling stimulated by hyperglycemia of the left ventricle wall and disrupts contractile functions. Cardiac mast cells may be activated by metabolic byproducts resulted from hyperglycermia and then participate in the remodeling process by releasing a multitude of cytokines and bioactive enzymes. Nedocromil, a pharmacologic stabilizer of mast cells, has been shown to normalize cytokine levels and attenuate cardiac remodeling. In this study, we describe the activation of cardiac mast cells by inducing diabetes in normal mice using streptozotocin (STZ. Next, we treated the diabetic mice with nedocromil for 12 weeks and then examined their hearts for signs of cardiac remodeling and quantified contractile function. We observed significantly impaired heart function in diabetic mice, as well as increased cardiac mast cell density and elevated mast cell secretions that correlated with gene expression and aberrant cytokine levels associated with cardiac remodeling. Nedocromil treatment halted contractile dysfunction in diabetic mice and reduced cardiac mast cell density, which correlated with reduced bioactive enzyme secretions, reduced expression of extracellular matrix remodeling factors and collagen synthesis, and normalized cytokine levels. However, the results showed nedocromil treatments did not return diabetic mice to a normal state. We concluded that manipulation of cardiac mast cell function is sufficient to attenuate cardiomyopathy stimulated by diabetes, but other cellular pathways also contribute to the disease process.

  3. Proteoglycans remodeling in cancer: Underlying molecular mechanisms.

    Science.gov (United States)

    Theocharis, Achilleas D; Karamanos, Nikos K

    2017-11-08

    Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling.

    Science.gov (United States)

    Tourki, Bochra; Halade, Ganesh

    2017-10-01

    of cardiac remodeling. © FASEB.

  5. Cardiac remodeling and myocardial dysfunction in obese spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Linz Dominik

    2012-09-01

    Full Text Available Abstract Background The additive effects of obesity and metabolic syndrome on left ventricular (LV maladaptive remodeling and function in hypertension are not characterized. Methods We compared an obese spontaneously hypertensive rat model (SHR-ob with lean spontaneously hypertensive rats (SHR-lean and normotensive controls (Ctr. LV-function was investigated by cardiac magnetic resonance imaging and invasive LV-pressure measurements. LV-interstitial fibrosis was quantified and protein levels of phospholamban (PLB, Serca2a and glucose transporters (GLUT1 and GLUT4 were determined by immunohistochemistry. Results Systolic blood pressure was similar in SHR-lean and SHR-ob (252 ± 7 vs. 242 ± 7 mmHg, p = 0.398 but was higher when compared to Ctr (155 ± 2 mmHg, p  Conclusion In addition to hypertension alone, metabolic syndrome and obesity adds to the myocardial phenotype by aggravating diastolic dysfunction and a progression towards systolic dysfunction. SHR-ob may be a useful model to develop new interventional and pharmacological treatment strategies for hypertensive heart disease and metabolic disorders.

  6. Exercise-Induced Cardiac Remodeling: Lessons from Humans, Horses, and Dogs.

    Science.gov (United States)

    Shave, Rob; Howatson, Glyn; Dickson, Dave; Young, Lesley

    2017-02-12

    Physical activity is dependent upon the cardiovascular system adequately delivering blood to meet the metabolic and thermoregulatory demands of exercise. Animals who regularly exercise therefore require a well-adapted heart to support this delivery. The purpose of this review is to examine cardiac structure, and the potential for exercise-induced cardiac remodeling, in animals that regularly engage in strenuous activity. Specifically, we draw upon the literature that has studied the "athlete's heart" in humans, horses, and dogs, to enable the reader to compare and contrast cardiac remodeling in these three athletic species. The available literature provides compelling evidence for exercise-induced cardiac remodeling in all three species. However, more work is required to understand the influence of species/breed specific genetics and exercise-related hemodynamics, in order to fully understand the impact of exercise on cardiac structure.

  7. Exercise-Induced Cardiac Remodeling: Lessons from Humans, Horses, and Dogs

    Directory of Open Access Journals (Sweden)

    Rob Shave

    2017-02-01

    Full Text Available Physical activity is dependent upon the cardiovascular system adequately delivering blood to meet the metabolic and thermoregulatory demands of exercise. Animals who regularly exercise therefore require a well-adapted heart to support this delivery. The purpose of this review is to examine cardiac structure, and the potential for exercise-induced cardiac remodeling, in animals that regularly engage in strenuous activity. Specifically, we draw upon the literature that has studied the “athlete’s heart” in humans, horses, and dogs, to enable the reader to compare and contrast cardiac remodeling in these three athletic species. The available literature provides compelling evidence for exercise-induced cardiac remodeling in all three species. However, more work is required to understand the influence of species/breed specific genetics and exercise-related hemodynamics, in order to fully understand the impact of exercise on cardiac structure.

  8. Role of TGF-β on cardiac structural and electrical remodeling

    Directory of Open Access Journals (Sweden)

    Roberto Ramos-Mondragón

    2008-12-01

    Full Text Available Roberto Ramos-Mondragón, Carlos A Galindo, Guillermo AvilaDepartamento de Bioquímica, Cinvestav-IPN, MéxicoAbstract: The type β transforming growth factors (TGF-βs are involved in a number of human diseases, including heart failure and myocardial arrhythmias. In fact, during the last 20 years numerous studies have demonstrated that TGF-β affects the architecture of the heart under both normal and pathological conditions. Moreover, TGF-β signaling is currently under investigation, with the aim of discovering potential therapeutic roles in human disease. In contrast, only few studies have investigated whether TGF-β affects electrophysiological properties of the heart. This fact is surprising since electrical remodeling represents an important substrate for cardiac disease. This review discusses the potential role of TGF-β on cardiac excitation-contraction (EC coupling, action potentials, and ion channels. We also discuss the effects of TGF-β on cardiac development and disease from structural and electrophysiological points of view.Keywords: transforming growth factor, ion channel, cardiac electrophysiology

  9. Air pollution and adverse cardiac remodeling: clinical effects and basic mechanisms.

    Science.gov (United States)

    Liu, Yonggang; Goodson, Jamie M; Zhang, Bo; Chin, Michael T

    2015-01-01

    Exposure to air pollution has long been known to trigger cardiovascular events, primarily through activation of local and systemic inflammatory pathways that affect the vasculature. Detrimental effects of air pollution exposure on heart failure and cardiac remodeling have also been described in human populations. Recent studies in both human subjects and animal models have provided insights into the basic physiological, cellular and molecular mechanisms that play a role in adverse cardiac remodeling. This review will give a brief overview of the relationship between air pollution and cardiovascular disease, describe the clinical effects of air pollution exposure on cardiac remodeling, describe the basic mechanisms that affect remodeling as described in human and animal systems and will discuss future areas of investigation.

  10. Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure.

    Science.gov (United States)

    Lara, Aline; Damasceno, Denis D; Pires, Rita; Gros, Robert; Gomes, Enéas R; Gavioli, Mariana; Lima, Ricardo F; Guimarães, Diogo; Lima, Patricia; Bueno, Carlos Roberto; Vasconcelos, Anilton; Roman-Campos, Danilo; Menezes, Cristiane A S; Sirvente, Raquel A; Salemi, Vera M; Mady, Charles; Caron, Marc G; Ferreira, Anderson J; Brum, Patricia C; Resende, Rodrigo R; Cruz, Jader S; Gomez, Marcus Vinicius; Prado, Vania F; de Almeida, Alvair P; Prado, Marco A M; Guatimosim, Silvia

    2010-04-01

    Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.

  11. Left atrial reverse remodeling and cardiac resynchronization therapy for chronic heart failure patients in sinus rhythm.

    Science.gov (United States)

    Donal, Erwan; Tan, Kannika; Leclercq, Christophe; Ollivier, Romain; Derumeaux, Genevieve; Bernard, Mathieu; de Place, Christian; Mabo, Philippe; Daubert, Jean-Claude

    2009-10-01

    Cardiac resynchronization therapy (CRT), which improves left ventricular (LV) function and reverses LV remodeling, is an established therapy for advanced heart failure with prolonged QRS duration. The aim of this study was to examine whether CRT improves atrial function and induces atrial reverse remodeling. A total of 46 patients with heart failure (mean age, 66.7 +/- 10.4 years) who underwent CRT were evaluated with echocardiography before and after 6 months of optimized CRT. Atrial function and LV function were assessed with M-mode, two-dimensional echocardiography, Doppler, tissue Doppler velocity, and strain (epsilon) imaging. LV reverse remodeling was defined as a reduction in LV end-systolic volume of >15%. In responders (n = 23), significant improvements in left atrial (LA) functional, structural, and anatomic remodeling were observed. Maximum LA area and volume decreased, the LA emptying fraction increased, A' increased, and LA epsilon increased from 25.6 +/- 11.0% to 42.6 +/- 10.4% (P < .05 overall). LA reverse remodeling was correlated with baseline LA volume (R = 0.45). Although the correlation was not significant (r = 0.24), LA reverse remodeling was also more frequent in patients with LV reverse remodeling. In patients with LV remodeling, significant LA reverse remodeling after CRT could be observed and detailed on transthoracic echocardiography.

  12. Molecular Mechanisms of Retinoid Receptors in Diabetes-Induced Cardiac Remodeling

    Directory of Open Access Journals (Sweden)

    Jing Pan

    2014-06-01

    Full Text Available Diabetic cardiomyopathy (DCM, a significant contributor to morbidity and mortality in diabetic patients, is characterized by ventricular dysfunction, in the absence of coronary atherosclerosis and hypertension. There is no specific therapeutic strategy to effectively treat patients with DCM, due to a lack of a mechanistic understanding of the disease process. Retinoic acid, the active metabolite of vitamin A, is involved in a wide range of biological processes, through binding and activation of nuclear receptors: retinoic acid receptors (RAR and retinoid X receptors (RXR. RAR/RXR-mediated signaling has been implicated in the regulation of glucose and lipid metabolism. Recently, it has been reported that activation of RAR/RXR has an important role in preventing the development of diabetic cardiomyopathy, through improving cardiac insulin resistance, inhibition of intracellular oxidative stress, NF-κB-mediated inflammatory responses and the renin-angiotensin system. Moreover, downregulated RAR/RXR signaling has been demonstrated in diabetic myocardium, suggesting that impaired RAR/RXR signaling may be a trigger to accelerate diabetes-induced development of DCM. Understanding the molecular mechanisms of retinoid receptors in the regulation of cardiac metabolism and remodeling under diabetic conditions is important in providing the impetus for generating novel therapeutic approaches for the prevention and treatment of diabetes-induced cardiac complications and heart failure.

  13. Cardiac remodeling in the mouse model of Marfan syndrome develops into two distinctive phenotypes.

    Science.gov (United States)

    Tae, Hyun-Jin; Petrashevskaya, Natalia; Marshall, Shannon; Krawczyk, Melissa; Talan, Mark

    2016-01-15

    Marfan syndrome (MFS) is a systemic disorder of connective tissue caused by mutations in fibrillin-1. Cardiac dysfunction in MFS has not been characterized halting the development of therapies of cardiac complication in MFS. We aimed to study the age-dependent cardiac remodeling in the mouse model of MFS FbnC1039G+/- mouse [Marfan heterozygous (HT) mouse] and its association with valvular regurgitation. Marfan HT mice of 2-4 mo demonstrated a mild hypertrophic cardiac remodeling with predominant decline of diastolic function and increased transforming growth factor-β canonical (p-SMAD2/3) and noncanonical (p-ERK1/2 and p-p38 MAPK) signaling and upregulation of hypertrophic markers natriuretic peptides atrium natriuretic peptide and brain natriuretic peptide. Among older HT mice (6-14 mo), cardiac remodeling was associated with two distinct phenotypes, manifesting either dilated or constricted left ventricular chamber. Dilatation of left ventricular chamber was accompanied by biochemical evidence of greater mechanical stress, including elevated ERK1/2 and p38 MAPK phosphorylation and higher brain natriuretic peptide expression. The aortic valve regurgitation was registered in 20% of the constricted group and 60% of the dilated group, whereas mitral insufficiency was observed in 40% of the constricted group and 100% of the dilated group. Cardiac dysfunction was not associated with the increase of interstitial fibrosis and nonmyocyte proliferation. In the mouse model fibrillin-1, haploinsufficiency results in the early onset of nonfibrotic hypertrophic cardiac remodeling and dysfunction, independently from valvular abnormalities. MFS heart is vulnerable to stress-induced cardiac dilatation in the face of valvular regurgitation, and stress-activated MAPK signals represent a potential target for cardiac management in MFS.

  14. Mononuclear Phagocytes Are Dispensable for Cardiac Remodeling in Established Pressure-Overload Heart Failure.

    Directory of Open Access Journals (Sweden)

    Bindiya Patel

    Full Text Available Although cardiac and splenic mononuclear phagocytes (MPs, i.e., monocytes, macrophages and dendritic cells (DCs, are key contributors to cardiac remodeling after myocardial infarction, their role in pressure-overload remodeling is unclear. We tested the hypothesis that these immune cells are required for the progression of remodeling in pressure-overload heart failure (HF, and that MP depletion would ameliorate remodeling.C57BL/6 mice were subjected to transverse aortic constriction (TAC or sham operation, and assessed for alterations in MPs. As compared with sham, TAC mice exhibited expansion of circulating LyC6hi monocytes and pro-inflammatory CD206- cardiac macrophages early (1 w after pressure-overload, prior to significant hypertrophy and systolic dysfunction, with subsequent resolution during chronic HF. In contrast, classical DCs were expanded in the heart in a biphasic manner, with peaks both early, analogous to macrophages, and late (8 w, during established HF. There was no significant expansion of circulating DCs, or Ly6C+ monocytes and DCs in the spleen. Periodic systemic MP depletion from 2 to 16 w after TAC in macrophage Fas-induced apoptosis (MaFIA transgenic mice did not alter cardiac remodeling progression, nor did splenectomy in mice with established HF after TAC. Lastly, adoptive transfer of splenocytes from TAC HF mice into naïve recipients did not induce immediate or long-term cardiac dysfunction in recipient mice.Mononuclear phagocytes populations expand in a phasic manner in the heart during pressure-overload. However, they are dispensable for the progression of remodeling and failure once significant hypertrophy is evident and blood monocytosis has normalized.

  15. Dietary nitrite supplementation attenuates cardiac remodeling in l-NAME-induced hypertensive rats.

    Science.gov (United States)

    Sonoda, Kunihiro; Ohtake, Kazuo; Uchida, Hiroyuki; Ito, Junta; Uchida, Masaki; Natsume, Hideshi; Tamada, Hazuki; Kobayashi, Jun

    2017-07-01

    Loss of nitric oxide (NO) bioavailability underlies the development of hypertensive heart disease. We investigated the effects of dietary nitrite on N G -nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Sprague-Dawley rats were divided into five groups: an untreated control group, an l-NAME-treated group, and three other l-NAME-treated groups supplemented with 10 mg/L or 100 mg/L of nitrite or 100 mg/L of captopril in drinking water. After the 8-week experimental period, mean arterial blood pressure was measured, followed by sampling of blood and heart tissue for assessment of nitrite/nitrate levels in the plasma and heart, the plasma level of angiotensin II (AT II), and the heart transcriptional levels of AT II type 1 receptor (AT 1 R), transforming growth factor-β1 (TGF-β1), and connective tissue proteins such as type 1 collagen and fibronectin. Heart tissue was analyzed by histopathological morphometry, including assessments of ventricular and coronary vascular hypertrophy and fibrosis, as well as immunohistochemistry analyses of myocardial expression of AT 1 R. l-NAME treatment reduced the plasma nitrate level and led to the development of hypertension, with increased plasma levels of AT II and increased heart transcriptional levels of AT 1 R and TGF-β1-mediated connective tissue proteins, showing myocardial and coronary arteriolar hypertrophy and fibrosis. However, dietary nitrite supplementation inhibited TGF-β1-mediated cardiac remodeling by suppressing AT II and AT 1 R. These results suggest that dietary nitrite levels achievable via a daily high-vegetable diet could improve hypertensive heart disease by inhibiting AT II-AT 1 R-mediated cardiac remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of Hypertension and Exercise on Cardiac Proteome Remodelling

    Directory of Open Access Journals (Sweden)

    Bernardo A. Petriz

    2014-01-01

    Full Text Available Left ventricle hypertrophy is a common outcome of pressure overload stimulus closely associated with hypertension. This process is triggered by adverse molecular signalling, gene expression, and proteome alteration. Proteomic research has revealed that several molecular targets are associated with pathologic cardiac hypertrophy, including angiotensin II, endothelin-1 and isoproterenol. Several metabolic, contractile, and stress-related proteins are shown to be altered in cardiac hypertrophy derived by hypertension. On the other hand, exercise is a nonpharmacologic agent used for hypertension treatment, where cardiac hypertrophy induced by exercise training is characterized by improvement in cardiac function and resistance against ischemic insult. Despite the scarcity of proteomic research performed with exercise, healthy and pathologic heart proteomes are shown to be modulated in a completely different way. Hence, the altered proteome induced by exercise is mostly associated with cardioprotective aspects such as contractile and metabolic improvement and physiologic cardiac hypertrophy. The present review, therefore, describes relevant studies involving the molecular characteristics and alterations from hypertensive-induced and exercise-induced hypertrophy, as well as the main proteomic research performed in this field. Furthermore, proteomic research into the effect of hypertension on other target-demerged organs is examined.

  17. NADPH Oxidase-4 Driven Cardiac Macrophage Polarization Protects Against Myocardial Infarction–Induced Remodeling

    Directory of Open Access Journals (Sweden)

    Heloise Mongue-Din, PharmD, PhD

    2017-12-01

    Full Text Available The reactive oxygen species–generating enzyme NADPH oxidase 4 (Nox4 is up-regulated in the heart after myocardial infarction (MI. Mice with cardiomyocyte-targeted Nox4 overexpression (TG displayed increased macrophages in the heart at baseline, with skewing toward an M2 phenotype compared with wild-type controls (WT. After MI, TG mice had a higher proportion of M2 macrophages along with higher survival, decreased cardiac remodeling, and better contractile function than wild-type mice. The post-MI increase in cardiac matrix metalloproteinase–2 activity was substantially blunted in TG mice. These results indicate that cardiomyocyte Nox4 modulates macrophage polarization toward an M2 phenotype, resulting in improved post-MI survival and remodeling, likely through the attenuation of cardiac matrix metalloproteinase–2 activity.

  18. Cardiac CaM Kinase II genes δ and γ contribute to adverse remodeling but redundantly inhibit calcineurin-induced myocardial hypertrophy.

    Science.gov (United States)

    Kreusser, Michael M; Lehmann, Lorenz H; Keranov, Stanislav; Hoting, Marc-Oscar; Oehl, Ulrike; Kohlhaas, Michael; Reil, Jan-Christian; Neumann, Kay; Schneider, Michael D; Hill, Joseph A; Dobrev, Dobromir; Maack, Christoph; Maier, Lars S; Gröne, Hermann-Josef; Katus, Hugo A; Olson, Eric N; Backs, Johannes

    2014-10-07

    Ca(2+)-dependent signaling through CaM Kinase II (CaMKII) and calcineurin was suggested to contribute to adverse cardiac remodeling. However, the relative importance of CaMKII versus calcineurin for adverse cardiac remodeling remained unclear. We generated double-knockout mice (DKO) lacking the 2 cardiac CaMKII genes δ and γ specifically in cardiomyocytes. We show that both CaMKII isoforms contribute redundantly to phosphorylation not only of phospholamban, ryanodine receptor 2, and histone deacetylase 4, but also calcineurin. Under baseline conditions, DKO mice are viable and display neither abnormal Ca(2+) handling nor functional and structural changes. On pathological pressure overload and β-adrenergic stimulation, DKO mice are protected against cardiac dysfunction and interstitial fibrosis. But surprisingly and paradoxically, DKO mice develop cardiac hypertrophy driven by excessive activation of endogenous calcineurin, which is associated with a lack of phosphorylation at the auto-inhibitory calcineurin A site Ser411. Likewise, calcineurin inhibition prevents cardiac hypertrophy in DKO. On exercise performance, DKO mice show an exaggeration of cardiac hypertrophy with increased expression of the calcineurin target gene RCAN1-4 but no signs of adverse cardiac remodeling. We established a mouse model in which CaMKII's activity is specifically and completely abolished. By the use of this model we show that CaMKII induces maladaptive cardiac remodeling while it inhibits calcineurin-dependent hypertrophy. These data suggest inhibition of CaMKII but not calcineurin as a promising approach to attenuate the progression of heart failure. © 2014 American Heart Association, Inc.

  19. The Role of Nrf2-Mediated Pathway in Cardiac Remodeling and Heart Failure

    Directory of Open Access Journals (Sweden)

    Shanshan Zhou

    2014-01-01

    Full Text Available Heart failure (HF is frequently the consequence of sustained, abnormal neurohormonal, and mechanical stress and remains a leading cause of death worldwide. The key pathophysiological process leading to HF is cardiac remodeling, a term referring to maladaptation to cardiac stress at the molecular, cellular, tissue, and organ levels. HF and many of the conditions that predispose one to HF are associated with oxidative stress. Increased generation of reactive oxygen species (ROS in the heart can directly lead to increased necrosis and apoptosis of cardiomyocytes which subsequently induce cardiac remodeling and dysfunction. Nuclear factor-erythroid-2- (NF-E2- related factor 2 (Nrf2 is a transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes that are ubiquitously expressed in the cardiovascular system. Emerging evidence has revealed that Nrf2 and its target genes are critical regulators of cardiovascular homeostasis via the suppression of oxidative stress, which is the key player in the development and progression of HF. The purpose of this review is to summarize evidence that activation of Nrf2 enhances endogenous antioxidant defenses and counteracts oxidative stress-associated cardiac remodeling and HF.

  20. Early remodeling of rat cardiac muscle induced by swimming training

    Directory of Open Access Journals (Sweden)

    Verzola R.M.M.

    2006-01-01

    Full Text Available The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group. Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05 was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05 in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05 with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01 after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05 after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.

  1. Early postoperative remodelling following repair of tetralogy of Fallot utilising unsedated cardiac magnetic resonance: a pilot study.

    Science.gov (United States)

    DiLorenzo, Michael P; Goldmuntz, Elizabeth; Nicolson, Susan C; Fogel, Mark A; Mercer-Rosa, Laura

    2018-05-01

    IntroductionThe right ventricular adaptations early after surgery in infants with tetralogy of Fallot are important to understand the changes that occur later on in life; this physiology has not been fully delineated. We sought to assess early postoperative right ventricular remodelling in patients with tetralogy of Fallot by cardiac MRI.Materials and methodSubjects with tetralogy of Fallot under 1 year of age were recruited following complete surgical repair for tetralogy of Fallot. Protocol-based cardiac MRI to assess anatomy, function, and flows was performed before hospital discharge using the feed and sleep technique, an unsedated imaging technique. MRI was completed in 16 subjects at a median age of 77 days (interquartile range 114). There was normal ventricular ejection fraction and indexed right ventricular end-diastolic volume (48±13 cc/m2), but elevated right ventricular mass (z score 6.2±2.4). Subjects requiring a transannular patch or right ventricle to pulmonary artery conduit had moderate pulmonary insufficiency (regurgitant fraction 27±16%).DiscussionEarly right ventricular remodelling after surgical repair for tetralogy of Fallot is characterised by significant pulmonary regurgitation, right ventricular hypertrophy, and lack of dilation. Performing cardiac MRI using the feed and sleep technique is feasible in infants younger than 5 months. These results might open new avenues to study longitudinal right ventricular changes in tetralogy of Fallot and to further explore the utility of unsedated MRI in patients with other types of CHDs.

  2. A radial global dyssynchrony index as predictor of left ventricular reverse remodeling after cardiac resynchronization therapy.

    Science.gov (United States)

    Ascione, Luigi; Iengo, Raffaele; Accadia, Maria; Rumolo, Salvatore; Celentano, Eduardo; D'Andrea, Antonello; De Michele, Mario; Muto, Carmine; Carreras, Giovanni; Maglione, Marco; Tuccillo, Bernardino; Roelandt, Jos

    2008-07-01

    Cardiac mechanical efficiency requires that opposing left ventricular regions are coupled both in shortening and lengthening during the same phase of cardiac cycle. Aim of this study was to evaluate whether global measures of mechanical dyssynchrony are able to predict reverse remodeling of the left ventricle in patients receiving cardiac resynchronization therapy (CRT). Sixty-two patients underwent a clinical examination, including New York Heart Association class evaluation and 6-minute walking distance and both echocardiographic study before and 6 months after CRT. Intraventricular dyssynchrony was evaluated by two-dimensional strain echocardiography, measuring the amount of uncoordinated contraction and relaxation between septum and free wall for both longitudinal and radial function and was presented as the longitudinal global dyssynchrony index (LGDI) and the radial global dyssynchrony index (RGDI). Reverse remodeling was defined by a left ventricular end systolic volume reduction >or= 15%. After CRT 39 patients showed reverse remodeling. In this group, RGDI (0.74 +/- 0.26 vs 0.32 +/- 0.30; P = 0.0001) and LGDI (0.52 +/- 0.28 vs 0.30 +/- 0.24; P = 0.002) were significantly higher than in nonresponders. A receiver-operating characteristic curve analysis showed that RGDI >0.47 and LGDI >0.34 had a sensitivity and a specificity to predict reverse remodeling of 87% and 74%, 82%, and 74%, respectively. Stepwise forward multiple logistic regression analysis showed that RGDI (O.R.:13.4; 95%C.I.:4.2-120.5; P < 0.0001) was an independent determinant of a positive response to CRT. A radial global dyssynchrony index predicts left ventricular reverse remodeling after CRT.

  3. Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture

    International Nuclear Information System (INIS)

    Winklhofer, Sebastian; Berger, Nicole; Stolzmann, Paul; Stoeck, Christian T.; Kozerke, Sebastian; Thali, Michael; Manka, Robert; Alkadhi, Hatem

    2014-01-01

    To investigate the accuracy of post-mortem diffusion tensor imaging (DTI) for the detection of myocardial infarction (MI) and to demonstrate the feasibility of helix angle (HA) calculation to study remodelling of myofibre architecture. Cardiac DTI was performed in 26 deceased subjects prior to autopsy for medicolegal reasons. Fractional anisotropy (FA) and mean diffusivity (MD) were determined. Accuracy was calculated on per-segment (AHA classification), per-territory, and per-patient basis, with pathology as reference standard. HAs were calculated and compared between healthy segments and those with MI. Autopsy demonstrated MI in 61/440 segments (13.9 %) in 12/26 deceased subjects. Healthy myocardial segments had significantly higher FA (p 0.05). Post-mortem cardiac DTI enablesdifferentiation between healthy and infarcted myocardial segments by means of FA and MD. HA assessment allows for the demonstration of remodelling of myofibre architecture following chronic MI. (orig.)

  4. Givinostat reduces adverse cardiac remodeling through regulating fibroblasts activation.

    Science.gov (United States)

    Milan, Marika; Pace, Valentina; Maiullari, Fabio; Chirivì, Maila; Baci, Denisa; Maiullari, Silvia; Madaro, Luca; Maccari, Sonia; Stati, Tonino; Marano, Giuseppe; Frati, Giacomo; Puri, Pier Lorenzo; De Falco, Elena; Bearzi, Claudia; Rizzi, Roberto

    2018-01-25

    Cardiovascular diseases (CVDs) are a major burden on the healthcare system: indeed, over two million new cases are diagnosed every year worldwide. Unfortunately, important drawbacks for the treatment of these patients derive from our current inability to stop the structural alterations that lead to heart failure, the common endpoint of many CVDs. In this scenario, a better understanding of the role of epigenetics - hereditable changes of chromatin that do not alter the DNA sequence itself - is warranted. To date, hyperacetylation of histones has been reported in hypertension and myocardial infarction, but the use of inhibitors for treating CVDs remains limited. Here, we studied the effect of the histone deacetylase inhibitor Givinostat on a mouse model of acute myocardial infarction. We found that it contributes to decrease endothelial-to-mesenchymal transition and inflammation, reducing cardiac fibrosis and improving heart performance and protecting the blood vessels from apoptosis through the modulatory effect of cardiac fibroblasts on endothelial cells. Therefore, Givinostat may have potential for the treatment of CVDs.

  5. Impact of family hypertension history on exercise-induced cardiac remodeling.

    Science.gov (United States)

    Baggish, Aaron L; Weiner, Rory B; Yared, Kibar; Wang, Francis; Kupperman, Eli; Hutter, Adolph M; Picard, Michael H; Wood, Malissa J

    2009-07-01

    Left ventricular (LV) hypertrophy is a well-established, but highly variable, finding among exercise-trained persons. The causes for the variability in LV remodeling in response to exercise training remain incompletely understood. The present study sought to determine whether a family history of hypertension is a determinant of the cardiac response to exercise training. The cardiac parameters in 60 collegiate rowers (30 men/30 women; age 19.8 +/- 1.1 years) with (family history positive [FH+], n = 22) and without (family history negative [FH-], n = 38) a FH of hypertension were studied with echocardiography before and after 90 days of rowing training. The LV mass increased significantly in both groups. However, the LV mass increased significantly more in FH- persons (Delta 17 +/- 5 g/m(2)) than in FH+ persons (Delta 9 +/- 6 g/m(2), p hypertrophy between the 2 groups. FH- athletes experienced eccentric LV hypertrophy (relative wall thickness index 0.39 +/- 0.4) characterized by LV dilation. In contrast, FH+ athletes developed concentric LV hypertrophy (relative wall thickness index 0.44 +/- 0.3; p eccentric LV remodeling in FH- athletes was associated with a more robust enhancement of LV diastolic function than the concentric LV remodeling that occurred in FH+ athletes. In conclusion, these findings suggest that patterns of exercise-induced LV remodeling are strongly associated with FH history status.

  6. Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture.

    Science.gov (United States)

    Winklhofer, Sebastian; Stoeck, Christian T; Berger, Nicole; Thali, Michael; Manka, Robert; Kozerke, Sebastian; Alkadhi, Hatem; Stolzmann, Paul

    2014-11-01

    To investigate the accuracy of post-mortem diffusion tensor imaging (DTI) for the detection of myocardial infarction (MI) and to demonstrate the feasibility of helix angle (HA) calculation to study remodelling of myofibre architecture. Cardiac DTI was performed in 26 deceased subjects prior to autopsy for medicolegal reasons. Fractional anisotropy (FA) and mean diffusivity (MD) were determined. Accuracy was calculated on per-segment (AHA classification), per-territory, and per-patient basis, with pathology as reference standard. HAs were calculated and compared between healthy segments and those with MI. Autopsy demonstrated MI in 61/440 segments (13.9 %) in 12/26 deceased subjects. Healthy myocardial segments had significantly higher FA (p Analysis of HA distribution demonstrated remodelling of myofibre architecture, with significant differences between healthy segments and segments with chronic (p  0.05). Post-mortem cardiac DTI enables differentiation between healthy and infarcted myocardial segments by means of FA and MD. HA assessment allows for the demonstration of remodelling of myofibre architecture following chronic MI. • DTI enables post-mortem detection of myocardial infarction with good accuracy. • A decrease in right-handed helical fibre indicates myofibre remodelling following chronic myocardial infarction. • DTI allows for ruling out myocardial infarction by means of FA. • Post-mortem DTI may represent a valuable screening tool in forensic investigations.

  7. Rosemary supplementation (Rosmarinus oficinallis L. attenuates cardiac remodeling after myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Bruna Paola Murino Rafacho

    Full Text Available Myocardial infarction (MI is one of the leading causes of morbidity and mortality worldwide. Dietary intervention on adverse cardiac remodeling after MI has significant clinical relevance. Rosemary leaves are a natural product with antioxidant/anti-inflammatory properties, but its effect on morphology and ventricular function after MI is unknown.To determine the effect of the dietary supplementation of rosemary leaves on cardiac remodeling after MI, male Wistar rats were divided into 6 groups after sham procedure or experimental induced MI: 1 Sham group fed standard chow (SR0, n = 23; 2 Sham group fed standard chow supplemented with 0.02% rosemary (R002 (SR002, n = 23; 3 Sham group fed standard chow supplemented with 0.2% rosemary (R02 (SR02, n = 22; 4 group submitted to MI and fed standard chow (IR0, n = 13; 5 group submitted to MI and fed standard chow supplemented with R002 (IR002, n = 8; and 6 group submitted to MI and fed standard chow supplemented with R02 (IR02, n = 9. After 3 months of the treatment, systolic pressure evaluation, echocardiography and euthanasia were performed. Left ventricular samples were evaluated for: fibrosis, cytokine levels, apoptosis, energy metabolism enzymes, and oxidative stress. Rosemary dietary supplementation attenuated cardiac remodeling by improving energy metabolism and decreasing oxidative stress. Rosemary supplementation of 0.02% improved diastolic function and reduced hypertrophy after MI. Regarding rosemary dose, 0.02% and 0.2% for rats are equivalent to 11 mg and 110 mg for humans, respectively.Our findings support further investigations of the rosemary use as adjuvant therapy in adverse cardiac remodeling.

  8. Cardiac Myocyte De Novo DNA Methyltransferases 3a/3b Are Dispensable for Cardiac Function and Remodeling after Chronic Pressure Overload in Mice.

    Directory of Open Access Journals (Sweden)

    Thomas G Nührenberg

    Full Text Available Recent studies reported altered DNA methylation in failing human hearts. This may suggest a role for de novo DNA methylation in the development of heart failure. Here, we tested whether cardiomyocyte-specific loss of de novo DNA methyltransferases Dnmt3a and Dnmt3b altered cardiac function and remodeling after chronic left ventricular pressure overload.Mice with specific ablation of Dnmt3a and Dnmt3b expression in cardiomyocytes were generated by crossing floxed Dnmt3afl and Dnmt3bfl alleles with mice expressing Cre recombinase under control of the atrial myosin light chain gene promoter. The efficacy of combined Dnmt3a/3b ablation (DKO was characterized on cardiomyocyte-specific genomic DNA and mRNA levels. Cardiac phenotyping was carried out without (sham or with left ventricular pressure overload induced by transverse aortic constriction (TAC. Under similar conditions, cardiac genome-wide transcriptional profiling was performed and DNA methylation levels of promoters of differentially regulated genes were assessed by pyrosequencing.DKO cardiomyocytes showed virtual absence of targeted Dnmt3a and Dnmt3b mRNA transcripts. Cardiac phenotyping revealed no significant differences between DKO and control mice under sham and TAC conditions. Transcriptome analyses identified upregulation of 44 and downregulation of 9 genes in DKO as compared with control sham mice. TAC mice showed similar changes with substantial overlap of regulated genes compared to sham. Promoters of upregulated genes were largely unmethylated in DKO compared to control mice.The absence of cardiac pathology in the presence of the predicted molecular phenotype suggests that de novo DNA methylation in cardiomyocytes is dispensable for adaptive mechanisms after chronic cardiac pressure overload.

  9. Cardiac Myocyte De Novo DNA Methyltransferases 3a/3b Are Dispensable for Cardiac Function and Remodeling after Chronic Pressure Overload in Mice

    Science.gov (United States)

    Schnick, Tilman; Preißl, Sebastian; Witten, Anika; Stoll, Monika; Gilsbach, Ralf; Neumann, Franz-Josef; Hein, Lutz

    2015-01-01

    Background Recent studies reported altered DNA methylation in failing human hearts. This may suggest a role for de novo DNA methylation in the development of heart failure. Here, we tested whether cardiomyocyte-specific loss of de novo DNA methyltransferases Dnmt3a and Dnmt3b altered cardiac function and remodeling after chronic left ventricular pressure overload. Methods Mice with specific ablation of Dnmt3a and Dnmt3b expression in cardiomyocytes were generated by crossing floxed Dnmt3afl and Dnmt3bfl alleles with mice expressing Cre recombinase under control of the atrial myosin light chain gene promoter. The efficacy of combined Dnmt3a/3b ablation (DKO) was characterized on cardiomyocyte-specific genomic DNA and mRNA levels. Cardiac phenotyping was carried out without (sham) or with left ventricular pressure overload induced by transverse aortic constriction (TAC). Under similar conditions, cardiac genome-wide transcriptional profiling was performed and DNA methylation levels of promoters of differentially regulated genes were assessed by pyrosequencing. Results DKO cardiomyocytes showed virtual absence of targeted Dnmt3a and Dnmt3b mRNA transcripts. Cardiac phenotyping revealed no significant differences between DKO and control mice under sham and TAC conditions. Transcriptome analyses identified upregulation of 44 and downregulation of 9 genes in DKO as compared with control sham mice. TAC mice showed similar changes with substantial overlap of regulated genes compared to sham. Promoters of upregulated genes were largely unmethylated in DKO compared to control mice. Conclusion The absence of cardiac pathology in the presence of the predicted molecular phenotype suggests that de novo DNA methylation in cardiomyocytes is dispensable for adaptive mechanisms after chronic cardiac pressure overload. PMID:26098432

  10. Astragaloside IV Prevents Cardiac Remodeling in the Apolipoprotein E-Deficient Mice by Regulating Cardiac Homeostasis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Xiong-Zhi Li

    2017-12-01

    Full Text Available Background: Hypercholesterolemia is a risk factor for the development of cardiac hypertrophy. Astragaloside IV (AST-IV possesses cardiovascular protective properties. We hypothesize that AST-IV prevents cardiac remodeling with hypercholesterolemia via modulating tissue homeostasis and alleviating oxidative stress. Methods: The ApoE-/- mice were treated with AST-IV at 1 or 10 mg/kg for 8 weeks. The blood lipids tests, echocardiography, and TUNEL were performed. The mRNA expression profile was detected by real-time PCR. The myocytes size and number, and the expressions of proliferation (ki67, senescence (p16INK4a, oxidant (NADPH oxidase 4, NOX4 and antioxidant (superoxide dismutase, SOD were observed by immunofluorescence staining. Results: Neither 1 mg/kg nor 10 mg/kg AST-IV treatment could decrease blood lipids in ApoE-/- mice. However, the decreased left ventricular ejection fraction (LVEF and fractional shortening (FS in ApoE–/– mice were significantly improved after AST-IV treatment. The cardiac collagen volume fraction declined nearly in half after AST-IV treatment. The enlarged myocyte size was suppressed, and myocyte number was recovered, and the alterations of genes expressions linked to cell cycle, proliferation, senescence, p53-apoptosis pathway and oxidant-antioxidants in the hearts of ApoE-/- mice were reversed after AST-IV treatment. The decreased ki67 and increased p16INK4a in the hearts of ApoE-/- mice were recovered after AST-IV treatment. The percentages of apoptotic myocytes and NOX4-positive cells in AST-IV treated mice were decreased, which were consistent with the gene expressions. Conclusion: AST-IV treatment could prevent cardiac remodeling and recover the impaired ventricular function induced by hypercholesterolemia. The beneficial effect of AST-IV might partly be through regulating cardiac homeostasis and anti-oxidative stress.

  11. Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes.

    Science.gov (United States)

    Mihl, C; Dassen, W R M; Kuipers, H

    2008-04-01

    Cardiac remodelling is commonly defined as a physiological or pathological state that may occur after conditions such as myocardial infarction, pressure overload, idiopathic dilated cardiomyopathy or volume overload. When training excessively, the heart develops several myocardial adaptations causing a physiological state of cardiac remodelling. These morphological changes depend on the kind of training and are clinically characterised by modifications in cardiac size and shape due to increased load. Several studies have investigated morphological differences in the athlete's heart between athletes performing strength training and athletes performing endurance training. Endurance training is associated with an increased cardiac output and volume load on the left and right ventricles, causing the endurance-trained heart to generate a mild to moderate dilatation of the left ventricle combined with a mild to moderate increase in left ventricular wall thickness. Strength training is characterised by an elevation of both systolic and diastolic blood pressure. This pressure overload causes an increase in left ventricular wall thickness. This may or may not be accompanied by a slight raise in the left ventricular volume. However, the development of an endurancetrained heart and a strength-trained heart should not be considered an absolute concept. Both forms of training cause specific morphological changes in the heart, dependent on the type of sport. (Neth Heart J 2008;16:129-33.).

  12. Endurance Exercise-Induced Cardiac Remodeling: Not All Sports Are Created Equal.

    Science.gov (United States)

    Wasfy, Meagan M; Weiner, Rory B; Wang, Francis; Berkstresser, Brant; Lewis, Gregory D; DeLuca, James R; Hutter, Adolph M; Picard, Michael H; Baggish, Aaron L

    2015-12-01

    The term endurance sport (ES) is broadly used to characterize any exercise that requires maintenance of high cardiac output over extended time. However, the relative amount of isotonic (volume) versus isometric (pressure) cardiac stress varies across ES disciplines. To what degree ES-mediated cardiac remodeling varies, as a function of superimposed isometric stress, is uncertain. The aim of this study was to compare the cardiac remodeling characteristics associated with two common yet physiologically distinct forms of ES. Healthy competitive male long-distance runners (high isotonic, low isometric stress; n = 40) and rowers (high isotonic, high isometric stress; n = 40) were comparatively studied after 3 months of sport-specific exercise training with conventional and speckle-tracking two-dimensional echocardiography. Rowers demonstrated dilated left ventricular (LV) volumes and elevated LV mass (i.e., eccentric LV hypertrophy), whereas runners demonstrated normal LV mass (runners, 88 ± 11 g/m(2); rowers, 108 ± 13 g/m(2); P discipline. Further work is required to determine the mechanisms for this differential adaptation, to develop definitive ES discipline-specific normative values, and to evaluate the optimal therapeutic use of specific ES disciplines among patients with common cardiovascular diseases. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  13. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux.

    Science.gov (United States)

    Wu, Xiaoqian; Zheng, Dechong; Qin, Yuyan; Liu, Zumei; Zhang, Guiping; Zhu, Xiaoyan; Zeng, Lihuan; Liang, Zhenye

    2017-10-14

    Our previous study showed that autophagy flux was impaired with sustained heart ischemia, which exacerbated adverse cardiac remodeling after acute myocardial infarction (AMI). Here we investigated whether Nobiletin, a citrus polymethoxylated flavonoids, could restore the autophagy flux and improve cardiac prognosis after AMI. AMI was induced by ligating left anterior descending (LAD) coronary artery in rats. Nobiletin improved the post-infarct cardiac dysfunction significantly and attenuated adverse cardiac remodeling. Meanwhile, Nobiletin protected H9C2 cells against oxygen glucose deprivation (OGD) in vitro. The impaired autophagy flux due to ischemia was ameliorated after Nobiletin treatment by testing the autophagy substrate, LC3BⅡ and P62 protein level both in vivo and in vitro. GFP-mRFP-LC3 adenovirus transfection also supported that Nobiletin restored the impaired autophagy flux. Specifically, the autophagy flux inhibitor, chloroquine, but not 3 MA, alleviated Nobiletin-mediated protection against OGD. Notably, Nobiletin does not affect the activation of classical upstream autophagy signaling pathways. However, Nobiletin increased the lysosome acidation which also supported that Nobiletin accelerated autophagy flux. Taken together, our findings suggested that Nobiletin restored impaired autophagy flux and protected against acute myocardial infarction, suggesting a potential role of autophagy flux in Nobiletin-mediated myocardial protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Anti-CCL21 Antibody Attenuates Infarct Size and Improves Cardiac Remodeling After Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Yi Jiang

    2015-09-01

    Full Text Available Background/Aims: Over-activation of cellular inflammatory effectors adversely affects myocardial function after acute myocardial infarction (AMI. The CC-chemokine CCL21 is, via its receptor CCR7, one of the key regulators of inflammation and immune cell recruitment, participates in various inflammatory disorders, including cardiovascular ones. This study explored the therapeutic effect of an anti-CCL21 antibody in cardiac remodeling after myocardial infarction. Methods and Results: An animal model of AMI generated by left anterior descending coronary artery ligation in C57BL/6 mice resulted in higher levels of circulating CCL21 and cardiac CCR7. Neutralization of CCL21 by intravenous injection of anti-CCL21 monoclonal antibody reduced infarct size after AMI, decreased serum levels of neutrophil and monocyte chemo attractants post AMI, diminished neutrophil and macrophage recruitment in infarcted myocardium, and suppressed MMP-9 and total collagen content in myocardium. Anti-CCL21 treatment also limited cardiac enlargement and improved left ventricular function. Conclusions: Our study indicated that CCL21 was involved in cardiac remodeling post infarction and anti-CCL21 strategies might be useful in the treatment of AMI.

  15. Effect of angiotensin II blockade on cardiac hypertrophy and remodelling: a review.

    Science.gov (United States)

    Dahlöf, B

    1995-11-01

    Activation of the renin-angiotensin system both systemically and locally seems to be of importance for cardiovascular hypertrophy and remodelling. The octapeptide angiotensin II definitively plays a central role. In the reversal, for example, of left ventricular hypertrophy, so far the most important independent risk factor for an adverse outcome, blocking of the renin-angiotensin system with ACE inhibition has been shown to be particularly effective. In cardiac tissue, however, ACE inhibition has been suggested to inhibit only a fraction of angiotensin II formed, indicating that other enzymatic pathways can be of importance. From a theoretical point of view a more complete blockade of the angiotensin II type 1 receptor would offer a more effective attenuation of the unfavourable effect of angiotensin II. Experimentally, losartan, a novel selective angiotensin II receptor type 1 antagonist has been shown to decrease cardiac hypertrophic response in models of both hypertension and volume cardiac hypertrophy as well as reverse hypertrophy in spontaneously hypertensive rats. TCV-116, another selective angiotensin II antagonist, also effectively reverses cardiac hypertophy and interstitial fibrosis in the rat. The only report so far regarding the effect of angiotensin II blockade on cardiac hypertrophy in essential hypertension suggests a more favourable short-term effect on cardiac hypertrophy for the same blood pressure reduction with losartan compared with atenolol in a small population of mild to moderate hypertensives. In the perspective of the well-established positive effects of ACE inhibition on the remodelling process in the remaining viable myocardium after myocardial infarction, involving myocyte hypertrophy, interstitial fibrosis and progressive dilatation, it is reassuring that angiotensin II blockade has been shown to perform equally well as ACE inhibition after experimental coronary ligation. In summary, the development of cardiovascular hypertrophy in

  16. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  17. Exercise leads to unfavourable cardiac remodelling and enhanced metabolic homeostasis in obese mice with cardiac and skeletal muscle autophagy deficiency.

    Science.gov (United States)

    Yan, Zhen; Kronemberger, Ana; Blomme, Jay; Call, Jarrod A; Caster, Hannah M; Pereira, Renata O; Zhao, Henan; de Melo, Vitor U; Laker, Rhianna C; Zhang, Mei; Lira, Vitor A

    2017-08-11

    Autophagy is stimulated by exercise in several tissues; yet the role of skeletal and cardiac muscle-specific autophagy on the benefits of exercise training remains incompletely understood. Here, we determined the metabolic impact of exercise training in obese mice with cardiac and skeletal muscle disruption of the Autophagy related 7 gene (Atg7 h&mKO ). Muscle autophagy deficiency did not affect glucose clearance and exercise capacity in lean adult mice. High-fat diet in sedentary mice led to endoplasmic reticulum stress and aberrant mitochondrial protein expression in autophagy-deficient skeletal and cardiac muscles. Endurance exercise training partially reversed these abnormalities in skeletal muscle, but aggravated those in the heart also causing cardiac fibrosis, foetal gene reprogramming, and impaired mitochondrial biogenesis. Interestingly, exercise-trained Atg7 h&mKO mice were better protected against obesity and insulin resistance with increased circulating fibroblast growth factor 21 (FGF21), elevated Fgf21 mRNA and protein solely in the heart, and upregulation of FGF21-target genes involved in thermogenesis and fatty acid oxidation in brown fat. These results indicate that autophagy is essential for the protective effects of exercise in the heart. However, the atypical remodelling elicited by exercise in the autophagy deficient cardiac muscle enhances whole-body metabolism, at least partially, via a heart-brown fat cross-talk involving FGF21.

  18. Effects of Growth Hormone on Cardiac Remodeling During Resistance Training in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Adriana, E-mail: francispacagnelli@unoeste.br [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Cicogna, Antônio Carlos [Universidade Estadual Paulista (UNESP), Campus Botucatu, SP (Brazil); Engel, Letícia Estevam; Aldá, Maiara Almeida [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Tomasi, Loreta Casquel de [Universidade Estadual Paulista (UNESP), Campus Botucatu, SP (Brazil); Giuffrida, Rogério; Giometti, Inês Cristina [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Freire, Ana Paula Coelho Figueira [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Universidade Estadual Paulista (UNESP), Campus Presidente Prudente, SP (Brazil); Aguiar, Andreo Fernando [Universidade do Norte do Paraná, UNOPAR, Londrina, PR (Brazil); Pacagnelli, Francis Lopes [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil)

    2016-01-15

    Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca{sup 2+} transport.

  19. Fetal cardiac remodeling in twin pregnancy conceived by assisted reproductive technology.

    Science.gov (United States)

    Valenzuela-Alcaraz, B; Cruz-Lemini, M; Rodríguez-López, M; Goncé, A; García-Otero, L; Ayuso, H; Sitges, M; Bijnens, B; Balasch, J; Gratacós, E; Crispi, F

    2018-01-01

    Recent data suggest that singleton fetuses conceived by assisted reproductive technology (ART) present cardiovascular remodeling that may persist postnatally. Twin pregnancies are more frequent in the ART population and are associated with increased adverse perinatal outcomes, such as hypertensive disorders, gestational diabetes and preterm birth. However, it is unknown whether cardiac remodeling is also present in twin pregnancies conceived by ART. Our aim was to assess the presence of fetal cardiac remodeling and dysfunction in twin pregnancies conceived by ART as compared with those conceived spontaneously (SC). This was a prospective cohort study including 50 dichorionic twin fetuses conceived by ART and 50 SC twin fetuses. The study protocol included collection of baseline/perinatal data and a fetal ultrasound examination at 28-30 weeks' gestation, including assessment of estimated fetal weight, fetoplacental Doppler and fetal echocardiography. Measurements of atrial area, atrial/heart ratio, ventricular sphericity index, free wall thickness, mitral and tricuspid annular plane systolic excursions, and systolic and early diastolic peak velocities were assessed. Multilevel analyses were used to compare perinatal and ultrasonographic parameters. Comparisons of echocardiographic variables were adjusted for parental age, paternal body mass index and incidence of pre-eclampsia. Compared with SC twins, ART twin fetuses showed significant cardiac changes, predominantly affecting the right heart, such as dilated atria (right atrial/heart area: 15.7 ± 3.1 vs 18.4 ± 3.2, P fetal cardiac programing in ART. These results open opportunities for early detection and intervention in infants conceived by ART. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.

  20. Worse cardiac remodeling in response to pressure overload in type 2 diabetes mellitus.

    Science.gov (United States)

    Gonçalves, N; Gomes-Ferreira, C; Moura, C; Roncon-Albuquerque, R; Leite-Moreira, A F; Falcão-Pires, I

    2016-08-15

    Diabetic cardiomyopathy is characterized by cardiac structural and functional abnormalities. Additionally, chronic pressure overload conditions are highly prevalent amongst diabetic population and this association leads to a more severe myocardial impairment. The differences in myocardial pathophysiology between type 1 and type 2 diabetes mellitus (DM) still remain to be clarified. Thus, we aimed to investigate biventricular structural and functional changes promoted by the two types of DM and the impact of concomitant chronic pressure overload. Wistar rats were injected with streptozotocin (Type 1 DM, T1DM) or fed with a hypercaloric diet (Type 2 DM, T2DM). Pressure overload was imposed in DM animals by aortic constriction and after 5weeks of DM the cardiac function and structure were evaluated. Both types of DM promoted hypertrophy, increased fibrosis and advanced glycation end-products deposition, in the two ventricles. Interestingly, the induced myocardial alterations were distinct. While T1DM stimulated a pronounced hypertrophy and extracellular matrix remodeling, T2DM induced functional impairment. The negative impact of the association of DM with aortic constriction was more pronounced in T2DM, promoting impaired function and increased stiffness, particularly in the right ventricle. Our study demonstrated that the two types of diabetes induce distinct cardiac alterations per se or when combined with chronic pressure overload. T1DM promoted a more extensive remodeling in cardiac structure while T2DM significantly impaired ventricular function. The impact of pressure overload was more notorious in T2DM as observed by worse myocardial remodeling, suggesting a higher susceptibility to the deleterious effects of chronic pressure overload, namely hypertension, among this diabetic population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Effects of Growth Hormone on Cardiac Remodeling During Resistance Training in Rats

    International Nuclear Information System (INIS)

    Junqueira, Adriana; Cicogna, Antônio Carlos; Engel, Letícia Estevam; Aldá, Maiara Almeida; Tomasi, Loreta Casquel de; Giuffrida, Rogério; Giometti, Inês Cristina; Freire, Ana Paula Coelho Figueira; Aguiar, Andreo Fernando; Pacagnelli, Francis Lopes

    2016-01-01

    Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca 2+ transport

  2. Temporal and Molecular Analyses of Cardiac Extracellular Matrix Remodeling following Pressure Overload in Adiponectin Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Keith Dadson

    Full Text Available Adiponectin, circulating levels of which are reduced in obesity and diabetes, mediates cardiac extracellular matrix (ECM remodeling in response to pressure overload (PO. Here, we performed a detailed temporal analysis of progressive cardiac ECM remodelling in adiponectin knockout (AdKO and wild-type (WT mice at 3 days and 1, 2, 3 and 4 weeks following the induction of mild PO via minimally invasive transverse aortic banding. We first observed that myocardial adiponectin gene expression was reduced after 4 weeks of PO, whereas increased adiponectin levels were detected in cardiac homogenates at this time despite decreased circulating levels of adiponectin. Scanning electron microscopy and Masson's trichrome staining showed collagen accumulation increased in response to 2 and 4 weeks of PO in WT mice, while fibrosis in AdKO mice was notably absent after 2 weeks but highly apparent after 4 weeks of PO. Time and intensity of fibroblast appearance after PO was not significantly different between AdKO and WT animals. Gene array analysis indicated that MMP2, TIMP2, collagen 1α1 and collagen 1α3 were induced after 2 weeks of PO in WT but not AdKO mice. After 4 weeks MMP8 was induced in both genotypes, MMP9 only in WT mice and MMP1α only in AdKO mice. Direct stimulation of primary cardiac fibroblasts with adiponectin induced a transient increase in total collagen detected by picrosirius red staining and collagen III levels synthesis, as well as enhanced MMP2 activity detected via gelatin zymography. Adiponectin also enhanced fibroblast migration and attenuated angiotensin-II induced differentiation to a myofibroblast phenotype. In conclusion, these data indicate that increased myocardial bioavailability of adiponectin mediates ECM remodeling following PO and that adiponectin deficiency delays these effects.

  3. Sustained cardiac remodeling after a short-term very low calorie diet in type 2 diabetes mellitus patients

    NARCIS (Netherlands)

    Jonker, Jacqueline T.; Snel, Marieke; Hammer, Sebastiaan; Jazet, Ingrid M.; van der Meer, Rutger W.; Pijl, Hanno; Meinders, A. Edo; de Roos, Albert; Smit, Johannes W. A.; Romijn, Johannes A.; Lamb, Hildo J.

    2014-01-01

    A very low calorie diet (VLCD) results in cardiac remodeling and improved diastolic function. It is unknown how long these effects sustain after reintroduction of a regular diet. We aimed to assess the long-term effects of initial weight loss by VLCD on cardiac dimensions and function in type 2

  4. Post-mortem cardiac diffusion tensor imaging: detection of myocardial infarction and remodeling of myofiber architecture

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, Sebastian; Berger, Nicole; Stolzmann, Paul [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Zurich, Department of Forensic Medicine and Radiology, Institute of Forensic Medicine, Zurich (Switzerland); Stoeck, Christian T.; Kozerke, Sebastian [Institute for Biomedical Engineering University and ETH Zurich, Zurich (Switzerland); Thali, Michael [University of Zurich, Department of Forensic Medicine and Radiology, Institute of Forensic Medicine, Zurich (Switzerland); Manka, Robert [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Institute for Biomedical Engineering University and ETH Zurich, Zurich (Switzerland); University Hospital Zurich, Clinic for Cardiology, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-11-15

    To investigate the accuracy of post-mortem diffusion tensor imaging (DTI) for the detection of myocardial infarction (MI) and to demonstrate the feasibility of helix angle (HA) calculation to study remodelling of myofibre architecture. Cardiac DTI was performed in 26 deceased subjects prior to autopsy for medicolegal reasons. Fractional anisotropy (FA) and mean diffusivity (MD) were determined. Accuracy was calculated on per-segment (AHA classification), per-territory, and per-patient basis, with pathology as reference standard. HAs were calculated and compared between healthy segments and those with MI. Autopsy demonstrated MI in 61/440 segments (13.9 %) in 12/26 deceased subjects. Healthy myocardial segments had significantly higher FA (p < 0.01) and lower MD (p < 0.001) compared to segments with MI. Multivariate logistic regression demonstrated that FA (p < 0.10) and MD (p = 0.01) with the covariate post-mortem time (p < 0.01) predicted MI with an accuracy of 0.73. Analysis of HA distribution demonstrated remodelling of myofibre architecture, with significant differences between healthy segments and segments with chronic (p < 0.001) but not with acute MI (p > 0.05). Post-mortem cardiac DTI enablesdifferentiation between healthy and infarcted myocardial segments by means of FA and MD. HA assessment allows for the demonstration of remodelling of myofibre architecture following chronic MI. (orig.)

  5. Amlodipine and Atorvastatin Improved Hypertensive Cardiac Remodeling through Regulation of MMPs/TIMPs in SHR Rats

    Directory of Open Access Journals (Sweden)

    Jingchao Lu

    2016-06-01

    Full Text Available Background: MMPs/TIMPs system is well known to play important roles in pressure overload-induced cardiac remodeling, and Amlodipine and Atorvastatin have been showed to exert favourable protective effects on cardiovascular disease, however, it is not clear whether Amlodipine and Atorvastatin can improve hypertensive cardiac remodeling and whether the MMPs/TIMPs system is involved. The present study aims to answer these questions. Methods: 36 weeks old male spontaneous hypertension (SHR rats were randomly divided into four groups: 1. SHR control group, 2. Amlodipine alone (10 mg/kg/d group, 3. Atorvastatin alone (10 mg/kg/d group, 4.Combination of Amlodipine and Atorvastatin (10 mg/kg/d for each group. Same gender, weight and age of Wistar-Kyoto (WKY rats with normal blood pressure were used as normal control. Drugs were administered by oral gavage over 12 weeks. The blood pressure and left ventricle mass index were measured. Enzyme activity of MMP-2 and MMP-9 was assessed with Gelatin zymography. MMP-2, MMP-9, TIMP-1 and TIMP-2 mRNA and protein expression was studied by RT-PCR and Western blot. Single factor ANOVA and LSD-t test were used in statistical analysis. Results: Treatment with Amlodipine alone or combination with atorvastatin significantly decreased blood pressure, left ventricle mass index in SHR rats (P Conclusion: Amlodipine and Atorvastatin could improve ventricular remodeling in SHR rats through intervention with the imbalance of MMP-2/TIMP-2 and MMP-9/TIMP-1 system.

  6. Nonlinear mathematical model for predicting long term cardiac remodeling in Chagas' heart disease: introducing the concepts of 'limiting cardiac function' and 'cardiac function deterioration period'.

    Science.gov (United States)

    Benchimol-Barbosa, Paulo Roberto

    2010-11-19

    Cardiac remodeling has been recently investigated in long term follow-up introducing a simple exponential model to describe the time course of cardiac function and dimension changes in Chagas' disease. In the present study, an improved mathematical model to equate time course and cardiac functional changes has been proposed. Present model has been derived from previously validated intuitive assumptions and tested on data set of outpatients with chronic Chagas' disease (51.3±9.4 years old), followed for up to 10 years in Rio de Janeiro, Brazil. The variables representing cardiac status at admission were plotted against respective time derivative, which appropriately fit a second order polynomial (adjusted r(2)=0.956; pconstants: a time-function (2.0·10(-3)±5.4·10(-4) months(-1)·%(-1); p<0.001) and an inferior limit for left ventricular ejection fraction (19.0±0.9%; p<0.001), standing for a limit beyond life expectation is unsustainable, in Chagas' disease. Cardiac function deterioration period was promptly derived from the model, representing the period of time following indeterminate stages of the disease when cardiac function start deteriorating, and ranged from 3 to 15.8 years. An example of data of left ventricular ejection fraction of a subject followed during 10 years illustrated the model, further validating its robustness. Present data confirms that, in chronic Chagas' disease, initial insult is connected to the progression of myocardial remodeling and introduces the concepts of limiting cardiac function and cardiac deterioration period. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  7. Aldosterone Blockade Reduces Mortality without Changing Cardiac Remodeling in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Marcelo D.M. Cezar

    2013-11-01

    Full Text Available Background: The role of aldosterone blockers during transition from long-term compensated hypertrophy to dilated failure is not completely understood. In this study we evaluated the effects of early administration of spironolactone on cardiac remodeling, myocardial function, and mortality in spontaneously hypertensive rats (SHR. Methods: Sixteen-month-old SHR received no treatment (SHR-C, n=72 or spironolactone (SHR-SPR, 20 mg/kg/day, n=34 for six months. Echocardiogram was performed before and after treatment. Myocardial function was analyzed in left ventricular (LV papillary muscle preparations. Myocardial collagen and hydroxyproline concentration were evaluated by morphometry and spectrophotometry, respectively. LV gene expression was assessed by real time RT-PCR. Statistics: Student's t test; Log rank test (Kaplan Meyer. Results: SHR-C and SHR-SPR presented mortality rates of 71 and 38%, respectively (p=0.004. Systolic arterial pressure did not differ between groups (SHR-C 199±43; SHR-SPR 200±35 mmHg. Initial and final echocardiograms did not show significant differences in cardiac structures or LV function between groups. Myocardial function was similar between groups at basal and after inotropic stimulation. Collagen fractional area, hydroxyproline concentration, gene expression for α- and β-myosin heavy chain, atrial natriuretic peptide, and Serca2a were not different between groups. Conclusion: Early spironolactone administration reduces mortality without changing cardiac remodeling in spontaneous hypertensive rats.

  8. Time Course of Atrophic Remodeling: Effects of Exercise on Cardiac Morpology and Function

    Science.gov (United States)

    Scott, J. M.; Martin, D.; Caine, T.; Matz, T.; Ploutz-Snyder, L. L.

    2014-01-01

    Early and consistent evaluation of cardiac morphology and function throughout an atrophic stimulus is critically important for the design and optimization of interventions. Exercise training is one intervention that has been shown to confer favorable improvements in LV mass and function during unloading. However, the format and intensity of exercise required to induce optimal cardiac improvements has not been investigated. PURPOSE: This randomized, controlled trial was designed to 1) comprehensively characterize the time course of unloading-induced morpho-functional remodeling, and 2) examine the effects of high intensity exercise training on cardiac structural and functional parameters during unloading. METHODS: Twenty six subjects completed 70 days of head down tilt bed rest (HDBR): 17 were randomized to exercise training (ExBR) and 9 remained sedentary. Exercise consisted of integrated high intensity, continuous, and resistance exercise. We assessed cardiac morphology (left ventricular mass; LVM) and function (speckle-tracking assessment of longitudinal, radial, and circumferential strain and twist) before (BR-2), during (BR7,21,31,70), and following (BR+0, +3) HDBR. Cardiorespiratory fitness (VO2max) was evaluated before (BR- 3), during (BR4,25,46,68) and following (BR+0) HDBR. RESULTS: Sedentary HDBR resulted in a progressive decline in LVM, longitudinal, radial, and circumferential strain, and an increase in twist. ExBR mitigated decreases in LVM and function. Change in twist was significantly related to change in VO2max (R=0.68, p<0.01). CONCLUSIONS: Alterations in cardiac morphology and function begin early during unloading. High-intensity exercise attenuates atrophic morphological and functional remodeling.

  9. Cardiac remodeling in response to 1 year of intensive endurance training.

    Science.gov (United States)

    Arbab-Zadeh, Armin; Perhonen, Merja; Howden, Erin; Peshock, Ronald M; Zhang, Rong; Adams-Huet, Beverly; Haykowsky, Mark J; Levine, Benjamin D

    2014-12-09

    It is unclear whether, and to what extent, the striking cardiac morphological manifestations of endurance athletes are a result of exercise training or a genetically determined characteristic of talented athletes. We hypothesized that prolonged and intensive endurance training in previously sedentary healthy young individuals could induce cardiac remodeling similar to that observed cross-sectionally in elite endurance athletes. Twelve previously sedentary subjects (aged 29±6 years; 7 men and 5 women) trained progressively and intensively for 12 months such that they could compete in a marathon. Magnetic resonance images for assessment of right and left ventricular mass and volumes were obtained at baseline and after 3, 6, 9, and 12 months of training. Maximum oxygen uptake ( max) and cardiac output at rest and during exercise (C2H2 rebreathing) were measured at the same time periods. Pulmonary artery catheterization was performed before and after 1 year of training, and pressure-volume and Starling curves were constructed during decreases (lower body negative pressure) and increases (saline infusion) in cardiac volume. Mean max rose from 40.3±1.6 to 48.7±2.5 mL/kg per minute after 1 year (Pathletes. In contrast, left ventricular volume did not change significantly until 6 months of training, although right ventricular volume increased progressively from the outset; Starling and pressure-volume curves approached but did not match those of elite athletes. One year of prolonged and intensive endurance training leads to cardiac morphological adaptations in previously sedentary young subjects similar to those observed in elite endurance athletes; however, it is not sufficient to achieve similar levels of cardiac compliance and performance. Contrary to conventional thinking, the left ventricle responds to exercise with initial concentric but not eccentric remodeling during the first 6 to 9 months after commencement of endurance training depending on the duration and

  10. Analysis of Heart Rate Variability and Cardiac Autonomic Nerve Remodeling in Streptozotocin-induced Diabetic Rats.

    Science.gov (United States)

    Li, X; Jiang, Y-H; Jiang, P; Lin, H-Q; Yang, J-L; Ma, D-f; Wang, X; Yang, C-H

    2015-05-01

    Diabetes mellitus (DM) is associated with both cardiovascular and autonomic nervous system dysfunction. Spectral analysis of heart rate variability (HRV) can be used to monitor changes in response to autonomic innervation and stimulation of the heart. In this study, conducted in a rat model of diabetes, HRV and changes in associated neurotransmitters and neurotrophic factors in the right atrium (RA) were monitored. Diabetes was induced by streptozotocin (STZ) (60 mg/kg) in male Wistar rats, and HRV data were collected for 10 weeks by telemetry. Time and frequency domains of HRV data were analyzed using established metrics. The levels of various neural enzymes in the RA were determined by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence to characterize autonomic nerve remodeling. Insulin and methycobal were used to block the effects of STZ. HRV parameters reflecting parasympathetic tone (SDNN, RMSSD and HF domains) sharply decreased in the first 3 weeks after STZ administration; measures of sympathetic tone (SDANN) increased. After a series of adjustments, cardiac autonomic nerve innervation reached a new equilibrium, with a dominance of sympathetic tone. RA levels of tyrosine hydroxylase (TH) increased, and choline acetyltransferase (ChAT) decreased, indicating autonomic nerve remodeling. Levels of growth associated protein-43 (GAP43) and nerve growth factor (NGF) increased during the period of diabetes-induced cardiac-nerve damage; however, the level of ciliary neurotrophic factor (CNTF) decreased. The physical condition and indexes of rats were normalized in different degree after administration of the insulin and methycobal, but not completely recovered. STZ-induced diabetes was associated with cardiac autonomic nerve dysfunction at both the organ and molecular levels. Parasympathetic nerves exhibited severe damage and/or weak recovery; remodeling of sympathetic nerves predominated during 10-weeks of STZ-induced diabetes. © Georg Thieme Verlag

  11. Endogenous Peptide Apelin and Pathological Cardiac Remodeling in Hypertensive Patients with Diabetes Mellitus Type 2

    Directory of Open Access Journals (Sweden)

    S.M. Koval

    2015-08-01

    Full Text Available The study involved 63 patients with essential hypertension and diabetes mellitus type 2. The control group consisted of 16 apparently healthy individuals. Complex of examination included conventional clinical-laboratory and instrumental methods, ultrasound of the heart with Doppler sonography, determining apelin blood concentration by ELISA. Patients with essential hypertension and diabetes mellitus type 2 compared with the control group had a probable reduction in apelin level associated with the development of pathological cardiac remodeling, increasing the size of the left atrium and diastolic dysfunction of the heart.

  12. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice

    DEFF Research Database (Denmark)

    Patrick, David M; Montgomery, Rusty L; Qi, Xiaoxia

    2010-01-01

    MicroRNAs inhibit mRNA translation or promote mRNA degradation by binding complementary sequences in 3' untranslated regions of target mRNAs. MicroRNA-21 (miR-21) is upregulated in response to cardiac stress, and its inhibition by a cholesterol-modified antagomir has been reported to prevent...... contractility comparable to wild. type littermates. Similarly, inhibition of miR-21 through intravenous delivery of a locked nucleic acid-modified (LNA-modified) antimiR oligonucleotide also failed to block the remodeling response of the heart to stress. We therefore conclude that miR-21 is not essential...

  13. Rad GTPase Deletion Attenuates Post-Ischemic Cardiac Dysfunction and Remodeling

    Directory of Open Access Journals (Sweden)

    Janet R. Manning, PhD

    2018-02-01

    Full Text Available The protein Rad interacts with the L-type calcium channel complex to modulate trigger Ca2+ and hence to govern contractility. Reducing Rad levels increases cardiac output. Ablation of Rad also attenuated the inflammatory response following acute myocardial infarction. Future studies to target deletion of Rad in the heart could be conducted to establish a novel treatment paradigm whereby pathologically stressed hearts would be given safe, stable positive inotropic support without arrhythmias and without pathological structural remodeling. Future investigations will also focus on establishing inhibitors of Rad and testing the efficacy of Rad deletion in cardioprotection relative to the time of onset of acute myocardial infarction.

  14. Orientin Reduces Myocardial Infarction Size via eNOS/NO Signaling and Thus Mitigates Adverse Cardiac Remodeling

    Directory of Open Access Journals (Sweden)

    Fangfang Li

    2017-12-01

    Full Text Available Orientin is a flavonoid extracted from Chinese traditional herb, Polygonum orientale L. Previous study has reported that orientin protected myocardial from ischemia reperfusion injury. However, whether orientin could protect against cardiac remodeling after myocardial injury remains unclear. The aim of our study is to investigate the effects of orientin in the progression of cardiac remodeling after myocardial infarction (MI. Mice cardiac remodeling model was established by left coronary artery ligation surgery. Experimental groups were as follows: vehicle-sham, orientin-sham, vehicle-MI, and orientin-MI. Animals were treated with vehicle or orientin (40 mg/kg for 25 days starting 3 days after surgery. After 4 weeks of MI, mice with orientin treatment had decreased mortality and improved cardiac function. Significantly, at 4 weeks post-MI, orientin treatment decreased fibrosis, inflammatory response, and cardiomyocyte apoptosis. Furthermore, orientin treatment attenuated the hypoxia-induced neonatal rat cardiomyocyte apoptosis and increased cell viability. Additionally, orientin supplementation mitigated oxidative stress in remodeling heart tissue and cardiomyocytes exposed to hypoxia as measured by 2′,7′-dichlorodihydrofluorescein diacetate fluorescent probe. Mechanistically, orientin promotes cardioprotection by activating the eNOS/NO signaling cascades, which was confirmed by eNOS inhibitor (L-NAME in vitro and in vivo. Inhibition of oxidative stress by orientin via eNOS/NO signaling cascades in the heart may represent a potential therapy for cardiac remodeling.

  15. Cardiac Remodeling Induced by All-Trans Retinoic Acid is Detrimental in Normal Rats

    Directory of Open Access Journals (Sweden)

    Renata A. C. Silva

    2017-10-01

    Full Text Available Background/Aims: This study aimed to discern whether the cardiac alterations caused by retinoic acid (RA in normal adult rats are physiologic or pathologic. Methods and Results: Wistar rats were assigned into four groups: control animals (C, n = 20 received a standard rat chow; animals fed a diet supplemented with 0.3 mg/kg/day all-trans-RA (AR1, n = 20; animals fed a diet supplemented with 5 mg/kg/day all-trans-RA (AR2, n = 20; and animals fed a diet supplemented with 10 mg/kg/day all-trans-RA (AR3, n = 20. After 2 months, the animals were submitted to echocardiogram, isolated heart study, histology, energy metabolism status, oxidative stress condition, and the signaling pathway involved in the cardiac remodeling induced by RA. RA increased myocyte cross-sectional area in a dose-dependent manner. The treatment did not change the morphological and functional variables, assessed by echocardiogram and isolated heart study. In contrast, RA changed catalases, superoxide dismutase, and glutathione peroxidases and was associated with increased values of lipid hydroperoxide, suggesting oxidative stress. RA also reduced citrate synthase, enzymatic mitochondrial complex II, ATP synthase, and enzymes of fatty acid metabolism and was associated with increased enzymes involved in glucose use. In addition, RA increased JNK 1/2 expression, without changes in TGF-β, PI3K, AKT, NFκB, S6K, and ERK. Conclusion: In normal rats, RA induces cardiac hypertrophy in a dose-dependent manner. The non-participation of the PI3K/Akt pathway, associated with the participation of the JNK pathway, oxidative stress, and changes in energy metabolism, suggests that cardiac remodeling induced by RA supplementation is deleterious.

  16. Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction

    NARCIS (Netherlands)

    Sumida, Arihiro; Horiba, Mitsuru; Ishiguro, Hisaaki; Takenaka, Hiroharu; Ueda, Norihiro; Ooboshi, Hiroaki; Opthof, Tobias; Kadomatsu, Kenji; Kodama, Itsuo

    2010-01-01

    We have previously reported that therapy with midkine (MK) has a protective effect in mouse models of myocardial infarction (MI) and ischemia/reperfusion. The underlying mechanism was proved to be anti-apoptosis and prevention of left ventricular (LV) remodelling following angiogenesis. Here we

  17. NOD2 Deficiency Protects against Cardiac Remodeling after Myocardial Infarction in Mice

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2013-12-01

    Full Text Available Background/Aims: Although the pathogenesis of myocardial infarction (MI is multifactorial, activation of innate immune system to induce inflammation has emerged as a key pathophysiological process in MI. NOD2, one member of the NOD-like receptor (NLR family, plays an important role in the innate immune response. This study was to examine the role of NOD2 during MI. Methods: MI was induced by permanent ligation of the left coronary artery in wild type and NOD2-/- mice and cardiac fibroblasts were isolated. Results: NOD2 expression was significantly increased in myocardium in post-MI mice. NOD2 deficiency improved cardiac dysfunction and remodeling after MI as evidenced by echocardiographic analysis, reduced the levels of cytokines, inflammatory cell infiltration and matrix metalloproteinase-9 (MMP-9 activity. In vitro, we further found that NOD2 activation induced the activation of MAPK signaling pathways, production of proinflammatory mediators and MMP-9 activity in cardiac fibroblasts. Conclusions: Our studies demonstrate that NOD2 is a critical component of a signal transduction pathway that links cardiac injury by exacerbation of inflammation and MMP-9 activity. Pharmacological targeting of NOD2-mediated signaling pathways may provide a novel approach to treatment of cardiovascular diseases.

  18. Time course of reversed cardiac remodeling after pulmonary endarterectomy in patients with chronic pulmonary thromboembolism

    Energy Technology Data Exchange (ETDEWEB)

    Iino, Misako; Dymarkowski, Steven; Chaothawee, Lertlak; Bogaert, Jan [UZ Leuven, Department of Radiology, Leuven (Belgium); Delcroix, Marion [UZ Leuven, Department of Pneumology, Leuven (Belgium)

    2008-04-15

    To evaluate the time course of reversed remodeling after pulmonary endarterectomy (PEA) in patients with chronic thromboembolic pulmonary hypertension(CTPEH), we studied 22 patients (age: 60 {+-} 13 years) with MRI immediately before, 1 month, 3 months, and 6 months after PEA. MRI included assessment of biventricular function, aortic and pulmonary artery(PA) flow, and right ventricular (RV) overload using the ratio of RV-to-biventricular diameter. Except in one patient, who died 2 months post-surgery, clinical improvement occurred early after PEA (NYHA class: 3.3 {+-} 0.6 to 1.5 {+-} 0.8, p < 0.0001) with a decrease of systolic pulmonary artery pressures (79 {+-} 14 to 44 {+-} 14 mmHg, p < 0.0001). At 1 month post PEA, RV end-diastolic volumes decreased (198 {+-} 72 to 137 {+-} 59 ml, p < 0.0001), and the RV ejection fraction (EF) improved (31 {+-} 9 to 47 {+-} 10%, p < 0.0001). No further significant improvement in pulmonary pressures or RV function occurred at 3 months or 6 months. Although no significant change was found in LV volumes or function, aortic flow increased early after surgery. PEA had only a beneficial effect on right PA flow. RV overload decreased early after PEA (ratio RV-to-biventricular diameter: before: 0.67 {+-} 0.04, after: 0.54 {+-} 0.06, p < 0.0001), showing a good correlation with the improvement in RVEF (r = 0.7, P < 0.0001). In conclusion, reversed cardiac remodeling occurs early after PEA, to slow down after 1 month. At 6 months, cardiac remodeling is incomplete as witnessed by low-normal RV function and residually elevated PA pressures. (orig.)

  19. The TBX1 Transcription Factor in Cardiac Remodeling After Myocardial Infarction.

    Science.gov (United States)

    Sánchez-Más, Jesus; Lax, Antonio; Asensio-López, Mari Carmen; Fernández-Del Palacio, María Josefa; Caballero, Luis; Navarro-Peñalver, Marina; Pérez-Martínez, María Teresa; Gimeno-Blanes, Juan Ramón; Pascual-Figal, Domingo Andrés

    2016-11-01

    The transcription factor TBX1 plays an important role in the embryonic development of the heart. Nothing is known about its involvement in myocardial remodeling after acute myocardial infarction (AMI) and whether its expression can be modulated by a treatment with proven benefit such as mineralocorticoid receptor blockade. Acute myocardial infarction was induced in 60 rats via left coronary artery ligation: 50 animals were randomized to be euthanized after 1, 2, 4, 12, or 24 weeks; 10 animals were treated with eplerenone (100 mg/kg/days) 7 days before the AMI until their euthanasia (4 weeks later); 8 additional animals underwent surgery without ligation (control). We analyzed the cardiac expression of TBX1, fetal genes, and fibrosis markers. The gene and protein expression of TBX1 was increased in the infarcted myocardium, peaking 1 week after AMI (P < .01), without changes in the noninfarcted myocardium. Levels of the fetal genes and fibrosis markers also increased, peaking 4 weeks (P < .001) and 1 week (P < .01) after AMI, respectively. The TBX1 expression was correlated with that of the fibrosis markers (P < .01) but not the fetal genes. Eplerenone reduced the TBX1 increase and fibrosis induced by AMI, with an association improvement in ventricular function and remodeling in echocardiography. These results show the reactivated expression of TBX1 and indicate its involvement in cardiac fibrosis and remodeling after AMI and its participation in the benefit from mineralocorticoid receptor blockade. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Aerobic Training after Myocardial Infarction: Remodeling Evaluated by Cardiac Magnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Izeli, Nataly Lino; Santos, Aurélia Juliana dos; Crescêncio, Júlio César; Gonçalves, Ana Clara Campagnolo Real; Papa, Valéria; Marques, Fabiana [Divisão de Cardiologia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, SP (Brazil); Pazin-Filho, Antônio [Divisão de Emergência da Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, SP (Brazil); Gallo-Júnior, Lourenço; Schmidt, André, E-mail: aschmidt@fmrp.usp.br [Divisão de Cardiologia do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, SP (Brazil)

    2016-04-15

    Numerous studies show the benefits of exercise training after myocardial infarction (MI). Nevertheless, the effects on function and remodeling are still controversial. To evaluate, in patients after (MI), the effects of aerobic exercise of moderate intensity on ventricular remodeling by cardiac magnetic resonance imaging (CMR). 26 male patients, 52.9 ± 7.9 years, after a first MI, were assigned to groups: trained group (TG), 18; and control group (CG), 8. The TG performed supervised aerobic exercise on treadmill twice a week, and unsupervised sessions on 2 additional days per week, for at least 3 months. Laboratory tests, anthropometric measurements, resting heart rate (HR), exercise test, and CMR were conducted at baseline and follow-up. The TG showed a 10.8% reduction in fasting blood glucose (p = 0.01), and a 7.3-bpm reduction in resting HR in both sitting and supine positions (p < 0.0001). There was an increase in oxygen uptake only in the TG (35.4 ± 8.1 to 49.1 ± 9.6 mL/kg/min, p < 0.0001). There was a statistically significant decrease in the TG left ventricular mass (LVmass) (128.7 ± 38.9 to 117.2 ± 27.2 g, p = 0.0032). There were no statistically significant changes in the values of left ventricular end-diastolic volume (LVEDV) and ejection fraction in the groups. The LVmass/EDV ratio demonstrated a statistically significant positive remodeling in the TG (p = 0.015). Aerobic exercise of moderate intensity improved physical capacity and other cardiovascular variables. A positive remodeling was identified in the TG, where a left ventricular diastolic dimension increase was associated with LVmass reduction.

  1. Aerobic Training after Myocardial Infarction: Remodeling Evaluated by Cardiac Magnetic Resonance

    International Nuclear Information System (INIS)

    Izeli, Nataly Lino; Santos, Aurélia Juliana dos; Crescêncio, Júlio César; Gonçalves, Ana Clara Campagnolo Real; Papa, Valéria; Marques, Fabiana; Pazin-Filho, Antônio; Gallo-Júnior, Lourenço; Schmidt, André

    2016-01-01

    Numerous studies show the benefits of exercise training after myocardial infarction (MI). Nevertheless, the effects on function and remodeling are still controversial. To evaluate, in patients after (MI), the effects of aerobic exercise of moderate intensity on ventricular remodeling by cardiac magnetic resonance imaging (CMR). 26 male patients, 52.9 ± 7.9 years, after a first MI, were assigned to groups: trained group (TG), 18; and control group (CG), 8. The TG performed supervised aerobic exercise on treadmill twice a week, and unsupervised sessions on 2 additional days per week, for at least 3 months. Laboratory tests, anthropometric measurements, resting heart rate (HR), exercise test, and CMR were conducted at baseline and follow-up. The TG showed a 10.8% reduction in fasting blood glucose (p = 0.01), and a 7.3-bpm reduction in resting HR in both sitting and supine positions (p < 0.0001). There was an increase in oxygen uptake only in the TG (35.4 ± 8.1 to 49.1 ± 9.6 mL/kg/min, p < 0.0001). There was a statistically significant decrease in the TG left ventricular mass (LVmass) (128.7 ± 38.9 to 117.2 ± 27.2 g, p = 0.0032). There were no statistically significant changes in the values of left ventricular end-diastolic volume (LVEDV) and ejection fraction in the groups. The LVmass/EDV ratio demonstrated a statistically significant positive remodeling in the TG (p = 0.015). Aerobic exercise of moderate intensity improved physical capacity and other cardiovascular variables. A positive remodeling was identified in the TG, where a left ventricular diastolic dimension increase was associated with LVmass reduction

  2. Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction

    DEFF Research Database (Denmark)

    Kyhl, Kasper; Lønborg, Jacob; Hartmann, Bolette

    2017-01-01

    Following the acute phase of a myocardial infarction, a set of structural and functional changes evolves in the myocardium, collectively referred to as cardiac remodeling. This complex set of processes, including interstitial fibrosis, inflammation, myocyte hypertrophy and apoptosis may progress...... to heart failure. Analogs of the incretin hormone glucagon-like peptide 1 (GLP-1) have shown some promise as cardioprotective agents. We hypothesized that a long-acting GLP-1 analog liraglutide would ameliorate cardiac remodeling over the course of 4 weeks in a rat model of non-reperfused myocardial...

  3. Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig

    Science.gov (United States)

    Beaumont, Eric; Wright, Gary L.; Southerland, Elizabeth M.; Li, Ying; Chui, Ray; KenKnight, Bruce H.; Armour, J. Andrew

    2016-01-01

    Our objective was to determine whether chronic vagus nerve stimulation (VNS) mitigates pressure overload (PO)-induced remodeling of the cardioneural interface. Guinea pigs (n = 48) were randomized to right or left cervical vagus (RCV or LCV) implant. After 2 wk, chronic left ventricular PO was induced by partial (15–20%) aortic constriction. Of the 31 animals surviving PO induction, 10 were randomized to RCV VNS, 9 to LCV VNS, and 12 to sham VNS. VNS was delivered at 20 Hz and 1.14 ± 0.03 mA at a 22% duty cycle. VNS commenced 10 days after PO induction and was maintained for 40 days. Time-matched controls (n = 9) were evaluated concurrently. Echocardiograms were obtained before and 50 days after PO. At termination, intracellular current-clamp recordings of intrinsic cardiac (IC) neurons were studied in vitro to determine effects of therapy on soma characteristics. Ventricular cardiomyocyte sizes were assessed with histology along with immunoblot analysis of selected proteins in myocardial tissue extracts. In sham-treated animals, PO increased cardiac output (34%, P < 0.004), as well as systolic (114%, P < 0.04) and diastolic (49%, P < 0.002) left ventricular volumes, a hemodynamic response prevented by VNS. PO-induced enhancements of IC synaptic efficacy and muscarinic sensitivity of IC neurons were mitigated by chronic VNS. Increased myocyte size, which doubled in PO (P < 0.05), was mitigated by RCV. PO hypertrophic myocardium displayed decreased glycogen synthase (GS) protein levels and accumulation of the phosphorylated (inactive) form of GS. These PO-induced changes in GS were moderated by left VNS. Chronic VNS targets IC neurons accompanying PO to obtund associated adverse cardiomyocyte remodeling. PMID:26993230

  4. Modulation of IL-33/ST2 system in postinfarction heart failure: correlation with cardiac remodelling markers.

    Science.gov (United States)

    Sánchez-Más, Jesús; Lax, Antonio; Asensio-López, María Del Carmen; Fernandez-Del Palacio, Maria J; Caballero, Luis; Santarelli, Giorgia; Januzzi, James L; Pascual-Figal, Domingo A

    2014-07-01

    Interleukin (IL)-33 and sST2 are molecules with an opposite pathophysiologic implications in the myocardial response after acute myocardial infarction (AMI). Both may be a target for therapeutic interventions. The kinetics of IL-33 and sST2 expression in infarcted myocardium and their correlation with the ongoing processes of fibrosis, inflammation and apoptosis remains poorly defined. Fifty Wistar rats underwent left anterior descending coronary artery surgical ligation and were sacrificed at 1, 2, 4, 12 or 24 weeks post-AMI. A sham-operated group was also included. The mRNA cardiac expression levels of IL-33, sST2, fibrosis markers, inflammatory markers and apoptosis markers were assessed by RT-PCR. The protein expression of IL-33 was also measured by Western blotting. The mRNA levels of IL-33 and sST2 were upregulated in the infarcted myocardium during the first week after AMI. However, while IL-33 levels remained elevated during the first 12 weeks post-AMI, sST2 levels showed a marked drop at 4 weeks. IL-33 protein expression showed a similar kinetic than mRNA expression. The expression of sST2 positively correlated with cardiac gene expression of inflammatory and fibrosis markers. However, the IL-33 level did not correlate with these cardiac remodelling markers. No correlation of sST2 with apoptosis markers was observed. After AMI, expression of sST2 is rapidly upregulated during the first 4 weeks and, in contrast to IL-33, its levels correlated with the ongoing processes of fibrosis and inflammation. These findings suggest differential regulation of IL33 and sST2. Therapeutic modulation of early sST2 expression may be of greater importance to prevent adverse remodelling after AMI. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  5. Effects of renal sympathetic denervation on post-myocardial infarction cardiac remodeling in rats.

    Directory of Open Access Journals (Sweden)

    Jialu Hu

    Full Text Available OBJECTIVE: To investigate the therapeutic effects of renal denervation (RD on post- myocardial infarction (MI cardiac remodeling in rats, the most optimal time for intervention and the sustainability of these effects. METHODS: One hundred SPF male Wistar rats were randomly assigned to N group (Normal, n=10, MI group(MI, n=20,RD group (RD, n=10, RD3+MI (MI three days after RD, n=20, MI1+RD (RD one day after MI, n=20, MI7+RD (RD seven days after MI, n=20. MI was produced through thoracotomic ligation of the anterior descending artery. RD was performed through laparotomic stripping of the renal arteriovenous adventitial sympathetic nerve. Left ventricular function, hemodynamics, plasma BNP, urine volume, urine sodium excretion and other indicators were measured four weeks after MI. RESULTS: (1 The left ventricular function of the MI group significantly declined (EF<40%, plasma BNP was elevated, urine output was significantly reduced, and 24-hour urine sodium excretion was significantly reduced. (2 Denervation can be achieved by surgically stripping the arteriovenous adventitia, approximately 3 mm from the abdominal aorta. (3 In rats with RD3+MI, MI1+RD and MI7+RD, compared with MI rats respectively, the LVEF was significantly improved (75 ± 8.4%,69 ± 3.8%,73 ± 5.5%, hemodynamic indicators were significantly improved, plasma BNP was significantly decreased, and the urine output was significantly increased (21.3 ± 5 ml,23.8 ± 5.4 ml,25.2 ± 8.7 ml. However, the urinary sodium excretion also increased but without significant difference. CONCLUSIONS: RD has preventive and therapeutic effects on post-MI cardiac remodeling.These effects can be sustained for at least four weeks, but there were no significant differences between denervation procedures performed at different times in the course of illness. Cardiac function, hemodynamics, urine volume and urine sodium excretion in normal rats were not affected by RD.

  6. microRNA-29b Mediates the Antifibrotic Effect of Tanshinone IIA in Postinfarct Cardiac Remodeling.

    Science.gov (United States)

    Yang, Fan; Li, Ping; Li, Haiyu; Shi, Qiangwei; Li, Shuaibing; Zhao, Luosha

    2015-05-01

    Tanshinone IIA (TSN) is one of the main components isolated from Danshen, which is widely used for the treatment of cardiovascular diseases. The transforming growth factor beta (TGF-β) signaling pathway and microRNA (miR)-29b play important roles in the progression of cardiac fibrosis and the modulation of cardiac fibroblast (CF) function. Our study investigated the role of miR-29b in the cardioprotective effects of TSN in postinfarct cardiac remodeling. Echocardiography demonstrated that medium-dose TSN (TSN-M) and high-dose TSN (TSN-H) significantly inhibited postinfarct cardiac fibrosis and improved the impaired left ventricular function in rats subjected to acute myocardial infarction. Moreover, quantitative real-time polymerase chain reaction and Western blot demonstrated that TSN-M and TSN-H downregulated the expression of TGF-β1, Col1a1, Col3a1, and α-SMA but upregulated the expression of miR-29b. CFs treated with TSN showed inhibited TGF-β signaling pathway, downregulated expression of Col1a1, Col3a1, and α-SMA, and upregulated miR-29b expression in vitro. Furthermore, treatment with a miR-29b inhibitor dramatically inhibited these TSN-induced antifibrotic effects, suggesting that miR-29b may be responsible for the antifibrotic effects of TSN. In addition, treatment with Smad3 siRNA significantly inhibited miR-29b expression in CFs, which implies that Smad3 signaling promotes miR-29b expression on CFs. TSN exerts antifibrotic effects in postinfarct cardiac fibrosis by upregulating the expression of miR-29b, which is mediated by the TGF-β-Smad3 signaling pathway.

  7. Cardiac remodeling is not modulated by overexpression of muscle LIM protein (MLP).

    Science.gov (United States)

    Kuhn, Christian; Frank, Derk; Dierck, Franziska; Oehl, Ulrike; Krebs, Jutta; Will, Rainer; Lehmann, Lorenz H; Backs, Johannes; Katus, Hugo A; Frey, Norbert

    2012-05-01

    Muscle LIM protein (MLP) has been proposed to be a central player in the pathogenesis of heart muscle disease. In line with this notion, the homozygous loss of MLP results in cardiac hypertrophy and dilated cardiomyopathy. Moreover, MLP is induced in several models of cardiac hypertrophy such as aortic banding and myocardial infarction. We thus hypothesized that overexpression of MLP might change the hypertrophic response to cardiac stress. In order to answer the question whether MLP modulates cardiac hypertrophy in vivo, we generated a novel transgenic mouse model with cardiac-specific overexpression of MLP. Three independent transgenic lines did not show a pathological phenotype under baseline conditions. Specifically, contractile function and heart weight to body weight ratios at different ages were normal. Next, the transgenic animals were challenged with pressure overload due to aortic constriction. Surprisingly, transgenic mice developed cardiac hypertrophy to the same extent as their wild-type littermates. Moreover, neither contractile dysfunction nor pathological gene expression in response to pressure overload were differentially affected by MLP overexpression. Finally, in a milder in vivo model of hypertrophy induced by chronic infusion of angiotensin-II, cardiac mass and hypertrophic gene expression were again identical in MLP transgenic mice and controls. Taken together, we provide evidence that cardiac overexpression of MLP does not modulate the heart's response to various forms of pathological stress.

  8. Cardiac remodeling during and after renin-angiotensin system stimulation in Cyp1a1-Ren2 transgenic rats

    DEFF Research Database (Denmark)

    Heijnen, Bart Fj; Pelkmans, Leonie Pj; Danser, Ah Jan

    2013-01-01

    This study investigated renin-angiotensin system (RAS)-induced cardiac remodeling and its reversibility in the presence and absence of high blood pressure (BP) in Cyp1a1-Ren2 transgenic inducible hypertensive rats (IHR). In IHR (pro)renin levels and BP can be dose-dependently titrated by oral...

  9. Atorvastatin improves cardiac function and remodeling in chronic non-ischemic heart failure: A clinical and pre-clinical study

    Directory of Open Access Journals (Sweden)

    Ibrahim Elmadbouh

    2015-12-01

    Conclusions: Atorvastatin with standard CHF therapy improved cardiac function and remodeling. Cardio-protective “pleiotropic” actions of atorvastatin are anti-inflammatory, anti-fibrotic and anti-oxidative. Thus, atorvastatin has a potential therapeutic value in the management of CHF patients.

  10. Relationship Between Reverse Remodeling and Cardiopulmonary Exercise Capacity in Heart Failure Patients Undergoing Cardiac Resynchronization Therapy

    DEFF Research Database (Denmark)

    Mastenbroek, Mirjam H; Sant, Jetske Van't; Versteeg, Henneke

    2016-01-01

    BACKGROUND: Studies on the relationship between left ventricular reverse remodeling and cardiopulmonary exercise capacity in heart failure patients undergoing cardiac resynchronization therapy (CRT) are scarce and inconclusive. METHODS AND RESULTS: Eighty-four patients with a 1st-time CRT......-defibrillator (mean age 65 ± 11; 73% male) underwent echocardiography and cardiopulmonary exercise testing (CPX) before implantation (baseline) and 6 months after implantation. At baseline, patients also completed a set of questionnaires measuring mental and physical health. The association between echocardiographic...... response (left ventricular end-systolic volume decrease ≥15%) and a comprehensive set of CPX results was examined. Echocardiographic responders (54%) demonstrated higher peak oxygen consumption and better exercise performance than nonresponders at baseline and at 6-month follow-up. Furthermore, only...

  11. RORγt-expressing cells attenuate cardiac remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Daichi Enomoto

    Full Text Available Retinoic acid receptor-related orphan nuclear receptor γt (RORγt is a transcriptional factor responsible for IL-17-producing T-cell differentiation. Although it was demonstrated that RORγt plays essential roles in the onset of autoimmune myocarditis, pathophysiological significance of RORγt in cardiac remodeling after myocardial infarction (MI remains to be fully elucidated.MI was generated by ligating coronary artery. The expression of RORγt and IL-17A transcripts increased in murine hearts after MI. Additionally, immunohistochemical staining revealed that RORγt-expressing cells infiltrated in the border zone after MI. Flow cytometric analysis showed that RORγt-expressing cells were released from the spleen at day 1 after MI. Though RORγt-expressing cells in spleen expressed γδTCR or CD4, γδTCR+ cells were major population of RORγt-expressing cells that infiltrated into post-infarct myocardium. To address the biological functions of RORγt-expressing cells in infarcted hearts, we used mice with enhanced GFP gene heterozygously knocked-in at RORγt locus (RORγt+/- mice, which physiologically showed reduced expression of RORγt mRNA in thymus. Kaplan-Meier analysis showed that MI-induced mortality was higher in RORγt+/- mice than wild-type (WT mice. Masson's trichrome staining demonstrated that cardiac injury was exacerbated in RORγt+/- mice 7 days after MI (Injured area: RORγt+/-; 42.1±6.5%, WT; 34.0±3.7%, circumference of injured myocardium: RORγt+/-; 61.8±4.8%, WT; 49.6±5.1%, accompanied by exacerbation of cardiac function (fractional shortening: RORγt+/-; 32.9±2.9%, WT; 38.3±3.6%. Moreover, immunohistochemical analyses revealed that capillary density in border zone was significantly reduced in RORγt+/- mice after MI, compared with WT mice, associated with the reduced expression of angiopoietin 2. Finally, the mRNA expression of RORγt, IL-17A, IL-17F and IL-23 receptor (IL-23R mRNA and protein expression of IL-10

  12. Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis.

    Science.gov (United States)

    Kong, Ping; Christia, Panagiota; Saxena, Amit; Su, Ya; Frangogiannis, Nikolaos G

    2013-11-01

    Understanding the role of fibroblasts in pathologic conditions is hampered by the absence of specific markers. Fibroblast-specific protein (FSP)1 has been suggested as a fibroblast-specific marker in normal and fibrotic tissues; FSP1 reporter mice and FSP1-Cre-driven gene deletion are considered reliable strategies to investigate fibroblast biology. Because fibroblasts are abundant in normal and injured mammalian hearts, we studied the identity of FSP1(+) cells in the infarcted and remodeling myocardium using mice with green fluorescent protein (GFP) expression driven by the FSP1 promoter. Neonatal and adult mouse hearts had low numbers of FSP1(+) cells. Myocardial infarction induced marked infiltration with FSP1-expressing cells that peaked after 72 h of reperfusion. Using flow cytometry, we identified 50% of FSP1(+) cells as hematopoietic cells; many endothelial cells were also FSP1(+). Increased infiltration with FSP1(+) cells was also noted in the pressure-overloaded myocardium. Although some FSP1(+) cells had fibroblast morphology, >30% were identified as hematopoietic cells, endothelial cells, or vascular smooth muscle cells. In contrast, periostin did not stain leukocytes or vascular cells but labeled spindle-shaped interstitial cells and, as a typical matricellular protein, was deposited in the matrix. CD11b(+) myeloid cells sorted from the infarcted heart had higher FSP1 expression than corresponding CD11b-negative cells, highlighting the predominant expression by hematopoietic cells. FSP1 is not a specific marker for fibroblasts in cardiac remodeling and fibrosis.

  13. Low Doses of Simvastatin Therapy Ameliorate Cardiac Inflammatory Remodeling in Trypanosoma cruzi-Infected Dogs

    Science.gov (United States)

    Melo, Lilian; Caldas, Ivo Santana; Azevedo, Maíra Araújo; Gonçalves, Karolina Ribeiro; da Silva do Nascimento, Alvaro Fernando; Figueiredo, Vivian Paulino; de Figueiredo Diniz, Lívia; de Lima, Wanderson Geraldo; Torres, Rosália Moraes; Bahia, Maria Terezinha; Talvani, André

    2011-01-01

    Chagas cardiomyopathy remodeling is based on the presence of Trypanosoma cruzi in heart tissue and on the complex inflammatory response leading to a myocardium fibrosis and alterations in conductive and functional heart parameters. This study aims to evaluate Simvastatin on the inflammatory response and heart functionality using dogs infected with Y strain of T. cruzi. Animals were treated daily with Simvastatin (20 mg) for 6 months and submitted to clinical and immunopathological evaluations. Simvastatin reduced heart expression and serum levels of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) but not interleukin-10 (IL-10), possibly favoring blood parasitism but reducing inflammation and fibrosis in the left ventricle and right atrium. Simvastatin also ameliorated ejection fraction, diastolic diameter, and mass index of the left ventricle 6 months after infection. This study suggests that more investigation should be performed on the use of statins as a prophylactic therapy against cardiac remodeling because of their effects on modifying immune response and benefiting functional parameters in dogs with T. cruzi-induced ventricular dysfunctions. PMID:21292909

  14. Gender-Based Differences in Cardiac Remodeling and ILK Expression after Myocardial Infarction

    International Nuclear Information System (INIS)

    Sofia, Renato Rodrigues; Serra, Andrey Jorge; Silva, Jose Antonio Jr; Antonio, Ednei Luiz; Manchini, Martha Trindade; Oliveira, Fernanda Aparecida Alves de; Teixeira, Vicente Paulo Castro; Tucci, Paulo José Ferreira

    2014-01-01

    Gender can influence post-infarction cardiac remodeling. To evaluate whether gender influences left ventricular (LV) remodeling and integrin-linked kinase (ILK) after myocardial infarction (MI). Female and male Wistar rats were assigned to one of three groups: sham, moderate MI (size: 20-39% of LV area), and large MI (size: ≥40% of LV area). MI was induced by coronary occlusion, and echocardiographic analysis was performed after six weeks to evaluate MI size as well as LV morphology and function. Real-time RT-PCR and Western blot were used to quantify ILK in the myocardium. MI size was similar between genders. MI resulted in systolic dysfunction and enlargement of end-diastolic as well as end-systolic dimension of LV as a function of necrotic area size in both genders. Female rats with large MI showed a lower diastolic and systolic dilatation than the respective male rats; however, LV dysfunction was similar between genders. Gene and protein levels of ILK were increased in female rats with moderate and large infarctions, but only male rats with large infarctions showed an altered ILK mRNA level. A negative linear correlation was evident between LV dimensions and ILK expression in female rats with large MI. Post-MI ILK expression is altered in a gender-specific manner, and higher ILK levels found in females may be sufficient to improve LV geometry but not LV function

  15. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Sarika Saraswati

    Full Text Available Wnt signaling plays an important role in developmental and stem cell biology. To test the hypothesis that temporary inhibition of Wnt signaling will enhance granulation tissue and promote angiogenesis in tissue repair, we employed a recently characterized small molecule Wnt inhibitor. Pyrvinium is an FDA-approved drug that we identified as a Wnt inhibitor in a chemical screen for small molecules that stabilize β-catenin and inhibit Axin degradation. Our subsequent characterization of pyrvinium has revealed that its critical cellular target in the Wnt pathway is Casein Kinase 1α. Daily administration of pyrvinium directly into polyvinyl alcohol (PVA sponges implanted subcutaneously in mice generated better organized and vascularized granulation tissue; this compound also increased the proliferative index of the tissue within the sponges. To evaluate its effect in myocardial repair, we induced a myocardial infarction (MI by coronary artery ligation and administered a single intramyocardial dose of pyrvinium. Mice were evaluated by echocardiography at 7 and 30 days post-MI and treatment; post mortem hearts were evaluated by histology at 30 days. Pyrvinium reduced adverse cardiac remodeling demonstrated by decreased left ventricular internal diameter in diastole (LVIDD as compared to a control compound. Increased Ki-67+ cells were observed in peri-infarct and distal myocardium of pyrvinium-treated animals. These results need to be further followed-up to determine if therapeutic inhibition of canonical Wnt may avert adverse remodeling after ischemic injury and its impact on myocardial repair and regeneration.

  16. Gender-Based Differences in Cardiac Remodeling and ILK Expression after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Renato Rodrigues Sofia

    2014-08-01

    Full Text Available Background: Gender can influence post-infarction cardiac remodeling. Objective: To evaluate whether gender influences left ventricular (LV remodeling and integrin-linked kinase (ILK after myocardial infarction (MI. Methods: Female and male Wistar rats were assigned to one of three groups: sham, moderate MI (size: 20-39% of LV area, and large MI (size: ≥40% of LV area. MI was induced by coronary occlusion, and echocardiographic analysis was performed after six weeks to evaluate MI size as well as LV morphology and function. Real-time RT-PCR and Western blot were used to quantify ILK in the myocardium. Results: MI size was similar between genders. MI resulted in systolic dysfunction and enlargement of end-diastolic as well as end-systolic dimension of LV as a function of necrotic area size in both genders. Female rats with large MI showed a lower diastolic and systolic dilatation than the respective male rats; however, LV dysfunction was similar between genders. Gene and protein levels of ILK were increased in female rats with moderate and large infarctions, but only male rats with large infarctions showed an altered ILK mRNA level. A negative linear correlation was evident between LV dimensions and ILK expression in female rats with large MI. Conclusions: Post-MI ILK expression is altered in a gender-specific manner, and higher ILK levels found in females may be sufficient to improve LV geometry but not LV function.

  17. Gender-Based Differences in Cardiac Remodeling and ILK Expression after Myocardial Infarction

    Energy Technology Data Exchange (ETDEWEB)

    Sofia, Renato Rodrigues [Programa de Pós-graduação em Ciências da Reabilitação - Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Departamento de Cardiologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil); Serra, Andrey Jorge, E-mail: andreyserra@gmail.com; Silva, Jose Antonio Jr [Programa de Pós-graduação em Ciências da Reabilitação - Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Antonio, Ednei Luiz [Departamento de Cardiologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil); Manchini, Martha Trindade [Programa de Pós-graduação em Ciências da Reabilitação - Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Oliveira, Fernanda Aparecida Alves de [Departamento de Cardiologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil); Teixeira, Vicente Paulo Castro [Departamento de Patologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil); Tucci, Paulo José Ferreira [Departamento de Cardiologia - Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-15

    Gender can influence post-infarction cardiac remodeling. To evaluate whether gender influences left ventricular (LV) remodeling and integrin-linked kinase (ILK) after myocardial infarction (MI). Female and male Wistar rats were assigned to one of three groups: sham, moderate MI (size: 20-39% of LV area), and large MI (size: ≥40% of LV area). MI was induced by coronary occlusion, and echocardiographic analysis was performed after six weeks to evaluate MI size as well as LV morphology and function. Real-time RT-PCR and Western blot were used to quantify ILK in the myocardium. MI size was similar between genders. MI resulted in systolic dysfunction and enlargement of end-diastolic as well as end-systolic dimension of LV as a function of necrotic area size in both genders. Female rats with large MI showed a lower diastolic and systolic dilatation than the respective male rats; however, LV dysfunction was similar between genders. Gene and protein levels of ILK were increased in female rats with moderate and large infarctions, but only male rats with large infarctions showed an altered ILK mRNA level. A negative linear correlation was evident between LV dimensions and ILK expression in female rats with large MI. Post-MI ILK expression is altered in a gender-specific manner, and higher ILK levels found in females may be sufficient to improve LV geometry but not LV function.

  18. Hypothermia and postconditioning after cardiopulmonary resuscitation reduce cardiac dysfunction by modulating inflammation, apoptosis and remodeling.

    Directory of Open Access Journals (Sweden)

    Patrick Meybohm

    Full Text Available BACKGROUND: Mild therapeutic hypothermia following cardiac arrest is neuroprotective, but its effect on myocardial dysfunction that is a critical issue following resuscitation is not clear. This study sought to examine whether hypothermia and the combination of hypothermia and pharmacological postconditioning are cardioprotective in a model of cardiopulmonary resuscitation following acute myocardial ischemia. METHODOLOGY/PRINCIPAL FINDINGS: Thirty pigs (28-34 kg were subjected to cardiac arrest following left anterior descending coronary artery ischemia. After 7 minutes of ventricular fibrillation and 2 minutes of basic life support, advanced cardiac life support was started according to the current AHA guidelines. After successful return of spontaneous circulation (n = 21, coronary perfusion was reestablished after 60 minutes of occlusion, and animals were randomized to either normothermia at 38 degrees C, hypothermia at 33 degrees C or hypothermia at 33 degrees C combined with sevoflurane (each group n = 7 for 24 hours. The effects on cardiac damage especially on inflammation, apoptosis, and remodeling were studied using cellular and molecular approaches. Five animals were sham operated. Animals treated with hypothermia had lower troponin T levels (p<0.01, reduced infarct size (34+/-7 versus 57+/-12%; p<0.05 and improved left ventricular function compared to normothermia (p<0.05. Hypothermia was associated with a reduction in: (i immune cell infiltration, (ii apoptosis, (iii IL-1beta and IL-6 mRNA up-regulation, and (iv IL-1beta protein expression (p<0.05. Moreover, decreased matrix metalloproteinase-9 activity was detected in the ischemic myocardium after treatment with mild hypothermia. Sevoflurane conferred additional protective effects although statistic significance was not reached. CONCLUSIONS/SIGNIFICANCE: Hypothermia reduced myocardial damage and dysfunction after cardiopulmonary resuscitation possible via a reduced rate of apoptosis

  19. Regression of fragmented QRS complex: a marker of electrical reverse remodeling in cardiac resynchronization therapy.

    Science.gov (United States)

    Yang, Xin-wei; Hua, Wei; Wang, Jing; Liu, Zhi-min; Ding, Li-gang; Chen, Ke-ping; Zhang, Shu

    2015-01-01

    Fragmented QRS (fQRS) marks inhomogeneous activation and asynchronous cardiac contraction. It has been proved that cardiac resynchronization therapy (CRT) could reverse geometrical remodeling as well as correct electrical dyssynchrony. We aimed to investigate whether fQRS changed corresponding to the therapeutic response to CRT. Patients who underwent de novo CRT implantation previously and had ≥1 follow-up between August 2012 and September 2013 in our hospital were investigated. Intrinsic electrocardiogram was recorded and fQRS in any lead was calculated. Response to CRT was defined as absolute improvement in left ventricular ejection fraction by ≥10% or by improvement >1 New York Heart Association class and without heart failure hospitalization. A total of 75 patients (48 male, mean ages, 61 ± 9 years) were included in this study. At a median follow-up of 13 months, 57 patients had response to CRT. Responders had narrowed QRS (from 167 ± 23 ms to 158 ± 19 ms, P = 0.003) and reduced fQRS post-CRT. Nonresponders had QRS prolonging (from 151 ± 26 ms to 168 ± 16 ms, P = 0.033) and increase in fQRS. Eleven of 12 patients with reduced fQRS were responders and 8 of 12 with increased fQRS were nonresponders. Both changes in QRS and fQRS correlated strongly with CRT response (r = 0.389, P = 0.001 and r = 0.403, P = 0.000, respectively). Reduction of fQRS in ≥1 leads had high specificity (95%) in association to responders, though in low sensitivity (19%). The changes in fQRS associated with therapeutic response to CRT. Regression of fQRS could be a maker of electrical reverse remodeling following CRT. © 2014 Wiley Periodicals, Inc.

  20. Cardiac remodeling following percutaneous mitral valve repair. Initial results assessed by cardiovascular magnetic resonance imaging

    International Nuclear Information System (INIS)

    Radunski, U.K; Franzen, O.; Barmeyer, A.

    2014-01-01

    Percutaneous mitral valve repair with the MitraClip device (Abbott Vascular, Redwood City, California, USA) is a novel therapeutic option in patients with mitral regurgitation. This study evaluated the feasibility of cardiac volume measurements by cardiovascular magnetic resonance imaging (CMR) to assess reverse myocardial remodeling in patients after MitraClip implantation. 12 patients underwent CMR at baseline (BL) before and at 6 months follow-up (FU) after MitraClip implantation. Cine-CMR was performed in short- and long-axes for the assessment of left ventricular (LV), right ventricular (RV) and left atrial (LA) volumes. Assessment of endocardial contours was not compromised by the device-related artifact. No significant differences in observer variances were observed for LV, RV and LA volume measurements between BL and FU. LV end-diastolic (median 127 [IQR 96-150] vs. 112 [86-150] ml/m 2 ; p=0.03) and LV end-systolic (82 [54-91] vs. 69 [48-99] ml/m 2 ; p=0.03) volume indices decreased significantly from BL to FU. No significant differences were found for RV end-diastolic (94 [75-103] vs. 99 [77-123] ml/m 2 ; p=0.91), RV end-systolic (48 [42-80] vs. 51 [40-81] ml/m 2 ; p=0.48), and LA (87 [55-124] vs. 92 [48-137]R ml/m 2 ; p=0.20) volume indices between BL and FU. CMR enables the assessment of cardiac volumes in patients after MitraClip implantation. Our CMR findings indicate that percutaneous mitral valve repair results in reverse LV but not in RV or LA remodeling.

  1. Cardiac remodeling following percutaneous mitral valve repair. Initial results assessed by cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Radunski, U.K [University Heart Center, Hamburg (Germany). Cardiology; Franzen, O. [Rigshospitalet, Copenhagen (Denmark). Cardiology; Barmeyer, A. [Klinikum Dortmund (Germany). Kardiologie; and others

    2014-10-15

    Percutaneous mitral valve repair with the MitraClip device (Abbott Vascular, Redwood City, California, USA) is a novel therapeutic option in patients with mitral regurgitation. This study evaluated the feasibility of cardiac volume measurements by cardiovascular magnetic resonance imaging (CMR) to assess reverse myocardial remodeling in patients after MitraClip implantation. 12 patients underwent CMR at baseline (BL) before and at 6 months follow-up (FU) after MitraClip implantation. Cine-CMR was performed in short- and long-axes for the assessment of left ventricular (LV), right ventricular (RV) and left atrial (LA) volumes. Assessment of endocardial contours was not compromised by the device-related artifact. No significant differences in observer variances were observed for LV, RV and LA volume measurements between BL and FU. LV end-diastolic (median 127 [IQR 96-150] vs. 112 [86-150] ml/m{sup 2}; p=0.03) and LV end-systolic (82 [54-91] vs. 69 [48-99] ml/m{sup 2}; p=0.03) volume indices decreased significantly from BL to FU. No significant differences were found for RV end-diastolic (94 [75-103] vs. 99 [77-123] ml/m{sup 2}; p=0.91), RV end-systolic (48 [42-80] vs. 51 [40-81] ml/m{sup 2}; p=0.48), and LA (87 [55-124] vs. 92 [48-137]R ml/m{sup 2}; p=0.20) volume indices between BL and FU. CMR enables the assessment of cardiac volumes in patients after MitraClip implantation. Our CMR findings indicate that percutaneous mitral valve repair results in reverse LV but not in RV or LA remodeling.

  2. Cardiac-Restricted IGF-1Ea Overexpression Reduces the Early Accumulation of Inflammatory Myeloid Cells and Mediates Expression of Extracellular Matrix Remodelling Genes after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Enrique Gallego-Colon

    2015-01-01

    Full Text Available Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9, their inhibitors (TIMP-1 and TIMP-2, and collagen types (Col 1α1 and Col 1α3 in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function.

  3. Left cardiac chambers reverse remodeling after percutaneous mitral valve repair with the MitraClip system.

    Science.gov (United States)

    Scandura, Salvatore; Ussia, Gian Paolo; Capranzano, Piera; Caggegi, Anna; Sarkar, Kunal; Cammalleri, Valeria; Mangiafico, Sarah; Chiarandà, Marta; Immè, Sebastiano; Di Pasqua, Fabio; Pistritto, Anna Maria; Millan, Giovanni; Tamburino, Corrado

    2012-10-01

    Successful mitral valve surgical repair, decreasing volume overload, has been shown to provide reverse left ventricular (LV) and/or left atrial remodeling in most patients. Percutaneous mitral valve repair with the MitraClip system (Abbott, Abbott Park, IL) has been associated with favorable clinical outcomes in patients with mitral regurgitation at high risk of surgery. However, specific data on left cardiac chambers reverse remodeling after such procedures are limited. This was a prospective observational study of consecutive patients at high risk of surgery, with moderate-to-severe or severe mitral regurgitation undergoing MitraClip system implantation. Follow-up echocardiography was performed at 6 months. The evaluated parameters were the LV end-diastolic and end-systolic volume indexes, LV sphericity index, LV ejection fraction, and left atrial volume index. Reverse LV remodeling was defined as a decrease of 10% in the LV end-diastolic volume index. The study population included 44 patients: 14 with degenerative and 30 with functional mitral regurgitation. At 6 months of follow-up, significant reductions in the median and interquartile range of the sphericity index (from 0.57 [interquartile range 0.54-0.62] to 0.54 [interquartile range 0.50-0.58]; P interquartile range 63.0-102.2] to 60.7 mL/m(2) [50.8-84.4]; P interquartile range 28.2-70.5] to 28.9 mL/m(2) [interquartile range 22.2-55.8]; P interquartile range 30.0-55.0%] to 46.0% [interquartile range 35.0-58.0%]; P < .001) from baseline to 6 months. Minor differences in the left atrial volume index were observed. Reverse remodeling, according to the specified definition, was observed in 77.3% of the patients. The present study reports positive LV reshape effects after mitral valve repair with the MitraClip system, showing significant improvements in LV size and function. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  4. Cardiac remodeling following percutaneous mitral valve repair - initial results assessed by cardiovascular magnetic resonance imaging

    DEFF Research Database (Denmark)

    Radunski, U K; Franzen, O; Barmeyer, A

    2014-01-01

    PURPOSE: Percutaneous mitral valve repair with the MitraClip device (Abbott Vascular, Redwood City, California, USA) is a novel therapeutic option in patients with mitral regurgitation. This study evaluated the feasibility of cardiac volume measurements by cardiovascular magnetic resonance imaging...... (CMR) to assess reverse myocardial remodeling in patients after MitraClip implantation. MATERIALS AND METHODS: 12 patients underwent CMR at baseline (BL) before and at 6 months follow-up (FU) after MitraClip implantation. Cine-CMR was performed in short- and long-axes for the assessment of left...... end-systolic (48 [42 - 80] vs. 51 [40 - 81] ml/m(2); p = 0.48), and LA (87 [55 - 124] vs. 92 [48 - 137] ml/m(2); p = 0.20) volume indices between BL and FU. CONCLUSION: CMR enables the assessment of cardiac volumes in patients after MitraClip implantation. Our CMR findings indicate that percutaneous...

  5. Differential effect of assisted reproductive technology and small-for-gestational age on fetal cardiac remodeling.

    Science.gov (United States)

    Valenzuela-Alcaraz, B; Crispi, F; Cruz-Lemini, M; Bijnens, B; García-Otero, L; Sitges, M; Balasch, J; Gratacós, E

    2017-07-01

    Fetuses conceived by assisted reproductive technology (ART) and those that are small-for-gestational age (SGA) show cardiovascular remodeling in utero; however, these two conditions are often associated. We aimed to evaluate the differential effect of ART and SGA on fetal cardiac remodeling. This was a prospective cohort study of term singleton pregnancies seen at our department between April 2011 and September 2013. The cohort was divided according to fetal growth and mode of conception into the following four groups: 102 appropriate-for-gestational-age (AGA) fetuses conceived spontaneously (controls), 72 AGA fetuses conceived by ART (ART-AGA), 31 SGA fetuses conceived by ART (ART-SGA) and 28 SGA fetuses conceived naturally (Spont-SGA). SGA was defined as birth weight Fetal echocardiography was performed at 28-32 weeks to assess cardiac dimensions, geometry and function. ART fetuses had dilated atria (mean left atrium-to-heart area ratio: controls, 15 ± 2.7%; ART-AGA, 18 ± 4.1%; Spont-SGA, 14 ± 3.7%) and more globular ventricles (left ventricular sphericity index: controls, 1.77 ± 0.2; ART-AGA, 1.68 ± 0.2; Spont-SGA, 1.72 ± 0.2), with normally sized hearts. In contrast, SGA fetuses had enlarged hearts (cardiothoracic ratio: controls, 24 ± 3%; ART-AGA, 24 ± 4%; Spont-SGA, 29 ± 6%), preserved atrial size, more globular and concentric hypertrophic ventricles (left ventricle relative wall thickness: controls, 0.48 ± 0.17; ART-AGA, 0.54 ± 0.13; Spont-SGA, 0.63 ± 0.23). Both ART and SGA fetuses had decreased longitudinal motion (tricuspid annular ring displacement: controls, 6.5 ± 0.8 mm; ART-AGA, 5.5 ± 0.7 mm; Spont-SGA, 5.9 ± 0.6 mm) and impaired relaxation (left isovolumetric relaxation time: controls, 47.0 ± 7.3 ms; ART-AGA, 50.0 ± 7.9 ms; Spont-SGA, 49.5 ± 9.3 ms). ART-SGA fetuses presented a combination of features from both ART and SGA groups. SGA and conception with ART

  6. Sulforaphane effects on postinfarction cardiac remodeling in rats: modulation of redox-sensitive prosurvival and proapoptotic proteins.

    Science.gov (United States)

    Fernandes, Rafael Oliveira; De Castro, Alexandre Luz; Bonetto, Jéssica Hellen Poletto; Ortiz, Vanessa Duarte; Müller, Dalvana Daneliza; Campos-Carraro, Cristina; Barbosa, Silvia; Neves, Laura Tartari; Xavier, Léder Leal; Schenkel, Paulo Cavalheiro; Singal, Pawan; Khaper, Neelam; da Rosa Araujo, Alex Sander; Belló-Klein, Adriane

    2016-08-01

    This study investigated whether sulforaphane (SFN), a compound found in cruciferous vegetables, could attenuate the progression of post-myocardial infarction (MI) cardiac remodeling. Male Wistar rats (350 g) were allocated to four groups: SHAM (n=8), SHAM+SFN (n=7), MI (n=8) and MI+SFN (n=5). On the third day after surgery, cardiac function was assessed and SFN treatment (5 mg/kg/day) was started. At the end of 25 days of treatment, cardiac function was assessed and heart was collected to measure collagen content, oxidative stress and protein kinase. MI and MI+SFN groups presented cardiac dysfunction, without signs of congestion. Sulforaphane reduced fibrosis (2.1-fold) in infarcted rats, which was associated with a slight attenuation in the cardiac remodeling process. Both infarcted groups presented increases in the oxidative markers xanthine oxidase and 4-hydroxinonenal, as well as a parallel increase in the antioxidant enzymes glutathione peroxidase and superoxide dismutase. Moreover, sulforaphane stimulated the cytoprotective heme oxygenase-1 (HO-1) (38%). Oxidative markers correlated with ERK 1/2 activation. In the MI+SFN group, up-regulation of ERK 1/2 (34%) and Akt (35%), as well as down-regulation of p38 (52%), was observed. This change in the prosurvival kinase balance in the MI+SFN group was related to a down-regulation of apoptosis pathways (Bax/Bcl-2/caspase-3). Sulforaphane was unable to modulate autophagy. Taken together, sulforaphane increased HO-1, which may generate a redox environment in the cardiac tissue favorable to activation of prosurvival and deactivation of prodeath pathways. In conclusion, this natural compound contributes to attenuation of the fibrotic process, which may contribute to mitigation against the progression of cardiac remodeling postinfarction. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Deficiency of Smad7 enhances cardiac remodeling induced by angiotensin II infusion in a mouse model of hypertension.

    Directory of Open Access Journals (Sweden)

    Li Hua Wei

    Full Text Available Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO and wild-type (WT mice by subcutaneous infusion of Ang II (1.46 mg/kg/day for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV mass (P<0.01,reduction of LV ejection fraction(P<0.001 and fractional shortening(P<0.001. Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3(+ T cells and F4/80(+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network.

  8. Long-term effects for acute phase myocardial infarct VEGF165 gene transfer cardiac extracellular matrix remodeling.

    Science.gov (United States)

    Mataveli, Fabio D'Aguiar; Han, Sang Won; Nader, Helena Bonciani; Mendes, Aline; Kanishiro, Rose; Tucci, Paulo; Lopes, Antonio Carlos; Baptista-Silva, Jose Carlos Costa; Marolla, Ana Paula Cleto; de Carvalho, Leonardo Pinto; Denapoli, Priscila Martins Andrade; Pinhal, Maria Aparecida da Silva

    2009-02-01

    Cardiac remodeling is ultimately regulated by components of the extracellular matrix (ECM). We investigated the important role that growth factors play in the regulation of ECM remodeling that occurs as a consequence of myocardium damage. Rats were submitted to the ligation of the left anterior coronary artery and pcDNA3-vascular endothelial growth factor (VEGF)(165) was immediately injected intramyocardially in the treated group. The animals were divided into large size myocardium infarction (LMI) and small size myocardium infarction, with or without gene transfer. The plasmid-containing DNA encoding VEGF(165) was injected into the cardiac muscle and its effect was observed on the ECM components. Glycosaminoglycans were identified and quantified by agarose gel based electrophoresis and ELISA as well as immunocytochemistry to examine specific cathepsin B, heparanase, and syndecan-4 changes. The amounts of hyaluronic acid (HA; p < 0.005), DS, chondroitin sulfate, and heparan sulfate (p < 0.001) were significantly increased in the LMI treated group in comparison to the other groups, which correlates with the decrease in the expression of heparanase. A decrease in the molecular mass of HA was found in the scar tissue of treated group. The data obtained strongly support the idea that changes in the ECM and its components are important determinants of cardiac remodeling after myocardium infarct and may be essential for inflammatory response and attempt to stabilize the damage and provide a compensatory mechanisms to maintain cardiac output since the ECM components analyzed are involved with angiogenesis, cell proliferation and differentiation.

  9. A theoretical study of bone remodelling under PEMF at cellular level.

    Science.gov (United States)

    Wang, Yanan; Qin, Qing-Hua

    2012-01-01

    Pulsed electromagnetic field (PEMF) devices have been used clinically to slow down osteoporosis and accelerate the healing of bone fractures for many years. However, the underlying mechanism by which bone remodelling under PEMF is regulated remains poorly understood. In this paper, a mathematical model of bone cell population of bone remodelling under PEMF at cellular level is developed to address this issue for the first time. On the basis of this model and control theory, parametric study of control mechanisms is carried out and a number of possible control mechanisms are identified. These findings will help further the understanding of bone remodelling under PEMF and advance therapies and pharmacological developments in clinical trials.

  10. Qiliqiangxin Attenuates Adverse Cardiac Remodeling after Myocardial Infarction in Ovariectomized Mice via Activation of PPARγ

    Directory of Open Access Journals (Sweden)

    Shutong Shen

    2017-06-01

    Full Text Available Background/Aims: This study was designed to investigate the therapeutic effect of traditional Chinese medication Qiliqiangxin (QLQX on adverse cardiac remodeling after myocardial infarction (MI in bilateral ovariectomized (OVX female mice. Methods: Eight-week old female C57BL/6 mice were operated to ligate the left anterior descending coronary artery seven days after bilateral ovariectomy and were orally administered either QLQX or vehicle. 21 days after ligation, echocardiography was performed to evaluate the heart function of all mice. Masson's Trichrome staining was applied to evaluate myocardial fibrosis. Collagen deposition was determined by the mRNA level of Collagen I, Collagen III and α-SMA using real-time quantitative polymerase chain reaction (qPCR. Myocardial apoptosis was examined by the protein level of Bax, Bcl2 and the Bcl2/Bax ratio using western blotting. Results: These mice displayed a significant reduction in heart function, increased myocardial fibrosis and apoptosis, and decreased expression of peroxisome proliferator activated receptor γ (PPARγ in the heart tissue, which could be reversed by QLQX treatment. Inhibition of PPAR reduced QLQX-mediated cardio-protective effects, while PPARγ activation did not further enhance the beneficial effect of QLQX. Furthermore, QLQX upregulated 9 genes (Cd36, Fatp, Pdk4, Acadm, Acadl, Acadvl, Cpt1a, Cpt1b and Cpt2 facilitating energy metabolism in the MI hearts of the OVX mice and 5 (Acadm, Acadl, Cpt1a, Cpt1b, Cpt2 of the 9 genes were the downstream targets of PPARγ. Conclusion: The present study indicates that QLQX has a treatment effect on pathological remodeling post MI in bilateral OVX female mice via activation of PPARγ, suggesting that QLQX may be a promising prescription for the treatment of postmenopausal women suffering from MI.

  11. Allogeneic pASC transplantation in humanized pigs attenuates cardiac remodeling post-myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Rafael Dariolli

    Full Text Available Cell therapy repair strategies using adult mesenchymal stromal cells have shown promising evidence to prevent cardiac deterioration in rodents even in the absence of robust differentiation of the cells into cardiomyocytes. We tested whether increasing doses of porcine adipose-tissue derived mesenchymal stem cells (pASCs increase cardiac tissue perfusion in pigs post-myocardial infarction (MI receiving angiotensin-converting-enzyme inhibitor (ACE inhibitors and Beta-blockers similarly to patients. Female pigs were subjected to MI induction by sponge permanent occlusion of left circumflex coronary artery (LCx generating approximately 10% of injured LV area with minimum hemodynamic impact. We assessed tissue perfusion by real time myocardial perfusion echocardiography (RTMPE using commercial microbubbles before and following pASCs treatment. Four weeks after the occlusion of the left circumflex artery, we transplanted placebo or pASCs (1, 2 and 4x106 cells/Kg BW into the myocardium. The highest dose of pASCs increased myocardial vessel number and blood flow in the border (56% and 3.7-fold, respectively and in the remote area (54% and 3.9-fold, respectively while the non-perfused scar area decreased (up to 38%. We also found an increase of immature collagen fibers, although the increase in total tissue collagen and types I and III was similar in all groups. Our results provide evidence that pASCs-induced stimulation of tissue perfusion and accumulation of immature collagen fibers attenuates adverse remodeling post-MI beyond the normal beneficial effects associated with ACE inhibition and beta-blockade.

  12. Cell death and serum markers of collagen metabolism during cardiac remodeling in Cavia porcellus experimentally infected with Trypanosoma cruzi.

    Science.gov (United States)

    Castro-Sesquen, Yagahira E; Gilman, Robert H; Paico, Henry; Yauri, Verónica; Angulo, Noelia; Ccopa, Fredy; Bern, Caryn

    2013-01-01

    We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV) deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP) and procollagen type III amino-terminal propeptide (PIIINP). Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response) predominated throughout the course of infection; IgG1 (Th2 response) was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively). These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection.

  13. Cell death and serum markers of collagen metabolism during cardiac remodeling in Cavia porcellus experimentally infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Yagahira E Castro-Sesquen

    Full Text Available We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP and procollagen type III amino-terminal propeptide (PIIINP. Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response predominated throughout the course of infection; IgG1 (Th2 response was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively. These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection.

  14. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    Science.gov (United States)

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  15. [Relationship between myocardial remodeling and neurohumoral activation in patients with cardiac failure].

    Science.gov (United States)

    Vizir, V A; Berezin, A E

    2001-01-01

    50 healthy subjects and 685 patients with heart failure (NYHA functional class I-IV) due to coronary heart disease (CHD) aged 34-74 years (mean age 48.1 +/- 8.22 years) were examined. Cardio-hemodynamics was assessed by M- and B-echocardiography from parasternal, subcostal and apical view on a short and long axis with transmitral Doppler. Plasma levels of epinephrine, norepinephrine, serotonin, aldosterone, STH, hydrocortisone were measured in the patients. Progression of cardiac failure is characterized by evolution of the left ventricular ellipse form into a ball shape primarily due to an increase in cross sectional cavity size. The changes of the left ventricular geometry in heart failure patients are combined with progressive reduction of the relative wall thickness index, intensification of the myocardial stress and impairment of diastolic function. The clearest intercoupling between myocardial remodeling and neurohumoral activation was registered in patients with asymptomatic heart failure. With growing severity of left ventricular dysfunction, plasm activity of serotonin, hydrocortisone and aldosterone increase more than levels of norepinephrine, epinephrine and STH.

  16. Molecular mechanisms of cardiac electromechanical remodeling during Chagas disease: Role of TNF and TGF-β.

    Science.gov (United States)

    Cruz, Jader Santos; Machado, Fabiana Simão; Ropert, Catherine; Roman-Campos, Danilo

    2017-02-01

    Chagas disease is caused by the trypanosomatid Trypanosoma cruzi, which chronically causes heart problems in up to 30% of infected patients. Chagas disease was initially restricted to Latin America. However, due to migratory events, this disease may become a serious worldwide health problem. During Chagas disease, many patients die of cardiac arrhythmia despite the apparent benefits of anti-arrhythmic therapy (e.g., amiodarone). Here, we assimilate the cardiac form of Chagas disease to an inflammatory cardiac disease. Evidence from the literature, mostly provided using experimental models, supports this view and argues in favor of new strategies for treating cardiac arrhythmias in Chagas disease by modulating cytokine production and/or action. But the complex nature of myocardial inflammation underlies the need to better understand the molecular mechanisms of the inflammatory response during Chagas disease. Here, particular attention has been paid to tumor necrosis factor alpha (TNF) and transforming growth factor beta (TGF-β) although other cytokines may be involved in the chagasic cardiomyopathy. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis.

    Science.gov (United States)

    Lin, Xue; Yang, Penghua; Reece, E Albert; Yang, Peixin

    2017-08-01

    Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus

  18. Induced Pluripotent Stem Cells-Derived Mesenchymal Stem Cells Attenuate Cigarette Smoke-Induced Cardiac Remodeling and Dysfunction

    Directory of Open Access Journals (Sweden)

    Yingmin Liang

    2017-07-01

    Full Text Available The strong relationship between cigarette smoking and cardiovascular disease (CVD has been well-documented, but the mechanisms by which smoking increases CVD risk appear to be multifactorial and incompletely understood. Mesenchymal stem cells (MSCs are regarded as an important candidate for cell-based therapy in CVD. We hypothesized that MSCs derived from induced pluripotent stem cell (iPSC-MSCs or bone marrow (BM-MSCs might alleviate cigarette smoke (CS-induced cardiac injury. This study aimed to investigate the effects of BM-MSCs or iPSC-MSCs on CS-induced changes in serum and cardiac lipid profiles, oxidative stress and inflammation as well as cardiac function in a rat model of passive smoking. Male Sprague-Dawley rats were randomly selected for exposure to either sham air (SA as control or 4% CS for 1 h per day for 56 days. On day 29 and 43, human adult BM-MSCs, iPSC-MSCs or PBS were administered intravenously to CS-exposed rats. Results from echocardiography, serum and cardiac lipid profiles, cardiac antioxidant capacity, cardiac pro- and anti-inflammatory cytokines and cardiac morphological changes were evaluated at the end of treatment. iPSC-MSC-treated group showed a greater effect in the improvement of CS-induced cardiac dysfunction over BM-MSCs-treated group as shown by increased percentage left ventricular ejection fraction and percentage fractional shortening, in line with the greater reversal of cardiac lipid abnormality. In addition, iPSC-MSCs administration attenuated CS-induced elevation of cardiac pro-inflammatory cytokines as well as restoration of anti-inflammatory cytokines and anti-oxidative markers, leading to ameliorate cardiac morphological abnormalities. These data suggest that iPSC-MSCs on one hand may restore CS-induced cardiac lipid abnormality and on the other hand may attenuate cardiac oxidative stress and inflammation via inhibition of CS-induced NF-κB activation, leading to improvement of cardiac remodeling and

  19. Sustained cardiac remodeling after a short-term very low calorie diet in type 2 diabetes mellitus patients.

    Science.gov (United States)

    Jonker, Jacqueline T; Snel, Marieke; Hammer, Sebastiaan; Jazet, Ingrid M; van der Meer, Rutger W; Pijl, Hanno; Meinders, A Edo; de Roos, Albert; Smit, Johannes W A; Romijn, Johannes A; Lamb, Hildo J

    2014-01-01

    A very low calorie diet (VLCD) results in cardiac remodeling and improved diastolic function. It is unknown how long these effects sustain after reintroduction of a regular diet. We aimed to assess the long-term effects of initial weight loss by VLCD on cardiac dimensions and function in type 2 diabetes mellitus (T2DM) patients. Fourteen insulin-dependent T2DM patients (mean ± SEM: age 53 ± 2 years; BMI 35 ± 1 kg/m(2)) were treated by a VLCD (450 kcal/day) during 16 weeks. Cardiac function and myocardial triglyceride (TG) content were measured by magnetic resonance imaging and spectroscopy at baseline, after a 16-week VLCD and after 14 months of follow-up on a regular diet. BMI decreased from 35 ± 1 to 28 ± 1 kg/m(2) after VLCD and increased again to 32 ± 1 kg/m(2) at 18 months (both P diet.

  20. Mitral valve repair by Double Teflon technique: cardiac remodeling analysis by tridimensional echocardiography.

    Science.gov (United States)

    Guedes, Marco Antonio Vieira; Pomerantzeff, Pablo Maria Alberto; Brandão, Carlos Manuel de Almeida; Vieira, Marcelo Luiz Campos; Leite Filho, Osanam Amorim; Silva, Marcos Floripes da; Spinola, Pablo da Cunha; Stolf, Noedir Antonio Groppo

    2010-01-01

    Mitral valve repair is the treatment of choice to correct mitral insufficiency. Although the literature related to left atrial and ventricular behavior after mitral repair without use of prosthetic rings is scarce. To analyze cardiac morphology and function using real time tridimensional echocardiography in individuals submitted to mitral valve repair with Double Teflon technique. Were included 14 patients with mixomatous mitral valve insufficiency that were submitted to mitral valve repair with the Double Teflon technique. Of them, 13 patients were in class III/IV. Patients were evaluated in preoperative period, immediate postoperative period, 6 months and 1 year after mitral repair. Statistic analysis was made by repeated measures ANOVA test and was considered statistically significant P <0.05. The analysis of systolic volumes, atrial and ventricular, demonstrated a significant volumetric reduction between immediate postoperative period and 1 year (P = 0.028 and P = 0.020, respectively). Between preoperative period and 1 year, there was a mean reduction in atrial and ventricle volumes of 19.9% and 15.4%, respectively. Atrial and ventricle diastolic volumes presented a significant reduction in immediate postoperative period (P <0.001 and P = 0.024, respectively), remaining stable during the study. There was an increase in left atrial ejection fraction after 6 months (P <0.001), although there was no significant variation in left ventricle ejection fraction. Patients submitted to mitral valve repair by the Double Teflon technique demonstrated a left atrial and ventricle reverse remodeling. These reductions were associated with an improvement in left atrial function during the study.

  1. Interleukin-2/Anti-Interleukin-2 Immune Complex Attenuates Cardiac Remodeling after Myocardial Infarction through Expansion of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Zhipeng Zeng

    2016-01-01

    Full Text Available CD4+CD25+Foxp3+ regulatory T cells (Treg cells have protective effects in wound healing and adverse ventricular remodeling after myocardial infarction (MI. We hypothesize that the interleukin- (IL- 2 complex comprising the recombinant mouse IL-2/anti-IL-2 mAb (JES6-1 attenuates cardiac remodeling after MI through the expansion of Treg. Mice were subjected to surgical left anterior descending coronary artery ligation and treated with either PBS or IL-2 complex. The IL-2 complex significantly attenuates ventricular remodeling, as demonstrated by reduced infarct size, improved left ventricular (LV function, and attenuated cardiomyocyte apoptosis. The IL-2 complex increased the percentage of CD4+CD25+Foxp3+ Treg cells, which may be recruited to the infarcted heart, and decreased the frequencies of IFN-γ- and IL-17-producing CD4+ T helper (Th cells among the CD4+Foxp3− T cells in the spleen. Furthermore, the IL-2 complex inhibited the gene expression of proinflammatory cytokines as well as macrophage infiltrates in the infarcted myocardium and induced the differentiation of macrophages from M1 to M2 phenotype in border zone of infarcted myocardium. Our studies indicate that the IL-2 complex may serve as a promising therapeutic approach to attenuate adverse remodeling after MI through expanding Treg cells specifically.

  2. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2017-05-01

    Full Text Available Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.

  3. Acacetin protects against cardiac remodeling after myocardial infarction by mediating MAPK and PI3K/Akt signal pathway

    Directory of Open Access Journals (Sweden)

    Wei Chang

    2017-12-01

    Full Text Available Since inhibiting cardiac remodeling is a critical treatment goal after myocardial infarction (MI, many drugs have been evaluated for this purpose. Acacetin is a flavonoid compound that has been shown to have anti-cancer, anti-mutagenic, anti-inflammatory and anti-peroxidative effects. In this study, we investigated whether acacetin is able to exert a protective effect against MI. One week after anterior wall standard MI surgeries or sham surgeries were performed in mice, acacetin was administered via gavage for two weeks. The results of echocardiographic and hemodynamic evaluation revealed that cardiac dysfunction significantly improved after acacetin treatment. H&E staining indicated that the ratio of the infarct size and the cardiomyocyte cross-sectional area was decreased by acacetin. Masson's staining detected that the fibrotic area ratio was evidently lower in the acacetin-treated MI group. TUNEL assays showed that acacetin ameliorated cardiomyocyte apoptosis after MI. RT-qPCR analysis showed that levels of hypertrophic and fibrotic markers were significantly decreased after acacetin treatment. Western blot analysis of various signaling pathway proteins showed that acacetin targets the MAPK and PI3K/Akt signaling pathways. Collectively, acacetin improves mouse left ventricular function and attenuates cardiac remodeling by inhibiting of the MAPK and PI3K/Akt signaling pathway.

  4. Intramyocardial Delivery of Mesenchymal Stem Cell-Seeded Hydrogel Preserves Cardiac Function and Attenuates Ventricular Remodeling after Myocardial Infarction

    Science.gov (United States)

    Mathieu, Eva; Lamirault, Guillaume; Toquet, Claire; Lhommet, Pierre; Rederstorff, Emilie; Sourice, Sophie; Biteau, Kevin; Hulin, Philippe; Forest, Virginie; Weiss, Pierre

    2012-01-01

    Background To improve the efficacy of bone marrow-derived mesenchymal stem cell (MSC) therapy targeted to infarcted myocardium, we investigated whether a self-setting silanized hydroxypropyl methylcellulose (Si-HPMC) hydrogel seeded with MSC (MSC+hydrogel) could preserve cardiac function and attenuate left ventricular (LV) remodeling during an 8-week follow-up study in a rat model of myocardial infarction (MI). Methodology/Principal Finding Si-HPMC hydrogel alone, MSC alone or MSC+hydrogel were injected into the myocardium immediately after coronary artery ligation in female Lewis rats. Animals in the MSC+hydrogel group showed an increase in cardiac function up to 28 days after MI and a mid-term prevention of cardiac function alteration at day 56. Histological analyses indicated that the injection of MSC+hydrogel induced a decrease in MI size and an increase in scar thickness and ultimately limited the transmural extent of MI. These findings show that intramyocardial injection of MSC+hydrogel induced short-term recovery of ventricular function and mid-term attenuation of remodeling after MI. Conclusion/Significance These beneficial effects may be related to the specific scaffolding properties of the Si-HPMC hydrogel that may provide the ability to support MSC injection and engraftment within myocardium. PMID:23284842

  5. Cardiac resynchronization therapy in patients with chronic heart failure is associated with anti-inflammatory and anti-remodeling effects.

    Science.gov (United States)

    Stanciu, Adina Elena; Vatasescu, Radu Gabriel; Stanciu, Marcel Marian; Iorgulescu, Corneliu; Vasile, Alexandra Ioana; Dorobantu, Maria

    2013-02-01

    Proinflammatory cytokines, matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play a role in left ventricular (LV) structural remodeling. We aimed to investigate the effects of cardiac resynchronization therapy (CRT) on serum levels of amino-terminal prohormone B-type natriuretic peptide (NT-proBNP), some interleukins (IL-1β, IL-6, IL-8), MMP-2 and TIMP-2 in patients with chronic heart failure (CHF). We studied 27 patients (15 M/12 F) with CHF, III-IV NYHA class, implanted with a biventricular pacemaker/defibrillator and 40 healthy subjects (23 M/17 F). Blood samples were collected at baseline and 1 week, 3, 6, and 12 months after CRT device implantation. Cardiac function was assessed echocardiographically. CRT induced significant improvement in the NYHA class (baseline 3.2±0.5 vs. 1.0 at 12 months, P=0.0002) and significant LV reverse remodeling, with a 41% (P=0.001) reduction in LV end-systolic volume (LVESV). This was associated with a significant reduction in serum NT-proBNP, IL-6 and IL-8. Positive extracellular matrix remodeling was illustrated by decreasing levels of MMP-2 and increasing TIMP-2. MMP-2/TIMP-2 ratio decreased with 55% (P=0.003) from baseline value at 12 months and the correlation with LVESV reduction was 0.41 (P=0.001). Structural response to CRT is associated with reduced immune activation and positive extracellular matrix remodeling. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Impact of leucine supplementation on exercise training induced anti-cardiac remodeling effect in heart failure mice.

    Science.gov (United States)

    de Moraes, Wilson Max Almeida Monteiro; Melara, Thaís Plasti; de Souza, Pamella Ramona Moraes; Guimarães, Fabiana de Salvi; Bozi, Luiz Henrique Marchesi; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-05-15

    Leucine supplementation potentiates the effects of aerobic exercise training (AET) on skeletal muscle; however, its potential effects associated with AET on cardiac muscle have not been clarified yet. We tested whether leucine supplementation would potentiate the anti-cardiac remodeling effect of AET in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CARKO). Mice were assigned to five groups: wild type mice treated with placebo and sedentary (WT, n = 11), α2A/α2CARKO treated with placebo and sedentary (KO, n = 9), α2A/α2CARKO treated with leucine and sedentary (KOL, n = 11), α2A/α2CARKO treated with placebo and AET (KOT, n = 12) or α2A/α2CARKO treated with leucine and AET (KOLT, n = 12). AET consisted of four weeks on a treadmill with 60 min sessions (six days/week, 60% of maximal speed) and administration by gavage of leucine (1.35 g/kg/day) or placebo (distilled water). The AET significantly improved exercise capacity, fractional shortening and re-established cardiomyocytes' diameter and collagen fraction in KOT. Additionally, AET significantly prevented the proteasome hyperactivity, increased misfolded proteins and HSP27 expression. Isolated leucine supplementation displayed no effect on cardiac function and structure (KOL), however, when associated with AET (KOLT), it increased exercise tolerance to a higher degree than isolated AET (KOT) despite no additional effects on AET induced anti-cardiac remodeling. Our results provide evidence for the modest impact of leucine supplementation on cardiac structure and function in exercised heart failure mice. Leucine supplementation potentiated AET effects on exercise tolerance, which might be related to its recognized impact on skeletal muscle.

  7. Novel Sulfur Metabolites of Garlic Attenuate Cardiac Hypertrophy and Remodeling through Induction of Na+/K+-ATPase Expression.

    Science.gov (United States)

    Khatua, Tarak N; Borkar, Roshan M; Mohammed, Soheb A; Dinda, Amit K; Srinivas, R; Banerjee, Sanjay K

    2017-01-01

    Epidemiologic studies show an inverse correlation between garlic consumption and progression of cardiovascular disease. However, the molecular basis for the beneficial effect of garlic on the heart is not known. Therefore, the objective of the present study was to (1) investigate the effect of raw garlic on isoproterenol (Iso) induced cardiac hypertrophy (2) find the active metabolites of garlic responsible for the beneficial effect. Cardiac hypertrophy was induced in rats by subcutaneous single injection of Iso 5 mg kg -1 day -1 for 15 days and the effect of garlic (250 mg/kg/day orally) was evaluated. Garlic metabolites in in vivo were identified by LC/MS study. The effect of garlic and its metabolites were evaluated against hypertrophy in H9C2 cells. Garlic normalized cardiac oxidative stress after Iso administration. Cardiac pathology and mitochondrial enzyme activities were improved in hypertrophy heart after garlic administration. Decreased Na + /K + -ATPase protein level that observed in hypertrophy heart was increased after garlic administration. We identified three garlic metabolites in rat serum. To confirm the role of garlic metabolites on cardiac hypertrophy, Na + /K + -ATPase expression and intracellular calcium levels were measured after treating H9C2 cells with raw garlic and two of its active metabolites, allyl methyl sulfide and allyl methyl sulfoxide. Raw garlic and both metabolites increased Na + /K + -ATPase protein level and decreased intracellular calcium levels and cell size in Iso treated H9C2 cells. This antihypertrophic effect of garlic and its sulfur metabolites were lost in H9C2 cells in presence of Na + /K + -ATPase inhibitor. In conclusion, garlic and its active metabolites increased Na + /K + -ATPase in rat heart, and attenuated cardiac hypertrophy and associated remodeling. Our data suggest that identified new garlic metabolites may be useful for therapeutic intervention against cardiac hypertrophy.

  8. Practical prevention of cardiac remodeling and atrial fibrillation with full-spectrum antioxidant therapy and ancillary strategies.

    Science.gov (United States)

    McCarty, Mark F

    2010-08-01

    A wealth of research data points to increased oxidative stress as a key driver of the cardiac remodeling triggered by chronic pressure overload, loss of functional myocardial tissue, or atrial fibrillation. Oxidative stress is a mediator of the cardiomyocyte hypertrophy and apoptosis, the cardiac fibrosis, and the deficits in cardiac function which typify this syndrome, and may play a role in initiating and sustaining atrial fibrillation. Nox2- and Nox4-dependent NADPH oxidase activity appears to be a major source of this oxidative stress, and oxidants can induce conformational changes in xanthine dehydrogenase, nitric oxide synthase, and the mitochondrial respiratory chain which increase their capacity to generate superoxide as well. Consistent with these insights, various synthetic antioxidants have been shown to suppress cardiac remodeling in rodents subjected to myocardial infarction, aortic constriction, or rapid atrial pacing. It may prove feasible to achieve comparable benefits in humans through use of a "full-spectrum antioxidant therapy" (FSAT) that features a complementary array of natural antioxidants. Spirulina is a rich source of phycocyanobilin, a derivative and homolog of biliverdin that appears to mimic the potent inhibitory impact of biliverdin and free bilirubin on NADPH oxidase activity. Mega-doses of folate can markedly increase intracellular levels of tetrahydrofolates which have potent and versatile radical-scavenging activities - including efficient quenching of peroxynitrite-derived radicals Supplemental coenzyme Q10, already shown to improve heart function in clinical congestive failure, can provide important antioxidant protection to mitochondria. Phase 2 inducer nutraceuticals such as lipoic acid, administered in conjunction with N-acetylcysteine, have the potential to blunt the impact of oxidative stress by boosting myocardial levels of glutathione. While taurine can function as an antioxidant for myeloperoxidase-derived radicals, its

  9. Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides.

    Science.gov (United States)

    Calvieri, Camilla; Rubattu, Speranza; Volpe, Massimo

    2012-01-01

    Natriuretic peptides (NPs) exert well-characterized protective effects on the cardiovascular system, such as vasorelaxation, natri- and diuresis, increase of endothelial permeability, and inhibition of renin-angiotensin-aldosterone system. It has been reported that they also possess antihypertrophic and antifibrotic properties and contribute actively to cardiac remodeling. As a consequence, they are involved in several aspects of cardiovascular diseases. Antihypertrophic and antifibrotic actions of NPs appear to be mediated by specific signaling pathways within a more complex cellular network. Elucidation of the molecular mechanisms underlying the effects of NPs on cardiac remodeling represents an important research objective in order to gain more insights on the complex network leading to cardiac hypertrophy, ventricular dysfunction, and transition to heart failure, and in the attempt to develop novel therapeutic agents. The aim of the present article is to review well-characterized molecular mechanisms underlying the antihypertrophic and antifibrotic effects of NPs in the heart that appear to be mainly mediated by guanylyl cyclase type A receptor. In particular, we discuss the calcineurin/NFAT, the sodium exchanger NHE-1, and the TGFβ1/Smad signaling pathways. The role of guanylyl cyclase type B receptor, along with the emerging functional significance of natriuretic peptide receptor type C as mediators of CNP antihypertrophic and antifibrotic actions in the heart are also considered.

  10. Why did high-dose rosuvastatin not improve cardiac remodeling in chronic heart failure? Mechanistic insights from the UNIVERSE study.

    Science.gov (United States)

    Ashton, Emma; Windebank, Emma; Skiba, Marina; Reid, Christopher; Schneider, Hans; Rosenfeldt, Franklin; Tonkin, Andrew; Krum, Henry

    2011-02-03

    Statins are often prescribed for prevention of atherosclerotic outcomes in patients who have chronic heart failure (CHF), if this has an ischaemic etiology. These agents may also possess additional properties, independent of effects on blood lipid levels, which may have an effect on cardiac remodeling. However, beneficial effects were not observed in the recent UNIVERSE trial. We prospectively planned a sub-study of UNIVERSE to explore relevant mechanistic effects of rosuvastatin, including effects on collagen turnover and plasma coenzyme Q10 (CoQ) levels. Additionally, CoQ levels in CHF patients receiving chronic statin therapy were measured. CoQ levels were significantly reduced after 26 weeks of rosuvastatin statin therapy (n = 32), compared to placebo (n = 37) in CHF patients in UNIVERSE trial. Patients with CHF (n = 56) matched for age, gender and severity of disease who had been taking statins for 12 months or longer had CoQ levels of 847 ± 344 nmol/L, significantly lower than 1065.4 ± 394 nmol/L in UNIVERSE patients at baseline (p = 0.0001). Serum types I and III N-terminal procollagen peptide (PINP and PIIINP), measures of collagen turnover which can contribute to cardiac fibrosis were significantly increased in the rosuvastatin group compared to baseline in UNIVERSE patients (PINP: p = 0.03, PIIINP: p = 0.001). In conclusion putative beneficial effects of statin therapy on cardiac remodeling in UNIVERSE may have been negated by increases in collagen turnover markers as well as a reduction in plasma CoQ levels in these patients with CHF. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Hydrochlorothiazide modulates ischemic heart failure-induced cardiac remodeling via inhibiting angiotensin II type 1 receptor pathway in rats.

    Science.gov (United States)

    Luo, Jinghong; Chen, Xuanlan; Luo, Chufan; Lu, Guihua; Peng, Longyun; Gao, Xiuren; Zuo, Zhiyi

    2017-04-01

    Our previous study indicates that hydrochlorothiazide inhibits transforming growth factor (TGF)-β/Smad signaling pathway, improves cardiac function and reduces fibrosis. We determined whether these effects were common among the diuretics and whether angiotensin II receptor type 1 (AT1) signaling pathway played a role in these effects. Heart failure was produced by ligating the left anterior descending coronary artery in adult male Sprague Dawley rats. Two weeks after the ligation, 70 rats were randomly divided into five groups: sham-operated group, control group, valsartan group (80 mg/kg/d), hydrochlorothiazide group (12.5 mg/kg/d) and furosemide group (20 mg/kg/d). In addition, neonatal rat ventricular fibroblasts were treated with angiotensin II. After eight-week drug treatment, hydrochlorothiazide group and valsartan group but not furosemide group had improved cardiac function (ejection fraction was 49.4±2.1%, 49.5±1.8% and 39.9±1.9%, respectively, compared with 40.1±2.2% in control group), reduced cardiac interstitial fibrosis and collagen volume fraction (9.7±1.2%, 10.0±1.3% and 14.1±0.8%, respectively, compared with 15.9±1.1% in control group), and decreased expression of AT1, TGF-β and Smad2 in the cardiac tissues. In addition, hydrochlorothiazide reduced plasma angiotensin II and aldosterone levels. Furthermore, hydrochlorothiazide inhibited angiotensin II-induced TGF-β1 and Smad2 protein expression in the neonatal rat ventricular fibroblasts. Our study indicates that the cardiac function and remodeling improvement after ischemic heart failure may not be common among the diuretics. Hydrochlorothiazide may reduce the left ventricular wall stress and angiotensin II signaling pathway to provide these beneficial effects. © 2016 John Wiley & Sons Ltd.

  12. Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Polizzi Clara

    2010-11-01

    Full Text Available Abstract Background Accumulating evidence suggests glucagon-like peptide-1 (GLP-1 exerts cardioprotective effects in animal models of myocardial infarction (MI. We hypothesized that chronic treatment with GLP-1 or the exenatide analog AC3174 would improve cardiac function, cardiac remodeling, insulin sensitivity, and exercise capacity (EC in rats with MI-induced chronic heart failure (CHF caused by coronary artery ligation. Methods Two weeks post-MI, male Sprague-Dawley rats were treated with GLP-1 (2.5 or 25 pmol/kg/min, AC3174 (1.7 or 5 pmol/kg/min or vehicle via subcutaneous infusion for 11 weeks. Cardiac function and morphology were assessed by echocardiography during treatment. Metabolic, hemodynamic, exercise-capacity, and body composition measurements were made at study end. Results Compared with vehicle-treated rats with CHF, GLP-1 or AC3174 significantly improved cardiac function, including left ventricular (LV ejection fraction, and end diastolic pressure. Cardiac dimensions also improved as evidenced by reduced LV end diastolic and systolic volumes and reduced left atrial volume. Vehicle-treated CHF rats exhibited fasting hyperglycemia and hyperinsulinemia. In contrast, GLP-1 or AC3174 normalized fasting plasma insulin and glucose levels. GLP-1 or AC3174 also significantly reduced body fat and fluid mass and improved exercise capacity and respiratory efficiency. Four of 16 vehicle control CHF rats died during the study compared with 1 of 44 rats treated with GLP-1 or AC3174. The cellular mechanism by which GLP-1 or AC3174 exert cardioprotective effects appears unrelated to changes in GLUT1 or GLUT4 translocation or expression. Conclusions Chronic treatment with either GLP-1 or AC3174 showed promising cardioprotective effects in a rat model of CHF. Hence, GLP-1 receptor agonists may represent a novel approach for the treatment of patients with CHF or cardiovascular disease associated with type 2 diabetes.

  13. Calcium channel blockade limits cardiac remodeling and improves cardiac function in myocardial infarction-induced heart failure in rats

    NARCIS (Netherlands)

    Sandmann, S.; Claas, R.; Cleutjens, J. P.; Daemen, M. J.; Unger, T.

    2001-01-01

    Calcium channel antagonists (CCAs) have been proposed to prevent cardiac events after myocardial infarction (MI). However, unwanted effects, such as negative inotropy, limit their use in many cases. The aim of this study was to compare the effects of long-term treatment with the CCAs, mibefradil,

  14. Adverse Remodeling and Reverse Remodeling After Myocardial Infarction.

    Science.gov (United States)

    Bhatt, Ankeet S; Ambrosy, Andrew P; Velazquez, Eric J

    2017-08-01

    The purpose of this review it to summarize the current literature on remodeling after myocardial infarction, inclusive of pathophysiological considerations, imaging modalities, treatment strategies, and future directions. As patients continue to live longer after myocardial infarction (MI), the prevalence of post-MI heart failure continues to rise. Changes in the left ventricle (LV) after MI involve complex interactions between cellular and extracellular components, under neurohormonal regulation. Treatments to prevent adverse LV remodeling and promote reverse remodeling in the post-MI setting include early revascularization, pharmacotherapy aimed at neurohormonal blockade, and device-based therapies that address ventricular dyssynchrony. Despite varying definitions of adverse LV remodeling examined across multiple imaging modalities, the presence of an enlarged LV cavity and/or reduced ejection fraction is consistently associated with poor clinical outcomes. Advances in our knowledge of the neurohormonal regulation of adverse cardiac remodeling have been instrumental in generating therapies aimed at arresting adverse remodeling and promoting reserve remodeling. Further investigation into other specific mechanisms of adverse LV remodeling and pathways to disrupt these mechanisms is ongoing and may provide incremental benefit to current evidence-based therapies.

  15. Sudden cardiac death in dogs with remodeled hearts is associated with larger beat-to-beat variability of repolarization

    DEFF Research Database (Denmark)

    Thomsen, Morten Bækgaard; Truin, Michiel; van Opstal, Jurren M

    2005-01-01

    Increased proarrhythmia in dogs with chronic AV block (AVB) has been explained by ventricular remodeling causing a decrease in repolarization reserve. Beat-to-beat variability of repolarization (BVR) has been suggested to reflect repolarization reserve, in which high variability represents...... diminished reserve and larger propensity for repolarization-dependent ventricular arrhythmia. A subset of chronic AVB dogs (10%) suffers sudden cardiac death (SCD). With the assumption that repolarization defects constitute a potentially lethal proarrhythmic substrate, we hypothesized that BVR in SCD dogs...... are larger than in matched control chronic AVB dogs. From a population of 200 chronic AVB dogs, initially two groups were chosen retrospectively: 8 dogs that died suddenly (SCD) and 8 control dogs. Control dogs had a longer lifespan after AVB (10 to 18 weeks) than SCD dogs (5 to 10 weeks). All dogs had...

  16. ALLELE STATUS OF ALDOSTERONE SYNTHASE (CYP11B2 GENE POLYMORPHISM AND CARDIAC REMODELING AFTER ST SEGMENT ELEVATION MYOCARDIAL INFARCTION

    Directory of Open Access Journals (Sweden)

    Petyunina O. V.

    2017-12-01

    Full Text Available Aldosterone plays an important role in the development of reparative and reactive fibrosis and cardiac remodeling (CR after myocardial infarction. The objective of the study is to investigate the structural and functional parameters of the myocardium, heart rate variability (HRV, exercise intolerance, levels of sST2 in association with polymorphism of CYP11B2 gene of aldosterone-synthase in ST-myocardial infarction (STEMI patients during a 6-months follow-up period. 85 STEMI patients were enrolled: 68 (80 % male and 17 (20 % female, mean age was 58,94 ± 10,16 years. Examinations were performed twice: during 1–3 days after PCI with infarct-related artery stenting and included clinical assessment, ultrasound diagnostic, immunofermentative blood analyses (sST2, polymerase chain reaction in real time (polymorphism –T344C of the CYP11B2 gene. After 6-months of observation, 57 patients were reexamined – clinical assessment, ultrasound diagnostic, HRV were performed. CYP11B2 TT-genotype in 6 months after STEMI is associated with a maladaptive character of after infarction remodeling.

  17. [The specific features of left cardiac cavity remodeling in patients with chronic obstructive pulmonary disease and chronic cor pulmonale].

    Science.gov (United States)

    Strutynskiĭ, A V; Bakaev, R G; Glazunov, A B; Banzeliuk, E N; Moshkova, N K; Reĭsner, A A; Shavurdina, S V; Vinogradova, D V

    2010-01-01

    To study left ventricular structural and functional changes in patients with chronic obstructive pulmonary disease (COPD) and chronic cor pulmonale (CCP) at different stages of a cardiac remodeling process. Echocardiography was used to examine 98 patients with COPD complicated by the development of CCP in a number of cases. The significant signs of CCP were absent in 19 patients; the signs of compensated and decompensated CCP in 41 and 38 patients, respectively. In the patients with COPD, the formation of CCP during remodeling of the heart involves its left cavities whose changes lie in the occurrence of left ventricular (LV) diastolic dysfunction, mainly of the restrictive type, in ventricular spherization, higher myocardial systolic tension, in tendencies towards increases in LV mass index, left atrial sizes, and in the indices reflecting LV systolic dysfunction. The LV diastolic dysfunction correlates with the degree of right ventricular hypertrophy and dilatation and the presence of complete right bundle-branch block. Progressive worsening of diagnostic filling of the left ventricle and its systolic function is an additional factor aggravating hemodynamic disorders in patients with COPD and CCP, which should be kept in mind on choosing an appropriate therapy for patients with CCP.

  18. Intrathoracic impedance changes reflect reverse left ventricular remodeling in response to cardiac resynchronization therapy in chronic heart failure patients.

    Science.gov (United States)

    Kaneshiro, Takashi; Suzuki, Hitoshi; Yamada, Shinya; Kamiyama, Yoshiyuki; Saitoh, Shu-ichi; Takeishi, Yasuchika

    2012-01-01

    Intrathoracic impedance monitoring has been reported to be useful for prediction of worsening chronic heart failure (CHF). However, it has not revealed the relation between changes in intrathoracic impedance and improvement of cardiac function in CHF patients with cardiac resynchronization therapy (CRT) implantation. Therefore, we investigated whether intrathoracic impedance change reflects reverse left ventricular (LV) remodeling in response to CRT in patients with CHF. The study subjects consisted of 29 CHF patients (23 males, mean age 64 ± 12 years) with CRT-defibrillator (CRT-D) implantation. The patients were divided into two groups based on whether the Opti-vol Fluid Index® reached over 60 ohms (group A, n = 7) or not (group B, n = 22) within 6 months of observation after CRT-D implantation. Levels of plasma B-type natriuretic peptide (BNP) were measured, and LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), and LV ejection fraction (LVEF) were evaluated before and 6 months after CRT-D implantation. In group B, BNP (556 ± 88 pg/mL versus 330 ± 70 pg/mL, P < 0.05), LVEDV (177 ± 18 mL versus 149 ± 14 mL, P < 0.01), and LVESV (128 ± 14 mL versus 100 ± 12 mL, P < 0.01) were significantly decreased 6 months after CRT-D implantation. LVEF (28 ± 2% versus 35 ± 2%, P < 0.01) was significantly increased after CRT-D implantation. On the other hand, no significant changes were detected in any parameters in group A. These data showed intrathoracic impedance changes reflected reverse LV remodeling in response to CRT in patients with CHF. Therefore, the monitoring of changes in intrathoracic impedance is useful for predicting CRT responders in patients with CHF.

  19. The nonpeptide ANG-(1-7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats.

    Science.gov (United States)

    Cunha, Thelma Maria Bedeti; Lima, Wanderson Geraldo; Silva, Marcelo Eustáquio; Souza Santos, Robson Augusto; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2013-03-12

    The nonpeptide Ang-(1-7) analog, AVE 0991, is recognized as having beneficial cardiovascular effects similar to those induced by Ang-(1-7). In this study, we evaluated the effects of AVE 0991 on cardiovascular functions and on cardiac and renal remodeling in rats with 2K1C renovascular hypertension. Fisher rats underwent surgery to induce 2K1C renovascular hypertension and were then treated with AVE 0991 (1 or 3mg/kg) for 28days. At the end of treatment, the blood pressure (BP), heart rate (HR), and baroreflex sensitivity were evaluated, in conscious animals. The rats were then euthanized and the heart and kidneys removed for subsequent histological analysis. Treatment with AVE 0991 in 2K1C rats restored the baroreflex sensitivity of both bradycardic and tachycardic components to levels comparable to those of normotensive SHAM rats. At a higher dose (3mg/kg), AVE 0991 was also anti-hypertensive in 2K1C rats. Furthermore, AVE 0991 reduced the heart weight, thickness of myocardial fibers, number of inflammatory cells, and area of collagen deposition in the hearts of 2K1C rats compared to SHAM rats. The inflammatory process and tissue area of collagen deposition were decreased in the clipped kidney of AVE 0091-treated 2K1C rats. Our data showed that oral treatment with AVE 0991 reduces blood-pressure cardiac remodeling and improves baroreflex sensitivity in 2K1C renovascular hypertensive rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Deficiency of ataxia telangiectasia mutated kinase modulates cardiac remodeling following myocardial infarction: involvement in fibrosis and apoptosis.

    Directory of Open Access Journals (Sweden)

    Cerrone R Foster

    Full Text Available Ataxia telangiectasia mutated kinase (ATM is a cell cycle checkpoint protein activated in response to DNA damage. We recently reported that ATM plays a protective role in myocardial remodeling following β-adrenergic receptor stimulation. Here we investigated the role of ATM in cardiac remodeling using myocardial infarction (MI as a model.Left ventricular (LV structure, function, apoptosis, fibrosis, and protein levels of apoptosis- and fibrosis-related proteins were examined in wild-type (WT and ATM heterozygous knockout (hKO mice 7 days post-MI. Infarct sizes were similar in both MI groups. However, infarct thickness was higher in hKO-MI group. Two dimensional M-mode echocardiography revealed decreased percent fractional shortening (%FS and ejection fraction (EF in both MI groups when compared to their respective sham groups. However, the decrease in %FS and EF was significantly greater in WT-MI vs hKO-MI. LV end systolic and diastolic diameters were greater in WT-MI vs hKO-MI. Fibrosis, apoptosis, and α-smooth muscle actin staining was significantly higher in hKO-MI vs WT-MI. MMP-2 protein levels and activity were increased to a similar extent in the infarct regions of both groups. MMP-9 protein levels were increased in the non-infarct region of WT-MI vs WT-sham. MMP-9 protein levels and activity were significantly lower in the infarct region of WT vs hKO. TIMP-2 protein levels similarly increased in both MI groups, whereas TIMP-4 protein levels were significantly lower in the infarct region of hKO group. Phosphorylation of p53 protein was higher, while protein levels of manganese superoxide dismutase were significantly lower in the infarct region of hKO vs WT. In vitro, inhibition of ATM using KU-55933 increased oxidative stress and apoptosis in cardiac myocytes.

  1. Obesity, Cardiac Remodeling, and Metabolic Profile: Validation of a New Simple Index beyond Body Mass Index

    Science.gov (United States)

    Antonini-Canterin, Francesco; Di Nora, Concetta; Poli, Stefano; Sparacino, Lina; Cosei, Iulian; Ravasel, Andreea; Popescu, Andreea Catarina; Popescu, Bogdan Alexandru

    2018-01-01

    Aim: The body mass index (BMI), the most used anthropometric index of obesity, has an important limitation, not taking into consideration the distribution of body fat. We developed a new simple index: the waist-corrected BMI (wBMI), calculated as waist circumference (WC) × BMI. The study aim was to assess the role of wBMI, compared to BMI, WC, and Waist-to-Height Ratio (WHtR) in predicting abnormal cardiac geometry, insulin resistance, increased arterial stiffness, and dyslipidemia. Methods: This was a cross-sectional study that included 805 patients referred to our Department of Preventive Cardiology for risk factors evaluation and treatment. Eleven echographic and laboratory parameters were determined, and receiver operating characteristic (ROC) curves were derived. Areas under ROC curves (AUC) were used to assess the accuracy of the four indexes to identify unfavorable characteristics. Results: There were 29% overweight, 59% obese, and 77% hypertensive patients. Of 11 echographic and laboratory parameters, wBMI, BMI, WHtR, and WC had the largest AUC for identifying 3, 1, 6, and 1 parameters, respectively, but with overlapping 95% confidence intervals. wBMI had the largest AUC for increased arterial stiffness and insulin resistance; also, it was superior to BMI for increased left atrial volume, relative wall thickness, and triglyceride level. Conclusions: In a large population with a high prevalence of obesity and hypertension, all four indexes were associated with unfavorable characteristics. wBMI has the theoretical advantage of taking into account simultaneously the global fat mass and distribution and might be useful for a better cardiovascular risk assessment. PMID:29629255

  2. Paeoniflorin improves cardiac function and decreases adverse postinfarction left ventricular remodeling in a rat model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Chen H

    2018-04-01

    Full Text Available Hengwen Chen,* Yan Dong,* Xuanhui He, Jun Li, Jie Wang Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China *These authors contributed equally to this work Background: Paeoniflorin (PF is the active component of Paeonia lactiflora Pall. or Paeonia veitchii Lynch. This study was, therefore, aimed to evaluate the improvement and mechanism of the PF on ventricular remodeling in rats with acute myocardial infarction (AMI. Materials and methods: In this study, AMI model was established by ligating the anterior descending coronary artery in Wistar rats. After 4 weeks gavage of PF, the apparent signs and the left ventricle weight index of Wistar rats were observed. The left ventricular ejection fraction (LVEF was evaluated by Doppler ultrasonography. Changes in cardiac morphology were observed by pathologic examination, and apoptosis was observed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, enzyme-linked immunosorbent assay was used to detect the expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 interleukin-10 (IL-10 and brain natriuretic peptide (BNP. Immunohistochemistry and Western blot method were applied to detect Caspase-3 and Caspase-9. Results: Compared with the model control, the survival conditions of rats in all treatment groups were generally improved after PF treatment. LVEF was significantly increased, and both left ventricular end-diastolic inner diameter and left ventricular end-systolic inner diameter were significantly reduced. Moreover, pathologic examination showed that the myocardium degeneration of the rats treated with PF was decreased, including neater arrangement, more complete myofilament, more uniform gap and less interstitial collagen fibers. Furthermore, the mitochondrial structure of cardiomyocytes was significantly improved. The ultrastructure was clear, and the arrangement of myofilament was more regular. Also, the expression of

  3. Correlation between genetic polymorphism of matrix metalloproteinase-9 in patients with coronary artery disease and cardiac remodeling.

    Science.gov (United States)

    Yu, Qibin; Li, Hanmei; Li, Linlin; Wang, Shaoye; Wu, Yongbo

    2015-01-01

    To explore the correlation between genetic polymorphism of matrix metalloproteinase-9 (MMP-9) in patients with coronary artery disease (CAD) and cardiac remodeling. A total of 272 subjects who received coronary angiography in our hospital from July 2008 to September 2013 were selected, including 172 CAD patients (CAD group) and another 100 ones (control group). Both groups were subjected to MMP-9 and ultrasonic detections to determine vascular remodeling and atherosclerotic plaques. C1562G polymorphism of MMP-9 gene was detected, and correlation with vascular remodeling and atherosclerotic plaque was analyzed. Serum MMP-9 level of CAD group (330.87±50.39 ng/ml) was significantly higher than that of control group (134.87±34.02 ng/ml) (P<0.05). Compared with control group, CAD group had significantly higher intima-media thickness, and significantly lower systolic peak velocity, mean systolic velocity and end-diastolic velocity (P<0.05). Total area of stenotic blood vessels was 67.34±22.98 mm(2), while that of control blood vessels was 64.00±20.83 mm(2). G/G, G/C and C/C genotype frequencies of MMP-9 differed significantly in the two groups (P<0.05). G and C allele frequencies of CAD group (70.9% and 29.1%) were significantly different from those of control group (50.0% and 50.0%) (P<0.05). G/G, G/C and C/C genotypes were manifested as lipid-rich, fibrous and calcified or ulcerated plaques respectively. Total area of stenotic blood vessels of G/G genotype significantly exceeded those of G/C and C/C genotypes (P<0.05), whereas the latter two had no significant differences. CAD promoted 1562C-G transformation of MMP-9 gene into genetic polymorphism, thus facilitating arterial remodeling and increasing unstable atherosclerotic plaques.

  4. Diacerein Improves Left Ventricular Remodeling and Cardiac Function by Reducing the Inflammatory Response after Myocardial Infarction

    Science.gov (United States)

    Torina, Anali Galluce; Reichert, Karla; Lima, Fany; de Souza Vilarinho, Karlos Alexandre; de Oliveira, Pedro Paulo Martins; do Carmo, Helison Rafael Pereira; de Carvalho, Daniela Diógenes; Saad, Mário José Abdalla; Sposito, Andrei Carvalho; Petrucci, Orlando

    2015-01-01

    Background The inflammatory response has been implicated in the pathogenesis of left ventricular (LV) remodeling after myocardial infarction (MI). An anthraquinone compound with anti-inflammatory properties, diacerein inhibits the synthesis and activity of pro-inflammatory cytokines, such as tumor necrosis factor and interleukins 1 and 6. The purpose of this study was to investigate the effects of diacerein on ventricular remodeling in vivo. Methods and Results Ligation of the left anterior descending artery was used to induce MI in an experimental rat model. Rats were divided into two groups: a control group that received saline solution (n = 16) and a group that received diacerein (80 mg/kg) daily (n = 10). After 4 weeks, the LV volume, cellular signaling, caspase 3 activity, and nuclear factor kappa B (NF-κB) transcription were compared between the two groups. After 4 weeks, end-diastolic and end-systolic LV volumes were reduced in the treatment group compared to the control group (p < .01 and p < .01, respectively). Compared to control rats, diacerein-treated rats exhibited less fibrosis in the LV (14.65%± 7.27% vs. 22.57%± 8.94%; p < .01), lower levels of caspase-3 activity, and lower levels of NF-κB p65 transcription. Conclusions Treatment with diacerein once a day for 4 weeks after MI improved ventricular remodeling by promoting lower end-systolic and end-diastolic LV volumes. Diacerein also reduced fibrosis in the LV. These effects might be associated with partial blockage of the NF-κB pathway. PMID:25816098

  5. TWEAK-Fn14 cytokine-receptor axis: a new player of myocardial remodeling and cardiac failure

    Directory of Open Access Journals (Sweden)

    Tatyana eNovoyatleva

    2014-02-01

    Full Text Available Tumor necrosis factor (TNF has been firmly established as a pathogenic factor in heart failure, a significant socio-economic burden. In this review we will explore the role of other members of the TNF/TNF receptor superfamily (TNFSF/TNFRSF in cardiovascular diseases (CVDs focusing on TWEAK and its receptor Fn14, new players in myocardial remodeling and heart failure. The TWEAK/Fn14 pathway controls a variety of cellular activities such as proliferation, differentiation and apoptosis and has diverse biological functions in pathological mechanisms like inflammation and fibrosis that are associated with CVDs. Furthermore, it has recently been shown that the TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy and that deletion of Fn14 receptor protects from right heart fibrosis and dysfunction. We discuss the potential use of the TWEAK/Fn14 axis as biomarker for CVDs as well as therapeutic target for future treatment of human heart failure based on supporting data from animal models and in vitro studies. Collectively, existing data strongly suggest the TWEAK/Fn14 axis as a potential new therapeutic target for achieving cardiac protection in patients with CVDs.

  6. Fibroblast growth factor-9 enhances M2 macrophage differentiation and attenuates adverse cardiac remodeling in the infarcted diabetic heart.

    Directory of Open Access Journals (Sweden)

    Dinender K Singla

    Full Text Available Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9 on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI, and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean ± SEM; MI: 2.02% ± 0.23% vs. Sham 0.75% ± 0.07%; p<0.05 and associated pro-inflammatory cytokines (TNF-α, MCP-1, and IL-6, adverse cardiac remodeling (Mean ± SEM; MI: 33% ± 3.04% vs. Sham 2.2% ± 0.33%; p<0.05, and left ventricular dysfunction (Mean ± SEM; MI: 35.4% ± 1.25% vs. Sham 49.19% ± 1.07%; p<0.05 in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean ± SEM; MI+FGF-9: 1.39% ± 0.1% vs. MI: 2.02% ± 0.23%; p<0.05, increased M2 macrophage differentiation (Mean ± SEM; MI+FGF-9: 4.82% ± 0.86% vs. MI: 0.85% ± 0.3%; p<0.05 and associated anti-inflammatory cytokines (IL-10 and IL-1RA, reduced adverse remodeling (Mean ± SEM; MI+FGF-9: 11.59% ± 1.2% vs. MI: 33% ± 3.04%; p<0.05, and improved cardiac function (Fractional shortening, Mean ± SEM; MI+FGF-9: 41.51% ± 1.68% vs. MI: 35.4% ± 1.25%; p<0.05. In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its

  7. S-diclofenac Protects against Doxorubicin-Induced Cardiomyopathy in Mice via Ameliorating Cardiac Gap Junction Remodeling

    Science.gov (United States)

    Zhang, Huili; Zhang, Alian; Guo, Changfa; Shi, Chunzhi; Zhang, Yang; Liu, Qing; Sparatore, Anna; Wang, Changqian

    2011-01-01

    Hydrogen sulfide (H2S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p.), diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H2S in the pathogenesis of doxorubicin-induced cardiomyopathy. PMID:22039489

  8. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Tanya M Holloway

    Full Text Available There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P < 0.05, and promoted a 20% (P<0.05 increase in the left ventricular capillary/fibre ratio, an increase in endothelial nitric oxide synthase protein (P<0.05, and a decrease in hypoxia inducible factor 1 alpha protein content (P<0.05. In contrast, HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (P<0.05 and a 20% decrease in cross sectional area (P<0.05. HIIT also increased brain natriuretic peptide by 50% (P<0.05, in the absence of concomitant angiogenesis, strongly suggesting pathological cardiac remodeling. The current data support the longstanding belief in the effectiveness of ET in hypertension. However, HIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.

  9. S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling.

    Directory of Open Access Journals (Sweden)

    Huili Zhang

    Full Text Available Hydrogen sulfide (H(2S, as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenylamino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-ylphenyl ester, a novel H(2S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p., male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p., diclofenac (25 and 50 µmol/kg, i.p., NaHS (50 µmol/kg, i.p., or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45 and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H(2S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H(2S in the pathogenesis of doxorubicin-induced cardiomyopathy.

  10. S-diclofenac protects against doxorubicin-induced cardiomyopathy in mice via ameliorating cardiac gap junction remodeling.

    Science.gov (United States)

    Zhang, Huili; Zhang, Alian; Guo, Changfa; Shi, Chunzhi; Zhang, Yang; Liu, Qing; Sparatore, Anna; Wang, Changqian

    2011-01-01

    Hydrogen sulfide (H(2)S), as a novel gaseous mediator, plays important roles in mammalian cardiovascular tissues. In the present study, we investigated the cardioprotective effect of S-diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid 4-(3H-1,2,dithiol-3-thione-5-yl)phenyl ester), a novel H(2)S-releasing derivative of diclofenac, in a murine model of doxorubicin-induced cardiomyopathy. After a single dose injection of doxorubicin (15 mg/kg, i.p.), male C57BL/6J mice were given daily treatment of S-diclofenac (25 and 50 µmol/kg, i.p.), diclofenac (25 and 50 µmol/kg, i.p.), NaHS (50 µmol/kg, i.p.), or same volume of vehicle. The cardioprotective effect of S-diclofenac was observed after 14 days. It showed that S-diclofenac, but not diclofenac, dose-dependently inhibited the doxorubicin-induced downregulation of cardiac gap junction proteins (connexin 43 and connexin 45) and thus reversed the remodeling of gap junctions in hearts. It also dose-dependently suppressed doxorubicin-induced activation of JNK in hearts. Furthermore, S-diclofenac produced a dose-dependent anti-inflammatory and anti-oxidative effect in this model. As a result, S-diclofenac significantly attenuated doxorubicin-related cardiac injury and cardiac dysfunction, and improved the survival rate of mice with doxorubicin-induced cardiomyopathy. These effects of S-diclofenac were mimicked in large part by NaHS. Therefore, we propose that H(2)S released from S-diclofenac in vivo contributes to the protective effect in doxorubicin-induced cardiomyopathy. These data also provide evidence for a critical role of H(2)S in the pathogenesis of doxorubicin-induced cardiomyopathy.

  11. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    Science.gov (United States)

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  12. Adrenomedullin plasma levels predict left ventricular reverse remodeling after cardiac resynchronization therapy.

    Science.gov (United States)

    Morales, Maria-Aurora; Maltinti, Maristella; Piacenti, Marcello; Turchi, Stefano; Giannessi, Daniela; Del Ry, Silvia

    2010-07-01

    Increase in adrenomedullin (ADM) plasma levels in congestive heart failure (HF) patients is due to many cardiac and systemic factors, particularly to greater fluid retention and to activation of sympathetic nervous system. Aim of this study was to assess the role of plasma ADM levels in HF patients treated by cardiac resynchronization therapy (CRT). 50 patients, mean age 70 years, 34 male, New York Heart Association (NYHA) Class III-IV HF, left ventricular ejection fraction (LVEF) or=1 NYHA Class improvement was observed in 38 patients. However, a >10% reduction in end-systolic dimensions (ESD) was reported in 21 patients (Group I): -16.6 +/- 1.8%; in the remaining 29 patients ESD change was almost negligible: -2.0 +/- 1.03% (Group II), P values before CRT could represent a group in whom the dysfunction is so advanced that no improvement can be expected.

  13. Colchicine Improves Survival, Left Ventricular Remodeling, and Chronic Cardiac Function After Acute Myocardial Infarction.

    Science.gov (United States)

    Fujisue, Koichiro; Sugamura, Koichi; Kurokawa, Hirofumi; Matsubara, Junichi; Ishii, Masanobu; Izumiya, Yasuhiro; Kaikita, Koichi; Sugiyama, Seigo

    2017-07-25

    Several studies have reported that colchicine attenuated the infarct size and inflammation in acute myocardial infarction (MI). However, the sustained benefit of colchicine administration on survival and cardiac function after MI is unknown. It was hypothesized that the short-term treatment with colchicine could improve survival and cardiac function during the recovery phase of MI.Methods and Results:MI was induced in mice by permanent ligation of the left anterior descending coronary artery. Mice were then orally administered colchicine 0.1 mg/kg/day or vehicle from 1 h to day 7 after MI. Colchicine significantly improved survival rate (colchicine, n=48: 89.6% vs. vehicle, n=51: 70.6%, Pcolchicine group at 4 weeks after MI. Histological and gene expression analysis revealed colchicine significantly inhibited the infiltration of neutrophils and macrophages, and attenuated the mRNA expression of pro-inflammatory cytokines and NLRP3 inflammasome components in the infarcted myocardium at 24 h after MI. Short-term treatment with colchicine successfully attenuated pro-inflammatory cytokines and NLRP3 inflammasome, and improved cardiac function, heart failure, and survival after MI.

  14. Biomass fuel smoke exposure was associated with adverse cardiac remodeling and left ventricular dysfunction in Peru.

    Science.gov (United States)

    Burroughs Peña, M S; Velazquez, E J; Rivera, J D; Alenezi, F; Wong, C; Grigsby, M; Davila-Roman, V G; Gilman, R H; Miranda, J J; Checkley, W

    2017-07-01

    While household air pollution from biomass fuel combustion has been linked to cardiovascular disease, the effects on cardiac structure and function have not been well described. We sought to determine the association between biomass fuel smoke exposure and cardiac structure and function by transthoracic echocardiography. We identified a random sample of urban and rural residents living in the high-altitude region of Puno, Peru. Daily biomass fuel use was self-reported. Participants underwent transthoracic echocardiography. Multivariable linear regression was used to examine the relationship of biomass fuel use with echocardiographic measures of cardiac structure and function, adjusting for age, sex, height, body mass index, diabetes, physical activity, and tobacco use. One hundred and eighty-seven participants (80 biomass fuel users and 107 non-users) were included in this analysis (mean age 59 years, 58% women). After adjustment, daily exposure to biomass fuel smoke was associated with increased left ventricular internal diastolic diameter (P=.004), left atrial diameter (P=.03), left atrial area (four-chamber) (P=.004) and (two-chamber) (P=.03), septal E' (P=.006), and lateral E' (P=.04). Exposure to biomass fuel smoke was also associated with worse global longitudinal strain in the two-chamber view (P=.01). Daily biomass fuel use was associated with increased left ventricular size and decreased left ventricular systolic function by global longitudinal strain. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults

    Science.gov (United States)

    Wilson, Carole L.; Gough, Peter J.; Chang, Cindy A.; Chan, Christina K.; Frey, Jeremy M.; Liu, Yonggang; Braun, Kathleen R.; Chin, Michael T.; Wight, Thomas N.; Raines, Elaine W.

    2013-01-01

    Global inactivation of the metalloproteinase ADAM17 during mouse development results in perinatal lethality and abnormalities of the heart, including late embryonic cardiomegaly and thickened semilunar and atrioventricular valves. These defects have been attributed in part to a lack of ADAM17-mediated processing of HB-EGF, as absence of soluble HB-EGF results in similar phenotypes. Because valvular mesenchymal cells are largely derived from cardiac endothelial cells, we generated mice with a floxed Adam17 allele and crossed these animals with Tie2-Cre transgenics to focus on the role of endothelial ADAM17 in valvulogenesis. We find that although hearts from late-stage embryos with ablation of endothelial ADAM17 appear normal, an increase in valve size and cell number is evident, but only in the semilunar cusps. Unlike Hbegf−/− valves, ADAM17-null semilunar valves do not differ from controls in acute cell proliferation at embryonic day 14.5 (E14.5), suggesting compensatory processing of HB-EGF. However, levels of the proteoglycan versican are significantly reduced in mutant hearts early in valve remodeling (E12.5). After birth, aortic valve cusps from mutants are not only hyperplastic but also show expansion of the glycosaminoglycan-rich component, with the majority of adults exhibiting aberrant compartmentalization of versican and increased deposition of collagen. The inability of mutant outflow valve precursors to transition into fully mature cusps is associated with decreased postnatal viability, progressive cardiomegaly, and systolic dysfunction. Together, our data indicate that ADAM17 is required in valvular endothelial cells for regulating cell content as well as extracellular matrix composition and organization in semilunar valve remodeling and homeostasis. PMID:23354118

  16. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling.

    Science.gov (United States)

    Santiago, Jon-Jon; McNaughton, Leslie J; Koleini, Navid; Ma, Xin; Bestvater, Brian; Nickel, Barbara E; Fandrich, Robert R; Wigle, Jeffrey T; Freed, Darren H; Arora, Rakesh C; Kardami, Elissavet

    2014-01-01

    Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious

  17. Modest elevation in BNP in asymptomatic hypertensive patients reflects sub-clinical cardiac remodeling, inflammation and extracellular matrix changes.

    Directory of Open Access Journals (Sweden)

    Dermot Phelan

    Full Text Available In asymptomatic subjects B-type natriuretic peptide (BNP is associated with adverse cardiovascular outcomes even at levels well below contemporary thresholds used for the diagnosis of heart failure. The mechanisms behind these observations are unclear. We examined the hypothesis that in an asymptomatic hypertensive population BNP would be associated with sub-clinical evidence of cardiac remodeling, inflammation and extracellular matrix (ECM alterations. We performed transthoracic echocardiography and sampled coronary sinus (CS and peripheral serum from patients with low (n = 14 and high BNP (n = 27. Peripheral BNP was closely associated with CS levels (r = 0.92, p<0.001. CS BNP correlated significantly with CS levels of markers of collagen type I and III turnover including: PINP (r = 0.44, p = 0.008, CITP (r = 0.35, p = 0.03 and PIIINP (r = 0.35, p = 0.001, and with CS levels of inflammatory cytokines including: TNF-α (r = 0.49, p = 0.002, IL-6 (r = 0.35, p = 0.04, and IL-8 (r = 0.54, p<0.001. The high BNP group had greater CS expression of fibro-inflammatory biomarkers including: CITP (3.8±0.7 versus 5.1±1.9, p = 0.007, TNF-α (3.2±0.5 versus 3.7±1.1, p = 003, IL-6 (1.9±1.3 versus 3.4±2.7, p = 0.02 and hsCRP (1.2±1.1 versus 2.4±1.1, p = 0.04, and greater left ventricular mass index (97±20 versus 118±26 g/m(2, p = 0.03 and left atrial volume index (18±2 versus 21±4, p = 0.008. Our data provide insight into the mechanisms behind the observed negative prognostic impact of modest elevations in BNP and suggest that in an asymptomatic hypertensive cohort a peripheral BNP measurement may be a useful marker of an early, sub-clinical pathological process characterized by cardiac remodeling, inflammation and ECM alterations.

  18. Modest elevation in BNP in asymptomatic hypertensive patients reflects sub-clinical cardiac remodeling, inflammation and extracellular matrix changes.

    LENUS (Irish Health Repository)

    Phelan, Dermot

    2012-11-01

    In asymptomatic subjects B-type natriuretic peptide (BNP) is associated with adverse cardiovascular outcomes even at levels well below contemporary thresholds used for the diagnosis of heart failure. The mechanisms behind these observations are unclear. We examined the hypothesis that in an asymptomatic hypertensive population BNP would be associated with sub-clinical evidence of cardiac remodeling, inflammation and extracellular matrix (ECM) alterations. We performed transthoracic echocardiography and sampled coronary sinus (CS) and peripheral serum from patients with low (n = 14) and high BNP (n = 27). Peripheral BNP was closely associated with CS levels (r = 0.92, p<0.001). CS BNP correlated significantly with CS levels of markers of collagen type I and III turnover including: PINP (r = 0.44, p = 0.008), CITP (r = 0.35, p = 0.03) and PIIINP (r = 0.35, p = 0.001), and with CS levels of inflammatory cytokines including: TNF-α (r = 0.49, p = 0.002), IL-6 (r = 0.35, p = 0.04), and IL-8 (r = 0.54, p<0.001). The high BNP group had greater CS expression of fibro-inflammatory biomarkers including: CITP (3.8±0.7 versus 5.1±1.9, p = 0.007), TNF-α (3.2±0.5 versus 3.7±1.1, p = 003), IL-6 (1.9±1.3 versus 3.4±2.7, p = 0.02) and hsCRP (1.2±1.1 versus 2.4±1.1, p = 0.04), and greater left ventricular mass index (97±20 versus 118±26 g\\/m(2), p = 0.03) and left atrial volume index (18±2 versus 21±4, p = 0.008). Our data provide insight into the mechanisms behind the observed negative prognostic impact of modest elevations in BNP and suggest that in an asymptomatic hypertensive cohort a peripheral BNP measurement may be a useful marker of an early, sub-clinical pathological process characterized by cardiac remodeling, inflammation and ECM alterations.

  19. Remodeling of cardiac passive electrical properties and susceptibility to ventricular and atrial arrhythmias

    Directory of Open Access Journals (Sweden)

    Stefan eDhein

    2014-11-01

    Full Text Available Coordinated electrical activation of the heart is essential for the maintenance of a regular cardiac rhythm and effective contractions. Action potentials spread from one cell to the next via gap junction channels. Because of the elongated shape of cardiomyocytes, longitudinal resistivity is lower than transverse resistivity causing electrical anisotropy. Moreover, non-uniformity is created by clustering of gap junction channels at cell poles and by non-excitable structures such as collagenous strands, vessels or fibroblasts. Structural changes in cardiac disease often affect passive electrical properties by increasing non-uniformity and altering anisotropy. This disturbs normal electrical impulse propagation and is, consequently, a substrate for arrhythmia. However, to investigate how these structural changes lead to arrhythmias remains a challenge. One important mechanism, which may both cause and prevent arrhythmia, is the mismatch between current sources and sinks. Propagation of the electrical impulse requires a sufficient source of depolarizing current. In the case of a mismatch, the activated tissue (source is not able to deliver enough depolarizing current to trigger an action potential in the non-activated tissue (sink. This eventually leads to conduction block. It has been suggested that in this situation a balanced geometrical distribution of gap junctions and reduced gap junction conductance may allow successful propagation. In contrast, source-sink mismatch can prevent spontaneous arrhythmogenic activity in a small number of cells from spreading over the ventricle, especially if gap junction conductance is enhanced. Beside gap junctions, cell geometry and non-cellular structures strongly modulate arrhythmogenic mechanisms. The present review elucidates these and other implications of passive electrical properties for cardiac rhythm and arrhythmogenesis.

  20. Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes

    DEFF Research Database (Denmark)

    Nielsen, Signe Holm; Mouton, Alan J.; DeLeon-Pennell, Kristine Y.

    2017-01-01

    Cardiovascular Disease (CVD) is the most common cause of death in industrialized countries, and myocardial infarction (MI) is a major CVD with significant morbidity and mortality. Following MI, the left ventricle (LV) undergoes a wound healing response to ischemia that results in extracellular...... matrix (ECM) scar formation to replace necrotic myocytes. While ECM accumulation following MI is termed cardiac fibrosis, this is a generic term that does not differentiate between ECM accumulation that occurs in the infarct region to form a scar that is structurally necessary to preserve left ventricle...

  1. Functional suppression of Kcnq1 leads to early sodium channel remodelling and cardiac conduction system dysmorphogenesis

    Czech Academy of Sciences Publication Activity Database

    De la Rosa, A. J.; Domínguez, J. N.; Sedmera, D.; Šaňková, Barbora; Hove-Madsen, L.; Franco, D.; Aránega, A. E.

    2013-01-01

    Roč. 98, č. 3 (2013), s. 504-514 ISSN 0008-6363 R&D Projects: GA ČR(CZ) GA304/08/0615; GA ČR(CZ) GAP302/11/1308; GA ČR(CZ) GD204/09/H084; GA ČR(CZ) GA13-12412S Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : ion channels * Long-QT syndrome * sudden death * cardiac hypertrophy Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 5.808, year: 2013

  2. Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat

    Directory of Open Access Journals (Sweden)

    Kytö Ville

    2010-01-01

    Full Text Available Abstract Background Diabetes is associated with changes in myocardial stress-response pathways and is recognized as an independent risk factor for cardiac remodeling. Using spontaneously diabetic Goto Kakizaki rats as a model of type 2 DM we investigated whether post-translational modifications in the Akt - FOXO3a pathway, Sirt1 - p53 pathway and the mitogen activated protein kinase p38 regulator are involved in post-infarct cardiac remodeling Methods Experimental myocardial infarction (MI was induced by left anterior descending coronary artery ligation in spontaneously diabetic Goto-Kakizaki rats and non-diabetic Wistar controls. Cardiac function was studied by echocardiography. Myocardial hypertrophy, cardiomyocyte apoptosis and cardiac fibrosis were determined histologically 12 weeks post MI or Sham operation. Western blotting was used to study Caspase-3, Bax, Sirt1, acetylation of p53 and phosphorylation of p38, Akt and FOXO3a. Electrophoretic mobility shift assay was used to assess FOXO3a activity and its nuclear localization. Results Post-infarct heart failure in diabetic GK rats was associated with pronounced cardiomyocyte hypertrophy, increased interstitial fibrosis and sustained cardiomyocyte apoptosis as compared with their non-diabetic Wistar controls. In the GK rat myocardium, Akt- and FOXO3a-phosphorylation was decreased and nuclear localization of FOXO3a was increased concomitantly with increased PTEN protein expression. Furthermore, increased Sirt1 protein expression was associated with decreased p53 acetylation, and phosphorylation of p38 was increased in diabetic rats with MI. Conclusions Post-infarct heart failure in diabetic GK rats was associated with more pronounced cardiac hypertrophy, interstitial fibrosis and sustained cardiomyocyte apoptosis as compared to their non-diabetic controls. The present study suggests important roles for Akt-FOXO3a, Sirt1 - p53 and p38 MAPK in the regulation of post-infarct cardiac remodeling

  3. Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice.

    Directory of Open Access Journals (Sweden)

    Tim Peters

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1 is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC in mice.Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001 but to a similar extend also in Malat-1 knockout (KO mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01 with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01 but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05. Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio

  4. Rev-erb agonist improves adverse cardiac remodeling and survival in myocardial infarction through an anti-inflammatory mechanism.

    Directory of Open Access Journals (Sweden)

    Endin Nokik Stujanna

    Full Text Available Rev-erb α, known as nuclear receptor 1D1 (NR1D1, regulates circadian rhythm, modulates glucose and lipid metabolism, and inflammatory response. However, little is known about the effect of Rev-erb agonist on the progression of myocardial infarction (MI and heart failure. To investigate it, wild-type male mice underwent sham-operation or permanent ligation of the left anterior descending coronary artery to create MI model. Rev-erb agonist SR9009 (100 mg/kg/day or vehicle was intraperitoneally administered. Echocardiography was performed to evaluate cardiac function 1 week after surgery. The gene and protein expression levels in the left ventricles (LVs were determined with real-time PCR, western blotting, and immunofluorescence. Moreover, immune cell infiltration into the LVs was analyzed by flow cytometry. Survival rate and reduced LV function were significantly improved by the treatment with SR9009 after MI. The expression level and plasma concentration of brain natriuretic peptide were significantly lower in MI mice treated with SR9009 (MI+SR than in MI mice treated with vehicle (MI+V. Moreover, the mRNA expression levels of inflammatory-related molecules such as Il6, Mcp1, Ly6g, Cd11b, matrix metallopeptidase (Mmp9, and the protein expression levels of phosphorylated NF-κB p65, phosphorylated ERK, and phosphorylated p38 were also significantly lower in MI+SR than in MI+V. Immunofluorescence intensity for MMP-9 was enhanced in the LVs, but was less so in MI+SR than in MI+V. Furthermore, infiltrations of neutrophils and proinflammatory macrophages in the LVs were dramatically increased in MI+V and were significantly suppressed in MI+SR. Rev-erb agonist SR9009 treatment inhibited post-MI mortality and improved cardiac function through modulating inflammation and remodeling process.

  5. The role of echocardiography in the evaluation of cardiac re-modelling and differentiation between physiological and pathological hypertrophy in teenagers engaged in competitive amateur sports.

    Science.gov (United States)

    Sulovic, Ljiljana S; Mahmutovic, Meho; Lazic, Snezana; Sulovic, Nenad

    2017-05-01

    Aims "Athlete's heart" is a cardiac adaptation to long-term intensive training. The aims of this study were to show the prevalence of left ventricular hypertrophy in teenagers who participate in sports, to define the different types of cardiac re-modelling, and to differentiate between physiological and pathological hypertrophy. Echocardiographic measurements were obtained by M-mode, two dimensional, and Doppler techniques of participants from sports and control groups. The echocardiographic examinations included 100 healthy teenagers taking part in dynamic sports such as football and basketball and 100 healthy teenagers taking part in static sports such as karate and judo. The control group (n=100) included healthy, sedentary teenagers. Sports participants had significantly higher left ventricular mass when compared with the control group, (p0.05). Respondents from both groups had E/A ratios (transmitral flow velocity ratio)>1, preserved diastolic function, and statistically they did not differ from the control group. Echocardiographic parameters show that physiological hypertrophy and cardiac re-modelling are present in teenagers who play sports. Unexpectedly, the prevalence of concentric and eccentric types of re-modelling is equally possible in the group of static sports participants.

  6. Whole-thorax irradiation induces hypoxic respiratory failure, pleural effusions and cardiac remodeling

    International Nuclear Information System (INIS)

    Medhora, Meetha; Gao, Feng; Glisch, Chad

    2015-01-01

    To study the mechanisms of death following a single lethal dose of thoracic radiation, WAG/RijCmcr (Wistar) rats were treated with 15 Gy to the whole thorax and followed until they were morbid or sacrificed for invasive assays at 6 weeks. Lung function was assessed by breathing rate and arterial oxygen saturation. Lung structure was evaluated histologically. Cardiac structure and function were examined by echocardiography. The frequency and characteristics of pleural effusions were determined. Morbidity from 15 Gy radiation occurred in all rats 5 to 8 weeks after exposure, coincident with histological pneumonitis. Increases in breathing frequencies peaked at 6 weeks, when profound arterial hypoxia was also recorded. Echocardiography analysis at 6 weeks showed pulmonary hypertension and severe right ventricular enlargement with impaired left ventricular function and cardiac output. Histologic sections of the heart revealed only rare foci of lymphocytic infiltration. Total lung weight more than doubled. Pleural effusions were present in the majority of the irradiated rats and contained elevated protein, but low lactate dehydrogenase, when compared with serum from the same animal. Pleural effusions had a higher percentage of macrophages and large monocytes than neutrophils and contained mast cells that are rarely present in other pathological states. Lethal irradiation to rat lungs leads to hypoxia with infiltration of immune cells, edema and pleural effusion. These changes may contribute to pulmonary vascular and parenchymal injury that result in secondary changes in heart structure and function. We report that conditions resembling congestive heart failure contribute to death during radiation pneumonitis, which indicates new targets for therapy. (author)

  7. End-diastolic wall thickness as a predictor of reverse remodelling after cardiac resynchronization therapy: a two-dimensional echocardiographic study.

    Science.gov (United States)

    Ascione, Luigi; Muto, Carmine; Iengo, Raffaele; Celentano, Eduardo; Accadia, Maria; Rumolo, Salvatore; D'Andrea, Antonello; Carreras, Giovanni; Canciello, Michelangelo; Tuccillo, Bernardino

    2008-09-01

    The aim of this study was to evaluate whether in patients with ischemic heart failure (HF) with mechanical dyssynchrony the echocardiographic assessment of the extent of scarred ventricular tissue by end-diastolic wall thickness (EDWT) could predict reverse remodeling (RR) after cardiac resynchronization therapy (CRT). Recent studies using cardiac magnetic resonance imaging have shown that the burden of myocardial scar is an important factor influencing response to CRT, despite documented mechanical dyssynchrony. EDWT assessed by two-dimensional (2D) resting echocardiography is a simple and reliable marker to identify scar tissue in patients with ischemic left ventricular dysfunction. Seventy-four patients with ischemic HF were evaluated 1 week before and 6 months after CRT. Inclusion criteria were New York Heart Association class III or IV, ejection fraction 120 ms, and mechanical intraventricular dyssynchrony >/= 65 ms. The left ventricle was divided into 16 segments; left ventricular (LV) segments with EDWT /= 15%, was found in 38 patients (51.4%) with ischemic HF. A significant inverse linear relationship was found between GSA and RR (r = -0.57; P = .0001). Mean percentage GSA was significantly higher in nonresponders (31.6 +/- 18% vs 6.4 +/- 11%; P < .001). GSA under the curve, 0.86; 95% confidence interval, 0.71-0.95; P < .0001), to predict RR. The extent of ventricular segments with EDWT < 6 mm assessed by 2-D echocardiography is an important factor influencing response to CRT at follow-up. GSA may represent an essential simple adjunct to mechanical asynchrony to better select patients suitable for CRT.

  8. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes.

    Science.gov (United States)

    Strunz, Célia Maria Cássaro; Roggerio, Alessandra; Cruz, Paula Lázara; Pacanaro, Ana Paula; Salemi, Vera Maria Cury; Benvenuti, Luiz Alberto; Mansur, Antonio de Pádua; Irigoyen, Maria Cláudia

    2017-02-01

    Cardiac remodeling in diabetes involves cardiac hypertrophy and fibrosis, and fibroblast growth factor 2 (FGF2) is an important mediator of this process. Resveratrol, a polyphenolic antioxidant, reportedly promotes the improvement of cardiac dysfunction in diabetic rats. However, little information exists linking the amelioration of the cardiac function promoted by resveratrol and the expression of FGF2 and its co-receptors, heparan sulfate proteoglycans (HSPGs: Glypican-1 and Syndecan-4), in cardiac muscle of Type 2 diabetic rats. Diabetes was induced experimentally by the injection of streptozotocin and nicotinamide, and the rats were treated with resveratrol for 6 weeks. According to our results, there is an up-regulation of the expression of genes and/or proteins of Glypican-1, Syndecan-4, FGF2, peroxisome proliferator-activated receptor gamma and AMP-activated protein kinase in diabetic rats. On the other hand, resveratrol treatment promoted the attenuation of left ventricular diastolic dysfunction and the down-regulation of the expression of all proteins under study. The trigger for the changes in gene expression and protein synthesis promoted by resveratrol was the presence of diabetes. The negative modulation conducted by resveratrol on FGF2 and HSPGs expression, which are involved in cardiac remodeling, underlies the amelioration of cardiac function. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Left Ventricular Architecture, Long-Term Reverse Remodeling, and Clinical Outcome in Mild Heart Failure With Cardiac Resynchronization: Results From the REVERSE Trial.

    Science.gov (United States)

    St John Sutton, Martin; Linde, Cecilia; Gold, Michael R; Abraham, William T; Ghio, Stefano; Cerkvenik, Jeffrey; Daubert, Jean-Claude

    2017-03-01

    This study sought to determine the effects of abnormal left ventricular (LV) architecture on cardiac remodeling and clinical outcomes in mild heart failure (HF). Cardiac resynchronization therapy (CRT) is an established treatment for HF that improves survival in part by favorably remodeling LV architecture. LV shape is a dynamic component of LV architecture on which contractile function depends. Transthoracic 2-dimensional echocardiography was used to quantify changes in LV architecture over 5 years of follow-up of patients with mild HF from the REVERSE study. REVERSE was a prospective study of patients with large hearts (LV end-diastolic dimension ≥55 mm), LV ejection fraction 120 ms randomly assigned to CRT-ON (n = 419) and CRT-OFF (n = 191). CRT-OFF patients were excluded from this analysis. LV dimensions, volumes, mass index, and LV ejection fraction were calculated. LV architecture was assessed using the sphericity index, as follows: (LV end-diastolic volume)/(4/3 × π × r 3 ) × 100%. LV architecture improved over time and demonstrated significant associations between LV shape, age, sex, and echocardiography metrics. Changes in LV architecture were strongly correlated with changes in LV end-systolic volume index and LV end-diastolic volume index (both p 15% occurred in more than two-thirds of patients, which indicates considerable reverse remodeling. We demonstrated that change in LV architecture in patients with mild HF with CRT is associated with structural and functional remodeling. Mean LV filling pressure was elevated, and the inability to lower it was an additional predictor of HF hospitalization or death. (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction [REVERSE]; NCT00271154). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Ablation of C/EBP homologous protein increases the acute phase mortality and doesn't attenuate cardiac remodeling in mice with myocardial infarction.

    Science.gov (United States)

    Luo, Guangjin; Li, Qingman; Zhang, Xiajun; Shen, Liang; Xie, Jiahe; Zhang, Jingwen; Kitakaze, Masafumi; Huang, Xiaobo; Liao, Yulin

    2015-08-14

    Endoplasmic reticulum stress is a proapoptotic and profibrotic stimulus. Ablation of C/EBP homologous protein (CHOP) is reported to reverse cardiac dysfunction by attenuating cardiac endoplasmic reticulum stress in mice with pressure overload or ischemia/reperfusion, but it is unclear whether loss of CHOP also inhibits cardiac remodeling induced by permanent-infarction. In mice with permanent ligation of left coronary artery, we found that ablation of CHOP increased the acute phase mortality. For the mice survived to 4 weeks, left ventricular anterior (LV) wall thickness was larger in CHOP knockout mice than in the wildtype littermates, while no difference was noted on posterior wall thickness, LV dimensions, LV fractional shortening and ejection fraction. Similarly, invasive assessment of LV hemodynamics, morphological analysis of heart and lung weight indexes, myocardial fibrosis and TUNEL-assessed apoptosis showed no significant differences between CHOP knockout mice and their wildtype ones, while in mice with ischemia for 45 min and reperfusion for 1 week, myocardial fibrosis and apoptosis in the infarct area were significantly attenuated in CHOP knockout mice. These findings indicate that ablation of CHOP doesn't ameliorate cardiac remodeling induced by permanent-myocardial infarction, which implicates that early reperfusion is a prerequisite for ischemic myocardium to benefit from CHOP inhibition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Endogenous osteopontin induces myocardial CCL5 and MMP-2 activation that contributes to inflammation and cardiac remodeling in a mouse model of chronic Chagas heart disease.

    Science.gov (United States)

    Caballero, Eugenia Pérez; Santamaría, Miguel H; Corral, Ricardo S

    2018-01-01

    Cardiac dysfunction with progressive inflammation and fibrosis is a hallmark of Chagas disease caused by persistent Trypanosoma cruzi infection. Osteopontin (OPN) is a pro-inflammatory cytokine that orchestrates mechanisms controlling cell recruitment and cardiac architecture. Our main goal was to study the role of endogenous OPN as a modulator of myocardial CCL5 chemokine and MMP-2 metalloproteinase, and its pathological impact in a murine model of Chagas heart disease. Wild-type (WT) and OPN-deficient (spp1 -/-) mice were parasite-infected (Brazil strain) for 100days. Both groups developed chronic myocarditis with similar parasite burden and survival rates. However, spp1 -/- infection showed lower heart-to-body ratio (PChagas heart disease, through the upregulation of myocardial CCL5/MMP-2 expression and activities resulting in pro-inflammatory and pro-hypertrophic events, cardiac remodeling and interstitial fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc

    OpenAIRE

    Heineke, Joerg; Ruetten, Hartmut; Willenbockel, Christian; Gross, Sandra C.; Naguib, Marian; Schaefer, Arnd; Kempf, Tibor; Hilfiker-Kleiner, Denise; Caroni, Pico; Kraft, Theresia; Kaiser, Robert A.; Molkentin, Jeffery D.; Drexler, Helmut; Wollert, Kai C.

    2005-01-01

    Adverse left ventricular (LV) remodeling after myocardial infarction (MI) is a major cause for heart failure. Molecular modifiers of the remodeling process remain poorly defined. Patients with heart failure after MI have reduced LV expression levels of muscle LIM protein (MLP), a component of the sarcomeric Z-disk that is involved in the integration of stress signals in cardiomyocytes. By using heterozygous MLP mutant (MLP+/—) mice, we explored the role of MLP in post-MI remodeling. LV dimens...

  13. Left ventricular remodeling leads to heart failure in mice with cardiac-specific overexpression of VEGF-B167: echocardiography and magnetic resonance imaging study.

    Science.gov (United States)

    Lottonen-Raikaslehto, Line; Rissanen, Riina; Gurzeler, Erika; Merentie, Mari; Huusko, Jenni; Schneider, Jurgen E; Liimatainen, Timo; Ylä-Herttuala, Seppo

    2017-03-01

    Cardiac-specific overexpression of vascular endothelial growth factor (VEGF)-B 167 is known to induce left ventricular hypertrophy due to altered lipid metabolism, in which ceramides accumulate to the heart and cause mitochondrial damage. The aim of this study was to evaluate and compare different imaging methods to find the most sensitive way to diagnose at early stage the progressive left ventricular remodeling leading to heart failure. Echocardiography and cardiovascular magnetic resonance imaging were compared for imaging the hearts of transgenic mice with cardiac-specific overexpression of VEGF-B 167 and wild-type mice from 5 to 14 months of age at several time points. Disease progression was verified by molecular biology methods and histology. We showed that left ventricular remodeling is already ongoing at the age of 5 months in transgenic mice leading to heart failure by the age of 14 months. Measurements from echocardiography and cardiovascular magnetic resonance imaging revealed similar changes in cardiac structure and function in the transgenic mice. Changes in histology, gene expressions, and electrocardiography supported the progression of left ventricular hypertrophy. Longitudinal relaxation time in rotating frame (T 1 ρ ) in cardiovascular magnetic resonance imaging could be suitable for detecting severe fibrosis in the heart. We conclude that cardiac-specific overexpression of VEGF-B 167 leads to left ventricular remodeling at early age and is a suitable model to study heart failure development with different imaging methods. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    Science.gov (United States)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  15. MCP-1 Levels are Associated with Cardiac Remodeling but not with Resistant Hypertension.

    Science.gov (United States)

    Ritter, Alessandra Mileni Versuti; Faria, Ana Paula Cabral de; Sabbatini, Andrea; Corrêa, Nathalia Batista; Brunelli, Veridiana; Modolo, Rodrigo; Moreno, Heitor

    2017-04-01

    Hypertension is a chronic, low-grade inflammation process associated with the release of cytokines and development of target organ damage. Deregulated monocyte chemoattractant protein-1 (MCP-1) levels have been associated with high blood pressure and cardiovascular complications; however, the mechanisms involved are complex and not fully understood. This study aimed to compare the levels of MCP-1 in patients with resistant (RH) versus mild-to-moderate (HTN) hypertension and their association with the presence or absence of left ventricular hypertrophy (LVH) in all hypertensive subjects. We enrolled 256 hypertensive subjects: 120 RH and 136 HTN, investigating the relationship between circulating MCP-1 levels and blood pressure, biochemical data, hematologic profile, and cardiac damage within the RH and HTN groups. Plasma MCP-1 levels were measured by ELISA and LVH was assessed by echocardiography. We found no difference in MCP-1 levels between RH and HTN subjects. On the other hand, we encountered lower MCP-1 levels in patients with LVH (105 pg/mL [100 - 260 pg/mL] versus 136 pg/mL (100 - 200 pg/mL), p = 0.005, respectively] compared with those without LVH. A logistic regression model adjusted for body mass index (BMI), age, race, aldosterone levels, and presence of diabetes and RH demonstrated that median levels of MCP-1 (2.55 pg/mL [1.22 - 5.2 pg/mL], p = 0.01) were independently associated with LVH in the entire hypertensive population. Since MCP-1 levels were similar in both RH and HTN subjects and decreased in hypertensive patients with existing LVH, our study suggests a possible downregulation in MCP-1 levels in hypertensive individuals with LVH, regardless of hypertension strata. A hipertensão arterial é um processo crônico de baixo grau inflamatório, associado com liberação de citocinas e desenvolvimento de lesão em órgãos-alvo. A desregulação dos níveis de proteína quimiotática de monócitos-1 (MCP-1) tem sido associada com elevação da press

  16. Calcification remodeling index characterized by cardiac CT as A novel parameter to predict the use of rotational atherectomy for coronary intervention of lesions with moderate to severe calcification

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Meng Meng; Li, Yue Hua; Li, Wen Bin; Lu, Zhi Gang; Wei, Meng; Zhang, Jia Yin [Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China)

    2017-09-15

    To assess the feasibility of calcification characterization by coronary computed tomography angiography (CCTA) to predict the use of rotational atherectomy (RA) for coronary intervention of lesions with moderate to severe calcification. Patients with calcified lesions treated by percutaneous coronary intervention (PCI) who underwent both CCTA and invasive coronary angiography were retrospectively included in this study. Calcification remodeling index was calculated as the ratio of the smallest vessel cross-sectional area of the lesion to the proximal reference luminal area. Other parameters such as calcium volume, regional Agatston score, calcification length, and involved calcium arc quadrant were also recorded. A total of 223 patients with 241 calcified lesions were finally included. Lesions with RA tended to have larger calcium volume, higher regional Agatston score, more involved calcium arc quadrants, and significantly smaller calcification remodeling index than lesions without RA. Receiver operating characteristic curve analysis revealed that the best cutoff value of calcification remodeling index was 0.84 (area under curve = 0.847, p < 0.001). Calcification remodeling index ≤ 0.84 was the strongest independent predictor (odds ratio: 251.47, p < 0.001) for using RA. Calcification remodeling index was significantly correlated with the incidence of using RA to aid PCI. Calcification remodeling index ≤ 0.84 was the strongest independent predictor for using RA prior to stent implantation.

  17. Long-term fish oil supplementation induces cardiac electrical remodeling by changing channel protein expression in the rabbit model.

    Directory of Open Access Journals (Sweden)

    Xulin Xu

    2010-04-01

    Full Text Available Clinical trials and epidemiological studies have suggested that dietary fish oil (FO supplementation can provide an anti-arrhythmic benefit in some patient populations. The underlying mechanisms are not entirely clear. We wanted to understand how FO supplementation (for 4 weeks affected the action potential configuration/duration of ventricular myocytes, and the ionic mechanism(s/molecular basis for these effects. The experiments were conducted on adult rabbits, a widely used animal model for cardiac electrophysiology and pathophysiology. We used gas chromatography-mass spectroscopy to confirm that FO feeding produced a marked increase in the content of n-3 polyunsaturated fatty acids in the phospholipids of rabbit hearts. Left ventricular myocytes were used in current and voltage clamp experiments to monitor action potentials and ionic currents, respectively. Action potentials of myocytes from FO-fed rabbits exhibited much more positive plateau voltages and prolonged durations. These changes could be explained by an increase in the L-type Ca current (I(CaL and a decrease in the transient outward current (I(to in these myocytes. FO feeding did not change the delayed rectifier or inward rectifier current. Immunoblot experiments showed that the FO-feeding induced changes in I(CaL and I(to were associated with corresponding changes in the protein levels of major pore-forming subunits of these channels: increase in Cav1.2 and decrease in Kv4.2 and Kv1.4. There was no change in other channel subunits (Cav1.1, Kv4.3, KChIP2, and ERG1. We conclude that long-term fish oil supplementation can impact on cardiac electrical activity at least partially by changing channel subunit expression in cardiac myocytes.

  18. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1.

    Directory of Open Access Journals (Sweden)

    Yujiao Zhang

    Full Text Available A critical mechanism in atrial fibrillation (AF is cardiac autonomic nerve remodeling (ANR. MicroRNAs (miRNAs are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Numerous miRNAs are involved in diseases of the nervous and cardiovascular systems.We aimed to assess the underlying role of miRNAs in regulating cardiac ANR in AF by right atrial tachypacing (A-TP in canines.Following 4-week A-TP, the superior left ganglionated plexuses (SLGPs, which are embedded in the fat pads of the left atrium, were subjected to miRNA expression profiling to screen preferentially expressed miRNAs. Sixteen miRNAs showed significantly differential expression between the control and A-TP groups, including miR-206, miR-203, miR-224 and miR-137. In particular, we focused on miR-206, which was elevated ~10-fold in A-TP dogs. Forced expression of miR-206 through lentiviral infection based on A-TP in vivo significantly shortened the atrial effective refractory period (AERP (81 ± 7 vs. 98 ± 7 ms, P < 0.05. Immunohistochemical analysis showed that the regeneration of nerves increased more than 2-fold by miR-206 overexpression (P < 0.01. The expression of superoxide dismutase 1 (SOD1 was repressed by miR-206 overexpression by Western blot and luciferase assay, indicative of SOD1 as a direct target of miR-206. Overexpression of miR-206 increased reactive oxygen species (ROS levels in vitro and in vivo, whereas miR-206 silencing attenuated irradiation- or A-TP-induced ROS. Knockdown of SOD1 effectively abolished ROS reduction caused by miR-206 silencing.Our results found the differential expression of miRNAs in response to ANR in AF and elucidated the important role of miR-206 by targeting SOD1. The study illustrated the novel molecular mechanism of ANR and indicated a potential therapeutic target for AF.

  19. MicroRNAs in Valvular Heart Diseases: Potential Role as Markers and Actors of Valvular and Cardiac Remodeling.

    Science.gov (United States)

    Oury, Cécile; Servais, Laurence; Bouznad, Nassim; Hego, Alexandre; Nchimi, Alain; Lancellotti, Patrizio

    2016-07-13

    miRNAs are a class of over 5000 noncoding RNAs that regulate more than half of the protein-encoding genes by provoking their degradation or preventing their translation. miRNAs are key regulators of complex biological processes underlying several cardiovascular disorders, including left ventricular hypertrophy, ischemic heart disease, heart failure, hypertension and arrhythmias. Moreover, circulating miRNAs herald promise as biomarkers in acute myocardial infarction and heart failure. In this context, this review gives an overview of studies that suggest that miRNAs could also play a role in valvular heart diseases. This area of research is still at its infancy, and further investigations in large patient cohorts and cellular or animal models are needed to provide strong data. Most studies focused on aortic stenosis, one of the most common valvular diseases in developed countries. Profiling and functional analyses indicate that miRNAs could contribute to activation of aortic valve interstitial cells to a myofibroblast phenotype, leading to valvular fibrosis and calcification, and to pressure overload-induced myocardial remodeling and hypertrophy. Data also indicate that specific miRNA signatures, in combination with clinical and functional imaging parameters, could represent useful biomarkers of disease progression or recovery after aortic valve replacement.

  20. MicroRNAs in Valvular Heart Diseases: Potential Role as Markers and Actors of Valvular and Cardiac Remodeling

    Directory of Open Access Journals (Sweden)

    Cécile Oury

    2016-07-01

    Full Text Available miRNAs are a class of over 5000 noncoding RNAs that regulate more than half of the protein-encoding genes by provoking their degradation or preventing their translation. miRNAs are key regulators of complex biological processes underlying several cardiovascular disorders, including left ventricular hypertrophy, ischemic heart disease, heart failure, hypertension and arrhythmias. Moreover, circulating miRNAs herald promise as biomarkers in acute myocardial infarction and heart failure. In this context, this review gives an overview of studies that suggest that miRNAs could also play a role in valvular heart diseases. This area of research is still at its infancy, and further investigations in large patient cohorts and cellular or animal models are needed to provide strong data. Most studies focused on aortic stenosis, one of the most common valvular diseases in developed countries. Profiling and functional analyses indicate that miRNAs could contribute to activation of aortic valve interstitial cells to a myofibroblast phenotype, leading to valvular fibrosis and calcification, and to pressure overload-induced myocardial remodeling and hypertrophy. Data also indicate that specific miRNA signatures, in combination with clinical and functional imaging parameters, could represent useful biomarkers of disease progression or recovery after aortic valve replacement.

  1. Features of remodeling of right heart chambers according to tissue Doppler and its correlation with cardiac rhythm disturbance in patients with COPD 2-3 severity

    Directory of Open Access Journals (Sweden)

    O. A. Zhuk

    2014-01-01

    Full Text Available The article presents the study of early sings of dysfunction of right and left chambers of heart in patients with COPD 2 - 3 severity, correlation between structural and electrical remodeling of heart according to the stages of pulmonary hypertension. Standard tissue Doppler echocardiographic parameters and modes were used for the diagnosing. We examined 35 patients with COPD 2 - 3 severity; the control group consisted of 15 patients. The ECG Holter monitoring was made for all patients to identify cardiac rhythm disturbance and correlation with the COPD severity. Standard method of the ECG with modes of tissue Doppler (pulsed wave Tissue Doppler Imaging - PW TDI, color tissue Doppler imaging -TDI, tissue myocardial Doppler - TMD, tissue Tracking - TT, Doppler for evaluation of myocardial strain and myocardial strain rate were made to identify the stage of dysfunction. The results of the study concluded that according to the TDI the dysfunction of right ventricle was more apparent in patients with COPD 3 severity. Pathological arrhythmias were significantly detected in group of patients with COPD 3 severity. In compliance with our observations, the reduce of rapid myocardial strain rates and its inverse proportion with the severity in accordance to the evaluation of longitudinal strain and rate of movement of fibrous ring in tricuspid valve were observed in patients with COPD. Thus the application of the TDI modes for evaluating of early signs of cardiac remodeling in patients with COPD and potential adequate jugulation for preventing chronic cor pulmonale is expedient.

  2. Impairment of cardiac function and remodeling induced by myocardial infarction in rats are attenuated by the nonpeptide angiotensin-(1-7) analog AVE 0991.

    Science.gov (United States)

    Zeng, Wu-tao; Chen, Wei-yan; Leng, Xiu-yu; Tang, Li-long; Sun, Xiu-ting; Li, Cui-ling; Dai, Gang

    2012-06-01

    We evaluated effects of the nonpeptide angiotensin (ANG)-(1-7) analog AVE 0991 (AVE) on cardiac function and remodeling as well as transforming growth factor-beta1 (TGF-β1)/tumor necrosis factor-alpha (TNF-α) expression in myocardial infarction rat models. Sprague-Dawley rats underwent either sham surgery or coronary ligation. They were divided into four groups: sham, control, AVE, and AVE+A-779 [[D-Ala(7) ]-ANG-(1-7), a selective antagonist for the ANG-(1-7)] group. After 4 weeks of treatment, the AVE group displayed a significant elevation in left ventricular fractional shorting (LVFS) (25.5 ± 7.3% vs. 18.4 ± 3.3%, P AVE group when compared to the control group. There were no differences in LVFS, LVEF, myocyte diameter, and infarct size between the control and AVE+A-779 groups. AVE also markedly attenuated the increased mRNA expression of collagen I (P AVE could improve cardiac function and attenuate ventricular remodeling in MI rat models. It may involve the inhibition of inflammatory factors TGF-β1/TNF-α overexpression and the action on the specific receptor Mas of ANG-(1-7). © 2010 Blackwell Publishing Ltd.

  3. Chronic kidney disease and cardiac remodelling in patients with mild heart failure: results from the REsynchronization reVErses Remodeling in Systolic Left vEntricular Dysfunction (REVERSE) study.

    Science.gov (United States)

    Mathew, Jehu; Katz, Ronit; St John Sutton, Martin; Dixit, Sanjay; Gerstenfeld, Edward P; Ghio, Stefano; Gold, Michael R; Linde, Cecilia; Shlipak, Michael G; Deo, Rajat

    2012-12-01

    Chronic kidney disease (CKD) is a risk factor for left ventricular hypertrophy (LVH) and heart failure. We evaluated the effect of CKD on left ventricular (LV) remodelling among patients with mild heart failure. REVERSE was a randomized, controlled trial evaluating cardiac resynchronization therapy (CRT) in patients with New York Heart Association (NYHA) class I/II heart failure. CKD was defined as an estimated glomerular filtration rate (eGFR) cardiac remodelling among patients randomized to CRT on or off. CKD was associated with worsening LV function and dilation compared with the non-CKD group {adjusted, 12-month β coefficients for the CKD group compared with the non-CKD referent group: LV ejection fraction (%) [-1.80, 95% confidence interval (CI) -3.36 to -0.24], LV end-systolic volume (mL) (14.16, 95% CI 3.96-24.36), LV end-diastolic volume (mL) (14.88, 95% CI 2.88-26.76), LV end-systolic diameter (cm) (0.36, 95% CI 0.12-0.48), LV end-diastolic diameter (cm) (0.24, 95% CI 0.012-0.36), mitral regurgitation (%) (3.12, 95% CI 0.48-5.76), and LV shape (0.036, 95% CI 0.012-0.060)}. In participants assigned to CRT, those without CKD had significantly greater improvements in LV structural parameters compared with the CKD group. In comparison with participants with normal kidney function, CKD is an independent risk factor for ventricular dysfunction and dilation. CRT improves LV function and structure to a lesser extent in patients with CKD than in those with normal kidney function.

  4. Putative molecular mechanism underlying sperm chromatin remodelling is regulated by reproductive hormones

    Directory of Open Access Journals (Sweden)

    Gill-Sharma Manjeet Kaur

    2012-12-01

    Full Text Available Abstract Background The putative regulatory role of the male reproductive hormones in the molecular mechanism underlying chromatin condensation remains poorly understood. In the past decade, we developed two adult male rat models wherein functional deficits of testosterone or FSH, produced after treatments with 20 mg/Kg/d of cyproterone acetate (CPA per os, for a period of 15 days or 3 mg/Kg/d of fluphenazine decanoate (FD subcutaneously, for a period of 60 days, respectively, affected the rate of sperm chromatin decondensation in vitro. These rat models have been used in the current study in order to delineate the putative roles of testosterone and FSH in the molecular mechanism underlying remodelling of sperm chromatin. Results We report that deficits of both testosterone and FSH affected the turnover of polyubiquitylated histones and led to their accumulation in the testis. Functional deficits of testosterone reduced expression of MIWI, the 5-methyl cap binding RNA-binding protein (PIWIlike murine homologue of the Drosophila protein PIWI/P-element induced wimpy testis containing a PAZ/Piwi-Argonaut-Zwille domain and levels of histone deacetylase1 (HDAC1, ubiquitin ligating enzyme (URE-B1/E3, 20S proteasome α1 concomitant with reduced expression of ubiquitin activating enzyme (ube1, conjugating enzyme (ube2d2, chromodomain Y like protein (cdyl, bromodomain testis specific protein (brdt, hdac6 (histone deacetylase6, androgen-dependent homeobox placentae embryonic protein (pem/RhoX5, histones h2b and th3 (testis-specific h3. Functional deficits of FSH reduced the expression of cdyl and brdt genes in the testis, affected turnover of ubiquitylated histones, stalled the physiological DNA repair mechanism and culminated in spermiation of DNA damaged sperm. Conclusions We aver that deficits of both testosterone and FSH differentially affected the process of sperm chromatin remodelling through subtle changes in the ‘chromatin condensation

  5. Low-grade inflammation and tryptophan-kynurenine pathway activation are associated with adverse cardiac remodeling in primary hyperparathyroidism: the EPATH trial.

    Science.gov (United States)

    Verheyen, Nicolas; Meinitzer, Andreas; Grübler, Martin Robert; Ablasser, Klemens; Kolesnik, Ewald; Fahrleitner-Pammer, Astrid; Belyavskiy, Evgeny; Trummer, Christian; Schwetz, Verena; Pieske-Kraigher, Elisabeth; Voelkl, Jakob; Alesutan, Ioana; Catena, Cristiana; Sechi, Leonardo Alberto; Brussee, Helmut; Lewinski, Dirk von; März, Winfried; Pieske, Burkert; Pilz, Stefan; Tomaschitz, Andreas

    2017-06-27

    Primary hyperparathyroidism (pHPT) is associated with low-grade inflammation, left ventricular hypertrophy and increased cardiovascular mortality, but the association between inflammatory markers and parameters of adverse cardiac remodeling is unknown. We investigated the relationship between C-reactive protein (CRP), the essential amino acid tryptophan and its pro-inflammatory derivatives kynurenine and quinolinic acid (QUIN) with echocardiographic parameters. Cross-sectional baseline data from the "Eplerenone in Primary Hyperparathyroidism" trial were analyzed. Patients with any acute illness were excluded. We assessed associations between CRP, serum levels of tryptophan, kynurenine and QUIN and left ventricular mass index (LVMI), left atrial volume index (LAVI) and E/e'. Among 136 subjects with pHPT (79% females), 100 (73%) had arterial hypertension and the prevalence of left ventricular hypertrophy was 52%. Multivariate linear regression analyses with LVMI, LAVI and E/e' as respective dependent variables, and C-reactive protein and tryptophan, kynurenine and QUIN as respective independent variables were performed. Analyses were adjusted for age, sex, blood pressure, parathyroid hormone, calcium and other cardiovascular risk factors. LVMI was independently associated with CRP (adjusted β-coefficient=0.193, p=0.030) and QUIN (β=0.270, p=0.007), but not kynurenine. LAVI was related with CRP (β=0.315, pTryptophan was not associated with any of the remodeling parameters. [Correction added after online publication (22 April 2017: The sentence "Among 136 subjects with pHPT (79% females), 100 (73%) had left ventricular hypertrophy." was corrected to "Among 136 subjects with pHPT (79% females), 100 (73%) had arterial hypertension and the prevalence of left ventricular hypertrophy was 52%."] Conclusions: Cardiac remodeling is common in pHPT and is associated with low-grade inflammation and activation of the tryptophan-kynurenine pathway. The potential role of

  6. Metabolic Remodeling of Membrane Glycerolipids in the Microalga Nannochloropsis oceanica under Nitrogen Deprivation

    Directory of Open Access Journals (Sweden)

    Danxiang Han

    2017-08-01

    Full Text Available HIGHLIGHTSAn electrospray ionization mass spectrometry-based lipidomics method was developed and integrated with transcriptomics to elucidate metabolic remodeling and turnover of microalgal membrane lipids by using Nannochloropsis oceanica as a model.The lack of lipidome analytical tools has limited our ability to gain new knowledge about lipid metabolism in microalgae, especially for membrane glycerolipids. An electrospray ionization mass spectrometry-based lipidomics method was developed for Nannochloropsis oceanica IMET1, which resolved 41 membrane glycerolipids molecular species belonging to eight classes. Changes in membrane glycerolipids under nitrogen deprivation and high-light (HL conditions were uncovered. The results showed that the amount of plastidial membrane lipids including monogalactosyldiacylglycerol, phosphatidylglycerol, and the extraplastidic lipids diacylglyceryl-O-4′-(N, N, N,-trimethyl homoserine and phosphatidylcholine decreased drastically under HL and nitrogen deprivation stresses. Algal cells accumulated considerably more digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerols under stresses. The genes encoding enzymes responsible for biosynthesis, modification and degradation of glycerolipids were identified by mining a time-course global RNA-seq data set. It suggested that reduction in lipid contents under nitrogen deprivation is not attributable to the retarded biosynthesis processes, at least at the gene expression level, as most genes involved in their biosynthesis were unaffected by nitrogen supply, yet several genes were significantly up-regulated. Additionally, a conceptual eicosapentaenoic acid (EPA biosynthesis network is proposed based on the lipidomic and transcriptomic data, which underlined import of EPA from cytosolic glycerolipids to the plastid for synthesizing EPA-containing chloroplast membrane lipids.

  7. Serum MMP-8: a novel indicator of left ventricular remodeling and cardiac outcome in patients after acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Marie Fertin

    Full Text Available OBJECTIVE: Left ventricular (LV remodeling following myocardial infarction (MI is characterized by progressive alterations of structure and function, named LV remodeling. Although several risk factors such as infarct size have been identified, LV remodeling remains difficult to predict in clinical practice. Changes within the extracellular matrix, involving matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs, are an integral part of left ventricular (LV remodeling after myocardial infarction (MI. We investigated the temporal profile of circulating MMPs and TIMPs and their relations with LV remodeling at 1 year and clinical outcome at 3 years in post-MI patients. METHODS: This prospective multicentre study included 246 patients with a first anterior MI. Serial echocardiographic studies were performed at hospital discharge, 3 months, and 1 year after MI, and analysed at a core laboratory. LV remodeling was defined as the percent change in LV end-diastolic volume (EDV from baseline to 1 year. Serum samples were obtained at hospital discharge, 1, 3, and 12 months. Multiplex technology was used for analysis of MMP-1, -2, -3, -8, -9, -13, and TIMP-1, -2, -3, -4 serum levels. RESULTS: Baseline levels of MMP-8 and MMP-9 were positively associated with changes in LVEDV (P = 0.01 and 0.02, respectively. When adjusted for major baseline characteristics, MMP-8 levels remained an independent predictor LV remodeling (P = 0.025. By univariate analysis, there were positive relations between cardiovascular death or hospitalization for heart failure during the 3-year follow-up and the baseline levels of MMP-2 (P = 0.03, MMP-8 (P = 0.002, and MMP-9 (P = 0.03. By multivariate analysis, MMP-8 was the only MMP remaining significantly associated with clinical outcome (P = 0.02. CONCLUSION: Baseline serum MMP-8 is a significant predictor of LV remodeling and cardiovascular outcome after MI and may help to improve

  8. Stimulation of ganglionated plexus attenuates cardiac neural remodeling and heart failure progression in a canine model of acute heart failure post-myocardial infarction.

    Science.gov (United States)

    Luo, Da; Hu, Huihui; Qin, Zhiliang; Liu, Shan; Yu, Xiaomei; Ma, Ruisong; He, Wenbo; Xie, Jing; Lu, Zhibing; He, Bo; Jiang, Hong

    2017-12-01

    Heart failure (HF) is associated with autonomic dysfunction. Vagus nerve stimulation has been shown to improve cardiac function both in HF patients and animal models of HF. The purpose of this present study is to investigate the effects of ganglionated plexus stimulation (GPS) on HF progression and autonomic remodeling in a canine model of acute HF post-myocardial infarction. Eighteen adult mongrel male dogs were randomized into the control (n=8) and GPS (n=10) groups. All dogs underwent left anterior descending artery ligation followed by 6-hour high-rate (180-220bpm) ventricular pacing to induce acute HF. Transthoracic 2-dimensional echocardiography was performed at different time points. The plasma levels of norepinephrine, B-type natriuretic peptide (BNP) and Ang-II were measured using ELISA kits. C-fos and nerve growth factor (NGF) proteins expressed in the left stellate ganglion as well as GAP43 and TH proteins expressed in the peri-infarct zone were measured using western blot. After 6h of GPS, the left ventricular end-diastolic volume, end-systolic volume and ejection fraction showed no significant differences between the 2 groups, but the interventricular septal thickness at end-systole in the GPS group was significantly higher than that in the control group. The plasma levels of norepinephrine, BNP, Ang-II were increased 1h after myocardial infarction while the increase was attenuated by GPS. The expression of c-fos and NGF proteins in the left stellate ganglion as well as GAP43 and TH proteins in cardiac peri-infarct zone in GPS group were significantly lower than that in control group. GPS inhibits cardiac sympathetic remodeling and attenuates HF progression in canines with acute HF induced by myocardial infarction and ventricular pacing. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Parametric study of control mechanism of cortical bone remodeling under mechanical stimulus

    Science.gov (United States)

    Wang, Yanan; Qin, Qing-Hua

    2010-03-01

    The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.

  10. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke.

    Science.gov (United States)

    Okabe, Naohiko; Shiromoto, Takashi; Himi, Naoyuki; Lu, Feng; Maruyama-Nakamura, Emi; Narita, Kazuhiko; Iwachidou, Nobuhisa; Yagita, Yoshiki; Miyamoto, Osamu

    2016-12-17

    Motor map reorganization is believed to be one mechanism underlying rehabilitation-induced functional recovery. Although the ipsilesional secondary motor area has been known to reorganize motor maps and contribute to rehabilitation-induced functional recovery, it is unknown how the secondary motor area is reorganized by rehabilitative training. In the present study, using skilled forelimb reaching tasks, we investigated neural network remodeling in the rat rostral forelimb area (RFA) of the secondary motor area during 4weeks of rehabilitative training. Following photothrombotic stroke in the caudal forelimb area (CFA), rehabilitative training led to task-specific recovery and motor map reorganization in the RFA. A second injury to the RFA resulted in reappearance of motor deficits. Further, when both the CFA and RFA were destroyed simultaneously, rehabilitative training no longer improved task-specific recovery. In neural tracer studies, although rehabilitative training did not alter neural projection to the RFA from other brain areas, rehabilitative training increased neural projection from the RFA to the lower spinal cord, which innervates the muscles in the forelimb. Double retrograde tracer studies revealed that rehabilitative training increased the neurons projecting from the RFA to both the upper cervical cord, which innervates the muscles in the neck, trunk, and part of the proximal forelimb, and the lower cervical cord. These results suggest that neurons projecting to the upper cervical cord provide new connections to the denervated forelimb area of the spinal cord, and these new connections may contribute to rehabilitation-induced task-specific recovery and motor map reorganization in the secondary motor area. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Evolution under Drug Pressure Remodels the Folding Free-Energy Landscape of Mature HIV-1 Protease.

    Science.gov (United States)

    Louis, John M; Roche, Julien

    2016-07-03

    Using high-pressure NMR spectroscopy and differential scanning calorimetry, we investigate the folding landscape of the mature HIV-1 protease homodimer. The cooperativity of unfolding was measured in the absence or presence of a symmetric active site inhibitor for the optimized wild type protease (PR), its inactive variant PRD25N, and an extremely multidrug-resistant mutant, PR20. The individual fit of the pressure denaturation profiles gives rise to first order, ∆GNMR, and second order, ∆VNMR (the derivative of ∆GNMR with pressure); apparent thermodynamic parameters for each amide proton considered. Heterogeneity in the apparent ∆VNMR values reflects departure from an ideal cooperative unfolding transition. The narrow to broad distribution of ∆VNMR spanning the extremes from inhibitor-free PR20D25N to PR-DMP323 complex, and distinctively for PRD25N-DMP323 complex, indicated large variations in folding cooperativity. Consistent with this data, the shape of thermal unfolding transitions varies from asymmetric for PR to nearly symmetric for PR20, as dimer-inhibitor ternary complexes. Lack of structural cooperativity was observed between regions located close to the active site, including the hinge and tip of the glycine-rich flaps, and the rest of the protein. These results strongly suggest that inhibitor binding drastically decreases the cooperativity of unfolding by trapping the closed flap conformation in a deep energy minimum. To evade this conformational trap, PR20 evolves exhibiting a smoother folding landscape with nearly an ideal two-state (cooperative) unfolding transition. This study highlights the malleability of retroviral protease folding pathways by illustrating how the selection of mutations under drug pressure remodels the free-energy landscape as a primary mechanism. Published by Elsevier Ltd.

  12. Significance of change in serum bilirubin in predicting left ventricular reverse remodeling and outcomes in heart failure patients with cardiac resynchronization therapy.

    Science.gov (United States)

    Hosoda, Junya; Ishikawa, Toshiyuki; Matsumoto, Katsumi; Iguchi, Kohei; Matsushita, Hirooki; Ogino, Yutaka; Taguchi, Yuka; Sugano, Teruyasu; Ishigami, Tomoaki; Kimura, Kazuo; Tamura, Kouichi

    2017-11-01

    Research on the correlation of serum bilirubin level with cardiac function as well as outcomes in heart failure patients with cardiac resynchronization therapy (CRT) has not yet been reported. The aim of this study was to analyze the relationship between change in serum bilirubin level and left ventricular reverse remodeling, and also to clarify the impact of bilirubin change on clinical outcomes in CRT patients. We evaluated 105 consecutive patients who underwent CRT. Patients who had no serum total-bilirubin data at both baseline and 3-9 months' follow-up or had died less than 3 months after CRT implantation were excluded. Accordingly, a total of 69 patients were included in the present analysis. The patients were divided into two groups: decreased bilirubin group (serum total-bilirubin level at follow-up≤that at baseline; n=48) and increased bilirubin group (serum total-bilirubin level at follow-up>that at baseline; n=21). Mean follow-up period was 39.3 months. In the decreased bilirubin group, mean left ventricular end-systolic diameter decreased from 54.5mm to 50.2mm (p=0.001) and mean left ventricular ejection fraction increased significantly from 29.8% to 37.0% (p=0.001). In the increased bilirubin group, there was no significant change in echocardiographic parameters from baseline to follow-up. In Kaplan-Meyer analysis, cardiac mortality combined with heart failure hospitalization in the increased bilirubin group was significantly higher than that in the decreased bilirubin group (log-rank p=0.018). Multivariate Cox regression analysis revealed that increased bilirubin was an independent predictor of cardiac mortality combined with heart failure hospitalization (OR=2.66, p=0.023). The change in serum bilirubin is useful for assessment of left ventricular reverse remodeling and prediction of outcomes in heart failure patients with CRT. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  13. Relation of mechanical dyssynchrony with underlying cardiac structure and performance in chronic systolic heart failure: implications on clinical response to cardiac resynchronization.

    Science.gov (United States)

    Tang, Wai Hong Wilson; Mullens, Wilfried; Borowski, Allen G; Tong, Wilson; Shrestha, Kevin; Troughton, Richard W; Martin, Maureen G; Kassimatis, Kathleen; Agler, Debbie; Jasper, Sue; Grimm, Richard A; Starling, Randall C; Klein, Allan L

    2008-12-01

    The aim of this study is to describe the relationship between ventricular mechanical dyssynchrony (VMD) and echocardiographic indices of cardiac remodelling. We evaluated 219 ambulatory patients with chronic systolic heart failure [left ventricular ejection fraction (LVEF) Heart Association functional classes II-IV] who underwent echocardiographic evaluation. The presence of dyssynchrony was defined by Bader criteria (intra-VMD > 40 ms and/or inter-VMD > 38 ms). In our study cohort, 59% of patients had evidence of dyssynchrony (including 44% with intra-VMD and 38% with inter-VMD, and 20% with both). Inter-VMD correlated with QRS width (r = 0.48, P chronic systolic heart failure, evidence of mechanical dyssynchrony is prevalent but the underlying cardiac structure and performance may influence the degree of inter-VMD more so than intra-VMD. Our data suggest that the extent of inter-VMD is directly related to the degree of dilatation of the heart but inversely to diastolic dysfunction.

  14. Dynamic quantitative visualization of single cell alignment and migration and matrix remodeling in 3-D collagen hydrogels under mechanical force.

    Science.gov (United States)

    Pang, Yonggang; Wang, Xiaoli; Lee, Dongkeun; Greisler, Howard P

    2011-05-01

    We developed a live imaging system enabling dynamic visualization of single cell alignment induced by external mechanical force in a 3-D collagen matrix. The alignment dynamics and migration of smooth muscle cells (SMCs) were studied by time lapse differential interference contrast and/or phase contrast microscopy. Fluorescent and reflection confocal microcopy were used to study the SMC morphology and the microscale collagen matrix remodeling induced by SMCs. A custom developed program was used to quantify the cell migration and matrix remodeling. Our system enables cell concentration-independent alignment eliminating cell-to-cell interference and enables dynamic cell tracking, high magnification observation and rapid cell alignment accomplished in a few hours compared to days in traditional models. We observed that cells sense and response to the mechanical signal before cell spreading. Under mechanical stretch the migration directionality index of SMCs is 46.3% more than those cells without external stretch; the dynamic direction of cell protrusion is aligned to that of the mechanical force; SMCs showed directional matrix remodeling and the alignment index calculated from the matrix in front of cell protrusions is about 3 fold of that adjacent to cell bodies. Our results indicate that the mechanism of cell alignment is directional cell protrusion. Mechano-sensing, directionality in cell protrusion dynamics, cell migration and matrix remodeling are highly integrated. Our system provides a platform for studying the role of mechanical force on the cell matrix interactions and thus finds strategies to optimize selected properties of engineered tissues. Published by Elsevier Ltd.

  15. CO inhalation at dose corresponding to tobacco smoke worsens cardiac remodeling after experimental myocardial infarction in rats.

    Science.gov (United States)

    Mirza, Alain; Eder, Véronique; Rochefort, Gaël Y; Hyvelin, Jean-Marc; Machet, Marie Christine; Fauchier, Laurent; Bonnet, Pierre

    2005-06-01

    We hypothesized that inhalation of carbon monoxide (CO) (500 ppm), similar to that in tobacco smoke, disturbs the cardiovascular adaptation after myocardial infarction by increasing remodeling. Four groups of rats were assessed. Two groups had myocardial infarction induced by the ligation of the left coronary artery: the first group was exposed to air (infarcted air group, n = 12), and the second was exposed to CO (infarcted CO group, n = 11). They were compared to two sham-operated groups, a control air group (n = 10), and a control CO group (n = 7) exposed (3 weeks) to CO. Aerobic endurance capacity was assessed in both the infarct CO and infarct air group (endurance capacity = 0.043 +/- 0.006 m.min(-1).g(-1) vs. 0.042 +/- 0.005 m.min(-1).g(-1), not significant). In the infarcted CO group compared to the infarcted air group, the dilatation of the left ventricle observed 3 weeks after infarction was increased, (left ventricular diastolic (LVD) diameter (D) = 9 +/- 0.4 vs. 7 +/- 0.4 mm, p infarcted CO group, the infarct size increased. Echocardiography and histology showed hypertrophy of the contralateral wall similar to that observed in the noninfarcted control CO group. In conclusion, chronic CO inhalation worsens heart failure in rats with myocardial infarction by an increase in the infarct size and hypertrophy remodeling.

  16. Attenuation of salt-induced cardiac remodeling and diastolic dysfunction by the GPER agonist G-1 in female mRen2.Lewis rats.

    Directory of Open Access Journals (Sweden)

    Jewell A Jessup

    2010-11-01

    Full Text Available The G protein-coupled estrogen receptor (GPER is expressed in various tissues including the heart. Since the mRen2.Lewis strain exhibits salt-dependent hypertension and early diastolic dysfunction, we assessed the effects of the GPER agonist (G-1, 40 nmol/kg/hr for 14 days or vehicle (VEH, DMSO/EtOH on cardiac function and structure.Intact female mRen2.Lewis rats were fed a normal salt (0.5% sodium; NS diet or a high salt (4% sodium; HS diet for 10 weeks beginning at 5 weeks of age.Prolonged intake of HS in mRen2.Lewis females resulted in significantly increased blood pressure, mildly reduced systolic function, and left ventricular (LV diastolic compliance (as signified by a reduced E deceleration time and E deceleration slope, increased relative wall thickness, myocyte size, and mid-myocardial interstitial and perivascular fibrosis. G-1 administration attenuated wall thickness and myocyte hypertrophy, with nominal effects on blood pressure, LV systolic function, LV compliance and cardiac fibrosis in the HS group. G-1 treatment significantly increased LV lusitropy [early mitral annular descent (e'] independent of prevailing salt, and improved the e'/a' ratio in HS versus NS rats (P<0.05 as determined by tissue Doppler.Activation of GPER improved myocardial relaxation in the hypertensive female mRen2.Lewis rat and reduced cardiac myocyte hypertrophy and wall thickness in those rats fed a high salt diet. Moreover, these advantageous effects of the GPER agonist on ventricular lusitropy and remodeling do not appear to be associated with overt changes in blood pressure.

  17. C1-esterase inhibitor protects against early vein graft remodeling under arterial blood pressure.

    Science.gov (United States)

    Krijnen, Paul A J; Kupreishvili, Koba; de Vries, Margreet R; Schepers, Abbey; Stooker, Wim; Vonk, Alexander B A; Eijsman, Leon; Van Hinsbergh, Victor W M; Zeerleder, Sacha; Wouters, Diana; van Ham, Marieke; Quax, Paul H A; Niessen, Hans W M

    2012-01-01

    Arterial pressure induced vein graft injury can result in endothelial loss, accelerated atherosclerosis and vein graft failure. Inflammation, including complement activation, is assumed to play a pivotal role herein. Here, we analyzed the effects of C1-esterase inhibitor (C1inh) on early vein graft remodeling. Human saphenous vein graft segments (n=8) were perfused in vitro with autologous blood either supplemented or not with purified human C1inh at arterial pressure for 6h. The vein segments and perfusion blood were analyzed for cell damage and complement activation. In addition, the effect of purified C1inh on vein graft remodeling was analyzed in vivo in atherosclerotic C57Bl6/ApoE3 Leiden mice, wherein donor caval veins were interpositioned in the common carotid artery. Application of C1inh in the in vitro perfusion model resulted in significantly higher blood levels and significantly more depositions of C1inh in the vein wall. This coincided with a significant reduction in endothelial loss and deposition of C3d and C4d in the vein wall, especially in the circular layer, compared to vein segments perfused without supplemented C1inh. Administration of purified C1inh significantly inhibited vein graft intimal thickening in vivo in atherosclerotic C57Bl6/ApoE3 Leiden mice, wherein donor caval veins were interpositioned in the common carotid artery. C1inh significantly protects against early vein graft remodeling, including loss of endothelium and intimal thickening. These data suggest that it may be worth considering its use in patients undergoing coronary artery bypass grafting. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Activation in M1 but not M2 Macrophages Contributes to Cardiac Remodeling after Myocardial Infarction in Rats: a Critical Role of the Calcium Sensing Receptor/NRLP3 Inflammasome

    Directory of Open Access Journals (Sweden)

    Wenxiu Liu

    2015-04-01

    Full Text Available Aims: Macrophage (MΦ infiltration during myocardial infarction (MI amplifies cardiac inflammation and remodeling. We investigated whether activation of the NRLP3 inflammasome by a calcium sensing receptor (CaSR in MΦ subsets contributes to cardiac remodeling following MI. Methods and Results: Infiltrated MΦ exhibited biphasic activation after MI; M1MΦ peaked at MI 3d and decreased until MI 14d, whereas M2MΦ peaked at MI 7d and decreased at MI 14d as shown via immunohistochemistry. IL-1β co-infiltrated with both M1MΦ and M2MΦ; IL-1β exhibited the same infiltrating tendency as M1MΦ, which was detected by immunohistochemistry. Increasing ventricular fibrosis was confirmed by Masson staining. CaSR and NLRP3 inflammasome in the MI group were upregulated in MΦ subsets in myocardium and peritoneal MΦ (p-MΦ compared with the sham groups which were detected by immunofluorescence and western blotting. CaSR-activated NLRP3 inflammasome played a role in M1MΦ via PLC-IP3 but did not play a role in M2MΦ which were polarized by the THP-1 as shown by western blotting and intracellular calcium measurement. CaSR/NLRP3 inflammasome activation in M1MΦ led to the following effects: upregulated α-sma, MMP-2 and MMP-9, and collagen secretion; and downregulated TIMP-2 in cardiac fibroblasts via IL-1β-IL-1RI, which was detected by coculturing M1MΦ and cardiac fibroblasts. Conclusions: We suggest that the CaSR/NLRP3 inflammasome plays an essential role via the PLC-IP3 pathway in M1MΦ to promote cardiac remodeling post-MI in rats, including accelerated cardiac fibroblast phenotypic transversion, increased collagen and extracellular matrix (ECM secretion; however, the CaSR/NLRP3 inflammasome does not play a role in this process in M2MΦ.

  19. High intensity interval and endurance training have opposing effects on markers of heart failure and cardiac remodeling in hypertensive rats.

    Science.gov (United States)

    Holloway, Tanya M; Bloemberg, Darin; da Silva, Mayne L; Simpson, Jeremy A; Quadrilatero, Joe; Spriet, Lawrence L

    2015-01-01

    There has been re-emerging interest and significant work dedicated to investigating the metabolic effects of high intensity interval training (HIIT) in recent years. HIIT is considered to be a time efficient alternative to classic endurance training (ET) that elicits similar metabolic responses in skeletal muscle. However, there is a lack of information on the impact of HIIT on cardiac muscle in disease. Therefore, we determined the efficacy of ET and HIIT to alter cardiac muscle characteristics involved in the development of diastolic dysfunction, such as ventricular hypertrophy, fibrosis and angiogenesis, in a well-established rodent model of hypertension-induced heart failure before the development of overt heart failure. ET decreased left ventricle fibrosis by ~40% (P HIIT did not decrease existing fibrosis, and HIIT animals displayed a 20% increase in left ventricular mass (PHIIT also increased brain natriuretic peptide by 50% (PHIIT promoted a pathological adaptation in the left ventricle in the presence of hypertension, highlighting the need for further research on the widespread effects of HIIT in the presence of disease.

  20. Inactivation of Bmp4 from the Tbx1 Expression Domain Causes Abnormal Pharyngeal Arch Artery and Cardiac Outflow Tract Remodeling

    Science.gov (United States)

    Nie, Xuguang; Brown, Christopher B.; Wang, Qin; Jiao, Kai

    2011-01-01

    Maldevelopment of outflow tract and aortic arch arteries is among the most common forms of human congenital heart diseases. Both Bmp4 and Tbx1 are known to play critical roles during cardiovascular development. Expression of these two genes partially overlaps in pharyngeal arch areas in mouse embryos. In this study, we applied a conditional gene inactivation approach to test the hypothesis that Bmp4 expressed from the Tbx1 expression domain plays a critical role for normal development of outflow tract and pharyngeal arch arteries. We showed that inactivation of Bmp4 from Tbx1-expressing cells leads to the spectrum of deformities resembling the cardiovascular defects observed in human DiGeorge syndrome patients. Inactivation of Bmp4 from the Tbx1 expression domain did not cause patterning defects, but affected remodeling of outflow tract and pharyngeal arch arteries. Our further examination revealed that Bmp4 is required for normal recruitment/differentiation of smooth muscle cells surrounding the PAA4 and survival of outflow tract cushion mesenchymal cells. PMID:21123999

  1. Human myoblast transplantation in mice infarcted heart alters the expression profile of cardiac genes associated with left ventricle remodeling.

    Science.gov (United States)

    Wiernicki, B; Rozwadowska, N; Malcher, A; Kolanowski, T; Zimna, A; Rugowska, A; Kurpisz, M

    2016-01-01

    Myocardial infarction (MI) and left ventricle remodeling (LVR) are two of the most challenging disease entities in developed societies. Since conventional treatment cannot fully restore heart function new approaches were attempted to develop new strategies and technologies that could be used for myocardial regeneration. One of these strategies pursued was a cell therapy--particularly applying skeletal muscle stem cells (SkMCs). Using NOD-SCID murine model of MI and human skeletal myoblast transplantation we were able to show that SkMC administration significantly affected gene expression profile (pheart ventricular tissue and this change was beneficial for the heart function. We have also shown, that the level of heart biomarker, NT-proBNP, decreased in animals receiving implanted cells and that the NT-proBNP level negatively correlated with left ventricle area fraction change (LVFAC) index which makes NT-proBNP an attractive tool in assessing the efficacy of cell therapy both in the animal model and prospectively in clinical trials. The results obtained suggest that transplanted SkMCs exerted beneficial effect on heart regeneration and were able to inhibit LVR which was confirmed on the molecular level, giving hope for new ways of monitoring novel cellular therapies for MI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Galectin-3, a marker of cardiac remodeling, is inversely related to serum levels of marine omega-3 fatty acids. A cross-sectional study

    DEFF Research Database (Denmark)

    Laake, K; Seljeflot, I; Schmidt, E B

    2017-01-01

    myocardial infarction. RESULTS: Gal-3 was inversely correlated to eicosapentaenoic acid (r = -.120, p = .039) and docosahexaenoic acid (r = -.125, p = .031) and positively correlated to the n-6/n-3 ratio (r = .131, p = .023). Gal-3 levels were significantly higher in diabetics vs non-diabetics (12.00 vs 9......OBJECTIVE: Marine polyunsaturated n-3 fatty acids (n-3 PUFA) may have cardioprotective effects and beneficial influence on the fibrotic process. We evaluated the associations between serum marine n-3 PUFA and selected biomarkers of fibrosis and cardiac remodeling in elderly patients with acute...... myocardial infarction. SETTING: From the ongoing OMega-3 fatty acids in Elderly patients with Myocardial Infarction (OMEMI) trial, 299 patients were investigated. Soluble ST2 (sST2), Galectin-3 (Gal-3) and the serum content of major marine n-3 and n-6 PUFA were analyzed 2-8 weeks after the index acute...

  3. Cardiac remodeling in a new pig model of chronic heart failure: Assessment of left ventricular functional, metabolic, and structural changes using PET, CT, and echocardiography.

    Science.gov (United States)

    Tarkia, Miikka; Stark, Christoffer; Haavisto, Matti; Kentala, Rasmus; Vähäsilta, Tommi; Savunen, Timo; Strandberg, Marjatta; Hynninen, Ville-Veikko; Saunavaara, Virva; Tolvanen, Tuula; Teräs, Mika; Rokka, Johanna; Pietilä, Mikko; Saukko, Pekka; Roivainen, Anne; Saraste, Antti; Knuuti, Juhani

    2015-08-01

    Large animal models are needed to study disease mechanisms in heart failure (HF). In the present study we characterized the functional, metabolic, and structural changes of myocardium in a novel pig model of chronic myocardial infarction (MI) by using multimodality imaging and histology. Male farm pigs underwent a two-step occlusion of the left anterior descending coronary artery with concurrent distal ligation and implantation of a proximal ameroid constrictor (HF group), or sham operation (control group). Three months after the operation, cardiac output and wall stress were measured by echocardiography. Left ventricle (LV) volumes and mass were measured by computed tomography (CT). Myocardial perfusion was evaluated by [(15)O]water and oxygen consumption using [(11)C]acetate positron emission tomography, and the efficiency of myocardial work was calculated. Histological examinations were conducted to detect MI, hypertrophy, and fibrosis. Animals in the HF group had a large anterior MI scar. CT showed larger LV diastolic volume and lower ejection fraction in HF pigs than in controls. Perfusion and oxygen consumption in the remote non-infarcted myocardium were preserved in HF pigs as compared to controls. Global LV work and efficiency were significantly lower in HF than control pigs and was associated with increased wall stress. Histology showed myocyte hypertrophy but not increased interstitial fibrosis in the remote segments in HF pigs. The chronic post-infarction model of HF is suitable for studies aimed to evaluate LV remodeling and changes in oxidative metabolism and can be useful for testing new therapies for HF.

  4. Red raspberry decreases heart biomarkers of cardiac remodeling associated with oxidative and inflammatory stress in obese diabetic db/db mice.

    Science.gov (United States)

    Noratto, Giuliana; Chew, Boon P; Ivanov, Ivan

    2016-12-07

    Early diagnosis of risks of heart disease can be critical to fight cardiovascular diseases (CVD) associated with obesity and diabetes and for the implementation of nutritional interventions. The objective of this study was to investigate the cardioprotective effects of red raspberry consumption in the obese diabetic (db/db) mice using proteomic analysis as a tool. Hearts harvested from db/db mice fed an isocaloric diet (AIN-93G, control group) or AIN-93G supplemented with freeze-dried raspberry (raspberry group) for eight weeks were analyzed for changes in protein expression. Bioinformatics and pathway analysis of proteomic data detected in >50% samples were scrutinized with Database for Annotation, Visualization and Integrated Discovery (DAVID). Histologic analysis, adipokines and lipid quantification in heart tissues were assessed as end points for disease biomarkers. Results from proteomic data identified five proteins unique to the control group involved in cardiac remodeling and one involved in stress response. Twenty-five proteins expressed in both groups were differentially downregulated in the raspberry group (p raspberry and control groups were detected in heart lipid composition, adipokines, and morphology within the study timeframe. In conclusion, raspberry consumption may be effective in decreasing the levels of oxidative and inflammatory stress that promote morphological changes in the heart at an older age, thus preventing or delaying heart diseases.

  5. Effects of magnesium supplementation on electrophysiological remodeling of cardiac myocytes in L-NAME induced hypertensive rats.

    Science.gov (United States)

    Ozturk, Nihal; Olgar, Yusuf; Aslan, Mutay; Ozdemir, Semir

    2016-08-01

    Hypertension is one of the major risk factors of cardiac hypertrophy and magnesium deficiency is suggested to be a contributing factor in the progression of this complication. In this study, we aimed to investigate the relationship between intracellular free Mg(2+) levels and electrophysiological changes developed in the myocardium of L-NAME induced hypertensive rats. Hypertension was induced by administration of 40 mg/kg of L-NAME for 6 weeks, while magnesium treated rats fed with a diet supplemented with 1 g/kg of MgO for the same period. L-NAME administration for 6 weeks elicited a significant increase in blood pressure which was corrected with MgO treatment; thereby cardiac hypertrophy developing secondary to hypertension was prevented. Cytosolic free magnesium levels of ventricular myocytes were significantly decreased with hypertension and magnesium administration restored these changes. Hypertension significantly decreased the fractional shortening with slowing of shortening kinetics in left ventricular myocytes whereas magnesium treatment was capable of restoring hypertension-induced contractile dysfunction. Long-term magnesium treatment significantly restored the hypertension-induced prolongation in action potentials of ventricular myocytes and suppressed Ito and Iss currents. In contrast, hypertension dependent decrement in intracellular Mg(2+) level did not cause a significant change in L-type Ca(2+) currents, SR Ca(2+) content and NCX activity. Nevertheless, hypertension mediated increase in superoxide anion, hydrogen peroxide and protein oxidation mitigated with magnesium treatment. In conclusion, magnesium administration improves mechanical abnormalities observed in hypertensive rat ventricular myocytes due to reduced oxidative stress. It is likely that, changes in intracellular magnesium balance may contribute to the pathophysiology of chronic heart diseases.

  6. Progression of Left Ventricular Dysfunction and Remodelling under Optimal Medical Therapy in CHF Patients: Role of Individual Genetic Background

    Directory of Open Access Journals (Sweden)

    Marzia Rigolli

    2011-01-01

    Full Text Available Background. Neurohormonal systems play an important role in chronic heart failure (CHF. Due to interindividual heterogeneity in the benefits of therapy, it may be hypothesized that polymorphisms of neurohormonal systems may affect left ventricular (LV remodelling and systolic function. We aimed to assess whether genetic background of maximally treated CHF patients predicts variations in LV systolic function and volumes. Methods and Results. We prospectively studied 131 CHF outpatients on optimal treatment for at least six months. Echocardiographic evaluations were performed at baseline and after 12 months. Genotype analysis for ACE I/D, β1adrenergic receptor (AR Arg389Gly, β2AR Arg16Gly, and β2AR Gln27Glu polymorphisms was performed. No differences in baseline characteristics were detected among subgroups. ACE II was a significant predictor of improvement of LV end-diastolic and end-systolic volume (=.003 and =.002, respectively but not of LV ejection fraction (LVEF; β1AR389 GlyGly was related to improvement of LVEF (=.02 and LV end-systolic volume (=.01. The predictive value of polymorphisms remained after adjustment for other clinically significant predictors (<.05 for all. Conclusions. ACE I/D and β1AR Arg389Gly polymorphisms are independent predictors of reverse remodeling and systolic function recovery in CHF patients under optimal treatment.

  7. Potassium Channel Interacting Protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling

    DEFF Research Database (Denmark)

    Winther, Sine V; Tuomainen, Tomi; Borup, Rehannah

    2016-01-01

    The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus...... in a Ca(2+) dependent manner. Cardiac biopsies from human heart-failure patients and healthy donor controls showed that nuclear KChIP2 abundance was significantly increased in heart failure; however, this was secondary to a large variation of total KChIP2 content. Administration of ouabain did...... not increase KChIP2 content in nuclear protein fractions in anesthetized mice. KChIP2 was expressed in cell lines, and Ca(2+) ionophores were applied in a concentration- and time-dependent manner. The cell lines had KChIP2-immunoreactive protein in the nucleus in the absence of treatments to modulate...

  8. Embryonic Stem Cell-Derived Cardiomyocyte Heterogeneity and the Isolation of Immature and Committed Cells for Cardiac Remodeling and Regeneration

    Directory of Open Access Journals (Sweden)

    Kenneth R. Boheler

    2011-01-01

    Full Text Available Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.

  9. Effects of chronic treatment with the new ultra-long-acting β2 -adrenoceptor agonist indacaterol alone or in combination with the β1 -adrenoceptor blocker metoprolol on cardiac remodelling.

    Science.gov (United States)

    Rinaldi, Barbara; Donniacuo, Maria; Sodano, Loredana; Gritti, Giulia; Martuscelli, Eugenio; Orlandi, Augusto; Rafaniello, Concetta; Rossi, Francesco; Calzetta, Luigino; Capuano, Annalisa; Matera, Maria Gabriella

    2015-07-01

    The ability of a chronic treatment with indacaterol, a new ultra-long-acting β2 -adrenoceptor agonist, to reverse cardiac remodelling and its effects in combination with metoprolol, a selective β1 -adrenoceptor antagonist, were investigated on myocardial infarction in a rat model of heart failure (HF). We investigated the effects of indacaterol and metoprolol, administered alone or in combination, on myocardial histology, β-adrenoceptor-mediated pathways, markers of remodelling and haemodynamic parameters in a rat model of HF. Five groups of rats were assessed: sham-operated rats; HF rats; HF + indacaterol 0.3 mg·kg(-1) ·day(-1) ; HF + metoprolol 100 mg·kg(-1) ·day(-1) ; HF + metoprolol + indacaterol. All pharmacological treatments continued for 15 weeks. Treatment with either indacaterol or metoprolol significantly reduced the infarct size in HF rats. However, the combination of indacaterol and metoprolol reduced the infarct size even further, reduced both BP and heart rate, reversed the decrease in ejection fraction, normalized left ventricular systolic and diastolic internal diameters, normalized the decreased β1 adrenoceptor mRNA expression as well as cardiac cAMP levels and reduced cardiac GPCR kinase 2 expression, compared with the untreated HF group. The results of our study demonstrated an additive interaction between indacaterol and metoprolol in normalizing and reversing cardiac remodelling in our experimental model of HF. The translation of these findings to clinical practice might be of interest, as this combination of drugs could be safer and more effective in patients suffering from HF and COPD. © 2015 The British Pharmacological Society.

  10. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure.

    Science.gov (United States)

    Liao, Song-Yan; Liu, Yuan; Zuo, Mingliang; Zhang, Yuelin; Yue, Wensheng; Au, Ka-Wing; Lai, Wing-Hon; Wu, Yangsong; Shuto, Chika; Chen, Peter; Siu, Chung-Wah; Schwartz, Peter J; Tse, Hung-Fat

    2015-12-01

    Thoracic spinal cord stimulation (SCS) has been shown to improve left ventricular ejection fraction (LVEF) in heart failure (HF). Nevertheless, the optimal duration (intermittent vs. continuous) of stimulation and the mechanisms of action remain unclear. We performed chronic thoracic SCS at the level of T1-T3 (50 Hz, pulse width 0.2 ms) in 30 adult pigs with HF induced by myocardial infarction and rapid ventricular pacing for 4 weeks. All the animals were treated with daily oral metoprolol succinate (25 mg) plus ramipril (2.5 mg), and randomized to a control group (n = 10), intermittent SCS (4 h ×3, n = 10) or continuous SCS (24 h, n = 10) for 10 weeks. Serial measurements of LVEF and +dP/dt and serum levels of norepinephrine and B-type natriuretic peptide (BNP) were measured. After sacrifice, immunohistological studies of myocardial sympathetic and parasympathetic nerve sprouting and innervation were performed. Echocardiogram revealed a significant increase in LVEF and +dP/dt at 10 weeks in both the intermittent and continuous SCS group compared with controls (P < 0.05). In both SCS groups, there was diffuse sympathetic nerve sprouting over the infarct, peri-infarct, and normal regions compared with only the peri-infarct and infarct regions in the control group. In addition, sympathetic innervation at the peri-infarct and infarct regions was increased following SCS, but decreased in the control group. Myocardium norepinephrine spillover and serum BNP at 10 weeks was significantly decreased only in the continuous SCS group (P < 0.05). In a porcine model of HF, SCS induces significant remodelling of cardiac sympathetic innervation over the peri-infarct and infarct regions and is associated with improved LV function and reduced myocardial norepinephrine spillover. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  11. MicroRNAs in Valvular Heart Diseases: Potential Role as Markers and Actors of Valvular and Cardiac Remodeling

    OpenAIRE

    Oury, C?cile; Servais, Laurence; Bouznad, Nassim; Hego, Alexandre; Nchimi, Alain; Lancellotti, Patrizio

    2016-01-01

    miRNAs are a class of over 5000 noncoding RNAs that regulate more than half of the protein-encoding genes by provoking their degradation or preventing their translation. miRNAs are key regulators of complex biological processes underlying several cardiovascular disorders, including left ventricular hypertrophy, ischemic heart disease, heart failure, hypertension and arrhythmias. Moreover, circulating miRNAs herald promise as biomarkers in acute myocardial infarction and heart failure. In this...

  12. Metabolic Modulation by Medium-Chain Triglycerides Reduces Oxidative Stress and Ameliorates CD36-Mediated Cardiac Remodeling in Spontaneously Hypertensive Rat in the Initial and Established Stages of Hypertrophy.

    Science.gov (United States)

    Saifudeen, Ismael; Subhadra, Lakshmi; Konnottil, Remani; Nair, R Renuka

    2017-03-01

    Left ventricular hypertrophy (LVH) is characterized by a decrease in oxidation of long-chain fatty acids, possibly mediated by reduced expression of the cell-surface protein cluster of differentiation 36 (CD36). Spontaneously hypertensive rats (SHRs) were therefore supplemented with medium-chain triglycerides (MCT), a substrate that bypasses CD36, based on the assumption that the metabolic modulation will ameliorate ventricular remodeling. The diet of 2-month-old and 6-month-old SHRs was supplemented with 5% MCT (Tricaprylin), for 4 months. Metabolic modulation was assessed by mRNA expression of peroxisome proliferator-activated receptor α and medium-chain acyl-CoA dehydrogenase. Blood pressure was measured noninvasively. LVH was assessed with the use of hypertrophy index, cardiomyocyte cross-sectional area, mRNA expression of B-type natriuretic peptide, cardiac fibrosis, and calcineurin-A levels. Oxidative stress indicators (cardiac malondialdehyde, protein carbonyl, and 3-nitrotyrosine levels), myocardial energy level (ATP, phosphocreatine), and lipid profile were determined. Supplementation of MCT stimulated fatty acid oxidation in animals of both age groups, reduced hypertrophy and oxidative stress along with the maintenance of energy level. Blood pressure, body weight, and lipid profile were unaffected by the treatment. The results indicate that modulation of myocardial fatty acid metabolism by MCT prevents progressive cardiac remodeling in SHRs, possibly by maintenance of energy level and decrease in oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The impact of obesity on the parameters of cardiovascular remodeling, cerebral blood flow and autonomic regulation of cardiac rhythm in hypertensive patients

    Directory of Open Access Journals (Sweden)

    V. V. Syvolap

    2017-04-01

    Full Text Available Objective. The aim of this study was to assess autonomic regulation disturbances, disorders of systemic, brain and intra-cardiac hemodynamics and to find out the features of vascular and cardiac remodeling in patients with arterial hypertension associated with obesity. Materials and Methods. The study involved 82 patients with stage II hypertension combined with obesity (39 men and 43 women and 18 (12 men and 6 women patients with essential hypertension with normal body weight. All the patients underwent general clinical examination, ECG Holter monitoring with heart rate variability analysis, 24h ABPM, duplex echocardiography and pulsed-wave Doppler of extracranial vessels. Results. Patients with essential hypertension associated with obesity have significantly higher average daily SBP by 9.4% (p = 0.036, average DBP by 12.1% (p = 0.027 and hypertension time index by 83.3% (p = 0.012, diastolic size of LA by 11.1% (p = 0.007, IVSTd by 23.7% (p = 0.001, LVMI by 14.3% (p = 0.022 and reduced volume-mass index of LV by 18.8% (p = 0.013. In patients with essential hypertension with obesity we observed a significant decrease in Vmax in the left CCA by 16.5% (p = 0.003 and in the right CCA by 12.6% (p = 0.046, Vmean in the left CCA by 16.8% (p = 0.001 and in the right CCA by 14.4% (p = 0.009, reduced Vmax by 19.1% (p = 0.002 and Vmean by 21.9% (p = 0.002 in the right ICA. Levels of Vmax and Vmean in the left MCA in hypertensive patients with obesity were lower by 10.2% (p = 0.043 and 12.5% (p = 0.044, while the index of vascular reactivity sensitive to hypercapnia in the left MCA was lower by 14.6% (p = 0.015. In overweighed patients with hypertension the linear Vmax in the left VA was lower by 13.9% (p = 0.015 and Vmean 14.5% (p = 0.013, in the right VA Vmax and Vmean were lower by 17.7% (p = 0.011 and 25.8% (p = 0.003. In group with hypertension and obesity Vmean in BA showed a reduction by 17.3% (p = 0.021, and index of reactivity sensitive to

  14. Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a are mediated by suppression of PTEN and activation of PI3K dependent signaling.

    Science.gov (United States)

    Lu, Chen; Wang, Xiaohui; Ha, Tuanzhu; Hu, Yuanping; Liu, Li; Zhang, Xia; Yu, Honghui; Miao, Jonathan; Kao, Race; Kalbfleisch, John; Williams, David; Li, Chuanfu

    2015-12-01

    Activation of PI3K/Akt signaling protects the myocardium from ischemia/reperfusion injury. MicroRNAs have been demonstrated to play an important role in the regulation of gene expression at the post-transcriptional level. In this study, we examined whether miR-130a will attenuate cardiac dysfunction and remodeling after myocardial infarction (MI) via PI3K/Akt dependent mechanism. To determine the role of miR-130a in the proliferation and migration of endothelial cells, HUVECs were transfected with miR-130a mimics before the cells were subjected to scratch-induced wound injury. Transfection of miR-130a mimics stimulated the migration of endothelial cells into the wound area and increased phospho-Akt levels. To examine the effect of miR-130a on cardiac dysfunction and remodeling after MI, Lentivirus expressing miR-130a (LmiR-130a) was delivered into mouse hearts seven days before the mice were subjected to MI. Cardiac function was assessed by echocardiography before and for up to 21 days after MI. Ejection fraction (EF%) and fractional shortening (FS%) in the LmiR-130a transfected MI hearts were significantly greater than in LmiR-control and untransfected control MI groups. LmiR-130a transfection increased capillary number and VEGF expression, and decreased collagen deposition in the infarcted myocardium. Importantly, LmiR-130a transfection significantly suppressed PTEN expression and increased the levels of phosphorylated Akt in the myocardium. However, treatment of LmiR-130a-transfected mice with LY294002, a PI3K inhibitor, completely abolished miR-130a-induced attenuation of cardiac dysfunction after MI. miR-130a plays a critical role in attenuation of cardiac dysfunction and remodeling after MI. The mechanisms involve activation of PI3K/Akt signaling via suppression of PTEN expression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a is mediated by suppression of PTEN and activation of PI3K dependent signaling

    Science.gov (United States)

    Lu, Chen; Wang, Xiaohui; Ha, Tuanzhu; Hu, Yuanping; Liu, Li; Zhang, Xia; Yu, Honghui; Miao, Jonathan; Kao, Race; Kalbfleisch, John; Williams, David; Li, Chuanfu

    2015-01-01

    Objective Activation of PI3K/Akt signaling protects the myocardium from ischemia/reperfusion injury. MicroRNAs have been demonstrated to play an important role in the regulation of gene expression at the post-transcriptional level. In this study, we examined whether miR-130a will attenuate cardiac dysfunction and remodeling after myocardial infarction (MI) via PI3K/Akt dependent mechanism. Approaches and Results To determine the role of miR-130a in the proliferation and migration of endothelial cells, HUVECs were transfected with miR-130a mimics before the cells were subjected to scratch-induced wound injury. Transfection of miR-130a mimics stimulated the migration of endothelial cells into the wound area and increased phosphor-Akt levels. To examine the effect of miR-130a on cardiac dysfunction and remodeling after MI, Lentivirus expressing miR-130a (LmiR-130a) was delivered into mouse hearts seven days before the mice were subjected to MI. Cardiac function was assessed by echocardiography before and for up to 21 days after MI. Ejection fraction (EF%) and fractional shortening (FS%) in the LmiR-130a transfected MI hearts were significantly greater than in LmiR-control and untransfected control MI groups. LmiR-130a transfection increased capillary number and VEGF expression, and decreased collagen deposition in the infarcted myocardium. Importantly, LmiR-130a transfection significantly suppressed PTEN expression and increased the levels of phosphorylated Akt in the myocardium. However, treatment of LmiR-130a-transfected mice with LY294002, a PI3K inhibitor, completely abolished miR-130a-induced attenuation of cardiac dysfunction after MI. Conclusions miR-130a plays a critical role in attenuation of cardiac dysfunction and remodeling after MI. The mechanisms involve activation of PI3K/Akt signaling via suppression of PTEN expression. PMID:26458524

  16. Activation of the Nkx2.5–Calr–p53 signaling pathway by hyperglycemia induces cardiac remodeling and dysfunction in adult zebrafish

    Directory of Open Access Journals (Sweden)

    Yanyi Sun

    2017-10-01

    Full Text Available Hyperglycemia is an independent risk factor for diabetic cardiomyopathy in humans; however, the underlying mechanisms have not been thoroughly elucidated. Zebrafish (Danio rerio was used in this study as a novel vertebrate model to explore the signaling pathways of human adult cardiomyopathy. Hyperglycemia was induced by alternately immersing adult zebrafish in a glucose solution or water. The hyperglycemic fish gradually exhibited some hallmarks of cardiomyopathy such as myocardial hypertrophy and apoptosis, myofibril loss, fetal gene reactivation, and severe arrhythmia. Echocardiography of the glucose-treated fish demonstrated diastolic dysfunction at an early stage and systolic dysfunction at a later stage, consistent with what is observed in diabetic patients. Enlarged hearts with decreased myocardial density, accompanied by decompensated cardiac function, indicated that apoptosis was critical in the pathological process. Significant upregulation of the expression of Nkx2.5 and its downstream targets calreticulin (Calr and p53 was noted in the glucose-treated fish. High-glucose stimulation in vitro evoked marked apoptosis of primary cardiomyocytes, which was rescued by the p53 inhibitor pifithrin-μ. In vitro experiments were performed using compound treatment and genetically via cell infection. Genetically, knockout of Nkx2.5 induced decreased expression of Nkx2.5, Calr and p53. Upregulation of Calr resulted in increased p53 expression, whereas the level of Nkx2.5 remained unchanged. An adult zebrafish model of hyperglycemia-induced cardiomyopathy was successfully established. Hyperglycemia-induced myocardial apoptosis was mediated, at least in part, by activation of the Nkx2.5–Calr–p53 pathway in vivo, resulting in cardiac dysfunction and hyperglycemia-induced cardiomyopathy.

  17. Cardiac structure and function, remodeling, and clinical outcomes among patients with diabetes after myocardial infarction complicated by left ventricular systolic dysfunction, heart failure, or both

    DEFF Research Database (Denmark)

    Shah, Amil M; Hung, Chung-Lieh; Shin, Sung Hee

    2011-01-01

    The mechanisms responsible for the increased risk of heart failure (HF) post-myocardial infarction (MI) may differ between patients with versus without diabetes. We hypothesized that after high-risk MI, patients with diabetes would demonstrate patterns of remodeling that are suggestive of reduced...

  18. Identification of a core set of genes that signifies pathways underlying cardiac hypertrophy

    DEFF Research Database (Denmark)

    Strom, C.C.; Kruhoffer, M.; Knudsen, S.

    2004-01-01

    Although the molecular signals underlying cardiac hypertrophy have been the subject of intense investigation, the extent of common and distinct gene regulation between different forms of cardiac hypertrophy remains unclear. We hypothesized that a general and comparative analysis of hypertrophic...... gene expression, using microarray technology in multiple models of cardiac hypertrophy, including aortic banding, myocardial infarction, an arteriovenous shunt and pharmacologically induced hypertrophy, would uncover networks of conserved hypertrophy-specific genes and identify novel genes involved...... in hypertrophic signalling. From gene expression analyses (8740 probe sets, n = 46) of rat ventricular RNA, we identified a core set of 139 genes with consistent differential expression in all hypertrophy models as compared to their controls, including 78 genes not previously associated with hypertrophy and 61...

  19. A robotic assistant system for cardiac interventions under MRI guidance

    Science.gov (United States)

    Li, Ming; Mazilu, Dumitru; Wood, Bradford J.; Horvath, Keith A.; Kapoor, Ankur

    2010-02-01

    In this paper we present a surgical assistant system for implanting prosthetic aortic valve transapically under MRI guidance, in a beating heart. The system integrates an MR imaging system, a robotic system, as well as user interfaces for a surgeon to plan the procedure and manipulate the robot. A compact robotic delivery module mounted on a robotic arm is used for delivering both balloon-expandable and self-expanding prosthesis. The system provides different user interfaces at different stages of the procedure. A compact fiducial pattern close to the volume of interest is proposed for robot registration. The image processing and the transformation recovery methods using this fiducial in MRI are presented. The registration accuracy obtained by using this compact fiducial is comparable to the larger multi-spherical marker registration method. The registration accuracy using these two methods is less than 0.62+/-0.50 deg (mean +/- std. dev.) and 0.63+/-0.72 deg (mean +/- std. dev.), respectively. We evaluated each of the components and show that they can work together to form a complete system for transapical aortic valve replacement.

  20. Identification of a constitutive law for trabecular bone samples under remodeling in the framework of irreversible thermodynamics

    Science.gov (United States)

    Louna, Zineeddine; Goda, Ibrahim; Ganghoffer, Jean-François

    2018-01-01

    We construct in the present paper constitutive models for bone remodeling based on micromechanical analyses at the scale of a representative unit cell (RUC) including a porous trabecular microstructure. The time evolution of the microstructure is simulated as a surface remodeling process by relating the surface growth remodeling velocity to a surface driving force incorporating a (surface) Eshelby tensor. Adopting the framework of irreversible thermodynamics, a 2D constitutive model based on the setting up of the free energy density and a dissipation potential is identified from FE simulations performed over a unit cell representative of the trabecular architecture obtained from real bone microstructures. The static and evolutive effective properties of bone at the scale of the RUC are obtained by combining a methodology for the evaluation of the average kinematic and static variables over a prototype unit cell and numerical simulations with controlled imposed first gradient rates. The formulated effective growth constitutive law at the scale of the homogenized set of trabeculae within the RUC is of viscoplastic type and relates the average growth strain rate to the homogenized stress tensor. The postulated model includes a power law function of an effective stress chosen to depend on the first and second stress invariants. The model coefficients are calibrated from a set of virtual testing performed over the RUC subjected to a sequence of loadings. Numerical simulations show that overall bone growth does not show any growth kinematic hardening. The obtained results quantify the strength and importance of different types of external loads (uniaxial tension, simple shear, and biaxial loading) on the overall remodeling process and the development of elastic deformations within the RUC.

  1. Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders.

    Science.gov (United States)

    Vogel-Ciernia, Annie; Wood, Marcelo A

    2014-05-01

    Long-term memory formation requires the coordinated regulation of gene expression. Until recently nucleosome remodeling, one of the major epigenetic mechanisms for controlling gene expression, had been largely unexplored in the field of neuroscience. Nucleosome remodeling is carried out by chromatin remodeling complexes (CRCs) that interact with DNA and histones to physically alter chromatin structure and ultimately regulate gene expression. Human exome sequencing and gene wide association studies have linked mutations in CRC subunits to intellectual disability disorders, autism spectrum disorder and schizophrenia. However, how mutations in CRC subunits were related to human cognitive disorders was unknown. There appears to be both developmental and adult specific roles for the neuron specific CRC nBAF (neuronal Brg1/hBrm Associated Factor). nBAF regulates gene expression required for dendritic arborization during development, and in the adult, contributes to long-term potentiation, a form of synaptic plasticity, and long-term memory. We propose that the nBAF complex is a novel epigenetic mechanism for regulating transcription required for long-lasting forms of synaptic plasticity and memory processes and that impaired nBAF function may result in human cognitive disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Pregnancy-induced remodeling of heart valves.

    Science.gov (United States)

    Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M

    2015-11-01

    Recent studies have demonstrated remodeling of aortic and mitral valves leaflets under the volume loading and cardiac expansion of pregnancy. Those valves' leaflets enlarge with altered collagen fiber architecture, content, and cross-linking and biphasic changes (decreases, then increases) in extensibility during gestation. This study extends our analyses to right-sided valves, with additional compositional measurements for all valves. Valve leaflets were harvested from nonpregnant heifers and pregnant cows. Leaflet structure was characterized by leaflet dimensions, and ECM composition was determined using standard biochemical assays. Histological studies assessed changes in cellular and ECM components. Leaflet mechanical properties were assessed using equibiaxial mechanical testing. Collagen thermal stability and cross-linking were assessed using denaturation and hydrothermal isometric tension tests. Pulmonary and tricuspid leaflet areas increased during pregnancy by 35 and 55%, respectively. Leaflet thickness increased by 20% only in the pulmonary valve and largely in the fibrosa (30% thickening). Collagen crimp length was reduced in both the tricuspid (61%) and pulmonary (42%) valves, with loss of crimped area in the pulmonary valve. Thermomechanics showed decreased collagen thermal stability with surprisingly maintained cross-link maturity. The pulmonary leaflet exhibited the biphasic change in extensibility seen in left side valves, whereas the tricuspid leaflet mechanics remained largely unchanged throughout pregnancy. The tricuspid valve exhibits a remodeling response during pregnancy that is significantly diminished from the other three valves. All valves of the heart remodel in pregnancy in a manner distinct from cardiac pathology, with much similarity valve to valve, but with interesting valve-specific responses in the aortic and tricuspid valves. Copyright © 2015 the American Physiological Society.

  3. Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling

    Directory of Open Access Journals (Sweden)

    Dai Qiuxia

    2011-05-01

    Full Text Available Abstract Background Progressive remodeling of the left ventricle (LV following myocardial infarction (MI can lead to congestive heart failure, but the underlying initiation factors remain poorly defined. The objective of this study, accordingly, was to determine the key factors and elucidate the regulatory mechanisms of LV remodeling using integrated computational and experimental approaches. Results By examining the extracellular matrix (ECM gene expression and plasma analyte levels in C57/BL6J mice LV post-MI and ECM gene responses to transforming growth factor (TGF-β1 in cultured cardiac fibroblasts, we found that key factors in LV remodeling included macrophages, fibroblasts, transforming growth factor-β1, matrix metalloproteinase-9 (MMP-9, and specific collagen subtypes. We established a mathematical model to study LV remodeling post-MI by quantifying the dynamic balance between ECM construction and destruction. The mathematical model incorporated the key factors and demonstrated that TGF-β1 stimuli and MMP-9 interventions with different strengths and intervention times lead to different LV remodeling outcomes. The predictions of the mathematical model fell within the range of experimental measurements for these interventions, providing validation for the model. Conclusions In conclusion, our results demonstrated that the balance between ECM synthesis and degradation, controlled by interactions of specific key factors, determines the LV remodeling outcomes. Our mathematical model, based on the balance between ECM construction and destruction, provides a useful tool for studying the regulatory mechanisms and for predicting LV remodeling outcomes.

  4. Maprotiline treatment differentially influences cardiac β-adrenoreceptors expression under normal and stress conditions

    Directory of Open Access Journals (Sweden)

    Natasa Spasojevic

    2012-12-01

    Full Text Available Alterations in cardiac function were observed in antidepressants treated patients and published in several clinical reports. These detected changes could be either a consequence of the treatment or of depression itself, which has already been proved to be a risk factor in heart diseases. In order to determine a possible influence of chronic treatment with norepinephrinergic reuptake inhibitor, maprotiline, on the heart, we investigated gene expression of cardiac β-adrenoceptors both in controls and in animals with signs of depression. The rats were divided into two groups, unstressed controls and those exposed to chronic unpredictable mild stress (CUMS. The groups were further divided into two subgroups, one receiving daily intraperitoneal injections of vehicle (sterile water and another one maprotiline (10 mg/kg for four weeks. Tissue samples were collected after the last application. Gene expression of cardiac β1- and β2-adrenoceptor was determined using Real-time RT-PCR analysis. Our results show that in control animals expression of both adrenoreceptors was decreased in the right atria after 4 weeks of maprotiline application. Contrary, the same treatment led to a significant increase in expression of cardiac β1-adrenoceptor in the stressed rats, with no change in the characteristics of β2-adrenoceptor. Our findings might reflect the that molecular mechanisms are underlying factors involved in the development of cardiovascular diseases linked with antidepressant treatment.

  5. Working Memory Load Under Anxiety: Quadratic Relations to Cardiac Vagal Control and Inhibition of Distractor Interference

    OpenAIRE

    Spangler, Derek P

    2016-01-01

    Anxiety is marked by impaired inhibition of distraction (Eysenck et al., 2007). It is unclear whether these impairments are reduced or exacerbated when loading working memory (WM) with non-affective information. Cardiac vagal control has been related to emotion regulation and may serve as a proxy for load-related inhibition under anxiety (Thayer and Lane, 2009). The present study examined whether: (1) the enhancing and impairing effects of load on inhibition exist together in a nonlinear func...

  6. The association between biventricular pacing and cardiac resynchronization therapy-defibrillator efficacy when compared with implantable cardioverter defibrillator on outcomes and reverse remodelling

    DEFF Research Database (Denmark)

    Ruwald, Anne-Christine; Kutyifa, Valentina; Ruwald, Martin H

    2015-01-01

    AIMS: Previous studies on biventricular (BIV) pacing and cardiac resynchronization therapy-defibrillator (CRT-D) efficacy have used arbitrarily chosen BIV pacing percentages, and no study has employed implantable cardioverter defibrillator (ICD) patients as a control group. METHODS AND RESULTS...

  7. Immediate and Midterm Cardiac Remodeling After Surgical Pulmonary Valve Replacement in Adults With Repaired Tetralogy of Fallot: A Prospective Cardiovascular Magnetic Resonance and Clinical Study.

    Science.gov (United States)

    Heng, Ee Ling; Gatzoulis, Michael A; Uebing, Anselm; Sethia, Babulal; Uemura, Hideki; Smith, Gillian C; Diller, Gerhard-Paul; McCarthy, Karen P; Ho, Siew Yen; Li, Wei; Wright, Piers; Spadotto, Veronica; Kilner, Philip J; Oldershaw, Paul; Pennell, Dudley J; Shore, Darryl F; Babu-Narayan, Sonya V

    2017-10-31

    Pulmonary valve replacement (PVR) in patients with repaired tetralogy of Fallot provides symptomatic benefit and right ventricular (RV) volume reduction. However, data on the rate of ventricular structural and functional adaptation are scarce. We aimed to assess immediate and midterm post-PVR changes and predictors of reverse remoeling. Fifty-seven patients with repaired tetralogy of Fallot (age ≥16 y; mean age, 35.8±10.1 y; 38 male) undergoing PVR were prospectively recruited for cardiovascular magnetic resonance performed before PVR (pPVR), immediately after PVR (median, 6 d), and midterm after PVR (mPVR; median, 3 y). There were immediate and midterm reductions in indexed RV end-diastolic volumes and RV end-systolic volumes (RVESVi) (indexed RV end-diastolic volume pPVR versus immediately after PVR versus mPVR, 156.1±41.9 versus 104.9±28.4 versus 104.2±34.4 mL/m 2 ; RVESVi pPVR versus immediately after PVR versus mPVR, 74.9±26.2 versus 57.4±22.7 versus 50.5±21.7 mL/m 2 ; P <0.01). Normal postoperative diastolic and systolic RV volumes (the primary end point) achieved in 70% of patients were predicted by a preoperative indexed RV end-diastolic volume ≤158 mL/m 2 and RVESVi ≤82 mL/m 2 . RVESVi showed a progressive decrease from baseline to immediate to midterm follow-up, indicating ongoing intrinsic RV functional improvement after PVR. Left ventricular ejection fraction improved (pPVR versus mPVR, 59.4±7.6% versus 61.9±6.8%; P <0.01), and right atrial reverse remodeling occurred (pPVR versus mPVR, 15.2±3.4 versus 13.8±3.6 cm 2 /m 2 ; P <0.01). Larger preoperative RV outflow tract scar was associated with a smaller improvement in post-PVR RV/left ventricular ejection fraction. RV ejection fraction and peak oxygen uptake predicted mortality ( P =0.03) over a median of 9.5 years of follow-up. Significant right heart structural reverse remodeling takes place immediately after PVR, followed by a continuing process of further biological remodeling

  8. Serca2a and Na+/Ca2+ exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid

    International Nuclear Information System (INIS)

    Nascimento, Andrews Marques do; Lima, Ewelyne Miranda de; Brasil, Girlandia Alexandre; Caliman, Izabela Facco; Silva, Josiane Fernandes da; Lemos, Virgínia Soares; Andrade, Tadeu Uggere de; Bissoli, Nazaré Souza

    2016-01-01

    Anabolic-androgenic steroids are misused, including by women, but little is known about the cardiovascular effects of these drugs on women. Aim: To evaluated the effects of nandrolone decanoate (ND) and resistive physical exercise on cardiac contractility in young female rats. Main methods: Female Wistar rats were separated into 4 groups: C (untrained animals); E (animals were submitted to resistance exercise by jumping in water 5 times per week); ND (animals were treated with ND, 20 mg/kg/week for 4 weeks); and NDE (trained and treated). The haemodynamic parameters (+ dP/dt max , − dP/dt min and Tau) were assessed in the left ventricle. The heart was collected for histological analyses and collagen deposition. The gastrocnemius muscle was weighed, and hypertrophy was assessed by the ratio of their weights to gastrocnemius/tibia length. The expression of calcium handling proteins was measured by western blot analysis. Results: ND treatment and physical exercise increased cardiac contractility and relaxation. In addition, ND promoted increases in phospholamban phosphorylated (p-PLB) and isoforms of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, while resistance exercise increased the phosphorylation of PLB and expression of Na + /Ca 2+ exchangers (NCX). Cardiac hypertrophy and collagen deposition were observed after ND treatment. Conclusion: Regulatory components of cytosolic calcium, such as SERCA2a and p-PLB, play important roles in modulating the contractility and relaxation effects of ND in females. - Highlights: • ND and resistive exercise enhanced the cardiac function and increased expression of cytosolic calcium regulatory components.

  9. Serca2a and Na(+)/Ca(2+) exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid.

    Science.gov (United States)

    Nascimento, Andrews Marques do; Lima, Ewelyne Miranda de; Brasil, Girlandia Alexandre; Caliman, Izabela Facco; Silva, Josiane Fernandes da; Lemos, Virgínia Soares; Andrade, Tadeu Uggere de; Bissoli, Nazaré Souza

    2016-06-15

    Anabolic-androgenic steroids are misused, including by women, but little is known about the cardiovascular effects of these drugs on women. To evaluated the effects of nandrolone decanoate (ND) and resistive physical exercise on cardiac contractility in young female rats. Female Wistar rats were separated into 4 groups: C (untrained animals); E (animals were submitted to resistance exercise by jumping in water 5 times per week); ND (animals were treated with ND, 20mg/kg/week for 4weeks); and NDE (trained and treated). The haemodynamic parameters (+dP/dtmax, -dP/dtmin and Tau) were assessed in the left ventricle. The heart was collected for histological analyses and collagen deposition. The gastrocnemius muscle was weighed, and hypertrophy was assessed by the ratio of their weights to gastrocnemius/tibia length. The expression of calcium handling proteins was measured by western blot analysis. ND treatment and physical exercise increased cardiac contractility and relaxation. In addition, ND promoted increases in phospholamban phosphorylated (p-PLB) and isoforms of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, while resistance exercise increased the phosphorylation of PLB and expression of Na(+)/Ca(2+) exchangers (NCX). Cardiac hypertrophy and collagen deposition were observed after ND treatment. Regulatory components of cytosolic calcium, such as SERCA2a and p-PLB, play important roles in modulating the contractility and relaxation effects of ND in females. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Integrated Mechanisms of CaMKII-dependent ventricular remodeling

    Directory of Open Access Journals (Sweden)

    Michael M Kreusser

    2014-03-01

    Full Text Available CaMKII has been shown to be activated during different cardiac pathological processes, and CaMKII-dependent mechanisms contribute to pathological cardiac remodeling, cardiac arrhythmias and contractile dysfunction during heart failure. Activation of CaMKII during cardiac stress results in a broad number of biological effects such as, on the one hand, acute effects due to phosphorylation of distinct cellular proteins as ion channels and calcium handling proteins and, on the other hand, integrative mechanisms by changing gene expression. This review focuses on transcriptional and epigenetic effects of CaMKII activation during chronic cardiac remodeling. Multiple mechanisms have been described how CaMKII mediates changes in cardiac gene expression. CaMKII has been shown to directly phosphorylate components of the cardiac gene regulation machinery. CaMKII phosphorylates several transcription factors such as CREB that induces the activation of specific gene programs. CaMKII activates transcriptional regulators also indirectly by phosphorylating histone deacetylases, especially HDAC4, which in turn inhibits transcription factors that drive cardiac hypertrophy, fibrosis and dysfunction. Recent studies demonstrate that CaMKII also phosphorylate directly histones, which may contribute to changes in gene expression. These findings of CaMKII-dependent gene regulation during cardiac remodeling processes suggest novel strategies for CaMKII-dependent transcriptional or epigenetic therapies to control cardiac gene expression and function. Manipulation of CaMKII-dependent signaling pathways in the settings of pathological cardiac growth, remodeling, and heart failure represents an auspicious therapeutic approach.

  11. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.

    Science.gov (United States)

    de Oliveira Sá, Guilherme; Dos Santos Neves, Vívian; de Oliveira Fraga, Shyrlei R; Souza-Mello, Vanessa; Barbosa-da-Silva, Sandra

    2017-11-15

    HIIT (high-intensity interval training) has the potential to reduce cardiometabolic risk factors, but the effects on cardiac remodeling and local RAS (renin-angiotensin system) in mice fed high-fat or high-fructose diets still need to be fully addressed. Sixty male C57BL/6 mice (12weeks old) were randomly divided into three groups, control (C), High-fat (HF), or High-fructose diet (HRU) and were monitored for eight weeks before being submitted to the HIIT. Each group was randomly assigned to 2 subgroups, one subgroup was started on a 12-week HIIT protocol (T=trained group), while the other subgroup remained non-exercised (NT=not-trained group). HIIT reduced BM and systolic blood pressure in high-fat groups, while enhanced insulin sensitivity after high-fat or high-fructose intake. Moreover, HIIT reduced left ventricular hypertrophy in HF-T and HFRU-T. Notably, HIIT modulated key factors in the local left ventricular renin-angiotensin-system (RAS): reduced protein expression of renin, ACE (Angiotensin-converting enzyme), and (Angiotensin type 2 receptor) AT2R in HF-T and HFRU-T groups but reduced (Angiotensin type 1 receptor) AT1R protein expression only in the high-fat trained group. HIIT modulated ACE2/Ang (1-7)/Mas receptor axis. ACE2 mRNA gene expression was enhanced in HF-T and HFRU-T groups, complying with elevated Mas (Mas proto-oncogene, G protein-coupled receptor) receptor mRNA gene expression after HIIT. This study shows the effectiveness of HIIT sessions in producing improvements in insulin sensitivity and mitigating LV hypertrophy, though hypertension was controlled only in the high-fat-fed submitted to HIIT protocol. Local RAS system in the heart mediates these findings and receptor MAS seems to play a pivotal role when it comes to the amelioration of cardiac structural and functional remodeling due to HIIT. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Medical attention proposal for patients under the iodo therapy in cardiac arrest cases

    International Nuclear Information System (INIS)

    Pinto, A.L.; Bacelar, A.; Campomar, A.; Fialkowski, S.; Zaluski, M.A.; Lucena, A.F.

    1996-01-01

    This research has like aim to present a proposition about how to attend the patients which are under the iodo therapy, and the possibility they can show a cardiac arrest during their hospitalization. The physical medical department with the nurse group and the team of ICU (Intensive Care Unit) looked for to establish basic norms of radiological protection in order to avoid the radiation and contamination of all workers involved with one patient, without changing the routine of attendance service. We analyzed all rules of service including the attendance the hospital room and mainly if it is necessary to lead the patient to the ICU. (authors). 4 refs

  13. Erythropoietin prevention trial of coronary restenosis and cardiac remodeling after ST-elevated acute myocardial infarction (EPOC-AMI): a pilot, randomized, placebo-controlled study.

    Science.gov (United States)

    Taniguchi, Norimasa; Nakamura, Takeshi; Sawada, Takahisa; Matsubara, Kinya; Furukawa, Keizo; Hadase, Mitsuyoshi; Nakahara, Yoshifumi; Nakamura, Takashi; Matsubara, Hiroaki

    2010-11-01

    Erythropoietin (EPO) enhances re-endothelialization and anti-apoptotic action. Larger clinical studies to examine the effects of high-dose EPO are in progress in patients with acute myocardial infarction (AMI). The aim of this multi-center pilot study was to investigate the effect of `low-dose EPO' (6,000 IU during percutaneous coronary intervention (PCI), 24 h and 48 h) in 35 patients with a first ST-elevated AMI undergoing PCI who was randomly assigned to EPO or placebo (saline) treatment. Neointimal volume, cardiac function and infarct size were examined in the acute phase and 6 months later (ClinicalTrials.gov identifier: NCT00423020). No significant regression in in-stent neointimal volume was observed, whereas left ventricular (LV) ejection fraction was significantly improved (49.2% to 55.7%, P=0.003) and LV end-systolic volume was decreased in the EPO group (47.7 ml to 39.0 ml, P=0.036). LV end-diastolic volume tended to be reduced from 90.2% to 84.5% (P=0.159), whereas in the control group it was inversely increased (91.7% to 93.7%, P=0.385). Infarction sizes were significantly reduced by 38.5% (P=0.003) but not in the control group (23.7%, P=0.051). Hemoglobin, peak creatine kinase values, and CD34(+)/CD133(+)/CD45(dim) endothelial progenitors showed no significant changes. No adverse events were observed during study periods. This is a first study demonstrating that short-term `low-dose' EPO to PCI-treated AMI patients did not prevent neointimal hyperplasia but rather improved cardiac function and infarct size without any clinical adverse effects.

  14. Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications.

    Science.gov (United States)

    Nánási, Péter P; Magyar, János; Varró, András; Ördög, Balázs

    2017-10-01

    Beat-to-beat variability of cardiac action potential duration (short-term variability, SV) is a common feature of various cardiac preparations, including the human heart. Although it is believed to be one of the best arrhythmia predictors, the underlying mechanisms are not fully understood at present. The magnitude of SV is basically determined by the intensity of cell-to-cell coupling in multicellular preparations and by the duration of the action potential (APD). To compensate for the APD-dependent nature of SV, the concept of relative SV (RSV) has been introduced by normalizing the changes of SV to the concomitant changes in APD. RSV is reduced by I Ca , I Kr , and I Ks while increased by I Na , suggesting that ion currents involved in the negative feedback regulation of APD tend to keep RSV at a low level. RSV is also influenced by intracellular calcium concentration and tissue redox potential. The clinical implications of APD variability is discussed in detail.

  15. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    . The underlying posttranscriptional and posttranslational remodeling of the individual K(+) channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry......About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  16. [The reactants of acute phase of inflammation and anti-inflammatory cytokines under various complications of cardiac infarction].

    Science.gov (United States)

    Zorina, V N; Belokoneva, K P; Bichan, N A; Zorina, R M; Iankin, M Iu; Zorin, N A

    2012-01-01

    The article presents the results of analysis of blood serum from 60 patients (aged 58.9 +/- 1.5 years) with Q-genous complicated and non-complicated cardiac infarction. The study evaluated the content of various proteins of acute phase (alpha-2-macrogloblin, alpha-1-antitripsin. lactofferin) and cytokines inducing their synthesis (IL-6, IL-1beta, L-8). The examinations carried out on 1st, 7th and 14th day of development of cardiac infarction. It is demonstrated that under cardiac infarction complicated by cardiogenic shock on first day of diseases high levels of lactoferrin and lower levels of macroglobulin are detected in blood serum. On the 1-7th day of disease the high levels of lactofferin on the background of invariable concentration of macroglobulin accompany the edema and congestive processes in lungs under cardiac infarction. On the 1-7th day the high levels of lL-6 and IL-8 were detected under large-focal cardiac infarction independently of presence/absence of complications.

  17. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities.

    Science.gov (United States)

    Gajarsa, Jason J; Kloner, Robert A

    2011-01-01

    As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed "remodeling." This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin-angiotensin-aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.

  18. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    DEFF Research Database (Denmark)

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T

    2015-01-01

    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions...

  19. Cardiac lineage protein-1 (CLP-1) regulates cardiac remodeling via transcriptional modulation of diverse hypertrophic and fibrotic responses and angiotensin II-transforming growth factor β (TGF-β1) signaling axis.

    Science.gov (United States)

    Mascareno, Eduardo; Galatioto, Josephine; Rozenberg, Inna; Salciccioli, Louis; Kamran, Haroon; Lazar, Jason M; Liu, Fang; Pedrazzini, Thierry; Siddiqui, M A Q

    2012-04-13

    It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.

  20. Cardiac Lineage Protein-1 (CLP-1) Regulates Cardiac Remodeling via Transcriptional Modulation of Diverse Hypertrophic and Fibrotic Responses and Angiotensin II-transforming Growth Factor β (TGF-β1) Signaling Axis*

    Science.gov (United States)

    Mascareno, Eduardo; Galatioto, Josephine; Rozenberg, Inna; Salciccioli, Louis; Kamran, Haroon; Lazar, Jason M.; Liu, Fang; Pedrazzini, Thierry; Siddiqui, M. A. Q.

    2012-01-01

    It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis. PMID:22308025

  1. Long-term clinical response to cardiac resynchronisation therapy under a multidisciplinary model.

    Science.gov (United States)

    O'Donnell, D; Lin, T; Swale, M; Rae, P; Flannery, D; Srivastava, P M

    2013-11-01

    Cardiac resynchronisation therapy (CRT) is established in the management of cardiac failure in patients with systolic dysfunction. Clinical response to CRT is not uniform, and response has been difficult to predict. Patient management within a high volume, multidisciplinary service focused on optimal delivery of CRT would improve response rates. Four hundred and thirty-five consecutive patients who underwent CRT under a multidisciplinary heart failure service were enrolled prospectively over a 5-year period. Medically optimised, symptomatic patients with an ejection fraction (EF) mechanical activation, and electrically to a site with maximal intrinsic intracardiac electrogram separation. Routine device and clinical follow up, as well as CRT optimisations, were performed at baseline and at 3-monthly intervals. Responders were defined as having an absolute reduction in left ventricular end-diastolic diameter >10% and an improvement in EF >5%. With a mean follow up of 53 ± 11 months, response rate to CRT was 81%. Mean EF improved from 26 ± 10% to 37 ± 11%, and mean left ventricular end-diastolic diameter reduced from 68.6 ± 9.2 mm to 57.8 ± 9.3 mm. Predictors of response were sinus rhythm, high dyssynchrony index and intrinsic electrical dyssynchrony >80 ms. Successful LV lead implantation at initial procedure was achieved in 99.1%, and at latest follow up 94.6% of initial LV leads were still active. CRT undertaken with a unit focus on optimal LV lead positioning and device optimisation, along with a multidisciplinary follow-up model, results in an excellent response rate to CRT. © 2013 The Authors; Internal Medicine Journal © 2013 Royal Australasian College of Physicians.

  2. The impact of vascular endothelial growth factor and basic fibroblast growth factor on cardiac fibroblasts grown under altered gravity conditions

    DEFF Research Database (Denmark)

    Ulbrich, Claudia; Leder, Annekatrin; Pietsch, Jessica

    2010-01-01

    Myocardium is very sensitive to gravitational changes. During a spaceflight cardiovascular atrophy paired with rhythm problems and orthostatic intolerance can occur. The aim of this study was to investigate the impact of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor...... (VEGF) on cardiac fibroblasts (CF) grown under altered gravity conditions....

  3. Maprotiline treatment differentially influences cardiac β-adrenoreceptors expression under normal and stress conditions

    Directory of Open Access Journals (Sweden)

    Natasa Spasojevic

    2012-12-01

    Full Text Available Alterations in cardiac function were observed in antidepressants treated patients and published in several clinical reports. These detected changes could be either a consequence of the treatment or of depression itself, which has already been proved to be a risk factor in heart diseases. In order to determine a possible influence of chronic treatment with norepinephrinergic reuptake inhibitor, maprotiline, on the heart, we investigated gene expression of cardiac β-adrenoceptors both in controls and in animals with signs of depression. The rats were divided into two groups, unstressed controls and those exposed to chronic unpredictable mild stress (CUMS. The groups were further divided into two subgroups, one receiving daily intraperitoneal injections of vehicle (sterile water and another one maprotiline (10 mg/kg for four weeks. Tissue samples were collected after the last application. Gene expression of cardiac β1- and β2-adrenoceptor was determined using Real-time RT-PCR analysis. Our results show that in control animals expression of both adrenoreceptors was decreased in the right atria after 4 weeks of maprotiline application. Contrary, the same treatment led to a significant increase in expression of cardiac β1-adrenoceptor in the stressed rats, with no change in the characteristics of β2-adrenoceptor. Our findings might reflect the that molecular mechanisms are underlying factors involved in the development of cardiovascular diseases linked with antidepressant treatment.Vários relatórios clínicos observaram alterações de funcionamento cardíaco de pacientes depressivos que foram tratados com os antidepressivos. As alterações detectadas podem ser consequência do tratamento ou, por outro lado, da depressão que, como se tem provado, é um fator de risco no caso de doenças cardíacas. De modo a determinar a possível influência de tratamento crônico com o inibidor da recaptação de norepinefrina, maprotilina, no cora

  4. ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress

    Directory of Open Access Journals (Sweden)

    Benoît Castandet

    2016-09-01

    Full Text Available Although RNA-Seq has revolutionized transcript analysis, organellar transcriptomes are rarely assessed even when present in published datasets. Here, we describe the development and application of a rapid and convenient method, ChloroSeq, to delineate qualitative and quantitative features of chloroplast RNA metabolism from strand-specific RNA-Seq datasets, including processing, editing, splicing, and relative transcript abundance. The use of a single experiment to analyze systematically chloroplast transcript maturation and abundance is of particular interest due to frequent pleiotropic effects observed in mutants that affect chloroplast gene expression and/or photosynthesis. To illustrate its utility, ChloroSeq was applied to published RNA-Seq datasets derived from Arabidopsis thaliana grown under control and abiotic stress conditions, where the organellar transcriptome had not been examined. The most appreciable effects were found for heat stress, which induces a global reduction in splicing and editing efficiency, and leads to increased abundance of chloroplast transcripts, including genic, intergenic, and antisense transcripts. Moreover, by concomitantly analyzing nuclear transcripts that encode chloroplast gene expression regulators from the same libraries, we demonstrate the possibility of achieving a holistic understanding of the nucleus-organelle system. ChloroSeq thus represents a unique method for streamlining RNA-Seq data interpretation of the chloroplast transcriptome and its regulators.

  5. The accuracy of PiCCO® in measuring cardiac output in patients under therapeutic hypothermia: Comparison with transthoracic echocardiography.

    Science.gov (United States)

    Souto Moura, T; Aguiar Rosa, S; Germano, N; Cavaco, R; Sequeira, T; Alves, M; Papoila, A L; Bento, L

    2018-03-01

    Invasive cardiac monitoring using thermodilution methods such as PiCCO® is widely used in critically ill patients and provides a wide range of hemodynamic variables, including cardiac output (CO). However, in post-cardiac arrest patients subjected to therapeutic hypothermia, the low body temperature possibly could interfere with the technique. Transthoracic Doppler echocardiography (ECHO) has long proved its accuracy in estimating CO, and is not influenced by temperature changes. To assess the accuracy of PiCCO® in measuring CO in patients under therapeutic hypothermia, compared with ECHO. Thirty paired COECHO/COPiCCO measurements were analyzed in 15 patients subjected to hypothermia after cardiac arrest. Eighteen paired measurements were obtained at under 36°C and 12 at ≥36°C. A value of 0.5l/min was considered the maximum accepted difference between the COECHO and COPiCCO values. Under conditions of normothermia (≥36°C), the mean difference between COECHO and COPiCCO was 0.030 l/min, with limits of agreement (-0.22, 0.28) - all of the measurements differing by less than 0.5 l/min. In situations of hypothermia (<36°C), the mean difference in CO measurements was -0.426 l/min, with limits of agreement (-1.60, 0.75), and only 44% (8/18) of the paired measurements fell within the interval (-0.5, 0.5). The calculated temperature cut-off point maximizing specificity was 35.95°C: above this temperature, specificity was 100%, with a false-positive rate of 0%. The results clearly show clinically relevant discordance between COECHO and COPiCCO at temperatures of <36°C, demonstrating the inaccuracy of PiCCO® for cardiac output measurements in hypothermic patients. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  6. [Cardiac surgery in underlying chronic pulmonary disease. Prognostic implications and efficient preoperative evaluation].

    Science.gov (United States)

    Fistera, D; Steveling, H; Koch, A; Teschler, H

    2014-02-01

    Cardiac surgery in patients with chronic pulmonary diseases carries a high risk of postoperative pulmonary complications (ppc) because both are known to cause ppc. Autopsy studies have revealed ppc as the main cause of mortality in approximately 5-8% of patients after cardiac surgery. Not all pulmonary diseases are high risk comorbidities in cardiac surgery: whereas chronic obstructive pulmonary disease (COPD) and obstructive sleep apnea significantly increase the risk of ppc, a well controlled asthma does not carry an additional risk of ppc. A thorough preoperative risk stratification is crucial for risk estimation and some validated risk calculators, such as the Canet risk score exist. Surprisingly the additional value of pulmonary function testing beyond a thorough patient history and physical examination is low. No validated thresholds exist in pulmonary function testing below which cardiac surgery should be denied if clearly indicated. Perioperative strategies for risk reduction should be applied to all patients whenever possible.

  7. Unanticipated cardiac arrest under spinal anesthesia: An unavoidable mystery with review of current literature

    OpenAIRE

    Kumari, Anita; Gupta, Ruchi; Bajwa, Sukhminder Jit Singh; Singh, Amrinder

    2014-01-01

    Cardiac arrest during anesthesia and perioperative period is a matter of grave concern for any anesthesiologist. But such mishaps have been reported for one reason or the other in the literary sciences. We are reporting the occurrence of unanticipated delayed cardiac arrest following spinal anesthesia in two young and healthy patients. Fortunately, these patients were successfully resuscitated with timely and appropriate cardiopulmonary resuscitative measures. Occurrence of such cases needs t...

  8. Prevalence of nursing diagnosis of decreased cardiac output and the predictive value of defining characteristics in patients under evaluation for heart transplant

    OpenAIRE

    Matos, Lígia Neres; Guimarães, Tereza Cristina Felippe; Brandão, Marcos Antônio Gomes; Santoro, Deyse Conceição

    2012-01-01

    The purposes of the study were to identify the prevalence of defining characteristics (DC) of decreased cardiac output (DCO) in patients with cardiac insufficiency under evaluation for heart transplantation, and to ascertain the likelihood of defining characteristics being predictive factors for the existence of reduction in cardiac output. Data was obtained by retrospective documental analysis of the clinical records of right-sided heart catheterizations in 38 patients between 2004 and 2009....

  9. Oral antidiabetic drugs and cardiac remodeling

    NARCIS (Netherlands)

    Yin, Meimei

    2012-01-01

    Medicijnen tegen diabetes kunnen het risico op hartfalen mogelijk verkleinen, ook bij patiënten die niet aan diabetes lijden. Diabetes en hartfalen zijn veelvoorkomende ziekten die invloed op elkaar hebben. Patiënten met diabetes hebben een hoog risico op hart- en vaatziekten en daaropvolgend

  10. Persistent phenotypic shift in cardiac fibroblasts: impact of transient renin angiotensin system inhibition.

    Science.gov (United States)

    Hale, Taben M

    2016-04-01

    Fibrotic cardiac remodeling ultimately leads to heart failure - a debilitating and costly condition. Select antihypertensive agents have been effective in reducing or slowing the development of cardiac fibrosis. Moreover, some experimental studies have shown that the reduction in fibrosis induced by these agents persists long after stopping treatment. What has not been as well investigated is whether this transient treatment results in a protection against future fibrotic cardiac remodeling. In the present review, previously published studies are re-examined to assess whether the relative percent increase in collagen deposition over an off-treatment period is attenuated, relative to control, following transient antihypertensive treatment in young or adult rats. Present findings suggest that transient inhibition of the renin angiotensin system (RAS) not only produces a sustained reduction in cardiac fibrosis, but also results in a degree of protection against future collagen deposition. In addition, prior transient RAS inhibition appears to alter the cardiac fibroblast phenotype such that these cells show a muted response to myocardial injury - namely reduced proliferation, chemokine release, and collagen deposition. This review puts forth several potential mechanisms underlying this long-term cardiac protection that is afforded by transient RAS inhibition. Specifically, fibroblast phenotypic change, cardiac fibroblast apoptosis, sustained suppression of the RAS, persistent reduction in left ventricular hypertrophy, and persistent reduction in arterial pressure are each discussed. Identifying the mechanisms ultimately responsible for this change in cardiac fibroblast response to injury, hypertension, and aging may reveal novel targets for therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Unanticipated cardiac arrest under spinal anesthesia: An unavoidable mystery with review of current literature.

    Science.gov (United States)

    Kumari, Anita; Gupta, Ruchi; Bajwa, Sukhminder Jit Singh; Singh, Amrinder

    2014-01-01

    Cardiac arrest during anesthesia and perioperative period is a matter of grave concern for any anesthesiologist. But such mishaps have been reported for one reason or the other in the literary sciences. We are reporting the occurrence of unanticipated delayed cardiac arrest following spinal anesthesia in two young and healthy patients. Fortunately, these patients were successfully resuscitated with timely and appropriate cardiopulmonary resuscitative measures. Occurrence of such cases needs timely reporting and exploring all the possible causes of these unusual and possibly avoidable events. The present case reports are an important addition to a series of recently published mishaps that occurred during spinal anesthesia in young and healthy patients.

  12. Left ventricular structure and remodeling in patients with COPD

    Directory of Open Access Journals (Sweden)

    Pelà G

    2016-05-01

    Full Text Available Giovanna Pelà,1 Mauro Li Calzi,1 Silvana Pinelli,1 Roberta Andreoli,1 Nicola Sverzellati,2 Giuseppina Bertorelli,1 Matteo Goldoni,1 Alfredo Chetta11Department of Clinical and Experimental Medicine, 2Department of Surgery, University Medical School, University Hospital Parma, Parma, ItalyBackground: Data on cardiac alterations such as left ventricular (LV hypertrophy, diastolic dysfunction, and lower stroke volume in patients with COPD are discordant. In this study, we investigated whether early structural and functional cardiac changes occur in patients with COPD devoid of manifest cardiovascular disease, and we assessed their associations with clinical and functional features.Methods: Forty-nine patients with COPD belonging to all Global Initiative for Chronic Obstructive Lung Disease (GOLD classes were enrolled and compared with 36 controls. All subjects underwent clinical history assessment, lung function testing, blood pressure measurement, electrocardiography, and conventional and Doppler tissue echocardiography. Patients were also subjected to computed tomography to quantify emphysema score.Results: Patients with COPD had lower LV cavity associated with a marked increase in relative wall thickness (RWT, suggesting concentric remodeling without significant changes in LV mass. RWT was significantly associated with ratio of the forced expiratory volume in 1 second to the forced vital capacity and emphysema score and was the only cardiac parameter that – after multivariate analysis – significantly correlated with COPD conditions in all individuals. Receiver operating characteristic curve analysis showed that RWT (with a cutoff point of 0.42 predicted the severity of COPD with 83% specificity and 56% sensitivity (area under the curve =0.69, 95% confidence interval =0.59–0.81. Patients with COPD showed right ventricular to be functional but no structural changes.Conclusion: Patients with COPD without evident cardiovascular disease

  13. Arrhythmogenic remodeling in murine models of deoxycorticosterone acetate-salt-induced and 5/6-subtotal nephrectomy-salt-induced cardiorenal disease

    NARCIS (Netherlands)

    Fontes, Magda S C; Papazova, Diana A.; Van Koppen, Arianne; De Jong, Sanne; Korte, Sanne M.; Bongartz, Lennart G.; Nguyen, Tri Q.; Bierhuizen, Marti F A; De Boer, Teun P.; van Veen, Toon A. B.; Verhaar, Marianne C.; Joles, Jaap A.; Van Rijen, Harold V M

    2015-01-01

    Background: Renal failure is associated with adverse cardiac remodeling and sudden cardiac death. The mechanism leading to enhanced arrhythmogenicity in the cardiorenal syndrome is unclear. The aim of this study was to characterize electrophysiological and tissue alterations correlated with enhanced

  14. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants.

    Science.gov (United States)

    Fernandes, T; Soci, U P R; Oliveira, E M

    2011-09-01

    Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

  15. Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse

    NARCIS (Netherlands)

    Strijkers, Gustav J.; Bouts, Annemiek; Blankesteijn, W. Matthijs; Peeters, Tim H. J. M.; Vilanova, Anna; van Prooijen, Mischa C.; Sanders, Honorius M. H. F.; Heijman, Edwin; Nicolay, Klaas

    2009-01-01

    The cardiac muscle architecture lies at the basis of the mechanical and electrical properties of the heart, and dynamic alterations in fiber structure are known to be of prime importance in healing and remodeling after myocardial infarction. In this study, left ventricular remodeling was

  16. Transcatheter radiofrequency ablation under the guidance of three-dimensional mapping for the treatment of complex cardiac arrhythmias

    International Nuclear Information System (INIS)

    Hong Lang; Wang Hong; Lai Hengli; Ying Qiulin; Chen Zhangqiang; Lu Linxiang; Qiu Yun; Xiao Chengwei

    2010-01-01

    Objective: To investigate the effectiveness and safety of transcatheter radiofrequency ablation guided by a three-dimensional mapping system (Ensite or Carto) for the treatment of complex cardiac arrhythmias. Methods: A cohort of 123 consecutive hospitalized inpatients during the period from February 2006 to December 2008 were selected for this study. These patients suffered from various arrhythmias, including paroxysmal atrial fibrillation (n = 58), persistent or permanent atrial fibrillation (n = 10), atrial flutter (n = 13), atrial tachycardia (n = 12) and ventricular tachycardia or frequent ventricular premature beats (n = 30). Transcatheter radiofrequency ablation for arrhythmias was performed under the guidance of an EnSite3000 / NavX or Array mapping system in 80 cases, and under the guidance of a CARTO mapping system in the remaining 43 cases. Results: Successful ablation of arrhythmias was obtained by single operation in 106 cases (86.18%), including 59 cases with atrial fibrillation, 11 cases with atrial flutter, 10 cases with atrial tachycardia, and 26 cases with ventricular tachycardia or premature ventricular beat.Ablation procedure was carried out and was successful in 10 cases with a successful rate of 94.31%, including 5 cases with atrial fibrillation, 1 case with recurred atrial flutter, 1 case with recurrent atrial tachycardia, and 3 cases with ventricular tachycardia or premature ventricular beat.After operation, complications occurred in 6 cases, including cardiac tamponade in 4 cases, distal embolism of the left anterior descending coronary artery in 1 case, and pulmonary embolism in 1 case. Conclusion: Three-dimensional mapping system can clearly and stereoscopically display the cardiac structures. Therefore, this technique is of great value in guiding the transcatheter radiofrequency ablation for complex arrhythmias, in improving the success rate of ablation and in increasing the safety of the procedure. (authors)

  17. Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease.

    Science.gov (United States)

    Unudurthi, Sathya D; Greer-Short, Amara; Patel, Nehal; Nassal, Drew; Hund, Thomas J

    2018-01-01

    In the heart, pathways that transduce extracellular environmental cues (e.g. mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level are critical for the organ-level response to chronic biomechanical/neurohumoral stress. Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge on a network of intracellular signaling cascades that control gene expression, protein translation, degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in cell excitability, growth, proliferation, and/or survival. Areas covered: The actin/spectrin cytoskeleton has emerged as having important roles in not only providing structural support for organelle function but also in serving as a signaling 'superhighway,' linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. This review discusses these emerging roles for spectrin and consider implications for heart function and disease. Expert commentary: Despite growth in our understanding of the broader roles for spectrins in cardiac myocytes and other metazoan cells, there remain important unanswered questions, the answers to which may point the way to new therapies for human cardiac disease patients.

  18. [Remodeling of Cardiovascular System: Causes and Consequences].

    Science.gov (United States)

    Lopatina, E V; Kipenko, A V; Penniyaynen, V A; Pasatetckaia, N A; Tsyrline, V A

    2016-01-01

    Literature and our data suggest the regulatory action of a number of biologically active substances (catecholamines, cardiac glycosides, β-blockers, angiotensin-converting-enzyme inhibitor) on the growth and proliferation of heart cells. By using of organotypic tissue culture has proved that the basis of this regulation is the ability of test substances, receptor- or transducer-mediated signaling to modulate the function of Na⁺, K⁺-ATPase. There is a delay in the development of vascular smooth muscle in the late postnatal period in rats with the blockade of the sympathetic nervous system in the prenatal period. The relationship between vascular remodeling and contractile activity is described. It seems that one of the causes of high blood pressure is a remodeling of the cardiovascular system, which precedes the development of hypertension.

  19. Adverse remodeling of the electrophysiological response to ischemia-reperfusion in human heart failure is associated with remodeling of metabolic gene expression.

    Science.gov (United States)

    Ng, Fu Siong; Holzem, Katherine M; Koppel, Aaron C; Janks, Deborah; Gordon, Fabiana; Wit, Andrew L; Peters, Nicholas S; Efimov, Igor R

    2014-10-01

    Ventricular arrhythmias occur more frequently in heart failure during episodes of ischemia-reperfusion although the mechanisms underlying this in humans are unclear. We assessed, in explanted human hearts, the remodeled electrophysiological response to acute ischemia-reperfusion in heart failure and its potential causes, including the remodeling of metabolic gene expression. We optically mapped coronary-perfused left ventricular wedge preparations from 6 human end-stage failing hearts (F) and 6 donor hearts rejected for transplantation (D). Preparations were subjected to 30 minutes of global ischemia, followed by 30 minutes of reperfusion. Failing hearts had exaggerated electrophysiological responses to ischemia-reperfusion, with greater action potential duration shortening (Phearts. Ten genes important in cardiac metabolism were downregulated in heart failure, with SLC27A4 and KCNJ11 significantly downregulated at a false discovery rate of 0%. We demonstrate, for the first time in human hearts, that the electrophysiological response to ischemia-reperfusion in heart failure is accelerated during ischemia with slower recovery after reperfusion. This can enhance spatial conduction and repolarization gradients across the ischemic border and increase arrhythmia susceptibility. This adverse response was associated with downregulation of expression of cardiac metabolic genes. © 2014 American Heart Association, Inc.

  20. Prevalence of nursing diagnosis of decreased cardiac output and the predictive value of defining characteristics in patients under evaluation for heart transplant.

    Science.gov (United States)

    Matos, Lígia Neres; Guimarães, Tereza Cristina Felippe; Brandão, Marcos Antônio Gomes; Santoro, Deyse Conceição

    2012-01-01

    The purposes of the study were to identify the prevalence of defining characteristics (DC) of decreased cardiac output (DCO) in patients with cardiac insufficiency under evaluation for heart transplantation, and to ascertain the likelihood of defining characteristics being predictive factors for the existence of reduction in cardiac output. Data was obtained by retrospective documental analysis of the clinical records of right-sided heart catheterizations in 38 patients between 2004 and 2009. The results showed that 71.1% of the patients had decreased cardiac output (measured by cardiac index). The majority of the NANDA-International defining characteristics for DCO were more frequent in individuals with reduced cardiac index levels. The study emphasizes the odds ratio (OR) for increased Systemic Vascular Resistance of OR=4.533, of the third heart sound with OR=3.429 and the reduced ejection fraction with OR=2.850. By obtaining the predictive values for the defining characteristics the study identifies them as diagnostic indicators of decreased cardiac output.

  1. Cardiovascular Adaptation and Remodeling to Rigorous Athletic Training.

    Science.gov (United States)

    Weiner, Rory B; Baggish, Aaron L

    2015-07-01

    Exercise-induced cardiac remodeling is a complex process by which the cardinal hemodynamic stresses of pressure and volume lead to a host of structural or functional adaptations. In aggregate, the constellation of changes that accompany this process serve to facilitate athletic performance by minimizing the cardiac work inherent in athletic activity. Although several key determinants of athletic cardiac adaptation have been described, observed variability across athlete cohorts remains an incompletely understood area. Ongoing and future work are required to further understand this process and ultimately to determine where the boundary lies between adaptive physiology and maladaptive disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Airway Remodelling in Asthma: From Benchside to Clinical Practice

    Directory of Open Access Journals (Sweden)

    Céline Bergeron

    2010-01-01

    Full Text Available Airway remodelling refers to the structural changes that occur in both large and small airways relevant to miscellaneous diseases including asthma. In asthma, airway structural changes include subepithelial fibrosis, increased smooth muscle mass, gland enlargement, neovascularization and epithelial alterations. Although controversial, airway remodelling is commonly attributed to an underlying chronic inflammatory process. These remodelling changes contribute to thickening of airway walls and, consequently, lead to airway narrowing, bronchial hyper-responsiveness, airway edema and mucous hypersecretion. Airway remodelling is associated with poor clinical outcomes among asthmatic patients. Early diagnosis and prevention of airway remodelling has the potential to decrease disease severity, improve control and prevent disease expression. The relationship between structural changes and clinical and functional abnormalities clearly deserves further investigation. The present review briefly describes the characteristic features of airway remodelling observed in asthma, its clinical consequences and relevance for physicians, and its modulation by therapeutic approaches used in the treatment of asthmatic patients.

  3. Chromatin remodeling in mammalian embryos.

    Science.gov (United States)

    Cabot, Birgit; Cabot, Ryan A

    2018-03-01

    The mammalian embryo undergoes a dramatic amount of epigenetic remodeling during the first week of development. In this review, we discuss several epigenetic changes that happen over the course of cleavage development, focusing on covalent marks (e.g., histone methylation and acetylation) and non-covalent remodeling (chromatin remodeling via remodeling complexes; e.g., SWI/SNF-mediated chromatin remodeling). Comparisons are also drawn between remodeling events that occur in embryos from a variety of mammalian species. © 2018 Society for Reproduction and Fertility.

  4. Cardio-protecteffect of qiliqiangxin capsule on left ventricular remodeling, dysfunction and apoptosis in heart failure rats after chronic myocardial infarction.

    Science.gov (United States)

    Liang, Tuo; Zhang, Yuhui; Yin, Shijie; Gan, Tianyi; An, Tao; Zhang, Rongcheng; Wang, Yunhong; Huang, Yan; Zhou, Qiong; Zhang, Jian

    2016-01-01

    Qiliqiangxin (QL) capsule is a traditional Chinese medicine which has been approved for the treatment of chronic heart failure. Evidences proved that QL capsules further reduced the NT-proBNP levels and improved left ventricular ejection fraction in CHF patients but the evidence supporting its underlying mechanism is still unclear. Myocardial infarction (MI) -Heart failure (HF) Sprague-Dawley ratsmodel and neonatal rat cardiac myocytes (NRCMs) were used. Animals were assigned into 4 groups, normal group (n=6), shame-operation group (n=6), MI rats 4 weeks after left anterior descending coronary artery ligation were randomized into vehicle group (n=8), QL group (n=8). QL significantly attenuated cardiac dysfunction and ventricle remodeling as echocardiography and hemodynamic measurements showed improvement in left ventricular ejection fraction, fractional shortening, ±dp/dt and left ventricular end diastolic and systolic diameters in QL treated group compared with the vehicle group. Improvements ininterstitial fibrosisand mitochondrial structures were also exhibited by Sirius Red staining, RT-PCR and electron microscopy. QL treatment improved apoptosis and VEGF expression in rats marginal infract area. Complementary experiments analyzed the improved apoptosis and up-regulate of VEGF in ischemia-hypoxia cultivated NRCMs is in an Akt dependent manner and can be reversed by Akt inhibitor. QL capsule can improve cardiac dysfunction and ventricular remodeling in MI-HF ratsmodel, this cardiac protective efficacy may be concerned with attenuated apoptosis and cardiac fibrosis. Up-regulated VEGF expression and Akt phosphorylation may take part in this availability.

  5. Adequate performance of cardiopulmonary resuscitation techniques during simulated cardiac arrest over and under protective equipment in football.

    Science.gov (United States)

    Waninger, Kevin N; Goodbred, Andrew; Vanic, Keith; Hauth, John; Onia, Joshua; Stoltzfus, Jill; Melanson, Scott

    2014-07-01

    To investigate (1) cardiopulmonary resuscitation (CPR) adequacy during simulated cardiac arrest of equipped football players and (2) whether protective football equipment impedes CPR performance measures. Exploratory crossover study performed on Laerdal SimMan 3 G interactive manikin simulator. Temple University/St Luke's University Health Network Regional Medical School Simulation Laboratory. Thirty BCLS-certified ATCs and 6 ACLS-certified emergency department technicians. Subjects were given standardized rescuer scenarios to perform three 2-minute sequences of compression-only CPR. Baseline CPR sequences were captured on each subject. Experimental conditions included 2-minute sequences of CPR either over protective football shoulder pads or under unlaced pads. Subjects were instructed to adhere to 2010 American Heart Association guidelines (initiation of compressions alone at 100/min to 51 mm). Dependent variables included average compression depth, average compression rate, percentage of time chest wall recoiled, and percentage of hands-on contact during compressions. Differences between subject groups were not found to be statistically significant, so groups were combined (n = 36) for analysis of CPR compression adequacy. Compression depth was deeper under shoulder pads than over (P = 0.02), with mean depths of 36.50 and 31.50 mm, respectively. No significant difference was found with compression rate or chest wall recoil. Chest compression depth is significantly decreased when performed over shoulder pads, while there is no apparent effect on rate or chest wall recoil. Although the clinical outcomes from our observed 15% difference in compression depth are uncertain, chest compression under the pads significantly increases the depth of compressions and more closely approaches American Heart Association guidelines for chest compression depth in cardiac arrest.

  6. Macro- and micromechanical remodelling in the fish atrium is associated with regulation of collagen 1 alpha 3 chain expression.

    Science.gov (United States)

    Keen, Adam N; Fenna, Andrew J; McConnell, James C; Sherratt, Michael J; Gardner, Peter; Shiels, Holly A

    2018-03-28

    Numerous pathologies lead to remodelling of the mammalian ventricle, often associated with fibrosis. Recent work in fish has shown that fibrotic remodelling of the ventricle is 'reversible', changing seasonally as temperature-induced changes in blood viscosity alter haemodynamic load on the heart. The atrial response to varying haemodynamic load is less understood in mammals and completely unexplored in non-mammalian vertebrates. To investigate atrial remodelling, rainbow trout were chronically cooled (from 10 ± 1 to 5 ± 1 °C) and chronically warmed (from 10 ± 1 to 18 ± 1 °C) for a minimum of 8 weeks. We assessed the functional effects on compliance using ex vivo heart preparations and atomic force microscopy nano-indentation and found chronic cold increased passive stiffness of the whole atrium and micromechanical stiffness of tissue sections. We then performed histological, biochemical and molecular assays to probe the mechanisms underlying functional remodelling of the atrial tissue. We found cooling resulted in collagen deposition which was associated with an upregulation of collagen-promoting genes, including the fish-specific collagen I alpha 3 chain, and a reduction in gelatinase activity of collagen-degrading matrix metalloproteinases (MMPs). Finally, we found that cooling reduced mRNA expression of cardiac growth factors and hypertrophic markers. Following long-term warming, there was an opposing response to that seen with cooling; however, these changes were more moderate. Our findings suggest that chronic cooling causes atrial dilation and increased myocardial stiffness in trout atria analogous to pathological states defined by changes in preload or afterload of the mammalian atria. The reversal of this phenotype following chronic warming is particularly interesting as it suggests that typically pathological features of mammalian atrial remodelling may oscillate seasonally in the fish, revealing a more dynamic and plastic atrial

  7. Defining the Cardiac Fibroblast

    Science.gov (United States)

    Ivey, Malina J.; Tallquist, Michelle D.

    2017-01-01

    Cardiac fibrosis remains an important health concern, but the study of fibroblast biology has been hindered by a lack of effective means for identifying and tracking fibroblasts. Recent advances in fibroblast-specific lineage tags and reporters have permitted a better understanding of these cells. After injury multiple cell types have been implicated as the source for extracellular matrix producing cells, but emerging studies suggest that resident cardiac fibroblasts contribute substantially to the remodeling process. In this review, we discuss recent findings regarding cardiac fibroblast origin and identity. Our understanding of cardiac fibroblast biology and fibrosis is still developing and will expand profoundly in the next few years, with many of the recent findings regarding fibroblast gene expression and behavior laying down the groundwork for interpreting the purpose and utility of these cells before and after injury. PMID:27746422

  8. Mechanisms of Cardiac Regeneration

    Science.gov (United States)

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  9. Reversibility of cardiac fibrosis in mice chronically infected with Trypanosoma cruzi, under specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Sonia G. Andrade

    1991-06-01

    Full Text Available This investigation was performed to verify the effect of specific chemotherapy (Benznidazole or MK-346 on the inflammatory and fibrotic cardiac alterations in mice chronically infected with the strains 21 SF (Type II and Colombian (Type III of Trypanosoma cruzi. To obtain chronically infected mice, two groups of 100 Swiss mice each, were infected with either the 21 SF or the Colombian strain (2x 10 [raised to the power of] 4 and 5x 10 [raised to the power of] 4 blood forms respectively. The rate of morality in the acute phase was of 80% for both groups. Twenty surviving mice chronically infected with the 21 SF strain and 20 with the Colombian strain were then divided in treated and untreated groups. Excluding those that died during the course of treatment, 14 mice chronically infected with the 21 SF strain and 15 with the Colombian strain were evaluated in the present study. Chemotherapy was performed with Benznidazole (N-benzil-2-nitro-1-imidazolacetamide in the dose of 100mg/k.b.w/day, for 60 days, or with the MK-436(3(1-methyl-5 nitroimidazol-2-yl in two daily doses of 250 mg/k.b.w, for 20 days. Parasitological cure tests were performed (xenodiagnosis, haemoculture, subinovulation of the blood into newborn mice, and serological indirect immunofluorescence test. The treated and untreated mice as well as intact controls were killed at different periods after treatment and the heart were submitted to histopathological study with hematoxilineosin and picrosirius staining; ultrastructural study; collagen immunotyping, fibronectin and laminin identification by immunofluorescence tests. Results: the untreated controls either infected with 21 SF or Colombian strain, showed inflammatory and fibrotic alterations that were mild to moderate with the 21 SF strain and intense with the Colombian strain. Redpicrosirius staining showed bundles of collagen in the interstitial space and around cardiac fibers. Increased deposits of mitritial components and

  10. Remodeling Grounded Theory

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser Ph.D., Hon. Ph.D.

    2004-11-01

    Full Text Available This paper outlines my concerns with Qualitative Data Analysis’ (QDAnumerous remodelings of Grounded Theory (GT and the subsequent eroding impact. I cite several examples of the erosion and summarize essential elements of classic GT methodology. It is hoped that the article will clarify my concerns with the continuing enthusiasm but misunderstood embrace of GT by QDA methodologists and serve as a preliminary guide to novice researchers who wish to explore the fundamental principles of GT.

  11. Assisted reproductive technologies are associated with cardiovascular remodeling in utero that persists postnatally.

    Science.gov (United States)

    Valenzuela-Alcaraz, Brenda; Crispi, Fàtima; Bijnens, Bart; Cruz-Lemini, Monica; Creus, Montserrat; Sitges, Marta; Bartrons, Joaquim; Civico, Salvadora; Balasch, Juan; Gratacós, Eduard

    2013-09-24

    Assisted reproductive technologies (ARTs) have been shown to be associated with general vascular dysfunction in late childhood. However, it is unknown whether cardiac remodeling is also present and if these changes already manifest in prenatal life. Our aim was to assess fetal and infant (6 months of age) cardiovascular function in ART pregnancies. This prospective cohort study included 100 fetuses conceived by ART and 100 control pregnancies. ART fetuses showed signs of cardiovascular remodeling, including a more globular heart with thicker myocardial walls, decreased longitudinal function (tricuspid ring displacement in controls: median, 6.5 mm [interquartile range, 6.1-7.1 mm]; tricuspid ring displacement in ART: 5.5 mm [interquartile range, 5.1-6.1]; Pinterquartile range, 1.2-1.5 cm(2)]; atrial area in ART, 1.6 cm(2) [interquartile range, 1.3-1.8 cm(2)]; Pinterquartile range, 67-83 mm Hg]; systolic blood pressure in ART, 83 mm Hg [interquartile range, 75-94 mm Hg]; Pinterquartile range, 0.45-0.56 mm]; aortic intima-media thickness in ART, 0.64 mm [interquartile range, 0.62-0.67]; P<0.001). We could not demonstrate that our findings were directly caused by ART because of their association with various confounding factors, including intrauterine growth restriction or factors related to the cause of infertility. Children conceived by ART manifest cardiac and vascular remodeling that is present in fetal life and persists in postnatal life, suggesting opportunities for early detection and potential intervention. The underlying mechanisms and the effect of potential confounders such as growth restriction or prematurity remain to be elucidated.

  12. [Effects of medicinal plant species on gymnasium pupils' cardiac performance under exam stress].

    Science.gov (United States)

    Gukasian, L E; Gevorkian, E S; Minasian, S M; Daian, A V

    2010-01-01

    The use of antistress tea from the medicinal herb species "Treasure of Nature" as a dietary supplement (DS) by pupils in the exam period causes positive changes in their psychophysiological status, reduces the magnitude of sympathoadrenal system tension, and exerts an optimizing effect on the mechanisms responsible for regulation of the cardiovascular system. In this connection, in addition to other DSs, the above species may be recommended for use as a non-specific adaptogen under stress.

  13. Inflammation and cardiac dysfunction during sepsis, muscular dystrophy, and myocarditis

    Directory of Open Access Journals (Sweden)

    Ying Li

    2013-12-01

    Full Text Available Inflammation plays an important role in cardiac dysfunction under different situations. Acute systemic inflammation occurring in patients with severe burns, trauma, and inflammatory diseases causes cardiac dysfunction, which is one of the leading causes of mortality in these patients. Acute sepsis decreases cardiac contractility and impairs myocardial compliance. Chronic inflammation such as that occurring in Duchenne muscular dystropshy and myocarditis may cause adverse cardiac remodeling including myocyte hypertrophy and death, fibrosis, and altered myocyte function. However, the underlying cellular and molecular mechanisms for inflammatory cardiomyopathy are still controversial probably due to multiple factors involved. Potential mechanisms include the change in circulating blood volume; a direct inhibition of myocyte contractility by cytokines (tumor necrosis factor (TNF-a, interleukin (IL-1b; abnormal nitric oxide and reactive oxygen species (ROS signaling; mitochondrial dysfunction; abnormal excitation-contraction coupling; and reduced calcium sensitivity at the myofibrillar level and blunted b-adrenergic signaling. This review will summarize recent advances in diagnostic technology, mechanisms, and potential therapeutic strategies for inflammation-induced cardiac dysfunction.

  14. Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models

    Directory of Open Access Journals (Sweden)

    Lois Choy

    2016-09-01

    Full Text Available The mouse is the second mammalian species, after the human, in which substantial amount of the genomic information has been analyzed. With advances in transgenic technology, mutagenesis is now much easier to carry out in mice. Consequently, an increasing number of transgenic mouse systems have been generated for the study of cardiac arrhythmias in ion channelopathies and cardiomyopathies. Mouse hearts are also amenable to physical manipulation such as coronary artery ligation and transverse aortic constriction to induce heart failure, radiofrequency ablation of the AV node to model complete AV block and even implantation of a miniature pacemaker to induce cardiac dyssynchrony. Last but not least, pharmacological models, despite being simplistic, have enabled us to understand the physiological mechanisms of arrhythmias and evaluate the anti-arrhythmic properties of experimental agents, such as gap junction modulators, that may be exert therapeutic effects in other cardiac diseases. In this article, we examine these in turn, demonstrating that primary inherited arrhythmic syndromes are now recognized to be more complex than abnormality in a particular ion channel, involving alterations in gene expression and structural remodelling. Conversely, in cardiomyopathies and heart failure, mutations in ion channels and proteins have been identified as underlying causes, and electrophysiological remodelling are recognized pathological features. Transgenic techniques causing mutagenesis in mice are extremely powerful in dissecting the relative contributions of different genes play in producing disease phenotypes. Mouse models can serve as useful systems in which to explore how protein defects contribute to arrhythmias and direct future therapy.

  15. Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts.

    Science.gov (United States)

    Pritchard, Tracy J; Kawase, Yoshiaki; Haghighi, Kobra; Anjak, Ahmad; Cai, Wenfeng; Jiang, Min; Nicolaou, Persoulla; Pylar, George; Karakikes, Ioannis; Rapti, Kleopatra; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G

    2013-01-01

    Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.

  16. Impact of underlying heart disease per se on the utility of preoperative NT-proBNP in adult cardiac surgery

    Science.gov (United States)

    Jiang, Huiqi; Hultkvist, Henrik; Holm, Jonas; Vanky, Farkas; Yang, Yanqi

    2018-01-01

    Objective The primary aim was to investigate the role of underlying heart disease on preoperative NT-proBNP levels in patients admitted for adult cardiac surgery, after adjusting for the known confounders age, gender, obesity and renal function. The second aim was to investigate the predictive value of preoperative NT-proBNP with regard to severe postoperative heart failure (SPHF) and postoperative mortality. Methods A retrospective cohort study based on preoperative NT-proBNP measurements in an unselected cohort including all patients undergoing first time surgery for coronary artery disease (CAD; n = 2226), aortic stenosis (AS; n = 406) or mitral regurgitation (MR; n = 346) from April 2010 to August 2016 in the southeast region of Sweden (n = 2978). Concomitant procedures were not included, with the exception of Maze or tricuspid valve procedures. Results Preoperative NT-proBNP was 1.67 times (ppreoperative NT-proBNP than CAD patients even after adjusting for confounders. The predictive value of NT-proBNP with regard to SPHF was confirmed in CAD and MR patients but was less convincing in AS patients. PMID:29420603

  17. SUMO and Chromatin Remodeling.

    Science.gov (United States)

    Wotton, David; Pemberton, Lucy F; Merrill-Schools, Jacqueline

    2017-01-01

    Many of the known SUMO substrates are nuclear proteins, which regulate gene expression and chromatin dynamics. Sumoylation, in general, appears to correlate with decreased transcriptional activity, and in many cases modulation of the chromatin template is implicated. Sumoylation of the core histones is associated with transcriptional silencing, and transcription factor sumoylation can decrease gene expression by promoting recruitment of chromatin modifying enzymes. Additionally, sumoylation of transcriptional corepressors and chromatin remodeling enzymes can influence interactions with other transcriptional regulators, and alter their enzymatic activity. In some cases, proteins that are components of transcriptional corepressor complexes have been shown to be SUMO E3 ligases, further emphasizing the integration of sumoylation with the regulation of chromatin remodeling. Despite the evidence suggesting that sumoylation is primarily repressive for access to chromatin, recent analyses suggest that protein sumoylation on the chromatin template may play important roles at highly expressed genes. Elucidating the dynamic interplay of sumoylation with other post-translational modifications of histones and chromatin associated proteins will be key to fully understanding the regulation of access to the chromatin template.

  18. Cardiac profile of asymptomatic children with Becker and Duchenne muscular dystrophy under treatment with steroids and with/without perindopril.

    Science.gov (United States)

    Mavrogeni, Sophie; Giannakopoulou, Aikaterini; Papavasiliou, Antigoni; Markousis-Mavrogenis, George; Pons, Roser; Karanasios, Evangelos; Noutsias, Michel; Kolovou, Genovefa; Papadopoulos, George

    2017-07-24

    To evaluate cardiovascular function in boys with Duchenne (DMD) and Becker (BMD) muscular dystrophy, using cardiac magnetic resonance (CMR). This is a single point cross sectional study of twenty-four boys with genetically ascertained DMD, and 10 with BMD, aged 10.5 ± 1.5 years (range 9-13), were prospectively evaluated by a 1.5 T system and compared with those of age-sex matched controls. The DMD patients were divided in 2 groups. Group A (N = 12) were under treatment with both deflazacort and perindopril, while Group B (n = 12) were under treatment with deflazacort, only. BMD patients did not take any medication. Biventricular function was assessed using a standard SSFP sequence. Late gadolinium enhancement (LGE) was assessed from T1 images taken 15 min after injection of 0.2 mg/Kg gadolinium DTPA using a 3D-T1-TFE sequence. Group A and BMDs were asymptomatic with normal ECG, 24 h ECG recording and echocardiogram. Group B were asymptomatic but 6/12 had abnormal ECG and mildly impaired LVEF. Their 24 h ECG recording revealed supraventricular and ventricular extrasystoles (all at 12-13 yrs). LV indices in Group A and BMD did not differ from those of controls. However, LV indices in Group B were significantly impaired compared with controls, Group A and BMDs (p < 0.001). An epicardial LGE area = 3 ± 0.5% of LV mass was identified in the posterolateral wall of LV only in 6/12 patients of Group B, but in not in any BMD or Group A. Children with either BMD or DMD under treatment with both deflazacort and perindopril present preserved LV function and lack of LGE. However, further large scale multicenter studies are warranted to confirm these data, including further CMR mapping approaches.

  19. Akap1 Deficiency Promotes Mitochondrial Aberrations and Exacerbates Cardiac Injury Following Permanent Coronary Ligation via Enhanced Mitophagy and Apoptosis.

    Directory of Open Access Journals (Sweden)

    Gabriele Giacomo Schiattarella

    Full Text Available A-kinase anchoring proteins (AKAPs transmit signals cues from seven-transmembrane receptors to specific sub-cellular locations. Mitochondrial AKAPs encoded by the Akap1 gene have been shown to modulate mitochondrial function and reactive oxygen species (ROS production in the heart. Under conditions of hypoxia, mitochondrial AKAP121 undergoes proteolytic degradation mediated, at least in part, by the E3 ubiquitin ligase Seven In-Absentia Homolog 2 (Siah2. In the present study we hypothesized that Akap1 might be crucial to preserve mitochondrial function and structure, and cardiac responses to myocardial ischemia. To test this, eight-week-old Akap1 knockout mice (Akap1-/-, Siah2 knockout mice (Siah2-/- or their wild-type (wt littermates underwent myocardial infarction (MI by permanent left coronary artery ligation. Age and gender matched mice of either genotype underwent a left thoracotomy without coronary ligation and were used as controls (sham. Twenty-four hours after coronary ligation, Akap1-/- mice displayed larger infarct size compared to Siah2-/- or wt mice. One week after MI, cardiac function and survival were also significantly reduced in Akap1-/- mice, while cardiac fibrosis was significantly increased. Akap1 deletion was associated with remarkable mitochondrial structural abnormalities at electron microscopy, increased ROS production and reduced mitochondrial function after MI. These alterations were associated with enhanced cardiac mitophagy and apoptosis. Autophagy inhibition by 3-methyladenine significantly reduced apoptosis and ameliorated cardiac dysfunction following MI in Akap1-/- mice. These results demonstrate that Akap1 deficiency promotes cardiac mitochondrial aberrations and mitophagy, enhancing infarct size, pathological cardiac remodeling and mortality under ischemic conditions. Thus, mitochondrial AKAPs might represent important players in the development of post-ischemic cardiac remodeling and novel therapeutic targets.

  20. Cardiomyopathy induced by artificial cardiac pacing: myth or reality sustained by evidence?

    Science.gov (United States)

    Ferrari, Andrés Di Leoni; Borges, Anibal Pires; Albuquerque, Luciano Cabral; Sussenbach, Carolina Pelzer; da Rosa, Priscila Raupp; Piantá, Ricardo Medeiros; Wiehe, Mario; Goldani, Marco Antônio

    2014-01-01

    Implantable cardiac pacing systems are a safe and effective treatment for symptomatic irreversible bradycardia. Under the proper indications, cardiac pacing might bring significant clinical benefit. Evidences from literature state that the action of the artificial pacing system, mainly when the ventricular lead is located at the apex of the right ventricle, produces negative effects to cardiac structure (remodeling, dilatation) and function (dissinchrony). Patients with previously compromised left ventricular function would benefit the least with conventional right ventricle apical pacing, and are exposed to the risk of developing higher incidence of morbidity and mortality for heart failure. However, after almost 6 decades of cardiac pacing, just a reduced portion of patients in general would develop these alterations. In this context, there are not completely clear some issues related to cardiac pacing and the development of this cardiomyopathy. Causality relationships among QRS widening with a left bundle branch block morphology, contractility alterations within the left ventricle, and certain substrates or clinical (previous systolic dysfunction, structural heart disease, time from implant) or electrical conditions (QRS duration, percentage of ventricular stimulation) are still subjecte of debate. This review analyses contemporary data regarding this new entity, and discusses alternatives of how to use cardiac pacing in this context, emphasizing cardiac resynchronization therapy. PMID:25372916

  1. No-Regrets Remodeling, 2nd Edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-01

    No-Regrets Remodeling, sponsored by Oak Ridge National Laboratory, is an informative publication that walks homeowners and/or remodelers through various home remodeling projects. In addition to remodeling information, the publication provides instruction on how to incorporate energy efficiency into the remodeling process. The goal of the publication is to improve homeowner satisfaction after completing a remodeling project and to provide the homeowner with a home that saves energy and is comfortable and healthy.

  2. Usefulness of Speckle-Tracking Imaging for Right Ventricular Assessment after Acute Myocardial Infarction: A Magnetic Resonance Imaging/Echocardiographic Comparison within the Relation between Aldosterone and Cardiac Remodeling after Myocardial Infarction Study.

    Science.gov (United States)

    Lemarié, Jérémie; Huttin, Olivier; Girerd, Nicolas; Mandry, Damien; Juillière, Yves; Moulin, Frédéric; Lemoine, Simon; Beaumont, Marine; Marie, Pierre-Yves; Selton-Suty, Christine

    2015-07-01

    Right ventricular (RV) dysfunction after acute myocardial infarction (AMI) is frequent and associated with poor prognosis. The complex anatomy of the right ventricle makes its echocardiographic assessment challenging. Quantification of RV deformation by speckle-tracking echocardiography is a widely available and reproducible technique that readily provides an integrated analysis of all segments of the right ventricle. The aim of this study was to investigate the accuracy of conventional echocardiographic parameters and speckle-tracking echocardiographic strain parameters in assessing RV function after AMI, in comparison with cardiac magnetic resonance imaging (CMR). A total of 135 patients admitted for AMI (73 anterior, 62 inferior) were prospectively studied. Right ventricular function was assessed by echocardiography and CMR within 2 to 4 days of hospital admission. Right ventricular dysfunction was defined as CMR RV ejection fraction myocardial infarctions, the AUROCs for RV GLPSS (0.822) and inferolateral strain (0.877) were greater than that observed for RV fractional area change (0.760) Other conventional echocardiographic parameters performed poorly (all AUROCs echocardiographic parameters. Copyright © 2015 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  3. The Effect of the Thioether-Bridged, Stabilized Angiotensin-(1–7 Analogue Cyclic Ang-(1–7 on Cardiac Remodeling and Endothelial Function in Rats with Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Matej Durik

    2012-01-01

    Full Text Available Modulation of renin-angiotensin system (RAS by angiotensin-(1–7 (Ang-(1–7 is an attractive approach to combat the detrimental consequences of myocardial infarction (MI. However Ang-(1–7 has limited clinical potential due to its unfavorable pharmacokinetic profile. We investigated effects of a stabilized, thioether-bridged analogue of Ang-(1–7 called cyclic Ang-(1–7 in rat model of myocardial infarction. Rats underwent coronary ligation or sham surgery. Two weeks thereafter infusion with 0.24 or 2.4 μg/kg/h cAng-(1–7 or saline was started for 8 weeks. Thereafter, cardiac morphometric and hemodynamic variables as wells as aortic endothelial function were measured. The average infarct size was 13.8% and was not changed by cAng-(1–7 treatment. MI increased heart weight and myocyte size, which was restored by cAng-(1–7 to sham levels. In addition, cAng-(1–7 lowered left ventricular end-diastolic pressure and improved endothelial function. The results suggest that cAng-(1–7 is a promising new agent in treatment of myocardial infarction and warrant further research.

  4. Remodeling in heart failure: from the left ventricle to service delivery.

    Science.gov (United States)

    Japp, Alan G; Pettit, Stephen J

    2013-03-01

    Over the past three decades, advances in our understanding of heart failure pathophysiology have spurred the development of effective therapies for patients with heart failure and led to improved clinical outcomes. Further progress now requires increased provision of existing evidence-based therapies together with continued exploration of underlying pathogenic mechanisms and therapeutic targets. This was reflected at the 2012 Annual Autumn Meeting of the British Society for Heart Failure, attended by over 500 delegates from around the world with strong representation from all heart failure disciplines. The conference included a dedicated session on 'cardiac remodeling in left ventricular systolic dysfunction' as well as presentations on the latest evidence-based therapies in heart failure and aspects of service delivery within the UK.

  5. Myeloperoxidase Mediates Postischemic Arrhythmogenic Ventricular Remodeling.

    Science.gov (United States)

    Mollenhauer, Martin; Friedrichs, Kai; Lange, Max; Gesenberg, Jan; Remane, Lisa; Kerkenpaß, Christina; Krause, Jenny; Schneider, Johanna; Ravekes, Thorben; Maass, Martina; Halbach, Marcel; Peinkofer, Gabriel; Saric, Tomo; Mehrkens, Dennis; Adam, Matti; Deuschl, Florian G; Lau, Denise; Geertz, Birgit; Manchanda, Kashish; Eschenhagen, Thomas; Kubala, Lukas; Rudolph, Tanja K; Wu, Yuping; Tang, W H Wilson; Hazen, Stanley L; Baldus, Stephan; Klinke, Anna; Rudolph, Volker

    2017-06-23

    Ventricular arrhythmias remain the leading cause of death in patients suffering myocardial ischemia. Myeloperoxidase, a heme enzyme released by polymorphonuclear neutrophils, accumulates within ischemic myocardium and has been linked to adverse left ventricular remodeling. To reveal the role of myeloperoxidase for the development of ventricular arrhythmias. In different murine models of myocardial ischemia, myeloperoxidase deficiency profoundly decreased vulnerability for ventricular tachycardia on programmed right ventricular and burst stimulation and spontaneously as assessed by ECG telemetry after isoproterenol injection. Experiments using CD11b/CD18 integrin-deficient (CD11b -/- ) mice and intravenous myeloperoxidase infusion revealed that neutrophil infiltration is a prerequisite for myocardial myeloperoxidase accumulation. Ventricles from myeloperoxidase-deficient (Mpo -/- ) mice showed less pronounced slowing and decreased heterogeneity of electric conduction in the peri-infarct zone than wild-type mice. Expression of the redox-sensitive gap junctional protein Cx43 (Connexin 43) was reduced in the peri-infarct area of wild-type compared with Mpo -/- mice. In isolated wild-type cardiomyocytes, Cx43 protein content decreased on myeloperoxidase/H 2 O 2 incubation. Mapping of induced pluripotent stem cell-derived cardiomyocyte networks and in vivo investigations linked Cx43 breakdown to myeloperoxidase-dependent activation of matrix metalloproteinase 7. Moreover, Mpo -/- mice showed decreased ventricular postischemic fibrosis reflecting reduced accumulation of myofibroblasts. Ex vivo, myeloperoxidase was demonstrated to induce fibroblast-to-myofibroblast transdifferentiation by activation of p38 mitogen-activated protein kinases resulting in upregulated collagen generation. In support of our experimental findings, baseline myeloperoxidase plasma levels were independently associated with a history of ventricular arrhythmias, sudden cardiac death, or implantable

  6. Overexpression of M3 Muscarinic Receptor Suppressed Adverse Electrical Remodeling in Hypertrophic Myocardium Via Increasing Repolarizing K+ Currents

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2017-09-01

    Full Text Available Background/Aims: Cardiac hypertrophy (CH is an adaptive response to diverse cardiovascular conditions, which is accompanied by adverse electrical remodeling manifested as abnormal K+ channel activities. M3 subtype of muscarinic acetylcholine receptor (M3-mAChR is a novel regulator of cardiac electrical activity. In this study we aim to explore if the overexpression of M3-mAChR could attenuate the adverse electrical remodeling in CH and then uncover its underlying electrophysiological mechanisms. Methods: Transgenic mice with M3-mAChR overexpression (M3-TG and wild type (WT mice were subjected to transverse aortic constriction (TAC to induce CH. Myocardial hypertrophy and cardiac function were quantified by the measurement of echocardiography, electrocardiogram, heart weight and tibia length. Whole-cell and signal-cell patch-clamp were employed to record electrophysiological properties by acute isolation of acutely isolated ventricular cardiomyocytes and Western blot was carried out to evaluate the Kir2.1and Kv4.2/4.3 protein levels in left ventricular tissue. Results: Compared with WT group, the elevation of cardiac index, including heart weight/body weight index and heart weight/tibia length index confirmed the myocardial hypertrophic growth induced by TAC. Echocardiography detection revealed that the TAC-treated mice showed an obvious increase in the thickness of left ventricular posterior wall (LVPW and ejection fraction (EF due to compensatory hypertrophy, which attenuated by the overexpression of M3-mAChR. Pressure overload induced a prolongation of QTc interval in WT mice, an effect blunted in M3-TG mice. Furthermore, compared with WT mice, M3-mAChR overexpression in hypertrophic myocardium accelerated cardiac repolarization and shortened action potential duration, and thus correcting the prolongation of QTc interval. Moreover, M3-TG mice have the greater current density of IK1 and Ito in ventricular myocytes after TAC compared with WT

  7. Histamine-2 receptor antagonist famotidine modulates cardiac stem cell characteristics in hypertensive heart disease

    Directory of Open Access Journals (Sweden)

    Sherin Saheera

    2017-10-01

    Full Text Available Background Cardiac stem cells (CSCs play a vital role in cardiac homeostasis. A decrease in the efficiency of cardiac stem cells is speculated in various cardiac abnormalities. The maintenance of a healthy stem cell population is essential for the prevention of adverse cardiac remodeling leading to cardiac failure. Famotidine, a histamine-2 receptor antagonist, is currently used to treat ulcers of the stomach and intestines. In repurposing the use of the drug, reduction of cardiac hypertrophy and improvement in cardiac function of spontaneously hypertensive rats (SHR was reported by our group. Given that stem cells are affected in cardiac pathologies, the effect of histamine-2 receptor antagonism on CSC characteristics was investigated. Methods To examine whether famotidine has a positive effect on CSCs, spontaneously hypertensive rats (SHR treated with the drug were sacrificed; and CSCs isolated from atrial appendages was evaluated. Six-month-old male SHRs were treated with famotidine (30 mg/kg/day for two months. The effect of famotidine treatment on migration, proliferation and survival of CSCs was compared with untreated SHRs and normotensive Wistar rats. Results Functional efficiency of CSCs from SHR was compromised relative to that in Wistar rat. Famotidine increased the migration and proliferation potential, along with retention of stemness of CSCs in treated SHRs. Cellular senescence and oxidative stress were also reduced. The expression of H2R was unaffected by the treatment. Discussion As anticipated, CSCs from SHRs were functionally impaired. Stem cell attributes of famotidine-treated SHRs was comparable to that of Wistar rats. Therefore, in addition to being cardioprotective, the histamine 2 receptor antagonist modulated cardiac stem cells characteristics. Restoration of stem cell efficiency by famotidine is possibly mediated by reduction of oxidative stress as the expression of H2R was unaffected by the treatment. Maintenance of

  8. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses

    International Nuclear Information System (INIS)

    Nan, Changlong; Li, Yuejin; Jean-Charles, Pierre-Yves; Chen, Guozhen; Kreymerman, Alexander; Prentice, Howard; Weissbach, Herbert; Huang, Xupei

    2010-01-01

    Research highlights: → Deficiency of MsrA in the heart renders myocardial cells more sensitive to oxidative stress. → Mitochondrial damage happens in the heart lacking MsrA. → More protein oxidation in myocardial cells lacking MsrA. → MsrA protects the heart against oxidative stress. -- Abstract: Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA -/- ) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA -/- mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2 Hz), is significantly reduced in MsrA -/- cardiac myocytes. MsrA -/- cardiac myocytes also show a significant decrease in contractility after oxidative stress using H 2 O 2 . Corresponding changes in Ca 2+ transients are observed in MsrA -/- cardiomyocytes treated with 2 Hz stimulation or with H 2 O 2 . Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA -/- mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA -/- mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell's capability against stress stimulations resulting in a cellular dysfunction in the heart.

  9. A COMPARATIVE STUDY OF PEDIATRIC CARDIAC CATHETERIZATION PROCEDURE UNDER GENERAL ANESTHESIA WITH OR WITHOUT FEMORAL NERVE BLOCK

    Directory of Open Access Journals (Sweden)

    Jigisha

    2016-02-01

    Full Text Available OBJECTIVE Anesthetic management for interventional cardiac procedures/cardiac catheterization in pediatric patients is challenging. Cardiac anomalies vary from simple to complex congenital cardiac anomalies, shunts may be present at multiple levels and patients may be profoundly cyanotic, may be with ventricular dysfunction. They usually require sedation and analgesia to maintain steady stable state. In adults, such type of procedures can be well managed with local anesthesia. METHODS Fifty patients were included in the study. They were randomly divided into two groups- Group A (n=25 patients received femoral N. block along with IV sedation and analgesia while group B (n=25 patients received only IV sedation and analgesia. Both groups were compared for hemodynamics, pain score and requirement of IV anesthetic agents and any complications if come up. RESULTS Group A patients required IV ketamine 3.24mg/kg (±0.31SD as compared to 5.58mg/kg (±1.6SD in group B, which suggests significantly reduced requirement of IV anesthetic agents in group where femoral nerve block has been given. Hemodynamic parameters remained stable and comparable (no statistically significant variation Pain score was less in group A patients than group B. CONCLUSION It has been observed that Group A patients required less dosages of IV anesthetic agents, with stable hemodynamics and less pain score and sedation score as compared to group B patients.

  10. Matrix Metalloproteinase 9 Secreted by Hypoxia Cardiac Fibroblasts Triggers Cardiac Stem Cell Migration In Vitro

    Directory of Open Access Journals (Sweden)

    Qing Gao

    2015-01-01

    Full Text Available Cessation of blood supply due to myocardial infarction (MI leads to complicated pathological alteration in the affected regions. Cardiac stem cells (CSCs migration plays a major role in promoting recovery of cardiac function and protecting cardiomyocytes in post-MI remodeling. Despite being the most abundant cell type in the mammalian heart, cardiac fibroblasts (CFs were underestimated in the mechanism of CSCs migration. Our objective in this study is therefore to investigate the migration related factors secreted by hypoxia CFs in vitro and the degree that they contribute to CSCs migration. We found that supernatant from hypoxia induced CFs could accelerate CSCs migration. Four migration-related cytokines were reported upregulated both in mRNA and protein levels. Upon adding antagonists of these cytokines, the number of migration cells significantly declined. When the cocktail antagonists of all above four cytokines were added, the migration cells number reduced to the minimum level. Besides, MMP-9 had an important effect on triggering CSCs migration. As shown in our results, MMP-9 induced CSCs migration and the underlying mechanism might involve TNF-α signaling which induced VEGF and MMP-9 expression.

  11. A exposição crônica à fumaça do cigarro resulta em remodelação cardíaca e prejuízo da função ventricular em ratos Chronic cigarette smoke exposure results in cardiac remodeling and impaired ventricular function in rats

    Directory of Open Access Journals (Sweden)

    Édson Castardeli

    2005-04-01

    Full Text Available OBJETIVO: Determinar as alterações cardíacas estruturais e funcionais causadas pela exposição à fumaça do cigarro em ratos. MÉTODOS: Os animais foram aleatoriamente distribuídos em dois grupos: fumante (F, composto por 10 animais, expostos à fumaça do cigarro, na taxa de 40 cigarros/dia e controle (C, constituído por 10 animais não submetidos à exposição. Após 4 meses, os animais foram submetidos a estudo morfológico e funcional por meio do ecocardiograma. As variáveis estudadas foram analisadas pelo teste t ou pelo teste de Mann-Whitney. RESULTADOS: Os ratos fumantes apresentaram maior átrio esquerdo (F=4,2± 0,7mm; C=3,5±0,6mm; pOBJECTIVE: To determine the cardiac structural and functional alterations caused by cigarette smoke exposure in rats. METHODS: The animals were randomly distributed into the following 2 groups: 1 smokers (S, comprising 10 animals exposed to cigarette smoke at a rate of 40 cigarettes/day; and 2 control (C, comprising 10 animals not exposed to cigarette smoke. After 4 months, the animals underwent morphological and functional study with echocardiography. The variables studied were analyzed by use of the t test or the Mann-Whitney test. RESULTS: The smoking rats had a greater left atrium (S=4.2±0.7mm; C=3.5±0.6mm; P<0.05, and greater left ventricular diastolic (S=7.9±0.7mm; C=7.2±0.5mm; P<0.05 and systolic (S=4.1±0.5; C=3.4±0.5; P<0.05 diameters. The left ventricular mass index was greater in the smoking animals (S=1.5mg/kg±0.2; C=1.3mg/kg±0.2; P<0.05, and the ejection fraction (S=0.85±0.03; C=0.89±0.03; P<0.05 and the shortening fraction (S=47.8%±3.7; C=52.7%±4.6; P<0.05 were greater in the control group. No differences were observed in the diastolic transmitral flow variables (E wave, A wave, and E/A ratio. CONCLUSION: Chronic cigarette smoke exposure results in cardiac remodeling with a decrease in ventricular functional capacity.

  12. How to improve the overall quality of cardiac morphometric data.

    Science.gov (United States)

    Gerdes, A Martin

    2015-07-01

    By the mid-1990s, experts realized that drugs leading to improved ventricular remodeling were doing something remarkable in cardiac patients. The "age of cardiac remodeling" had begun. This created an experimental need for high-quality assessment of changes in cardiac tissue composition, including myocyte shape, myocardial fibrosis/collagen, and vascular remodeling. Many working in the field today have little or no training related to recognition of fixation artifacts or common errors associated with quantitative morphology. Unfortunately, such skills had become somewhat of a lost art during the ages of cardiac physiology in the mid-20th century and molecular biology, gaining prominence by the mid-1970s. Consequently, cardiac remodeling studies today are often seriously flawed to the point where data are not reproducible and subsequent researchers may be chasing the molecular basis of a nonexistent or erroneous phenotype. The current unacceptably high incidence of irreproducible data is a serious waste of time and resources as recently noted in comments by the National Institutes of Health director. The goal of this "how to" article is to share some lessons I have learned during nearly 40 years of assessing morphological changes in the heart. It is possible for any laboratory to routinely publish highly reproducible morphological data that stand the test of time and contribute to our fundamental knowledge of cardiac remodeling and the molecular mechanisms that drive it. Copyright © 2015 the American Physiological Society.

  13. Arrhythmogenic and metabolic remodelling of failing human heart.

    Science.gov (United States)

    Gloschat, C R; Koppel, A C; Aras, K K; Brennan, J A; Holzem, K M; Efimov, I R

    2016-07-15

    Heart failure (HF) is a major cause of morbidity and mortality worldwide. The global burden of HF continues to rise, with prevalence rates estimated at 1-2% and incidence approaching 5-10 per 1000 persons annually. The complex pathophysiology of HF impacts virtually all aspects of normal cardiac function - from structure and mechanics to metabolism and electrophysiology - leading to impaired mechanical contraction and sudden cardiac death. Pharmacotherapy and device therapy are the primary methods of treating HF, but neither is able to stop or reverse disease progression. Thus, there is an acute need to translate basic research into improved HF therapy. Animal model investigations are a critical component of HF research. However, the translation from cellular and animal models to the bedside is hampered by significant differences between species and among physiological scales. Our studies over the last 8 years show that hypotheses generated in animal models need to be validated in human in vitro models. Importantly, however, human heart investigations can establish translational platforms for safety and efficacy studies before embarking on costly and risky clinical trials. This review summarizes recent developments in human HF investigations of electrophysiology remodelling, metabolic remodelling, and β-adrenergic remodelling and discusses promising new technologies for HF research. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. Myofibroblasts in diseased hearts: new players in cardiac arrhythmias?

    Science.gov (United States)

    Rohr, Stephan

    2009-06-01

    Cardiac pathologies leading to the development of organ fibrosis typically are associated with the appearance of interstitial myofibroblasts. This cell type plays a central role in excessive extracellular matrix deposition, thereby contributing to arrhythmogenic slow and discontinuous conduction by causing disorganization of the three-dimensional network of electrically coupled cardiomyocytes. Besides this involvement in structural remodeling, myofibroblasts recently have been discovered in-vitro to promote arrhythmogenesis by direct modification of cardiomyocyte electrophysiology following establishment of heterocellular electrical coupling. In particular, myofibroblasts were found to rescue impulse conduction between disjoined cardiac tissues by acting as passive electrical conduits for excitatory current flow. Although, in principle, such recovery of blocked conduction might be beneficial, propagation across myofibroblast conduits is substantially delayed, thereby promoting arrhythmogenic slow and discontinuous conduction. Second, moderately polarized myofibroblasts were found to induce cell density-dependent depolarization of cardiomyocytes, which causes arrhythmogenic slow conduction due to the reduction of fast inward currents. Finally, critical depolarization of cardiomyocytes by myofibroblasts was discovered to lead to the appearance of ectopic activity in a model of the infarct border zone. These findings obtained in vitro suggest that electrotonic interactions following gap junctional coupling between myofibroblasts and cardiomyocytes in structurally remodeled fibrotic hearts might directly initiate the main mechanisms underlying arrhythmogenesis, that is, abnormal automaticity and abnormal impulse conduction. If, in the future, similar arrhythmogenic mechanisms can be shown to be operational in intact hearts, myofibroblasts might emerge as a novel noncardiomyocyte target for antiarrhythmic therapy.

  15. An Experimental Model Using Cultured Cardiac Myocytes for a Study of the Generation of Premature Ventricular Contractions Under Ultrasound Exposure

    Science.gov (United States)

    Kudo, Nobuki; Yamamoto, Masaya

    2011-09-01

    It is known that use of a contrast agents in echocardiography increases the probability of generation of premature ventricular contractions (PVCs). As a basic study to elucidate the mechanisms and to reduce adverse effects, the generation of PVCs was investigated using cultured cardiac myocytes instead of the intact heart in vivo. Cardiac myocytes were isolated from neonatal rats and cultured on a cover slip. The myocyte sample was exposed to pulsed ultrasound with microbubbles adjacent to the myocytes, and generation of PVCs was examined with ultrasound exposure at various delay times after onset of myocyte contraction. The experimental results showed that generation of PVCs had a stable threshold delay time and that PVCs were generated only when myocytes were exposed to ultrasound with delay times longer than the threshold. The results indicate that the model used in this study is useful for revealing the mechanisms by which PVCs are induced by ultrasound exposure.

  16. Characterizing the spectrum of right ventricular remodelling in response to chronic training.

    Science.gov (United States)

    Sitges, Marta; Merino, Beatriz; Butakoff, Constatine; de la Garza, Maria Sanz; Paré, Carles; Montserrat, Silvia; Vidal, Barbara; Azqueta, Manel; Sarquella, Georgia; Gutierrez, Josep Antoni; Canal, Ramon; Brugada, Josep; Bijnens, Bart H

    2017-03-01

    The significance and spectrum of reduced right ventricular (RV) deformation, reported in endurance athletes, is unclear. To comprehensively analyze the cardiac performance at rest of athletes, especially focusing on integrating RV size and deformation to unravel the underlying triggers of this ventricular remodelling. Hundred professional male athletes and 50 sedentary healthy males of similar age were prospectively studied. Conventional echocardiographic parameters of all four chambers were obtained, as well as 2D echo-derived strain (2DSE) in the left (LV) and in the RV free wall with separate additional analysis of the RV basal and apical segments. Left and right-sided dimensions were larger in athletes than in controls, but with a disproportionate RA enlargement. RV global strain was lower in sportsmen (-26.8 ± 2.8% vs -28.5 ± 3.4%, p < 0.001) due to a decrease in the basal segment (-22.8 ± 3.5% vs -25.8 ± 4.0%, p < 0.001) resulting in a marked gradient of deformation from the RV inlet towards the apex. By integrating size, deformation and stroke volume, we observed that the LV working conditions were similar in all sportsmen while a wider variability existed in the RV. Cardiac remodelling in athletes is more pronounced in the right heart cavities with specific regional differences within the right ventricle, but with a wide variability among individuals. The large inter-individual differences, as well as its acute and chronic relevance warrant further investigation.

  17. Prevalence of Cardiac Arrhythmia Under Stress Conditions in Occupational Health Assessments of Young Military Servicemen and Servicewomen.

    Science.gov (United States)

    Sammito, Stefan; Gundlach, Nils; Böckelmann, Irina

    2016-04-01

    In health assessments of young temporary-career volunteers who are up for re-enlistment, cardiac stress tests are mandatory to detect cardiac diseases and to confirm physical fitness. So far, there is no information available regarding the extent to which this time-consuming examination contributes to the diagnosis of pathological cardiac arrhythmia in this young, preselected patient collective. In a retrospective data analysis, health assessments of 1919 temporary-career volunteers conducted between 2007 and 2012 were examined with regard to pathological findings provided by resting electrocardiograms (ECGs) and exercise ECGs. Only five subjects showed signs of heart disease during the resting ECG; none of the exercise ECGs revealed any abnormalities, even after further cardiological examinations. In health assessments of young temporary-career volunteers, the exercise ECG as a mandatory examination should be replaced by the resting ECG. In addition to avoiding unnecessary examinations and associated risks, quite a large number of working years could be saved both for medical personnel and the persons examined. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  18. Bone Remodelling Markers in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Patrice Fardellone

    2014-01-01

    Full Text Available Bone loss in rheumatoid arthritis (RA patients results from chronic inflammation and can lead to osteoporosis and fractures. A few bone remodeling markers have been studied in RA witnessing bone formation (osteocalcin, serum aminoterminal propeptide of type I collagen (PINP, serum carboxyterminal propeptide of type I collagen (ICTP, bone alkaline phosphatase (BAP, osteocalcin (OC, and bone resorption: C-terminal telopeptide of type 1 collagen (I-CTX, N-terminal telopeptide of type 1 collagen (I-NTX, pyridinolines (DPD and PYD, and tartrate-resistant acid phosphatase (TRAP. Bone resorption can be seen either in periarticular bone (demineralization and erosion or in the total skeleton (osteoporosis. Whatever the location, bone resorption results from activation of osteoclasts when the ratio between osteoprotegerin and receptor activator of nuclear factor kappa-B ligand (OPG/RANKL is decreased under influence of various proinflammatory cytokines. Bone remodeling markers also allow physicians to evaluate the effect of drugs used in RA like biologic agents, which reduce inflammation and exert a protecting effect on bone. We will discuss in this review changes in bone markers remodeling in patients with RA treated with biologics.

  19. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  20. Nebivolol reduces cardiac angiotensin II, associated oxidative stress and fibrosis but not arterial pressure in salt-loaded spontaneously hypertensive rats.

    Science.gov (United States)

    Varagic, Jasmina; Ahmad, Sarfaraz; Voncannon, Jessica L; Moniwa, Norihito; Simington, Stephen W; Brosnihan, Bridget K; Gallagher, Patricia E; Habibi, Javad; Sowers, James R; Ferrario, Carlos M

    2012-09-01

    Increased sympathetic outflow, renin-angiotensin system (RAS) activity, and oxidative stress are critical mechanisms underlying the adverse cardiovascular effects of dietary salt excess. Nebivolol is a third-generation, highly selective β1-receptor blocker with RAS-reducing effects and additional antioxidant properties. This study evaluated the hypothesis that nebivolol reduces salt-induced cardiac remodeling and dysfunction in spontaneous hypertensive rats (SHRs) by suppressing cardiac RAS and oxidative stress. Male SHRs (8 weeks of age) were given an 8% high salt diet (HSD; n = 22), whereas their age-matched controls (n = 10) received standard chow. In a subgroup of HSD rats (n = 11), nebivolol was given at a dose of 10 mg/kg per day by gastric gavage. After 5 weeks, HSD exacerbated hypertension as well as increased left-ventricular weight and collagen deposition while impairing left-ventricular relaxation. Salt-induced cardiac remodeling and dysfunction were associated with increased plasma renin concentration (PRC), cardiac angiotensin II immunostaining, and angiotensin-converting enzyme (ACE)/ACE2 mRNA and activity ratio. HSD also increased cardiac 3-nitrotyrosine staining indicating enhanced oxidative stress. Nebivolol treatment did not alter the salt-induced increase in arterial pressure, left-ventricular weight, and cardiac dysfunction but reduced PRC, cardiac angiotensin II immunostaining, ACE/ACE2 ratio, oxidative stress, and fibrosis. Our data suggest that nebivolol, in a blood pressure-independent manner, ameliorated cardiac oxidative stress and associated fibrosis in salt-loaded SHRs. The beneficial effects of nebivolol may be attributed, at least in part, to the decreased ACE/ACE2 ratio and consequent reduction of cardiac angiotensin II levels.

  1. H3 relaxin inhibits the collagen synthesis via ROS- and P2X7R-mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose.

    Science.gov (United States)

    Zhang, Xiaohui; Fu, Yu; Li, Hui; Shen, Li; Chang, Qing; Pan, Liya; Hong, Siting; Yin, Xinhua

    2018-03-01

    Excessive production of reactive oxygen species (ROS) and P2X7R activation induced by high glucose increases NLRP3 inflammasome activation, which contributes to the pathogenesis of diabetic cardiomyopathy. Although H3 relaxin has been shown to inhibit cardiac fibrosis induced by isoproterenol, the mechanism has not been well studied. Here, we demonstrated that high glucose (HG) induced the collagen synthesis by activation of the NLRP3 inflammasome, leading to caspase-1 activation, interleukin-1β (IL-1β) and IL-18 secretion in neonatal rat cardiac fibroblasts. Moreover, we used a high-glucose model with neonatal rat cardiac fibroblasts and showed that the activation of ROS and P2X7R was augmented and that ROS- and P2X7R-mediated NLRP3 inflammasome activation was critical for the collagen synthesis. Inhibition of ROS and P2X7R decreased NLRP3 inflammasome-mediated collagen synthesis, similar to the effects of H3 relaxin. Furthermore, H3 relaxin reduced the collagen synthesis via ROS- and P2X7R-mediated NLRP3 inflammasome activation in response to HG. These results provide a mechanism by which H3 relaxin alleviates NLRP3 inflammasome-mediated collagen synthesis through the inhibition of ROS and P2X7R under HG conditions and suggest that H3 relaxin represents a potential drug for alleviating cardiac fibrosis in diabetic cardiomyopathy. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Arrhythmogenesis in the remodeled heart : the role of spatially dispersed Cx43 expression

    NARCIS (Netherlands)

    Boulaksil, M.

    2010-01-01

    The heart is able to adapt to new, often pathologic, conditions, so-called cardiac remodeling. Although initially adequate, these adaptations could can become maladaptive over time. One of the adaptations of the heart during pathology is ventricular hypertrophy, which may go hand in hand with an

  3. Endothelins as mediators in the modulation of cardiac performance

    Directory of Open Access Journals (Sweden)

    Smiljić Sonja

    2014-01-01

    Full Text Available The role of endothelin in cardiovascular physiology and pathophysiology has been undeniable ever since its discovery. Endothelins in the heart are important for the development, growth and remodeling, as well as for the control of contractility and rhythm. Cardiac endothelial cells in the endocardium and myocardial capillaries represent the main source of endothelin, and cardiomyocytes are their primary targets. Endothelin-1 is one of the most potent substances with a positive inotropic effect known to man; subsequently endothelin plays a key role in the cardiac endothelial-myocardial interaction. The endothelins are a family of 21 amino acid peptidesof which there are three distinct isoforms endothelin-1, endothelin-2 and endothelin-3. Their effects are achieved by the activation of endothelin receptors, ETA and ETB, which belonging to the family of G protein-linked receptors. ETA and ETB receptors are densely distributed in cardiomyocytes, the cells of the cardiovascular system, coronary vascular and endocardial endothelial cells. Under physiological conditions, endothelin is synthesized in endothelial cells, while under pathophysiological conditions in the large number of non-endothelial cells of the heart as well. Endothelin-1 has positively inotropic and chronotropic effects. The administration of ET-1 causes coronary vasoconstriction, leads to myocardial ischemia and a lethal ventricular arrhythmia. In the acute myocardial infarction, ET-1 increases myocardial necrosis and arrhythmia but has a favorable effect on heart recovery after a myocardial infarction at an early stage of cardiac remodeling. ET-1 reverses acidosis-induced negative lusitropic and inotropic effects without the increase of intracellular calcium. Endothelin can resist the arrhythmogenic effects of catecholamines. Thus, low concentrations of endothelin have a protective effect on the heart. Primary indications for the administration of endothelin antagonists are heart

  4. Cardiac sodium channelopathies.

    Science.gov (United States)

    Amin, Ahmad S; Asghari-Roodsari, Alaleh; Tan, Hanno L

    2010-07-01

    Cardiac sodium channel are protein complexes that are expressed in the sarcolemma of cardiomyocytes to carry a large inward depolarizing current (INa) during phase 0 of the cardiac action potential. The importance of INa for normal cardiac electrical activity is reflected by the high incidence of arrhythmias in cardiac sodium channelopathies, i.e., arrhythmogenic diseases in patients with mutations in SCN5A, the gene responsible for the pore-forming ion-conducting alpha-subunit, or in genes that encode the ancillary beta-subunits or regulatory proteins of the cardiac sodium channel. While clinical and genetic studies have laid the foundation for our understanding of cardiac sodium channelopathies by establishing links between arrhythmogenic diseases and mutations in genes that encode various subunits of the cardiac sodium channel, biophysical studies (particularly in heterologous expression systems and transgenic mouse models) have provided insights into the mechanisms by which INa dysfunction causes disease in such channelopathies. It is now recognized that mutations that increase INa delay cardiac repolarization, prolong action potential duration, and cause long QT syndrome, while mutations that reduce INa decrease cardiac excitability, reduce electrical conduction velocity, and induce Brugada syndrome, progressive cardiac conduction disease, sick sinus syndrome, or combinations thereof. Recently, mutation-induced INa dysfunction was also linked to dilated cardiomyopathy, atrial fibrillation, and sudden infant death syndrome. This review describes the structure and function of the cardiac sodium channel and its various subunits, summarizes major cardiac sodium channelopathies and the current knowledge concerning their genetic background and underlying molecular mechanisms, and discusses recent advances in the discovery of mutation-specific therapies in the management of these channelopathies.

  5. Angiotensin II Facilitates Matrix Metalloproteinase-9-Mediated Myosin Light Chain Kinase Degradation in Pressure Overload-Induced Cardiac Hypertrophy

    Directory of Open Access Journals (Sweden)

    Shun Wang

    2017-12-01

    Full Text Available Background/Aims: Angiotensin II (Ang II has been shown to promote cardiac remodeling during the process of hypertrophy. Myosin light chain kinase (MLCK, a specific kinase for the phosphorylation of myosin light chain 2 (MLC2, plays an important role in regulating cardiac muscle contraction and hypertrophy. However, whether Ang II could facilitate cardiac hypertrophy by altering the expression of MLCK remains unclear. This study aimed to investigate this effect and the underlying mechanisms. Methods: Cardiac hypertrophy was induced via pressure overload in rats, which were then evaluated via histological and biochemical measurements and echocardiography. Angiotensin-converting enzyme inhibitor (ACEI was used to inhibit Ang II. Neonatal rat cardiomyocytes were stimulated with Ang II to induce hypertrophy and were treated with a matrix metalloproteinase 9 (MMP9 inhibitor. Myocyte hypertrophy was evaluated using immunofluorescence and qRT-PCR. Degradation of recombinant human MLCK by recombinant human MMP9 was tested using a cleavage assay. The expression levels of MLCK, MLC2, phospho-myosin light chain 2 (p-MLC2, myosin phosphatase 2 (MYPT2, and calmodulin (CaM were measured using western blotting. Results: ACEI improved cardiac function and remodeling and increased the levels of MLCK and p-MLC2 as well as reduced the expression of MMP9 in pressure overload-induced cardiac hypertrophy. Moreover, the MMP9 inhibitor alleviated myocyte hypertrophy and upregulated the levels of MLCK and p-MLC2 in Ang II-induced cardiomyocyte hypertrophy. Recombinant human MLCK was concentration- and time-dependently degraded by recombinant human MMP9 in vitro, and this process was prevented by the MMP9 inhibitor. Conclusion: Our results suggest that Ang II is involved in the degradation of MLCK in pressure overload-induced cardiac hypertrophy and that this process was mediated by MMP9.

  6. MO-A-BRD-08: Radiosurgery Beyond Cancer: Real-Time Target Localization and Treatment Planning for Cardiac Radiosurgery Under MRI Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S [University of Luebeck, Luebeck, SH (Germany); University of Sydney, Camperdown (Australia); Blanck, O [CyberKnife Zentrum Norddeutschland, Guestrow, MV (Germany); Oborn, B [Illawarra Cancer Care Centre, Wollongong, NSW (Australia); Bode, F [Medical Clinic II, Section for Electrophysiology, UKSH, Luebeck, SH (Germany); Liney, G [Ingham Institute for Applied Medical Research, Liverpool, NSW (United Kingdom); Keall, P [University of Sydney, Camperdown (Australia)

    2014-06-15

    Purpose: Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting >2.5M Americans and >4.5M Europeans. AF is usually treated with minimally-invasive, time consuming catheter ablation techniques. Radiosurgery of the pulmonary veins (PV) has been proposed for AF treatment, however is challenging due to the complex respiratory and cardiac motion patterns. We hypothesize that an MRI-linac could solve the difficult real-time targeting and adaptation problem. In this study we quantified target motion ranges on cardiac MRI and analyzed the dosimetric benefits of margin reduction assuming real-time MRI tracking was applied. Methods: For the motion study, four human subjects underwent real-time cardiac MRI under free breathing. The target motion on coronal and axial cine planes was analyzed using a template matching algorithm. For the planning study, an ablation line at each PV antrum was defined as target on an AF patient scheduled for catheter ablation. Various safety margins ranging from 0mm (perfect tracking) to 8mm (untracked motion) were added to the target defining the PTV. 30Gy single fraction IMRT plans were then generated. Finally, the influence of a 1T magnetic field on treatment beam delivery was calculated using the Geant4 Monte Carlo algorithm to simulate the dosimetric impact of MRI guidance. Results: The motion study showed the mean respiratory motion of the target area on MRI was 8.4mm (SI), 1.7mm (AP) and 0.3mm (LR). Cardiac motion was small (<2mm). The planning study showed that with increasing safety margins to encompass untracked motion, dose tolerances for OARs such as the esophagus and airways were exceeded by >100%. The magnetic field had little impact on the dose distribution. Conclusion: Our results indicate that real-time MRI tracking of the PVs seems feasible. Accurate image guidance for high-dose AF radiosurgery is essential since safety margins covering untracked target motion will result in unacceptable treatment plans.

  7. Remodeling of the transverse tubular system after myocardial infarction in rabbit correlates with local fibrosis: A potential role of biomechanics.

    Science.gov (United States)

    Seidel, T; Sankarankutty, A C; Sachse, F B

    2017-11-01

    The transverse tubular system (t-system) of ventricular cardiomyocytes is essential for efficient excitation-contraction coupling. In cardiac diseases, such as heart failure, remodeling of the t-system contributes to reduced cardiac contractility. However, mechanisms of t-system remodeling are incompletely understood. Prior studies suggested an association with altered cardiac biomechanics and gene expression in disease. Since fibrosis may alter tissue biomechanics, we investigated the local microscopic association of t-system remodeling with fibrosis in a rabbit model of myocardial infarction (MI). Biopsies were taken from the MI border zone of 6 infarcted hearts and from 6 control hearts. Using confocal microscopy and automated image analysis, we quantified t-system integrity (I TT ) and the local fraction of extracellular matrix (f ECM ). In control, f ECM was 18 ± 0.3%. I TT was high and homogeneous (0.07 ± 0.006), and did not correlate with f ECM (R 2  = 0.05 ± 0.02). The MI border zone exhibited increased f ECM within 3 mm from the infarct scar (30 ± 3.5%, p system remodeling, with dilated, sheet-like components, resulting in low I TT (0.03 ± 0.008, p system remodeling decreased with infarct distance, I TT correlated better with decreasing f ECM (R 2  = 0.44) than with infarct distance (R 2  = 0.24, p system remodeling in the rabbit MI border zone resembles a phenotype previously described in human heart failure. T-system remodeling correlated with the amount of local fibrosis, which is known to stiffen cardiac tissue, but was not found in regions without fibrosis. Thus, locally altered tissue mechanics may contribute to t-system remodeling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cardiac pacemaker

    International Nuclear Information System (INIS)

    Kolenik, S.A.

    1976-01-01

    The construction of a cardiac pacemaker is described which is characterized by particularly small dimensions, small weight and long life duration. The weight is under 100g, the specific weight under 1.7. Mass inertia forces which occur through acceleration and retardation processes, thus remain below the threshold values, above which one would have to reckon with considerable damaging of the surrounding body tissue. The maintaining of small size and slight weight is achieved by using an oscillator on COSMOS basis, where by considerably lower energy consumption, amongst others the lifetimes of the batteries used - a lithium anode with thionyl chloride electrolyte - is extended to over 5 years. The reliability can be increased by the use of 2 or more batteries. The designed dimension are 20x60x60 mm 3 . (ORU/LH) [de

  9. Axonal remodeling in the corticospinal tract after stroke: how does rehabilitative training modulate it?

    Directory of Open Access Journals (Sweden)

    Naohiko Okabe

    2017-01-01

    Full Text Available Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.

  10. Cardiac rehabilitation

    Science.gov (United States)

    ... rehab; Heart failure - cardiac rehab References Anderson L, Taylor RS. Cardiac rehabilitation for people with heart disease: ... of Medicine, Division of Cardiology, Harborview Medical Center, University of Washington Medical School, Seattle, WA. Also reviewed ...

  11. New development of cardiac tamponade on underlying effusive–constrictive pericarditis: an uncommon initial presentation of scleroderma

    Science.gov (United States)

    Subramanian, Stalin R; Akram, Rakhshanda; Velayati, Arash; Chadow, Hal

    2013-01-01

    A 40-year-old man with a medical history of hypertension was admitted for weight loss, generalised weakness, joint pains and mottling of fingertips. The initial laboratory data revealed microangiopathic haemolytic anaemia, thrombocytopenia and acute renal failure. Intravenous steroids were started for possible diagnosis of systemic lupus erythematosus based on admission assessment. Intravenous immunoglobulin and plasmapharesis were subsequently added to the treatment plan to cover thrombotic thrombocytopenic purpura while his autoimmune panel was pending. The echocardiogram study on day 2 revealed cardiac tamponade for which he underwent pericardiocentesis and right heart catheterisation. The atrial waveforms postpericardiocentesis demonstrated effusive–constrictive pericarditis. His clinical condition kept on deteriorating with reaccumulation of pericardial effusion and further complicated by hemoperitoneum and colonic obstruction. He had cardiorespiratory arrest on his fourth admission day and was not revived. Anti-Scl-70 antibody came back positive. Autopsy findings confirmed the presence of fibrinous pericarditis and hemoperitoneum. PMID:23853085

  12. Cardiac MR imaging: current status and future direction.

    Science.gov (United States)

    Saeed, Maythem; Van, Tu Anh; Krug, Roland; Hetts, Steven W; Wilson, Mark W

    2015-08-01

    Coronary artery disease is currently a worldwide epidemic with increasing impact on healthcare systems. Magnetic resonance imaging (MRI) sequences give complementary information on LV function, regional perfusion, angiogenesis, myocardial viability and orientations of myocytes. T2-weighted short-tau inversion recovery (T2-STIR), fat suppression and black blood sequences have been frequently used for detecting edematous area at risk (AAR) of infarction. T2 mapping, however, indicated that the edematous reaction in acute myocardial infarct (AMI) is not stable and warranted the use of edematous area in evaluating therapies. On the other hand, cine MRI demonstrated reproducible data on LV function in healthy volunteers and LV remodeling in patients. Noninvasive first pass perfusion, using exogenous tracer (gadolinium-based contrast media) and arterial spin labeling MRI, using endogenous tracer (water), are sensitive and useful techniques for evaluating myocardial perfusion and angiogenesis. Recently, new strategies have been developed to quantify myocardial viability using T1-mapping and equilibrium contrast enhanced MR techniques because existing delayed contrast enhancement MRI (DE-MRI) sequences are limited in detecting patchy microinfarct and diffuse fibrosis. These new techniques were successfully used for characterizing diffuse myocardial fibrosis associated with myocarditis, amyloidosis, sarcoidosis heart failure, aortic hypertrophic cardiomyopathy, congenital heart disease, restrictive cardiomyopathy, arrhythmogenic right ventricular dysplasia and hypertension). Diffusion MRI provides information regarding microscopic tissue structure, while diffusion tensor imaging (DTI) helps to characterize the myocardium and monitor the process of LV remodeling after AMI. Novel trends in hybrid imaging, such as cardiac positron emission tomography (PET)/MRI and optical imaging/MRI, are recently under intensive investigation. With the promise of higher spatial

  13. Vascular smooth muscle cells remodel collagen matrices by long-distance action and anisotropic interaction

    NARCIS (Netherlands)

    van den Akker, Jeroen; Guvenc Tuna, Bilge; Pistea, Adrian; Sleutel, Arie J. J.; Bakker, Erik N. T. P.; van Bavel, Ed

    2012-01-01

    While matrix remodeling plays a key role in vascular physiology and pathology, the underlying mechanisms have remained incompletely understood. We studied the remodeling of collagen matrices by individual vascular smooth muscle cells (SMCs), clusters and monolayers. In addition, we focused on the

  14. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid

    Directory of Open Access Journals (Sweden)

    Li Chun-jun

    2012-06-01

    Full Text Available Abstract Background Alpha-lipoic acid (ALA, a naturally occurring compound, exerts powerful protective effects in various cardiovascular disease models. However, its role in protecting against diabetic cardiomyopathy (DCM has not been elucidated. In this study, we have investigated the effects of ALA on cardiac dysfunction, mitochondrial oxidative stress (MOS, extracellular matrix (ECM remodeling and interrelated signaling pathways in a diabetic rat model. Methods Diabetes was induced in rats by I.V. injection of streptozotocin (STZ at 45 mg/kg. The animals were randomly divided into 4 groups: normal groups with or without ALA treatment, and diabetes groups with or without ALA treatment. All studies were carried out 11 weeks after induction of diabetes. Cardiac catheterization was performed to evaluate cardiac function. Mitochondrial oxidative biochemical parameters were measured by spectophotometeric assays. Extracellular matrix content (total collagen, type I and III collagen was assessed by staining with Sirius Red. Gelatinolytic activity of Pro- and active matrix metalloproteinase-2 (MMP-2 levels were analyzed by a zymogram. Cardiac fibroblasts differentiation to myofibroblasts was evaluated by Western blot measuring smooth muscle actin (α-SMA and transforming growth factor–β (TGF-β. Key components of underlying signaling pathways including the phosphorylation of c-Jun N-terminal kinase (JNK, p38 MAPK and ERK were also assayed by Western blot. Results DCM was successfully induced by the injection of STZ as evidenced by abnormal heart mass and cardiac function, as well as the imbalance of ECM homeostasis. After administration of ALA, left ventricular dysfunction greatly improved; interstitial fibrosis also notably ameliorated indicated by decreased collagen deposition, ECM synthesis as well as enhanced ECM degradation. To further assess the underlying mechanism of improved DCM by ALA, redox status and cardiac remodeling associated

  15. Chemistry of Bone Remodeling Processes

    Czech Academy of Sciences Publication Activity Database

    Maršík, František; Mařík, I.; Klika, Václav

    2005-01-01

    Roč. 12, 1+2 (2005), s. 51-61 ISSN 1212-4575 R&D Projects: GA ČR GA106/03/1073 Institutional research plan: CEZ:AV0Z20760514 Keywords : bone remodelling * RANKL/RANK/OPG chain * mechanical stimuli Subject RIV: BO - Biophysics

  16. Decreased Rac1 Cardiac Expression in Nitrofen-Induced Diaphragmatic Hernia.

    Science.gov (United States)

    Nakamura, Hiroki; Zimmer, Julia; Puri, Prem

    2018-02-01

     The high incidence of cardiac malformations in humans and animal models with congenital diaphragmatic hernia (CDH) is well known. The hypoplasia of left heart is common among fetuses with CDH and has been identified as a poor prognostic factor. However, the precise mechanisms underlying cardiac maldevelopment in CDH are not fully understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) plays a key role in cardiomyocyte polarity and embryonic heart development. Deficiency of Rac1 is reported to impair elongation and cytoskeletal organization of cardiomyocytes, resulting in congenital cardiac defects. We designed this study to test the hypothesis that Rac1 expression is downregulated in the developing hearts of rats with nitrofen-induced CDH.  Following ethical approval (REC1103), time-pregnant Sprague Dawley rats received nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D18 and D21 and divided into CDH and control (CTRL) ( n  = 6 for each group and time point). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and confocal-immunofluorescence microscopy were performed to detect cardiac gene and protein expression of Rac1.  qRT-PCR and Western blot analysis revealed that Rac1 expression was significantly decreased in the CDH group compared with controls ( p  Rac1 cardiac expression was markedly decreased in the CDH group compared with controls.  Decreased cardiac Rac1 expression in the nitrofen-induced CDH suggests that Rac1 deficiency during morphogenesis may impair structural cardiac remodeling, resulting in congenital cardiac defects. Georg Thieme Verlag KG Stuttgart · New York.

  17. Cardiac and Metabolic Effects of Dietary Selenomethionine Exposure in Adult Zebrafish.

    Science.gov (United States)

    Pettem, Connor M; Weber, Lynn P; Janz, David M

    2017-10-01

    Selenium (Se) is an essential micronutrient involved in important metabolic functions for all vertebrate species. As Se is reported to have a narrow margin between essentiality and toxicity, there is growing concern surrounding the adverse effects of elevated Se exposure caused by anthropogenic activities. Recent studies have reported that elevated dietary exposure of fish to selenomethionine (Se-Met) can alter aerobic metabolic capacity, energetics and swimming performance. This study aims to further investigate mechanisms of sublethal Se-Met toxicity, particularly potential underlying cardiovascular implications of chronic exposure to environmentally relevant concentrations of dietary Se-Met in adult zebrafish (Danio rerio). Adult zebrafish were fed either control food (1.1 μg Se/g dry mass [d.m.]) or Se-Met spiked food (10.3 or 28.8 μg Se/g d.m.) for 90 d at 5% body weight per day. Following exposure, ultrahigh resolution B-mode and Doppler ultrasound was used to characterize cardiac function. Chronic dietary exposure to elevated Se-Met significantly reduced ventricular contractile rate, stroke volume, and cardiac output. Exposure to Se-Met significantly decreased mRNA expression of methionine adenosyltransferase 1 alpha and glutathione-S-transferase pi class in liver, and a key cardiac remodelling enzyme, matrix metalloproteinase 2, in adult zebrafish heart. Se-Met significantly increased echodensity at the junction between atrium and ventricle, and these results combined with increased matrix metalloproteinase 2 expression are consistent with cardiac remodelling and fibrosis. The results of this study suggest that chronic exposure to dietary Se-Met can negatively impact cardiac function, and such physiological consequences could reduce the aerobic capacity and survivability of fish. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Heart repair by reprogramming non-myocytes with cardiac transcription factors

    OpenAIRE

    Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here w...

  19. Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration.

    Directory of Open Access Journals (Sweden)

    Ralf Gaebel

    2011-02-01

    Full Text Available The possible different therapeutic efficacy of human mesenchymal stem cells (hMSC derived from umbilical cord blood (CB, adipose tissue (AT or bone marrow (BM for the treatment of myocardial infarction (MI remains unexplored. This study was to assess the regenerative potential of hMSC from different origins and to evaluate the role of CD105 in cardiac regeneration. Male SCID mice underwent LAD-ligation and received the respective cell type (400.000/per animal intramyocardially. Six weeks post infarction, cardiac catheterization showed significant preservation of left ventricular functions in BM and CD105(+-CB treated groups compared to CB and nontreated MI group (MI-C. Cell survival analyzed by quantitative real time PCR for human GAPDH and capillary density measured by immunostaining showed consistent results. Furthermore, cardiac remodeling can be significantly attenuated by BM-hMSC compared to MI-C. Under hypoxic conditions in vitro, remarkably increased extracellular acidification and apoptosis has been detected from CB-hMSC compared to BM and CD105 purified CB-derived hMSC. Our findings suggests that hMSC originating from different sources showed a different healing performance in cardiac regeneration and CD105(+ hMSC exhibited a favorable survival pattern in infarcted hearts, which translates into a more robust preservation of cardiac function.

  20. Galnt1 Is Required for Normal Heart Valve Development and Cardiac Function

    Science.gov (United States)

    Tian, E; Stevens, Sharon R.; Guan, Yu; Springer, Danielle A.; Anderson, Stasia A.; Starost, Matthew F.; Patel, Vyomesh; Ten Hagen, Kelly G.; Tabak, Lawrence A.

    2015-01-01

    Congenital heart valve defects in humans occur in approximately 2% of live births and are a major source of compromised cardiac function. In this study we demonstrate that normal heart valve development and cardiac function are dependent upon Galnt1, the gene that encodes a member of the family of glycosyltransferases (GalNAc-Ts) responsible for the initiation of mucin-type O-glycosylation. In the adult mouse, compromised cardiac function that mimics human congenital heart disease, including aortic and pulmonary valve stenosis and regurgitation; altered ejection fraction; and cardiac dilation, was observed in Galnt1 null animals. The underlying phenotype is aberrant valve formation caused by increased cell proliferation within the outflow tract cushion of developing hearts, which is first detected at developmental stage E11.5. Developing valves from Galnt1 deficient animals displayed reduced levels of the proteases ADAMTS1 and ADAMTS5, decreased cleavage of the proteoglycan versican and increased levels of other extracellular matrix proteins. We also observed increased BMP and MAPK signaling. Taken together, the ablation of Galnt1 appears to disrupt the formation/remodeling of the extracellular matrix and alters conserved signaling pathways that regulate cell proliferation. Our study provides insight into the role of this conserved protein modification in cardiac valve development and may represent a new model for idiopathic valve disease. PMID:25615642

  1. A chance-constrained programming approach to preoperative planning of robotic cardiac surgery under task-level uncertainty.

    Science.gov (United States)

    Azimian, Hamidreza; Naish, Michael D; Kiaii, Bob; Patel, Rajni V

    2015-03-01

    In this paper, a novel formulation for robust surgical planning of robotics-assisted minimally invasive cardiac surgery based on patient-specific preoperative images is proposed. In this context, robustness is quantified in terms of the likelihood of intraoperative collisions and of joint limit violations. The proposed approach provides a more accurate and complete formulation than existing deterministic approaches in addressing uncertainty at the task level. Moreover, it is demonstrated that the dexterity of robotic arms can be quantified as a cross-entropy term. The resulting planning problem is rendered as a chance-constrained entropy maximization problem seeking a plan with the least susceptibility toward uncertainty at the task level, while maximizing the dexterity (cross-entropy term). By such treatment of uncertainty at the task level, spatial uncertainty pertaining to mismatches between the patient-specific anatomical model and that of the actual intraoperative situation is also indirectly addressed. As a solution method, the unscented transform is adopted to efficiently transform the resulting chance-constrained entropy maximization problem into a constrained nonlinear program without resorting to computationally expensive particle-based methods.

  2. Organ donation after controlled cardiac death under Maastricht category iii: Ethical implications and end of life care.

    Science.gov (United States)

    González-Méndez, M Isabel; López-Rodríguez, Luís

    2017-12-11

    The decrease in potential donation after brain death has resulted in a need to evaluate alternative sources. Donation after cardiac death is a good option. The objectives of this article are to describe the Maastricht type iii controlled organ donation characteristics and to determine end-of-life care and the role of nurses in the donation process. In this type of donation, cardiocirculatory arrest is predictable after the limitation of life sustaining treatments. These are patients for whom there are no effective therapy options and, in the context of an organised and planned practice involving all the professionals involved in the care of the patient, the decision is made, in consultation with the family, to withdraw life support measures. This limitation of life sustaining treatments is never carried out with the aim of making a Maastricht iii donation, but to avoid prolonging the dying process through useless and possibly degrading interventions. The obligation of the health team is to provide a dignified death and this not only includes the absence of pain, but the patient and their family must be guaranteed a feeling of calmness and serenity. Once the decision has been taken to withhold or withdraw measures, the nurse has an important role in the implementation of a palliative care plan in where physicians, nurses and patients/families should be involved and whose focus should be on patients' dignity and comfort, considering their physical, psychological and spiritual needs. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  3. Remodeling in the ischemic heart: the stepwise progression for heart

    Directory of Open Access Journals (Sweden)

    J.G. Mill

    2011-09-01

    Full Text Available Abstract Coronary artery disease is the leading cause of death in the developed world and in developing countries. Acute mortality from acute myocardial infarction (MI has decreased in the last decades. However, the incidence of heart failure (HF in patients with healed infarcted areas is increasing. Therefore, HF prevention is a major challenge to the health system in order to reduce healthcare costs and to provide a better quality of life. Animal models of ischemia and infarction have been essential in providing precise information regarding cardiac remodeling. Several of these changes are maladaptive, and they progressively lead to ventricular dilatation and predispose to the development of arrhythmias, HF and death. These events depend on cell death due to necrosis and apoptosis and on activation of the inflammatory response soon after MI. Systemic and local neurohumoral activation has also been associated with maladaptive cardiac remodeling, predisposing to HF. In this review, we provide a timely description of the cardiovascular alterations that occur after MI at the cellular, neurohumoral and electrical level and discuss the repercussions of these alterations on electrical, mechanical and structural dysfunction of the heart. We also identify several areas where insufficient knowledge limits the adoption of better strategies to prevent HF development in chronically infarcted individuals.

  4. MLP accumulation and remodelling in the infarcted rat heart.

    Science.gov (United States)

    Wilding, James R; Lygate, Craig A; Davies, Kay E; Neubauer, Stefan; Clarke, Kieran

    2006-06-01

    Mutation of cytoskeletal protein genes results in abnormal protein function and causes cardiomyopathy. We hypothesised that cardiac levels of cytoskeletal proteins, such as dystrophin, desmin and muscle LIM protein (MLP), would be altered during remodelling caused by myocardial infarction (MI). We measured left-ventricular morphology, function and cytoskeletal protein levels 10 weeks after coronary artery ligation or sham operation in male Wistar rats. Two-dimensional echocardiography revealed significant impairment of systolic function and decreased ejection fraction in infarcted hearts compared with sham (47+/-5% versus 73+/-4%), commensurate with the development of heart failure. Western blotting was used to measure levels of beta-myosin heavy chain (beta-MyHC), a marker of hypertrophy, and levels of dystrophin, desmin, MLP, beta-tubulin, utrophin and syncoilin, using GAPDH for normalization. Relative to shams, beta-MyHC and MLP levels were increased 1.9-fold and 1.7-fold, respectively, in infarcted rat hearts, whereas the levels of other cytoskeletal proteins were unchanged. Both MLP and desmin protein levels correlated negatively with ejection fraction, with the strongest relation between MLP and ejection fraction (r=-0.95, n=13, pMLP may play an important compensatory role in cardiac remodelling following MI.

  5. Postmyocardial Infarct Remodeling and Heart Failure: Potential Contributions from Pro- and Antiaging Factors

    Directory of Open Access Journals (Sweden)

    Halliday A. Idikio

    2011-01-01

    Full Text Available Myocardial infarction and adverse postinfarct remodeling in older persons lead to poor outcome and need greater understanding of the contributions of age-related factors on abnormal cardiac function and management. In this perspective, how normal aging processes could contribute to the events of post-myocardial infarction and remodeling is reviewed. Post-myocardial infarction and remodeling involve cardiomechanical factors and neurohormonal response. Many factors prevent or accelerate aging including immunosenescence, recruitment and regeneration of stem cells, telomere shortening, oxidative damage, antiaging hormones klotho and melatonin, nutrition, and Sirtiun protein family, and these factors could affect post-MI remodeling and heart failure. Interest in stem cell repair of myocardial infarcts to mitigate post-MI remodeling needs more information on aging of stem cells, and potential effects on stem cell use in infarct repair. Integrating genomics and proteomics methods may help find clinically novel therapy in the management of post-MI remodeling and heart failure in aged individuals.

  6. Tissue-Engineering for the Study of Cardiac Biomechanics

    Science.gov (United States)

    Ma, Stephen P.; Vunjak-Novakovic, Gordana

    2016-01-01

    The notion that both adaptive and maladaptive cardiac remodeling occurs in response to mechanical loading has informed recent progress in cardiac tissue engineering. Today, human cardiac tissues engineered in vitro offer complementary knowledge to that currently provided by animal models, with profound implications to personalized medicine. We review here recent advances in the understanding of the roles of mechanical signals in normal and pathological cardiac function, and their application in clinical translation of tissue engineering strategies to regenerative medicine and in vitro study of disease. PMID:26720588

  7. Adipose Tissue Remodeling as Homeostatic Inflammation

    Directory of Open Access Journals (Sweden)

    Michiko Itoh

    2011-01-01

    Full Text Available Evidence has accumulated indicating that obesity is associated with a state of chronic, low-grade inflammation. Obese adipose tissue is characterized by dynamic changes in cellular composition and function, which may be referred to as “adipose tissue remodeling”. Among stromal cells in the adipose tissue, infiltrated macrophages play an important role in adipose tissue inflammation and systemic insulin resistance. We have demonstrated that a paracrine loop involving saturated fatty acids and tumor necrosis factor-α derived from adipocytes and macrophages, respectively, aggravates obesity-induced adipose tissue inflammation. Notably, saturated fatty acids, which are released from hypertrophied adipocytes via the macrophage-induced lipolysis, serve as a naturally occurring ligand for Toll-like receptor 4 complex, thereby activating macrophages. Such a sustained interaction between endogenous ligands derived from parenchymal cells and pathogen sensors expressed in stromal immune cells should lead to chronic inflammatory responses ranging from the basal homeostatic state to diseased tissue remodeling, which may be referred to as “homeostatic inflammation”. We, therefore, postulate that adipose tissue remodeling may represent a prototypic example of homeostatic inflammation. Understanding the molecular mechanism underlying homeostatic inflammation may lead to the identification of novel therapeutic strategies to prevent or treat obesity-related complications.

  8. Histamine in regulation of bone remodeling processes

    Directory of Open Access Journals (Sweden)

    Marek Wiercigroch

    2013-08-01

    Full Text Available Bone remodeling is under autocrine, paracrine, endocrine and central nervous system control. One of the potential endogenous factors affecting bone remodeling is histamine, an endogenous amine which acts as a mediator of allergic reactions and neuromediator, and induces production of gastric acid. Histamine H1 receptor antagonists are widely used in the treatment of allergic conditions, H2 receptor antagonists in peptic ulcer disease, and betahistine (an H3 receptor antagonist and H1 receptor agonist is used in the treatment of Ménière’s disease.Excess histamine release in mastocytosis and allergic diseases may lead to development of osteoporosis. Clinical and population-based studies on the effects of histamine receptor antagonists on the skeletal system have not delivered unequivocal results.Expression of mRNA of histamine receptors has been discovered in bone cells (osteoblasts and osteoclasts. Histamine synthesis has been demonstrated in osteoclast precursors. Histamine increases bone resorption both by direct effects on osteoclast precursors and osteoclasts, and indirectly, by increasing the expression of RANKL in osteoblasts. In in vivo studies, H1 and H2 receptor antagonists exerted protective effects on the bone tissue, although not in all experimental models. In the present article, in vitro and in vivo studies conducted so far, concerning the effects of histamine and drugs modifying its activity on the skeletal system, have been reviewed.

  9. Vascular Remodeling in Experimental Hypertension

    Directory of Open Access Journals (Sweden)

    Norma R. Risler

    2005-01-01

    Full Text Available The basic hemodynamic abnormality in hypertension is an increased peripheral resistance that is due mainly to a decreased vascular lumen derived from structural changes in the small arteries wall, named (as a whole vascular remodeling. The vascular wall is an active, flexible, and integrated organ made up of cellular (endothelial cells, smooth muscle cells, adventitia cells, and fibroblasts and noncellular (extracellular matrix components, which in a dynamic way change shape or number, or reorganize in response to physiological and pathological stimuli, maintaining the integrity of the vessel wall in physiological conditions or participating in the vascular changes in cardiovascular diseases such as hypertension. Research focused on new signaling pathways and molecules that can participate in the mechanisms of vascular remodeling has provided evidence showing that vascular structure is not only affected by blood pressure, but also by mechanisms that are independent of the increased pressure. This review will provide an overview of the evidence, explaining some of the pathophysiologic mechanisms participating in the development of the vascular remodeling, in experimental models of hypertension, with special reference to the findings in spontaneously hypertensive rats as a model of essential hypertension, and in fructose-fed rats as a model of secondary hypertension, in the context of the metabolic syndrome. The understanding of the mechanisms producing the vascular alterations will allow the development of novel pharmacological tools for vascular protection in hypertensive disease.

  10. Calcium remodeling in colorectal cancer.

    Science.gov (United States)

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2017-06-01

    Colorectal cancer (CRC) is the third most frequent form of cancer and the fourth leading cause of cancer-related death in the world. Basic and clinical data indicate that aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) may prevent colon cancer but mechanisms remain unknown. Aspirin metabolite salicylate and other NSAIDs may inhibit tumor cell growth acting on store-operated Ca 2+ entry (SOCE), suggesting an important role for this pathway in CRC. Consistently, SOCE is emerging as a novel player in different forms of cancer, including CRC. SOCE and store-operated currents (SOCs) are dramatically enhanced in CRC while Ca 2+ stores are partially empty in CRC cells. These features may contribute to CRC hallmarks including enhanced cell proliferation, migration, invasion and survival. At the molecular level, enhanced SOCE and depleted stores are mediated by overexpression of Orai1, Stromal interaction protein 1 (STIM1) and Transient receptor protein channel 1 (TRPC1) and downregulation of STIM2. In normal colonic cells, SOCE is mediated by Ca 2+ -release activated Ca 2+ channels made of STIM1, STIM2 and Orai1. In CRC cells, SOCE is mediated by different store-operated currents (SOCs) driven by STIM1, Orai1 and TRPC1. Loss of STIM2 contributes to depletion of Ca 2+ stores and enhanced resistance to cell death in CRC cells. Thus, SOCE is a novel key player in CRC and inhibition by salicylate and other NSAIDs may contribute to explain chemoprevention activity. Colorectal cancer (CRC) is the third most frequent form of cancer worldwide. Recent evidence suggests that intracellular Ca 2+ remodeling may contribute to cancer hallmarks. In addition, aspirin and other NSAIDs might prevent CRC acting on remodeled Ca 2+ entry pathways. In this review, we will briefly describe 1) the players involved in intracellular Ca 2+ homeostasis with a particular emphasis on the mechanisms involved in SOCE activation and inactivation, 2) the evidence that aspirin metabolite

  11. Obesity-associated cardiac pathogenesis in broiler breeder hens: Development of metabolic cardiomyopathy.

    Science.gov (United States)

    Chen, C Y; Huang, Y F; Ko, Y J; Liu, Y J; Chen, Y H; Walzem, R L; Chen, S E

    2017-07-01

    Feed intake is typically restricted (R) in broiler hens to avoid obesity and improve egg production and livability. To determine whether improved heart health contributes to improved livability, fully adult 45-week-old R hens were allowed to consume feed to appetite (ad libitum; AL) up to 10 wk (70 d). Mortality, contractile functions, and morphology at 70 d, and measurements of cardiac hypertrophic remodeling at 7 d and 21 d were made and compared between R and AL hens. Outcomes for cardiac electrophysiology and mortality, reported separately, found increased mortality in AL hens in association with cardiac pathological hypertrophy and contractile dysfunction. The present study aimed to delineate metabolic cardiomyopathies underlying the etiology of obesity-associated cardiac pathology. Metabolic measurements were made in hens continued on R rations or assigned to AL feeding after 7 d and 21 days. AL feeding increased plasma insulin, glucose, and non-esterified fatty acid (NEFA) concentrations by 21 d (P hens was confirmed by cardiac triacylglycerol (TG) and ceramide accumulation consistent with up-regulation of related enzyme gene expressions, and by increased indices of oxidation stress (P hens, cardiac pyruvate dehydrogenase (PDH) activity and glucose transporter (GLUT) gene expressions increased progressively while carnitine palmitoyltransferase-1 (CPT-1) transcript levels in AL hens declined from 7 d to 21 d (P hens was further indicated by increased leukocyte infiltrates, interleukin-1β (IL-1β) and IL-6 production, cellular apoptosis, interstitial fibrosis, and expression of the heart failure marker myosin heavy chain (MHC-β; cardiac muscle beta) (P hens. © 2017 Poultry Science Association Inc.

  12. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  13. The feasibility of a heart block with an electron compensation as an alternative whole breast radiotherapy technique in patients with underlying cardiac or pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Hye Jin Kang

    Full Text Available We aimed to evaluate the feasibility of the heart block with electron compensation (HBE technique, based on three-dimensional conformal radiotherapy (3D-CRT in left-sided breast cancer patients with underlying cardiac or pulmonary disease.Twenty patients with left-sided breast cancer who were treated with whole breast radiotherapy (WBRT were included in this study. Intensity-modulated radiotherapy (IMRT, 3D-CRT, and HBE treatment plans were generated for each patient. Based on the 3D-CRT plan, the HBE plan included a heart block from the medial tangential field to shield the heart and added an electron beam to compensate for the loss in target volume coverage. The dosimetric parameters for the heart and lung and the target volume between the three treatment types were compared.Of the three plans, the HBE plan yielded the most significant reduction in the doses received by the heart and lung (heart Dmean: 5.1 Gy vs. 12.9 Gy vs. 4.0 Gy and lung Dmean: 11.4 Gy vs. 13.2 Gy vs. 10.5 Gy, for 3D-CRT, IMRT, and HBE, respectively. Target coverage with all three techniques was within the acceptable range (Dmean 51.0 Gy vs. 51.2 Gy vs. 50.6 Gy, for 3D-CRT, IMRT, and HBE, respectively.The HBE plan effectively reduced the amount of radiation exposure to the heart and lung. It could be beneficial for patients who are vulnerable to radiation-related cardiac or pulmonary toxicities.

  14. Poor health status and distress in cardiac patients: The role of device therapy vs. underlying heart disease

    NARCIS (Netherlands)

    M. Habibović (Mirela); H. Versteeg (Henneke); A.J. Pelle (Aline); D.A.M.J. Theuns (Dominic); L.J.L.M. Jordaens (Luc); S.S. Pedersen (Susanne)

    2013-01-01

    textabstractAimsImplantable cardioverter defibrillator (ICD) therapy, which includes the risk of shocks, is considered the primary culprit of reductions in patient reported outcomes (PROs; e.g. health status and distress), thereby negating the role of underlying disease severity. We examined the

  15. Poor health status and distress in cardiac patients : The role of device therapy vs. underlying heart disease

    NARCIS (Netherlands)

    Habibovic, M.; Versteeg, H.; Pelle, A.J.M.; Theuns, D.A.M.J.; Jordaens, L.; Pedersen, S.S.

    2013-01-01

    Aims Implantable cardioverter defibrillator (ICD) therapy, which includes the risk of shocks, is considered the primary culprit of reductions in patient reported outcomes (PROs; e.g. health status and distress), thereby negating the role of underlying disease severity. We examined the relative

  16. Effect of melatonin, captopril, spironolactone and simvastatin on blood pressure and left ventricular remodelling in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Šimko, F.; Pecháňová, Olga; Pelouch, Václav; Krajčírovičová, K.; Müllerová, M.; Bednárová, K.; Adamcová, M.; Paulis, L.

    2009-01-01

    Roč. 27, Suppl.6 (2009), S5-S10 ISSN 0263-6352 R&D Projects: GA ČR GA305/09/0336 Institutional research plan: CEZ:AV0Z50110509 Keywords : cardiac hypertrophy * fibrosis * ventricular remodeling Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.988, year: 2009

  17. Presence of micro- and macroalbuminuria and the association with cardiac mechanics in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Jørgensen, Peter Godsk; Biering-Sørensen, Tor; Mogelvang, Rasmus

    2017-01-01

    diabetes from two secondary care centres and stratified according to albuminuria status in normo-, micro-, and macroalbuminuria. We performed comprehensive echocardiography including conventional imaging, tissue Doppler imaging, and 2D speckle tracking. Cardiac remodelling occurred in patients...

  18. Proarrhythmic remodelling of the right ventricle in a porcine model of repaired tetralogy of Fallot

    Science.gov (United States)

    Benoist, David; Dubes, Virginie; Roubertie, François; Gilbert, Stephen H; Charron, Sabine; Constantin, Marion; Elbes, Delphine; Vieillot, Delphine; Quesson, Bruno; Cochet, Hubert; Haïssaguerre, Michel; Rooryck, Caroline; Bordachar, Pierre; Thambo, Jean-Benoit; Bernus, Olivier

    2017-01-01

    Objective The growing adult population with surgically corrected tetralogy of Fallot (TOF) is at risk of arrhythmias and sudden cardiac death. We sought to investigate the contribution of right ventricular (RV) structural and electrophysiological remodelling to arrhythmia generation in a preclinical animal model of repaired TOF (rTOF). Methods and results Pigs mimicking rTOF underwent cardiac MRI functional characterisation and presented with pulmonary regurgitation, RV hypertrophy, dilatation and dysfunction compared with Sham-operated animals (Sham). Optical mapping of rTOF RV-perfused wedges revealed a significant prolongation of RV activation time with slower conduction velocities and regions of conduction slowing well beyond the surgical scar. A reduced protein expression and lateralisation of Connexin-43 were identified in rTOF RVs. A remodelling of extracellular matrix-related gene expression and an increase in collagen content that correlated with prolonged RV activation time were also found in these animals. RV action potential duration (APD) was prolonged in the epicardial anterior region at early and late repolarisation level, thus contributing to a greater APD heterogeneity and to altered transmural and anteroposterior APD gradients in rTOF RVs. APD remodelling involved changes in Kv4.3 and MiRP1 expression. Spontaneous arrhythmias were more frequent in rTOF wedges and more complex in the anterior than in the posterior RV. Conclusion Significant remodelling of RV conduction and repolarisation properties was found in pigs with rTOF. This remodelling generates a proarrhythmic substrate likely to facilitate re-entries and to contribute to sudden cardiac death in patients with rTOF. PMID:28051771

  19. ENERGETIC VENTRICULAR BALANCE DURING CARDIAC RESYNCHRONIZATION THERAPY: NUMERICAL SIMULATION

    OpenAIRE

    De Lazzari, Claudio; Alessandri, Nicola

    2011-01-01

    Cardiac Resynchronization Therapy (CRT), realised using biventricular pacemaker is used to treat patients with in systolic heart failure (HF) and with prolonged QRS. The goal of CRT is to eliminate or reduce the electromechanical dyssynchrony processes often responsible of cardiac remodelling. The aim of this work is to study the effects of CRT on the energetic left ventricular variables as external work, the pressure-volume area and the potential energy. In order to study the effects produce...

  20. Cellular and Molecular Mechanisms of Bone Remodeling*

    OpenAIRE

    Raggatt, Liza J.; Partridge, Nicola C.

    2010-01-01

    Physiological bone remodeling is a highly coordinated process responsible for bone resorption and formation and is necessary to repair damaged bone and to maintain mineral homeostasis. In addition to the traditional bone cells (osteoclasts, osteoblasts, and osteocytes) that are necessary for bone remodeling, several immune cells have also been implicated in bone disease. This minireview discusses physiological bone remodeling, outlining the traditional bone biology dogma in light of emerging ...

  1. Cardiac atrophy after bed rest and spaceflight

    Science.gov (United States)

    Perhonen, M. A.; Franco, F.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.; Zerwekh, J. E.; Peshock, R. M.; Weatherall, P. T.; Levine, B. D.

    2001-01-01

    Cardiac muscle adapts well to changes in loading conditions. For example, left ventricular (LV) hypertrophy may be induced physiologically (via exercise training) or pathologically (via hypertension or valvular heart disease). If hypertension is treated, LV hypertrophy regresses, suggesting a sensitivity to LV work. However, whether physical inactivity in nonathletic populations causes adaptive changes in LV mass or even frank atrophy is not clear. We exposed previously sedentary men to 6 (n = 5) and 12 (n = 3) wk of horizontal bed rest. LV and right ventricular (RV) mass and end-diastolic volume were measured using cine magnetic resonance imaging (MRI) at 2, 6, and 12 wk of bed rest; five healthy men were also studied before and after at least 6 wk of routine daily activities as controls. In addition, four astronauts were exposed to the complete elimination of hydrostatic gradients during a spaceflight of 10 days. During bed rest, LV mass decreased by 8.0 +/- 2.2% (P = 0.005) after 6 wk with an additional atrophy of 7.6 +/- 2.3% in the subjects who remained in bed for 12 wk; there was no change in LV mass for the control subjects (153.0 +/- 12.2 vs. 153.4 +/- 12.1 g, P = 0.81). Mean wall thickness decreased (4 +/- 2.5%, P = 0.01) after 6 wk of bed rest associated with the decrease in LV mass, suggesting a physiological remodeling with respect to altered load. LV end-diastolic volume decreased by 14 +/- 1.7% (P = 0.002) after 2 wk of bed rest and changed minimally thereafter. After 6 wk of bed rest, RV free wall mass decreased by 10 +/- 2.7% (P = 0.06) and RV end-diastolic volume by 16 +/- 7.9% (P = 0.06). After spaceflight, LV mass decreased by 12 +/- 6.9% (P = 0.07). In conclusion, cardiac atrophy occurs during prolonged (6 wk) horizontal bed rest and may also occur after short-term spaceflight. We suggest that cardiac atrophy is due to a physiological adaptation to reduced myocardial load and work in real or simulated microgravity and demonstrates the plasticity

  2. BMP2 expression in the endocardial lineage is required for AV endocardial cushion maturation and remodeling.

    Science.gov (United States)

    Saxon, Jacob G; Baer, Daniel R; Barton, Julie A; Hawkins, Travis; Wu, Bingruo; Trusk, Thomas C; Harris, Stephen E; Zhou, Bin; Mishina, Yuji; Sugi, Yukiko

    2017-10-01

    Distal outgrowth, maturation and remodeling of the endocardial cushion mesenchyme in the atrioventricular (AV) canal are the essential morphogenetic events during four-chambered heart formation. Mesenchymalized AV endocardial cushions give rise to the AV valves and the membranous ventricular septum (VS). Failure of these processes results in several human congenital heart defects. Despite this clinical relevance, the mechanisms governing how mesenchymalized AV endocardial cushions mature and remodel into the membranous VS and AV valves have only begun to be elucidated. The role of BMP signaling in the myocardial and secondary heart forming lineage has been well studied; however, little is known about the role of BMP2 expression in the endocardial lineage. To fill this knowledge gap, we generated Bmp2 endocardial lineage-specific conditional knockouts (referred to as Bmp2 cKO Endo ) by crossing conditionally-targeted Bmp2 flox/flox mice with a Cre-driver line, Nfatc1 Cre , wherein Cre-mediated recombination was restricted to the endocardial cells and their mesenchymal progeny. Bmp2 cKO Endo mouse embryos did not exhibit failure or delay in the initial AV endocardial cushion formation at embryonic day (ED) 9.5-11.5; however, significant reductions in AV cushion size were detected in Bmp2 cKO Endo mouse embryos when compared to control embryos at ED13.5 and ED16.5. Moreover, deletion of Bmp2 from the endocardial lineage consistently resulted in membranous ventricular septal defects (VSDs), and mitral valve deficiencies, as evidenced by the absence of stratification of mitral valves at birth. Muscular VSDs were not found in Bmp2 cKO Endo mouse hearts. To understand the underlying morphogenetic mechanisms leading to a decrease in cushion size, cell proliferation and cell death were examined for AV endocardial cushions. Phospho-histone H3 analyses for cell proliferation and TUNEL assays for apoptotic cell death did not reveal significant differences between control and

  3. TRPV1 Activation Attenuates High-Salt Diet-Induced Cardiac Hypertrophy and Fibrosis through PPAR-δ Upregulation

    OpenAIRE

    Gao, Feng; Liang, Yi; Wang, Xiang; Lu, Zongshi; Li, Li; Zhu, Shanjun; Liu, Daoyan; Yan, Zhencheng; Zhu, Zhiming

    2014-01-01

    High-salt diet-induced cardiac hypertrophy and fibrosis are associated with increased reactive oxygen species production. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, exerts a protective role in cardiac remodeling that resulted from myocardial infarction, and peroxisome proliferation-activated receptors δ (PPAR-δ) play an important role in metabolic myocardium remodeling. However, it remains unknown whether activation of TRPV1 could alleviate cardi...

  4. A-Kinase Anchoring Protein-Lbc: A Molecular Scaffold Involved in Cardiac Protection

    Directory of Open Access Journals (Sweden)

    Dario Diviani

    2018-02-01

    Full Text Available Heart failure is a lethal disease that can develop after myocardial infarction, hypertension, or anticancer therapy. In the damaged heart, loss of function is mainly due to cardiomyocyte death and associated cardiac remodeling and fibrosis. In this context, A-kinase anchoring proteins (AKAPs constitute a family of scaffolding proteins that facilitate the spatiotemporal activation of the cyclic adenosine monophosphate (AMP-dependent protein kinase (PKA and other transduction enzymes involved in cardiac remodeling. AKAP-Lbc, a cardiac enriched anchoring protein, has been shown to act as a key coordinator of the activity of signaling pathways involved in cardiac protection and remodeling. This review will summarize and discuss recent advances highlighting the role of the AKAP-Lbc signalosome in orchestrating adaptive responses in the stressed heart.

  5. Risk Factors for Inadequate Defibrillation Safety Margins Vary With the Underlying Cardiac Disease: Implications for Selective Testing Strategies.

    Science.gov (United States)

    Bonnes, Judith L; Westra, Sjoerd W; Bouwels, Leon H R; DE Boer, Menko Jan; Brouwer, Marc A; Smeets, Joep L R M

    2016-05-01

    In view of the shift from routine toward no or selective defibrillation testing, optimization of the current risk stratification for inadequate defibrillation safety margins (DSMs) could improve individualized testing decisions. Given the pathophysiological differences in myocardial substrate between ischemic and nonischemic heart disease (IHD/non-IHD) and the accompanying differences in clinical characteristics, we studied inadequate DSMs and their predictors in relation to the underlying etiology. Cohort of routine defibrillation tests (n = 785) after first implantable cardioverter defibrillator (ICD)-implantations at the Radboud UMC (2005-2014). A defibrillation threshold >25 J was regarded as an inadequate DSM. In total, 4.3% of patients had an inadequate DSM; in IHD 2.5% versus 7.3% in non-IHD (P = 0.002). We identified a group of non-IHD patients at high risk (13-42% inadequate DSM); the remainder of the cohort (>70%) had a risk of only 2% (C-statistic entire cohort 0.74; C-statistic non-IHD 0.82). This was based upon two identified interaction terms: (1) non-IHD and age (aOR 0.94 [95% CI 0.91-0.97]); (2) non-IHD and the indexed left ventricular (LV) internal diastolic diameter (aOR 3.50 [95% CI 2.10-5.82]). The present study on risk stratification for an inadequate DSM not only confirms the importance of making a distinction between IHD and non-IHD, but also shows that risk factors in an entire cohort (LV dilatation, age) may only apply to a subgroup (non-IHD). Appreciation of this concept could favorably affect current risk stratification. If confirmed, our approach may be used to optimize individualized testing decisions in an upcoming era of non-routine testing. © 2016 Wiley Periodicals, Inc.

  6. Efficient preloading of the ventricles by a properly timed atrial contraction underlies stroke work improvement in the acute response to cardiac resynchronization therapy

    Science.gov (United States)

    Hu, Yuxuan; Gurev, Viatcheslav; Constantino, Jason; Trayanova, Natalia

    2013-01-01

    Background The acute response to cardiac resynchronization therapy (CRT) has been shown to be due to three mechanisms: resynchronization of ventricular contraction, efficient preloading of the ventricles by a properly timed atrial contraction, and mitral regurgitation reduction. However, the contribution of each of the three mechanisms to the acute response of CRT, specifically stroke work improvement, has not been quantified. Objective The goal of this study was to use an MRI-based anatomically accurate 3D model of failing canine ventricular electromechanics to quantify the contribution of each of the three mechanisms to stroke work improvement and identify the predominant mechanisms. Methods An MRI-based electromechanical model of the failing canine ventricles assembled previously by our group was further developed and modified. Three different protocols were used to dissect the contribution of each of the three mechanisms to stroke work improvement. Results Resynchronization of ventricular contraction did not lead to significant stroke work improvement. Efficient preloading of the ventricles by a properly timed atrial contraction was the predominant mechanism underlying stroke work improvement. Stroke work improvement peaked at an intermediate AV delay, as it allowed ventricular filling by atrial contraction to occur at a low diastolic LV pressure but also provided adequate time for ventricular filling before ventricular contraction. Diminution of mitral regurgitation by CRT led to stroke work worsening instead of improvement. Conclusion Efficient preloading of the ventricles by a properly timed atrial contraction is responsible for significant stroke work improvement in the acute CRT response. PMID:23928177

  7. Atrial fibrillation is under-recognized in chronic heart failure: insights from a heart failure cohort treated with cardiac resynchronization therapy.

    Science.gov (United States)

    Caldwell, Jane C; Contractor, Hussain; Petkar, Sanjiv; Ali, Razwan; Clarke, Bernard; Garratt, Clifford J; Neyses, Ludwig; Mamas, Mamas A

    2009-10-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia in patients with chronic heart failure (CHF). Under-detection of asymptomatic paroxysmal AF (PAF) underestimates the true burden of AF in patients with CHF. We retrospectively studied the prevalence of asymptomatic PAF in 162 CHF patients through analysis of cardiac resynchronization therapy (CRT) device downloads to determine whether these episodes are associated with adverse outcomes. An episode of AF was defined by mode switching on CRT devices with an atrial rate >200 for at least 30 s. Of the 101 patients thought to be persistently in sinus rhythm (SR), 27% were found to have significant paroxysms of AF, with the cumulative percentage of time in the 'mode-switch mode' (i.e. the AF burden) of 1.6 +/- 0.9%. Mortality was 19.2% in patients with newly identified PAF with hospitalization and thrombo-embolism rates of 42.3 and 2.1%, respectively, compared with mortality of 10.4% with hospitalization and thrombo-embolism rates of 41.8 and 1.9%, respectively, in patients persistently in SR (P= NS). Analysis of data from CRT devices in a population of CHF patients with severe left ventricular dysfunction shows that a significant proportion of those perceived to be persistently in SR have undiagnosed paroxysms of AF but with relatively low burden. These episodes appear to be associated with a trend towards increased mortality but no effects on hospitalization or thrombo-embolism rates.

  8. Cardiac Rehabilitation

    Science.gov (United States)

    ... may also do muscle-strengthening exercises, such as lifting weights or other resistance training exercises, two or three ... health concerns. Education about nutrition, lifestyle and healthy weight ... the most benefits from cardiac rehabilitation, make sure your exercise and ...

  9. Cardiac MRI

    Science.gov (United States)

    ... such as coronary heart disease, heart valve problems, pericarditis, cardiac tumors, or damage from a heart attack. ... Palpitations Heart Valve Disease Implantable Cardioverter Defibrillators Pacemakers Pericarditis Stress Testing RELATED NEWS April 26, 2013 | News ...

  10. miR-199b-5p is a regulator of left ventricular remodeling following myocardial infarction

    Directory of Open Access Journals (Sweden)

    Burcu Duygu

    2017-03-01

    Full Text Available Myocardial infarction (MI, the globally leading cause of heart failure, morbidity and mortality, involves post-MI ventricular remodeling, a complex process including acute injury healing, scar formation and global changes in the surviving myocardium. The molecular mechanisms involved in adverse post-infarct left ventricular remodeling still remain poorly defined. Recently, microRNAs have been implicated in the development and progression of various cardiac diseases as crucial regulators of gene expression. We previously demonstrated that in a murine model of pressure overload, a model of heart failure secondary to aortic stenosis or chronic high blood pressure, elevated myocardial expression of miR-199b-5p is sufficient to activate calcineurin/NFAT signaling, leading to exaggerated cardiac pathological remodeling and dysfunction. Given the differences in left ventricular remodeling secondary to post-infarct healing and pressure overload, we evaluated miR-199b function in post-MI remodeling. We confirmed that the expression of miR-199b is elevated in the post-infarcted heart. Transgenic animals with cardiomyocyte-restricted overexpression of miR-199b-5p displayed exaggerated pathological remodeling after MI, reflected by severe systolic and diastolic dysfunction and fibrosis deposition. Conversely, therapeutic silencing of miR-199b-5p in MI-induced cardiac remodeling by using an antagomir to specifically inhibit endogenous miR-199b-5p in vivo, resulted in efficient suppression of cardiac miR-199b-5p expression and attenuated cardiac dysfunction and dilation following MI. Mechanistically, miR-199b-5p influenced the expression of three predicted target genes in post-infarcted hearts, dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1a, the notch1 receptor and its ligand jagged1. In conclusion, here we provide evidence supporting that stress-induced miR-199b-5p participates in post-infarct remodeling by simultaneous regulation of

  11. Cardiac Angiosarcoma

    Directory of Open Access Journals (Sweden)

    Monique Esteves Cardoso

    2011-01-01

    Full Text Available Despite cardiac metastases are found in about 20% of cancer deaths, the presence of primary cardiac tumors is rare. Most primary tumors are benign, and malignant tumors comprise about 15%. We report a 21-year-old man with fever, dyspnea, and hemoptysis that was diagnosed with angiosarcoma of the right atrium and pulmonary metastasis. Patient was submitted to surgical tumor resection without adjuvant therapy and died four months after diagnosis.

  12. Cardiac Angiosarcoma

    OpenAIRE

    Cardoso, Monique Esteves; Canale, Leonardo Secchin; Ramos, Rosana Grandelle; Salvador Junior, Edson da Silva; Lachtermacher, Stephan

    2011-01-01

    Despite cardiac metastases are found in about 20% of cancer deaths, the presence of primary cardiac tumors is rare. Most primary tumors are benign, and malignant tumors comprise about 15%. We report a 21-year-old man with fever, dyspnea, and hemoptysis that was diagnosed with angiosarcoma of the right atrium and pulmonary metastasis. Patient was submitted to surgical tumor resection without adjuvant therapy and died four months after diagnosis.

  13. Cardiac Angiosarcoma

    Science.gov (United States)

    Cardoso, Monique Esteves; Canale, Leonardo Secchin; Ramos, Rosana Grandelle; Salvador Junior, Edson da Silva; Lachtermacher, Stephan

    2011-01-01

    Despite cardiac metastases are found in about 20% of cancer deaths, the presence of primary cardiac tumors is rare. Most primary tumors are benign, and malignant tumors comprise about 15%. We report a 21-year-old man with fever, dyspnea, and hemoptysis that was diagnosed with angiosarcoma of the right atrium and pulmonary metastasis. Patient was submitted to surgical tumor resection without adjuvant therapy and died four months after diagnosis. PMID:24826214

  14. Chromatin Remodelers: From Function to Dysfunction

    Directory of Open Access Journals (Sweden)

    Gernot Längst

    2015-06-01

    Full Text Available Chromatin remodelers are key players in the regulation of chromatin accessibility and nucleosome positioning on the eukaryotic DNA, thereby essential for all DNA dependent biological processes. Thus, it is not surprising that upon of deregulation of those molecular machines healthy cells can turn into cancerous cells. Even though the remodeling enzymes are very abundant and a multitude of different enzymes and chromatin remodeling complexes exist in the cell, the particular remodeling complex with its specific nucleosome positioning features must be at the right place at the right time in order to ensure the proper regulation of the DNA dependent processes. To achieve this, chromatin remodeling complexes harbor protein domains that specifically read chromatin targeting signals, such as histone modifications, DNA sequence/structure, non-coding RNAs, histone variants or DNA bound interacting proteins. Recent studies reveal the interaction between non-coding RNAs and chromatin remodeling complexes showing importance of RNA in remodeling enzyme targeting, scaffolding and regulation. In this review, we summarize current understanding of chromatin remodeling enzyme targeting to chromatin and their role in cancer development.

  15. Absence of fatty acid transporter CD36 protects against Western-type diet-related cardiac dysfunction following pressure overload in mice.

    Science.gov (United States)

    Steinbusch, Laura K M; Luiken, Joost J F P; Vlasblom, Ronald; Chabowski, Adrian; Hoebers, Nicole T H; Coumans, Will A; Vroegrijk, Irene O C M; Voshol, Peter J; Ouwens, D Margriet; Glatz, Jan F C; Diamant, Michaela

    2011-10-01

    Cardiac patients often are obese and have hypertension, but in most studies these conditions are investigated separately. Here, we aimed at 1) elucidating the interaction of metabolic and mechanophysical stress in the development of cardiac dysfunction in mice and 2) preventing this interaction by ablation of the fatty acid transporter CD36. Male wild-type (WT) C57Bl/6 mice and CD36(-/-) mice received chow or Western-type diet (WTD) for 10 wk and then underwent a sham surgery or transverse aortic constriction (TAC) under anesthesia. After a 6-wk continuation of the diet, cardiac function, morphology, lipid profiles, and molecular parameters were assessed. WTD administration affected body and organ weights of WT and CD36(-/-) mice, but it affected only plasma glucose and insulin concentrations in WT mice. Cardiac lipid concentrations increased in WT mice receiving WTD, decreased in CD36(-/-) on chow, and remained unchanged in CD36(-/-) receiving WTD. TAC induced cardiac hypertrophy in WT mice on chow but did not affect cardiac function and cardiac lipid concentrations. WTD or CD36 ablation worsened the outcome of TAC. Ablation of CD36 protected against the WTD-related aggravation of cardiac functional and structural changes induced by TAC. In conclusion, cardiac dysfunction and remodeling worsen when the heart is exposed to two stresses, metabolic and mechanophysical, at the same time. CD36 ablation prevents the metabolic stress resulting from a WTD. Thus, metabolic conditions are a critical factor for the compromised heart and provide new targets for metabolic manipulation in cardioprotection.

  16. Post cardiac injury syndrome

    DEFF Research Database (Denmark)

    Nielsen, S L; Nielsen, F E

    1991-01-01

    The post-pericardiotomy syndrome is a symptom complex which is similar in many respects to the post-myocardial infarction syndrome and these are summarized under the diagnosis of the Post Cardiac Injury Syndrome (PCIS). This condition, which is observed most frequently after open heart surgery...

  17. Inflammatory and apoptotic remodeling in autonomic nervous system following myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Chen Gao

    Full Text Available Chronic myocardial infarction (MI triggers pathological remodeling in the heart and cardiac nervous system. Abnormal function of the autonomic nervous system (ANS, including stellate ganglia (SG and dorsal root ganglia (DRG contribute to increased sympathoexcitation, cardiac dysfunction and arrythmogenesis. ANS modulation is a therapeutic target for arrhythmia associated with cardiac injury. However, the molecular mechanism involved in the pathological remodeling in ANS following cardiac injury remains to be established.In this study, we performed transcriptome analysis by RNA-sequencing in thoracic SG and (T1-T4 DRG obtained from Yorkshire pigs following either acute (3 to 5 hours or chronic (8 weeks myocardial infarction. By differential expression and weighted gene co-expression network analysis (WGCNA, we identified significant transcriptome changes and specific gene modules in the ANS tissues in response to myocardial infarction at either acute or chronic phases. Both differential expressed genes and the member genes of the WGCNA gene module associated with post-infarct condition were significantly enriched for inflammatory signaling and apoptotic cell death. Targeted validation analysis supported a significant induction of inflammatory and apoptotic signal in both SG and DRG following myocardial infarction, along with cellular evidence of apoptosis induction based on TUNEL analysis. Importantly, these molecular changes were observed specifically in the thoracic segments but not in their counterparts obtained from lumbar sections.Myocardial injury leads to time-dependent global changes in gene expression in the innervating ANS. Induction of inflammatory gene expression and loss of neuron cell viability in SG and DRG are potential novel mechanisms contributing to abnormal ANS function which can promote cardiac arrhythmia and pathological remodeling in myocardium.

  18. Cardiac Dysautonomia in Huntington's Disease.

    Science.gov (United States)

    Abildtrup, Mads; Shattock, Michael

    2013-01-01

    Huntington's disease is a fatal, hereditary, neurodegenerative disorder best known for its clinical triad of progressive motor impairment, cognitive deficits and psychiatric disturbances. Although a disease of the central nervous system, mortality surveys indicate that heart disease is a leading cause of death. The nature of such cardiac abnormalities remains unknown. Clinical findings indicate a high prevalence of autonomic nervous system dysfunction - dysautonomia - which may be a result of pathology of the central autonomic network. Dysautonomia can have profound effects on cardiac health, and pronounced autonomic dysfunction can be associated with neurogenic arrhythmias and sudden cardiac death. Significant advances in the knowledge of neural mechanisms in cardiac disease have recently been made which further aid our understanding of cardiac mortality in Huntington's disease. Even so, despite the evidence of aberrant autonomic activity the potential cardiac consequences of autonomic dysfunction have been somewhat ignored. In fact, underlying cardiac abnormalities such as arrhythmias have been part of the exclusion criteria in clinical autonomic Huntington's disease research. A comprehensive analysis of cardiac function in Huntington's disease patients is warranted. Further experimental and clinical studies are needed to clarify how the autonomic nervous system is controlled and regulated in higher, central areas of the brain - and how these regions may be altered in neurological pathology, such as Huntington's disease. Ultimately, research will hopefully result in an improvement of management with the aim of preventing early death in Huntington's disease from cardiac causes.

  19. Obesity and carotid artery remodeling

    DEFF Research Database (Denmark)

    Kozakova, M; Palombo, C; Morizzo, C

    2015-01-01

    without CV complications and 88 non-obese subjects matched for gender and age). RESULTS: CCA LD was independently associated with SV that was determined by body size. In the longitudinal study, baseline LD was an independent determinant of ΔIMT, and ΔIMT of subjects in the highest LD quartile......BACKGROUND/OBJECTIVE: The present study tested the hypothesis that obesity-related changes in carotid intima-media thickness (IMT) might represent not only preclinical atherosclerosis but an adaptive remodeling meant to preserve circumferential wall stress (CWS) in altered hemodynamic conditions...... characterized by body size-dependent increase in stroke volume (SV) and blood pressure (BP). SUBJECTS/METHODS: Common carotid artery (CCA) luminal diameter (LD), IMT and CWS were measured in three different populations in order to study: (A) cross-sectional associations between SV, BP, anthropometric parameters...

  20. Quantitative cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, M.; Dueber, C.; Wolff, P.; Erbel, R.; Hoffmann, T.

    1985-06-01

    The scope and limitations of quantitative cardiac CT have been evaluated in a series of experimental and clinical studies. The left ventricular muscle mass was estimated by computed tomography in 19 dogs (using volumetric methods, measurements in two axes and planes and reference volume). There was good correlation with anatomical findings. The enddiastolic volume of the left ventricle was estimated in 22 patients with cardiomyopathies; using angiography as a reference, CT led to systematic under-estimation. It is also shown that ECG-triggered magnetic resonance tomography results in improved visualisation and may be expected to improve measurements of cardiac morphology.

  1. Vascular Remodelling and Mesenchymal Transition in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Pier Andrea Nicolosi

    2016-01-01

    Full Text Available Fibrosis of the skin and of internal organs, autoimmunity, and vascular inflammation are hallmarks of Systemic Sclerosis (SSc. The injury and activation of endothelial cells, with hyperplasia of the intima and eventual obliteration of the vascular lumen, are early features of SSc. Reduced capillary blood flow coupled with deficient angiogenesis leads to chronic hypoxia and tissue ischemia, enforcing a positive feed-forward loop sustaining vascular remodelling, further exacerbated by extracellular matrix accumulation due to fibrosis. Despite numerous developments and a growing number of controlled clinical trials no treatment has been shown so far to alter SSc natural history, outlining the need of further investigation in the molecular pathways involved in the pathogenesis of the disease. We review some processes potentially involved in SSc vasculopathy, with attention to the possible effect of sustained vascular inflammation on the plasticity of vascular cells. Specifically we focus on mesenchymal transition, a key phenomenon in the cardiac and vascular development as well as in the remodelling of injured vessels. Recent work supports the role of transforming growth factor-beta, Wnt, and Notch signaling in these processes. Importantly, endothelial-mesenchymal transition may be reversible, possibly offering novel cues for treatment.

  2. Association of insulin resistance and coronary artery remodeling: an intravascular ultrasound study

    OpenAIRE

    Kim, Sang-Hoon; Moon, Jae-Youn; Lim, Yeong Min; Kim, Kyung Ho; Yang, Woo-In; Sung, Jung-Hoon; Yoo, Seung Min; Kim, In Jai; Lim, Sang-Wook; Cha, Dong-Hun; Cho, Seung-Yun

    2015-01-01

    Background There are few studies that investigated the correlation between insulin resistance (IR) and the coronary artery remodeling. The aim of the study is to investigate the association of IR measured by homeostasis model assessment of insulin resistance (HOMA-IR) and coronary artery remodeling evaluated by intravascular ultrasound (IVUS). Methods A total of 298 consecutive patients who received percutaneous coronary interventions under IVUS guidance were retrospectively enrolled. The val...

  3. Astragalus Granule Prevents Ca2+ Current Remodeling in Heart Failure by the Downregulation of CaMKII

    Directory of Open Access Journals (Sweden)

    Sinai Li

    2017-01-01

    Full Text Available Background. Astragalus was broadly used for treating heart failure (HF and arrhythmias in East Asia for thousands of years. Astragalus granule (AG, extracted from Astragalus, shows beneficial effect on the treatment of HF in clinical research. We hypothesized that administration of AG prevents the remodeling of L-type Ca2+ current (ICa-L in HF mice by the downregulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII. Methods. HF mice were induced by thoracic aortic constriction (TAC. After 4 weeks of AG treatment, cardiac function and QT interval were evaluated. Single cardiac ventricular myocyte was then isolated and whole-cell patch clamp was used to record action potential (AP and ICa-L. The expressions of L-type calcium channel alpha 1C subunit (Cav1.2, CaMKII, and phosphorylated protein kinase A (p-PKA were examined by western blot. Results. The failing heart manifested distinct electrical remodeling including prolonged repolarization time and altered ICa-L kinetics. AG treatment attenuated this electrical remodeling, supported by AG-related shortened repolarization time, decreased peak ICa-L, accelerated ICa-L inactivation, and positive frequency-dependent ICa-L facilitation. In addition, AG treatment suppressed the overexpression of CaMKII, but not p-PKA, in the failing heart. Conclusion. AG treatment protected the failing heart against electrical remodeling and ICa-L remodeling by downregulating CaMKII.

  4. Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: MESA (Multi-Ethnic Study of Atherosclerosis).

    Science.gov (United States)

    Shah, Ravi V; Abbasi, Siddique A; Heydari, Bobak; Rickers, Carsten; Jacobs, David R; Wang, Lu; Kwong, Raymond Y; Bluemke, David A; Lima, Joao A C; Jerosch-Herold, Michael

    2013-04-23

    This study assessed whether impaired fasting glucose (IFG), insulin resistance, and waist-to-hip ratio (WHR) had effects on cardiac remodeling, independent of obesity, in the MESA (Multi-Ethnic Study of Atherosclerosis) trial. Recent studies have suggested that central obesity and insulin resistance may be primary mediators of obesity-related cardiac remodeling independent of body mass index (BMI). We investigated 4,364 subjects without diabetes in the MESA trial. IFG (100 to 125 mg/dl) or insulin resistance (by homeostatic model assessment of insulin resistance [HOMA-IR]) and WHR were used for cardiometabolic phenotyping. Multivariate linear regression analysis was used to determine the effects of the cardiometabolic markers on left ventricular (LV) remodeling, assessed primarily through the LV mass-to-volume ratio obtained by cine cardiac magnetic resonance imaging. Individuals with IFG were more likely to be older and hypertensive, with increased prevalence of cardiometabolic risk factors regardless of BMI. In each quartile of BMI, subjects with above-median HOMA-IR, above-median WHR, or IFG had a higher LV mass-to-volume ratio (p central obesity, may play a critical role in LV remodeling independently of BMI. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. The dynamic nature of hypertrophic and fibrotic remodelling in the fish ventricle.

    Directory of Open Access Journals (Sweden)

    Adam Nicholas Keen

    2016-01-01

    Full Text Available Chronic pressure or volume overload can cause the vertebrate heart to remodel. The hearts of fish remodel in response to seasonal temperature change. Here we focus on the passive properties of the fish heart. Building upon our previous work on thermal-remodelling of the rainbow trout ventricle, we hypothesized that chronic cooling would initiate a fibrotic cardiac remodelling, with increased myocardial stiffness, similar to that seen with pathological hypertrophy in mammals. We hypothesized that, in contrast to pathological hypertrophy in mammals, the remodelling response in fish would be plastic and the opposite response would occur following chronic warming. Rainbow trout held at 10 °C (control group were chronically (> 8 weeks exposed to cooling (5 °C or warming (18 °C. Chronic cold induced hypertrophy in the highly trabeculated inner layer of the fish heart, with a 41 % increase in myocyte bundle cross-sectional area, and an up-regulation of hypertrophic markers. Cold acclimation also increased collagen deposition by 1.7-fold and caused an up-regulation of collagen promoting genes. In contrast, chronic warming reduced myocyte bundle cross-sectional area, expression of hypertrophic markers and collagen deposition. Functionally, the cold-induced fibrosis and hypertrophy were associated with increased passive stiffness of the whole ventricle and with increased micromechanical stiffness of tissue sections. The opposite occurred with chronic warming. These findings suggest chronic cooling in the trout heart invokes a hypertrophic phenotype with increased cardiac stiffness and fibrosis that are associated with pathological hypertrophy in the mammalian heart. The loss of collagen and increased compliance following warming is particularly interesting as it suggests fibrosis may oscillate seasonally in the fish heart, revealing a more dynamic nature than the fibrosis associated with dysfunction in mammals.

  6. Tempol ameliorates cardiac fibrosis in streptozotocin-induced diabetic rats: role of oxidative stress in diabetic cardiomyopathy.

    Science.gov (United States)

    Taye, Ashraf; Abouzied, Mekky M; Mohafez, Omar M M

    2013-12-01

    Long-standing diabetes is associated with increased oxidative stress and cardiac fibrosis. This, in turn, contributes to the progression of cardiomyopathy. The present study was sought to investigate whether the free radical scavenger, 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (tempol) can protect against diabetic cardiomyopathy and to explore the specific underlying mechanism(s) in this setting. Diabetes was induced in rats by a single intraperitoneal injection dose of streptozotocin (50 mg/kg). These animals were treated with tempol (18 mg kg(-1) day(-1), orally) for 8 weeks. Our results showed significant increases in collagen IV and fibronectin protein levels and a marked decrease in matrix metalloproteinase-2 (MMP-2) activity measured by gelatin-gel zymography alongside elevated cardiac transforming growth factor (TGF)-β level determined using ELISA or immunohistochemistry in cardiac tissues of diabetic rats compared with control. This was accompanied by an increased in the oxidative stress as evidenced by increased reactive oxygen species (ROS) production and decreased antioxidant enzyme capacity along with elevated lactate dehydrogenase (LDH) and creatine kinase (CK-MB) serum levels as compared with the control. Tempol treatment significantly corrected the changes in the cardiac extracellular matrix, TGF-β, ROS or serum LDH, CK-MB levels, and normalized MMP-2 activity along with preservation of cardiac tissues integrity of diabetic rats against damaging responses. Moreover, tempol normalized the elevated systolic blood pressure and improved some cardiac functions in diabetic rats. Collectively, our data suggest a potential protective role of tempol against diabetes-associated cardiac fibrosis in rats via reducing oxidative stress and extracellular matrix remodeling.

  7. Investigation of influence of 16-slice spiral CT electrocardiogram-controlled dose modulation on exposure dosage and image quality of cardiac CT imaging under simulated fluctuant heart rate

    International Nuclear Information System (INIS)

    Yin Yan; Chen Jie; Chai Weiming; Hua Jia; Gao Na; Xu Jianrong; Shen Yun

    2008-01-01

    Objective: To investigate the influence of electrocardiogram (ECG)-controlled dose modulation on exposure dosage and image quality of cardiac CT imaging in a cardiac phantom with simulated fluctuant heart rate. Methods: The basal heart rate of the cardiac pulsating phantom was set as 60 bpm, the experimental situations were divided as 6 groups according to different heart rates. The cardiac imaging was performed on the cardiac phantom when the ECG-controlled dose modulation was firstly turned off. The exposure dosage of each scan sequence was documented. The standard deviation of the CT values of the phantom was measured on the central slice after coronal reformation of the raw data. The quality of 2D and 3D images were scored. Then cardiac imaging was performed when ECG modulation was on and set as four groups according to different modulation parameters. All the data were documented as before. The results from the five groups with and without ECG modulation current were analyzed by F test and comparative rank sum test using the statistical software SPSS 10.0. Results: Statistical analysis showed no significant difference (P>0.05) between the SNR of images (SD value was 27.78 and 26.30) from the groups that full mA output at wide reconstruction phase (69%-99%) when the heart rate was fluctuant(≥7.5 bpm). There was also no significant difference (P>0.05) between the quality of the 2D and 3D images. But there was a significant difference (P 12.5 bpm, the exposure dosage would increase obviously (from 0.6 to 1.7 mSv). Conclusion: For cardiac imaging with 16-slice row CT, the application of ECG modulated current can effectively reduce the exposure dosage without compromising the image quality even if heart rate was fluctuant. (authors)

  8. Neuronal injury and tumor necrosis factor-alpha immunoreactivity in the rat hippocampus in the early period of asphyxia-induced cardiac arrest under normothermia

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Tae

    2017-01-01

    Full Text Available Low survival rate occurs in patients who initially experience a spontaneous return of circulation after cardiac arrest (CA. In this study, we induced asphyxial CA in adult male Sprague-Daley rats, maintained their body temperature at 37 ± 0.5°C, and then observed the survival rate during the post-resuscitation phase. We examined neuronal damage in the hippocampus using cresyl violet (CV and Fluore-Jade B (F-J B staining, and pro-inflammatory response using ionized calcium-binding adapter molecule 1 (Iba-1, glial fibrillary acidic protein (GFAP, and tumor necrosis factor-alpha (TNF-α immunohistochemistry in the hippocampus after asphyxial CA in rats under normothermia. Our results show that the survival rate decreased gradually post-CA (about 63% at 6 hours, 37% at 1 day, and 8% at 2 days post-CA. Rats were sacrificed at these points in time post-CA, and no neuronal damage was found in the hippocampus until 1 day post-CA. However, some neurons in the stratum pyramidale of the CA region in the hippocampus were dead 2 days post-CA. Iba-1 immunoreactive microglia in the CA1 region did not change until 1 day post-CA, and they were activated (enlarged cell bodies with short and thicken processes in all layers 2 days post-CA. Meanwhile, GFAP-immunoreactive astrocytes did not change significantly until 2 days post-CA. TNF-α immunoreactivity decreased significantly in neurons of the stratum pyramidale in the CA1 region 6 hours post-CA, decreased gradually until 1 day post-CA, and increased significantly again 2 days post-CA. These findings suggest that low survival rate of normothermic rats in the early period of asphyxia-induced CA is related to increased TNF-α immunoreactivity, but not to neuronal damage in the hippocampal CA1 region.

  9. Cardiac echinococcosis

    Directory of Open Access Journals (Sweden)

    Ivanović-Krstić Branislava A.

    2002-01-01

    Full Text Available Cardiac hydatid disease is rare. We report on an uncommon hydatid cyst localized in the right ventricular wall, right atrial wall tricuspid valve left atrium and pericard. A 33-year-old woman was treated for cough, fever and chest pain. Cardiac echocardiograpic examination revealed a round tumor (5.8 x 4 cm in the right ventricular free wall and two smaller cysts behind that tumor. There were cysts in right atrial wall and tricuspidal valve as well. Serologic tests for hydatidosis were positive. Computed tomography finding was consistent with diagnosis of hydatid cyst in lungs and right hylar part. Surgical treatment was rejected due to great risk of cardiac perforation. Medical treatment with albendazole was unsuccessful and the patient died due to systemic hydatid involvement of the lungs, liver and central nervous system.

  10. Measuring Cardiac Output during Cardiopulmonary Exercise Testing.

    Science.gov (United States)

    Vignati, Carlo; Cattadori, Gaia

    2017-07-01

    Cardiac output is a key parameter in the assessment of cardiac function, and its measurement is fundamental to the diagnosis, treatment, and prognostic evaluation of all heart diseases. Until recently, cardiac output determination during exercise had been only possible through invasive methods, which were not practical in the clinical setting. Because [Formula: see text]o 2 is cardiac output times arteriovenous content difference, evaluation of cardiac output is usually included in its measurement. Because of the difficulty of directly measuring peak exercise cardiac output, indirect surrogate parameters have been proposed, but with only modest clinical usefulness. Direct measurement of cardiac output can now be made by several noninvasive techniques, such as rebreathing inert gases, impedance cardiology, thoracic bioreactance, estimated continuous cardiac output technology, and transthoracic echocardiography coupled to cardiopulmonary exercise testing, which allow more definitive results and better understanding of the underlying physiopathology.

  11. [Cardiac amyloidosis].

    Science.gov (United States)

    Boussabah, Elhem; Zakhama, Lilia; Ksontini, Iméne; Ibn Elhadj, Zied; Boukhris, Besma; Naffeti, Sana; Thameur, Moez; Ben Youssef, Soraya

    2008-09-01

    PREREQUIS: Amyloidosis is a rare infiltrative disease characterized by multiple clinical features. Various organs are involved and the cardiovascular system is a common target of amyloidosis. Cardiac involvement may occur with or without clinical manifestations and is considered as a major prognostic factor. To analyze the clinical features of cardiac involvement, to review actual knowledgement concerning echocardiographic diagnostic and to evaluate recent advances in treatment of the disease. An electronic search of the relevant literature was carried out using Medline and Pubmed. Keys words used for the final search were amyloidosis, cardiopathy and echocardiography. We considered for analysis reviews, studies and articles between 1990 and 2007. Amyloidosis represents 5 to 10% of non ischemic cardiomyoparhies. Cardiac involvement is the first cause of restrictive cardiomyopathy witch must be evoked in front of every inexplained cardiopathy after the age of forty. The amyloid nature of cardiopathy is suggered if some manifestations were associated as a peripheric neuropathy, a carpal tunnel sydrome and proteinuria > 3g/day. Echocardiography shows dilated atria, a granular sparkling appearance of myocardium, diastolic dysfunction and thickened left ventricle contrasting with a low electric voltage. The proof of amyloidosis is brought by an extra-cardiac biopsy, the indications of endomyocardial biopsy are very limited. The identification of the amyloid nature of cardiopathy has an direct therapeutic implication: it indicates the use of digitalis, calcium channel blockers and beta-blockers. Today the treatment of amyloidosis remains very unsatisfactory especially in the cardiac involvement. An early diagnosis before the cardiac damage may facilitate therapy and improve prognosis.

  12. Cholinergic Regulation of Airway Inflammation and Remodelling

    Directory of Open Access Journals (Sweden)

    Saeed Kolahian

    2012-01-01

    Full Text Available Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by nonneuronal cells and tissues, including inflammatory cells and structural cells. In this paper, we will discuss the regulatory role of acetylcholine in inflammation and remodelling in which we will focus on the role of the airway smooth muscle cell as a target cell for acetylcholine that modulates inflammation and remodelling during respiratory diseases such as asthma and COPD.

  13. Fibrous tissues growth and remodeling: Evolutionary micro-mechanical theory

    Science.gov (United States)

    Lanir, Yoram

    2017-10-01

    Living fibrous tissues are composite materials having the unique ability to adapt their size, shape, structure and mechanical properties in response to external loading. This adaptation, termed growth and remodeling (G&R), occurs throughout life and is achieved via cell-induced turnover of tissue constituents where some are degraded and new ones are produced. Realistic mathematical modeling of G&R provides insight into the basic processes, allows for hypotheses testing, and constitutes an essential tool for establishing clinical thresholds of pathological remodeling and for the production of tissue substitutes aimed to achieve target structure and properties. In this study, a general 3D micro-mechanical multi-scale theory of G&R in fibrous tissue was developed which connects between the evolution of the tissue structure and properties, and the underlying mechano-biological turnover events of its constituents. This structural approach circumvents a fundamental obstacle in modeling growth mechanics since the growth motion is not bijective. The model was realized for a flat tissue under two biaxial external loadings using data-based parameter values. The predictions show close similarity to characteristics of remodeled adult tissue including its structure, anisotropic and non-linear mechanical properties, and the onset of in situ pre-strain and pre-stress. The results suggest that these important features of living fibrous tissues evolve as they grow.

  14. SPECIFICS OF LEFT VENTRICLE REMODELLING IN CHILDREN WHO HAVE HAD DIPHTHERITIC CARDITIS

    Directory of Open Access Journals (Sweden)

    U.K. Gadzhieva

    2009-01-01

    Full Text Available Carditis has a special place among diphtheritic complications determining a disease prognosis. The article provides results of studying a functional status of cardiac muscle in children who have had diphtheritic complications in the short-term (2–3 years; n = 35 and longterm (9–10 years; n = 15 follow-up. Echo cardiographic test showed there were three hemodynamic options available for diphtheritic carditis development: normal volumetric parameters of the left ventricle cavity; an enlarged left ventricle cavity and reduced myocardial contractility (dilated cardiomyopathy; a reduced left ventricle cavity with intact myocardial contractility (diastolic dysfunction. Including vitamin E and Carnitine chloride into the treatment for children who have had Diphtheritic Carditis results in improvements both to the cardiac systolic and diastolic functions.Key words: children, diphtheritic carditis, cardiac remodelling, cardiomyopathy, diastolic function.

  15. Genetic and toxicologic investigation of Sudden Cardiac Death in a patient with Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) under cocaine and alcohol effects.

    Science.gov (United States)

    Cittadini, Francesca; De Giovanni, Nadia; Alcalde, Mireia; Partemi, Sara; Carbone, Arnaldo; Campuzano, Oscar; Brugada, Ramon; Oliva, Antonio

    2015-01-01

    Cocaine and alcohol toxicity is well known, especially when simultaneously abused. These drugs perform both acute and chronic harmfulness, with significant cardiac events such as ventricular arrhythmias, tachycardia, systemic hypertension, acute myocardial infarction, ventricular hypertrophy, and acute coronary syndrome. The present report refers about a patient who died after a documented episode of psychomotor agitation followed by cardiac arrest. At the autopsy investigation, arrhythmogenic right ventricular cardiomyopathy (ARVC) was diagnosed and confirmed by postmortem molecular analysis revealing a mutation in the DSG2 gene. Postmortem toxicological analysis demonstrated a recent intake of cocaine, and the death was attributed to cardiac arrhythmias. The detection of cocaine and cocaethylene in hair samples proved chronic simultaneous intake of cocaine and alcohol at least in the last month. The authors discuss the role of these drugs and genetic predisposition of the ARVC in causing the death of the patient.

  16. Ginsenoside Rg3 improves cardiac mitochondrial population quality: Mimetic exercise training

    International Nuclear Information System (INIS)

    Sun, Mengwei; Huang, Chenglin; Wang, Cheng; Zheng, Jianheng; Zhang, Peng; Xu, Yangshu; Chen, Hong; Shen, Weili

    2013-01-01

    Highlights: •Rg3 is an ergogenic aid. •Rg3 improves mitochondrial antioxidant capacity. •Rg3 regulates mitochondria dynamic remodeling. •Rg3 alone matches some the benefits of aerobic exercise. -- Abstract: Emerging evidence indicates exercise training could mediate mitochondrial quality control through the improvement of mitochondrial dynamics. Ginsenoside Rg3 (Rg3), one of the active ingredients in Panax ginseng, is well known in herbal medicine as a tonic and restorative agent. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. In the present study, we compared the effects of Rg3 administration with aerobic exercise on mitochondrial adaptation in cardiac muscle tissue of Sprague–Dawley (SD) rats. Three groups of SD rats were studied: (1) sedentary control, (2) Rg3-treated and (3) aerobic exercise trained. Both aerobic exercise training and Rg3 supplementation enhanced peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and nuclear factor-E2-related factor 2 (Nrf2) protein levels in cardiac muscle. The activation of PGC-1α led to increased mRNA levels of mitochondrial transcription factor A (Tfam) and nuclear related factor 1(Nrf1), these changes were accompanied by increases in mitochondrial DNA copy number and complex protein levels, while activation of Nrf2 increased levels of phase II detoxifying enzymes, including nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1(NQO1), superoxide dismutase (MnSOD) and catalase. Aerobic exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein 7 (ATG7), these effects of aerobic exercise are comparable to that of Rg3. These results demonstrate that Rg3 mimics improved cardiac adaptations to exercise by regulating mitochondria dynamic remodeling and enhancing the quantity and quality of mitochondria

  17. Ginsenoside Rg3 improves cardiac mitochondrial population quality: Mimetic exercise training

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mengwei [Key Laboratory of State General Administration of Sport, Shanghai Research Institute of Sports Science, Shanghai 200031 (China); Huang, Chenglin [Shanghai Key Laboratory of Vascular Biology, Department of Hypertension and Pharmacology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200025 (China); Wang, Cheng; Zheng, Jianheng; Zhang, Peng; Xu, Yangshu [Key Laboratory of State General Administration of Sport, Shanghai Research Institute of Sports Science, Shanghai 200031 (China); Chen, Hong, E-mail: hchen100@hotmail.com [Shanghai Key Laboratory of Vascular Biology, Department of Hypertension and Pharmacology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200025 (China); Shen, Weili, E-mail: weili_shen@hotmail.com [Shanghai Key Laboratory of Vascular Biology, Department of Hypertension and Pharmacology, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200025 (China)

    2013-11-08

    Highlights: •Rg3 is an ergogenic aid. •Rg3 improves mitochondrial antioxidant capacity. •Rg3 regulates mitochondria dynamic remodeling. •Rg3 alone matches some the benefits of aerobic exercise. -- Abstract: Emerging evidence indicates exercise training could mediate mitochondrial quality control through the improvement of mitochondrial dynamics. Ginsenoside Rg3 (Rg3), one of the active ingredients in Panax ginseng, is well known in herbal medicine as a tonic and restorative agent. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. In the present study, we compared the effects of Rg3 administration with aerobic exercise on mitochondrial adaptation in cardiac muscle tissue of Sprague–Dawley (SD) rats. Three groups of SD rats were studied: (1) sedentary control, (2) Rg3-treated and (3) aerobic exercise trained. Both aerobic exercise training and Rg3 supplementation enhanced peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and nuclear factor-E2-related factor 2 (Nrf2) protein levels in cardiac muscle. The activation of PGC-1α led to increased mRNA levels of mitochondrial transcription factor A (Tfam) and nuclear related factor 1(Nrf1), these changes were accompanied by increases in mitochondrial DNA copy number and complex protein levels, while activation of Nrf2 increased levels of phase II detoxifying enzymes, including nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1(NQO1), superoxide dismutase (MnSOD) and catalase. Aerobic exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein 7 (ATG7), these effects of aerobic exercise are comparable to that of Rg3. These results demonstrate that Rg3 mimics improved cardiac adaptations to exercise by regulating mitochondria dynamic remodeling and enhancing the quantity and quality of mitochondria.

  18. Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention.

    Directory of Open Access Journals (Sweden)

    Maria E Danoviz

    Full Text Available BACKGROUND: Cardiac cell transplantation is compromised by low cell retention and poor graft viability. Here, the effects of co-injecting adipose tissue-derived stem cells (ASCs with biopolymers on cell cardiac retention, ventricular morphometry and performance were evaluated in a rat model of myocardial infarction (MI. METHODOLOGY/PRINCIPAL FINDINGS: 99mTc-labeled ASCs (1x10(6 cells isolated from isogenic Lewis rats were injected 24 hours post-MI using fibrin a, collagen (ASC/C, or culture medium (ASC/M as vehicle, and cell body distribution was assessed 24 hours later by gamma-emission counting of harvested organs. ASC/F and ASC/C groups retained significantly more cells in the myocardium than ASC/M (13.8+/-2.0 and 26.8+/-2.4% vs. 4.8+/-0.7%, respectively. Then, morphometric and direct cardiac functional parameters were evaluated 4 weeks post-MI cell injection. Left ventricle (LV perimeter and percentage of interstitial collagen in the spare myocardium were significantly attenuated in all ASC-treated groups compared to the non-treated (NT and control groups (culture medium, fibrin, or collagen alone. Direct hemodynamic assessment under pharmacological stress showed that stroke volume (SV and left ventricle end-diastolic pressure were preserved in ASC-treated groups regardless of the vehicle used to deliver ASCs. Stroke work (SW, a global index of cardiac function, improved in ASC/M while it normalized when biopolymers were co-injected with ASCs. A positive correlation was observed between cardiac ASCs retention and preservation of SV and improvement in SW post-MI under hemodynamic stress. CONCLUSIONS: We provided direct evidence that intramyocardial injection of ASCs mitigates the negative cardiac remodeling and preserves ventricular function post-MI in rats and these beneficial effects can be further enhanced by administering co-injection of ASCs with biopolymers.

  19. Cardiac ankyrins in health and disease

    Science.gov (United States)

    Hashemi, Seyed M.; Hund, Thomas J.; Mohler, Peter J.

    2009-01-01

    Ankyrins are critical components of ion channel and transporter signaling complexes in the cardiovascular system. Over the past five years, ankyrin dysfunction has been linked with abnormal ion channel and transporter membrane organization and fatal human arrhythmias. Loss-of-function variants in the ankyrin-B gene (ANK2) cause “ankyrin-B syndrome” (previously called type 4 long QT syndrome), manifested by a complex cardiac phenotype including ventricular arrhythmias and sudden cardiac death. More recently, dysfunction in the ankyrin-B-based targeting pathway has been linked with a highly penetrant and severe form of human sinus node disease. Ankyrin-G (a second ankyrin gene product) is required for normal expression, membrane localization, and biophysical function of the primary cardiac voltage-gated sodium channel, Nav1.5. Loss of the ankyrin-G/Nav1.5 interaction is associated with human cardiac arrhythmia (Brugada syndrome). Finally, in the past year ankyrin dysfunction has been associated with more common arrhythmia and cardiovascular disease phenotypes. Specifically, large animal studies reveal striking remodeling of ankyrin-B and associated proteins following myocardial infarction. Additionally, the ANK2 locus has been linked with QTc interval variability in the general human population. Together, these findings identify a host of unanticipated and exciting roles for ankyrin polypeptides in cardiac function. More broadly, these findings illustrate the importance of local membrane organization for normal cardiac physiology. PMID:19394342

  20. Cardiac Pacemakers

    International Nuclear Information System (INIS)

    Fiandra, O.; Espasandin, W.; Fiandra, H.

    1984-01-01

    A complete survey of physiological biophysical,clinical and engineering aspects of cardiac facing,including the history and an assessment of possible future developments.Among the topics studied are: pacemakers, energy search, heart stimulating with pacemakers ,mathematical aspects of the electric cardio stimulation chronic, pacemaker implants,proceeding,treatment and control

  1. Uric acid and gamma-glutamyl transferase activity are associated with left ventricular remodeling indices in patients with chronic heart failure.

    Science.gov (United States)

    Radovanovic, Slavica; Savic-Radojevic, Ana; Pekmezovic, Tatjana; Markovic, Olivera; Memon, Lidija; Jelic, Svetlana; Simic, Dragan; Radic, Tanja; Pljesa-Ercegovac, Marija; Simic, Tatjana

    2014-08-01

    Uric acid and gamma-glutamyl transferase are prognostic indicators in chronic heart failure. Nevertheless, the mechanism underlying the association between uric acid, gamma-glutamyl transferase, and chronic heart failure progression and prognosis remains largely unknown. The association of uric acid and gamma-glutamyl transferase with flow-mediated dilation and echocardiographic indices of cardiac remodeling was addressed in 120 patients with chronic ischemic heart failure. To determine the independent contribution of uric acid and gamma-glutamyl transferase to the flow-mediated dilation and echocardiographic indices of remodeling, a series of multiple linear regression models, based on traditional and nontraditional risk factors impacting upon these parameters, were constructed. Uric acid, but not gamma-glutamyl transferase, was an independent predictor of flow-mediated dilation. Uric acid was associated with all the echocardiographic indices of left ventricular dysfunction tested in 3 multiple-regression models. Uric acid correlated with left ventricular end-systolic diameter, left ventricular end-diastolic diameter, left ventricular end-systolic volume, and left ventricular end-diastolic volume (r = 0.337; r = 0.340; r = 0.321; r = 0.294; P = .001, respectively). Gamma-glutamyl transferase was an independent predictor of left ventricular end-systolic volume and left ventricular end-diastolic volume, after adjustment for all variables. Gamma-glutamyl transferase correlated with left ventricular end-systolic diameter, left ventricular end-diastolic diameter, left ventricular end-systolic volume, and left ventricular end-diastolic volume (r = 0.238, P = .009; r = 0.219, P = .016; r = 0.359, P < .001; r = 0.369, P = .001, respectively). Serum uric acid and gamma-glutamyl transferase levels are associated with left ventricular remodeling in patients with chronic ischemic heart failure. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana

  2. Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction.

    Science.gov (United States)

    Christia, Panagiota; Bujak, Marcin; Gonzalez-Quesada, Carlos; Chen, Wei; Dobaczewski, Marcin; Reddy, Anilkumar; Frangogiannis, Nikolaos G

    2013-08-01

    Mouse models of myocardial infarction are essential tools for the study of cardiac injury, repair, and remodeling. Our current investigation establishes a systematic approach for quantitative evaluation of the inflammatory and reparative response, cardiac function, and geometry in a mouse model of reperfused myocardial infarction. Reperfused mouse infarcts exhibited marked induction of inflammatory cytokines that peaked after 6 hr of reperfusion. In the infarcted heart, scar contraction and chamber dilation continued for at least 28 days after reperfusion; infarct maturation was associated with marked thinning of the scar, accompanied by volume loss and rapid clearance of cellular elements. Echocardiographic measurements of end-diastolic dimensions correlated well with morphometric assessment of dilative remodeling in perfusion-fixed hearts. Hemodynamic monitoring was used to quantitatively assess systolic and diastolic function; the severity of diastolic dysfunction following myocardial infarction correlated with cardiomyocyte hypertrophy and infarct collagen content. Expression of molecular mediators of inflammation and cellular infiltration needs to be investigated during the first 72 hr, whereas assessment of dilative remodeling requires measurement of geometric parameters for at least four weeks after the acute event. Rapid initiation and resolution of the inflammatory response, accelerated scar maturation, and extensive infarct volume loss are important characteristics of infarct healing in mice.

  3. Blockade of KCa3.1 Attenuates Left Ventricular Remodeling after Experimental Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Chen-Hui Ju

    2015-07-01

    Full Text Available Background/Aims: After myocardial infarction (MI, cardiac fibrosis greatly contributes to left ventricular remodeling and heart failure. The intermediate-conductance calcium-activated potassium Channel (KCa3.1 has been recently proposed as an attractive target of fibrosis. The present study aimed to detect the effects of KCa3.1 blockade on ventricular remodeling following MI and its potential mechanisms. Methods: Myocardial expression of KCa3.1 was initially measured in a mouse MI model by Western blot and real time-polymerase chain reaction. Then after treatment with TRAM-34, a highly selective KCa3.1 blocker, heart function and fibrosis were evaluated by echocardiography, histology and immunohistochemistry. Furthermore, the role of KCa3.1 in neonatal mouse cardiac fibroblasts (CFs stimulated by angiotensin II (Ang II was tested. Results: Myocardium expressed high level of KCa3.1 after MI. Pharmacological blockade of KCa3.1 channel improved heart function and reduced ventricular dilation and fibrosis. Besides, a lower prevalence of myofibroblasts was found in TRAM-34 treatment group. In vitro studies KCa3.1 was up regulated in CFs induced by Ang II and suppressed by its blocker.KCa3.1 pharmacological blockade attenuated CFs proliferation, differentiation and profibrogenic genes expression and may regulating through AKT and ERK1/2 pathways. Conclusion: Blockade of KCa3.1 is able to attenuate ventricular remodeling after MI through inhibiting the pro-fibrotic effects of CFs.

  4. Dynamics of the ethanolamine glycerophospholipid remodeling network.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1 sn1 and sn2 acyl positions are independently remodeled; (2 remodeling reaction rates are constant over time; and (3 acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In contrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data.

  5. Inhibition of miR-15 Protects Against Cardiac Ischemic Injury

    Science.gov (United States)

    Hullinger, Thomas G.; Montgomery, Rusty L.; Seto, Anita G.; Dickinson, Brent A.; Semus, Hillary M.; Lynch, Joshua M.; Dalby, Christina M.; Robinson, Kathryn; Stack, Christianna; Latimer, Paul A.; Hare, Joshua M.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Rationale Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. Objective This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. Methods and Results Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. Conclusions Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury. PMID:22052914

  6. Systematic evaluation of the adaptability of the non-radioactive SUnSET assay to measure cardiac protein synthesis.

    Science.gov (United States)

    Ravi, Venkatraman; Jain, Aditi; Ahamed, Faiz; Fathma, Nowrin; Desingu, Perumal Arumugam; Sundaresan, Nagalingam R

    2018-03-15

    Heart is a dynamic organ that undergoes remodeling in response to both physiological and pathological stimuli. One of the fundamental cellular processes that facilitates changes in the size and shape of this muscular organ is the protein synthesis. Traditionally changes in cardiac protein synthesis levels were measured by radiolabeled tracers. However, these methods are often cumbersome and suffer from radioactive risk. Recently a nonradioactive method for detecting protein synthesis under in vitro conditions called the Surface Sensing of Translation (SUnSET) was described in cell lines of mouse dendrites and T cells. In this work, we provide multiple lines of evidence that the SUnSET assay can be applied to reliably detect changes in protein synthesis both in isolated neonatal primary cardiomyocytes and heart. We successfully tracked the changes in protein synthesis by western blotting as well as immunohistochemical variants of the SUnSET assay. Applying the SUnSET assay, we measured the cardiac protein synthesis during the different ages of mice. Further, we successfully tracked the increase in cardiac protein synthesis during different stages of a well-established model for pathological hypertrophy. Overall, we propose SUnSET assay as a simple, reliable and robust method to measure protein synthesis in the cardiac milieu.

  7. Histologic spectrum of the cardiac conducting tissue in non-natural deaths under 30 years of age: an analysis of 43 cases with special implications for sudden cardiac death.

    Science.gov (United States)

    Zack, Fred; Rodewald, Ann-Katrin; Blaas, Verena; Büttner, Andreas

    2016-01-01

    In the past, histological findings of the cardiac conduction system or its adjacent structures, such as filiform fibers at the transition from bundle of His to bundle branches, connective tissue at the apex of the ventricular septum, or fibromuscular alterations of the arteries has been considered as a cause of death. However, the prevalence of such findings in a healthy population has been rarely analyzed systematically. In the present study, the morphology of the cardiac conduction system of 43 heart-healthy individuals who died of non-natural causes (ages 0 to 30 years) was investigated. In a high percentage of cases, connective tissue at the apex of the ventricular septum (97.7%), filiform fibers at the transition from bundle of His to the bundle branches (27.9%), and fibromuscular proliferations of the sinoatrial node artery (41.9%), and the AV-node artery (39.5%) could be detected. Based on our observations, these alterations should not be considered as a pathologic entity or as a cause of death.

  8. Comparative study of cardiac autonomic status by heart rate variability between under-treatment normotensive and hypertensive known type 2 diabetics

    Directory of Open Access Journals (Sweden)

    Jayesh D. Solanki

    2017-01-01

    Conclusion: Our findings of HRV suggest that in type 2 diabetics with poor glycaemic and good pressure control, hypertension as a co-existing factor does not make significant difference in cardiac dysautonomia emphasizing residual risk despite antihypertensive treatment and need for early HRV screening, strict glycaemic control and other interventions.

  9. CARDIAC FUNCTION AND IRON CHELATION IN THALASSEMIA MAJOR AND INTERMEDIA: A REVIEW OF THE UNDERLYING PATHOPHYSIOLOGY AND APPROACH TO CHELATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Athanasios Aessopos

    2009-07-01

    Full Text Available Heart disease is the leading cause of mortality and one of the main causes of morbidity in beta-thalassemia. Patients with homozygous thalassemia may have either a severe phenotype which is usually transfusion dependent or a milder form that is thalassemia intermedia.  The two main factors that determine cardiac disease in homozygous β thalassemia are the high output state that results from chronic tissue hypoxia, hypoxia-induced compensatory reactions and iron overload.  The high output state playing a major role in thalassaemia intermedia and the iron load being more significant in the major form. Arrhythmias, vascular involvement that leads to an increased pulmonary vascular resistance and an increased systemic vascular stiffness and valvular abnormalities also contribute to the cardiac dysfunction in varying degrees according to the severity of the phenotype.  Endocrine abnormalities, infections, renal function and medications can also play a role in the overall cardiac function.  For thalassaemia major, regular and adequate blood transfusions and iron chelation therapy are the mainstays of management. The approach to thalassaemia intermedia, today, is aimed at monitoring for complications and initiating, timely, regular transfusions and/or iron chelation therapy.  Once the patients are on transfusions, then they should be managed in the same way as the thalassaemia major patients.  If cardiac manifestations of dysfunction are present in either form of thalassaemia, high pre transfusion Hb levels need to be maintained in order to reduce cardiac output and appropriate intensive chelation therapy needs to be instituted.  In general recommendations on chelation, today, are usually made according to the Cardiac Magnetic Resonance findings, if available.  With the advances in the latter technology and the ability to tailor chelation therapy according to the MRI findings as well as the availability of three iron chelators, together with

  10. The INO80 remodeller in transcription, replication and repair.

    Science.gov (United States)

    Poli, Jérôme; Gasser, Susan M; Papamichos-Chronakis, Manolis

    2017-10-05

    The accessibility of eukaryotic genomes to the action of enzymes involved in transcription, replication and repair is maintained despite the organization of DNA into nucleosomes. This access is often regulated by the action of ATP-dependent nucleosome remodellers. The INO80 class of nucleosome remodellers has unique structural features and it is implicated in a diverse array of functions, including transcriptional regulation, DNA replication and DNA repair. Underlying these diverse functions is the catalytic activity of the main ATPase subunit, which in the context of a multisubunit complex can shift nucleosomes and carry out histone dimer exchange. In vitro studies showed that INO80 promotes replication fork progression on a chromatin template, while in vivo it was shown to facilitate replication fork restart after stalling and to help evict RNA polymerase II at transcribed genes following the collision of a replication fork with transcription. More recent work in yeast implicates INO80 in the general eviction and degradation of nucleosomes following high doses of oxidative DNA damage. Beyond these replication and repair functions, INO80 was shown to repress inappropriate transcription at promoters in the opposite direction to the coding sequence. Here we discuss the ways in which INO80's diverse functions help maintain genome integrity.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).

  11. Remodeling sensory cortical maps implants specific behavioral memory.

    Science.gov (United States)

    Bieszczad, K M; Miasnikov, A A; Weinberger, N M

    2013-08-29

    Neural mechanisms underlying the capacity of memory to be rich in sensory detail are largely unknown. A candidate mechanism is learning-induced plasticity that remodels the adult sensory cortex. Here, expansion in the primary auditory cortical (A1) tonotopic map of rats was induced by pairing a 3.66-kHz tone with activation of the nucleus basalis, mimicking the effects of natural associative learning. Remodeling of A1 produced de novo specific behavioral memory, but neither memory nor plasticity was consistently at the frequency of the paired tone, which typically decreased in A1 representation. Rather, there was a specific match between individual subjects' area of expansion and the tone that was strongest in each animal's memory, as determined by post-training frequency generalization gradients. These findings provide the first demonstration of a match between the artificial induction of specific neural representational plasticity and artificial induction of behavioral memory. As such, together with prior and present findings for detection, correlation and mimicry of plasticity with the acquisition of memory, they satisfy a key criterion for neural substrates of memory. This demonstrates that directly remodeling sensory cortical maps is sufficient for the specificity of memory formation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. REMODELING SENSORY CORTICAL MAPS IMPLANTS SPECIFIC BEHAVIORAL MEMORY

    Science.gov (United States)

    Bieszczad, Kasia M.; Miasnikov, Alexandre A.; Weinberger, Norman M.

    2013-01-01

    Neural mechanisms underlying the capacity of memory to be rich with sensory detail are largely unknown. A candidate mechanism is learning-induced plasticity that remodels adult sensory cortex. Here, expansion in the primary auditory cortical (A1) tonotopic map of rats was induced by pairing a 3.66 kHz tone with activation of the nucleus basalis, mimicking the effects of natural associative learning. Remodeling of A1 produced de novo specific behavioral memory, but neither memory nor plasticity were consistently at the frequency of the paired tone, which typically decreased in A1 representation. Rather, there was a specific match between individual subjects’ area of expansion and the tone that was strongest in each animal’s memory, as determined by post-training frequency generalization gradients. These findings provide the first demonstration of a match between the artificial induction of specific neural representational plasticity and artificial induction of behavioral memory. As such, together with prior and present findings for detection, correlation and mimicry of plasticity with the acquisition of memory, they satisfy a key criterion for neural substrates of memory. This demonstrates that directly remodeling sensory cortical maps is sufficient for the specificity of memory formation. PMID:23639876

  13. Effects of neuregulin-1 on autonomic nervous system remodeling post-myocardial infarction in a rat model

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2017-01-01

    Full Text Available Sympathetic nerve and vagus nerve remodeling play an important part in cardiac function post-myocardial infarction (MI. Increasing evidence indicates that neuregulin-1 (NRG-1 improves cardiac function following heart failure. Since its impact on cardiac function and neural remodeling post-MI is poorly understood, we aimed to investigate the role of NRG-1 in autonomic nervous system remodeling post-MI. Forty-five Sprague-Dawley rats were equally randomized into three groups: sham (with the left anterior descending coronary artery exposed but without ligation, MI (left anterior descending coronary artery ligation, and MI plus NRG-1 (left anterior descending coronary artery ligation followed by intraperitoneal injection of NRG-1 (10 μg/kg, once daily for 7 days. At 4 weeks after MI, echocardiography was used to detect the rat cardiac function by measuring the left ventricular end-systolic inner diameter, left ventricular diastolic diameter, left ventricular end-systolic volume, left ventricular end-diastolic volume, left ventricular ejection fraction, and left ventricular fractional shortening. mRNA and protein expression levels of tyrosine hydroxylase, growth associated protein-43 (neuronal specific protein, nerve growth factor, choline acetyltransferase (vagus nerve marker, and vesicular acetylcholine transporter (cardiac vagal nerve fiber marker in ischemic myocardia were detected by real-time PCR and western blot assay to assess autonomous nervous remodeling. After MI, the rat cardiac function deteriorated significantly, and it was significantly improved after NRG-1 injection. Compared with the MI group, mRNA and protein levels of tyrosine hydroxylase and growth associated protein-43, as well as choline acetyltransferase mRNA level significantly decreased in the MI plus NRG-1 group, while mRNA and protein levels of nerve growth factor and vesicular acetylcholine transporters, as well as choline acetyltransferase protein level slightly

  14. Postoperative cognitive dysfunction and neuroinflammation; Cardiac surgery and abdominal surgery are not the same

    NARCIS (Netherlands)

    Hovens, Iris B.; van Leeuwen, Barbara L.; Mariani, Massimo A.; Kraneveld, Aletta D.; Schoemaker, Regien G.

    Postoperative cognitive dysfunction (POCD) is a debilitating surgical complication, with cardiac surgery patients at particular risk. To gain insight in the mechanisms underlying the higher incidence of POCD after cardiac versus non-cardiac surgery, systemic and central inflammatory changes,

  15. Tomato (Lycopersicon esculentum) or lycopene supplementation attenuates ventricular remodeling after myocardial infarction through different mechanistic pathways.

    Science.gov (United States)

    Pereira, Bruna L B; Reis, Patrícia P; Severino, Fábio E; Felix, Tainara F; Braz, Mariana G; Nogueira, Flávia R; Silva, Renata A C; Cardoso, Ana C; Lourenço, Maria A M; Figueiredo, Amanda M; Chiuso-Minicucci, Fernanda; Azevedo, Paula S; Polegato, Bertha F; Okoshi, Katashi; Fernandes, Ana A H; Paiva, Sergio A R; Zornoff, Leonardo A M; Minicucci, Marcos F

    2017-08-01

    The objective of this study was to evaluate the influence of tomato or lycopene supplementation on cardiac remodeling after myocardial infarction (MI). Male Wistar rats were assigned to four groups: the sham group (animals that underwent simulated surgery) that received a standard chow (S; n=18), the infarcted group that received a standard chow (MI; n=13), the infarcted group supplemented with lycopene (1 mg of lycopene/kg body weight/day) (MIL; n=16) and the infarcted group supplemented with tomato (MIT; n=16). After 3 months, morphological, functional and biochemical analyses were performed. The groups MIL and MIT showed decreased interstitial fibrosis induced by infarction. Tomato supplementation attenuated the hypertrophy induced by MI. In addition, tomato and lycopene improved diastolic dysfunction evaluated by echocardiographic and isolated heart studies, respectively. The MI group showed higher levels of cardiac TNF-α compared to the MIL and MIT groups. Decreased nuclear factor E2-related factor 2 was measured in the MIL group. Lipid hydroperoxide levels were higher in the infarcted groups; however, the MIT group had a lower concentration than did the MI group [S=223±20.8, MI=298±19.5, MIL=277±26.6, MIT=261±28.8 (nmol/g); n=8; Ptomato or lycopene supplementation attenuated the cardiac remodeling process and improved diastolic function after MI. However, the effect of lycopene and tomato supplementation occurred through different mechanistic pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effects of candesartan on electrical remodeling in the hearts of inherited dilated cardiomyopathy model mice.

    Directory of Open Access Journals (Sweden)

    Fuminori Odagiri

    Full Text Available Inherited dilated cardiomyopathy (DCM is characterized by dilatation and dysfunction of the ventricles, and often results in sudden death or heart failure (HF. Although angiotensin receptor blockers (ARBs have been used for the treatment of HF, little is known about the effects on postulated electrical remodeling that occurs in inherited DCM. The aim of this study was to examine the effects of candesartan, one of the ARBs, on cardiac function and electrical remodeling in the hearts of inherited DCM model mice (TNNT2 ΔK210. DCM mice were treated with candesartan in drinking water for 2 months from 1 month of age. Control, non-treated DCM mice showed an enlargement of the heart with prolongation of QRS and QT intervals, and died at t1/2 of 70 days. Candesartan dramatically extended the lifespan of DCM mice, suppressed cardiac dilatation, and improved the functional parameters of the myocardium. It also greatly suppressed prolongation of QRS and QT intervals and action potential duration (APD in the left ventricular myocardium and occurrence of ventricular arrhythmia. Expression analysis revealed that down-regulation of Kv4.2 (Ito channel protein, KChIP2 (auxiliary subunit of Kv4.2, and Kv1.5 (IKur channel protein in DCM was partially reversed by candesartan administration. Interestingly, non-treated DCM heart had both normal-sized myocytes with moderately decreased Ito and IKur and enlarged cells with greatly reduced K+ currents (Ito, IKur IK1 and Iss. Treatment with candesartan completely abrogated the emergence of the enlarged cells but did not reverse the Ito, and IKur in normal-sized cells in DCM hearts. Our results indicate that candesartan treatment suppresses structural remodeling to prevent severe electrical remodeling in inherited DCM.

  17. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure

    Science.gov (United States)

    Montgomery, Rusty L.; Hullinger, Thomas G.; Semus, Hillary M.; Dickinson, Brent A.; Seto, Anita G.; Lynch, Joshua M.; Stack, Christianna; Latimer, Paul A.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Background Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Methods and Results Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. Conclusions These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression. PMID:21900086

  18. The Latest Twists in Chromatin Remodeling.

    Science.gov (United States)

    Blossey, Ralf; Schiessel, Helmut

    2018-01-05

    In its most restrictive interpretation, the notion of chromatin remodeling refers to the action of chromatin-remodeling enzymes on nucleosomes with the aim of displacing and removing them from the chromatin fiber (the effective polymer formed by a DNA molecule and proteins). This local modification of the fiber structure can have consequences for the initiation and repression of the transcription process, and when the remodeling process spreads along the fiber, it also results in long-range effects essential for fiber condensation. There are three regulatory levels of relevance that can be distinguished for this process: the intrinsic sequence preference of the histone octamer, which rules the positioning of the nucleosome along the DNA, notably in relation to the genetic information coded in DNA; the recognition or selection of nucleosomal substrates by remodeling complexes; and, finally, the motor action on the nucleosome exerted by the chromatin remodeler. Recent work has been able to provide crucial insights at each of these three levels that add new twists to this exciting and unfinished story, which we highlight in this perspective. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Remodeling of the postsynaptic plasma membrane during neural development.

    Science.gov (United States)

    Tulodziecka, Karolina; Diaz-Rohrer, Barbara B; Farley, Madeline M; Chan, Robin B; Di Paolo, Gilbert; Levental, Kandice R; Waxham, M Neal; Levental, Ilya

    2016-11-07

    Neuronal synapses are the fundamental units of neural signal transduction and must maintain exquisite signal fidelity while also accommodating the plasticity that underlies learning and development. To achieve these goals, the molecular composition and spatial organization of synaptic terminals must be tightly regulated; however, little is known about the regulation of lipid composition and organization in synaptic membranes. Here we quantify the comprehensive lipidome of rat synaptic membranes during postnatal development and observe dramatic developmental lipidomic remodeling during the first 60 postnatal days, including progressive accumulation of cholesterol, plasmalogens, and sphingolipids. Further analysis of membranes associated with isolated postsynaptic densities (PSDs) suggests the PSD-associated postsynaptic plasma membrane (PSD-PM) as one specific location of synaptic remodeling. We analyze the biophysical consequences of developmental remodeling in reconstituted synaptic membranes and observe remarkably stable microdomains, with the stability of domains increasing with developmental age. We rationalize the developmental accumulation of microdomain-forming lipids in synapses by proposing a mechanism by which palmitoylation of the immobilized scaffold protein PSD-95 nucleates domains at the postsynaptic plasma membrane. These results reveal developmental changes in lipid composition and palmitoylation that facilitate the formation of postsynaptic membrane microdomains, which may serve key roles in the function of the neuronal synapse. © 2016 Tulodziecka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  1. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  2. Myocardial connective tissue growth factor (CCN2/CTGF attenuates left ventricular remodeling after myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Jørgen Gravning

    Full Text Available AIMS: Myocardial CCN2/CTGF is induced in heart failure of various etiologies. However, its role in the pathophysiology of left ventricular (LV remodeling after myocardial infarction (MI remains unresolved. The current study explores the role of CTGF in infarct healing and LV remodeling in an animal model and in patients admitted for acute ST-elevation MI. METHODS AND RESULTS: Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF and non-transgenic littermate controls (NLC were subjected to permanent ligation of the left anterior descending coronary artery. Despite similar infarct size (area of infarction relative to area at risk 24 hours after ligation of the coronary artery in Tg-CTGF and NLC mice, Tg-CTGF mice disclosed smaller area of scar tissue, smaller increase of cardiac hypertrophy, and less LV dilatation and deterioration of LV function 4 weeks after MI. Tg-CTGF mice also revealed substantially reduced mortality after MI. Remote/peri-infarct tissue of Tg-CTGF mice contained reduced numbers of leucocytes, macrophages, and cells undergoing apoptosis as compared with NLC mice. In a cohort of patients with acute ST-elevation MI (n = 42 admitted to hospital for percutaneous coronary intervention (PCI serum-CTGF levels (s-CTGF were monitored and related to infarct size and LV function assessed by cardiac MRI. Increase in s-CTGF levels after MI was associated with reduced infarct size and improved LV ejection fraction one year after MI, as well as attenuated levels of CRP and GDF-15. CONCLUSION: Increased myocardial CTGF activities after MI are associated with attenuation of LV remodeling and improved LV function mediated by attenuation of inflammatory responses and inhibition of apoptosis.

  3. Cardiac conduction system

    Science.gov (United States)

    The cardiac conduction system is a group of specialized cardiac muscle cells in the walls of the heart that send signals to the ... contract. The main components of the cardiac conduction system are the SA node, AV node, bundle of ...

  4. Acute effect of static exercise in patients with aortic regurgitation assessed by cardiovascular magnetic resonance: role of left ventricular remodelling.

    Science.gov (United States)

    Alegret, Josep M; Martinez-Micaelo, Neus; La Gerche, Andre; Franco-Bonafonte, Luis; Rubio-Pérez, Francisco; Calvo, Nahum; Montero, Manuel

    2017-04-01

    In patients with aortic regurgitation (AR), the effect of static exercise (SE) on global ventricular function and AR severity has not been previously studied. Resting and SE cardiovascular magnetic resonance (CMR) were prospectively performed in 23 asymptomatic patients with AR. During SE, we observed a decrease in regurgitant volume in both end-diastolic (EDV) and end-systolic (ESV) volume in both ventricles, as well as a slight decrease in LV ejection fraction (EF). Interestingly, responses varied depending on the degree of LV remodelling. Among patients with a greater degree of LV remodelling, we observed a decrease in LVEF (56 ± 4 % at rest vs 48 ± 7 % during SE, p = 0.001) as a result of a lower decrease in LVESV (with respect to LVEDV. Among patients with a lower degree of LV remodelling, LVEF remained unchanged. RVEF remained unchanged in both groups. In patients with AR, SE provoked a reduction in preload, LV stroke volume, and regurgitant volume. In those patients with higher LV remodelling, we observed a decrease in LVEF, suggesting a lower LV contractile reserve. • In patients with aortic regurgitation, static exercise reduced preload volume. • In patients with aortic regurgitation, static exercise reduced stroke volume. • In patients with aortic regurgitation, static exercise reduced regurgitant volume. • In patients with greater remodelling, static exercise unmasked a lower contractile reserve. • Effect of static exercise on aortic regurgitation was assessed by cardiac MR.

  5. The dynamics of chromatin remodeling at promoters.

    Science.gov (United States)

    Mellor, Jane

    2005-07-22

    The nucleosome, the structural unit of chromatin, is known to play a central role in regulating gene transcription from promoters. The last seven years have spawned a vast amount of data on the enzymes that remodel and modify nucleosomes and the rules governing how transcription factors interact with the epigenetic code on histones. Yet despite this effort, there has yet to emerge a unifying mechanism by which nucleosomes are remodeled during gene regulation. Recent advances have allowed nucleosome dynamics on promoters to be studied in real time, dramatically changing how we think about gene regulation on chromatin templates.

  6. Soluble epoxide hydrolase inhibition exerts beneficial anti-remodeling actions post-myocardial infarction.

    Science.gov (United States)

    Kompa, Andrew R; Wang, Bing H; Xu, Guoying; Zhang, Yuan; Ho, Pei-Yu; Eisennagel, Stephen; Thalji, Reema K; Marino, Joseph P; Kelly, Darren J; Behm, David J; Krum, Henry

    2013-07-15

    A contributory role for soluble epoxide hydrolase (sEH) in cardiac remodeling post-myocardial infarction (MI) has been suggested; however effects of sEH inhibition following MI have not been evaluated. In this study, we examined in vivo post-MI anti-remodeling effects of a novel sEH inhibitor (GSK2188931B) in the rat, and evaluated its direct in vitro effects on hypertrophy, fibrosis and inflammation. Post-MI administered GSK2188931B (80 mg/kg/d in chow) for 5 weeks improved left ventricular (LV) ejection fraction compared to vehicle-treated (Veh) rats (P<0.01; Sham 65 ± 2%, MI+Veh 30 ± 2%, MI+GSK 43 ± 2%) without affecting systolic blood pressure. Percentage area of LV tissue sections stained positive for picrosirius red (PS) and collagen I (CI) were elevated in LV non-infarct zone (P<0.05; NIZ; PS: Sham 1.46 ± 0.13%, MI+Veh 2.14 ± 0.22%, MI+GSK 1.28 ± 0.14%; CI: Sham 2.57 ± 0.17%, MI+Veh 5.06 ± 0.58%, MI+GSK 2.97 ± 0.34%) and peri-infarct zone (P<0.001; PIZ; PS: Sham 1.46 ± 0.13%, MI+Veh 9.06 ± 0.48%, MI+GSK 6.31 ± 0.63%; CI: Sham 2.57±0.17%, MI+Veh 10.51 ± 0.64%, MI+GSK 7.77 ± 0.57%); GSK2188931B attenuated this increase (P<0.05). GSK2188931B reduced macrophage infiltration into the PIZ (P<0.05). GSK2188931B reduced AngII- and TNFα-stimulated myocyte hypertrophy, AngII- and TGFβ-stimulated cardiac fibroblast collagen synthesis, including markers of gene expression ANP, β-MHC, CTGF and CI (P<0.05). GSK2188931B reduced TNFα gene expression in lipopolysaccharide (LPS)-stimulated monocytes (P<0.05). sEH inhibition exerts beneficial effects on cardiac function and ventricular remodeling post-MI, and direct effects on fibrosis and hypertrophy in cardiac cells. These findings suggest that sEH is an important contributor to the pathological remodeling following MI, and may be a useful target for therapeutic blockade in this setting. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. In utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: Effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology

    Science.gov (United States)

    The mouse heart is a target of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during fetal development, and microarray analysis demonstrates significant changes in expression of cardiac genes involved in extracellular matrix (ECM) remodeling. We tested the hypothesis that developmental TCDD exposure wo...

  8. A rare case of aortic sinuses of valsalva fistula to multiple cardiac chambers secondary to periannular aortic abscess formation from underlying Brucella endocarditis

    Directory of Open Access Journals (Sweden)

    Sabzi, Feridoun

    2015-11-01

    Full Text Available The concomitant presence of abnormal connection from three aortic valsalva sinuses to cardiac chambers is a rare complication of native aortic endocarditis. This case report presents a 37-year-old Iranian female patient who had native aortic valve endocarditis complicated by periannular abscess formation and subsequent perforation to multi-cardiac chambers associated with congestive heart failure and left bundle branch block. Multiple aorto-cavitary fistulas to right atrium, main pulmonary artery, and formation of a pocket over left atrial roof were detected by transthoracic echocardiogram (TTE. She had received a full course of antibiotics therapy in a local hospital and was referred to our center for further surgery. TTE not only detected multiple aorto-cavitary fistulas but also revealed large vegetation in aortic and mitral valve leaflets and also small vegetation in the entrance of fistula to right atrium. However, the tricuspid valve was not involved in infective endocarditis. She underwent open cardiac surgery with double valve replacement with biologic valves and reconstruction of left sinus of valsalva fistula to supra left atrial pocket by pericardial patch repair. The two other fistulas to main pulmonary artery and right atrium were closed via related chambers. The post-operative course was complicated by renal failure and prolonged dependency to ventilator that was managed accordingly with peritoneal dialysis and tracheostomy. The patient was discharged on the 25 day after admission in relatively good condition. The TTE follow-up one year after discharge revealed mild paravalvular leakage in aortic valve position, but the function of mitral valve was normal and no residual fistulas were detected.

  9. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  10. Overview of cardiac markers in heart disease.

    Science.gov (United States)

    Jarolim, Petr

    2014-03-01

    Cardiac troponins I and T have been the cornerstone of diagnostics of acute coronary syndrome for almost 20 years. Natriuretic peptides have established themselves in heart failure during the last decade. These and additional promising biomarkers, such as ST-2, galectin-3, GDF-15, copeptin, midregional proadrenomedullin, and the markers of glomerular filtration rate and kidney injury, are reviewed in groups corresponding to the pathophysiological processes they probe--cardiomyocyte injury, myocyte stress, inflammation, oxidative stress, plaque instability, extracellular-matrix remodeling, or those markers grouped in the neurohormone category. Biomarkers linking the renal and cardiac functions and microRNAs and metabolomic markers are addressed as well. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets

    Science.gov (United States)

    Hou, Jianglong; Kang, Y. James

    2012-01-01

    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195

  12. G protein-coupled receptor kinase 2 promotes cardiac hypertrophy

    Science.gov (United States)

    Tscheschner, Henrike; Gao, Erhe; Schumacher, Sarah M.; Yuan, Ancai; Backs, Johannes; Most, Patrick; Wieland, Thomas; Koch, Walter J.; Katus, Hugo A.; Raake, Philip W.

    2017-01-01

    The increase in protein activity and upregulation of G-protein coupled receptor kinase 2 (GRK2) is a hallmark of cardiac stress and heart failure. Inhibition of GRK2 improved cardiac function and survival and diminished cardiac remodeling in various animal heart failure models. The aim of the present study was to investigate the effects of GRK2 on cardiac hypertrophy and dissect potential molecular mechanisms. In mice we observed increased GRK2 mRNA and protein levels following transverse aortic constriction (TAC). Conditional GRK2 knockout mice showed attenuated hypertrophic response with preserved ventricular geometry 6 weeks after TAC operation compared to wild-type animals. In isolated neonatal rat ventricular cardiac myocytes stimulation with angiotensin II and phenylephrine enhanced GRK2 expression leading to enhanced signaling via protein kinase B (PKB or Akt), consecutively inhibiting glycogen synthase kinase 3 beta (GSK3β), such promoting nuclear accumulation and activation of nuclear factor of activated T-cells (NFAT). Cardiac myocyte hypertrophy induced by in vitro GRK2 overexpression increased the cytosolic interaction of GRK2 and phosphoinositide 3-kinase γ (PI3Kγ). Moreover, inhibition of PI3Kγ as well as GRK2 knock down prevented Akt activation resulting in halted NFAT activity and reduced cardiac myocyte hypertrophy. Our data show that enhanced GRK2 expression triggers cardiac hypertrophy by GRK2-PI3Kγ mediated Akt phosphorylation and subsequent inactivation of GSK3β, resulting in enhanced NFAT activity. PMID:28759639

  13. Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets.

    Science.gov (United States)

    Hou, Jianglong; Kang, Y James

    2012-09-01

    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats

    OpenAIRE

    Hao, Jia; Kim, Chan-Hyung; Ha, Tae-Sun; Ahn, Hee-Yul

    2007-01-01

    Pressure overload diseases, such as valvular stenosis and systemic hypertension, manifest morphologically in patients as cardiac concentric hypertrophy. Prevention of cardiac remodeling due to increased pressure overload is important to reduce morbidity and mortality. Epigallocatechin-3 gallate (EGCG) is a major bioactive polyphenol present in green tea which has been found to be a nitric oxide-mediated vasorelaxant and to be cardioprotective in myocardial ischemia-reperfusion injury. Therefo...

  15. Genetic backgrounds determine brown remodeling of white fat in rodents

    Directory of Open Access Journals (Sweden)

    Giulia Ferrannini

    2016-10-01

    Conclusion: Rodent genetic background determines the brown remodeling of different white fat depots. This study provides new insights into the role of genetic variation in fat remodeling in susceptibility to metabolic diseases.

  16. Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts.

    Directory of Open Access Journals (Sweden)

    Raj Kishore

    Full Text Available Diabetes is associated with a higher incidence of myocardial infarction (MI and increased risk for adverse vascular and fibrogenic events post-MI. Bone marrow-derived progenitor cell (BMPC therapy has been shown to promote neovascularization, decrease infarct area and attenuate left ventricular (LV dysfunction after MI. Unlike vascular effects, the anti-fibrosis mechanisms of BMPC, specifically under diabetic conditions, are poorly understood. We demonstrated that intramyocardial delivery of BMPCs in infarcted diabetic db/db mice significantly down-regulates profibrotic miRNA-155 in the myocardium and improves LV remodeling and function. Furthermore, inhibition of paracrine factor hepatocyte growth factor (HGF signaling in vivo suppressed the BMPC-mediated inhibition of miR-155 expression and the associated protective effect on cardiac fibrosis and function. In vitro studies confirmed that the conditioned media of BMPC inhibited miR-155 expression and profibrotic signaling in mouse cardiac fibroblasts under diabetic conditions. However, neutralizing antibodies directed against HGF blocked these effects. Furthermore, miR-155 over-expression in mouse cardiac fibroblasts inhibited antifibrotic Sloan-Kettering Institute proto-oncogene (Ski and Ski-related novel gene, non-Alu-containing (SnoN signaling and abrogated antifibrogenic response of HGF. Together, our data demonstrates that paracrine regulation of cardiac miRNAs by transplanted BMPCs contributes to the antifibrotic effects of BMPC therapy. BMPCs release HGF, which inhibits miR-155-mediated profibrosis signaling, thereby preventing cardiac fibrosis. These data suggest that targeting miR-155 might serve as a potential therapy against cardiac fibrosis in the diabetic heart.

  17. Regulation of cardiac CACNB2 by microRNA-499: Potential role in atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Tian-You Ling

    2017-06-01

    Full Text Available The L-type calcium channel (LTCC is one of the major ion channels that are known to be associated with the electrical remodeling of atrial fibrillation (AF. In AF, there is significant downregulation of the LTCC, but the underlying mechanism for such downregulation is not clear. We have previously reported that microRNA-499 (miR-499 is significantly upregulated in patients with permanent AF and that KCNN3, the gene that encodes the small-conductance calcium-activated potassium channel 3 (SK3, is a target of miR-499. We found that CACNB2, an important subunit of the LTCC, is also a target of miR-499. We hypothesize that miR-499 plays an important role in AF electrical remodeling by regulating the expression of CACNB2 and the LTCC. In atrial tissue from patients with permanent AF, CACNB2 was significantly downregulated by 67% (n = 4, p < 0.05 compared to those from patients with no history of AF. Transfection of miR-499 mimic into HL-1 cells, a mouse hyperplastic atrial cardiac myocyte cell-line, resulted in the downregulation of CACNB2 protein expression, while that of miR-499 inhibitor upregulated CACNB2 protein expression. Binding of miR-499 to the 3′ untranslated region of CACNB2 was confirmed by luciferase reporter assay and by the increased presence of CACNB2 mRNA in Argonaute pulled-down microRNA-induced silencing complexes after transfection with the miR-499 mimic. In addition, downregulation of CACNB2 resulted in the downregulation of protein levels of the pore-forming α-subunit (CACNA1C. In conclusion, upregulation of atrial miR-499 induces the downregulation of CACNB2 expression and may contribute to the electrical remodeling in AF.

  18. Myeloperoxidase Mediates Postischemic Arrhythmogenic Ventricular Remodeling

    Czech Academy of Sciences Publication Activity Database

    Mollenhauer, M.; Friedrichs, K.; Lange, M.; Gesenberg, J.; Remane, L.; Kerkenpass, Ch.; Krause, J.; Schneider, J.; Ravekes, T.; Maass, M.; Halbach, M.; Peinkofer, G.; Saric, T.; Mehrkens, D.; Adam, M.; Deuschl, F.G.; Lau, D.; Geertz, B.; Manchanda, K.; Eschenhagen, T.; Kubala, Lukáš; Rudolph, T.K.; Wu, Y.; Tang, W.H.W.; Hazen, S.L.; Baldus, S.; Klinke, A.; Rudolph, V.

    2017-01-01

    Roč. 121, č. 1 (2017) ISSN 0009-7330 Grant - others:GA MŠk(CZ) LQ1605 Institutional support: RVO:68081707 Keywords : pluripotent stem-cells * sudden cardiac death Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery OBOR OECD: Cardiac and Cardiovascular systems Impact factor: 13.965, year: 2016

  19. The Prognostic Value of Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging in Nonischemic Dilated Cardiomyopathy: A Review and Meta-Analysis.

    Science.gov (United States)

    Becker, Marthe A J; Cornel, Jan H; van de Ven, Peter M; van Rossum, Albert C; Allaart, Cornelis P; Germans, Tjeerd

    2018-04-13

    This review and meta-analysis reviews the prognostic value of cardiac magnetic resonance (CMR) in nonischemic dilated cardiomyopathy (DCM). Late gadolinium-enhanced (LGE) CMR is a noninvasive method to determine the underlying cause of DCM and previous studies reported the prognostic value of the presence of LGE to identify patients at risk of major adverse cardiovascular events. PubMed was searched for studies describing the prognostic implication of LGE in patients with DCM for the specified endpoints cardiovascular mortality, major ventricular arrhythmic events including appropriate implantable cardioverter-defibrillator therapy, rehospitalization for heart failure, and left ventricular reverse remodeling. Data from 34 studies were included, with a total of 4,554 patients. Contrast enhancement was present in 44.8% of DCM patients. Patients with LGE had increased cardiovascular mortality (odds ratio [OR]: 3.40; 95% confidence interval [CI]: 2.04 to 5.67), ventricular arrhythmic events (OR: 4.52; 95% CI: 3.41 to 5.99), and rehospitalization for heart failure (OR: 2.66; 95% CI: 1.67 to 4.24) compared with those without LGE. Moreover, the absence of LGE predicted left ventricular reverse remodeling (OR: 0.15; 95% CI: 0.06 to 0.36). The presence of LGE on CMR substantially worsens prognosis for adverse cardiovascular events in DCM patients, and the absence indicates left ventricular reverse remodeling. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Biomechanical Remodeling of the Diabetic Gastrointestinal Tract

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Liao, Donghua; Yang, Jian

    2010-01-01

    several years, several studies demonstrated that experimental diabetes induces GI morphological and biomechanical remodeling. Following the development of diabetes, the GI wall becomes thicker and the stiffness of the GI wall increases in a time-dependent manner. It is well known that mechanosensitive...

  1. New predictive model for monitoring bone remodeling

    Czech Academy of Sciences Publication Activity Database

    Bougherara, H.; Klika, Václav; Maršík, František; Mařík, I.; Yahia, L.H.

    95A, č. 1 (2010), s. 9-24 ISSN 1549-3296 R&D Projects: GA ČR GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z20760514 Keywords : bone remodeling * open system thermodynamics * bone biochemistry Subject RIV: BJ - Thermodynamics Impact factor: 3.044, year: 2010

  2. Link between vitamin D and airway remodeling

    Directory of Open Access Journals (Sweden)

    Berraies A

    2014-04-01

    Full Text Available Anissa Berraies, Kamel Hamzaoui, Agnes HamzaouiPediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, TunisiaAbstract: In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma.Keywords: vitamin D, asthma, airway remodeling, airway smooth muscle, supplementation

  3. Small Artery Remodeling: Current Concepts and Questions

    NARCIS (Netherlands)

    van den Akker, Jeroen; Schoorl, Marieke J. C.; Bakker, Erik N. T. P.; VanBavel, Ed

    2010-01-01

    Blood flow regulation by small arteries and arterioles includes adaptation of both vascular tone and structure. It is becoming clear that tone and remodeling of resistance vessels are highly interrelated. Indeed, concepts pointing to continuous resistance artery adaptation and plasticity are

  4. Cardiac Regeneration and Stem Cells.

    Science.gov (United States)

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. Copyright © 2015 the American Physiological Society.

  5. Heart Valve Biomechanics and Underlying Mechanobiology

    Science.gov (United States)

    Ayoub, Salma; Ferrari, Giovanni; Gorman, Robert C.; Gorman, Joseph H.; Schoen, Frederick J.; Sacks, Michael S.

    2017-01-01

    Heart valves control unidirectional blood flow within the heart during the cardiac cycle. They have a remarkable ability to withstand the demanding mechanical environment of the heart, achieving lifetime durability by processes involving the ongoing remodeling of the extracellular matrix. The focus of this review is on heart valve functional physiology, with insights into the link between disease-induced alterations in valve geometry, tissue stress, and the subsequent cell mechanobiological responses and tissue remodeling. We begin with an overview of the fundamentals of heart valve physiology and the characteristics and functions of valve interstitial cells (VICs). We then provide an overview of current experimental and computational approaches that connect VIC mechanobiological response to organ- and tissue-level deformations and improve our understanding of the underlying functional physiology of heart valves. We conclude with a summary of future trends and offer an outlook for the future of heart valve mechanobiology, specifically, multiscale modeling approaches, and the potential directions and possible challenges of research development. PMID:27783858

  6. Age features of myocardial remodeling in men with ischemic chronic heart failure and renal dysfunction

    Directory of Open Access Journals (Sweden)

    D. A. Lashkul

    2014-04-01

    Full Text Available In recent years, medicine has faced the problem of "dual epidemic" of heart and kidney failure. Regardless of the degree of heart failure, chronic kidney disease increases the risk of death and cardiac decompensation. Left ventricular hypertrophy (LVH is a well known option of cardiac remodeling and it has higher prevalence among people with impaired renal function. Types of myocardial remodeling identify mortality risk of patients with cardiovascular complications. We know that gender and age are important risk factors for cardiovascular disease. However, in most studies structural remodeling of the myocardium was analyzed without sex and age characteristics. The aim of research is to study the age features of the formation of different types of myocardial remodeling in men with ischemic chronic heart failure and renal dysfunction. Materials and methods. To investigate the age characteristics of cardiac remodeling in men with ischemic chronic heart failure and renal dysfunction structural and functional remodeling of left ventricular myocardium was studied in 277 men (mean age 58,1±9,3 years using Doppler echocardiography. Depending on the glomerular filtration rate, patients were divided into 3 groups: 58 with normal GFR (>90 ml/min/1.73m2, 182 with a slight decrease in GFR (60-90 ml/min/1.73m2 and 37 with moderately reduced GFR (<60 ml/min/1.73m2. Echocardiography was performed using the General Electric VIVID 3 system (General Electric Healthcare, USA with the 2.5–3.5 MHz transducer and Doppler technique. Descriptive statistics are presented as mean±standard deviation for continuous variables and as percentages for categorical variables. Depending on the distribution of the analyzed parameters unpaired Student's t-test or U-Mann-Whitney test were used. Comparisons among all groups for baseline clinical variables were performed with the Pearson χ2 or Fisher exact test for categorical variables. Differences were considered reliable for

  7. Quantitative Positron Emission Tomography Imaging Detects Early Metabolic Remodeling in a Mouse Model of Pressure Overload Left Ventricular Hypertrophy in vivo

    Science.gov (United States)

    Zhong, Min; Alonso, Clayton E.; Taegtmeyer, Heinrich; Kundu, Bijoy K.

    2013-01-01

    We proposed that metabolic remodeling in the form of increased myocardial glucose analogue 2-[18F] fluoro-2deoxy-D-glucose (FDG) uptake precedes and triggers the onset of severe contractile dysfunction in pressure overload left ventricular hypertrophy (LVH) in vivo. To test this hypothesis we used a mouse model of transverse aortic constriction (TAC) together with Positron Emission Tomography (PET) and assessed serial changes in cardiac metabolism and function over 7 days. Methods PET scans of 16 C57BL/6 male mice were performed using a microPET scanner under sevofluorane anesthesia. A 10-minute transmission scan was followed by a 60-minute dynamic FDG-PET scan with cardiac and respiratory gating. Blood glucose levels were measured before and after the emission scan. Transverse aortic constriction (TAC) and sham surgeries were performed after baseline imaging. Osmotic mini-pumps containing either propranolol (5 mg/kg/day) or vehicle alone were implanted subcutaneously at the end of surgery. Subsequent scans were taken at days 1 and 7 after surgery. A compartment model, in which the blood input function with spill-over and partial volume corrections and the metabolic rate constants in a 3-compartment model are simultaneously estimated, was used to determine the net myocardial FDG influx constant, Ki. The rate of myocardial glucose use, rMGU, was also computed. Estimations of the ejection fractions (EF) were based on the high resolution gated PET images Results Mice undergoing TAC surgery exhibited an increase in the Ki (580%) and glucose usage the day after surgery indicating early adaptive response. On day 7 the EF had decreased by 24% indicating a maladaptive response. Average Ki increases were not linearly associated with increases in rMGU. Ki exceeded rMGU by 29% in the TAC mice. TAC Mice treated with propranolol attenuated rate of FDG uptake, diminished mismatch between Ki and rMGU (9%) and rescued cardiac function. Conclusions Metabolic maladaptation precedes

  8. Blood PGC-1α Concentration Predicts Myocardial Salvage and Ventricular Remodeling After ST-segment Elevation Acute Myocardial Infarction.

    Science.gov (United States)

    Fabregat-Andrés, Óscar; Ridocci-Soriano, Francisco; Estornell-Erill, Jordi; Corbí-Pascual, Miguel; Valle-Muñoz, Alfonso; Berenguer-Jofresa, Alberto; Barrabés, José A; Mata, Manuel; Monsalve, María

    2015-05-01

    Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a metabolic regulator induced during ischemia that prevents cardiac remodeling in animal models. The activity of PGC-1α can be estimated in patients with ST-segment elevation acute myocardial infarction. The aim of the present study was to evaluate the value of blood PGC-1α levels in predicting the extent of necrosis and ventricular remodeling after infarction. In this prospective study of 31 patients with a first myocardial infarction in an anterior location and successful reperfusion, PGC-1α expression in peripheral blood on admission and at 72 hours was correlated with myocardial injury, ventricular volume, and systolic function at 6 months. Edema and myocardial necrosis were estimated using cardiac magnetic resonance imaging during the first week. At 6 months, infarct size and ventricular remodeling, defined as an increase > 10% of the left ventricular end-diastolic volume, was evaluated by follow-up magnetic resonance imaging. Myocardial salvage was defined as the difference between the edema and necrosis areas. Greater myocardial salvage was seen in patients with detectable PGC-1α levels at admission (mean [standard deviation (SD)], 18.3% [5.3%] vs 4.5% [3.9%]; P = .04). Induction of PGC-1α at 72 hours correlated with greater ventricular remodeling (change in left ventricular end-diastolic volume at 6 months, 29.7% [11.2%] vs 1.2% [5.8%]; P = .04). Baseline PGC-1α expression and an attenuated systemic response after acute myocardial infarction are associated with greater myocardial salvage and predict less ventricular remodeling. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  9. Antifibrinolytics in cardiac surgery

    Directory of Open Access Journals (Sweden)

    Achal Dhir

    2013-01-01

    Full Text Available Cardiac surgery exerts a significant strain on the blood bank services and is a model example in which a multi-modal blood-conservation strategy is recommended. Significant bleeding during cardiac surgery, enough to cause re-exploration and/or blood transfusion, increases morbidity and mortality. Hyper-fibrinolysis is one of the important contributors to increased bleeding. This knowledge has led to the use of anti-fibrinolytic agents especially in procedures performed under cardiopulmonary bypass. Nothing has been more controversial in recent times than the aprotinin controversy. Since the withdrawal of aprotinin from the world market, the choice of antifibrinolytic agents has been limited to lysine analogues either tranexamic acid (TA or epsilon amino caproic acid (EACA. While proponents of aprotinin still argue against its non-availability. Health Canada has approved its use, albeit under very strict regulations. Antifibrinolytic agents are not without side effects and act like double-edged swords, the stronger the anti-fibrinolytic activity, the more serious the side effects. Aprotinin is the strongest in reducing blood loss, blood transfusion, and possibly, return to the operating room after cardiac surgery. EACA is the least effective, while TA is somewhere in between. Additionally, aprotinin has been implicated in increased mortality and maximum side effects. TA has been shown to increase seizure activity, whereas, EACA seems to have the least side effects. Apparently, these agents do not differentiate between pathological and physiological fibrinolysis and prevent all forms of fibrinolysis leading to possible thrombotic side effects. It would seem prudent to select the right agent knowing its risk-benefit profile for a given patient, under the given circumstances.

  10. The β3 Adrenergic Receptor Agonist BRL37344 Exacerbates Atrial Structural Remodeling Through iNOS Uncoupling in Canine Models of Atrial Fibrillation.

    Science.gov (United States)

    Wang, Xiaobing; Wang, Ruifeng; Liu, Guangzhong; Dong, Jingmei; Zhao, Guanqi; Tian, Jingpu; Sun, Jiayu; Jia, Xiuyue; Wei, Lin; Wang, Yuping; Li, Weimin

    2016-01-01

    The role of the β3-adrenergic receptor (β3-AR) agonist BRL37344 in atrial fibrillation (AF) structural remodeling and the underlying mechanisms as a therapeutic target were investigated. Four groups of dogs were evaluated: sham, pacing, β3-AR agonist BRL37344 (β3-AGO), and β3-AR antagonist L748337 (β3-ANT) groups. Dogs in the pacing, β3-AGO and β3-ANT groups were subjected to rapid atrial pacing for four weeks. Atrial structure and function, AF inducibility and duration, atrial myocyte apoptosis and interstitial fibrosis were assessed. Atrial superoxide anions were evaluated by fluorescence microscopy and colorimetric assays. Cardiac nitrate+nitrite levels were used to assess nitric oxide (NO) production. Protein and mRNA expression of β3-AR, neuronal NO synthase (nNOS), inducible NO synthase (iNOS), endothelial NO synthase (eNOS) and guanosine triphosphate cyclohydrolase-1 (GCH-1) as well as tetrahydrobiopterin (BH4) levels were measured. β3-AR was up-regulated in AF. Stimulation of β3-AR significantly increased atrial myocyte apoptosis, fibrosis and atrial dilatation, resulting in increased AF induction and prolonged duration. These effects were attenuated by β3-ANT. Moreover, β3-AGO reduced BH4 and NO production and increased superoxide production, which was inhibited by the specific iNOS inhibitor, 1400w β3-AGO also increased iNOS but decreased eNOS and had no effect on nNOS expression in AF. β3-AR stimulation resulted in atrial structural remodeling by increasing iNOS uncoupling and related oxidative stress. β3-AR up-regulation and iNOS uncoupling might be underlying AF therapeutic targets. © 2016 The Author(s) Published by S. Karger AG, Basel.

  11. Comparative Analysis of mRNA Isoform Expression in Cardiac Hypertrophy and Development Reveals Multiple Post-Transcriptional Regulatory Modules

    Science.gov (United States)

    Park, Ji Yeon; Li, Wencheng; Zheng, Dinghai; Zhai, Peiyong; Zhao, Yun; Matsuda, Takahisa; Vatner, Stephen F.; Sadoshima, Junichi; Tian, Bin

    2011-01-01

    Cardiac hypertrophy is enlargement of the heart in response to physiological or pathological stimuli, chiefly involving growth of myocytes in size rather than in number. Previous studies have shown that the expression pattern of a group of genes in hypertrophied heart induced by pressure overload resembles that at the embryonic stage of heart development, a phenomenon known as activation of the “fetal gene program”. Here, using a genome-wide approach we systematically defined genes and pathways regulated in short- and long-term cardiac hypertrophy conditions using mice with transverse aortic constriction (TAC), and compared them with those regulated at different stages of embryonic and postnatal development. In addition, exon-level analysis revealed widespread mRNA isoform changes during cardiac hypertrophy resulting from alternative usage of terminal or internal exons, some of which are also developmentally regulated and may be attributable to decreased expression of Fox-1 protein in cardiac hypertrophy. Genes with functions in certain pathways, such as cell adhesion and cell morphology, are more likely to be regulated by alternative splicing. Moreover, we found 3′UTRs of mRNAs were generally shortened through alternative cleavage and polyadenylation in hypertrophy, and microRNA target genes were generally de-repressed, suggesting coordinated mechanisms to increase mRNA stability and protein production during hypertrophy. Taken together, our results comprehensively delineated gene and mRNA isoform regulation events in cardiac hypertrophy and revealed their relations to those in development, and suggested that modulation of mRNA isoform expression plays an importance role in heart remodeling under pressure overload. PMID:21799842

  12. A mechanism for arteriolar remodeling based on maintenance of smooth muscle cell activation

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Mulvany, Michael John; Holstein-Rathlou, N.-H.

    2008-01-01

    , stress sensitivity of the vascular wall is a key element in the process of achieving a stable vascular structure. We address whether the adaptive changes in arterioles under different conditions can arise through a common mechanism: remodeling in a stress-sensitive wall driven by a shift in SMC...

  13. A Poly-ADP-Ribose Trigger Releases the Auto-Inhibition of a Chromatin Remodeling Oncogene

    DEFF Research Database (Denmark)

    Singh, Hari R; Nardozza, Aurelio P; Möller, Ingvar R

    2017-01-01

    DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain...... with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase......-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic...

  14. The Influence of Renal Alograft Function on Cardiovscular Status and Left Ventricular Remodelling

    Directory of Open Access Journals (Sweden)

    Jasminka Džemidžić

    2009-05-01

    Full Text Available The synergy and shared co-morbidity, certainly interplay between kidney and cardiovascular disease, where advanced renal failure influences on progression of cardiac disease in bi-direction relationship. Cardiovascular diseases are cause of death in almost 50% of uremic patients. Correction of uremia after successful renal transplantation leads to improved cardiovascular status in the maj ority of kidney transplanted patients. The aim of this study was an evaluation of the influence of renal allograft function on left ventricular remodelling in the first year after transplantation comparing echocardiographic findings before and twelve months after transplantation had been done. In retrospective-prospective study we followed up 30 patients with renal allograft in the first post transplant year. During the study values of serum creatinine and creatinine clearance were monthly monitored. Echocardiographic examination was done before transplantation and one year after the kidney transplantation. Results of our study showed that before transplantation 67% of patients had echocardiographic signs of left ventricular (LV hypertrophy, while 33% of patients had normal echocardiographic findings. After first post transplant year, 63% of patients showed normal view of LV and 37% remained with LV hypertrophy. Diastolic dysfunction of LV till the end of study had been reduced from 70% to 40% of patients. The positive echocardio-graphic remodelling of LV significantly correlated with the rise in creatinine clearance and with the reduction of the serum creatinine. These results confirm positive correlation between renal allograft functional status and remodelling of left ventricular hypertrophy after successful renal transplantation.

  15. Impact of Ejection Fraction on the Clinical Response to Cardiac Resynchronization Therapy in Mild Heart Failure

    DEFF Research Database (Denmark)

    Linde, Cecilia; Daubert, Claude; Abraham, William T

    2013-01-01

    Current guidelines recommend cardiac resynchronization therapy (CRT) in mild heart failure (HF) patients with QRS prolongation and ejection fraction (EF) ≤30%. To assess the effect of CRT in less severe systolic dysfunction, outcomes in the REsynchronization reVErses Remodeling in Systolic left v...

  16. Tricuspid annular plane systolic excursion and response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Kjaergaard, Jesper; Ghio, Stefano; St John Sutton, Martin

    2011-01-01

    The aims of this study were to evaluate tricuspid annular plane systolic excursion (TAPSE) as a predictor of left ventricular (LV) reverse remodeling and clinical benefit of cardiac synchronization therapy (CRT) and to evaluate the effect of CRT on TAPSE in patients with mildly symptomatic systol...

  17. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload

    NARCIS (Netherlands)

    Shimano, Masayuki; Ouchi, Noriyuki; Nakamura, Kazuto; van Wijk, Bram; Ohashi, Koji; Asaumi, Yasuhide; Higuchi, Akiko; Pimentel, David R.; Sam, Flora; Murohara, Toyoaki; van den Hoff, Maurice J. B.; Walsh, Kenneth

    2011-01-01

    Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial

  18. Sudden cardiac arrest risk in young athletes | Gradidge | South ...

    African Journals Online (AJOL)

    Underlying cardiac abnormalities are the main cause of unexpected death in athletes on field. These abnormalities have been associated with a previous history of syncope, a family history of sudden cardiac arrest (SCA), cardiac murmur, a history of over-exhaustion post exercise and ventricular tachyarrhythmia during ...

  19. PDK4 Inhibits Cardiac Pyruvate Oxidation in Late Pregnancy.

    Science.gov (United States)

    Liu, Laura X; Rowe, Glenn C; Yang, Steven; Li, Jian; Damilano, Federico; Chan, Mun Chun; Lu, Wenyun; Jang, Cholsoon; Wada, Shogo; Morley, Michael; Hesse, Michael; Fleischmann, Bernd K; Rabinowitz, Joshua D; Das, Saumya; Rosenzweig, Anthony; Arany, Zoltan

    2017-12-08

    Pregnancy profoundly alters maternal physiology. The heart hypertrophies during pregnancy, but its metabolic adaptations, are not well understood. To determine the mechanisms underlying cardiac substrate use during pregnancy. We use here 13 C glucose, 13 C lactate, and 13 C fatty acid tracing analyses to show that hearts in late pregnant mice increase fatty acid uptake and oxidation into the tricarboxylic acid cycle, while reducing glucose and lactate oxidation. Mitochondrial quantity, morphology, and function do not seem altered. Insulin signaling seems intact, and the abundance and localization of the major fatty acid and glucose transporters, CD36 (cluster of differentiation 36) and GLUT4 (glucose transporter type 4), are also unchanged. Rather, we find that the pregnancy hormone progesterone induces PDK4 (pyruvate dehydrogenase kinase 4) in cardiomyocytes and that elevated PDK4 levels in late pregnancy lead to inhibition of PDH (pyruvate dehydrogenase) and pyruvate flux into the tricarboxylic acid cycle. Blocking PDK4 reverses the metabolic changes seen in hearts in late pregnancy. Taken together, these data indicate that the hormonal environment of late pregnancy promotes metabolic remodeling in the heart at the level of PDH, rather than at the level of insulin signaling. © 2017 American Heart Association, Inc.

  20. [Sodium restriction prevents cardiovascular remodeling associated with insulin-resistance in the rat].

    Science.gov (United States)

    Rugale, C; Oudot, C; Desmetz, C; Guzman, C; Lajoix, A; Jover, B

    2013-06-01

    In the present work, the objective was to evaluate the influence of a dietary sodium restriction on cardiovascular morphology changes associated with insulin-resistance. At 8 weeks of age, rats were fed for 12 weeks a 60%-fructose diet containing a regular sodium content (0.64%) or totally lacking in sodium chloride (resistance in fructose-fed rats. Concomitantly, an increase in cardiac mass and in cardiac collagen (Sirius red staining) was detected without obvious change in arterial pressure or cardiac aldosterone synthase mRNA expression. In addition, cross-sectional area of the carotid artery was higher in fructose-fed rats. Production of superoxide anion, equated with dihydroethidium (DHE) staining, was enhanced in cardiac tissue of rats with insulin-resistance. Withdrawal of sodium from the fructose diet prevented all the cardiovascular effects of fructose consumption, including DHE staining. These results are in favor of the participation of oxidative stress normalization in the beneficial influence of dietary sodium deprivation on cardiovascular remodeling in this model of insulin-resistance in rats. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Modulation of the transducer function of Na+,K+-ATPase: new mechanism of heart remodeling.

    Science.gov (United States)

    Lopatina, Ekaterina V; Kipenko, Anna V; Pasatetskaya, Natalia A; Penniyaynen, Valentina A; Krylov, Boris V

    2016-10-01

    Endogenous digitalis-like factors were found in the mammalian and human blood. It was the starting point for the elucidation of the new non-pumping function of the Na + ,K + -ATPase. It was previously well known that Na + ,K + -ATPase is a pharmacological target receptor for cardiac glycosides (J.C. Skou. 1957. Biochim. Biophys. Acta, 23: 394-401). We have investigated the trophotropic effects of such agents as ouabain, epinephrine, norepinephrine, atenolol, and comenic acid using the organotypic tissue culture combined with the reconstruction of optical cross sections and confocal microscopy. It was shown that the growth zone of organotypic culture forms a multidimensional structure. Our results indicate that the cardiac glycoside ouabain applied in endogenous concentrations (10 -8 , 10 -10 mol/L) can modulate transducer function of Na + ,K + -ATPase and control the cell growth and proliferation. It was also shown that Src-kinase is involved in "endogenous" ouabain activated intracellular pathways as a series unit. Epinephrine (10 -9 -10 -14 mol/L) and comenic acid (10 -6 -10 -10 mol/L) were demonstrated to modulate the growth of 10- to 12-day-old chicken embryo cardiac tissue explants in a dose-dependent manner. Epinephrine and comenic acid regulate growth and proliferation of the cardiac tissue via receptor-mediated modulation Na + ,K + -ATPase as a signal transducer. The trophotropic effects of the investigated agents specifically control the heart remodeling phenomenon.

  2. Cardiovascular magnetic resonance characterization of peri-infarct zone remodeling following myocardial infarction

    Directory of Open Access Journals (Sweden)

    Schuleri Karl H

    2012-04-01

    Full Text Available Abstract Background Clinical studies implementing late gadolinium-enhanced (LGE cardiovascular magnetic resonance (CMR studies suggest that the peri-infarct zone (PIZ contains a mixture of viable and non-viable myocytes, and is associated with greater susceptibility to ventricular tachycardia induction and adverse cardiac outcomes. However, CMR data assessing the temporal formation and functional remodeling characteristics of this complex region are limited. We intended to characterize early temporal changes in scar morphology and regional function in the PIZ. Methods and results CMR studies were performed at six time points up to 90 days after induction of myocardial infarction (MI in eight minipigs with reperfused, anterior-septal infarcts. Custom signal density threshold algorithms, based on the remote myocardium, were applied to define the infarct core and PIZ region for each time point. After the initial post-MI edema subsided, the PIZ decreased by 54% from day 10 to day 90 (p = 0.04. The size of infarct scar expanded by 14% and thinned by 56% from day 3 to 12 weeks (p = 0.004 and p p Conclusions The PIZ is dynamic and decreases in mass following reperfused MI. Tensile forces in the PIZ undergo changes following MI. Remodeling characteristics of the PIZ may provide mechanistic insights into the development of life-threatening arrhythmias and sudden cardiac death post-MI.

  3. ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference

    Science.gov (United States)

    Dann, Geoffrey P.; Liszczak, Glen P.; Bagert, John D.; Müller, Manuel M.; Nguyen, Uyen T. T.; Wojcik, Felix; Brown, Zachary Z.; Bos, Jeffrey; Panchenko, Tatyana; Pihl, Rasmus; Pollock, Samuel B.; Diehl, Katharine L.; Allis, C. David; Muir, Tom W.

    2018-01-01

    ATP-dependent chromatin remodellers regulate access to genetic information by controlling nucleosome positions in vivo1. However, the mechanism by which remodellers discriminate between different nucleosome substrates is poorly understood. Many chromatin remodelling proteins possess conserved protein domains that interact with nucleosomal features2. Here we used a quantitative high-throughput approach, based on the use of a DNA-barcoded mononucleosome library, to profile the biochemical activity of human ISWI family remodellers in response to a diverse set of nucleo