WorldWideScience

Sample records for underlie human diseases

  1. Disease Stage-Dependent Changes in Cardiac Contractile Performance and Oxygen Utilization Underlie Reduced Myocardial Efficiency in Human Inherited Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Güçlü, Ahmet; Knaapen, Paul; Harms, Hendrik J; Parbhudayal, Rahana Y; Michels, Michelle; Lammertsma, Adriaan A; van Rossum, Albert C; Germans, Tjeerd; van der Velden, Jolanda

    2017-05-01

    Reduced myocardial efficiency represents a target for therapy in hypertrophic cardiomyopathy although therapeutic benefit may depend on disease stage. Here, we determined disease stage-dependent changes in myocardial efficiency and effects of myectomy surgery. Myocardial external efficiency (MEE) was determined in 27 asymptomatic mutation carriers (genotype positive/phenotype negative), 10 patients with hypertrophic obstructive cardiomyopathy (HOCM), 10 patients with aortic valve stenosis, and 14 healthy individuals using [ 11 C]-acetate positron emission tomography and cardiovascular magnetic resonance imaging. Follow-up measurements were performed in HOCM and aortic valve stenosis patients 4 months after surgery. External work did not differ in HOCM compared with controls, whereas myocardial oxygen consumption was lower in HOCM. Because of a higher cardiac mass, total cardiac oxygen consumption was significantly higher in HOCM than in controls and genotype positive/phenotype negative. MEE was significantly lower in genotype positive/phenotype negative than in controls (28±6% versus 42±6%) and was further decreased in HOCM (22±5%). In contrast to patients with aortic valve stenosis, MEE was not improved in patients with HOCM after surgery, which was explained by opposite changes in the septum (decrease) and lateral (increase) wall. Different mechanisms underlie reduced MEE at the early and advanced stage of hypertrophic cardiomyopathy. The initial increase and subsequent reduction in myocardial oxygen consumption during disease progression indicates that energy deficiency is a primary mutation-related event, whereas mechanisms secondary to disease remodeling underlie low MEE in HOCM. Our data highlight that the benefit of therapies to improve energetic status of the heart may vary depending on the disease stage and that treatment should be initiated before cardiac remodeling. © 2017 American Heart Association, Inc.

  2. Deficiency in the Heat Stress Response Could Underlie Susceptibility to Metabolic Disease.

    Science.gov (United States)

    Rogers, Robert S; Morris, E Matthew; Wheatley, Joshua L; Archer, Ashley E; McCoin, Colin S; White, Kathleen S; Wilson, David R; Meers, Grace M E; Koch, Lauren G; Britton, Steven L; Thyfault, John P; Geiger, Paige C

    2016-11-01

    Heat treatment (HT) effectively prevents insulin resistance and glucose intolerance in rats fed a high-fat diet (HFD). The positive metabolic actions of heat shock protein 72 (HSP72), which include increased oxidative capacity and enhanced mitochondrial function, underlie the protective effects of HT. The purpose of this study was to test the ability of HSP72 induction to mitigate the effects of consumption of a short-term 3-day HFD in rats selectively bred to be low-capacity runners (LCRs) and high-capacity runners (HCRs)-selective breeding that results in disparate differences in intrinsic aerobic capacity. HCR and LCR rats were fed a chow or HFD for 3 days and received a single in vivo HT (41°C, for 20 min) or sham treatment (ST). Blood, skeletal muscles, liver, and adipose tissues were harvested 24 h after HT/ST. HT decreased blood glucose levels, adipocyte size, and triglyceride accumulation in liver and muscle and restored insulin sensitivity in glycolytic muscles from LCR rats. As expected, HCR rats were protected from the HFD. Importantly, HSP72 induction was decreased in LCR rats after only 3 days of eating the HFD. Deficiency in the highly conserved stress response mediated by HSPs could underlie susceptibility to metabolic disease with low aerobic capacity. © 2016 by the American Diabetes Association.

  3. Complex epithelial remodeling underlie the fusion event in early fetal development of the human penile urethra.

    Science.gov (United States)

    Shen, Joel; Overland, Maya; Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence

    We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. Copyright © 2016 International Society

  4. Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases

    Science.gov (United States)

    Mattis, Paul J.; Niethammer, Martin; Sako, Wataru; Tang, Chris C.; Nazem, Amir; Gordon, Marc L.; Brandt, Vicky; Dhawan, Vijay

    2016-01-01

    Objective: To determine whether cognitive impairment in Parkinson disease (PD) and Alzheimer disease (AD) derives from the same network pathology. Methods: We analyzed 18F-fluorodeoxyglucose PET scans from 40 patients with AD and 40 age-matched healthy controls from the Alzheimer’s Disease Neuroimaging Initiative and scanned an additional 10 patients with AD and 10 healthy controls at The Feinstein Institute for Medical Research to derive an AD-related metabolic pattern (ADRP) analogous to our previously established PD cognition-related pattern (PDCP) and PD motor-related pattern (PDRP). We computed individual subject expression values for ADRP and PDCP in 89 patients with PD and correlated summary scores for cognitive functioning with network expression. We also evaluated changes in ADRP and PDCP expression in a separate group of 15 patients with PD scanned serially over a 4-year period. Results: Analysis revealed a significant AD-related metabolic topography characterized by covarying metabolic reductions in the hippocampus, parahippocampal gyrus, and parietal and temporal association regions. Expression of ADRP, but not PDCP, was elevated in both AD groups and correlated with worse cognitive summary scores. Patients with PD showed slight ADRP expression, due to topographic overlap with the network underlying PD motor-related pattern degeneration, but only their PDCP expression values increased as cognitive function and executive performance declined. Longitudinal data in PD disclosed an analogous dissociation of network expression. Conclusions: Cognitive dysfunction in PD is associated with a specific brain network that is largely spatially and functionally distinct from that seen in relation to AD. PMID:27708130

  5. Statistical Learning and Adaptive Decision-Making Underlie Human Response Time Variability in Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Ning eMa

    2015-08-01

    Full Text Available Response time (RT is an oft-reported behavioral measure in psychological and neurocognitive experiments, but the high level of observed trial-to-trial variability in this measure has often limited its usefulness. Here, we combine computational modeling and psychophysics to examine the hypothesis that fluctuations in this noisy measure reflect dynamic computations in human statistical learning and corresponding cognitive adjustments. We present data from the stop-signal task, in which subjects respond to a go stimulus on each trial, unless instructed not to by a subsequent, infrequently presented stop signal. We model across-trial learning of stop signal frequency, P(stop, and stop-signal onset time, SSD (stop-signal delay, with a Bayesian hidden Markov model, and within-trial decision-making with an optimal stochastic control model. The combined model predicts that RT should increase with both expected P(stop and SSD. The human behavioral data (n=20 bear out this prediction, showing P(stop and SSD both to be significant, independent predictors of RT, with P(stop being a more prominent predictor in 75% of the subjects, and SSD being more prominent in the remaining 25%. The results demonstrate that humans indeed readily internalize environmental statistics and adjust their cognitive/behavioral strategy accordingly, and that subtle patterns in RT variability can serve as a valuable tool for validating models of statistical learning and decision-making. More broadly, the modeling tools presented in this work can be generalized to a large body of behavioral paradigms, in order to extract insights about cognitive and neural processing from apparently quite noisy behavioral measures. We also discuss how this behaviorally validated model can then be used to conduct model-based analysis of neural data, in order to help identify specific brain areas for representing and encoding key computational quantities in learning and decision-making.

  6. How can physics underlie the mind? top-down causation in the human context

    CERN Document Server

    Ellis, George

    2016-01-01

    Physics underlies all complexity, including our own existence: how is this possible? How can our own lives emerge from interactions of electrons, protons, and neutrons? This book considers the interaction of physical and non-physical causation in complex systems such as living beings, and in particular in the human brain, relating this to the emergence of higher levels of complexity with real causal powers. In particular it explores the idea of top-down causation, which is the key effect allowing the emergence of true complexity and also enables the causal efficacy of non-physical entities, including the value of money, social conventions, and ethical choices.

  7. Different Signal Enhancement Pathways of Attention and Consciousness Underlie Perception in Humans.

    Science.gov (United States)

    van Boxtel, Jeroen J A

    2017-06-14

    It is not yet known whether attention and consciousness operate through similar or largely different mechanisms. Visual processing mechanisms are routinely characterized by measuring contrast response functions (CRFs). In this report, behavioral CRFs were obtained in humans (both males and females) by measuring afterimage durations over the entire range of inducer stimulus contrasts to reveal visual mechanisms behind attention and consciousness. Deviations relative to the standard CRF, i.e., gain functions, describe the strength of signal enhancement, which were assessed for both changes due to attentional task and conscious perception. It was found that attention displayed a response-gain function, whereas consciousness displayed a contrast-gain function. Through model comparisons, which only included contrast-gain modulations, both contrast-gain and response-gain effects can be explained with a two-level normalization model, in which consciousness affects only the first level and attention affects only the second level. These results demonstrate that attention and consciousness can effectively show different gain functions because they operate through different signal enhancement mechanisms. SIGNIFICANCE STATEMENT The relationship between attention and consciousness is still debated. Mapping contrast response functions (CRFs) has allowed (neuro)scientists to gain important insights into the mechanistic underpinnings of visual processing. Here, the influence of both attention and consciousness on these functions were measured and they displayed a strong dissociation. First, attention lowered CRFs, whereas consciousness raised them. Second, attention manifests itself as a response-gain function, whereas consciousness manifests itself as a contrast-gain function. Extensive model comparisons show that these results are best explained in a two-level normalization model in which consciousness affects only the first level, whereas attention affects only the second level

  8. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain.

    Directory of Open Access Journals (Sweden)

    Hannah Verdin

    Full Text Available Genomic disorders are often caused by recurrent copy number variations (CNVs, with nonallelic homologous recombination (NAHR as the underlying mechanism. Recently, several microhomology-mediated repair mechanisms--such as microhomology-mediated end-joining (MMEJ, fork stalling and template switching (FoSTeS, microhomology-mediated break-induced replication (MMBIR, serial replication slippage (SRS, and break-induced SRS (BISRS--were described in the etiology of non-recurrent CNVs in human disease. In addition, their formation may be stimulated by genomic architectural features. It is, however, largely unexplored to what extent these mechanisms contribute to rare, locus-specific pathogenic CNVs. Here, fine-mapping of 42 microdeletions of the FOXL2 locus, encompassing FOXL2 (32 or its regulatory domain (10, serves as a model for rare, locus-specific CNVs implicated in genetic disease. These deletions lead to blepharophimosis syndrome (BPES, a developmental condition affecting the eyelids and the ovary. For breakpoint mapping we used targeted array-based comparative genomic hybridization (aCGH, quantitative PCR (qPCR, long-range PCR, and Sanger sequencing of the junction products. Microhomology, ranging from 1 bp to 66 bp, was found in 91.7% of 24 characterized breakpoint junctions, being significantly enriched in comparison with a random control sample. Our results show that microhomology-mediated repair mechanisms underlie at least 50% of these microdeletions. Moreover, genomic architectural features, like sequence motifs, non-B DNA conformations, and repetitive elements, were found in all breakpoint regions. In conclusion, the majority of these microdeletions result from microhomology-mediated mechanisms like MMEJ, FoSTeS, MMBIR, SRS, or BISRS. Moreover, we hypothesize that the genomic architecture might drive their formation by increasing the susceptibility for DNA breakage or promote replication fork stalling. Finally, our locus-centered study

  9. Does Animal Behavior Underlie Covariation Between Hosts' Exposure to Infectious Agents and Susceptibility to Infection? Implications for Disease Dynamics

    NARCIS (Netherlands)

    Hawley, Dana M.; Etienne, Rampal S.; Ezenwa, Vanessa O.; Jolles, Anna E.

    2011-01-01

    Animal behavior is unique in influencing both components of the process of transmission of disease: exposure to infectious agents, and susceptibility to infection once exposed. To date, the influence of behavior on exposure versus susceptibility has largely been considered separately. Here, we ask

  10. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    Directory of Open Access Journals (Sweden)

    Shigetoshi eTakaya

    2015-09-01

    Full Text Available The arcuate fasciculus (AF in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca’s area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homologue of Broca’s area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca’s area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca’s area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca’s area, coordinates the cortical activity in these remote cortices during a semantic decision task. The unique feature of the left AF is discussed in the context of the human capacity for language.

  11. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain.

    Science.gov (United States)

    Takaya, Shigetoshi; Kuperberg, Gina R; Liu, Hesheng; Greve, Douglas N; Makris, Nikos; Stufflebeam, Steven M

    2015-01-01

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that the left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. The unique feature of the left AF is discussed in the context of the human capacity for language.

  12. Increased Laforin and Laforin Binding to Glycogen Underlie Lafora Body Formation in Malin-deficient Lafora Disease*

    Science.gov (United States)

    Tiberia, Erica; Turnbull, Julie; Wang, Tony; Ruggieri, Alessandra; Zhao, Xiao-Chu; Pencea, Nela; Israelian, Johan; Wang, Yin; Ackerley, Cameron A.; Wang, Peixiang; Liu, Yan; Minassian, Berge A.

    2012-01-01

    The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen. PMID:22669944

  13. Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4.

    Science.gov (United States)

    Newton, J M; Cohen-Barak, O; Hagiwara, N; Gardner, J M; Davisson, M T; King, R A; Brilliant, M H

    2001-11-01

    Oculocutaneous albinism (OCA) affects approximately 1/20,000 people worldwide. All forms of OCA exhibit generalized hypopigmentation. Reduced pigmentation during eye development results in misrouting of the optic nerves, nystagmus, alternating strabismus, and reduced visual acuity. Loss of pigmentation in the skin leads to an increased risk for skin cancer. Two common forms and one infrequent form of OCA have been described. OCA1 (MIM 203100) is associated with mutations of the TYR gene encoding tyrosinase (the rate-limiting enzyme in the production of melanin pigment) and accounts for approximately 40% of OCA worldwide. OCA2 (MIM 203200), the most common form of OCA, is associated with mutations of the P gene and accounts for approximately 50% of OCA worldwide. OCA3 (MIM 203290), a rare form of OCA and also known as "rufous/red albinism," is associated with mutations in TYRP1 (encoding tyrosinase-related protein 1). Analysis of the TYR and P genes in patients with OCA suggests that other genes may be associated with OCA. We have identified the mouse underwhite gene (uw) and its human orthologue, which underlies a new form of human OCA, termed "OCA4." The encoded protein, MATP (for "membrane-associated transporter protein") is predicted to span the membrane 12 times and likely functions as a transporter.

  14. Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study.

    Science.gov (United States)

    Recasens, Marc; Leung, Sumie; Grimm, Sabine; Nowak, Rafal; Escera, Carles

    2015-03-01

    The formation of echoic memory traces has traditionally been inferred from the enhanced responses to its deviations. The mismatch negativity (MMN), an auditory event-related potential (ERP) elicited between 100 and 250ms after sound deviation is an indirect index of regularity encoding that reflects a memory-based comparison process. Recently, repetition positivity (RP) has been described as a candidate ERP correlate of direct memory trace formation. RP consists of repetition suppression and enhancement effects occurring in different auditory components between 50 and 250ms after sound onset. However, the neuronal generators engaged in the encoding of repeated stimulus features have received little interest. This study intends to investigate the neuronal sources underlying the formation and strengthening of new memory traces by employing a roving-standard paradigm, where trains of different frequencies and different lengths are presented randomly. Source generators of repetition enhanced (RE) and suppressed (RS) activity were modeled using magnetoencephalography (MEG) in healthy subjects. Our results show that, in line with RP findings, N1m (~95-150ms) activity is suppressed with stimulus repetition. In addition, we observed the emergence of a sustained field (~230-270ms) that showed RE. Source analysis revealed neuronal generators of RS and RE located in both auditory and non-auditory areas, like the medial parietal cortex and frontal areas. The different timing and location of neural generators involved in RS and RE points to the existence of functionally separated mechanisms devoted to acoustic memory-trace formation in different auditory processing stages of the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Human Environmental Disease Network

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Audouze, Karine

    2017-01-01

    by computational biology. We developed a human environmental disease network (EDN) to explore and suggest novel disease-disease and chemical-disease relationships. The presented scored EDN model is built upon the integration on systems biology and chemical toxicology using chemical contaminants information......During the past decades, many epidemiological, toxicological and biological studies have been performed to assess the role of environmental chemicals as potential toxicants for diverse human disorders. However, the relationships between diseases based on chemical exposure have been rarely studied...

  16. Global biogeography of human infectious diseases.

    Science.gov (United States)

    Murray, Kris A; Preston, Nicholas; Allen, Toph; Zambrana-Torrelio, Carlos; Hosseini, Parviez R; Daszak, Peter

    2015-10-13

    The distributions of most infectious agents causing disease in humans are poorly resolved or unknown. However, poorly known and unknown agents contribute to the global burden of disease and will underlie many future disease risks. Existing patterns of infectious disease co-occurrence could thus play a critical role in resolving or anticipating current and future disease threats. We analyzed the global occurrence patterns of 187 human infectious diseases across 225 countries and seven epidemiological classes (human-specific, zoonotic, vector-borne, non-vector-borne, bacterial, viral, and parasitic) to show that human infectious diseases exhibit distinct spatial grouping patterns at a global scale. We demonstrate, using outbreaks of Ebola virus as a test case, that this spatial structuring provides an untapped source of prior information that could be used to tighten the focus of a range of health-related research and management activities at early stages or in data-poor settings, including disease surveillance, outbreak responses, or optimizing pathogen discovery. In examining the correlates of these spatial patterns, among a range of geographic, epidemiological, environmental, and social factors, mammalian biodiversity was the strongest predictor of infectious disease co-occurrence overall and for six of the seven disease classes examined, giving rise to a striking congruence between global pathogeographic and "Wallacean" zoogeographic patterns. This clear biogeographic signal suggests that infectious disease assemblages remain fundamentally constrained in their distributions by ecological barriers to dispersal or establishment, despite the homogenizing forces of globalization. Pathogeography thus provides an overarching context in which other factors promoting infectious disease emergence and spread are set.

  17. Linking Microbiota to Human Diseases

    DEFF Research Database (Denmark)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, F

    2015-01-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2...

  18. in Human Liver Diseases

    Directory of Open Access Journals (Sweden)

    Minoru Fujimoto

    2010-01-01

    Full Text Available Toll-like receptor (TLR signaling pathways are strictly coordinated by several mechanisms to regulate adequate innate immune responses. Recent lines of evidence indicate that the suppressor of cytokine signaling (SOCS family proteins, originally identified as negative-feedback regulators in cytokine signaling, are involved in the regulation of TLR-mediated immune responses. SOCS1, a member of SOCS family, is strongly induced upon TLR stimulation. Cells lacking SOCS1 are hyperresponsive to TLR stimulation. Thus, SOCS1 is an important regulator for both cytokine and TLR-induced responses. As an immune organ, the liver contains various types of immune cells such as T cells, NK cells, NKT cells, and Kupffer cells and is continuously challenged with gut-derived bacterial and dietary antigens. SOCS1 may be implicated in pathophysiology of the liver. The studies using SOCS1-deficient mice revealed that endogenous SOCS1 is critical for the prevention of liver diseases such as hepatitis, cirrhosis, and cancers. Recent studies on humans suggest that SOCS1 is involved in the development of various liver disorders in humans. Thus, SOCS1 and other SOCS proteins are potential targets for the therapy of human liver diseases.

  19. Blood flow patterns underlie developmental heart defects.

    Science.gov (United States)

    Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2017-03-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Copyright © 2017 the American Physiological Society.

  20. Genetic Mapping in Human Disease

    OpenAIRE

    Altshuler, David; Daly, Mark J.; Lander, Eric S.

    2008-01-01

    Genetic mapping provides a powerful approach to identify genes and biological processes underlying any trait influenced by inheritance, including human diseases. We discuss the intellectual foundations of genetic mapping of Mendelian and complex traits in humans, examine lessons emerging from linkage analysis of Mendelian diseases and genome-wide association studies of common diseases, and discuss questions and challenges that lie ahead.

  1. Genetic regulation of human brain development: lessons from Mendelian diseases.

    Science.gov (United States)

    Dixon-Salazar, Tracy J; Gleeson, Joseph G

    2010-12-01

    One of the fundamental goals in human genetics is to link gene function to phenotype, yet the function of the majority of the genes in the human body is still poorly understood. This is especially true for the developing human brain. The study of human phenotypes that result from inherited, mutated alleles is the most direct evidence for the requirement of a gene in human physiology. Thus, the study of Mendelian central nervous system (CNS) diseases can be an extremely powerful approach to elucidate such phenotypic/genotypic links and to increase our understanding of the key components required for development of the human brain. In this review, we highlight examples of how the study of inherited neurodevelopmental disorders contributes to our knowledge of both the "normal" and diseased human brain, as well as elaborate on the future of this type of research. Mendelian disease research has been, and will continue to be, key to understanding the molecular mechanisms that underlie human brain function, and will ultimately form a basis for the design of intelligent, mechanism-specific treatments for nervous system disorders. © 2010 New York Academy of Sciences.

  2. Soil Borne Human Diseases

    NARCIS (Netherlands)

    Jeffery, Simon; Van der Putten, Wim H.

    2011-01-01

    Soils are home to a remarkable array of biodiversity with some estimates stating that 25% of the Earth’s species find their home in the soil. Of these organisms, the vast majority are not of any threat to human health, but rather function to provide numerous ecosystem services which emerge through

  3. Influenza as a human disease

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Influenza as a human disease. Commonly perceived as a mild disease, affects every one, sometimes a couple of times in a year. Globally, seasonal influenza epidemics result in about three to five million yearly cases of severe illness and about 250,000 to 500,000 yearly ...

  4. Human communicable diseases

    International Nuclear Information System (INIS)

    2003-01-01

    The rising incidence of malaria and tuberculosis in sub-Saharan Africa is causing great hardship, not only to the individuals affected but also to the economies of the countries where they are rife. Both diseases are becoming more resistant to the drugs that are currently available for treatment and drug resistant strains are posing a global threat. The International Atomic Energy Agency (IAEA) is responding by sponsoring a programme to build technical competency in molecular and radioisotope-based techniques. (IAEA)

  5. Viral diseases and human evolution

    OpenAIRE

    Leal, Elcio de Souza [UNIFESP; Zanotto, Paolo Marinho de Andrade [UNIFESP

    2000-01-01

    The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish l...

  6. Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST.

    Science.gov (United States)

    Bhattacharjee, Anukana; Wang, Yongyao; Diao, Jiajie; Price, Carolyn M

    2017-12-01

    Human CST (CTC1-STN1-TEN1) is a ssDNA-binding complex that helps resolve replication problems both at telomeres and genome-wide. CST resembles Replication Protein A (RPA) in that the two complexes harbor comparable arrays of OB-folds and have structurally similar small subunits. However, the overall architecture and functions of CST and RPA are distinct. Currently, the mechanism underlying CST action at diverse replication issues remains unclear. To clarify CST mechanism, we examined the capacity of CST to bind and resolve DNA structures found at sites of CST activity. We show that CST binds preferentially to ss-dsDNA junctions, an activity that can explain the incremental nature of telomeric C-strand synthesis following telomerase action. We also show that CST unfolds G-quadruplex structures, thus providing a mechanism for CST to facilitate replication through telomeres and other GC-rich regions. Finally, smFRET analysis indicates that CST binding to ssDNA is dynamic with CST complexes undergoing concentration-dependent self-displacement. These findings support an RPA-based model where dissociation and re-association of individual OB-folds allow CST to mediate loading and unloading of partner proteins to facilitate various aspects of telomere replication and genome-wide resolution of replication stress. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Viral diseases and human evolution

    Directory of Open Access Journals (Sweden)

    Leal Élcio de Souza

    2000-01-01

    Full Text Available The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish long-lasting associations with man. Although not all viral agents cause disease and some may in fact be considered beneficial, the present situation of overpopulation, poverty and ecological inbalance may have devastating effets on human progress. Recently emerged diseases causing massive pandemics (eg., HIV-1 and HCV, dengue, etc. are becoming formidable challenges, which may have a direct impact on the fate of our species.

  8. Viral diseases and human evolution.

    Science.gov (United States)

    Leal, E de S; Zanotto, P M

    2000-01-01

    The interaction of man with viral agents was possibly a key factor shaping human evolution, culture and civilization from its outset. Evidence of the effect of disease, since the early stages of human speciation, through pre-historical times to the present suggest that the types of viruses associated with man changed in time. As human populations progressed technologically, they grew in numbers and density. As a consequence different viruses found suitable conditions to thrive and establish long-lasting associations with man. Although not all viral agents cause disease and some may in fact be considered beneficial, the present situation of overpopulation, poverty and ecological inbalance may have devastating effects on human progress. Recently emerged diseases causing massive pandemics (e.g., HIV-1 and HCV, dengue, etc.) are becoming formidable challenges, which may have a direct impact on the fate of our species.

  9. Animal models for human diseases.

    Science.gov (United States)

    Rust, J H

    1982-01-01

    The use of animal models for the study of human disease is, for the most part, a recent development. This discussion of the use of animal models for human diseases directs attention to the sterile period, early advances, some personal experiences, the human as the model, biological oddities among common laboratory animals, malignancies in laboratory animals, problems created by federal regulations, cancer tests with animals, and what the future holds in terms of the use of animal models as an aid to understanding human disease. In terms of early use of animal models, there was a school of rabbis, some of whom were also physicians, in Babylon who studied and wrote extensively on ritual slaughter and the suitability of birds and beasts for food. Considerable detailed information on animal pathology, physiology, anatomy, and medicine in general can be found in the Soncino Babylonian Talmudic Translations. The 1906 edition of the "Jewish Encyclopedia," has been a rich resource. Although it has not been possible to establish what diseases of animals were studied and their relationship to the diseases of humans, there are fascinating clues to pursue, despite the fact that these were sterile years for research in medicine. The quotation from the Talmud is of interest: "The medical knowledge of the Talmudist was based upon tradition, the dissection of human bodies, observation of disease and experiments upon animals." A bright light in the lackluster years of medical research was provided by Galen, considered the originator of research in physiology and anatomy. His dissection of animals and work on apes and other lower animals were models for human anatomy and physiology and the bases for many treatises. Yet, Galen never seemed to suggest that animals could serve as models for human diseases. Most early physicians who can be considered to have been students of disease developed their medical knowledge by observing the sick under their care. 1 early medical investigator

  10. Proteins aggregation and human diseases

    International Nuclear Information System (INIS)

    Hu, Chin-Kun

    2015-01-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease. (paper)

  11. Human Cytomegalovirus and Autoimmune Disease

    Science.gov (United States)

    2014-01-01

    Human cytomegalovirus (HCMV) represents a prototypic pathogenic member of the β-subgroup of the herpesvirus family. A range of HCMV features like its lytic replication in multiple tissues, the lifelong persistence through periods of latency and intermitting reactivation, the extraordinary large proteome, and extensive manipulation of adaptive and innate immunity make HCMV a high profile candidate for involvement in autoimmune disorders. We surveyed the available literature for reports on HCMV association with onset or exacerbation of autoimmune disease. A causative linkage between HCMV and systemic lupus erythematosus (SLE), systemic sclerosis (SSc), diabetes mellitus type 1, and rheumatoid arthritis (RA) is suggested by the literature. However, a clear association of HCMV seroprevalence and disease could not be established, leaving the question open whether HCMV could play a coresponsible role for onset of disease. For convincing conclusions population-based prospective studies must be performed in the future. Specific immunopathogenic mechanisms by which HCMV could contribute to the course of autoimmune disease have been suggested, for example, molecular mimicry by UL94 in SSc and UL83/pp65 in SLE patients, as well as aggravation of joint inflammation by induction and expansion of CD4+/CD28− T-cells in RA patients. Further studies are needed to validate these findings and to lay the grounds for targeted therapeutic intervention. PMID:24967373

  12. Immunoregulatory networks in human Chagas disease

    Science.gov (United States)

    Dutra, Walderez O.; Menezes, Cristiane A.S.; Magalhães, Luisa M. D.; Gollob, Kenneth J.

    2014-01-01

    Summary Chagas disease, caused by the infection with Trypanosoma cruzi, is endemic in all Latin America. Due to the increase in population migration, Chagas disease has spread worldwide and is now considered a health issue not only in endemic countries. While most chronically infected individuals remain asymptomatic, approximately 30% of the patients develop a potentially deadly cardiomyopathy. The exact mechanisms that underlie the establishment and maintenance of the cardiac pathology are not clear. However, there is consistent evidence that immunoregulatory cytokines are critical for orchestrating the immune response and, thus, influence disease development or control. While the asymptomatic (indeterminate) form represents a state of balance between the host and the parasite, the establishment of the cardiac form represents the loss of this balance. Analysis of data obtained from several studies have led to the hypothesis that the indeterminate form is associated with an anti-inflammatory cytokine profile, represented by high expression of IL-10, while cardiac form is associated with a high production of IFN-gamma and TNF-alpha in relation to IL-10, leading to an inflammatory profile. Here, we discuss the immunoregulatory events that might influence disease outcome, as well as the mechanisms that influence the establishment of these complex immunoregulatory networks. PMID:24611805

  13. Does biodiversity protect humans against infectious disease?

    Science.gov (United States)

    Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M

    2014-04-01

    Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

  14. ZIP13: A Study of Drosophila Offers an Alternative Explanation for the Corresponding Human Disease

    Directory of Open Access Journals (Sweden)

    Guiran Xiao

    2018-01-01

    Full Text Available The fruit fly Drosophila melanogaster has become an important model organism to investigate metal homeostasis and human diseases. Previously we identified dZIP13 (CG7816, a member of the ZIP transporter family (SLC39A and presumably a zinc importer, is in fact physiologically primarily responsible to move iron from the cytosol into the secretory compartments in the fly. This review will discuss the implication of this finding for the etiology of Spondylocheirodysplasia-Ehlers-Danlos Syndrome (SCD–EDS, a human disease defective in ZIP13. We propose an entirely different model in that lack of iron in the secretory compartment may underlie SCD-EDS. Altogether three different working models are discussed, supported by relevant findings made in different studies, with uncertainties, and questions remained to be solved. We speculate that the distinct ZIP13 sequence features, different from those of all other ZIP family members, may confer it special transport properties.

  15. Human genome project and sickle cell disease.

    Science.gov (United States)

    Norman, Brenda J; Miller, Sheila D

    2011-01-01

    Sickle cell disease is one of the most common genetic blood disorders in the United States that affects 1 in every 375 African Americans. Sickle cell disease is an inherited condition caused by abnormal hemoglobin in the red blood cells. The Human Genome Project has provided valuable insight and extensive research advances in the understanding of the human genome and sickle cell disease. Significant progress in genetic knowledge has led to an increase in the ability for researchers to map and sequence genes for diagnosis, treatment, and prevention of sickle cell disease and other chronic illnesses. This article explores some of the recent knowledge and advances about sickle cell disease and the Human Genome Project.

  16. Methanogenic Archaea and human periodontal disease

    OpenAIRE

    Lepp, Paul W.; Brinig, Mary M.; Ouverney, Cleber C.; Palm, Katherine; Armitage, Gary C.; Relman, David A.

    2004-01-01

    Archaea have been isolated from the human colon, vagina, and oral cavity, but have not been established as causes of human disease. In this study, we reveal a relationship between the severity of periodontal disease and the relative abundance of archaeal small subunit ribosomal RNA genes (SSU rDNA) in the subgingival crevice by using quantitative PCR. Furthermore, the relative abundance of archaeal small subunit rDNA decreased at treated sites in association with clinical improvement. Archaea...

  17. Melanized fungi in human disease.

    Science.gov (United States)

    Revankar, Sanjay G; Sutton, Deanna A

    2010-10-01

    Melanized or dematiaceous fungi are associated with a wide variety of infectious syndromes, including chromoblastomycosis, mycetoma, and phaeohyphomycosis. [corrected]. Many are soil organisms and are generally distributed worldwide, though certain species appear to have restricted geographic ranges. Though they are uncommon causes of disease, melanized fungi have been increasingly recognized as important pathogens, with most reports occurring in the past 20 years. The spectrum of diseases with which they are associated has also broadened and includes allergic disease, superficial and deep local infections, pneumonia, brain abscess, and disseminated infection. For some infections in immunocompetent individuals, such as allergic fungal sinusitis and brain abscess, they are among the most common etiologic fungi. Melanin is a likely virulence factor for these fungi. Diagnosis relies on careful microscopic and pathological examination, as well as clinical assessment of the patient, as these fungi are often considered contaminants. Therapy varies depending upon the clinical syndrome. Local infection may be cured with excision alone, while systemic disease is often refractory to therapy. Triazoles such as voriconazole, posaconazole, and itraconazole have the most consistent in vitro activity. Further studies are needed to better understand the pathogenesis and optimal treatment of these uncommon infections.

  18. Protein Misfolding and Human Disease

    DEFF Research Database (Denmark)

    Gregersen, Niels; Bross, Peter Gerd; Vang, Søren

    2006-01-01

    phenylketonuria, Parkinson's disease, α-1-antitrypsin deficiency, familial neurohypophyseal diabetes insipidus, and short-chain acyl-CoA dehydrogenase deficiency. Despite the differences, an emerging paradigm suggests that the cellular effects of protein misfolding provide a common framework that may contribute...

  19. Protein Misfolding and Human Disease

    DEFF Research Database (Denmark)

    Gregersen, Niels; Bross, Peter Gerd; Vang, Søren

    2006-01-01

    Protein misfolding is a common event in living cells. In young and healthy cells, the misfolded protein load is disposed of by protein quality control (PQC) systems. In aging cells and in cells from certain individuals with genetic diseases, the load may overwhelm the PQC capacity, resulting in a...

  20. Annotating the human genome with Disease Ontology

    Science.gov (United States)

    Osborne, John D; Flatow, Jared; Holko, Michelle; Lin, Simon M; Kibbe, Warren A; Zhu, Lihua (Julie); Danila, Maria I; Feng, Gang; Chisholm, Rex L

    2009-01-01

    Background The human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases. Results We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations. Conclusion The validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome. PMID:19594883

  1. Physiochemical basis of human degenerative disease

    Directory of Open Access Journals (Sweden)

    Zeliger Harold I.

    2015-03-01

    Full Text Available The onset of human degenerative diseases in humans, including type 2 diabetes, cardiovascular disease, neurological disorders, neurodevelopmental disease and neurodegenerative disease has been shown to be related to exposures to persistent organic pollutants, including polychlorinated biphenyls, chlorinated pesticides, polybrominated diphenyl ethers and others, as well as to polynuclear aromatic hydrocarbons, phthalates, bisphenol-A and other aromatic lipophilic species. The onset of these diseases has also been related to exposures to transition metal ions. A physiochemical mechanism for the onset of degenerative environmental disease dependent upon exposure to a combination of lipophilic aromatic hydrocarbons and transition metal ions is proposed here. The findings reported here also, for the first time, explain why aromatic hydrocarbons exhibit greater toxicity than aliphatic hydrocarbons of equal carbon numbers.

  2. Physiochemical basis of human degenerative disease.

    Science.gov (United States)

    Zeliger, Harold I; Lipinski, Boguslaw

    2015-03-01

    The onset of human degenerative diseases in humans, including type 2 diabetes, cardiovascular disease, neurological disorders, neurodevelopmental disease and neurodegenerative disease has been shown to be related to exposures to persistent organic pollutants, including polychlorinated biphenyls, chlorinated pesticides, polybrominated diphenyl ethers and others, as well as to polynuclear aromatic hydrocarbons, phthalates, bisphenol-A and other aromatic lipophilic species. The onset of these diseases has also been related to exposures to transition metal ions. A physiochemical mechanism for the onset of degenerative environmental disease dependent upon exposure to a combination of lipophilic aromatic hydrocarbons and transition metal ions is proposed here. The findings reported here also, for the first time, explain why aromatic hydrocarbons exhibit greater toxicity than aliphatic hydrocarbons of equal carbon numbers.

  3. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    to be the prime model of inherited human disease and share 99% of their ... disturbances (including anxiety and depression) ..... Leibovici M, Safieddine S, Petit C (2008). Mouse models for human hereditary deafness. Curr. Top. Dev. Biol. 84:385-429. Levi YF, Meiner Z, Canello T, Frid K, Kovacs GG, Budka H, Avrahami.

  4. Molecular Pathology of Human Prion Diseases

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Prion diseases are fatal neurodegenerative conditions in humans and animals. In this review, we summarize the molecular background of phenotypic variability, relation of prion protein (PrP to other proteins associated with neurodegenerative diseases, and pathogenesis of neuronal vulnerability. PrP exists in different forms that may be present in both diseased and non-diseased brain, however, abundant disease-associated PrP together with tissue pathology characterizes prion diseases and associates with transmissibility. Prion diseases have different etiological background with distinct pathogenesis and phenotype. Mutations of the prion protein gene are associated with genetic forms. The codon 129 polymorphism in combination with the Western blot pattern of PrP after proteinase K digestion serves as a basis for molecular subtyping of sporadic Creutzfeldt-Jakob disease. Tissue damage may result from several parallel, interacting or subsequent pathways that involve cellular systems associated with synapses, protein processing, oxidative stress, autophagy, and apoptosis.

  5. Melatonin and human mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    Reza Sharafati-Chaleshtori

    2017-01-01

    Full Text Available Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.

  6. Genomic uracil and human disease

    DEFF Research Database (Denmark)

    Hagen, Lars; Pena Diaz, Javier; Kavli, Bodil

    2006-01-01

    Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mut...... retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans....

  7. Using Zebrafish to Test the Genetic Basis of Human Craniofacial Diseases.

    Science.gov (United States)

    Machado, R Grecco; Eames, B Frank

    2017-10-01

    Genome-wide association studies (GWASs) opened an innovative and productive avenue to investigate the molecular basis of human craniofacial disease. However, GWASs identify candidate genes only; they do not prove that any particular one is the functional villain underlying disease or just an unlucky genomic bystander. Genetic manipulation of animal models is the best approach to reveal which genetic loci identified from human GWASs are functionally related to specific diseases. The purpose of this review is to discuss the potential of zebrafish to resolve which candidate genetic loci are mechanistic drivers of craniofacial diseases. Many anatomic, embryonic, and genetic features of craniofacial development are conserved among zebrafish and mammals, making zebrafish a good model of craniofacial diseases. Also, the ability to manipulate gene function in zebrafish was greatly expanded over the past 20 y, enabling systems such as Gateway Tol2 and CRISPR-Cas9 to test gain- and loss-of-function alleles identified from human GWASs in coding and noncoding regions of DNA. With the optimization of genetic editing methods, large numbers of candidate genes can be efficiently interrogated. Finding the functional villains that underlie diseases will permit new treatments and prevention strategies and will increase understanding of how gene pathways operate during normal development.

  8. Human lagochilascariasis—A rare helminthic disease

    Science.gov (United States)

    Campos, Dulcinea Maria Barbosa; Barbosa, Alverne Passos; de Oliveira, Jayrson Araújo; Tavares, Giovana Galvão; Cravo, Pedro Vitor Lemos; Ostermayer, Alejandro Luquetti

    2017-01-01

    Lagochilascariasis is a parasitic disease caused by a helminth of the order Ascaroidea, genus Lagochilascaris that comprises 6 species, among which only Lagochilascaris minor Leiper, 1909, is implicated in the human form of the disease. It is remarkable that the majority of cases of human lagochilascariasis in the Americas have been reported in Brazil. The natural definitive hosts of this parasite seem to be wild felines and canines. Lagochilascariasis is mostly a chronic human disease that can persist for several years, in which the parasite burrows into the subcutaneous tissues of the neck, paranasal sinuses, and mastoid. L. minor exhibits remarkable ability to migrate through the tissues of its hosts, destroying even bone tissue. Fatal cases have been described in which the parasite was found in the lungs or central nervous system. Treatment is often palliative, with recurrence of lesions. This paper summarizes the main features of the disease and its etiologic agent, including prevalence, life cycle, clinical course, and treatment. PMID:28640884

  9. Malassezia skin diseases in humans.

    Science.gov (United States)

    Difonzo, E M; Faggi, E; Bassi, A; Campisi, E; Arunachalam, M; Pini, G; Scarfì, F; Galeone, M

    2013-12-01

    Although Malassezia yeasts are a part of the normal microflora, under certain conditions they can cause superficial skin infection, such as pityriasis versicolor (PV) and Malassezia folliculitis. Moreover the yeasts of the genus Malassezia have been associated with seborrheic dermatitis and dandruff, atopic dermatitis, psoriasis, and, less commonly, with confluent and reticulated papillomatosis, onychomycosis, and transient acantholytic dermatosis. The study of the clinical role of Malassezia species has been surrounded by controversy due to the relative difficulty in isolation, cultivation, and identification. This review focuses on the clinical, mycologic, and immunologic aspects of the various skin diseases associated with Malassezia. Moreover, since there exists little information about the epidemiology and ecology of Malassezia species in the Italian population and the clinical significance of these species is not fully distinguished, we will report data about a study we carried out. The aim of our study was the isolation and the identification of Malassezia species in PV-affected skin and non-affected skin in patients with PV and in clinically healthy individuals without any Malassezia associated skin disease.

  10. Global rise in human infectious disease outbreaks.

    Science.gov (United States)

    Smith, Katherine F; Goldberg, Michael; Rosenthal, Samantha; Carlson, Lynn; Chen, Jane; Chen, Cici; Ramachandran, Sohini

    2014-12-06

    To characterize the change in frequency of infectious disease outbreaks over time worldwide, we encoded and analysed a novel 33-year dataset (1980-2013) of 12,102 outbreaks of 215 human infectious diseases, comprising more than 44 million cases occuring in 219 nations. We merged these records with ecological characteristics of the causal pathogens to examine global temporal trends in the total number of outbreaks, disease richness (number of unique diseases), disease diversity (richness and outbreak evenness) and per capita cases. Bacteria, viruses, zoonotic diseases (originating in animals) and those caused by pathogens transmitted by vector hosts were responsible for the majority of outbreaks in our dataset. After controlling for disease surveillance, communications, geography and host availability, we find the total number and diversity of outbreaks, and richness of causal diseases increased significantly since 1980 (p outbreaks (starting 1990), the overall number of outbreaks and disease richness still increase significantly with time (p outbreaks differ based on the causal pathogen's taxonomy, host requirements and transmission mode. We discuss our preliminary findings in the context of global disease emergence and surveillance.

  11. Primatology. Human diseases threaten great apes.

    Science.gov (United States)

    Ferber, D

    2000-08-25

    Researchers are uncovering disturbing evidence that scientists and tourists are infecting wild primates with human pathogens. In response, ape specialists, including the American Society of Primatologists, are now calling for stricter health standards for researchers and tourists. They are also urging researchers to learn how to diagnose disease in their study animals.

  12. Emerging arboviral human diseases in Southern Europe.

    Science.gov (United States)

    Papa, Anna

    2017-08-01

    Southern Europe is characterized by unique landscape and climate which attract tourists, but also arthropod vectors, some of them carrying pathogens. Among several arboviral diseases that emerged in the region during the last decade, West Nile fever accounted for high number of human cases and fatalities, while Crimean-Congo hemorrhagic fever expanded its geographic distribution, and is considered as a real threat for Europe. Viruses evolve rapidly and acquire mutations making themselves stronger and naive populations more vulnerable. In an effort to tackle efficiently the emerging arboviral diseases, preparedness and strategic surveillance are needed for the early detection of the pathogen and containment and mitigation of probable outbreaks. In this review, the main human arboviral diseases that emerged in Southern Europe are described. © 2017 Wiley Periodicals, Inc.

  13. Latent physiological factors of complex human diseases revealed by independent component analysis of clinarrays

    Directory of Open Access Journals (Sweden)

    Chen David P

    2010-10-01

    Full Text Available Abstract Background Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however, is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and help to refine strategies for diagnosis and monitoring disease progression. Results Applying Independent Component Analysis on clinarrays built from patient laboratory measurements revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes. Platelet count was significant across all the diseases analyzed. Conclusions The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of established laboratory measurements.

  14. Human papillomavirus type 56-associated Bowen disease.

    Science.gov (United States)

    Shimizu, A; Tamura, A; Abe, M; Amano, H; Motegi, S; Nakatani, Y; Hoshino, H; Ishikawa, O

    2012-11-01

    Some cases of human papillomavirus (HPV) type 56 infection in Bowen disease have been reported. However, the incidence and clinical characteristics are still unclear. To clarify the prevalence of HPV type 56-positive Bowen disease in our department and to characterize the clinical manifestations. Sixty-eight specimens of Bowen disease were examined by polymerase chain reaction using HPV consensus primers, and the amplified products were subjected to DNA sequence analyses. Moreover, positive samples were investigated by in situ hybridization. These findings were used to clarify the clinical characteristics of HPV-positive Bowen disease. Eight out of 68 specimens (12%) of Bowen disease were HPV-positive, of which six specimens were HPV type 56-positive. The HPV type 56-positive lesions were characterized by a longitudinal melanonychia or a deeply pigmented keratotic lesion. The remaining two specimens were genital Bowen disease in which HPV type 16 was detected. In situ hybridization demonstrated the positive cells in the upper layer of epidermis. The HPV type 56 detected in the samples of longitudinal melanonychia can be divided into at least into two types. This study determined the prevalence of HPV type 56-positive Bowen disease. Longitudinal melanonychia is the most characteristic manifestation of HPV type 56-associated Bowen disease. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  15. Major histocompatibility complex genomics and human disease.

    Science.gov (United States)

    Trowsdale, John; Knight, Julian C

    2013-01-01

    Over several decades, various forms of genomic analysis of the human major histocompatibility complex (MHC) have been extremely successful in picking up many disease associations. This is to be expected, as the MHC region is one of the most gene-dense and polymorphic stretches of human DNA. It also encodes proteins critical to immunity, including several controlling antigen processing and presentation. Single-nucleotide polymorphism genotyping and human leukocyte antigen (HLA) imputation now permit the screening of large sample sets, a technique further facilitated by high-throughput sequencing. These methods promise to yield more precise contributions of MHC variants to disease. However, interpretation of MHC-disease associations in terms of the functions of variants has been problematic. Most studies confirm the paramount importance of class I and class II molecules, which are key to resistance to infection. Infection is likely driving the extreme variation of these genes across the human population, but this has been difficult to demonstrate. In contrast, many associations with autoimmune conditions have been shown to be specific to certain class I and class II alleles. Interestingly, conditions other than infections and autoimmunity are also associated with the MHC, including some cancers and neuropathies. These associations could be indirect, owing, for example, to the infectious history of a particular individual and selective pressures operating at the population level.

  16. Human endogenous retroviruses in neurologic disease.

    Science.gov (United States)

    Christensen, Tove

    2016-01-01

    Endogenous retroviruses are pathogenic - in other species than the human. Disease associations for Human Endogenous RetroViruses (HERVs) are emerging, but so far an unequivocal pathogenetic cause-effect relationship has not been established. A role for HERVs has been proposed in neurological and neuropsychiatric diseases as diverse as multiple sclerosis (MS) and schizophrenia (SCZ). Particularly for MS, many aspects of the activation and involvement of specific HERV families (HERV-H/F and HERV-W/MSRV) have been reported, both for cells in the circulation and in the central nervous system. Notably envelope genes and their gene products (Envs) appear strongly associated with the disease. For SCZ, for ALS, and for HIV-associated dementia (HAD), indications are accumulating for involvement of the HERV-K family, and also HERV-H/F and/or HERV-W. Activation is reasonably a prerequisite for causality as most HERV sequences remain quiescent in non-pathological conditions, so the importance of regulatory pathways and epigenetics involved in regulating HERV activation, derepression, and also involvement of retroviral restriction factors, is emerging. HERV-directed antiretrovirals have potential as novel therapeutic paradigms in neurologic disease, particularly in MS. The possible protective or ameliorative effects of antiretroviral therapy in MS are substantiated by reports that treatment of HIV infection may be associated with a significantly decreased risk of MS. Further studies of HERVs, their role in neurologic diseases, and their potential as therapeutic targets are essential. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  17. [Human hantavirus diseases - still neglected zoonoses?].

    Science.gov (United States)

    Vrbovská, V; Chalupa, P; Straková, P; Hubálek, Z; Rudolf, I

    2015-10-01

    Hantavirus disease is the most common rodent-borne viral infection in the Czech Republic, with a mean annual incidence of 0.02 cases per 100 000 population and specific antibodies detected in 1% of the human population. Four hantaviruses (Puumala, Dobrava-Belgrade, Tula, and Seewis) circulate in this country, of which Puumala virus (responsible for a mild form of hemorrhagic fever with renal syndrome called nephropathia epidemica) and Dobrava-Belgrade virus (causing haemorrhagic fever with renal syndrome) have been proven to cause human disease. The aim of this study is to provide a comprehensive review of the hantaviruses occurring in the Czech Republic, based on the literature published during the past three decades, including their geographical distribution and clinical symptoms. The recent detection of Tula virus in an immunocompromised person as well as reports of Seoul virus infections in Europe highlight the possible emergence of neglected hantavirus infections in the foreseeable future.

  18. The role of chemerin in human disease

    Directory of Open Access Journals (Sweden)

    Magdalena Stojek

    2017-02-01

    Full Text Available Adipose tissue is not merely a storage depot of triacylglycerols but also a major endocrine organ. Its cells, including adipocytes, synthesize and secrete a range of biologically active molecules termed adipokines. Adipokines that display the properties of cytokines are often called adipocytokines. In recent years there has been increasing interest in a new adipokine called chemerin. Chemerin is a protein synthesized mostly by the adipose tissue and the liver as inactive pre-pro-chemerin. After the intracellular hydrolytic cutting off of the 20-amino-acid N-terminal polypeptide, it is secreted into the bloodstream as inactive pro-chemerin. Biologically active chemerin is then derived from pro-chemerin after cleavage of the C-terminal fragment by serum proteases involved in inflammation, coagulation and fibrinolysis. Proteolytic cleavage leads to formation of several chemerin-derived peptides, both biologically active (often with opposing functions and inactive.Within the last decade, there has been a growing number of publications regarding the role of chemerin in human disease. It seems to be implicated in the inflammatory response, metabolic syndrome, cardiovascular disease and alimentary tract disorders. The article presents the most recent information on the role of chemerin in human disease, and specifically alimentary tract disorders. The available evidence suggests that chemerin is an important link between adipose tissue mass, metabolic processes, the immune system and inflammation, and therefore plays a major role in human pathophysiology.

  19. Methanogenic Archaea and human periodontal disease

    Science.gov (United States)

    Lepp, Paul W.; Brinig, Mary M.; Ouverney, Cleber C.; Palm, Katherine; Armitage, Gary C.; Relman, David A.

    2004-01-01

    Archaea have been isolated from the human colon, vagina, and oral cavity, but have not been established as causes of human disease. In this study, we reveal a relationship between the severity of periodontal disease and the relative abundance of archaeal small subunit ribosomal RNA genes (SSU rDNA) in the subgingival crevice by using quantitative PCR. Furthermore, the relative abundance of archaeal small subunit rDNA decreased at treated sites in association with clinical improvement. Archaea were harbored by 36% of periodontitis patients and were restricted to subgingival sites with periodontal disease. The presence of archaeal cells at these sites was confirmed by fluorescent in situ hybridization. The archaeal community at diseased sites was dominated by a Methanobrevibacter oralis-like phylotype and a distinct Methanobrevibacter subpopulation related to archaea that inhabit the gut of numerous animals. We hypothesize that methanogens participate in syntrophic relationships in the subgingival crevice that promote colonization by secondary fermenters during periodontitis. Because they are potential alternative syntrophic partners, our finding of larger Treponema populations sites without archaea provides further support for this hypothesis. PMID:15067114

  20. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  2. Finding aroma clues in the human breath to diagnose diseases

    Science.gov (United States)

    A. Dan Wilson

    2016-01-01

    History of human odor analysis in disease diagnosis The use of the sense of smell as an indicator of human disease probably originated with Hippocrates (circa 400 BC). Early medical practitioners recognized that the presence of human diseases changed the odors released from the body and breath. Physicians once relied heavily on their sense of smell to provide useful...

  3. The Microbiota, Chemical Symbiosis, and Human Disease

    Science.gov (United States)

    Redinbo, Matthew R.

    2014-01-01

    Our understanding of mammalian-microbial mutualism has expanded by combing microbial sequencing with evolving molecular and cellular methods, and unique model systems. Here, the recent literature linking the microbiota to diseases of three of the key mammalian mucosal epithelial compartments – nasal, lung and gastrointestinal (GI) tract – is reviewed with a focus on new knowledge about the taxa, species, proteins and chemistry that promote health and impact progression toward disease. The information presented is further organized by specific diseases now associated with the microbiota:, Staphylococcus aureus infection and rhinosinusitis in the nasal-sinus mucosa; cystic fibrosis (CF), chronic obstructive pulmonary disorder (COPD), and asthma in the pulmonary tissues. For the vast and microbially dynamic GI compartment, several disorders are considered, including obesity, atherosclerosis, Crohn’s disease, ulcerative colitis, drug toxicity, and even autism. Our appreciation of the chemical symbiosis ongoing between human systems and the microbiota continues to grow, and suggest new opportunities for modulating this symbiosis using designed interventions. PMID:25305474

  4. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  5. Human prion diseases in the United States.

    Directory of Open Access Journals (Sweden)

    Robert C Holman

    Full Text Available BACKGROUND: Prion diseases are a family of rare, progressive, neurodegenerative disorders that affect humans and animals. The most common form of human prion disease, Creutzfeldt-Jakob disease (CJD, occurs worldwide. Variant CJD (vCJD, a recently emerged human prion disease, is a zoonotic foodborne disorder that occurs almost exclusively in countries with outbreaks of bovine spongiform encephalopathy. This study describes the occurrence and epidemiology of CJD and vCJD in the United States. METHODOLOGY/PRINCIPAL FINDINGS: Analysis of CJD and vCJD deaths using death certificates of US residents for 1979-2006, and those identified through other surveillance mechanisms during 1996-2008. Since CJD is invariably fatal and illness duration is usually less than one year, the CJD incidence is estimated as the death rate. During 1979 through 2006, an estimated 6,917 deaths with CJD as a cause of death were reported in the United States, an annual average of approximately 247 deaths (range 172-304 deaths. The average annual age-adjusted incidence for CJD was 0.97 per 1,000,000 persons. Most (61.8% of the CJD deaths occurred among persons >or=65 years of age for an average annual incidence of 4.8 per 1,000,000 persons in this population. Most deaths were among whites (94.6%; the age-adjusted incidence for whites was 2.7 times higher than that for blacks (1.04 and 0.40, respectively. Three patients who died since 2004 were reported with vCJD; epidemiologic evidence indicated that their infection was acquired outside of the United States. CONCLUSION/SIGNIFICANCE: Surveillance continues to show an annual CJD incidence rate of about 1 case per 1,000,000 persons and marked differences in CJD rates by age and race in the United States. Ongoing surveillance remains important for monitoring the stability of the CJD incidence rates, and detecting occurrences of vCJD and possibly other novel prion diseases in the United States.

  6. African origins and chronic kidney disease susceptibility in the human immunodeficiency virus era

    Science.gov (United States)

    Kasembeli, Alex N; Duarte, Raquel; Ramsay, Michèle; Naicker, Saraladevi

    2015-01-01

    Chronic kidney disease (CKD) is a major public health problem worldwide with the estimated incidence growing by approximately 6% annually. There are striking ethnic differences in the prevalence of CKD such that, in the United States, African Americans have the highest prevalence of CKD, four times the incidence of end stage renal disease when compared to Americans of European ancestry suggestive of genetic predisposition. Diabetes mellitus, hypertension and human immunodeficiency virus (HIV) infection are the major causes of CKD. HIV-associated nephropathy (HIVAN) is an irreversible form of CKD with considerable morbidity and mortality and is present predominantly in people of African ancestry. The APOL1 G1 and G2 alleles were more strongly associated with the risk for CKD than the previously examined MYH9 E1 risk haplotype in individuals of African ancestry. A strong association was reported in HIVAN, suggesting that 50% of African Americans with two APOL1 risk alleles, if untreated, would develop HIVAN. However these two variants are not enough to cause disease. The prevailing belief is that modifying factors or second hits (including genetic hits) underlie the pathogenesis of kidney disease. This work reviews the history of genetic susceptibility of CKD and outlines current theories regarding the role for APOL1 in CKD in the HIV era. PMID:25949944

  7. Ion transport in the zebrafish kidney from a human disease angle: possibilities, considerations, and future perspectives.

    Science.gov (United States)

    Kersten, Simone; Arjona, Francisco J

    2017-01-01

    Unique experimental advantages, such as its embryonic/larval transparency, high-throughput nature, and ease of genetic modification, underpin the rapid emergence of the zebrafish (Danio rerio) as a preeminent model in biomedical research. Particularly in the field of nephrology, the zebrafish provides a promising model for studying the physiological implications of human solute transport processes along consecutive nephron segments. However, although the zebrafish might be considered a valuable model for numerous renal ion transport diseases and functional studies of many channels and transporters, not all human renal electrolyte transport mechanisms and human diseases can be modeled in the zebrafish. With this review, we explore the ontogeny of zebrafish renal ion transport, its nephron structure and function, and thereby demonstrate the clinical translational value of this model. By critical assessment of genomic and amino acid conservation of human proteins involved in renal ion handling (channels, transporters, and claudins), kidney and nephron segment conservation, and renal electrolyte transport physiology in the zebrafish, we provide researchers and nephrologists with an indication of the possibilities and considerations of the zebrafish as a model for human renal ion transport. Combined with advanced techniques envisioned for the future, implementation of the zebrafish might expand beyond unraveling pathophysiological mechanisms that underlie distinct genetic or environmentally, i.e., pharmacological and lifestyle, induced renal transport deficits. Specifically, the ease of drug administration and the exploitation of improved genetic approaches might argue for the adoption of the zebrafish as a model for preclinical personalized medicine for distinct renal diseases and renal electrolyte transport proteins. Copyright © 2017 the American Physiological Society.

  8. Recurrent, robust and scalable patterns underlie human approach and avoidance.

    Directory of Open Access Journals (Sweden)

    Byoung Woo Kim

    2010-05-01

    Full Text Available Approach and avoidance behavior provide a means for assessing the rewarding or aversive value of stimuli, and can be quantified by a keypress procedure whereby subjects work to increase (approach, decrease (avoid, or do nothing about time of exposure to a rewarding/aversive stimulus. To investigate whether approach/avoidance behavior might be governed by quantitative principles that meet engineering criteria for lawfulness and that encode known features of reward/aversion function, we evaluated whether keypress responses toward pictures with potential motivational value produced any regular patterns, such as a trade-off between approach and avoidance, or recurrent lawful patterns as observed with prospect theory.Three sets of experiments employed this task with beautiful face images, a standardized set of affective photographs, and pictures of food during controlled states of hunger and satiety. An iterative modeling approach to data identified multiple law-like patterns, based on variables grounded in the individual. These patterns were consistent across stimulus types, robust to noise, describable by a simple power law, and scalable between individuals and groups. Patterns included: (i a preference trade-off counterbalancing approach and avoidance, (ii a value function linking preference intensity to uncertainty about preference, and (iii a saturation function linking preference intensity to its standard deviation, thereby setting limits to both.These law-like patterns were compatible with critical features of prospect theory, the matching law, and alliesthesia. Furthermore, they appeared consistent with both mean-variance and expected utility approaches to the assessment of risk. Ordering of responses across categories of stimuli demonstrated three properties thought to be relevant for preference-based choice, suggesting these patterns might be grouped together as a relative preference theory. Since variables in these patterns have been associated with reward circuitry structure and function, they may provide a method for quantitative phenotyping of normative and pathological function (e.g., psychiatric illness.

  9. HECT E3s and human disease

    Directory of Open Access Journals (Sweden)

    Staub Olivier

    2007-11-01

    Full Text Available Abstract In a simplified view, members of the HECT E3 family have a modular structure consisting of the C-terminal HECT domain, which is catalytically involved in the attachment of ubiquitin to substrate proteins, and N-terminal extensions of variable length and sequence that mediate the substrate specificity of the respective HECT E3. Although the physiologically relevant substrates of most HECT E3s have remained elusive, it is becoming increasingly clear that HECT E3s play an important role in sporadic and hereditary human diseases including cancer, cardiovascular (Liddle's syndrome and neurological (Angelman syndrome disorders, and/or in disease-relevant processes including bone homeostasis, immune response and retroviral budding. Thus, molecular approaches to target the activity of distinct HECT E3s, regulators thereof, and/or of HECT E3 substrates could prove valuable in the treatment of the respective diseases. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  10. Comparative mitochondrial proteomics: perspective in human diseases

    Directory of Open Access Journals (Sweden)

    Jiang Yujie

    2012-03-01

    Full Text Available Abstract Mitochondria are the most complex and the most important organelles of eukaryotic cells, which are involved in many cellular processes, including energy metabolism, apoptosis, and aging. And mitochondria have been identified as the "hot spot" by researchers for exploring relevant associated dysfunctions in many fields. The emergence of comparative proteomics enables us to have a close look at the mitochondrial proteome in a comprehensive and effective manner under various conditions and cellular circumstances. Two-dimensional electrophoresis combined with mass spectrometry is still the most popular techniques to study comparative mitochondrial proteomics. Furthermore, many new techniques, such as ICAT, MudPIT, and SILAC, equip researchers with more flexibilities inselecting proper methods. This article also reviews the recent development of comparative mitochondrial proteomics on diverse human diseases. And the results of mitochondrial proteomics enhance a better understanding of the pathogenesis associated with mitochondria and provide promising therapeutic targets.

  11. Human papillomavirus molecular biology and disease association

    Science.gov (United States)

    Egawa, Nagayasu; Griffin, Heather; Kranjec, Christian; Murakami, Isao

    2015-01-01

    Summary Human papillomaviruses (HPVs) have evolved over millions of years to propagate themselves in a range of different animal species including humans. Viruses that have co‐evolved slowly in this way typically cause chronic inapparent infections, with virion production in the absence of apparent disease. This is the case for many Beta and Gamma HPV types. The Alpha papillomavirus types have however evolved immunoevasion strategies that allow them to cause persistent visible papillomas. These viruses activate the cell cycle as the infected epithelial cell differentiates in order to create a replication competent environment that allows viral genome amplification and packaging into infectious particles. This is mediated by the viral E6, E7, and E5 proteins. High‐risk E6 and E7 proteins differ from their low‐risk counterparts however in being able to drive cell cycle entry in the upper epithelial layers and also to stimulate cell proliferation in the basal and parabasal layers. Deregulated expression of these cell cycle regulators underlies neoplasia and the eventual progression to cancer in individuals who cannot resolve high‐risk HPV infection. Most work to date has focused on the study of high‐risk HPV types such as HPV 16 and 18, which has led to an understanding of the molecular pathways subverted by these viruses. Such approaches will lead to the development of better strategies for disease treatment, including targeted antivirals and immunotherapeutics. Priorities are now focused toward understanding HPV neoplasias at sites other than the cervix (e.g. tonsils, other transformation zones) and toward understanding the mechanisms by which low‐risk HPV types can sometimes give rise to papillomatosis and under certain situations even cancers. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25752814

  12. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases.

    Science.gov (United States)

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-01-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  13. Defining the Role of Essential Genes in Human Disease

    Science.gov (United States)

    Robertson, David L.; Hentges, Kathryn E.

    2011-01-01

    A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases. PMID:22096564

  14. Analogs of human genetic skin disease in domesticated animals

    Directory of Open Access Journals (Sweden)

    Justin Finch, MD

    2017-09-01

    The genetic skin diseases we will review are pigmentary mosaicism, piebaldism, albinism, Griscelli syndrome, ectodermal dysplasias, Waardenburg syndrome, and mucinosis in both humans and domesticated animals.

  15. Therapy of human papillomavirus-related disease.

    Science.gov (United States)

    Stern, Peter L; van der Burg, Sjoerd H; Hampson, Ian N; Broker, Thomas R; Fiander, Alison; Lacey, Charles J; Kitchener, Henry C; Einstein, Mark H

    2012-11-20

    This chapter reviews the current treatment of chronic and neoplastic human papillomavirus (HPV)-associated conditions and the development of novel therapeutic approaches. Surgical excision of HPV-associated lower genital tract neoplasia is very successful but largely depends on secondary prevention programmes for identification of disease. Only high-risk HPV-driven chronic, pre-neoplastic lesions and some very early cancers cannot be successfully treated by surgical procedures alone. Chemoradiation therapy of cervical cancer contributes to the 66-79% cervical cancer survival at 5 years. Outlook for those patients with persistent or recurrent cervical cancer following treatment is very poor. Topical agents such as imiquimod (immune response modifier), cidofovir (inhibition of viral replication; induction apoptosis) or photodynamic therapy (direct damage of tumour and augmentation of anti-tumour immunity) have all shown some useful efficacy (~50-60%) in treatment of high grade vulvar intraepithelial neoplasia (VIN). Provider administered treatments of genital warts include cryotherapy, trichloracetic acid, or surgical removal which has the highest primary clearance rate. Patient applied therapies include podophyllotoxin and imiquimod. Recurrence after "successful" treatment is 30-40%. Further improvements could derive from a rational combination of current therapy with new drugs targeting molecular pathways mediated by HPV in cancer. Small molecule inhibitors targeting the DNA binding activities of HPV E1/E2 or the anti-apoptotic consequences of E6/E7 oncogenes are in preclinical development. Proteasome and histone deacetylase inhibitors, which can enhance apoptosis in HPV positive tumour cells, are being tested in early clinical trials. Chronic high-risk HPV infection/neoplasia is characterised by systemic and/or local immune suppressive regulatory or escape factors. Recently two E6/E7 vaccines have shown some clinical efficacy in high grade VIN patients and this

  16. Modeling human disease using organotypic cultures

    DEFF Research Database (Denmark)

    Schweiger, Pawel J; Jensen, Kim B

    2016-01-01

    Reliable disease models are needed in order to improve quality of healthcare. This includes gaining better understanding of disease mechanisms, developing new therapeutic interventions and personalizing treatment. Up-to-date, the majority of our knowledge about disease states comes from in vivo...

  17. Nutrition, epigenetic mechanisms, and human disease

    National Research Council Canada - National Science Library

    Maulik, Nilanjana; Maulik, Gautam

    2011-01-01

    .... The text discusses the basics of nutrigenomics and epigenetic regulation, types of nutrition influencing genetic imprinting, and the role of nutrition in modulating an individual's predisposition to disease...

  18. Human diseases associated with fish pathogens

    OpenAIRE

    VATSOS N. Ioannis; ANGELIDIS Panagiotis

    2011-01-01

    Until recently, most cases of humans been affected by fish pathogens, bacterial and parasitic, were limited in certain countries, either due to the inappropriate sanitary measures used in those areas, or due to the local habit of eating raw or undercooked fish. However, as new reliable methods to identify fish pathogens in samples collected from sick humans have been developed, the confirmed cases worldwide have increased. The most common fish bacterial pathogens that can affect humans belong...

  19. Multinational corporations and infectious disease: Embracing human rights management techniques.

    Science.gov (United States)

    Salcito, Kendyl; Singer, Burton H; Weiss, Mitchell G; Winkler, Mirko S; Krieger, Gary R; Wielga, Mark; Utzinger, Jürg

    2014-01-01

    Global health institutions have called for governments, international organisations and health practitioners to employ a human rights-based approach to infectious diseases. The motivation for a human rights approach is clear: poverty and inequality create conditions for infectious diseases to thrive, and the diseases, in turn, interact with social-ecological systems to promulgate poverty, inequity and indignity. Governments and intergovernmental organisations should be concerned with the control and elimination of these diseases, as widespread infections delay economic growth and contribute to higher healthcare costs and slower processes for realising universal human rights. These social determinants and economic outcomes associated with infectious diseases should interest multinational companies, partly because they have bearing on corporate productivity and, increasingly, because new global norms impose on companies a responsibility to respect human rights, including the right to health. We reviewed historical and recent developments at the interface of infectious diseases, human rights and multinational corporations. Our investigation was supplemented with field-level insights at corporate capital projects that were developed in areas of high endemicity of infectious diseases, which embraced rights-based disease control strategies. Experience and literature provide a longstanding business case and an emerging social responsibility case for corporations to apply a human rights approach to health programmes at global operations. Indeed, in an increasingly globalised and interconnected world, multinational corporations have an interest, and an important role to play, in advancing rights-based control strategies for infectious diseases. There are new opportunities for governments and international health agencies to enlist corporate business actors in disease control and elimination strategies. Guidance offered by the United Nations in 2011 that is widely embraced

  20. Human diseases associated with fish pathogens

    Directory of Open Access Journals (Sweden)

    VATSOS N. Ioannis

    2011-09-01

    Full Text Available Until recently, most cases of humans been affected by fish pathogens, bacterial and parasitic, were limited in certain countries, either due to the inappropriate sanitary measures used in those areas, or due to the local habit of eating raw or undercooked fish. However, as new reliable methods to identify fish pathogens in samples collected from sick humans have been developed, the confirmed cases worldwide have increased. The most common fish bacterial pathogens that can affect humans belong to the genera: Mycobacterium spp. (mainly M. marinum, M. chelonei, M. fortuitum, Nocardia spp., Streptococcus spp (S. iniae, Vibrio spp. (mainly V. vulnificus, V. alginolyticus and V. parahaemolyticus and Aeromonas spp. (mainly A. hydrophila and rarely A. sorbia and A. caviae. Less often, infections of humans with Edwardsiella tarda and Photobacterium damselae sbsp. damselae have been reported. Fish usually act as intermediate hosts to many important parasites of human, as for example the tapeworm Diphyllobothrium latum. To fish, these parasites cause no or little damage, as they are usually found encysted in many fish tissues. Of particular interest are someanisakids (e.g. Anisakis simplex and Pseudoterranova decipiens which can produce some thermostable allergens. Most of the above pathogens can infect humans through skin wounds or after ingesting infected fish. Compromised immune system of the infected humans may result in extensive spread of the pathogens within the body, often causing death.There are no fish viruses or fungi that can affect humans. Fish can also act as carriers for human pathogens, such as Salmonella spp., Escherichia coli and Listeria spp. Recently, few human pathogens have also been isolated from the internal organs of fish, as for example Brucella melitensis. The effects of these human pathogens to fish are still not known.

  1. The genus Malassezia and human disease

    Directory of Open Access Journals (Sweden)

    Inamadar A

    2003-07-01

    Full Text Available Sabouraud's Pityrosporum is now recognized as Malassezia. With taxonomic revision of the genus, newer species have been included. The role of this member of the normal human skin flora in different cutaneous and systemic disorders is becoming clearer. The immunological responses it induces in the human body are conflicting and their relevance to clinical features is yet to be explored.

  2. Analogs of human genetic skin disease in domesticated animals ?

    OpenAIRE

    Finch, Justin; Abrams, Stephanie; Finch, Amy

    2017-01-01

    Genetic skin diseases encompass a vast, complex, and ever expanding field. Recognition of the features of these diseases is important to ascertain a correct diagnosis, initiate treatment, consider genetic counseling, and refer patients to specialists when the disease may impact other areas. Because genodermatoses may present with a vast array of features, it can be bewildering to memorize them. This manuscript will explain and depict some genetic skin diseases that occur in both humans and do...

  3. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.

  4. Disease emergence and resurgence—the wildlife-human connection

    Science.gov (United States)

    Friend, Milton; Hurley, James W.; Nol, Pauline; Wesenberg, Katherine

    2006-01-01

    In 2000, the Global Outbreak Alert and Response Network (GOARN) was organized as a global disease watchdog group to coordinate disease outbreak information and health crisis response. The World Health Organization (WHO) is the headquarters for this network. Understandably, the primary focus for WHO is human health. However, diseases such as the H5N1 avian influenza epizootic in Asian bird populations demonstrate the need for integrating knowledge about disease emergence in animals and in humans.Aside from human disease concerns, H5N1 avian influenza has major economic consequences for the poultry industry worldwide. Many other emerging diseases, such as severe acute respiratory syndrome (SARS), monkeypox, Ebola fever, and West Nile fever, also have an important wildlife component. Despite these wildlife associations, the true integration of the wildlife component in approaches towards disease emergence remains elusive. This separation between wildlife and other species’ interests is counterproductive because the emergence of zoonotic viruses and other pathogens maintained by wildlife reservoir hosts is poorly understood.This book is about the wildlife component of emerging diseases. It is intended to enhance the reader’s awareness of the role of wildlife in disease emergence. By doing so, perhaps a more holistic approach to disease prevention and control will emerge for the benefit of human, domestic animal, and free-ranging wildlife populations alike. The perspectives offered are influenced by more than four decades of my experiences as a wildlife disease practitioner. Although wildlife are victims to many of the same disease agents affecting humans and domestic animals, many aspects of disease in free-ranging wildlife require different approaches than those commonly applied to address disease in humans or domestic animals. Nevertheless, the broader community of disease investigators and health care professionals has largely pursued a separatist approach for

  5. Disease Human - MDC_CardiovascularMortality2006

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Polygon feature class based on Zip Code boundaries showing the rate of deaths due to major cardiovascular diseases per 1000 residents of Miami-Dade County in 2006.

  6. Disease Human - MDC_CLRDMortality2006

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Polygon feature class based on Zip Code boundaries showing the rate of deaths per 100,000 residents due to Chronic Lower Respiratory Disease (CLRD) in Miami-Dade...

  7. Human Milk and Allergic Diseases: An Unsolved Puzzle

    Science.gov (United States)

    Peroni, Diego G.; Boix-Amorós, Alba; Hsu, Peter S.; Van’t Land, Belinda; Skevaki, Chrysanthi; Collado, Maria Carmen; Garssen, Johan; Geddes, Donna T.; Nanan, Ralph; Slupsky, Carolyn; Wegienka, Ganesa; Kozyrskyj, Anita L.; Warner, John O.

    2017-01-01

    There is conflicting evidence on the protective role of breastfeeding in relation to the development of allergic sensitisation and allergic disease. Studies vary in methodology and definition of outcomes, which lead to considerable heterogeneity. Human milk composition varies both within and between individuals, which may partially explain conflicting data. It is known that human milk composition is very complex and contains variable levels of immune active molecules, oligosaccharides, metabolites, vitamins and other nutrients and microbial content. Existing evidence suggests that modulation of human breast milk composition has potential for preventing allergic diseases in early life. In this review, we discuss associations between breastfeeding/human milk composition and allergy development. PMID:28817095

  8. MicroRNAs and human diseases: diagnostic and therapeutic potential.

    Science.gov (United States)

    Maqbool, Raihana; Ul Hussain, Mahboob

    2014-10-01

    MicroRNAs (miRNAs) are endogenous, non-coding small RNAs that regulate gene expression at the post-transcriptional level. Recent studies have shown that miRNAs are aberrantly expressed in various human diseases, ranging from cancer to cardiovascular hypertrophy. The expression profiles of the miRNAs clearly differentiate the normal from the pathological state and thus their potential as novel biomarkers in the diagnosis and prognosis of several human diseases is immense. Emerging data on the role of miRNAs in the pathogenesis of various human diseases have paved the way to test their ability to act as novel therapeutic tools. In the present review, we will explore the current knowledge about the role of miRNAs in various human diseases. In addition, we will focus on the emerging evidences demonstrating the potential of miRNAs as novel biomarkers and the strategies to use them as therapeutic tools.

  9. Emerging role of mitophagy in human diseases and physiology.

    Science.gov (United States)

    Um, Jee-Hyun; Yun, Jeanho

    2017-06-01

    Mitophagy is a process of selective removal of damaged or unnecessary mitochondria using autophagic machinery. Mitophagy plays an essential role in maintaining mitochondrial quality control and homeostasis. Mitochondrial dysfunctions and defective mitophagy in neurodegenerative diseases, cancer, and metabolic diseases indicate a close link between human disease and mitophagy. Furthermore, recent studies showing the involvement of mitophagy in differentiation and development, suggest that mitophagy may play a more active role in controlling cellular functions. A better understanding of mitophagy will provide insights about human disease and offer novel chance for treatment. This review mainly focuses on the recent implications for mitophagy in human diseases and normal physiology. [BMB Reports 2017; 50(6): 299-307].

  10. Engineering Large Animal Species to Model Human Diseases.

    Science.gov (United States)

    Rogers, Christopher S

    2016-07-01

    Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  11. Genetic effects on gene expression across human tissues

    NARCIS (Netherlands)

    Battle, Alexis; Brown, Christopher D.; Engelhardt, Barbara E.; Montgomery, Stephen B.; Aguet, François; Ardlie, Kristin G.; Cummings, Beryl B.; Gelfand, Ellen T.; Getz, Gad; Hadley, Kane; Handsaker, Robert E.; Huang, Katherine H.; Kashin, Seva; Karczewski, Konrad J.; Lek, Monkol; Li, Xiao; MacArthur, Daniel G.; Nedzel, Jared L.; Nguyen, Duyen T.; Noble, Michael S.; Segrè, Ayellet V.; Trowbridge, Casandra A.; Tukiainen, Taru; Abell, Nathan S.; Balliu, Brunilda; Barshir, Ruth; Basha, Omer; Bogu, Gireesh K.; Brown, Andrew; Castel, Stephane E.; Chen, Lin S.; Chiang, Colby; Conrad, Donald F.; Cox, Nancy J.; Damani, Farhan N.; Davis, Joe R.; Delaneau, Olivier; Dermitzakis, Emmanouil T.; Eskin, Eleazar; Ferreira, Pedro G.; Frésard, Laure; Gamazon, Eric R.; Garrido-Martín, Diego; Gewirtz, Ariel D. H.; Gliner, Genna; Gloudemans, Michael J.; Guigo, Roderic; Hall, Ira M.; Han, Buhm; He, Yuan; Hormozdiari, Farhad; Howald, Cedric; Kyung Im, Hae; Jo, Brian; Yong Kang, Eun; Kim, Yungil; Kim-Hellmuth, Sarah; Lappalainen, Tuuli; Li, Gen; Li, Xin; Liu, Boxiang; Mangul, Serghei; McCarthy, Mark I.; McDowell, Ian C.; Mohammadi, Pejman; Monlong, Jean; Muñoz-Aguirre, Manuel; Ndungu, Anne W.; Nicolae, Dan L.; Nobel, Andrew B.; Oliva, Meritxell; Ongen, Halit; Palowitch, John J.; Panousis, Nikolaos; Papasaikas, Panagiotis; Park, Yoson; Parsana, Princy; Payne, Anthony J.; Peterson, Christine B.; Quan, Jie; Reverter, Ferran; Sabatti, Chiara; Saha, Ashis; Sammeth, Michael; Scott, Alexandra J.; Shabalin, Andrey A.; Sodaei, Reza; Stephens, Matthew; Stranger, Barbara E.; Strober, Benjamin J.; Sul, Jae Hoon; Tsang, Emily K.; Urbut, Sarah; van de Bunt, Martijn; Wang, Gao; Wen, Xiaoquan; Wright, Fred A.; Xi, Hualin S.; Yeger-Lotem, Esti; Zappala, Zachary; Zaugg, Judith B.; Zhou, Yi-Hui; Akey, Joshua M.; Bates, Daniel; Chan, Joanne; Claussnitzer, Melina; Demanelis, Kathryn; Diegel, Morgan; Doherty, Jennifer A.; Feinberg, Andrew P.; Fernando, Marian S.; Halow, Jessica; Hansen, Kasper D.; Haugen, Eric; Hickey, Peter F.; Hou, Lei; Jasmine, Farzana; Jian, Ruiqi; Jiang, Lihua; Johnson, Audra; Kaul, Rajinder; Kellis, Manolis; Kibriya, Muhammad G.; Lee, Kristen; Billy Li, Jin; Li, Qin; Lin, Jessica; Lin, Shin; Linder, Sandra; Linke, Caroline; Liu, Yaping; Maurano, Matthew T.; Molinie, Benoit; Nelson, Jemma; Neri, Fidencio J.; Park, Yongjin; Pierce, Brandon L.; Rinaldi, Nicola J.; Rizzardi, Lindsay F.; Sandstrom, Richard; Skol, Andrew; Smith, Kevin S.; Snyder, Michael P.; Stamatoyannopoulos, John; Tang, Hua; Wang, Li; Wang, Meng; van Wittenberghe, Nicholas; Wu, Fan; Zhang, Rui; Nierras, Concepcion R.; Branton, Philip A.; Carithers, Latarsha J.; Guan, Ping; Moore, Helen M.; Rao, Abhi; Vaught, Jimmie B.; Gould, Sarah E.; Lockart, Nicole C.; Martin, Casey; Struewing, Jeffery P.; Volpi, Simona; Addington, Anjene M.; Koester, Susan E.; Little, A. Roger; Brigham, Lori E.; Hasz, Richard; Hunter, Marcus; Johns, Christopher; Johnson, Mark; Kopen, Gene; Leinweber, William F.; Lonsdale, John T.; McDonald, Alisa; Mestichelli, Bernadette; Myer, Kevin; Roe, Brian; Salvatore, Michael; Shad, Saboor; Thomas, Jeffrey A.; Walters, Gary; Washington, Michael; Wheeler, Joseph; Bridge, Jason; Foster, Barbara A.; Gillard, Bryan M.; Karasik, Ellen; Kumar, Rachna; Miklos, Mark; Moser, Michael T.; Jewell, Scott D.; Montroy, Robert G.; Rohrer, Daniel C.; Valley, Dana R.; Davis, David A.; Mash, Deborah C.; Undale, Anita H.; Smith, Anna M.; Tabor, David E.; Roche, Nancy V.; McLean, Jeffrey A.; Vatanian, Negin; Robinson, Karna L.; Sobin, Leslie; Barcus, Mary E.; Valentino, Kimberly M.; Qi, Liqun; Hunter, Steven; Hariharan, Pushpa; Singh, Shilpi; Um, Ki Sung; Matose, Takunda; Tomaszewski, Maria M.; Barker, Laura K.; Mosavel, Maghboeba; Siminoff, Laura A.; Traino, Heather M.; Flicek, Paul; Juettemann, Thomas; Ruffier, Magali; Sheppard, Dan; Taylor, Kieron; Trevanion, Stephen J.; Zerbino, Daniel R.; Craft, Brian; Goldman, Mary; Haeussler, Maximilian; Kent, W. James; Lee, Christopher M.; Paten, Benedict; Rosenbloom, Kate R.; Vivian, John; Zhu, Jingchun; Brown, Andrew A.; Nguyen, Duyen Y.; Sullivan, Timothy J.; Addington, Anjene; Koester, Susan; Lockhart, Nicole C.; Roe, Bryan; Valley, Dana; He, Amy Z.; Kang, Eun Yong; Quon, Gerald; Ripke, Stephan; Shimko, Tyler C.; Teran, Nicole A.; Zhang, Hailei; Bustamante, Carlos D.; Guigó, Roderic

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression

  12. Vitamins in the prevention of human diseases

    National Research Council Canada - National Science Library

    Herrmann, Wolfgang, Prof; Obeid, Rima

    2011-01-01

    ... in ancient Egypt. One-sided nutrition, smoking, alcohol, genetic factors, and even geographical origin interfere with our dietary intake of the vitamins. Insufficient vitamin intake can impact our health and contribute significantly to the development of diseases. This book offers expert reviews and judgements on the role of vitamins in health and ...

  13. Exposure to Human Immunodeficiency Disease. What Precautions ...

    African Journals Online (AJOL)

    Background: The Human Immunodeficiency Virus (HIV) epidemic is more pronounced in sub-Saharan Africa. The ever-increasing prevalence of HIV infection and the continued improvement in clinical management has increased the likelihood of these patients being managed by healthcare workers. The aim of the review ...

  14. Human Microbiota in Health and Disease

    NARCIS (Netherlands)

    Vos, de W.M.; Engstrand, L.; Drago, L.; Reid, G.; Schauber, J.; Hay, R.; Mendling, W.; Schaller, M.; Spiller, R.; Gahan, C.G.M.; Rowland, I.

    2012-01-01

    Each human body plays host to a microbial population which is both numerically vast (at around 1014 microbial cells) and phenomenally diverse (over 1,000 species). The majority of the microbial species in the gut have not been cultured but the application of culture-independent approaches for high

  15. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    , signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management....

  16. Mosquitoes as vectors of human disease in South Africa | Jupp ...

    African Journals Online (AJOL)

    While malaria is the most important mosquito-borne disease in South Africa, there are also several mosquito-borne viruses that also cause human disease. The most significant are chikungunya, West Nile, Sindbis and Rift Valley fever viruses. In this review these are compared with malaria, mainly in regard to their ecology ...

  17. Animal models of human respiratory syncytial virus disease

    NARCIS (Netherlands)

    Bem, Reinout A.; Domachowske, Joseph B.; Rosenberg, Helene F.

    2011-01-01

    Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for

  18. Genetics and epigenetics of repeat derepression in human disease

    NARCIS (Netherlands)

    Thijssen, P.E.

    2016-01-01

    A large part of the human genome consists of repetitive DNA. In this thesis two human diseases have been studied in which deregulation of repetitive DNA is a central feature: facioscapulohumeral muscular dystrophy (FSHD) and immunodeficiency, centromere instability and facial anomalies (ICF)

  19. Positions of human dwellings affect few tropical diseases near ...

    African Journals Online (AJOL)

    user

    Some factors that possibly affect tropical disease distribution was investigated in about 500 randomize human dwellings. The studied factors include wild animals, domestic animals, wild plants, cultivated plants, nature of soil, nature of water, positions of human dwellings, nature of building material and position of animal ...

  20. Animal models for human genetic diseases | Sharif | African Journal ...

    African Journals Online (AJOL)

    The study of human genetic diseases can be greatly aided by animal models because of their similarity to humans in terms of genetics. In addition to understand diverse aspects of basic biology, model organisms are extensively used in applied research in agriculture, industry, and also in medicine, where they are used to ...

  1. Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease

    NARCIS (Netherlands)

    C. Fraisier (Christophe); A. Papa (Anna); S. Granjeaud (Samuel); R.Q. Hintzen (Rogier); B.E.E. Martina (Byron); L. Camoin (Luc); L. Almeras (Lionel)

    2014-01-01

    textabstractDuring the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF) cases, but also of West Nile neuroinvasive disease (WNND). The lack of human vaccine or specific treatment against WNV infection imparts a

  2. Multifractal detrended fluctuation analysis of human gait diseases

    OpenAIRE

    Dutta, Srimonti; Ghosh, Dipak; Chatterjee, Sucharita

    2013-01-01

    In this paper multifractal detrended fluctuation analysis (MFDFA) is used to study the human gait time series for normal and diseased sets. It is observed that long range correlation is primarily responsible for the origin of multifractality. The study reveals that the degree of multifractality is more for normal set compared to diseased set. However, the method fails to distinguish between the two diseased sets.

  3. 'Laminopathies': A wide spectrum of human diseases

    International Nuclear Information System (INIS)

    Worman, Howard J.; Bonne, Gisele

    2007-01-01

    Mutations in genes encoding the intermediate filament nuclear lamins and associated proteins cause a wide spectrum of diseases sometimes called 'laminopathies.' Diseases caused by mutations in LMNA encoding A-type lamins include autosomal dominant Emery-Dreifuss muscular dystrophy and related myopathies, Dunnigan-type familial partial lipodystrophy, Charcot-Marie-Tooth disease type 2B1 and developmental and accelerated aging disorders. Duplication in LMNB1 encoding lamin B1 causes autosomal dominant leukodystrophy and mutations in LMNB2 encoding lamin B2 are associated with acquired partial lipodystrophy. Disorders caused by mutations in genes encoding lamin-associated integral inner nuclear membrane proteins include X-linked Emery-Dreifuss muscular dystrophy, sclerosing bone dysplasias, HEM/Greenberg skeletal dysplasia and Pelger-Huet anomaly. While mutations and clinical phenotypes of 'laminopathies' have been carefully described, data explaining pathogenic mechanisms are only emerging. Future investigations will likely identify new 'laminopathies' and a combination of basic and clinical research will lead to a better understanding of pathophysiology and the development of therapies

  4. Natural Variation in SER1 and ENA6 Underlie Condition-Specific Growth Defects in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Amy Sirr

    2018-01-01

    Full Text Available Despite their ubiquitous use in laboratory strains, naturally occurring loss-of-function mutations in genes encoding core metabolic enzymes are relatively rare in wild isolates of Saccharomyces cerevisiae. Here, we identify a naturally occurring serine auxotrophy in a sake brewing strain from Japan. Through a cross with a honey wine (white tecc brewing strain from Ethiopia, we map the minimal medium growth defect to SER1, which encodes 3-phosphoserine aminotransferase and is orthologous to the human disease gene, PSAT1. To investigate the impact of this polymorphism under conditions of abundant external nutrients, we examine growth in rich medium alone or with additional stresses, including the drugs caffeine and rapamycin and relatively high concentrations of copper, salt, and ethanol. Consistent with studies that found widespread effects of different auxotrophies on RNA expression patterns in rich media, we find that the SER1 loss-of-function allele dominates the quantitative trait locus (QTL landscape under many of these conditions, with a notable exacerbation of the effect in the presence of rapamycin and caffeine. We also identify a major-effect QTL associated with growth on salt that maps to the gene encoding the sodium exporter, ENA6. We demonstrate that the salt phenotype is largely driven by variation in the ENA6 promoter, which harbors a deletion that removes binding sites for the Mig1 and Nrg1 transcriptional repressors. Thus, our results identify natural variation associated with both coding and regulatory regions of the genome that underlie strong growth phenotypes.

  5. DEGAS: de novo discovery of dysregulated pathways in human diseases.

    Directory of Open Access Journals (Sweden)

    Igor Ulitsky

    Full Text Available BACKGROUND: Molecular studies of the human disease transcriptome typically involve a search for genes whose expression is significantly dysregulated in sick individuals compared to healthy controls. Recent studies have found that only a small number of the genes in human disease-related pathways show consistent dysregulation in sick individuals. However, those studies found that some pathway genes are affected in most sick individuals, but genes can differ among individuals. While a pathway is usually defined as a set of genes known to share a specific function, pathway boundaries are frequently difficult to assign, and methods that rely on such definition cannot discover novel pathways. Protein interaction networks can potentially be used to overcome these problems. METHODOLOGY/PRINCIPAL FINDINGS: We present DEGAS (DysrEgulated Gene set Analysis via Subnetworks, a method for identifying connected gene subnetworks significantly enriched for genes that are dysregulated in specimens of a disease. We applied DEGAS to seven human diseases and obtained statistically significant results that appear to home in on compact pathways enriched with hallmarks of the diseases. In Parkinson's disease, we provide novel evidence for involvement of mRNA splicing, cell proliferation, and the 14-3-3 complex in the disease progression. DEGAS is available as part of the MATISSE software package (http://acgt.cs.tau.ac.il/matisse. CONCLUSIONS/SIGNIFICANCE: The subnetworks identified by DEGAS can provide a signature of the disease potentially useful for diagnosis, pinpoint possible pathways affected by the disease, and suggest targets for drug intervention.

  6. Guidelines for investigating causality of sequence variants in human disease

    Science.gov (United States)

    MacArthur, D. G.; Manolio, T. A.; Dimmock, D. P.; Rehm, H. L.; Shendure, J.; Abecasis, G. R.; Adams, D. R.; Altman, R. B.; Antonarakis, S. E.; Ashley, E. A.; Barrett, J. C.; Biesecker, L. G.; Conrad, D. F.; Cooper, G. M.; Cox, N. J.; Daly, M. J.; Gerstein, M. B.; Goldstein, D. B.; Hirschhorn, J. N.; Leal, S. M.; Pennacchio, L. A.; Stamatoyannopoulos, J. A.; Sunyaev, S. R.; Valle, D.; Voight, B. F.; Winckler, W.; Gunter, C.

    2014-01-01

    The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development. PMID:24759409

  7. Impacts of Gut Bacteria on Human Health and Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Jie Zhang

    2015-04-01

    Full Text Available Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases.

  8. Candida albicans Biofilms and Human Disease

    Science.gov (United States)

    Nobile, Clarissa J.; Johnson, Alexander D.

    2016-01-01

    In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species. PMID:26488273

  9. Human-induced pluripotent stem cells: potential for neurodegenerative diseases.

    Science.gov (United States)

    Ross, Christopher A; Akimov, Sergey S

    2014-09-15

    The cell biology of human neurodegenerative diseases has been difficult to study till recently. The development of human induced pluripotent stem cell (iPSC) models has greatly enhanced our ability to model disease in human cells. Methods have recently been improved, including increasing reprogramming efficiency, introducing non-viral and non-integrating methods of cell reprogramming, and using novel gene editing techniques for generating genetically corrected lines from patient-derived iPSCs, or for generating mutations in control cell lines. In this review, we highlight accomplishments made using iPSC models to study neurodegenerative disorders such as Huntington's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Fronto-Temporal Dementia, Alzheimer's disease, Spinomuscular Atrophy and other polyglutamine diseases. We review disease-related phenotypes shown in patient-derived iPSCs differentiated to relevant neural subtypes, often with stressors or cell "aging", to enhance disease-specific phenotypes. We also discuss prospects for the future of using of iPSC models of neurodegenerative disorders, including screening and testing of therapeutic compounds, and possibly of cell transplantation in regenerative medicine. The new iPSC models have the potential to greatly enhance our understanding of pathogenesis and to facilitate the development of novel therapeutics. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Human RNA "rumor" viruses: the search for novel human retroviruses in chronic disease.

    Science.gov (United States)

    Voisset, Cécile; Weiss, Robin A; Griffiths, David J

    2008-03-01

    Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of additional human retroviral infections, particularly in cancer and other chronic diseases. Unfortunately, many of these putative viruses remain unproven and controversial, and some retrovirologists have dismissed them as merely "human rumor viruses." Work in this field was last reviewed in depth in 1984, and since then, the molecular techniques available for identifying and characterizing retroviruses have improved enormously in sensitivity. The advent of PCR in particular has dramatically enhanced our ability to detect novel viral sequences in human tissues. However, DNA amplification techniques have also increased the potential for false-positive detection due to contamination. In addition, the presence of many families of human endogenous retroviruses (HERVs) within our DNA can obstruct attempts to identify and validate novel human retroviruses. Here, we aim to bring together the data on "novel" retroviral infections in humans by critically examining the evidence for those putative viruses that have been linked with disease and the likelihood that they represent genuine human infections. We provide a background to the field and a discussion of potential confounding factors along with some technical guidelines. In addition, some of the difficulties associated with obtaining formal proof of causation for common or ubiquitous agents such as HERVs are discussed.

  11. Glycoconjugates in human milk: protecting infants from disease.

    Science.gov (United States)

    Peterson, Robyn; Cheah, Wai Yuen; Grinyer, Jasmine; Packer, Nicolle

    2013-12-01

    Breastfeeding is known to have many health benefits for a newborn. Not only does human milk provide an excellent source of nutrition, it also contains components that protect against infection from a wide range of pathogens. Some of the protective properties of human milk can be attributed to the immunoglobulins. Yet, there is another level of defense provided by the "sweet" protective agents that human milk contains, including free oligosaccharides, glycoproteins and glycolipids. Sugar epitopes in human milk are similar to the glycan receptors that serve as pathogen adhesion sites in the human gastrointestinal tract and other epithelial cell surfaces; hence, the milk glycans can competitively bind to and remove the disease-causing microorganisms before they cause infection. The protective value of free oligosaccharides in human milk has been well researched and documented. Human milk glycoconjugates have received less attention but appear to play an equally important role. Here, we bring together the breadth of research that has focused on the protective mechanisms of human milk glycoconjugates, with a particular focus on the glycan moieties that may play a role in disease prevention. In addition, human milk glycoconjugates are compared with bovine milk glycoconjugates in terms of their health benefits for the human infant.

  12. FISH CONSUMPTION, METHYLMERCURY, AND HUMAN HEART DISEASE.

    Energy Technology Data Exchange (ETDEWEB)

    LIPFERT, F.W.; SULLIVAN, T.M.

    2005-09-21

    Environmental mercury continues to be of concern to public health advocates, both in the U.S. and abroad, and new research continues to be published. A recent analysis of potential health benefits of reduced mercury emissions has opened a new area of public health concern: adverse effects on the cardiovascular system, which could account for the bulk of the potential economic benefits. The authors were careful to include caveats about the uncertainties of such impacts, but they cited only a fraction of the applicable health effects literature. That literature includes studies of the potentially harmful ingredient (methylmercury, MeHg) in fish, as well as of a beneficial ingredient, omega-3 fatty acids or ''fish oils''. The U.S. Food and Drug Administration (FDA) recently certified that some of these fat compounds that are primarily found in fish ''may be beneficial in reducing coronary heart disease''. This paper briefly summarizes and categorizes the extensive literature on both adverse and beneficial links between fish consumption and cardiovascular health, which are typically based on studies of selected groups of individuals (cohorts). Such studies tend to comprise the ''gold standard'' of epidemiology, but cohorts tend to exhibit a great deal of variability, in part because of the limited numbers of individuals involved and in part because of interactions with other dietary and lifestyle considerations. Note that eating fish will involve exposure to both the beneficial effects of fatty acids and the potentially harmful effects of contaminants like Hg or PCBs, all of which depend on the type of fish but tend to be correlated within a population. As a group, the cohort studies show that eating fish tends to reduce mortality, especially due to heart disease, for consumption rates up to about twice weekly, above which the benefits tend to level off. A Finnish cohort study showed increased mortality risks

  13. The RNA modification landscape in human disease.

    Science.gov (United States)

    Jonkhout, Nicky; Tran, Julia; Smith, Martin A; Schonrock, Nicole; Mattick, John S; Novoa, Eva Maria

    2017-12-01

    RNA modifications have been historically considered as fine-tuning chemo-structural features of infrastructural RNAs, such as rRNAs, tRNAs, and snoRNAs. This view has changed dramatically in recent years, to a large extent as a result of systematic efforts to map and quantify various RNA modifications in a transcriptome-wide manner, revealing that RNA modifications are reversible, dynamically regulated, far more widespread than originally thought, and involved in major biological processes, including cell differentiation, sex determination, and stress responses. Here we summarize the state of knowledge and provide a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. With the advent of direct RNA-sequencing technologies, we expect that this catalog will help prioritize those RNA modifications for transcriptome-wide maps. © 2017 Jonkhout et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  14. Recreational stimulants, herbal, and spice cannabis: The core psychobiological processes that underlie their damaging effects.

    Science.gov (United States)

    Parrott, Andrew C; Hayley, Amie C; Downey, Luke A

    2017-05-01

    Recreational drugs are taken for their positive mood effects, yet their regular usage damages well-being. The psychobiological mechanisms underlying these damaging effects will be debated. The empirical literature on recreational cannabinoids and stimulant drugs is reviewed. A theoretical explanation for how they cause similar types of damage is outlined. All psychoactive drugs cause moods and psychological states to fluctuate. The acute mood gains underlie their recreational usage, while the mood deficits on withdrawal explain their addictiveness. Cyclical mood changes are found with every central nervous system stimulant and also occur with cannabis. These mood state changes provide a surface index for more profound psychobiological fluctuations. Homeostatic balance is altered, with repetitive disturbances of the hypothalamic-pituitary-adrenal axis, and disrupted cortisol-neurohormonal secretions. Hence, these drugs cause increased stress, disturbed sleep, neurocognitive impairments, altered brain activity, and psychiatric vulnerability. Equivalent deficits occur with novel psychoactive stimulants such as mephedrone and artificial "spice" cannabinoids. These psychobiological fluctuations underlie drug dependency and make cessation difficult. Psychobiological stability and homeostatic balance are optimally restored by quitting psychoactive drugs. Recreational stimulants such as cocaine or MDMA (3.4-methylenedioxymethamphetamine) and sedative drugs such as cannabis damage human homeostasis and well-being through similar core psychobiological mechanisms. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Spectroscopy techniques for human disease diagnosis

    Science.gov (United States)

    Navas-Moreno, Maria

    2011-12-01

    Modern medicine would benefit from the pursuit of new, more specific and easier to implement diagnosis tools. In recent years, Raman scattering, surface-enhanced Raman scattering and fluorescence spectroscopy have proven to be successful diagnostic techniques for a wide range of diseases including atherosclerosis, kidney stones, bone diseases, diabetes, and a wide collection of neoplasms. Optical spectroscopy has several advantages over more traditional diagnostic methods (i.e., histopathology, quantitative PCR, etc.) such as faster data analysis, nonspecific sample preparation, nonspecific labels/reagents/antibodies usage requirements, and immediate on-site implementation. In the present work, label-free in vitro fluorescence and surface enhanced Raman scattering (SERS) spectroscopy have been used to differentiate between blood cells of patients affected with myeloproliferative neoplasms (MPN) and those of healthy subjects. The SERS technique has also been applied to hemoglobin variants as well as to serum obtained from patients affected with chronic heart failure who positively or negatively responded to the seasonal influenza vaccine. We found that spectral ratios of the background fluorescence intensity that accompanies the SERS spectra of granulocytes serve as excellent markers for the presence of MPNs. In addition, we also found expression dysregulation of two hypoxia induced factor regulated genes, which correlates with our results obtained by SERS spectroscopy assay in MPN patients and supports the presence of the Warburg effect in MPNs. We hypothesize that SERS measures metabolic change in granulocytes through two possible mechanisms: (i) Changes in dielectric properties of the environment surrounding the silver-cell interface; and (ii) changes in flavin adenine dinucleotide concentrations, which in turn changes the relative contribution of the autofluorescence to the emission spectrum. These hypotheses are supported by SERS measurement of 2-deoxy

  16. Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis.

    Science.gov (United States)

    2012-01-01

    This report provides a review and analysis of the research landscape for three diseases - Chagas disease, human African trypanosomiasis and leishmaniasis - that disproportionately afflict poor and remote populations with limited access to health services. It represents the work of the disease reference group on Chagas Disease, Human African Trypanosomiasis and Leishmaniasis (DRG3) which was established to identify key research priorities through review of research evidence and input from stakeholders' consultations. The diseases, which are caused by related protozoan parasites, are described in terms of their epidemiology and diseases burden, clinical forms and pathogenesis, HIV coinfection, diagnosis, drugs and drug resistance, vaccines, vector control, and health-care interventions. Priority areas for research are identified based on criteria such as public health relevance, benefit and impact on poor populations and equity, and feasibility. The priorities are found in the areas of diagnostics, drugs, vector control, asymptomatic infection, economic analysis of treatment and vector control methods, and in some specific issues such as surveillance methods or transmission-blocking vaccines for particular diseases. This report will be useful to researchers, policy and decision-makers, funding bodies, implementation organizations, and civil society. This is one of ten disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at: www.who.int/tdr/stewardship/global_report/en/index.html.

  17. Polycystins, calcium signaling, and human diseases

    International Nuclear Information System (INIS)

    Delmas, Patrick; Padilla, Francoise; Osorio, Nancy; Coste, Bertrand; Raoux, Matthieu; Crest, Marcel

    2004-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a major, inherited nephropathy affecting over 1:1000 of the worldwide population. It is a systemic condition with frequent hepatic and cardiovascular manifestations in addition to the progressive development of fluid-filled cysts from the tubules and collecting ducts of affected kidneys. The pathogenesis of cyst formation is currently thought to involve increased proliferation of epithelial cells, mild dedifferentiation, and fluid accumulation. In the past decade, study of ADPKD led to the discovery of a unique family of highly complex proteins, the polycystins. Loss-of-function mutations in either of two polycystin proteins, polycystin-1 or polycystin-2, give rise to ADPKD. These proteins are thought to function together as part of a multiprotein complex that may initiate Ca 2+ signals, directing attention to the regulation of intracellular Ca 2+ as a possible misstep that participates in cyst formation. Here we review what is known about the Ca 2+ signaling functions of polycystin proteins and focus on findings that have significantly advanced our physiological insight. Special attention is paid to the recently discovered role of these proteins in the mechanotransduction of the renal primary cilium and the model it suggests

  18. Application of Whole Exome Sequencing to Identify Disease-Causing Variants in Inherited Human Diseases

    Directory of Open Access Journals (Sweden)

    Gerald Goh

    2012-12-01

    Full Text Available The recent advent of next-generation sequencing technologies has dramatically changed the nature of biomedical research. Human genetics is no exception-it has never been easier to interrogate human patient genomes at the nucleotide level to identify disease-associated variants. To further facilitate the efficiency of this approach, whole exome sequencing (WES was first developed in 2009. Over the past three years, multiple groups have demonstrated the power of WES through robust disease-associated variant discoveries across a diverse spectrum of human diseases. Here, we review the application of WES to different types of inherited human diseases and discuss analytical challenges and possible solutions, with the aim of providing a practical guide for the effective use of this technology.

  19. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses.

    Science.gov (United States)

    Haïk, Stéphane; Brandel, Jean-Philippe

    2014-08-01

    In contrast with other neurodegenerative disorders associated to protein misfolding, human prion diseases include infectious forms (also called transmitted forms) such as kuru, iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease. The transmissible agent is thought to be solely composed of the abnormal isoform (PrP(Sc)) of the host-encoded prion protein that accumulated in the central nervous system of affected individuals. Compared to its normal counterpart, PrP(Sc) is β-sheet enriched and aggregated and its propagation is based on an autocatalytic conversion process. Increasing evidence supports the view that conformational variations of PrP(Sc) encoded the biological properties of the various prion strains that have been isolated by transmission studies in experimental models. Infectious forms of human prion diseases played a pivotal role in the emergence of the prion concept and in the characterization of the very unconventional properties of prions. They provide a unique model to understand how prion strains are selected and propagate in humans. Here, we review and discuss how genetic factors interplay with strain properties and route of transmission to influence disease susceptibility, incubation period and phenotypic expression in the light of the kuru epidemics due to ritual endocannibalism, the various series iatrogenic diseases secondary to extractive growth hormone treatment or dura mater graft and the epidemics of variant Creutzfeldt-Jakob disease linked to dietary exposure to the agent of bovine spongiform encephalopathy. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Modeling cognition and disease using human glial chimeric mice.

    Science.gov (United States)

    Goldman, Steven A; Nedergaard, Maiken; Windrem, Martha S

    2015-08-01

    As new methods for producing and isolating human glial progenitor cells (hGPCs) have been developed, the disorders of myelin have become especially compelling targets for cell-based therapy. Yet as animal modeling of glial progenitor cell-based therapies has progressed, it has become clear that transplanted hGPCs not only engraft and expand within murine hosts, but dynamically outcompete the resident progenitors so as to ultimately dominate the host brain. The engrafted human progenitor cells proceed to generate parenchymal astrocytes, and when faced with a hypomyelinated environment, oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human cognition and information processing. In addition, the cellular humanization of these brains permits their use in studying glial infectious and inflammatory disorders unique to humans, and the effects of those disorders on the glial contributions to cognition. Perhaps most intriguingly, by pairing our ability to construct human glial chimeras with the production of patient-specific hGPCs derived from pluripotential stem cells, we may now establish mice in which a substantial proportion of resident glia are both human and disease-derived. These mice in particular may provide us new opportunities for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human neurological and neuropsychiatric disease. © 2015 Wiley Periodicals, Inc.

  1. Modelling Neurodegenerative Diseases Using Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2016-01-01

    Neurodegenerative diseases are being modelled in-vitro using human patient-specific, induced pluripotent stem cells and transgenic embryonic stem cells to determine more about disease mechanisms, as well as to discover new treatments for patients. Current research in modelling Alzheimer’s disease......, frontotemporal dementia and Parkinson’s disease using pluripotent stem cells is described, along with the advent of gene-editing, which has been the complimentary tool for the field. Current methods used to model these diseases are predominantly dependent on 2D cell culture methods. Outcomes reveal that only...... some of the phenotype can be observed in-vitro, but these phenotypes, when compared to the patient, correlate extremely well. Many studies have found novel molecular mechanisms involved in the disease and therefore elucidate new potential targets for reversing the phenotype. Future research...

  2. Network Medicine: A Network-based Approach to Human Disease

    Science.gov (United States)

    Barabási, Albert-László; Gulbahce, Natali; Loscalzo, Joseph

    2011-01-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new diseases genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases. PMID:21164525

  3. DiseaseEnhancer: a resource of human disease-associated enhancer catalog.

    Science.gov (United States)

    Zhang, Guanxiong; Shi, Jian; Zhu, Shiwei; Lan, Yujia; Xu, Liwen; Yuan, Huating; Liao, Gaoming; Liu, Xiaoqin; Zhang, Yunpeng; Xiao, Yun; Li, Xia

    2018-01-04

    Large-scale sequencing studies discovered substantial genetic variants occurring in enhancers which regulate genes via long range chromatin interactions. Importantly, such variants could affect enhancer regulation by changing transcription factor bindings or enhancer hijacking, and in turn, make an essential contribution to disease progression. To facilitate better usage of published data and exploring enhancer deregulation in various human diseases, we created DiseaseEnhancer (http://biocc.hrbmu.edu.cn/DiseaseEnhancer/), a manually curated database for disease-associated enhancers. As of July 2017, DiseaseEnhancer includes 847 disease-associated enhancers in 143 human diseases. Database features include basic enhancer information (i.e. genomic location and target genes); disease types; associated variants on the enhancer and their mediated phenotypes (i.e. gain/loss of enhancer and the alterations of transcription factor bindings). We also include a feature on our website to export any query results into a file and download the full database. DiseaseEnhancer provides a promising avenue for researchers to facilitate the understanding of enhancer deregulation in disease pathogenesis, and identify new biomarkers for disease diagnosis and therapy. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Molecular and genetic inflammation networks in major human diseases.

    Science.gov (United States)

    Zhao, Yongzhong; Forst, Christian V; Sayegh, Camil E; Wang, I-Ming; Yang, Xia; Zhang, Bin

    2016-07-19

    It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured the most critical inflammation-involved molecules, genetic susceptibilities, epigenetic factors, and environmental factors, our schemata on the role of inflammation in complex diseases remain largely patchy, in part due to the success of reductionism in terms of research methodology per se. Omics data alongside the advances in data integration technologies have enabled reconstruction of molecular and genetic inflammation networks which shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the proven beneficial role of anti-inflammation in coronary heart disease as well as other complex diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review our current understanding of the molecular and genetic inflammation networks underlying major human diseases. In this review, we first briefly discuss the complexity of infectious diseases and then highlight recently uncovered molecular and genetic inflammation networks in other major human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer's disease, Parkinson's disease, and sporadic cancer. The commonality and specificity of these molecular networks are addressed in the context of genetics based on genome-wide association study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or type 2 immunity leads to chronic and severe clinical conditions, remains open in terms of the inflammasome and the core inflammatome network features. Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic

  5. Exploring human disease using the Rat Genome Database

    Directory of Open Access Journals (Sweden)

    Mary Shimoyama

    2016-10-01

    Full Text Available Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases.

  6. Linking Microbiota to Human Diseases: A Systems Biology Perspective.

    Science.gov (United States)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, Fredrik

    2015-12-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2 diabetes (T2D), and irritable bowel syndrome, and some animal experiments have suggested causality. However, few studies have validated causality in humans and the underlying mechanisms remain largely to be elucidated. We discuss how systems biology approaches combined with new experimental technologies may disentangle some of the mechanistic details in the complex interactions of diet, microbiota, and host metabolism and may provide testable hypotheses for advancing our current understanding of human-microbiota interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Natural selection and infectious disease in human populations

    Science.gov (United States)

    Karlsson, Elinor K.; Kwiatkowski, Dominic P.; Sabeti, Pardis C.

    2015-01-01

    The ancient biological 'arms race' between microbial pathogens and humans has shaped genetic variation in modern populations, and this has important implications for the growing field of medical genomics. As humans migrated throughout the world, populations encountered distinct pathogens, and natural selection increased the prevalence of alleles that are advantageous in the new ecosystems in both host and pathogens. This ancient history now influences human infectious disease susceptibility and microbiome homeostasis, and contributes to common diseases that show geographical disparities, such as autoimmune and metabolic disorders. Using new high-throughput technologies, analytical methods and expanding public data resources, the investigation of natural selection is leading to new insights into the function and dysfunction of human biology. PMID:24776769

  8. Human Disease Insight: An integrated knowledge-based platform for disease-gene-drug information.

    Science.gov (United States)

    Tasleem, Munazzah; Ishrat, Romana; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-01-01

    The scope of the Human Disease Insight (HDI) database is not limited to researchers or physicians as it also provides basic information to non-professionals and creates disease awareness, thereby reducing the chances of patient suffering due to ignorance. HDI is a knowledge-based resource providing information on human diseases to both scientists and the general public. Here, our mission is to provide a comprehensive human disease database containing most of the available useful information, with extensive cross-referencing. HDI is a knowledge management system that acts as a central hub to access information about human diseases and associated drugs and genes. In addition, HDI contains well-classified bioinformatics tools with helpful descriptions. These integrated bioinformatics tools enable researchers to annotate disease-specific genes and perform protein analysis, search for biomarkers and identify potential vaccine candidates. Eventually, these tools will facilitate the analysis of disease-associated data. The HDI provides two types of search capabilities and includes provisions for downloading, uploading and searching disease/gene/drug-related information. The logistical design of the HDI allows for regular updating. The database is designed to work best with Mozilla Firefox and Google Chrome and is freely accessible at http://humandiseaseinsight.com. Copyright © 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  9. Model Systems of Human Papillomavirus-Associated Disease

    OpenAIRE

    Doorbar, John

    2015-01-01

    Human Papillomaviruses (HPVs) cause a range of serious disease, including the vast majority of cervical cancers, most anal and vulval [AQ: comment from Reviewer, is this acceptable?] cancers and around half of head and neck cancers. They are also responsible for troublesome benign epithelial lesions, including genital warts and laryngeal papillomas, and in some individuals HPVs lead to recurrent respiratory papillomatosis and other difficult to manage diseases. As a result, there is a great n...

  10. Human genetics of infectious diseases: a unified theory

    OpenAIRE

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predispos...

  11. Genome editing of human pluripotent stem cells to generate human cellular disease models

    Directory of Open Access Journals (Sweden)

    Kiran Musunuru

    2013-07-01

    Full Text Available Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  12. Linking adult hippocampal neurogenesis with human physiology and disease.

    Science.gov (United States)

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Bowen's Disease Associated With Two Human Papilloma Virus Types.

    Science.gov (United States)

    Eftekhari, Hojat; Gharaei Nejad, Kaveh; Azimi, Seyyede Zeinab; Rafiei, Rana; Mesbah, Alireza

    2017-09-01

    Bowen's disease (BD) is an epidermal in-situ squamous cell carcinoma (SCC). Most Human Papilloma Viruses (HPV)-positive lesions in Bowen's disease are localized to the genital region or distal extremities (periungual sites) in which HPV type-16 is frequently detected. Patient was a 64-year-old construction worker for whom we detected 2 erythematous psoriasiform reticular scaly plaques on peri-umbilical and medial knee. Biopsy established the diagnosis of Bowen's disease and polymerase chain reaction assay showed HPV-6, -18 co-infection. Patient was referred for surgical excision.

  14. Human gene therapy and imaging in neurological diseases

    Science.gov (United States)

    Jacobs, Andreas H.; Winkler, Alexandra; Castro, Maria G.; Lowenstein, Pedro

    2010-01-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and “phenotyping” of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy’s experimental knowledge into clinical applications and the way in which this process is being promoted through the use

  15. Mapping gene associations in human mitochondria using clinical disease phenotypes.

    Directory of Open Access Journals (Sweden)

    Curt Scharfe

    2009-04-01

    Full Text Available Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects

  16. Human papillomavirus infection and disease in men: Impact of HIV ...

    African Journals Online (AJOL)

    There is growing evidence of a significant burden of human papillomavirus (HPV) infection and associated disease in men. High rates of HPV infection have been observed in men from sub-Saharan Africa where HIV prevalence is high. HIV infection increases HPV prevalence, incidence and persistence and is strongly ...

  17. Human Milk and Allergic Diseases : An Unsolved Puzzle

    NARCIS (Netherlands)

    Munblit, Daniel; Peroni, Diego G; Boix-Amorós, Alba; Hsu, Peter S; Van't Land, Belinda; Gay, Melvin C L; Kolotilina, Anastasia; Skevaki, Chrysanthi; Boyle, Robert J; Collado, Maria Carmen; Garssen, Johan; Geddes, Donna T; Nanan, Ralph; Slupsky, Carolyn; Wegienka, Ganesa; Kozyrskyj, Anita L.; Warner, John O

    2017-01-01

    There is conflicting evidence on the protective role of breastfeeding in relation to the development of allergic sensitisation and allergic disease. Studies vary in methodology and definition of outcomes, which lead to considerable heterogeneity. Human milk composition varies both within and between

  18. The DNA-damage response in human biology and disease

    Czech Academy of Sciences Publication Activity Database

    Jackson, S.P.; Bartek, Jiří

    2009-01-01

    Roč. 461, č. 7267 (2009), s. 1071-1078 ISSN 0028-0836 Institutional research plan: CEZ:AV0Z50520514 Keywords : DNA damage response * human disease * cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 34.480, year: 2009

  19. Lipid metabolism in peroxisomes in relation to human disease

    NARCIS (Netherlands)

    Wanders, R. J.; Tager, J. M.

    1998-01-01

    Peroxisomes were long believed to play only a minor role in cellular metabolism but it is now clear that they catalyze a number of important functions. The importance of peroxisomes in humans is stressed by the existence of a group of genetic diseases in man in which one or more peroxisomal

  20. Gene therapy in nonhuman primate models of human autoimmune disease

    NARCIS (Netherlands)

    t'Hart, B. A.; Vervoordeldonk, M.; Heeney, J. L.; Tak, P. P.

    2003-01-01

    Before autoimmune diseases in humans can be treated with gene therapy, the safety and efficacy of the used vectors must be tested in valid experimental models. Monkeys, such as the rhesus macaque or the common marmoset, provide such models. This publication reviews the state of the art in monkey

  1. [The Greek illustrations of the human diseases: Mount Athos].

    Science.gov (United States)

    Charlier, Philippe

    2003-01-01

    Philippe Charlier deals with the whole illustrations of human diseases either from religious texts or works of art. He tends to pass in review the skeletal and anatomic illustrations of the illness which has been a repetitive subject since the ancient Greeks. The author points out their common features and their amazing differences in the examples of Mount Athos.

  2. The human oral metaproteome reveals potential biomarkers for caries disease

    DEFF Research Database (Denmark)

    Belda-Ferre, Pedro; Williamson, James; Simón-Soro, Áurea

    2015-01-01

    Tooth decay is considered the most prevalent human disease worldwide. We present the first metaproteomic study of the oral biofilm, using different mass spectrometry approaches that have allowed us to quantify individual peptides in healthy and caries-bearing individuals. A total of 7771 bacterial...

  3. [Leprosy, a pillar of human genetics of infectious diseases].

    Science.gov (United States)

    Gaschignard, J; Scurr, E; Alcaïs, A

    2013-06-01

    Despite a natural reservoir of Mycobacterium leprae limited to humans and free availability of an effective antibiotic treatment, more than 200,000 people develop leprosy each year. This disease remains a major cause of disability and social stigma worldwide. The cause of this constant incidence is currently unknown and indicates that important aspects of the complex relationship between the pathogen and its human host remain to be discovered. An important contribution of host genetics to susceptibility to leprosy has long been suggested to account for the considerable variability between individuals sustainably exposed to M. leprae. Given the inability to cultivate M. leprae in vitro and in the absence of relevant animal model, genetic epidemiology is the main strategy used to identify the genes and, consequently, the immunological pathways involved in protective immunity to M. leprae. Recent genome-wide studies have identified new pathophysiological pathways which importance is only beginning to be understood. In addition, the prism of human genetics placed leprosy at the crossroads of other common diseases such as Crohn's disease, asthma or myocardial infarction. Therefore, novel lights on the pathogenesis of many common diseases could eventually emerge from the detailed understanding of a disease of the shadows. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation.

    Science.gov (United States)

    Wu, Xiaoxu; Lu, Yongmei; Zhou, Sen; Chen, Lifan; Xu, Bing

    2016-01-01

    Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Leveraging human-centered design in chronic disease prevention.

    Science.gov (United States)

    Matheson, Gordon O; Pacione, Chris; Shultz, Rebecca K; Klügl, Martin

    2015-04-01

    Bridging the knowing-doing gap in the prevention of chronic disease requires deep appreciation and understanding of the complexities inherent in behavioral change. Strategies that have relied exclusively on the implementation of evidence-based data have not yielded the desired progress. The tools of human-centered design, used in conjunction with evidence-based data, hold much promise in providing an optimal approach for advancing disease prevention efforts. Directing the focus toward wide-scale education and application of human-centered design techniques among healthcare professionals will rapidly multiply their effective ability to bring the kind of substantial results in disease prevention that have eluded the healthcare industry for decades. This, in turn, would increase the likelihood of prevention by design. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Human genetics of infectious diseases: a unified theory

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931

  7. Single-Domain Antibodies As Therapeutics against Human Viral Diseases

    Directory of Open Access Journals (Sweden)

    Yanling Wu

    2017-12-01

    Full Text Available In full-size formats, monoclonal antibodies have been highly successful as therapeutics against cancer and immune diseases. However, their large size leads to inaccessibility of some epitopes and relatively high production costs. As an alternative, single-domain antibodies (sdAbs offer special advantages compared to full-size antibodies, including smaller size, larger number of accessible epitopes, relatively low production costs and improved robustness. Currently, sdAbs are being developed against a number of viruses, including human immunodeficiency virus-1 (HIV-1, influenza viruses, hepatitis C virus (HCV, respiratory syncytial virus (RSV, and enteric viruses. Although sdAbs are very potent inhibitors of viral infections, no sdAbs have been approved for clinical use against virial infection or any other diseases. In this review, we discuss the current state of research on sdAbs against viruses and their potential as therapeutics against human viral diseases.

  8. Human RNA “Rumor” Viruses: the Search for Novel Human Retroviruses in Chronic Disease

    Science.gov (United States)

    Voisset, Cécile; Weiss, Robin A.; Griffiths, David J.

    2008-01-01

    Summary: Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of additional human retroviral infections, particularly in cancer and other chronic diseases. Unfortunately, many of these putative viruses remain unproven and controversial, and some retrovirologists have dismissed them as merely “human rumor viruses.” Work in this field was last reviewed in depth in 1984, and since then, the molecular techniques available for identifying and characterizing retroviruses have improved enormously in sensitivity. The advent of PCR in particular has dramatically enhanced our ability to detect novel viral sequences in human tissues. However, DNA amplification techniques have also increased the potential for false-positive detection due to contamination. In addition, the presence of many families of human endogenous retroviruses (HERVs) within our DNA can obstruct attempts to identify and validate novel human retroviruses. Here, we aim to bring together the data on “novel” retroviral infections in humans by critically examining the evidence for those putative viruses that have been linked with disease and the likelihood that they represent genuine human infections. We provide a background to the field and a discussion of potential confounding factors along with some technical guidelines. In addition, some of the difficulties associated with obtaining formal proof of causation for common or ubiquitous agents such as HERVs are discussed. PMID:18322038

  9. Humane killing of animals for disease control purposes.

    Science.gov (United States)

    Thornber, P M; Rubira, R J; Styles, D K

    2014-04-01

    Killing for disease control purposes is an emotional issue for everyone concerned. Large-scale euthanasia or depopulation of animals may be necessary for the emergency control or eradication of animal diseases, to remove animals from a compromised situation (e.g. following flood, storm, fire, drought or a feed contamination event), to effect welfare depopulation when there is an oversupply due to a dysfunctional or closed marketing channel, or to depopulate and dispose of animals with minimal handling to decrease the risk of a zoonotic disease infecting humans. The World Organisation for Animal Health (OIE) developed international standards to provide advice on humane killing for various species and situations. Some fundamental issues are defined, such as competency of animal handling and implementation of humane killing techniques. Some of these methods have been used for many years, but novel approaches for the mass killing of particular species are being explored. Novel vaccines and new diagnostic techniques that differentiate between vaccinated and infected animals will save many animals from being killed as part of biosecurity response measures. Unfortunately, the destruction of affected livestock will still be required to control diseases whilst vaccination programmes are activated or where effective vaccines are not available. This paper reviews the principles of humane destruction and depopulation and explores available techniques with their associated advantages and disadvantages. It also identifies some current issues that merit consideration, such as legislative conflicts (emergency disease legislation versus animal welfare legislation, occupational health and safety), media issues, opinions on the future approaches to killing for disease control, and animal welfare.

  10. A framework for annotating human genome in disease context.

    Science.gov (United States)

    Xu, Wei; Wang, Huisong; Cheng, Wenqing; Fu, Dong; Xia, Tian; Kibbe, Warren A; Lin, Simon M

    2012-01-01

    Identification of gene-disease association is crucial to understanding disease mechanism. A rapid increase in biomedical literatures, led by advances of genome-scale technologies, poses challenge for manually-curated-based annotation databases to characterize gene-disease associations effectively and timely. We propose an automatic method-The Disease Ontology Annotation Framework (DOAF) to provide a comprehensive annotation of the human genome using the computable Disease Ontology (DO), the NCBO Annotator service and NCBI Gene Reference Into Function (GeneRIF). DOAF can keep the resulting knowledgebase current by periodically executing automatic pipeline to re-annotate the human genome using the latest DO and GeneRIF releases at any frequency such as daily or monthly. Further, DOAF provides a computable and programmable environment which enables large-scale and integrative analysis by working with external analytic software or online service platforms. A user-friendly web interface (doa.nubic.northwestern.edu) is implemented to allow users to efficiently query, download, and view disease annotations and the underlying evidences.

  11. Human endogenous retroviruses and chosen disease parameters in morphea

    Science.gov (United States)

    Dańczak-Pazdrowska, Aleksandra; Szramka-Pawlak, Beata; Żaba, Ryszard; Osmola-Mańkowska, Agnieszka; Silny, Wojciech

    2017-01-01

    Introduction Morphea (localized scleroderma) is a relatively rare disease characterized by excessive skin fibrosis. Human endogenous retroviruses (HERV) are largely distributed within the human genome with hundreds of thousands of elements. The HERV have been widely studied in autoimmune disorders, yet hardly ever assessed in diseases with a good prognosis such as morphea. Aim In this study we focus on the possible relations between the expression of chosen HERV and factors influencing the pathomechanism of the disease, such as age, sex, titres of anti-nuclear antibodies, as well as duration, activity, and severity of the disease (LoSSI index). Material and methods Real-time polymerase chain reaction (PCR) targeting six HERV sequences of interest were performed on samples derived from peripheral blood mononuclear cells (PBMC) and skin biopsies. Results In PBMC we found a statistically significant negative correlation between HERV-W env expression and LoSSI index (p = 0.01). Additionally, HERV-W env was downregulated in patients with the active form of morphea. In all other cases we found no correlation whatsoever nor statistically significant differences below the p = 0.05 threshold. Conclusions Morphea seems to be an autoimmune disease where the impact of HERV is not so apparent. It seems that probing many patients for the expression of just a few sequences is not as effective as previously expected. For initial studies of HERV in other diseases we recommend high throughput techniques such as HERV-dedicated DNA microarrays or massive parallel sequencing. PMID:28261031

  12. Human endogenous retroviruses and chosen disease parameters in morphea

    Directory of Open Access Journals (Sweden)

    Michał J. Kowalczyk

    2017-02-01

    Full Text Available Introduction: Morphea (localized scleroderma is a relatively rare disease characterized by excessive skin fibrosis. Human endogenous retroviruses (HERV are largely distributed within the human genome with hundreds of thousands of elements. The HERV have been widely studied in autoimmune disorders, yet hardly ever assessed in diseases with a good prognosis such as morphea. Aim: In this study we focus on the possible relations between the expression of chosen HERV and factors influencing the pathomechanism of the disease, such as age, sex, titres of anti-nuclear antibodies, as well as duration, activity, and severity of the disease (LoSSI index. Material and methods: Real-time polymerase chain reaction (PCR targeting six HERV sequences of interest were performed on samples derived from peripheral blood mononuclear cells (PBMC and skin biopsies. Results: In PBMC we found a statistically significant negative correlation between HERV-W env expression and LoSSI index (p = 0.01. Additionally, HERV-W env was downregulated in patients with the active form of morphea. In all other cases we found no correlation whatsoever nor statistically significant differences below the p = 0.05 threshold. Conclusions : Morphea seems to be an autoimmune disease where the impact of HERV is not so apparent. It seems that probing many patients for the expression of just a few sequences is not as effective as previously expected. For initial studies of HERV in other diseases we recommend high throughput techniques such as HERV-dedicated DNA microarrays or massive parallel sequencing.

  13. The impact of the human genome project on complex disease.

    Science.gov (United States)

    Bailey, Jessica N Cooke; Pericak-Vance, Margaret A; Haines, Jonathan L

    2014-07-16

    In the decade that has passed since the initial release of the Human Genome, numerous advancements in science and technology within and beyond genetics and genomics have been encouraged and enhanced by the availability of this vast and remarkable data resource. Progress in understanding three common, complex diseases: age-related macular degeneration (AMD), Alzheimer's disease (AD), and multiple sclerosis (MS), are three exemplars of the incredible impact on the elucidation of the genetic architecture of disease. The approaches used in these diseases have been successfully applied to numerous other complex diseases. For example, the heritability of AMD was confirmed upon the release of the first genome-wide association study (GWAS) along with confirmatory reports that supported the findings of that state-of-the art method, thus setting the foundation for future GWAS in other heritable diseases. Following this seminal discovery and applying it to other diseases including AD and MS, the genetic knowledge of AD expanded far beyond the well-known APOE locus and now includes more than 20 loci. MS genetics saw a similar increase beyond the HLA loci and now has more than 100 known risk loci. Ongoing and future efforts will seek to define the remaining heritability of these diseases; the next decade could very well hold the key to attaining this goal.

  14. Chronic activation of the innate immune system may underlie the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Bruce Bartholow Duncan

    2001-05-01

    Full Text Available CONTEXTO: The metabolic syndrome is characterized by a clustering, in free-living populations, of cardiovascular and diabetes risk factors generally linked to insulin resistance, obesity and central obesity. Consonant with the well-established inflammatory pathogenesis of atherosclerotic disease, the metabolic syndrome is now being investigated in relation to its inflammatory nature. OBJETIVO: We present cross-sectional findings demonstrating that markers of inflammation correlate with components of the metabolic syndrome, and prospective findings of the ARIC Study indicating that markers of inflammation and endothelial dysfunction predict the development of diabetes mellitus and weight gain in adults. We present biological evidence to suggest that chronic activation of the innate immune system may underlie the metabolic syndrome, characterizing the common soil for the causality of type 2 diabetes mellitus and cardiovascular disease. CONCLUSIONS: Better understanding of the role of the innate immune system in these diseases may lead to important advances in the prediction and management of diabetes and cardiovascular disease.

  15. Differential overexpression of SERPINA3 in human prion diseases.

    Science.gov (United States)

    Vanni, S; Moda, F; Zattoni, M; Bistaffa, E; De Cecco, E; Rossi, M; Giaccone, G; Tagliavini, F; Haïk, S; Deslys, J P; Zanusso, G; Ironside, J W; Ferrer, I; Kovacs, G G; Legname, G

    2017-11-15

    Prion diseases are fatal neurodegenerative disorders with sporadic, genetic or acquired etiologies. The molecular alterations leading to the onset and the spreading of these diseases are still unknown. In a previous work we identified a five-gene signature able to distinguish intracranially BSE-infected macaques from healthy ones, with SERPINA3 showing the most prominent dysregulation. We analyzed 128 suitable frontal cortex samples, from prion-affected patients (variant Creutzfeldt-Jakob disease (vCJD) n = 20, iatrogenic CJD (iCJD) n = 11, sporadic CJD (sCJD) n = 23, familial CJD (gCJD) n = 17, fatal familial insomnia (FFI) n = 9, Gerstmann-Sträussler-Scheinker syndrome (GSS)) n = 4), patients with Alzheimer disease (AD, n = 14) and age-matched controls (n = 30). Real Time-quantitative PCR was performed for SERPINA3 transcript, and ACTB, RPL19, GAPDH and B2M were used as reference genes. We report SERPINA3 to be strongly up-regulated in the brain of all human prion diseases, with only a mild up-regulation in AD. We show that this striking up-regulation, both at the mRNA and at the protein level, is present in all types of human prion diseases analyzed, although to a different extent for each specific disorder. Our data suggest that SERPINA3 may be involved in the pathogenesis and the progression of prion diseases, representing a valid tool for distinguishing different forms of these disorders in humans.

  16. Human disease-drug network based on genomic expression profiles.

    Science.gov (United States)

    Hu, Guanghui; Agarwal, Pankaj

    2009-08-06

    Drug repositioning offers the possibility of faster development times and reduced risks in drug discovery. With the rapid development of high-throughput technologies and ever-increasing accumulation of whole genome-level datasets, an increasing number of diseases and drugs can be comprehensively characterized by the changes they induce in gene expression, protein, metabolites and phenotypes. We performed a systematic, large-scale analysis of genomic expression profiles of human diseases and drugs to create a disease-drug network. A network of 170,027 significant interactions was extracted from the approximately 24.5 million comparisons between approximately 7,000 publicly available transcriptomic profiles. The network includes 645 disease-disease, 5,008 disease-drug, and 164,374 drug-drug relationships. At least 60% of the disease-disease pairs were in the same disease area as determined by the Medical Subject Headings (MeSH) disease classification tree. The remaining can drive a molecular level nosology by discovering relationships between seemingly unrelated diseases, such as a connection between bipolar disorder and hereditary spastic paraplegia, and a connection between actinic keratosis and cancer. Among the 5,008 disease-drug links, connections with negative scores suggest new indications for existing drugs, such as the use of some antimalaria drugs for Crohn's disease, and a variety of existing drugs for Huntington's disease; while the positive scoring connections can aid in drug side effect identification, such as tamoxifen's undesired carcinogenic property. From the approximately 37K drug-drug relationships, we discover relationships that aid in target and pathway deconvolution, such as 1) KCNMA1 as a potential molecular target of lobeline, and 2) both apoptotic DNA fragmentation and G2/M DNA damage checkpoint regulation as potential pathway targets of daunorubicin. We have automatically generated thousands of disease and drug expression profiles using GEO

  17. Noncommunicable diseases and human rights: a promising synergy.

    Science.gov (United States)

    Gruskin, Sofia; Ferguson, Laura; Tarantola, Daniel; Beaglehole, Robert

    2014-05-01

    Noncommunicable diseases (NCDs) have finally emerged onto the global health and development agenda. Despite the increasingly important role human rights play in other areas of global health, their contribution to NCD prevention and control remains nascent. The recently adopted Global Action Plan for the Prevention and Control of NCDs 2013-2020 is an important step forward, but the lack of concrete attention to human rights is a missed opportunity. With practical implications for policy development, priority setting, and strategic design, human rights offer a logical, robust set of norms and standards; define the legal obligations of governments; and provide accountability mechanisms that can be used to enhance current approaches to NCD prevention and control. Harnessing the power of human rights can strengthen action for NCDs at the local, national, and global levels.

  18. Proteomics in farm animals models of human diseases.

    Science.gov (United States)

    Ceciliani, Fabrizio; Restelli, Laura; Lecchi, Cristina

    2014-10-01

    The need to provide in vivo complex environments to understand human diseases strongly relies on the use of animal models, which traditionally include small rodents and rabbits. It is becoming increasingly evident that the few species utilised to date cannot be regarded as universal. There is a great need for new animal species that are naturally endowed with specific features relevant to human diseases. Farm animals, including pigs, cows, sheep and horses, represent a valid alternative to commonly utilised rodent models. There is an ample scope for the application of proteomic techniques in farm animals, and the establishment of several proteomic maps of plasma and tissue has clearly demonstrated that farm animals provide a disease environment that closely resembles that of human diseases. The present review offers a snapshot of how proteomic techniques have been applied to farm animals to improve their use as biomedical models. Focus will be on specific topics of biomedical research in which farm animal models have been characterised through the application of proteomic techniques. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mobile technologies for disease surveillance in humans and animals.

    Science.gov (United States)

    Mwabukusi, Mpoki; Karimuribo, Esron D; Rweyemamu, Mark M; Beda, Eric

    2014-04-23

    A paper-based disease reporting system has been associated with a number of challenges. These include difficulties to submit hard copies of the disease surveillance forms because of poor road infrastructure, weather conditions or challenging terrain, particularly in the developing countries. The system demands re-entry of the data at data processing and analysis points, thus making it prone to introduction of errors during this process. All these challenges contribute to delayed acquisition, processing and response to disease events occurring in remote hard to reach areas. Our study piloted the use of mobile phones in order to transmit near to real-time data from remote districts in Tanzania (Ngorongoro and Ngara), Burundi (Muyinga) and Zambia (Kazungula and Sesheke). Two technologies namely, digital and short messaging services were used to capture and transmit disease event data in the animal and human health sectors in the study areas based on a server-client model. Smart phones running the Android operating system (minimum required version: Android 1.6), and which supported open source application, Epicollect, as well as the Open Data Kit application, were used in the study. These phones allowed collection of geo-tagged data, with the opportunity of including static and moving images related to disease events. The project supported routine disease surveillance systems in the ministries responsible for animal and human health in Burundi, Tanzania and Zambia, as well as data collection for researchers at the Sokoine University of Agriculture, Tanzania. During the project implementation period between 2011 and 2013, a total number of 1651 diseases event-related forms were submitted, which allowed reporters to include GPS coordinates and photographs related to the events captured. It was concluded that the new technology-based surveillance system is useful in providing near to real-time data, with potential for enhancing timely response in rural remote areas of

  20. Model systems of human papillomavirus-associated disease.

    Science.gov (United States)

    Doorbar, John

    2016-01-01

    Human papillomaviruses (HPVs) cause a range of serious diseases, including the vast majority of cervical cancers, most anal cancers and around half of head and neck cancers. They are also responsible for troublesome benign epithelial lesions, including genital warts and laryngeal papillomas, and in some individuals HPVs lead to recurrent respiratory papillomatosis and other difficult-to-manage diseases. As a result, there is a great need for model systems that accurately mimic papillomavirus infections in humans. This is complicated by the diverse variety of HPVs, which now number over 200 types, and the different strategies they have evolved to persist in the population. The most well-developed models involve the culture of HPV-containing keratinocytes in organotypic raft culture, an approach which appears to accurately mimic the life cycle of several of the high-risk cancer-associated HPV types. Included amongst these are HPV16 and 18, which cause the majority of cervical cancers. The low-risk HPV types persist less well in tissue-culture models, and our ability to study the productive life cycle of these viruses is more limited. Although ongoing research is likely to improve this situation, animal models of papillomavirus disease can provide considerable basic information as to how lesions form, regress and can be controlled by the immune system. The best studied are cottontail rabbit papillomavirus, rabbit oral papillomavirus and, more recently, mouse papillomavirus (MmuPV), the last of which is providing exciting new insights into viral tropisms and immune control. In addition, transgenic models of disease have helped us to understand the consequences of persistent viral gene expression and the importance of co-factors such as hormones and UV irradiation in the development of neoplasia and cancer. It is hoped that such disease models will eventually lead us to better understanding and better treatments for human disease. Copyright © 2015 Pathological Society

  1. Credit scores, cardiovascular disease risk, and human capital.

    Science.gov (United States)

    Israel, Salomon; Caspi, Avshalom; Belsky, Daniel W; Harrington, HonaLee; Hogan, Sean; Houts, Renate; Ramrakha, Sandhya; Sanders, Seth; Poulton, Richie; Moffitt, Terrie E

    2014-12-02

    Credit scores are the most widely used instruments to assess whether or not a person is a financial risk. Credit scoring has been so successful that it has expanded beyond lending and into our everyday lives, even to inform how insurers evaluate our health. The pervasive application of credit scoring has outpaced knowledge about why credit scores are such useful indicators of individual behavior. Here we test if the same factors that lead to poor credit scores also lead to poor health. Following the Dunedin (New Zealand) Longitudinal Study cohort of 1,037 study members, we examined the association between credit scores and cardiovascular disease risk and the underlying factors that account for this association. We find that credit scores are negatively correlated with cardiovascular disease risk. Variation in household income was not sufficient to account for this association. Rather, individual differences in human capital factors—educational attainment, cognitive ability, and self-control—predicted both credit scores and cardiovascular disease risk and accounted for ∼45% of the correlation between credit scores and cardiovascular disease risk. Tracing human capital factors back to their childhood antecedents revealed that the characteristic attitudes, behaviors, and competencies children develop in their first decade of life account for a significant portion (∼22%) of the link between credit scores and cardiovascular disease risk at midlife. We discuss the implications of these findings for policy debates about data privacy, financial literacy, and early childhood interventions.

  2. Lipidomics of human brain aging and Alzheimer's disease pathology.

    Science.gov (United States)

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  3. Are human endogenous retroviruses triggers of autoimmune diseases?

    DEFF Research Database (Denmark)

    Nexø, Bjørn A; Villesen, Palle; Nissen, Kari K

    2016-01-01

    factors. Viruses including human endogenous retroviruses have long been linked to the occurrence of autoimmunity, but never proven to be causative factors. Endogenous viruses are retroviral sequences embedded in the host germline DNA and transmitted vertically through successive generations in a Mendelian...... manner. In this study by means of genetic epidemiology, we have searched for the involvement of endogenous retroviruses in three selected autoimmune diseases: multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. We found that at least one human endogenous retroviral locus...

  4. Grape Polyphenols' Effects in Human Cardiovascular Diseases and Diabetes.

    Science.gov (United States)

    Rasines-Perea, Zuriñe; Teissedre, Pierre-Louis

    2017-01-01

    The consumption of fruits and vegetables, as well as foods enriched in bioactive compounds and nutraceuticals, has increased due to consumers' interest in the relevance of food composition for human health. Considerable recent interest has focused on bioactive phenolic compounds in grape, as they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, anti-ageing and antimicrobial properties. Observational studies indicate that the intake of polyphenol-rich foods improves vascular health, thereby significantly reducing the risk of hypertension, and cardiovascular disease (CVD). Other researchers have described the benefits of a grape polyphenol-rich diet for other types of maladies such as diabetes mellitus. This is a comprehensive review on the consumption of polyphenolic grape compounds, concerning their potential benefits for human health in the treatment of cardiovascular diseases and diabetes.

  5. Are marine environmental pollutants influencing global patterns of human disease?

    Science.gov (United States)

    Depledge, M H; Tyrrell, J; Fleming, L E; Holgate, S T

    2013-02-01

    Thousands of toxic chemicals, many of which pollute marine ecosystems, potentially cause diseases, but building a consensus view of the significance of human body burdens of environmental chemicals is proving difficult. Causative mechanisms are often lacking. Older members of the population, of which there are increasing numbers worldwide, accumulate higher body burdens than the young, and may be especially at risk. It also remains unclear when crucially sensitive periods for chemical exposures occur across the life course. Very early exposures may lead to diseases much later on. The current lack of robust science upon which to base high quality expert advice is hampering effective policymaking that leads to further reductions in marine pollution, greater protection of marine life and lowering of risks to human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A Novel Human Body Area Network for Brain Diseases Analysis.

    Science.gov (United States)

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system.

  7. PPAR Medicines and Human Disease: The ABCs of It All

    Directory of Open Access Journals (Sweden)

    Anthony J. Apostoli

    2012-01-01

    Full Text Available ATP-dependent binding cassette (ABC transporters are a family of transmembrane proteins that pump a variety of hydrophobic compounds across cellular and subcellular barriers and are implicated in human diseases such as cancer and atherosclerosis. Inhibition of ABC transporter activity showed promise in early preclinical studies; however, the outcomes in clinical trials with these agents have not been as encouraging. Peroxisome proliferator-activated receptors (PPARs are ligand-activated transcription factors that regulate genes involved in fat and glucose metabolism, and inflammation. Activation of PPAR signaling is also reported to regulate ABC gene expression. This suggests the potential of PPAR medicines as a novel means of controlling ABC transporter activity at the transcriptional level. This paper summarizes the advances made in understanding how PPAR medicines affect ABC transporters, and the potential implications for impacting on human diseases, in particular with respect to cancer and atherosclerosis.

  8. Neurochemical Characterization of PSA-NCAM+ Cells in the Human Brain and Phenotypic Quantification in Alzheimer's Disease Entorhinal Cortex.

    Science.gov (United States)

    Murray, Helen C; Swanson, Molly E V; Dieriks, B Victor; Turner, Clinton; Faull, Richard L M; Curtis, Maurice A

    2018-02-21

    Polysialylated neural cell adhesion molecule (PSA-NCAM) is widely expressed in the adult human brain and facilitates structural remodeling of cells through steric inhibition of intercellular NCAM adhesion. We previously showed that PSA-NCAM immunoreactivity is decreased in the entorhinal cortex in Alzheimer's disease (AD). Based on available evidence, we hypothesized that a loss of PSA-NCAM + interneurons may underlie this reduction. PSA-NCAM expression by interneurons has previously been described in the human medial prefrontal cortex. Here we used postmortem human brain tissue to provide further evidence of PSA-NCAM + interneurons throughout the human hippocampal formation and additional cortical regions. Furthermore, PSA-NCAM + cell populations were assessed in the entorhinal cortex of normal and AD cases using fluorescent double labeling and manual cell counting. We found a significant decrease in the number of PSA-NCAM + cells per mm 2 in layer II and V of the entorhinal cortex, supporting our previous description of reduced PSA-NCAM immunoreactivity. Additionally, we found a significant decrease in the proportion of PSA-NCAM + cells that co-labeled with NeuN and parvalbumin, but no change in the proportion that co-labeled with calbindin or calretinin. These results demonstrate that PSA-NCAM is expressed by a variety of interneuron populations throughout the brain. Furthermore, that loss of PSA-NCAM expression by NeuN + cells predominantly contributes to the reduced PSA-NCAM immunoreactivity in the AD entorhinal cortex. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Molecular clocks and the human condition: approaching their characterization in human physiology and disease.

    Science.gov (United States)

    Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C

    2015-09-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.

  10. Does biodiversity protect humans against infectious disease? Reply

    Science.gov (United States)

    Wood, Chelsea L.; Lafferty, Kevin D.; DeLeo, Giulio; Young, Hillary S.; Hudson, Peter J.; Kuris, Armand M.

    2016-01-01

    The dilution effect is the sort of idea that everyone wants to be true. If nature protects humans against infectious disease, imagine the implications: nature's value could be tallied in terms of human suffering avoided. This makes a potent argument for conservation, convincing even to those who would otherwise be disinclined to support conservation initiatives. The appeal of the dilution effect has been recognized by others: “the desire to make the case for conservation has led to broad claims regarding the benefits of nature conservation for human health” (Bauch et al. 2015). Randolph and Dobson (2012) were among the first to critique these claims, making the case that promotion of conservation to reduce Lyme disease risk, although well intentioned, was flawed. Along with Randolph and Dobson's critique, there have been several calls for a more nuanced scientific assessment of the relationship between biodiversity and disease transmission (Dunn 2010, Salkeld et al. 2013, Wood and Lafferty 2013, Young et al. 2013). In response, supporters of the dilution effect have instead increased the scope of their generalizations with review papers, press releases, and, like Levi et al. (2015), letters. These responses have been successful; it is not uncommon to read papers that repeat the assertion that biodiversity generally interferes with disease transmission and that conservation will therefore generally benefit human health. Here, we explain how Levi et al. (2015) and other, similar commentaries use selective interpretation and shifting definitions to argue for the generality of the dilution effect hypothesis.

  11. Identification of susceptibility genes and genetic modifiers of human diseases

    Science.gov (United States)

    Abel, Kenneth; Kammerer, Stefan; Hoyal, Carolyn; Reneland, Rikard; Marnellos, George; Nelson, Matthew R.; Braun, Andreas

    2005-03-01

    The completion of the human genome sequence enables the discovery of genes involved in common human disorders. The successful identification of these genes is dependent on the availability of informative sample sets, validated marker panels, a high-throughput scoring technology, and a strategy for combining these resources. We have developed a universal platform technology based on mass spectrometry (MassARRAY) for analyzing nucleic acids with high precision and accuracy. To fuel this technology, we generated more than 100,000 validated assays for single nucleotide polymorphisms (SNPs) covering virtually all known and predicted human genes. We also established a large DNA sample bank comprised of more than 50,000 consented healthy and diseased individuals. This combination of reagents and technology allows the execution of large-scale genome-wide association studies. Taking advantage of MassARRAY"s capability for quantitative analysis of nucleic acids, allele frequencies are estimated in sample pools containing large numbers of individual DNAs. To compare pools as a first-pass "filtering" step is a tremendous advantage in throughput and cost over individual genotyping. We employed this approach in numerous genome-wide, hypothesis-free searches to identify genes associated with common complex diseases, such as breast cancer, osteoporosis, and osteoarthritis, and genes involved in quantitative traits like high density lipoproteins cholesterol (HDL-c) levels and central fat. Access to additional well-characterized patient samples through collaborations allows us to conduct replication studies that validate true disease genes. These discoveries will expand our understanding of genetic disease predisposition, and our ability for early diagnosis and determination of specific disease subtype or progression stage.

  12. An update on Chagas disease (human American trypanosomiasis).

    Science.gov (United States)

    Moncayo, A; Ortiz Yanine, M I

    2006-12-01

    Human American trypanosomiasis or Chagas disease -- named after Carlos Chagas who first described it in 1909 -- exists only on the American continent. It is caused by a parasite, Trypanosoma cruzi, that is transmitted to humans by blood-sucking triatomine bugs, by blood transfusion, and transplacentally. Chagas disease has two, successive phases: acute and chronic. The acute phase lasts 6-8 weeks. After several years of starting the chronic phase, 20%-35% of infected individuals (the percentage varying with geographical area) develop irreversible lesions of the autonomous nervous system in the heart, the oesophagus, the colon and/or the peripheral nervous system. Data on the prevalence and distribution of Chagas disease markedly improved in quality during the 1980s, as a result of demographically representative, cross-sectional studies carried out in countries where no accurate information on these parameters was available. Experts had previously met in Brasilia, in 1979, and devised standard protocols for carrying out country-wide studies not only on the prevalence of human infection with T. cruzi but also on house infestation with the triatomine vectors. Thanks to a co-ordinated programme in the southernmost countries of South America (i.e.the 'Southern Cone'), transmission of T. cruzi by the vectors or blood transfusion has been successfully interrupted in Uruguay (from 1997), Chile (from 1999) and Brazil (from 2005), and the global incidence of new human infection with T. cruzi has decreased by 67%. Similar multi-country control initiatives have been launched in the Andean countries and in Central America, with the goal of interrupting all transmission of T. cruzi to humans by 2010 -- a goal set, in 1998, as a resolution of the World Health Assembly. Recent advances in basic research on T. cruzi include the genetic characterization of populations of the parasite and the sequencing of its genome.

  13. Forward-time simulations of human populations with complex diseases.

    Directory of Open Access Journals (Sweden)

    Bo Peng

    2007-03-01

    Full Text Available Due to the increasing power of personal computers, as well as the availability of flexible forward-time simulation programs like simuPOP, it is now possible to simulate the evolution of complex human diseases using a forward-time approach. This approach is potentially more powerful than the coalescent approach since it allows simulations of more than one disease susceptibility locus using almost arbitrary genetic and demographic models. However, the application of such simulations has been deterred by the lack of a suitable simulation framework. For example, it is not clear when and how to introduce disease mutants-especially those under purifying selection-to an evolving population, and how to control the disease allele frequencies at the last generation. In this paper, we introduce a forward-time simulation framework that allows us to generate large multi-generation populations with complex diseases caused by unlinked disease susceptibility loci, according to specified demographic and evolutionary properties. Unrelated individuals, small or large pedigrees can be drawn from the resulting population and provide samples for a wide range of study designs and ascertainment methods. We demonstrate our simulation framework using three examples that map genes associated with affection status, a quantitative trait, and the age of onset of a hypothetical cancer, respectively. Nonadditive fitness models, population structure, and gene-gene interactions are simulated. Case-control, sibpair, and large pedigree samples are drawn from the simulated populations and are examined by a variety of gene-mapping methods.

  14. Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data.

    Science.gov (United States)

    Kibbe, Warren A; Arze, Cesar; Felix, Victor; Mitraka, Elvira; Bolton, Evan; Fu, Gang; Mungall, Christopher J; Binder, Janos X; Malone, James; Vasant, Drashtti; Parkinson, Helen; Schriml, Lynn M

    2015-01-01

    The current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease. DO is a biomedical resource of standardized common and rare disease concepts with stable identifiers organized by disease etiology. The content of DO has had 192 revisions since 2012, including the addition of 760 terms. Thirty-two percent of all terms now include definitions. DO has expanded the number and diversity of research communities and community members by 50+ during the past two years. These community members actively submit term requests, coordinate biomedical resource disease representation and provide expert curation guidance. Since the DO 2012 NAR paper, there have been hundreds of term requests and a steady increase in the number of DO listserv members, twitter followers and DO website usage. DO is moving to a multi-editor model utilizing Protégé to curate DO in web ontology language. This will enable closer collaboration with the Human Phenotype Ontology, EBI's Ontology Working Group, Mouse Genome Informatics and the Monarch Initiative among others, and enhance DO's current asserted view and multiple inferred views through reasoning. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    Science.gov (United States)

    Liu, Ying; Deng, Wenbin

    2016-05-01

    With the technology of reprogramming somatic cells by introducing defined transcription factors that enables the generation of "induced pluripotent stem cells (iPSCs)" with pluripotency comparable to that of embryonic stem cells (ESCs), it has become possible to use this technology to produce various cells and tissues that have been difficult to obtain from living bodies. This advancement is bringing forth rapid progress in iPSC-based disease modeling, drug screening, and regenerative medicine. More and more studies have demonstrated that phenotypes of adult-onset neurodegenerative disorders could be rather faithfully recapitulated in iPSC-derived neural cell cultures. Moreover, despite the adult-onset nature of the diseases, pathogenic phenotypes and cellular abnormalities often exist in early developmental stages, providing new "windows of opportunity" for understanding mechanisms underlying neurodegenerative disorders and for discovering new medicines. The cell reprogramming technology enables a reverse engineering approach for modeling the cellular degenerative phenotypes of a wide range of human disorders. An excellent example is the study of the human neurodegenerative disease amyotrophic lateral sclerosis (ALS) using iPSCs. ALS is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), culminating in muscle wasting and death from respiratory failure. The iPSC approach provides innovative cell culture platforms to serve as ALS patient-derived model systems. Researchers have converted iPSCs derived from ALS patients into MNs and various types of glial cells, all of which are involved in ALS, to study the disease. The iPSC technology could be used to determine the role of specific genetic factors to track down what's wrong in the neurodegenerative disease process in the "disease-in-a-dish" model. Meanwhile, parallel experiments of targeting the same specific genes in human ESCs could also be performed to control

  16. Human hereditary diseases associated with elevated frequency of chromosome aberrations

    International Nuclear Information System (INIS)

    Ejima, Yosuke

    1988-01-01

    Human recessive diseases collectively known as chromosome breakage syndromes include Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. Cells from these patients show chromosome instabilities both spontaneously and following treatments with radiations or certain chemicals, where defects in DNA metabolisms are supposed to be involved. Cells from patients with ataxia telangiectasia are hypersensitive to ionizing radiations, though DNA replication is less affected than in normal cells. Chromatid-type as well as chromosom-type aberrations are induced in cells irradiated in G 0 or G 1 phases. These unusual responses to radiations may provide clues for understanding the link between DNA replicative response and cellular radiosensitivity. Alterations in cellular radiosensitivity or spontaneous chromosome instabilities are observed in some patients with congenital chromosome anomalies or dominant diseases, where underlying defects may be different from those in recessive diseases. (author)

  17. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  18. MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network.

    Science.gov (United States)

    Hwang, Sohyun; Kim, Eiru; Yang, Sunmo; Marcotte, Edward M; Lee, Insuk

    2014-07-01

    Despite recent advances in human genetics, model organisms are indispensable for human disease research. Most human disease pathways are evolutionally conserved among other species, where they may phenocopy the human condition or be associated with seemingly unrelated phenotypes. Much of the known gene-to-phenotype association information is distributed across diverse databases, growing rapidly due to new experimental techniques. Accessible bioinformatics tools will therefore facilitate translation of discoveries from model organisms into human disease biology. Here, we present a web-based discovery tool for human disease studies, MORPHIN (model organisms projected on a human integrated gene network), which prioritizes the most relevant human diseases for a given set of model organism genes, potentially highlighting new model systems for human diseases and providing context to model organism studies. Conceptually, MORPHIN investigates human diseases by an orthology-based projection of a set of model organism genes onto a genome-scale human gene network. MORPHIN then prioritizes human diseases by relevance to the projected model organism genes using two distinct methods: a conventional overlap-based gene set enrichment analysis and a network-based measure of closeness between the query and disease gene sets capable of detecting associations undetectable by the conventional overlap-based methods. MORPHIN is freely accessible at http://www.inetbio.org/morphin. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease.

    Science.gov (United States)

    Benraiss, Abdellatif; Wang, Su; Herrlinger, Stephanie; Li, Xiaojie; Chandler-Militello, Devin; Mauceri, Joseph; Burm, Hayley B; Toner, Michael; Osipovitch, Mikhail; Jim Xu, Qiwu; Ding, Fengfei; Wang, Fushun; Kang, Ning; Kang, Jian; Curtin, Paul C; Brunner, Daniela; Windrem, Martha S; Munoz-Sanjuan, Ignacio; Nedergaard, Maiken; Goldman, Steven A

    2016-06-07

    The causal contribution of glial pathology to Huntington disease (HD) has not been heavily explored. To define the contribution of glia to HD, we established human HD glial chimeras by neonatally engrafting immunodeficient mice with mutant huntingtin (mHTT)-expressing human glial progenitor cells (hGPCs), derived from either human embryonic stem cells or mHTT-transduced fetal hGPCs. Here we show that mHTT glia can impart disease phenotype to normal mice, since mice engrafted intrastriatally with mHTT hGPCs exhibit worse motor performance than controls, and striatal neurons in mHTT glial chimeras are hyperexcitable. Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal transplantation of normal glia rescues aspects of electrophysiological and behavioural phenotype, restores interstitial potassium homeostasis, slows disease progression and extends survival in R6/2 HD mice. These observations suggest a causal role for glia in HD, and further suggest a cell-based strategy for disease amelioration in this disorder.

  20. Successful human epidermal growth receptor 2-targeted therapy beyond disease progression for extramammary Paget's disease.

    Science.gov (United States)

    Watanabe, Satomi; Takeda, Masayuki; Takahama, Takayuki; Iwasa, Tsutomu; Tsurutani, Junji; Tanizaki, Junko; Shimizu, Toshio; Sakai, Kazuko; Wada, Yoshitaka; Isogai, Noritaka; Nishio, Kazuto; Nakagawa, Kazuhiko

    2016-06-01

    Extramammary Paget's disease is a malignant intraepithelial carcinoma, which constitutes less than 1 % of all vulvar malignancies. Surgical resection is the first treatment of choice and standard chemotherapy has not been established for advanced or recurrent disease. Experimental and clinical studies have identified human epidermal growth receptor 2 as a potential therapeutic target. A 63-year-old male was referred for recurrent extramammary Paget's disease after surgery. Human epidermal growth receptor 2 was shown to be overexpressed and amplified by immunohistochemical analysis and fluorescence in situ hybridization analysis, respectively. After two cycles of trastuzumab monotherapy, all lymph node metastases decreased in size. However, he experienced recurrence in the lymph nodes during the seven courses of trastuzumab. As a subsequent treatment, trastuzumab was administered in combination with docetaxel and pertuzumab; clinical response was sustained for 12 months without significant adverse events.

  1. Human Lung Mononuclear Phagocytes in Health and Disease

    Directory of Open Access Journals (Sweden)

    Anna Smed-Sörensen

    2017-05-01

    Full Text Available The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs—together termed mononuclear phagocytes (MNPs—line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naïve T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may

  2. Imaging neuroreceptors in the human brain in health and disease

    International Nuclear Information System (INIS)

    Wagner, H.N. Jr.; Dannals, R.F.; Frost, J.J.

    1985-01-01

    For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human brain in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, and glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On 25 May 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 N-methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine-2 receptors than in serotonin-2 receptors. Preliminary studies of patients with neuropsychiatric disorders suggest that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits a quantitative assay of picomolar quantities of neuroreceptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. (author)

  3. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    Science.gov (United States)

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  4. Autophagy and its implication in human oral diseases.

    Science.gov (United States)

    Tan, Ya-Qin; Zhang, Jing; Zhou, Gang

    2017-02-01

    Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.

  5. Drosophila as an In Vivo Model for Human Neurodegenerative Disease.

    Science.gov (United States)

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M

    2015-10-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. Copyright © 2015 by the Genetics Society of America.

  6. Low striatal glutamate levels underlie cognitive decline in the elderly: evidence from in vivo molecular spectroscopy.

    Science.gov (United States)

    Zahr, Natalie M; Mayer, Dirk; Pfefferbaum, Adolf; Sullivan, Edith V

    2008-10-01

    Glutamate (Glu), the principal excitatory neurotransmitter of prefrontal cortical efferents, potentially mediates higher order cognitive processes, and its altered availability may underlie mechanisms of age-related decline in frontally based functions. Although animal studies support a role for Glu in age-related cognitive deterioration, human studies, which require magnetic resonance spectroscopy for in vivo measurement of this neurotransmitter, have been impeded because of the similarity of Glu's spectroscopic signature to those of neighboring spectral brain metabolites. Here, we used a spectroscopic protocol, optimized for Glu detection, to examine the effect of age in 3 brain regions targeted by cortical efferents--the striatum, cerebellum, and pons--and to test whether performance on frontally based cognitive tests would be predicted by regional Glu levels. Healthy elderly men and women had lower Glu in the striatum but not pons or cerebellum than young adults. In the combined age groups, levels of striatal Glu (but no other proton metabolite also measured) correlated selectively with performance on cognitive tests showing age-related decline. The selective relations between performance and striatal Glu provide initial and novel, human in vivo support for age-related modification of Glu levels as contributing to cognitive decline in normal aging.

  7. Human Gut Microbiota: Toward an Ecology of Disease

    Science.gov (United States)

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880

  8. Human Gut Microbiota: Toward an Ecology of Disease.

    Science.gov (United States)

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F; Ambeaghen, Tanyi U; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; Dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N; Ferguson, Natasha K; Flores-Chinchilla, Nancy R; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T T; Niu, Ian; Nkemazem, Romeo B; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E; Vasconcelos, Megan S; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.

  9. Human Gut Microbiota: Toward an Ecology of Disease

    Directory of Open Access Journals (Sweden)

    Susannah Selber-Hnatiw

    2017-07-01

    Full Text Available Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.

  10. CRISPR-mediated genome editing and human diseases

    Directory of Open Access Journals (Sweden)

    Liquan Cai

    2016-12-01

    Full Text Available CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats technology has emerged as a powerful technology for genome editing and is now widely used in basic biomedical research to explore gene function. More recently, this technology has been increasingly applied to the study or treatment of human diseases, including Barth syndrome effects on the heart, Duchenne muscular dystrophy, hemophilia, β-Thalassemia, and cystic fibrosis. CRISPR/Cas9 (CRISPR-associated protein 9 genome editing has been used to correct disease-causing DNA mutations ranging from a single base pair to large deletions in model systems ranging from cells in vitro to animals in vivo. In addition to genetic diseases, CRISPR/Cas9 gene editing has also been applied in immunology-focused applications such as the targeting of C-C chemokine receptor type 5, the programmed death 1 gene, or the creation of chimeric antigen receptors in T cells for purposes such as the treatment of the acquired immune deficiency syndrome (AIDS or promoting anti-tumor immunotherapy. Furthermore, this technology has been applied to the genetic manipulation of domesticated animals with the goal of producing biologic medical materials, including molecules, cells or organs, on a large scale. Finally, CRISPR/Cas9 has been teamed with induced pluripotent stem (iPS cells to perform multiple tissue engineering tasks including the creation of disease models or the preparation of donor-specific tissues for transplantation. This review will explore the ways in which the use of CRISPR/Cas9 is opening new doors to the treatment of human diseases.

  11. Mobile technologies for disease surveillance in humans and animals

    Directory of Open Access Journals (Sweden)

    Mpoki Mwabukusi

    2014-04-01

    Full Text Available A paper-based disease reporting system has been associated with a number of challenges. These include difficulties to submit hard copies of the disease surveillance forms because of poor road infrastructure, weather conditions or challenging terrain, particularly in the developing countries. The system demands re-entry of the data at data processing and analysis points, thus making it prone to introduction of errors during this process. All these challenges contribute to delayed acquisition, processing and response to disease events occurring in remote hard to reach areas. Our study piloted the use of mobile phones in order to transmit near to real-time data from remote districts in Tanzania (Ngorongoro and Ngara, Burundi (Muyinga and Zambia (Kazungula and Sesheke. Two technologies namely, digital and short messaging services were used to capture and transmit disease event data in the animal and human health sectors in the study areas based on a server–client model. Smart phones running the Android operating system (minimum required version: Android 1.6, and which supported open source application, Epicollect, as well as the Open Data Kit application, were used in the study. These phones allowed collection of geo-tagged data, with the opportunity of including static and moving images related to disease events. The project supported routine disease surveillance systems in the ministries responsible for animal and human health in Burundi, Tanzania and Zambia, as well as data collection for researchers at the Sokoine University of Agriculture, Tanzania. During the project implementation period between 2011 and 2013, a total number of 1651 diseases event-related forms were submitted, which allowed reporters to include GPS coordinates and photographs related to the events captured. It was concluded that the new technology-based surveillance system is useful in providing near to real-time data, with potential for enhancing

  12. Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Giacomelli, E; Mummery, C L; Bellin, M

    2017-10-01

    Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current literature clearly shows that hPSC-CMs recapitulate many molecular, cellular, and functional aspects of human heart pathophysiology and their responses to cardioactive drugs. Here, we provide a comprehensive overview of hPSC-CMs models that have been described to date and highlight their most recent and remarkable contributions to research on cardiovascular diseases and disorders with cardiac traits. We conclude discussing immediate challenges, limitations, and emerging solutions.

  13. Diagnosis of Alzheimer's disease based on disease-specific autoantibody profiles in human sera.

    Directory of Open Access Journals (Sweden)

    Eric Nagele

    Full Text Available After decades of Alzheimer's disease (AD research, the development of a definitive diagnostic test for this disease has remained elusive. The discovery of blood-borne biomarkers yielding an accurate and relatively non-invasive test has been a primary goal. Using human protein microarrays to characterize the differential expression of serum autoantibodies in AD and non-demented control (NDC groups, we identified potential diagnostic biomarkers for AD. The differential significance of each biomarker was evaluated, resulting in the selection of only 10 autoantibody biomarkers that can effectively differentiate AD sera from NDC sera with a sensitivity of 96.0% and specificity of 92.5%. AD sera were also distinguishable from sera obtained from patients with Parkinson's disease and breast cancer with accuracies of 86% and 92%, respectively. Results demonstrate that serum autoantibodies can be used effectively as highly-specific and accurate biomarkers to diagnose AD throughout the course of the disease.

  14. Quadrivalent human papillomavirus vaccination in boys and risk of autoimmune diseases, neurological diseases and venous thromboembolism

    DEFF Research Database (Denmark)

    Frisch, Morten; Besson, Andréa; Clemmensen, Kim Katrine Bjerring

    2018-01-01

    following HPV vaccination in this group. We investigated if quadrivalent HPV (qHPV) vaccination of 10-17-year-old boys is associated with any unusual risk of autoimmune diseases, neurological diseases or venous thromboembolism. Methods: We conducted a national cohort study of 568 410 boys born in Denmark......Background: In recent years, human papillomavirus (HPV) vaccination of boys has been added to childhood vaccination programmes in several countries but, so far, no systematic population-based assessment with long-term follow-up has been undertaken of the relative incidence of adverse outcomes...... 1988-2006 and followed for 4 million person-years during 2006-16, using nationwide registers to obtain individual-level information about received doses of the qHPV vaccine and hospital records for 39 autoimmune diseases, 12 neurological diseases and venous thromboembolism. For each outcome, we...

  15. Role of Lactobacillus reuteri in Human Health and Diseases

    Directory of Open Access Journals (Sweden)

    Qinghui Mu

    2018-04-01

    Full Text Available Lactobacillus reuteri (L. reuteri is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases.

  16. Mapping arginine methylation in the human body and cardiac disease.

    Science.gov (United States)

    Onwuli, Donatus O; Rigau-Roca, Laura; Cawthorne, Chris; Beltran-Alvarez, Pedro

    2017-01-01

    Arginine methylation (ArgMe) is one of the most ubiquitous PTMs, and hundreds of proteins undergo ArgMe in, for example, brain. However, the scope of ArgMe in many tissues, including the heart, is currently underexplored. Here, we aimed to (i) identify proteins undergoing ArgMe in human organs, and (ii) expose the relevance of ArgMe in cardiac disease. The publicly available proteomic data is used to search for ArgMe in 13 human tissues. To induce H9c2 cardiac-like cell hypertrophy glucose is used. The results show that ArgMe is mainly tissue-specific; nevertheless, the authors suggest an embryonic origin of core ArgMe events. In the heart, 103 mostly novel ArgMe sites in 58 nonhistone proteins are found. The authors provide compelling evidence that cardiac protein ArgMe is relevant to cardiomyocyte ontology, and important for proper cardiac function. This is highlighted by the fact that genetic mutations affecting methylated arginine positions are often associated with cardiac disease, including hypertrophic cardiomyopathy. The pilot experimental data suggesting significant changes in ArgMe profiles of H9c2 cells upon induction of cell hypertrophy using glucose is provided. The work calls for in-depth investigation of ArgMe in normal and diseased tissues using methods including clinical proteomics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Malarial birds: modeling infectious human disease in animals.

    Science.gov (United States)

    Slater, Leo B

    2005-01-01

    Through the examination of avian malarias as models of infectious human disease, this paper reveals the kinds of claims that scientists and physicians made on the basis of animal models-biological systems in the laboratory and the field-and what characteristics made for congruence between these models and human malaria. The focus is on the period between 1895 and 1945, and on the genesis and trajectory of certain animal models of malaria within specific locations, such as the Johns Hopkins School of Hygiene and Public Health in Baltimore and Bayer (I. G. Farben) in Elberfeld. These exemplars illustrate a diversity of approaches to malaria-as-disease, and the difficulties of framing aspects of this disease complex within an animal or laboratory system. The diversity and nearness to wild types of the birds, protozoan parasites, and mosquitoes that made up these malaria models contributed a great deal to the complexity of the models. Avian malarias, adopted with enthusiasm, were essential to the success of the U.S. antimalarial program during World War II.

  18. ADV36 adipogenic adenovirus in human liver disease

    Science.gov (United States)

    Trovato, Francesca M; Catalano, Daniela; Garozzo, Adriana; Martines, G Fabio; Pirri, Clara; Trovato, Guglielmo M

    2014-01-01

    Obesity and liver steatosis are usually described as related diseases. Obesity is regarded as exclusive consequence of an imbalance between food intake and physical exercise, modulated by endocrine and genetic factors. Non-alcoholic fatty liver disease (NAFLD), is a condition whose natural history is related to, but not completely explained by over-nutrition, obesity and insulin resistance. There is evidence that environmental infections, and notably adipogenic adenoviruses (ADV) infections in humans, are associated not only with obesity, which is sufficiently established, but also with allied conditions, such as fatty liver. In order to elucidate the role, if any, of previous ADV36 infection in humans, we investigated association of ADV36-ADV37 seropositivity with obesity and fatty liver in humans. Moreover, the possibility that lifestyle-nutritional intervention in patients with NAFLD and different ADV36 seropositive status, achieves different clinical outcomes on ultrasound bright liver imaging, insulin resistance and obesity was challenged. ADV36 seropositive patients have a more consistent decrease in insulin resistance, fatty liver severity and body weight in comparison with ADV36 seronegative patients, indicating a greater responsiveness to nutritional intervention. These effects were not dependent on a greater pre-interventional body weight and older age. These results imply that no obvious disadvantage - and, seemingly, that some benefit - is linked to ADV36 seropositivity, at least in NAFLD. ADV36 previous infection can boost weight loss and recovery of insulin sensitivity under interventional treatment. PMID:25356033

  19. Transcriptome Profiling in Human Diseases: New Advances and Perspectives.

    Science.gov (United States)

    Casamassimi, Amelia; Federico, Antonio; Rienzo, Monica; Esposito, Sabrina; Ciccodicola, Alfredo

    2017-07-29

    In the last decades, transcriptome profiling has been one of the most utilized approaches to investigate human diseases at the molecular level. Through expression studies, many molecular biomarkers and therapeutic targets have been found for several human pathologies. This number is continuously increasing thanks to total RNA sequencing. Indeed, this new technology has completely revolutionized transcriptome analysis allowing the quantification of gene expression levels and allele-specific expression in a single experiment, as well as to identify novel genes, splice isoforms, fusion transcripts, and to investigate the world of non-coding RNA at an unprecedented level. RNA sequencing has also been employed in important projects, like ENCODE (Encyclopedia of the regulatory elements) and TCGA (The Cancer Genome Atlas), to provide a snapshot of the transcriptome of dozens of cell lines and thousands of primary tumor specimens. Moreover, these studies have also paved the way to the development of data integration approaches in order to facilitate management and analysis of data and to identify novel disease markers and molecular targets to use in the clinics. In this scenario, several ongoing clinical trials utilize transcriptome profiling through RNA sequencing strategies as an important instrument in the diagnosis of numerous human pathologies.

  20. Use of Cuban recombinant human erythropoietin in Parkinson's disease treatment.

    Science.gov (United States)

    Pedroso, Ivonne; Bringas, María Luisa; Aguiar, Anubis; Morales, Lilia; Alvarez, Mario; Valdés, Pedro A; Alvarez, Lázaro

    2012-01-01

    Recombinant human erythropoietin is used primarily to treat anemia. There is evidence of its neuroprotective capacity from preclinical studies in Parkinson's disease and other neurodegenerative diseases. Recombinant human erythropoietin produced in Cuba (ior-EPOCIM) is registered and approved for use in humans in Cuba and in a number of other countries. Assess safety and possible neuroprotective effect of ior-EPOCIM in a group of Parkinson's disease patients. A three-phase exploratory study (proof of concept) was conducted from August 2008 to April 2009: preliminary assessment, treatment (weeks 1-5), and post-treatment (weeks 6-35). Participants were 10 Parkinson's disease patients (8 men, 2 women) from the outpatient clinic at the International Neurological Restoration Center, all at least one year post onset, aged 47-65 years. The ior-EPOCIM was administered subcutaneously in a once-weekly dose (60 IU/kg body weight) for five weeks. Therapy with patients' antiparkinsonian drugs was maintained throughout the study, except during motor examination, conducted following a 12-hour withdrawal (OFF condition). Safety was evaluated primarily by recording adverse events (by intensity and causality) from start of treatment until the study's completion. Hematological parameters and blood pressure were also measured because of their direct relationship to the medication's action. To evaluate possible neuroprotective activity, variables were included related to patients' motor function and cognitive and affective status, measured using internationally recognized scales. All variables were evaluated before, during and after treatment. Data were processed using a fixed-effects linear model, with a repeated-measures design (significance level p ≤ 0.05). Three patients experienced mild adverse events (precordial discomfort and hypertension in one; leg fatigue in another; renal colic in a third), with a possible causal relationship in the first two that was neither life

  1. Variables that underlie cost efficacy of prenatal screening.

    Science.gov (United States)

    Kinzler, Wendy L; Morrell, Kristie; Vintzileos, Anthony M

    2002-06-01

    As genetic research and technology continues to expand, carrier testing for an increasing number of single gene disorders is becoming available. Tay-Sachs disease and cystic fibrosis are two common recessive conditions with large-scale health implications. Tay-Sachs disease was the first genetic disorder for which community-based screening efforts were utilized and has provided a foundation for the development of other screening programs. Cystic fibrosis testing, on the other hand, has additional complexities and the implementation of population-based screening has been under debate. The many issues (technical, educational, social, psychological and economical) which must be considered as preconceptional and prenatal genetic screening is incorporated into clinical practice are discussed here in the context of Tay-Sachs disease and cystic fibrosis.

  2. The possible mechanisms of the human microbiome in allergic diseases.

    Science.gov (United States)

    Ipci, Kagan; Altıntoprak, Niyazi; Muluk, Nuray Bayar; Senturk, Mehmet; Cingi, Cemal

    2017-02-01

    In the present paper, we discuss the importance of the microbiome in allergic disease. In this review paper, the data from the Medline (PubMed) and search engine of Kirikkale University were systematically searched for all relevant articles in June 15th, 2015 for the past 30 years. The keywords of "microbiome", "dysbiosis", "allergy", "allergic rhinitis", "allergic disease", "mechanisms" and "treatment" were used alone or together. In this paper, microbiomes were presented in terms of "Definition", "Influence of \\the human microbiome on health", "The microbiome and allergic diseases", and "Modulation of the gut microbiota in terms of treatment and prevention". Microbiological dysbiosis is also reviewed. The microbiome is the genetic material of all microbes (bacteria, fungi, protozoa, and viruses) that live on or in the human body. Microbes outnumber human cells in a 10:1 ratio. Most microbes live in the gut, particularly the large intestine. Changes in the immune function of the respiratory tract are (at least in theory) linked to the immunomodulatory activity of the gut microbiota via the concept of a "common mucosal response". The gut microbiota shapes systemic immunity, thus affecting the lung mucosa. Alternatively, changes in the gut microbiota may reflect alterations in the oropharyngeal microbiota, which may in turn directly affect the lung microbiota and host immune responses via microaspiration. Dysbiosis is defined as qualitative and quantitative changes in the intestinal flora; and modern diet and lifestyle, antibiotics, psychological and physical stress result in alterations in bacterial metabolism, as well as the overgrowth of potentially pathogenic microorganisms. All immune system components are directly or indirectly regulated by the microbiota. The nature of microbial exposure early in life appears to be important for the development of robust immune regulation; disruption of either the microbiota or the host response can trigger chronic

  3. Mutations that Cause Human Disease: A Computational/Experimental Approach

    Energy Technology Data Exchange (ETDEWEB)

    Beernink, P; Barsky, D; Pesavento, B

    2006-01-11

    International genome sequencing projects have produced billions of nucleotides (letters) of DNA sequence data, including the complete genome sequences of 74 organisms. These genome sequences have created many new scientific opportunities, including the ability to identify sequence variations among individuals within a species. These genetic differences, which are known as single nucleotide polymorphisms (SNPs), are particularly important in understanding the genetic basis for disease susceptibility. Since the report of the complete human genome sequence, over two million human SNPs have been identified, including a large-scale comparison of an entire chromosome from twenty individuals. Of the protein coding SNPs (cSNPs), approximately half leads to a single amino acid change in the encoded protein (non-synonymous coding SNPs). Most of these changes are functionally silent, while the remainder negatively impact the protein and sometimes cause human disease. To date, over 550 SNPs have been found to cause single locus (monogenic) diseases and many others have been associated with polygenic diseases. SNPs have been linked to specific human diseases, including late-onset Parkinson disease, autism, rheumatoid arthritis and cancer. The ability to predict accurately the effects of these SNPs on protein function would represent a major advance toward understanding these diseases. To date several attempts have been made toward predicting the effects of such mutations. The most successful of these is a computational approach called ''Sorting Intolerant From Tolerant'' (SIFT). This method uses sequence conservation among many similar proteins to predict which residues in a protein are functionally important. However, this method suffers from several limitations. First, a query sequence must have a sufficient number of relatives to infer sequence conservation. Second, this method does not make use of or provide any information on protein structure, which

  4. Human beta-galactosidase gene mutations in morquio B disease.

    Science.gov (United States)

    Oshima, A; Yoshida, K; Shimmoto, M; Fukuhara, Y; Sakuraba, H; Suzuki, Y

    1991-11-01

    Three different beta-galactosidase gene mutations--a 273Trp----Leu (mutation F) in both families, 482Arg----His (mutation G) in one family, and 509Trp----Cys (mutation H) in the other family--were identified in three patients with Morquio B disease who were from two unrelated families. Restriction-site analysis using StuI, Nsp(7524)I or RsaI confirmed these mutations. In human fibroblasts, mutation F expressed as much as 8% of the normal allele's enzyme activity, but the other mutations expressed no detectable enzyme activity. We conclude that the unique clinical manifestations are specifically associated with mutation F, a common two-base substitution, in this disease.

  5. Crossed wires: 3D genome misfolding in human disease.

    Science.gov (United States)

    Norton, Heidi K; Phillips-Cremins, Jennifer E

    2017-11-06

    Mammalian genomes are folded into unique topological structures that undergo precise spatiotemporal restructuring during healthy development. Here, we highlight recent advances in our understanding of how the genome folds inside the 3D nucleus and how these folding patterns are miswired during the onset and progression of mammalian disease states. We discuss potential mechanisms underlying the link among genome misfolding, genome dysregulation, and aberrant cellular phenotypes. We also discuss cases in which the endogenous 3D genome configurations in healthy cells might be particularly susceptible to mutation or translocation. Together, these data support an emerging model in which genome folding and misfolding is critically linked to the onset and progression of a broad range of human diseases. © 2017 Norton and Phillips-Cremins.

  6. Mitochondrial regulation of epigenetics and its role in human diseases

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Tollefsbol, Trygve O; Singh, Keshav K

    2012-01-01

    as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction....... In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead...... to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role....

  7. Traffic jam: a compendium of human diseases that affect intracellular transport processes.

    Science.gov (United States)

    Aridor, M; Hannan, L A

    2000-11-01

    As sequencing of the human genome nears completion, the genes that cause many human diseases are being identified and functionally described. This has revealed that many human diseases are due to defects of intracellular trafficking. This 'Toolbox' catalogs and briefly describes these diseases.

  8. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology

    OpenAIRE

    Spataro, Nino, 1984-; Rodríguez, Juan Antonio; Navarro i Cuartiellas, Arcadi, 1969-; Bosch Fusté, Elena

    2017-01-01

    Abstract Do genes presenting variation that has been linked to human disease have different biological properties than genes that have never been related to disease? What is the relationship between disease and fitness? Are the evolutionary pressures that affect genes linked to Mendelian diseases the same to those acting on genes whose variation contributes to complex disorders? The answers to these questions could shed light on the architecture of human genetic disorders and may have relevan...

  9. Using human pluripotent stem cells to untangle neurodegenerative disease mechanisms.

    Science.gov (United States)

    Malgrange, Brigitte; Borgs, Laurence; Grobarczyk, Benjamin; Purnelle, Audrey; Ernst, Patricia; Moonen, Gustave; Nguyen, Laurent

    2011-02-01

    Human pluripotent stem cells, including embryonic (hES) and induced pluripotent stem cells (hiPS), retain the ability to self-renew indefinitely, while maintaining the capacity to differentiate into all cell types of the nervous system. While human pluripotent cell-based therapies are unlikely to arise soon, these cells can currently be used as an inexhaustible source of committed neurons to perform high-throughput screening and safety testing of new candidate drugs. Here, we describe critically the available methods and molecular factors that are used to direct the differentiation of hES or hiPS into specific neurons. In addition, we discuss how the availability of patient-specific hiPS offers a unique opportunity to model inheritable neurodegenerative diseases and untangle their pathological mechanisms, or to validate drugs that would prevent the onset or the progression of these neurological disorders.

  10. Complement regulators in human disease: lessons from modern genetics.

    Science.gov (United States)

    Liszewski, M K; Atkinson, J P

    2015-03-01

    First identified in human serum in the late 19th century as a 'complement' to antibodies in mediating bacterial lysis, the complement system emerged more than a billion years ago probably as the first humoral immune system. The contemporary complement system consists of nearly 60 proteins in three activation pathways (classical, alternative and lectin) and a terminal cytolytic pathway common to all. Modern molecular biology and genetics have not only led to further elucidation of the structure of complement system components, but have also revealed function-altering rare variants and common polymorphisms, particularly in regulators of the alternative pathway, that predispose to human disease by creating 'hyperinflammatory complement phenotypes'. To treat these 'complementopathies', a monoclonal antibody against the initiator of the membrane attack complex, C5, has received approval for use. Additional therapeutic reagents are on the horizon. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  11. The molecular basis of human retinal and vitreoretinal diseases.

    Science.gov (United States)

    Berger, Wolfgang; Kloeckener-Gruissem, Barbara; Neidhardt, John

    2010-09-01

    During the last two to three decades, a large body of work has revealed the molecular basis of many human disorders, including retinal and vitreoretinal degenerations and dysfunctions. Although belonging to the group of orphan diseases, they affect probably more than two million people worldwide. Most excitingly, treatment of a particular form of congenital retinal degeneration is now possible. A major advantage for treatment is the unique structure and accessibility of the eye and its different components, including the vitreous and retina. Knowledge of the many different eye diseases affecting retinal structure and function (night and colour blindness, retinitis pigmentosa, cone and cone rod dystrophies, photoreceptor dysfunctions, as well as vitreoretinal traits) is critical for future therapeutic development. We have attempted to present a comprehensive picture of these disorders, including biological, clinical, genetic and molecular information. The structural organization of the review leads the reader through non-syndromic and syndromic forms of (i) rod dominated diseases, (ii) cone dominated diseases, (iii) generalized retinal degenerations and (iv) vitreoretinal disorders, caused by mutations in more than 165 genes. Clinical variability and genetic heterogeneity have an important impact on genetic testing and counselling of affected families. As phenotypes do not always correlate with the respective genotypes, it is of utmost importance that clinicians, geneticists, counsellors, diagnostic laboratories and basic researchers understand the relationships between phenotypic manifestations and specific genes, as well as mutations and pathophysiologic mechanisms. We discuss future perspectives. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Use of rodents as models of human diseases

    Directory of Open Access Journals (Sweden)

    Thierry F Vandamme

    2014-01-01

    Full Text Available Advances in molecular biology have significantly increased the understanding of the biology of different diseases. However, these discoveries have not yet been fully translated into improved treatments for patients with diseases such as cancers. One of the factors limiting the translation of knowledge from preclinical studies to the clinic has been the limitations of in vivo diseases models. In this brief review, we will discuss the advantages and disadvantages of rodent models that have been developed to simulate human pathologies, focusing in models that employ xenografts and genetic modification. Within the framework of genetically engineered mouse (GEM models, we will review some of the current genetic strategies for modeling diseases in the mouse and the preclinical studies that have already been undertaken. We will also discuss how recent improvements in imaging technologies may increase the information derived from using these GEMs during early assessments of potential therapeutic pathways. Furthermore, it is interesting to note that one of the values of using a mouse model is the very rapid turnover rate of the animal, going through the process of birth to death in a very short timeframe relative to that of larger mammalian species.

  13. Pregnane X receptor polymorphisms associated with human diseases.

    Science.gov (United States)

    Kotta-Loizou, Ioly; Patsouris, Efstratios; Theocharis, Stamatios

    2013-10-01

    Pregnane X receptor (PXR) belongs to the nuclear hormone receptor superfamily and is mostly expressed in liver and intestine. PXR is activated by a wide range of compounds, including drugs, and regulates the transcription of numerous metabolic enzymes implicated in cellular response to xenobiotics. Genetic variation in the PXR gene may influence a wide range of physiologic pathways and have widespread effects on the pharmacokinetics of many drugs. In addition, PXR polymorphisms have been associated with both benign and malignant disease states, in terms of disease risk and severity, gene expression and drug clearance. The aim of the present review is to assess the significance of PXR polymorphisms in human diseases and their putative therapeutic perspectives. To this end, all the existing English literature concerning PXR polymorphisms in relation to disease risk and severity, as well as treatment response, is summarized and presented. The importance of PXR polymorphisms lies both in their prognostic value and their exploitation for improved individualized therapeutic approaches. PXR polymorphisms could be implicated in selective drug targeting leading to PXR modulation. Nevertheless, additional studies are required to fully understand their potential.

  14. Human embryonic stem cell therapies for neurodegenerative diseases.

    Science.gov (United States)

    Tomaskovic-Crook, Eva; Crook, Jeremy M

    2011-06-01

    There is a renewed enthusiasm for the clinical translation of human embryonic stem (hES) cells. This is abetted by putative clinically-compliant strategies for hES cell maintenance and directed differentiation, greater understanding of and accessibility to cells through formal cell registries and centralized cell banking for distribution, the revised US government policy on funding hES cell research, and paradoxically the discovery of induced pluripotent stem (iPS) cells. Additionally, as we consider the constraints (practical and fiscal) of delivering cell therapies for global healthcare, the more efficient and economical application of allogeneic vs autologous treatments will bolster the clinical entry of hES cell derivatives. Neurodegenerative disorders such as Parkinson's disease are primary candidates for hES cell therapy, although there are significant hurdles to be overcome. The present review considers key advances and challenges to translating hES cells into novel therapies for neurodegenerative diseases, with special consideration given to Parkinson's disease and Alzheimer's disease. Importantly, despite the focus on degenerative brain disorders and hES cells, many of the issues canvassed by this review are relevant to systemic application of hES cells and other pluripotent stem cells such as iPS cells.

  15. [Unconventional disease agents--a danger for humans and animals?].

    Science.gov (United States)

    Kaaden, O R

    1994-02-01

    The occurrence of bovine spongiform encephalopathy (BSE) in Great Britain in 1985/86, has focused again the public concern as well as scientific interest to the Scrapie disease of sheep and goat known more than 150 years. The agents of scrapie and BSE are characterized by unusual biological and physical-chemical properties, especially their high tenacity. Therefore, they are also designated "unconventional agents of viruses". Different theories have been proposed about their infectious characteristics--especially because of the apparent or real missing of an agent-specific nucleic acid--which are named Virinos, Prions or Nemavirus. The broad host range of Scrapie respective BSE, which includes domestic and wild ruminants, Suidae, Felidae, Mustelidae, small rodents, birds and non-primates, has created some concern since there might be an aetiological correlation between the transmissible spongiform encephalopathies of man (Creutzfeld-Jakob- and Gerstmann-Sträussler-Scheinker-Disease) and that of animals. Although at present neither epidemiological nor molecular biological evidence whatsoever was proved, the hypothesis cannot be completely disproved. The probability of infection through digestive tract seems to be rather unlikely but special precautions should be taken as far as production, investigation and application of human medicine drugs of animal origin. Furthermore, research about the aetiology of "unconventional agents" and pathogenesis of resulting diseases is necessary and should be intensified in Germany. Finally, only an early intra vitam-Diagnose and in vitro detection can avoid an further spread of this new category of diseases.

  16. Molecular mechanisms of acrolein toxicity: relevance to human disease.

    Science.gov (United States)

    Moghe, Akshata; Ghare, Smita; Lamoreau, Bryan; Mohammad, Mohammad; Barve, Shirish; McClain, Craig; Joshi-Barve, Swati

    2015-02-01

    Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and its potential as a serious environmental health threat is beginning to be recognized. Humans are exposed to acrolein per oral (food and water), respiratory (cigarette smoke, automobile exhaust, and biocide use) and dermal routes, in addition to endogenous generation (metabolism and lipid peroxidation). Acrolein has been suggested to play a role in several disease states including spinal cord injury, multiple sclerosis, Alzheimer's disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-, and nephro-toxicity. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, endoplasmic reticulum stress, and immune dysfunction. This review addresses our current understanding of each pathogenic mechanism of acrolein toxicity, with emphasis on the known and anticipated contribution to clinical disease, and potential therapies. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Glial biomarkers in human central nervous system disease.

    Science.gov (United States)

    Garden, Gwenn A; Campbell, Brian M

    2016-10-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771. © 2016 Wiley Periodicals, Inc.

  18. Neuroradiology of human prion diseases, diagnosis and differential diagnosis.

    Science.gov (United States)

    Gaudino, Simona; Gangemi, Emma; Colantonio, Raffaella; Botto, Annibale; Ruberto, Emanuela; Calandrelli, Rosalinda; Martucci, Matia; Vita, Maria Gabriella; Masullo, Carlo; Cerase, Alfonso; Colosimo, Cesare

    2017-05-01

    Human transmissible spongiform encephalopathies (TSEs), or prion diseases, are invariably fatal conditions associated with a range of clinical presentations. TSEs are classified as sporadic [e.g. sporadic Creutzfeldt-Jakob disease (sCJD), which is the most frequent form], genetic (e.g. Gerstmann-Straussler-Scheinker disease, fatal familial insomnia, and inherited CJD), and acquired or infectious (e.g. Kuru, iatrogenic CJD, and variant CJD). In the past, brain imaging played a supporting role in the diagnosis of TSEs, whereas nowadays magnetic resonance imaging (MRI) plays such a prominent role that MRI findings have been included in the diagnostic criteria for sCJD. Currently, MRI is required for all patients with a clinical suspicion of TSEs. Thus, MRI semeiotics of TSEs should become part of the cultural baggage of any radiologist. The purposes of this update on the neuroradiology of CJD are to (i) review the pathophysiology and clinical presentation of TSEs, (ii) describe both typical and atypical MRI findings of CJD, and (iii) illustrate diseases mimicking CJD, underlining the MRI key findings useful in the differential diagnosis.

  19. Melanopsin-expressing retinal ganglion cells: implications for human diseases

    DEFF Research Database (Denmark)

    La Morgia, Chiara; Ross-Cisneros, Fred N; Hannibal, Jens

    2011-01-01

    interest on these cells, mainly focused on animal models. Only recently, a few studies have started to address the relevance of the mRGC system in humans and related diseases. We recently discovered that mRGCs resist neurodegeneration in two inherited mitochondrial disorders that cause blindness, i......In the last decade, there was the seminal discovery of melanopsin-expressing retinal ganglion cells (mRGCs) as a new class of photoreceptors that subserve the photoentrainment of circadian rhythms and other non-image forming functions of the eye. Since then, there has been a growing research...

  20. Human beta-galactosidase gene mutations in morquio B disease.

    OpenAIRE

    Oshima, A; Yoshida, K; Shimmoto, M; Fukuhara, Y; Sakuraba, H; Suzuki, Y

    1991-01-01

    Three different beta-galactosidase gene mutations--a 273Trp----Leu (mutation F) in both families, 482Arg----His (mutation G) in one family, and 509Trp----Cys (mutation H) in the other family--were identified in three patients with Morquio B disease who were from two unrelated families. Restriction-site analysis using StuI, Nsp(7524)I or RsaI confirmed these mutations. In human fibroblasts, mutation F expressed as much as 8% of the normal allele's enzyme activity, but the other mutations expre...

  1. Targeting ADAM12 in human disease: head, body or tail?

    DEFF Research Database (Denmark)

    Jacobsen, J; Wewer, U M

    2009-01-01

    properties. This functional trinity is reflected in the structure of ADAM12, which can be divided into head, body, and tail. The head of the protein (consisting of the pro and catalytic domains) mediates processing of growth factors and cytokines and has been implicated in epidermal growth factor (EGF......) and insulin-like growth factor receptor signaling. The body of the protein (consisting of the disintegrin, cysteine-rich, and EGF-like domains) is involved in contacts with the extracellular matrix and other cells through interactions with integrins and syndecans. Finally, the tail of the protein (consisting...... the possible approaches to targeting ADAM12 in human disease....

  2. CYCLOPS reveals human transcriptional rhythms in health and disease.

    Science.gov (United States)

    Anafi, Ron C; Francey, Lauren J; Hogenesch, John B; Kim, Junhyong

    2017-05-16

    Circadian rhythms modulate many aspects of physiology. Knowledge of the molecular basis of these rhythms has exploded in the last 20 years. However, most of these data are from model organisms, and translation to clinical practice has been limited. Here, we present an approach to identify molecular rhythms in humans from thousands of unordered expression measurements. Our algorithm, cyclic ordering by periodic structure (CYCLOPS), uses evolutionary conservation and machine learning to identify elliptical structure in high-dimensional data. From this structure, CYCLOPS estimates the phase of each sample. We validated CYCLOPS using temporally ordered mouse and human data and demonstrated its consistency on human data from two independent research sites. We used this approach to identify rhythmic transcripts in human liver and lung, including hundreds of drug targets and disease genes. Importantly, for many genes, the circadian variation in expression exceeded variation from genetic and other environmental factors. We also analyzed hepatocellular carcinoma samples and show these solid tumors maintain circadian function but with aberrant output. Finally, to show how this method can catalyze medical translation, we show that dosage time can temporally segregate efficacy from dose-limiting toxicity of streptozocin, a chemotherapeutic drug. In sum, these data show the power of CYCLOPS and temporal reconstruction in bridging basic circadian research and clinical medicine.

  3. Regulatory Role of Small Nucleolar RNAs in Human Diseases

    Directory of Open Access Journals (Sweden)

    Grigory A. Stepanov

    2015-01-01

    Full Text Available Small nucleolar RNAs (snoRNAs are appreciable players in gene expression regulation in human cells. The canonical function of box C/D and box H/ACA snoRNAs is posttranscriptional modification of ribosomal RNAs (rRNAs, namely, 2′-O-methylation and pseudouridylation, respectively. A series of independent studies demonstrated that snoRNAs, as well as other noncoding RNAs, serve as the source of various short regulatory RNAs. Some snoRNAs and their fragments can also participate in the regulation of alternative splicing and posttranscriptional modification of mRNA. Alterations in snoRNA expression in human cells can affect numerous vital cellular processes. SnoRNA level in human cells, blood serum, and plasma presents a promising target for diagnostics and treatment of human pathologies. Here we discuss the relation between snoRNAs and oncological, neurodegenerative, and viral diseases and also describe changes in snoRNA level in response to artificial stress and some drugs.

  4. Control of human parasitic diseases: Context and overview.

    Science.gov (United States)

    Molyneux, David H

    2006-01-01

    The control of parasitic diseases of humans has been undertaken since the aetiology and natural history of the infections was recognized and the deleterious effects on human health and well-being appreciated by policy makers, medical practitioners and public health specialists. However, while some parasitic infections such as malaria have proved difficult to control, as defined by a sustained reduction in incidence, others, particularly helminth infections can be effectively controlled. The different approaches to control from diagnosis, to treatment and cure of the clinically sick patient, to control the transmission within the community by preventative chemotherapy and vector control are outlined. The concepts of eradication, elimination and control are defined and examples of success summarized. Overviews of the health policy and financing environment in which programmes to control or eliminate parasitic diseases are positioned and the development of public-private partnerships as vehicles for product development or access to drugs for parasite disease control are discussed. Failure to sustain control of parasites may be due to development of drug resistance or the failure to implement proven strategies as a result of decreased resources within the health system, decentralization of health management through health-sector reform and the lack of financial and human resources in settings where per capita government expenditure on health may be less than $US 5 per year. However, success has been achieved in several large-scale programmes through sustained national government investment and/or committed donor support. It is also widely accepted that the level of investment in drug development for the parasitic diseases of poor populations is an unattractive option for pharmaceutical companies. The development of partnerships to specifically address this need provides some hope that the intractable problems of the treatment regimens for the trypanosomiases and

  5. Translational research of novel hormones: lessons from animal models and rare human diseases for common human diseases.

    Science.gov (United States)

    Nakao, Kazuwa; Yasoda, Akihiro; Ebihara, Ken; Hosoda, Kiminori; Mukoyama, Masashi

    2009-10-01

    Since the 1980s, a number of bioactive molecules, now known as cardiovascular hormones, have been isolated from the heart and blood vessels, particularly from the subset of vascular endothelial cells. The natriuretic peptide family is the prototype of the cardiovascular hormones. Over the following decade, a variety of hormones and cytokines, now known as adipokines or adipocytokines, have also been isolated from adipose tissue. Leptin is the only adipokine demonstrated to cause an obese phenotype in both animals and humans upon deletion. Thus, the past two decades have seen the identification of two important classes of bioactive molecules secreted by newly recognized endocrine cells, both of which differentiate from mesenchymal stem cells. To assess the physiological and clinical implications of these novel hormones, we have investigated their functions using animal models. We have also developed and analyzed mice overexpressing transgenic forms of these proteins and knockout mice deficient in these and related genes. Here, we demonstrate the current state of the translational research of these novel hormones, the natriuretic peptide family and leptin, and discuss how lessons learned from excellent animal models and rare human diseases can provide a better understanding of common human diseases.

  6. Glycogen Storage Disease Type Ia in Canines: A Model for Human Metabolic and Genetic Liver Disease

    Science.gov (United States)

    Specht, Andrew; Fiske, Laurie; Erger, Kirsten; Cossette, Travis; Verstegen, John; Campbell-Thompson, Martha; Struck, Maggie B.; Lee, Young Mok; Chou, Janice Y.; Byrne, Barry J.; Correia, Catherine E.; Mah, Cathryn S.; Weinstein, David A.; Conlon, Thomas J.

    2011-01-01

    A canine model of Glycogen storage disease type Ia (GSDIa) is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including “lactic acidosis”, larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases. PMID:21318173

  7. Glycogen Storage Disease Type Ia in Canines: A Model for Human Metabolic and Genetic Liver Disease

    Directory of Open Access Journals (Sweden)

    Andrew Specht

    2011-01-01

    Full Text Available A canine model of Glycogen storage disease type Ia (GSDIa is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including “lactic acidosis”, larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.

  8. Methodology and Applications of Disease Biomarker Identification in Human Serum

    Directory of Open Access Journals (Sweden)

    Ziad J. Sahab

    2007-01-01

    Full Text Available Biomarkers are biomolecules that serve as indicators of biological and pathological processes, or physiological and pharmacological responses to a drug treatment. Because of the high abundance of albumin and heterogeneity of plasma lipoproteins and glycoproteins, biomarkers are difficult to identify in human serum. Due to the clinical significance the identification of disease biomarkers in serum holds great promise for personalized medicine, especially for disease diagnosis and prognosis. This review summarizes some common and emerging proteomics techniques utilized in the separation of serum samples and identification of disease signatures. The practical application of each protein separation or identification technique is analyzed using specific examples. Biomarkers of cancers of prostate, breast, ovary, and lung in human serum have been reviewed, as well as those of heart disease, arthritis, asthma, and cystic fibrosis. Despite the advancement of technology few biomarkers have been approved by the Food and Drug Administration for disease diagnosis and prognosis due to the complexity of structure and function of protein biomarkers and lack of high sensitivity, specificity, and reproducibility for those putative biomarkers. The combination of different types of technologies and statistical analysis may provide more effective methods to identify and validate new disease biomarkers in blood.Abbreviations: 2-DE, two-dimensional gel electrophoresis; 2DLC-MS, two-dimensional liquid chromatography mass spectrometry; CA 15.3, cancer antigen 15.3; CA 19–9, cancer antigen 19–9, a tumor-associated antigen; CA125, cancer antigen 125, a mucin-like protein; CEA, carcinoembryonic antigen; CF, Cystic Fibrosis; CRP, C-reactive protein; ELISA, enzyme-linked immunosorbent assay; ESI-MS/MS, electrospray ionization tandem mass spectrometry; FDA, Food and Drug Administration; IPG, immobilized pH gradient; MALDI-TOF-MS, matrix-assisted laser desorption

  9. Economic burden of human papillomavirus-related diseases in Italy.

    Directory of Open Access Journals (Sweden)

    Gianluca Baio

    Full Text Available INTRODUCTION: Human papilloma virus (HPV genotypes 6, 11, 16, and 18 impose a substantial burden of direct costs on the Italian National Health Service that has never been quantified fully. The main objective of the present study was to address this gap: (1 by estimating the total direct medical costs associated with nine major HPV-related diseases, namely invasive cervical cancer, cervical dysplasia, cancer of the vulva, vagina, anus, penis, and head and neck, anogenital warts, and recurrent respiratory papillomatosis, and (2 by providing an aggregate measure of the total economic burden attributable to HPV 6, 11, 16, and 18 infection. METHODS: For each of the nine conditions, we used available Italian secondary data to estimate the lifetime cost per case, the number of incident cases of each disease, the total economic burden, and the relative prevalence of HPV types 6, 11, 16, and 18, in order to estimate the aggregate fraction of the total economic burden attributable to HPV infection. RESULTS: The total direct costs (expressed in 2011 Euro associated with the annual incident cases of the nine HPV-related conditions included in the analysis were estimated to be €528.6 million, with a plausible range of €480.1-686.2 million. The fraction attributable to HPV 6, 11, 16, and 18 was €291.0 (range €274.5-315.7 million, accounting for approximately 55% of the total annual burden of HPV-related disease in Italy. CONCLUSIONS: The results provided a plausible estimate of the significant economic burden imposed by the most prevalent HPV-related diseases on the Italian welfare system. The fraction of the total direct lifetime costs attributable to HPV 6, 11, 16, and 18 infections, and the economic burden of noncervical HPV-related diseases carried by men, were found to be cost drivers relevant to the making of informed decisions about future investments in programmes of HPV prevention.

  10. Small teleost fish provide new insights into human skeletal diseases.

    Science.gov (United States)

    Witten, P E; Harris, M P; Huysseune, A; Winkler, C

    2017-01-01

    Small teleost fish such as zebrafish and medaka are increasingly studied as models for human skeletal diseases. Efficient new genome editing tools combined with advances in the analysis of skeletal phenotypes provide new insights into fundamental processes of skeletal development. The skeleton among vertebrates is a highly conserved organ system, but teleost fish and mammals have evolved unique traits or have lost particular skeletal elements in each lineage. Several unique features of the skeleton relate to the extremely small size of early fish embryos and the small size of adult fish used as models. A detailed analysis of the plethora of interesting skeletal phenotypes in zebrafish and medaka pushes available skeletal imaging techniques to their respective limits and promotes the development of new imaging techniques. Impressive numbers of zebrafish and medaka mutants with interesting skeletal phenotypes have been characterized, complemented by transgenic zebrafish and medaka lines. The advent of efficient genome editing tools, such as TALEN and CRISPR/Cas9, allows to introduce targeted deficiencies in genes of model teleosts to generate skeletal phenotypes that resemble human skeletal diseases. This review will also discuss other attractive aspects of the teleost skeleton. This includes the capacity for lifelong tooth replacement and for the regeneration of dermal skeletal elements, such as scales and fin rays, which further increases the value of zebrafish and medaka models for skeletal research. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Human endogenous retrovirus-K contributes to motor neuron disease.

    Science.gov (United States)

    Li, Wenxue; Lee, Myoung-Hwa; Henderson, Lisa; Tyagi, Richa; Bachani, Muzna; Steiner, Joseph; Campanac, Emilie; Hoffman, Dax A; von Geldern, Gloria; Johnson, Kory; Maric, Dragan; Morris, H Douglas; Lentz, Margaret; Pak, Katherine; Mammen, Andrew; Ostrow, Lyle; Rothstein, Jeffrey; Nath, Avindra

    2015-09-30

    The role of human endogenous retroviruses (HERVs) in disease pathogenesis is unclear. We show that HERV-K is activated in a subpopulation of patients with sporadic amyotrophic lateral sclerosis (ALS) and that its envelope (env) protein may contribute to neurodegeneration. The virus was expressed in cortical and spinal neurons of ALS patients, but not in neurons from control healthy individuals. Expression of HERV-K or its env protein in human neurons caused retraction and beading of neurites. Transgenic animals expressing the env gene developed progressive motor dysfunction accompanied by selective loss of volume of the motor cortex, decreased synaptic activity in pyramidal neurons, dendritic spine abnormalities, nucleolar dysfunction, and DNA damage. Injury to anterior horn cells in the spinal cord was manifested by muscle atrophy and pathological changes consistent with nerve fiber denervation and reinnervation. Expression of HERV-K was regulated by TAR (trans-activation responsive) DNA binding protein 43, which binds to the long terminal repeat region of the virus. Thus, HERV-K expression within neurons of patients with ALS may contribute to neurodegeneration and disease pathogenesis. Copyright © 2015, American Association for the Advancement of Science.

  12. Different evolutionary pathways underlie the morphology of wrist bones in hominoids.

    Science.gov (United States)

    Kivell, Tracy L; Barros, Anna P; Smaers, Jeroen B

    2013-10-23

    The hominoid wrist has been a focus of numerous morphological analyses that aim to better understand long-standing questions about the evolution of human and hominoid hand use. However, these same analyses also suggest various scenarios of complex and mosaic patterns of morphological evolution within the wrist and potentially multiple instances of homoplasy that would benefit from require formal analysis within a phylogenetic context.We identify morphological features that principally characterize primate - and, in particular, hominoid (apes, including humans) - wrist evolution and reveal the rate, process and evolutionary timing of patterns of morphological change on individual branches of the primate tree of life. Linear morphological variables of five wrist bones - the scaphoid, lunate, triquetrum, capitate and hamate - are analyzed in a diverse sample of extant hominoids (12 species, 332 specimens), Old World (8 species, 43 specimens) and New World (4 species, 26 specimens) monkeys, fossil Miocene apes (8 species, 20 specimens) and Plio-Pleistocene hominins (8 species, 18 specimens). Results reveal a combination of parallel and synapomorphic morphology within haplorrhines, and especially within hominoids, across individual wrist bones. Similar morphology of some wrist bones reflects locomotor behaviour shared between clades (scaphoid, triquetrum and capitate) while others (lunate and hamate) indicate clade-specific synapomorphic morphology. Overall, hominoids show increased variation in wrist bone morphology compared with other primate clades, supporting previous analyses, and demonstrate several occurrences of parallel evolution, particularly between orangutans and hylobatids, and among hominines (extant African apes, humans and fossil hominins). Our analyses indicate that different evolutionary processes can underlie the evolution of a single anatomical unit (the wrist) to produce diversity in functional and morphological adaptations across individual wrist

  13. Being human: The role of pluripotent stem cells in regenerative medicine and humanizing Alzheimer's disease models.

    Science.gov (United States)

    Sproul, Andrew A

    2015-01-01

    Human pluripotent stem cells (PSCs) have the capacity to revolutionize medicine by allowing the generation of functional cell types such as neurons for cell replacement therapy. However, the more immediate impact of PSCs on treatment of Alzheimer's disease (AD) will be through improved human AD model systems for mechanistic studies and therapeutic screening. This review will first briefly discuss different types of PSCs and genome-editing techniques that can be used to modify PSCs for disease modeling or for personalized medicine. This will be followed by a more in depth analysis of current AD iPSC models and a discussion of the need for more complex multicellular models, including cell types such as microglia. It will finish with a discussion on current clinical trials using PSC-derived cells and the long-term potential of such strategies for treating AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Spanish biology/disease initiative within the human proteome project: Application to rheumatic diseases.

    Science.gov (United States)

    Ruiz-Romero, Cristina; Calamia, Valentina; Albar, Juan Pablo; Casal, José Ignacio; Corrales, Fernando J; Fernández-Puente, Patricia; Gil, Concha; Mateos, Jesús; Vivanco, Fernando; Blanco, Francisco J

    2015-09-08

    The Spanish Chromosome 16 consortium is integrated in the global initiative Human Proteome Project, which aims to develop an entire map of the proteins encoded following a gene-centric strategy (C-HPP) in order to make progress in the understanding of human biology in health and disease (B/D-HPP). Chromosome 16 contains many genes encoding proteins involved in the development of a broad range of diseases, which have a significant impact on the health care system. The Spanish HPP consortium has developed a B/D platform with five programs focused on selected medical areas: cancer, obesity, cardiovascular, infectious and rheumatic diseases. Each of these areas has a clinical leader associated to a proteomic investigator with the responsibility to get a comprehensive understanding of the proteins encoded by Chromosome 16 genes. Proteomics strategies have enabled great advances in the area of rheumatic diseases, particularly in osteoarthritis, with studies performed on joint cells, tissues and fluids. In this manuscript we describe how the Spanish HPP-16 consortium has developed a B/D platform with five programs focused on selected medical areas: cancer, obesity, cardiovascular, infectious and rheumatic diseases. Each of these areas has a clinical leader associated to a proteomic investigator with the responsibility to get a comprehensive understanding of the proteins encoded by Chromosome 16 genes. We show how the Proteomic strategy has enabled great advances in the area of rheumatic diseases, particularly in osteoarthritis, with studies performed on joint cells, tissues and fluids. This article is part of a Special Issue entitled: HUPO 2014. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Association between Human Body Composition and Periodontal Disease.

    Science.gov (United States)

    Salekzamani, Yagoub; Shirmohammadi, Adileh; Rahbar, Mohammad; Shakouri, Seyed-Kazem; Nayebi, Farough

    2011-01-01

    Obesity in humans might increase the risk of periodontitis. The aim of the present study was to examine the relationship between body composition of males and their periodontal status. AS total of 150 males (aged 30-60) were selected: 31 were periodontally healthy, 45 had gingivitis, 39 had initial periodontitis, and 35 suffered from established periodontitis. BMI (body mass index), WC (waist circumference), and body composition parameters (consisting of body water, body fat, and skeletal muscle and bone mass) were measured. After adjusting for age, history of diabetes, smoking, physical activity status, and socioeconomic status, statistically significant correlations were found between periodontitis and BMI, WC, and body composition. There was only a statistically significant difference between the periodontal health and established periodontitis; that is, periodontal disease in mild forms (gingivitis) and initial periodontitis do not influence these variables (BMI, WC, and body composition parameters) and only the severe form of the disease influences the variables. These data suggest that there is a considerable association between severe forms of periodontal disease in males and their body composition, but this preliminary finding needs to be confirmed in more extensive studies.

  16. Simian virus 40 infection in humans and association with human diseases: results and hypotheses

    International Nuclear Information System (INIS)

    Barbanti-Brodano, Giuseppe; Sabbioni, Silvia; Martini, Fernanda; Negrini, Massimo; Corallini, Alfredo; Tognon, Mauro

    2004-01-01

    Simian virus 40 (SV40) is a monkey virus that was introduced in the human population by contaminated poliovaccines, produced in SV40-infected monkey cells, between 1955 and 1963. Epidemiological evidence now suggests that SV40 may be contagiously transmitted in humans by horizontal infection, independent of the earlier administration of SV40-contaminated poliovaccines. This evidence includes detection of SV40 DNA sequences in human tissues and of SV40 antibodies in human sera, as well as rescue of infectious SV40 from a human tumor. Detection of SV40 DNA sequences in blood and sperm and of SV40 virions in sewage points to the hematic, sexual, and orofecal routes as means of virus transmission in humans. The site of latent infection in humans is not known, but the presence of SV40 in urine suggests the kidney as a possible site of latency, as it occurs in the natural monkey host. SV40 in humans is associated with inflammatory kidney diseases and with specific tumor types: mesothelioma, lymphoma, brain, and bone. These human tumors correspond to the neoplasms that are induced by SV40 experimental inoculation in rodents and by generation of transgenic mice with the SV40 early region gene directed by its own early promoter-enhancer. The mechanisms of SV40 tumorigenesis in humans are related to the properties of the two viral oncoproteins, the large T antigen (Tag) and the small t antigen (tag). Tag acts mainly by blocking the functions of p53 and RB tumor suppressor proteins, as well as by inducing chromosomal aberrations in the host cell. These chromosome alterations may hit genes important in oncogenesis and generate genetic instability in tumor cells. The clastogenic activity of Tag, which fixes the chromosome damage in the infected cells, may explain the low viral load in SV40-positive human tumors and the observation that Tag is expressed only in a fraction of tumor cells. 'Hit and run' seems the most plausible mechanism to support this situation. The small tag

  17. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease.

    Science.gov (United States)

    Díaz, Mario; Fabelo, Noemí; Ferrer, Isidre; Marín, Raquel

    2018-03-10

    Lipid rafts are highly dynamic membrane domains featured by distinctive biochemical composition and physicochemical properties compared with the surrounding plasma membrane. These microstructures are associated not only with cellular signaling and communication in normal nerve cells but also with pathological processing of amyloid precursor protein in Alzheimer's disease. Using lipid rafts isolated from human frontal cortex in nondemented subjects aging 24 to 85 years, we demonstrate here that lipid structure of lipid rafts undergo significant alterations of specific lipid classes and phospholipid-bound fatty acids as brain cortex correlating with aging. Main changes affect levels of plasmalogens, polyunsaturated fatty acids (especially docosahexaenoic acid and arachidonic acid), total polar lipids (mainly phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). Besides, relevant relationships between main fatty acids and/or lipid classes were altered in an age-related manner. This "lipid raft aging" exhibits clear gender differences and appear to be more pronounced in women than in men, especially in older (postmenopausal) women. The outcomes led us to conclude that human cortical lipid rafts are modified by aging in a gender-dependent fashion. Given the central role of bilayer lipid matrix in lipid rafts functionality and neuronal signaling, we hypothesize that these findings might underlie the higher prevalence of cognitive decline evolving toward Alzheimer's disease in postmenopausal women. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Comprehensive control of human papillomavirus infections and related diseases.

    Science.gov (United States)

    Bosch, F Xavier; Broker, Thomas R; Forman, David; Moscicki, Anna-Barbara; Gillison, Maura L; Doorbar, John; Stern, Peter L; Stanley, Margaret; Arbyn, Marc; Poljak, Mario; Cuzick, Jack; Castle, Philip E; Schiller, John T; Markowitz, Lauri E; Fisher, William A; Canfell, Karen; Denny, Lynette A; Franco, Eduardo L; Steben, Marc; Kane, Mark A; Schiffman, Mark; Meijer, Chris J L M; Sankaranarayanan, Rengaswamy; Castellsagué, Xavier; Kim, Jane J; Brotons, Maria; Alemany, Laia; Albero, Ginesa; Diaz, Mireia; de Sanjosé, Silvia

    2013-11-22

    Infection with human papillomavirus (HPV) is recognized as one of the major causes of infection-related cancer worldwide, as well as the causal factor in other diseases. Strong evidence for a causal etiology with HPV has been stated by the International Agency for Research on Cancer for cancers of the cervix uteri, penis, vulva, vagina, anus and oropharynx (including base of the tongue and tonsils). Of the estimated 12.7 million new cancers occurring in 2008 worldwide, 4.8% were attributable to HPV infection, with substantially higher incidence and mortality rates seen in developing versus developed countries. In recent years, we have gained tremendous knowledge about HPVs and their interactions with host cells, tissues and the immune system; have validated and implemented strategies for safe and efficacious prophylactic vaccination against HPV infections; have developed increasingly sensitive and specific molecular diagnostic tools for HPV detection for use in cervical cancer screening; and have substantially increased global awareness of HPV and its many associated diseases in women, men, and children. While these achievements exemplify the success of biomedical research in generating important public health interventions, they also generate new and daunting challenges: costs of HPV prevention and medical care, the implementation of what is technically possible, socio-political resistance to prevention opportunities, and the very wide ranges of national economic capabilities and health care systems. Gains and challenges faced in the quest for comprehensive control of HPV infection and HPV-related cancers and other disease are summarized in this review. The information presented may be viewed in terms of a reframed paradigm of prevention of cervical cancer and other HPV-related diseases that will include strategic combinations of at least four major components: 1) routine introduction of HPV vaccines to women in all countries, 2) extension and simplification of

  19. Unfoldomics of human genetic diseases: illustrative examples of ordered and intrinsically disordered members of the human diseasome.

    Science.gov (United States)

    Midic, Uros; Oldfield, Christopher J; Dunker, A Keith; Obradovic, Zoran; Uversky, Vladimir N

    2009-01-01

    Intrinsically disordered proteins (IDPs) constitute a recently recognized realm of atypical biologically active proteins that lack stable structure under physiological conditions, but are commonly involved in such crucial cellular processes as regulation, recognition, signaling and control. IDPs are very common among proteins associated with various diseases. Recently, we performed a systematic bioinformatics analysis of the human diseasome, a network that linked the human disease phenome (which includes all the human genetic diseases) with the human disease genome (which contains all the disease-related genes) (Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., and Barabasi, A. L. (2007). The human disease network. Proc. Natl. Acad. Sci. U.S.A. 104, 8685-90). The analysis of this diseasome revealed that IDPs are abundant in proteins linked to human genetic diseases, and that different genetic disease classes varied dramatically in the IDP content (Midic U., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2009) Protein disorder in the human diseasome: Unfoldomics of human genetic diseases. BMC Genomics. In press). Furthermore, many of the genetic disease-related proteins were shown to contain at least one molecular recognition feature, which is a relatively short loosely structured protein region within a mostly disordered segment with the feature gaining structure upon binding to a partner. Finally, alternative splicing was shown to be abundant among the diseasome genes. Based on these observations the human-genetic-disease-associated unfoldome was created. This minireview describes several illustrative examples of ordered and intrinsically disordered members of the human diseasome.

  20. Exposure Risk for Infection and Lack of Human-to-Human Transmission of Mycobacterium ulcerans Disease, Australia.

    Science.gov (United States)

    O'Brien, Daniel P; Wynne, James W; Buultjens, Andrew H; Michalski, Wojtek P; Stinear, Timothy P; Friedman, N Deborah; Hughes, Andrew; Athan, Eugene

    2017-05-01

    We conducted epidemiologic and genetic analyses of family clusters of Mycobacterium ulcerans (Buruli ulcer) disease in southeastern Australia. We found that the incidence of M. ulcerans disease in family members was increased. However, the risk for exposure appeared short-term and not related to human-human transmission.

  1. Impacts of environment on human diseases: a web service for the human exposome

    Science.gov (United States)

    Karssenberg, Derek; Vaartjes, Ilonca; Kamphuis, Carlijn; Strak, Maciek; Schmitz, Oliver; Soenario, Ivan; de Jong, Kor

    2017-04-01

    The exposome is the totality of human environmental exposures from conception onwards. Identifying the contribution of the exposome to human diseases and health is a key issue in health research. Examples include the effect of air pollution exposure on cardiovascular diseases, the impact of disease vectors (mosquitos) and surface hydrology exposure on malaria, and the effect of fast food restaurant exposure on obesity. Essential to health research is to disentangle the effects of the exposome and genome on health. Ultimately this requires quantifying the totality of all human exposures, for each individual in the studied human population. This poses a massive challenge to geoscientists, as environmental data are required at a high spatial and temporal resolution, with a large spatial and temporal coverage representing the area inhabited by the population studied and the time span representing several decades. Then, these data need to be combined with space-time paths of individuals to calculate personal exposures for each individual in the population. The Global and Geo Health Data Centre is taking this challenge by providing a web service capable of enriching population data with exposome information. Our web service can generate environmental information either from archived national (up to 5 m spatial and 1 h temporal resolution) and global environmental information or generated on the fly using environmental models running as microservices. On top of these environmental data services runs an individual exposure service enabling health researchers to select different spatial and temporal aggregation methods and to upload space-time paths of individuals. These are then enriched with personal exposures and eventually returned to the user. We illustrate the service in an example of individual exposures to air pollutants calculated from hyper resolution air pollution data and various approaches to estimate space-time paths of individuals.

  2. Evolutionary profiling reveals the heterogeneous origins of classes of human disease genes: implications for modeling disease genetics in animals.

    Science.gov (United States)

    Maxwell, Evan K; Schnitzler, Christine E; Havlak, Paul; Putnam, Nicholas H; Nguyen, Anh-Dao; Moreland, R Travis; Baxevanis, Andreas D

    2014-10-04

    The recent expansion of whole-genome sequence data available from diverse animal lineages provides an opportunity to investigate the evolutionary origins of specific classes of human disease genes. Previous studies have observed that human disease genes are of particularly ancient origin. While this suggests that many animal species have the potential to serve as feasible models for research on genes responsible for human disease, it is unclear whether this pattern has meaningful implications and whether it prevails for every class of human disease. We used a comparative genomics approach encompassing a broad phylogenetic range of animals with sequenced genomes to determine the evolutionary patterns exhibited by human genes associated with different classes of disease. Our results support previous claims that most human disease genes are of ancient origin but, more importantly, we also demonstrate that several specific disease classes have a significantly large proportion of genes that emerged relatively recently within the metazoans and/or vertebrates. An independent assessment of the synonymous to non-synonymous substitution rates of human disease genes found in mammals reveals that disease classes that arose more recently also display unexpected rates of purifying selection between their mammalian and human counterparts. Our results reveal the heterogeneity underlying the evolutionary origins of (and selective pressures on) different classes of human disease genes. For example, some disease gene classes appear to be of uncommonly recent (i.e., vertebrate-specific) origin and, as a whole, have been evolving at a faster rate within mammals than the majority of disease classes having more ancient origins. The novel patterns that we have identified may provide new insight into cases where studies using traditional animal models were unable to produce results that translated to humans. Conversely, we note that the larger set of disease classes do have ancient origins

  3. Urbanization and human health in urban India: institutional analysis of water-borne diseases in Ahmedabad.

    Science.gov (United States)

    Saravanan, V S; Ayessa Idenal, Marissa; Saiyed, Shahin; Saxena, Deepak; Gerke, Solvay

    2016-10-01

    Diseases are rapidly urbanizing. Ageing infrastructures, high levels of inequality, poor urban governance, rapidly growing economies and highly dense and mobile populations all create environments rife for water-borne diseases. This article analyzes the role of institutions as crosscutting entities among a myriad of factors that breed water-borne diseases in the city of Ahmedabad, India. It applies 'path dependency' and a 'rational choice' perspective to understand the factors facilitating the breeding of diseases. This study is based on household surveys of approximately 327 households in two case study wards and intermittent interviews with key informants over a period of 2 years. Principle component analysis is applied to reduce the data and convert a set of observations, which potentially correlate with each other, into components. Institutional analyses behind these components reveal the role of social actors in exploiting the deeply rooted inefficiencies affecting urban health. This has led to a vicious cycle; breaking this cycle requires understanding the political dynamics that underlie the exposure and prevalence of diseases to improve urban health. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Interleukin-33 and Inflammatory Bowel Diseases: Lessons from Human Studies

    Directory of Open Access Journals (Sweden)

    Tiago Nunes

    2014-01-01

    Full Text Available Interleukin- (IL- 33 is a widely expressed cytokine present in different cell types, such as epithelial, mesenchymal, and inflammatory cells, supporting a predominant role in innate immunity. IL-33 can function as a proinflammatory cytokine inducing Th2 type of immune response being involved with the defense against parasitic infections of the gastrointestinal tract. In addition, it has been proposed that IL-33 can act as a signaling molecule alerting the immune system of danger or tissue damage. Recently, in the intestinal mucosa, overexpression of IL-33 has been reported in samples from patients with inflammatory bowel diseases (IBD. This review highlights the available data regarding IL-33 in human IBD and discusses emerging roles for IL-33 as a key modulator of intestinal inflammation.

  5. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang

    2014-01-01

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  6. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  7. A Wnt Survival Guide: From Flies to Human Disease

    Science.gov (United States)

    Chien, Andy J.; Conrad, William H.; Moon, Randall T.

    2011-01-01

    It has been two decades since investigators discovered the link between the Drosophila wingless (Wg) gene and the vertebrate oncogene int-1, thus establishing the family of signaling proteins known as Wnts. Since the inception of the Wnt signaling field, there have been 19 Wnt isoforms identified in humans. These secreted glycoproteins can activate at least two distinct signaling pathways in vertebrate cells, leading to cellular changes that regulate a vast array of biological processes, including embryonic development, cell fate, cell proliferation, cell migration, stem cell maintenance, tumor suppression, and oncogenesis. In certain contexts, one subset of Wnt isoforms activates the canonical Wnt/β-catenin pathway that is characterized by the activation of certain β-catenin-responsive target genes in response to the binding of Wnt ligand to its cognate receptors. Similarly, a second subset of Wnt isoforms activates β-catenin-independent pathways, including the Wnt/ calcium (Wnt/Ca) pathway and the Wnt/planar cell polarity (Wnt/PCP) pathway, in certain cellular contexts. In addition, research has identified several secreted proteins known to regulate Wnt signaling, including the Dickkopf (DKK) family, secreted Frizzled-related proteins (sFRPs), and Wnt inhibitory factor-1 (WIF-1). The advent of technologies that can provide genome-wide expression data continues to implicate Wnts and proteins that regulate Wnt signaling pathways in a growing number of disease processes. The aim of this review is to provide a context on the Wnt field that will facilitate the interpretation and study of Wnt signaling in the context of human disease. PMID:19177135

  8. Comprehensive Control of Human Papillomavirus Infections and Related Diseases

    Science.gov (United States)

    Bosch, F. Xavier; Broker, Thomas R.; Forman, David; Moscicki, Anna-Barbara; Gillison, Maura L.; Doorbar, John; Stern, Peter L.; Stanley, Margaret; Arbyn, Marc; Poljak, Mario; Cuzick, Jack; Castle, Philip E.; Schiller, John T.; Markowitz, Lauri E.; Fisher, William A.; Canfell, Karen; Denny, Lynette A.; Franco, Eduardo L.; Steben, Marc; Kane, Mark A.; Schiffman, Mark; Meijer, Chris J.L.M.; Sankaranarayanan, Rengaswamy; Castellsagué, Xavier; Kim, Jane J.; Brotons, Maria; Alemany, Laia; Albero, Ginesa; Diaz, Mireia; de Sanjosé, Silvia

    2014-01-01

    Infection with human papillomavirus (HPV) is recognized as one of the major causes of infection-related cancer worldwide, as well as the causal factor in other diseases. Strong evidence for a causal etiology with HPV has been stated by the International Agency for Research on Cancer for cancers of the cervix uteri, penis, vulva, vagina, anus and oropharynx (including base of the tongue and tonsils). Of the estimated 12.7 million new cancers occurring in 2008 worldwide, 4.8% were attributable to HPV infection, with substantially higher incidence and mortality rates seen in developing versus developed countries. In recent years, we have gained tremendous knowledge about HPVs and their interactions with host cells, tissues and the immune system; have validated and implemented strategies for safe and efficacious prophylactic vaccination against HPV infections; have developed increasingly sensitive and specific molecular diagnostic tools for HPV detection for use in cervical cancer screening; and have substantially increased global awareness of HPV and its many associated diseases in women, men, and children. While these achievements exemplify the success of biomedical research in generating important public health interventions, they also generate new and daunting challenges: costs of HPV prevention and medical care, the implementation of what is technically possible, socio-political resistance to prevention opportunities, and the very wide ranges of national economic capabilities and health care systems. Gains and challenges faced in the quest for comprehensive control of HPV infection and HPV-related cancers and other disease are summarized in this review. The information presented may be viewed in terms of a reframed paradigm of prevention of cervical cancer and other HPV-related diseases that will include strategic combinations of at least four major components: 1) routine introduction of HPV vaccines to women in all countries, 2) extension and simplification of

  9. High Resolution Discovery Proteomics Reveals Candidate Disease Progression Markers of Alzheimer's Disease in Human Cerebrospinal Fluid.

    Directory of Open Access Journals (Sweden)

    Ronald C Hendrickson

    Full Text Available Disease modifying treatments for Alzheimer's disease (AD constitute a major goal in medicine. Current trends suggest that biomarkers reflective of AD neuropathology and modifiable by treatment would provide supportive evidence for disease modification. Nevertheless, a lack of quantitative tools to assess disease modifying treatment effects remains a major hurdle. Cerebrospinal fluid (CSF biochemical markers such as total tau, p-tau and Ab42 are well established markers of AD; however, global quantitative biochemical changes in CSF in AD disease progression remain largely uncharacterized. Here we applied a high resolution open discovery platform, dMS, to profile a cross-sectional cohort of lumbar CSF from post-mortem diagnosed AD patients versus those from non-AD/non-demented (control patients. Multiple markers were identified to be statistically significant in the cohort tested. We selected two markers SME-1 (p<0.0001 and SME-2 (p = 0.0004 for evaluation in a second independent longitudinal cohort of human CSF from post-mortem diagnosed AD patients and age-matched and case-matched control patients. In cohort-2, SME-1, identified as neuronal secretory protein VGF, and SME-2, identified as neuronal pentraxin receptor-1 (NPTXR, in AD were 21% (p = 0.039 and 17% (p = 0.026 lower, at baseline, respectively, than in controls. Linear mixed model analysis in the longitudinal cohort estimate a decrease in the levels of VGF and NPTXR at the rate of 10.9% and 6.9% per year in the AD patients, whereas both markers increased in controls. Because these markers are detected by mass spectrometry without the need for antibody reagents, targeted MS based assays provide a clear translation path for evaluating selected AD disease-progression markers with high analytical precision in the clinic.

  10. Molecular epidemiology of human oral Chagas disease outbreaks in Colombia.

    Science.gov (United States)

    Ramírez, Juan David; Montilla, Marleny; Cucunubá, Zulma M; Floréz, Astrid Carolina; Zambrano, Pilar; Guhl, Felipe

    2013-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, displays significant genetic variability revealed by six Discrete Typing Units (TcI-TcVI). In this pathology, oral transmission represents an emerging epidemiological scenario where different outbreaks associated to food/beverages consumption have been reported in Argentina, Bolivia, Brazil, Ecuador and Venezuela. In Colombia, six human oral outbreaks have been reported corroborating the importance of this transmission route. Molecular epidemiology of oral outbreaks is barely known observing the incrimination of TcI, TcII, TcIV and TcV genotypes. High-throughput molecular characterization was conducted performing MLMT (Multilocus Microsatellite Typing) and mtMLST (mitochondrial Multilocus Sequence Typing) strategies on 50 clones from ten isolates. Results allowed observing the occurrence of TcI, TcIV and mixed infection of distinct TcI genotypes. Thus, a majority of specific mitochondrial haplotypes and allelic multilocus genotypes associated to the sylvatic cycle of transmission were detected in the dataset with the foreseen presence of mitochondrial haplotypes and allelic multilocus genotypes associated to the domestic cycle of transmission. These findings suggest the incrimination of sylvatic genotypes in the oral outbreaks occurred in Colombia. We observed patterns of super-infection and/or co-infection with a tailored association with the severe forms of myocarditis in the acute phase of the disease. The transmission dynamics of this infection route based on molecular epidemiology evidence was unraveled and the clinical and biological implications are discussed.

  11. Human Threat Management Systems: Self-Protection and Disease Avoidance

    Science.gov (United States)

    Neuberg, Steven L.; Kenrick, Douglas T.; Schaller, Mark

    2010-01-01

    Humans likely evolved precautionary systems designed to minimize the threats to reproductive fitness posed by highly interdependent ultrasociality. A review of research on the self-protection and disease avoidance systems reveals that each system is functionally distinct and domain-specific: Each is attuned to different cues; engages different emotions, inferences, and behavioral inclinations; and is rooted in somewhat different neurobiological substrates. These systems share important features, however. Each system is functionally coherent, in that perceptual, affective, cognitive, and behavioral processes work in concert to reduce fitness costs of potential threats. Each system is biased in a risk-averse manner, erring toward precautionary responses even when available cues only heuristically imply threat. And each system is functionally flexible, being highly sensitive to specific ecological and dispositional cues that signal greater vulnerability to the relevant threat. These features characterize a general template useful for understanding not only the self-protection and disease avoidance systems, but also a broader set of evolved, domain-specific precautionary systems. PMID:20833199

  12. Assisted reproductive technologies to prevent human mitochondrial disease transmission.

    Science.gov (United States)

    Greenfield, Andy; Braude, Peter; Flinter, Frances; Lovell-Badge, Robin; Ogilvie, Caroline; Perry, Anthony C F

    2017-11-09

    Mitochondria are essential cytoplasmic organelles that generate energy (ATP) by oxidative phosphorylation and mediate key cellular processes such as apoptosis. They are maternally inherited and in humans contain a 16,569-base-pair circular genome (mtDNA) encoding 37 genes required for oxidative phosphorylation. Mutations in mtDNA cause a range of pathologies, commonly affecting energy-demanding tissues such as muscle and brain. Because mitochondrial diseases are incurable, attention has focused on limiting the inheritance of pathogenic mtDNA by mitochondrial replacement therapy (MRT). MRT aims to avoid pathogenic mtDNA transmission between generations by maternal spindle transfer, pronuclear transfer or polar body transfer: all involve the transfer of nuclear DNA from an egg or zygote containing defective mitochondria to a corresponding egg or zygote with normal mitochondria. Here we review recent developments in animal and human models of MRT and the underlying biology. These have led to potential clinical applications; we identify challenges to their technical refinement.

  13. Role of KIR3DS1 in human diseases

    Directory of Open Access Journals (Sweden)

    Christian eKӧrner

    2012-11-01

    Full Text Available The function of NK cells is controlled by several activating and inhibitory receptors, including the family of Killer-immunoglobulin-like receptors (KIRs. The KIR gene 3DS1 (KIR3DS1 represents a conserved allelic variant of the KIR3DL1/S1 gene locus. 3DS1 belongs to the KIR haplotype group B along with other KIR genes encoding for activating KIRs and is present in all human populations. The encoded gene product KIR3DS1 exhibits three extracellular domains, a short cytoplasmic tail and a trans-membrane domain containing a positively charged residue. The latter allows recruitment of the ITAM-bearing adaptor molecule, DAP12, and thus conferring the activating quality to KIR3DS1. Although interaction with its putative ligand HLA-Bw4-I80 or any other HLA class I subtype has not been demonstrated to date, a growing number of associations between the presence of 3DS1 and the outcome of viral infections have been described. Especially, the protective role of KIR3DS1 in combination with HLA-Bw4-I80 in the context of progressive HIV infection has been studied intensively. In addition, a number of recent studies associated the presence or absence of KIR3DS1 with the occurrence and outcome of several malignancies, as well as of autoimmune diseases and graft-versus-host disease (GVHD. In this review, the present knowledge regarding the role of KIRD3S1 in various diseases will be summarized.

  14. Improving disease gene prioritization by comparing the semantic similarity of phenotypes in mice with those of human diseases.

    Directory of Open Access Journals (Sweden)

    Anika Oellrich

    Full Text Available Despite considerable progress in understanding the molecular origins of hereditary human diseases, the molecular basis of several thousand genetic diseases still remains unknown. High-throughput phenotype studies are underway to systematically assess the phenotype outcome of targeted mutations in model organisms. Thus, comparing the similarity between experimentally identified phenotypes and the phenotypes associated with human diseases can be used to suggest causal genes underlying a disease. In this manuscript, we present a method for disease gene prioritization based on comparing phenotypes of mouse models with those of human diseases. For this purpose, either human disease phenotypes are "translated" into a mouse-based representation (using the Mammalian Phenotype Ontology, or mouse phenotypes are "translated" into a human-based representation (using the Human Phenotype Ontology. We apply a measure of semantic similarity and rank experimentally identified phenotypes in mice with respect to their phenotypic similarity to human diseases. Our method is evaluated on manually curated and experimentally verified gene-disease associations for human and for mouse. We evaluate our approach using a Receiver Operating Characteristic (ROC analysis and obtain an area under the ROC curve of up to . Furthermore, we are able to confirm previous results that the Vax1 gene is involved in Septo-Optic Dysplasia and suggest Gdf6 and Marcks as further potential candidates. Our method significantly outperforms previous phenotype-based approaches of prioritizing gene-disease associations. To enable the adaption of our method to the analysis of other phenotype data, our software and prioritization results are freely available under a BSD licence at http://code.google.com/p/phenomeblast/wiki/CAMP. Furthermore, our method has been integrated in PhenomeNET and the results can be explored using the PhenomeBrowser at http://phenomebrowser.net.

  15. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    Science.gov (United States)

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  16. Rome consensus conference - statement; human papilloma virus diseases in males

    Science.gov (United States)

    2013-01-01

    Background Human Papillomavirus (HPV) is a very resistant, ubiquitous virus that can survive in the environment without a host. The decision to analyse HPV-related diseases in males was due to the broad dissemination of the virus, and, above all, by the need to stress the importance of primary and secondary prevention measures (currently available for women exclusively). The objective of the Consensus Conference was to make evidence-based recommendations that were designed to facilitate the adoption of a standard approach in clinical practice in Italy. Methods The Sponsoring Panel put a series of questions to the members of the Scientific Committee who prepared a summary of the currently available information, relevant for each question, after the review and grading of the existing scientific literature. The summaries were presented to a Jury, also called multidisciplinary Consensus Panel, who drafted a series of recommendations. Results The prevalence of HPV in males ranges between 1.3–72.9%;. The prevalence curve in males is much higher than that in females and does not tend to decline with age. Women appear to have a higher probability of acquiring HPV genotypes associated with a high oncogenic risk, whereas in males the probability of acquiring low- or high-risk genotypes is similar. The HPV-related diseases that affect males are anogenital warts and cancers of the penis, anus and oropharynx. The quadrivalent vaccine against HPV has proved to be effective in preventing external genital lesions in males aged 16–26 years in 90.4%; (95%; CI: 69.2–98.1) of cases. It has also proved to be effective in preventing precancerous anal lesions in 77.5%; (95%; CI: 39.6–93.3) of cases in a per-protocol analysis and in 91.7%; (95%; CI: 44.6–99.8) of cases in a post-hoc analysis. Early ecological studies demonstrate reduction of genital warts in vaccinated females and some herd immunity in males when vaccine coverage is high, although males who have sex with males

  17. Effects of environmental pollutants on cellular iron homeostasis and ultimate links to human disease

    Science.gov (United States)

    Chronic disease has increased in the last several decades, and environmental pollutants have been implicated. The magnitude and variety of diseases indicate the malfunctioning of some basic mechanism underlying human health. Environmental pollutants demonstrate a capability to co...

  18. Human prion diseases in The Netherlands : clinico-pathological, genetic and molecular aspects

    NARCIS (Netherlands)

    Jansen, C.

    2011-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are invariably fatal neurodegenerative disorders that can be sporadic, inherited or acquired by infection. In humans, TSEs comprise three major groups showing a wide phenotypic heterogeneity: Creutzfeldt-Jakob disease (CJD),

  19. Molecular epidemiology of human oral Chagas disease outbreaks in Colombia.

    Directory of Open Access Journals (Sweden)

    Juan David Ramírez

    Full Text Available BACKGROUND: Trypanosoma cruzi, the causative agent of Chagas disease, displays significant genetic variability revealed by six Discrete Typing Units (TcI-TcVI. In this pathology, oral transmission represents an emerging epidemiological scenario where different outbreaks associated to food/beverages consumption have been reported in Argentina, Bolivia, Brazil, Ecuador and Venezuela. In Colombia, six human oral outbreaks have been reported corroborating the importance of this transmission route. Molecular epidemiology of oral outbreaks is barely known observing the incrimination of TcI, TcII, TcIV and TcV genotypes. METHODOLOGY AND PRINCIPAL FINDINGS: High-throughput molecular characterization was conducted performing MLMT (Multilocus Microsatellite Typing and mtMLST (mitochondrial Multilocus Sequence Typing strategies on 50 clones from ten isolates. Results allowed observing the occurrence of TcI, TcIV and mixed infection of distinct TcI genotypes. Thus, a majority of specific mitochondrial haplotypes and allelic multilocus genotypes associated to the sylvatic cycle of transmission were detected in the dataset with the foreseen presence of mitochondrial haplotypes and allelic multilocus genotypes associated to the domestic cycle of transmission. CONCLUSIONS: These findings suggest the incrimination of sylvatic genotypes in the oral outbreaks occurred in Colombia. We observed patterns of super-infection and/or co-infection with a tailored association with the severe forms of myocarditis in the acute phase of the disease. The transmission dynamics of this infection route based on molecular epidemiology evidence was unraveled and the clinical and biological implications are discussed.

  20. Vibrio cholerae Infection of Drosophilamelanogaster Mimics the Human Disease Cholera.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii flies harboring mutant alleles of either adenylyl cyclase, Gsalpha, or the Gardos K channel homolog SK are resistant to V. cholerae infection; and (iii ingestion of a K channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 mug of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera.

  1. Influence of human immunodeficiency virus infection on pelvic inflammatory disease.

    Science.gov (United States)

    Irwin, K L; Moorman, A C; O'Sullivan, M J; Sperling, R; Koestler, M E; Soto, I; Rice, R; Brodman, M; Yasin, S; Droese, A; Zhang, D; Schwartz, D A; Byers, R H

    2000-04-01

    To examine the influence of human immunodeficiency virus (HIV) infection on clinical and microbiologic characteristics of pelvic inflammatory disease (PID). Forty-four HIV-infected women and 163 HIV noninfected women diagnosed with PID by standard case definition were evaluated by using clinical severity scores, transabdominal sonograms, and endometrial biopsies. After testing for bacterial infections, patients were prescribed antibiotics as recommended by the Centers for Disease Control and Prevention (CDC). Symptoms of PID and analgesic use before enrollment did not differ by HIV serostatus. More HIV-infected women had received antibiotics before enrollment (40.9% versus 27.2%, P =.08), a factor associated with milder signs regardless of serostatus. More HIV-infected women had sonographically diagnosed adnexal masses at enrollment (45.8% versus 27.1%, P =.08), a difference that yielded higher median severity scores (17.5 of 42 points versus 15 of 42 points, P =.07). However, those differences were not significant at the P <.05 level. Mycoplasma (50% versus 22%, P <.05) and streptococcus species (34% versus 17%, P <.05) were isolated more commonly from biopsies of HIV-infected women. Within 30 days after enrollment, HIV-infected women generally responded as well to therapy as HIV-noninfected women did, regardless of initial CD4 T-lymphocyte percentage. Among women with acute PID, HIV infection was associated with more sonographically diagnosed adnexal masses. Clinical response to CDC-recommended antibiotics did not differ appreciably by serostatus. Mycoplasmas and streptococci were isolated more commonly from HIV-infected women, but those organisms also might be associated with PID in immunocompetent women.

  2. Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease.

    Directory of Open Access Journals (Sweden)

    Christophe Fraisier

    Full Text Available During the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF cases, but also of West Nile neuroinvasive disease (WNND. The lack of human vaccine or specific treatment against WNV infection imparts a pressing need to characterize indicators associated with neurological involvement. By its intimacy with central nervous system (CNS structures, modifications in the cerebrospinal fluid (CSF composition could accurately reflect CNS pathological process. Until now, few studies investigated the association between imbalance of CSF elements and severity of WNV infection. The aim of the present study was to apply the iTRAQ technology in order to identify the CSF proteins whose abundances are modified in patients with WNND. Forty-seven proteins were found modified in the CSF of WNND patients as compared to control groups, and most of them are reported for the first time in the context of WNND. On the basis of their known biological functions, several of these proteins were associated with inflammatory response. Among them, Defensin-1 alpha (DEFA1, a protein reported with anti-viral effects, presented the highest increasing fold-change (FC>12. The augmentation of DEFA1 abundance in patients with WNND was confirmed at the CSF, but also in serum, compared to the control individual groups. Furthermore, the DEFA1 serum level was significantly elevated in WNND patients compared to subjects diagnosed for WNF. The present study provided the first insight into the potential CSF biomarkers associated with WNV neuroinvasion. Further investigation in larger cohorts with kinetic sampling could determine the usefulness of measuring DEFA1 as diagnostic or prognostic biomarker of detrimental WNND evolution.

  3. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases

    Science.gov (United States)

    Nalbantoglu, Ufuk

    2017-01-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome–human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis. PMID:28785422

  4. Comparative Transcriptomic Profiling and Gene Expression for Myxomatous Mitral Valve Disease in the Dog and Human.

    Science.gov (United States)

    Markby, Greg R; Summers, Kim M; MacRae, Vicky E; Corcoran, Brendan M

    2017-07-17

    Myxomatous mitral valve disease is the single most important mitral valve disease in both dogs and humans. In the case of the dog it is ubiquitous, such that all aged dogs will have some evidence of the disease, and for humans it is known as Barlow's disease and affects up to 3% of the population, with an expected increase in prevalence as the population ages. Disease in the two species show many similarities and while both have the classic myxomatous degeneration only in humans is there extensive fibrosis. This dual pathology of the human disease markedly affects the valve transcriptome and the difference between the dog and human is dominated by changes in genes associated with fibrosis. This review will briefly examine the comparative valve pathology and then, in more detail, the transcriptomic profiling and gene expression reported so far for both species.

  5. Information to prevent human exposure to disease agents associated with wildlife—U.S. Geological Survey circulars on zoonotic disease

    Science.gov (United States)

    Meteyer, Carol U.; Moede Rogall, Gail

    2018-03-05

    The U.S. Geological Survey in collaboration with the U.S. Fish and Wildlife Service and others have published reports with information about geographic distribution, specific pathogens, disease ecology, and strategies to avoid exposure and infection for a selection of zoonotic diseases. Zoonotic diseases are diseases that can be passed from animals to humans, such as rabies and plague. This summary factsheet highlights the reports on plague, bat rabies, and raccoon roundworm with links to all seven zoonotic diseases covered in this series.

  6. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases.

    Science.gov (United States)

    Duan, Zhiqiang; Xu, Houqiang; Ji, Xinqin; Zhao, Jiafu

    2015-01-01

    Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.

  7. Mitomycin-Induced Pulmonary Veno-Occlusive Disease: Evidence From Human Disease and Animal Models.

    Science.gov (United States)

    Perros, Frédéric; Günther, Sven; Ranchoux, Benoit; Godinas, Laurent; Antigny, Fabrice; Chaumais, Marie-Camille; Dorfmüller, Peter; Hautefort, Aurélie; Raymond, Nicolas; Savale, Laurent; Jaïs, Xavier; Girerd, Barbara; Cottin, Vincent; Sitbon, Olivier; Simonneau, Gerald; Humbert, Marc; Montani, David

    2015-09-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension characterized by the obstruction of small pulmonary veins and a dismal prognosis. PVOD may be sporadic or heritable because of biallelic mutations of the EIF2AK4 gene coding for GCN2. Isolated case reports suggest that chemotherapy may be a risk factor for PVOD. We reported on the clinical, functional, and hemodynamic characteristics and outcomes of 7 cases of PVOD induced by mitomycin-C (MMC) therapy from the French Pulmonary Hypertension Registry. All patients displayed squamous anal cancer and were treated with MMC alone or MMC plus 5-fluoruracil. The estimated annual incidence of PVOD in the French population that have anal cancer is 3.9 of 1000 patients, which is much higher than the incidence of PVOD in the general population (0.5/million per year). In rats, intraperitoneal administration of MMC induced PVOD, as demonstrated by pulmonary hypertension at right-heart catheterization at days 21 to 35 and major remodeling of small pulmonary veins associated with foci of intense microvascular endothelial-cell proliferation of the capillary bed. In rats, MMC administration was associated with dose-dependent depletion of pulmonary GCN2 content and decreased smad1/5/8 signaling. Amifostine prevented the development of MMC-induced PVOD in rats. MMC therapy is a potent inducer of PVOD in humans and rats. Amifostine prevents MMC-induced PVOD in rats and should be tested as a preventive therapy for MMC-induced PVOD in humans. MMC-induced PVOD in rats represents a unique model to test novel therapies in this devastating orphan disease. © 2015 American Heart Association, Inc.

  8. When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases.

    Science.gov (United States)

    Navratil, Vincent; de Chassey, Benoit; Combe, Chantal Rabourdin; Lotteau, Vincent

    2011-01-21

    Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases.

  9. In silico regulatory analysis for exploring human disease progression

    Directory of Open Access Journals (Sweden)

    DeLisi Charles

    2008-06-01

    Full Text Available Abstract Background An important goal in bioinformatics is to unravel the network of transcription factors (TFs and their targets. This is important in the human genome, where many TFs are involved in disease progression. Here, classification methods are applied to identify new targets for 152 transcriptional regulators using publicly-available targets as training examples. Three types of sequence information are used: composition, conservation, and overrepresentation. Results Starting with 8817 TF-target interactions we predict an additional 9333 targets for 152 TFs. Randomized classifiers make few predictions (~2/18660 indicating that our predictions for many TFs are significantly enriched for true targets. An enrichment score is calculated and used to filter new predictions. Two case-studies for the TFs OCT4 and WT1 illustrate the usefulness of our predictions: • Many predicted OCT4 targets fall into the Wnt-pathway. This is consistent with known biology as OCT4 is developmentally related and Wnt pathway plays a role in early development. • Beginning with 15 known targets, 354 predictions are made for WT1. WT1 has a role in formation of Wilms' tumor. Chromosomal regions previously implicated in Wilms' tumor by cytological evidence are statistically enriched in predicted WT1 targets. These findings may shed light on Wilms' tumor progression, suggesting that the tumor progresses either by loss of WT1 or by loss of regions harbouring its targets. • Targets of WT1 are statistically enriched for cancer related functions including metastasis and apoptosis. Among new targets are BAX and PDE4B, which may help mediate the established anti-apoptotic effects of WT1. • Of the thirteen TFs found which co-regulate genes with WT1 (p ≤ 0.02, 8 have been previously implicated in cancer. The regulatory-network for WT1 targets in genomic regions relevant to Wilms' tumor is provided. Conclusion We have assembled a set of features for the targets of

  10. The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease.

    Science.gov (United States)

    Pearce-Duvet, Jessica M C

    2006-08-01

    Many significant diseases of human civilization are thought to have arisen concurrently with the advent of agriculture in human society. It has been hypothesised that the food produced by farming increased population sizes to allow the maintenance of virulent pathogens, i.e. civilization pathogens, while domestic animals provided sources of disease to humans. To determine the relationship between pathogens in humans and domestic animals, I examined phylogenetic data for several human pathogens that are commonly evolutionarily linked to domestic animals: measles, pertussis, smallpox, tuberculosis, taenid worms, and falciparal malaria. The majority are civilization pathogens, although I have included others whose evolutionary origins have traditionally been ascribed to domestic animals. The strongest evidence for a domestic-animal origin exists for measles and pertussis, although the data do not exclude a non-domestic origin. As for the other pathogens, the evidence currently available makes it difficult to determine if the domestic-origin hypothesis is supported or refuted; in fact, intriguing data for tuberculosis and taenid worms suggests that transmission may occur as easily from humans to domestic animals. These findings do not abrogate the importance of agriculture in disease transmission; rather, if anything, they suggest an alternative, more complex series of effects than previously elucidated. Rather than domestication, the broader force for human pathogen evolution could be ecological change, namely anthropogenic modification of the environment. This is supported by evidence that many current emerging infectious diseases are associated with human modification of the environment. Agriculture may have changed the transmission ecology of pre-existing human pathogens, increased the success of pre-existing pathogen vectors, resulted in novel interactions between humans and wildlife, and, through the domestication of animals, provided a stable conduit for human

  11. Insight Into Tropical Human Infectious Diseases: An Update ...

    African Journals Online (AJOL)

    Knowledge on infectious diseases encompasses a vast and constantly changing arena, and consistent research work is imperative to understand and combat the new problems resulting from emerging infectious diseases. Public health workers and epidemiologists aim at lowering morbidity and mortality due to diseases by ...

  12. Receptor-mediated endocytosis of α-galactosidase A in human podocytes in Fabry disease

    DEFF Research Database (Denmark)

    Prabakaran, Thaneas; Nielsen, Rikke; Larsen, Jakob Vejby

    2011-01-01

    Injury to the glomerular podocyte is a key mechanism in human glomerular disease and podocyte repair is an important therapeutic target. In Fabry disease, podocyte injury is caused by the intracellular accumulation of globotriaosylceramide. This study identifies in the human podocyte three...

  13. Receptor-Mediated Endocytosis of α-Galactosidase A in Human Podocytes in Fabry Disease

    DEFF Research Database (Denmark)

    Prabakaran, Thaneas; Nielsen, Rikke; Larsen, Jakob Vejby

    2011-01-01

    Injury to the glomerular podocyte is a key mechanism in human glomerular disease and podocyte repair is an important therapeutic target. In Fabry disease, podocyte injury is caused by the intracellular accumulation of globotriaosylceramide. This study identifies in the human podocyte three...

  14. Modeling cognition and disease using human glial chimeric mice

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Nedergaard, Maiken; Windrem, Martha S.

    2015-01-01

    As new methods for producing and isolating human glial progenitor cells (hGPCs) have been developed, the disorders of myelin have become especially compelling targets for cell-based therapy. Yet as animal modeling of glial progenitor cell-based therapies has progressed, it has become clear......, oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human...... for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human...

  15. Nutrient modulation in the management of disease-induced muscle wasting: evidence from human studies.

    Science.gov (United States)

    Brook, Matthew S; Wilkinson, Daniel J; Atherton, Philip J

    2017-11-01

    In addition to being essential for movement, skeletal muscles act as both a store and source of key macronutrients. As such, muscle is an important tissue for whole body homeostasis, undergoing muscle wasting in times of starvation, disease, and stress, for example, to provide energy substrates for other tissues. Yet, muscle wasting is also associated with disability, comorbidities, and mortality. As nutrition is so crucial to maintaining muscle homeostasis 'in health', it has been postulated that muscle wasting in cachexia syndromes may be alleviated by nutritional interventions. This review will highlight recent work in this area in relation to muscle kinetics, the acute metabolic (e.g. dietary protein), and longer-term effects of dietary interventions. Whole body and skeletal muscle protein synthesis invariably exhibit deranged kinetics (favouring catabolism) in wasting states; further, many of these conditions harbour blunted anabolic responses to protein nutrition compared with healthy controls. These derangements underlie muscle wasting. Recent trials of essential amino acid and protein-based nutrition have shown some potential for therapeutic benefit. Nutritional modulation, particularly of dietary amino acids, may have benefits to prevent or attenuate disease-induced muscle wasting. Nonetheless, there remains a lack of recent studies exploring these key concepts to make conclusive recommendations.

  16. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach

    Directory of Open Access Journals (Sweden)

    Amr T. M. Saeb

    2016-01-01

    Full Text Available Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.

  17. Human genetics of infectious diseases: between proof of principle and paradigm

    OpenAIRE

    Alcaïs, Alexandre; Abel, Laurent; Casanova, Jean-Laurent

    2009-01-01

    The observation that only a fraction of individuals infected by infectious agents develop clinical disease raises fundamental questions about the actual pathogenesis of infectious diseases. Epidemiological and experimental evidence is accumulating to suggest that human genetics plays a major role in this process. As we discuss here, human predisposition to infectious diseases seems to cover a continuous spectrum from monogenic to polygenic inheritance. Although many studies have provided proo...

  18. The consequences of human actions on risks for infectious diseases: a review

    OpenAIRE

    Lindahl, Johanna F.; Grace, Delia

    2015-01-01

    The human population is growing, requiring more space for food production, and needing more animals to feed it. Emerging infectious diseases are increasing, causing losses in both human and animal lives, as well as large costs to society. Many factors are contributing to disease emergence, including climate change, globalization and urbanization, and most of these factors are to some extent caused by humans. Pathogens may be more or less prone to emergence in themselves, and rapidly mutating ...

  19. [A brief history of the natural causes of human disease].

    Science.gov (United States)

    Lips-Castro, Walter

    2015-01-01

    In the study of the causes of disease that have arisen during the development of humankind, one can distinguish three major perspectives: the natural, the supernatural, and the artificial. In this paper we distinguish the rational natural causes of disease from the irrational natural causes. Within the natural and rational causal approaches of disease, we can highlight the Egyptian theory of putrid intestinal materials called "wechdu", the humoral theory, the atomistic theory, the contagious theory, the cellular theory, the molecular (genetic) theory, and the ecogenetic theory. Regarding the irrational, esoteric, and mystic causal approaches to disease, we highlight the astrological, the alchemical, the iatrochemical, the iatromechanical, and others (irritability, solidism, brownism, and mesmerism).

  20. A generic model of contagious disease and its application to human-to-human transmission of avian influenza.

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Gary B.

    2007-03-01

    Modeling contagious diseases has taken on greater importance over the past several years as diseases such as SARS and avian influenza have raised concern about worldwide pandemics. Most models developed to consider projected outbreaks have been specific to a single disease. This paper describes a generic System Dynamics contagious disease model and its application to human-to-human transmission of a mutant version of avian influenza. The model offers the option of calculating rates of new infections over time based either on a fixed ''reproductive number'' that is traditional in contagious disease models or on contact rates for different sub-populations and likelihood of transmission per contact. The paper reports on results with various types of interventions. These results suggest the potential importance of contact tracing, limited quarantine, and targeted vaccination strategies as methods for controlling outbreaks, especially when vaccine supplies may initially be limited and the efficacy of anti-viral drugs uncertain.

  1. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    Science.gov (United States)

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-09-02

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.

  2. Epidemiological studies on Johne’s disease in ruminants and Crohn’s disease in humans in Egypt

    Directory of Open Access Journals (Sweden)

    A. Fawzy

    2013-12-01

    Full Text Available The correlation between Johne’s disease (JD and Crohn’s disease (CD in Egypt was investigated. A total of 371 human and 435 animal sera were collected from the same Egyptian governorates that had a known history of paratuberculosis infection and were subjected to screening for paratuberculosis using ELISA to assess the human/animal risk at a single time point. Five CD patients and five JD clinically infected dairy cattle were also included. Out of 435 animal serum samples, 196 (45.2% were MAP-ELISA positive. Twenty three (6.1% out of 371 human serum samples were MAP-ELISA positive, while 37 (9.9% were positive for anti-Saccharomyces cerevisiae antibodies (ASCA ELISAs. There was a very poor agreement between human MAP and ASCA ELISAs (0.036 by kappa statistics. The prevalence of MAP antibodies among humans is clearly lower than in animals. In conclusion there is an increase in Johne’s disease incidence in animals and a very weak relationship between MAP and Crohn’s disease in humans in Egypt.

  3. Seasonality in human zoonotic enteric diseases: a systematic review.

    Directory of Open Access Journals (Sweden)

    Aparna Lal

    Full Text Available BACKGROUND: Although seasonality is a defining characteristic of many infectious diseases, few studies have described and compared seasonal patterns across diseases globally, impeding our understanding of putative mechanisms. Here, we review seasonal patterns across five enteric zoonotic diseases: campylobacteriosis, salmonellosis, vero-cytotoxigenic Escherichia coli (VTEC, cryptosporidiosis and giardiasis in the context of two primary drivers of seasonality: (i environmental effects on pathogen occurrence and pathogen-host associations and (ii population characteristics/behaviour. METHODOLOGY/PRINCIPAL FINDINGS: We systematically reviewed published literature from 1960-2010, resulting in the review of 86 studies across the five diseases. The Gini coefficient compared temporal variations in incidence across diseases and the monthly seasonality index characterised timing of seasonal peaks. Consistent seasonal patterns across transnational boundaries, albeit with regional variations was observed. The bacterial diseases all had a distinct summer peak, with identical Gini values for campylobacteriosis and salmonellosis (0.22 and a higher index for VTEC (Gini  0.36. Cryptosporidiosis displayed a bi-modal peak with spring and summer highs and the most marked temporal variation (Gini = 0.39. Giardiasis showed a relatively small summer increase and was the least variable (Gini = 0.18. CONCLUSIONS/SIGNIFICANCE: Seasonal variation in enteric zoonotic diseases is ubiquitous, with regional variations highlighting complex environment-pathogen-host interactions. Results suggest that proximal environmental influences and host population dynamics, together with distal, longer-term climatic variability could have important direct and indirect consequences for future enteric disease risk. Additional understanding of the concerted influence of these factors on disease patterns may improve assessment and prediction of enteric disease burden in temperate

  4. Use of genome editing tools in human stem cell-based disease modeling and precision medicine.

    Science.gov (United States)

    Wei, Yu-da; Li, Shuang; Liu, Gai-gai; Zhang, Yong-xian; Ding, Qiu-rong

    2015-10-01

    Precision medicine emerges as a new approach that takes into account individual variability. The successful conduct of precision medicine requires the use of precise disease models. Human pluripotent stem cells (hPSCs), as well as adult stem cells, can be differentiated into a variety of human somatic cell types that can be used for research and drug screening. The development of genome editing technology over the past few years, especially the CRISPR/Cas system, has made it feasible to precisely and efficiently edit the genetic background. Therefore, disease modeling by using a combination of human stem cells and genome editing technology has offered a new platform to generate " personalized " disease models, which allow the study of the contribution of individual genetic variabilities to disease progression and the development of precise treatments. In this review, recent advances in the use of genome editing in human stem cells and the generation of stem cell models for rare diseases and cancers are discussed.

  5. Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans.

    Science.gov (United States)

    Dantas-Torres, Filipe; Otranto, Domenico

    2016-01-01

    Vector-borne diseases constitute a diversified group of illnesses, which are caused by a multitude of pathogens transmitted by arthropod vectors, such as mosquitoes, fleas, ticks, and sand flies. Proper management of these diseases is important from both human and veterinary medicine standpoints, given that many of these pathogens are transmissible to humans and dogs, which often live in close contact. In this review, we summarize the most important vector-borne diseases of dogs and humans and the best practices for their prevention. The control of these diseases would ultimately improve animal and human health and wellbeing, particularly in developing countries in the tropics, where the risk of these diseases is high and access to health care is poor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Updated catalogue of homologues to human disease-related proteins in the yeast genome.

    Science.gov (United States)

    Andrade, M A; Sander, C; Valencia, A

    1998-04-10

    The recent availability of the full Saccharomyces cerevisiae genome offers a perfect opportunity for revising the number of homologues to human disease-related proteins. We carried out automatic analysis of the complete S. cerevisiae genome and of the set of human disease-related proteins as identified in the SwissProt sequence data base. We identified 285 yeast proteins similar to 155 human disease-related proteins, including 239 possible cases of human-yeast direct functional equivalence (orthology). Of these, 40 cases are suggested as new, previously undiscovered relationships. Four of them are particularly interesting, since the yeast sequence is the most phylogenetically distant member of the protein family, including proteins related to diseases such as phenylketonuria, lupus erythematosus, Norum and fish eye disease and Wiskott-Aldrich syndrome.

  7. Genome editing in nonhuman primates: approach to generating human disease models.

    Science.gov (United States)

    Chen, Y; Niu, Y; Ji, W

    2016-09-01

    Nonhuman primates (NHPs) are superior than rodents to be animal models for the study of human diseases, due to their similarities in terms of genetics, physiology, developmental biology, social behaviour and cognition. Transgenic animals have become a key tool in functional genomics to generate models for human diseases and validate new drugs. However, until now, progress in the field of transgenic NHPs has been slow because of technological limitations. Many human diseases, including neurodegenerative disorders, are caused by mutations in endogenous genes. Fortunately, recent developments in precision gene editing have led to the generation of NHP models for human diseases. Since 2014, there have been several reports of the generation of monkey models using transcription activator-like endonucleases (TALENs) or clustered regularly interspaced short palindromic repeats (CRISPR/Cas9); some of these NHP models showed symptoms that were much closer to those of human diseases than have been seen previously in mouse models. No off-targeting was observed in the NHP models, and multiple gene knockout and biallelic mutants were feasible with low efficiency. These findings suggest that there are many possibilities to establish NHP models for human diseases that can mimic human diseases more faithfully than rodent models. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  8. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    He Liu

    2016-01-01

    Full Text Available Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain tumors.

  9. Avian-Pathogenic Escherichia coli Strains Are Similar to Neonatal Meningitis E. coli Strains and Are Able To Cause Meningitis in the Rat Model of Human Disease

    Science.gov (United States)

    Tivendale, Kelly A.; Logue, Catherine M.; Kariyawasam, Subhashinie; Jordan, Dianna; Hussein, Ashraf; Li, Ganwu; Wannemuehler, Yvonne; Nolan, Lisa K.

    2010-01-01

    Escherichia coli strains causing avian colibacillosis and human neonatal meningitis, urinary tract infections, and septicemia are collectively known as extraintestinal pathogenic E. coli (ExPEC). Characterization of ExPEC strains using various typing techniques has shown that they harbor many similarities, despite their isolation from different host species, leading to the hypothesis that ExPEC may have zoonotic potential. The present study examined a subset of ExPEC strains: neonatal meningitis E. coli (NMEC) strains and avian-pathogenic E. coli (APEC) strains belonging to the O18 serogroup. The study found that they were not easily differentiated on the basis of multilocus sequence typing, phylogenetic typing, or carriage of large virulence plasmids. Among the APEC strains examined, one strain was found to be an outlier, based on the results of these typing methods, and demonstrated reduced virulence in murine and avian pathogenicity models. Some of the APEC strains tested in a rat model of human neonatal meningitis were able to cause meningitis, demonstrating APEC's ability to cause disease in mammals, lending support to the hypothesis that APEC strains have zoonotic potential. In addition, some NMEC strains were able to cause avian colisepticemia, providing further support for this hypothesis. However, not all of the NMEC and APEC strains tested were able to cause disease in avian and murine hosts, despite the apparent similarities in their known virulence attributes. Thus, it appears that a subset of NMEC and APEC strains harbors zoonotic potential, while other strains do not, suggesting that unknown mechanisms underlie host specificity in some ExPEC strains. PMID:20515929

  10. Inflammation activation and resolution in human tendon disease

    Science.gov (United States)

    Dakin, Stephanie G; Martinez, Fernando O; Yapp, Clarence; Wells, Graham; Oppermann, Udo; Dean, Benjamin JF; Smith, Richard DJ; Wheway, Kim; Watkins, Bridget; Roche, Lucy; Carr, Andrew J

    2016-01-01

    Improved understanding of the role of inflammation in tendon disease is required to facilitate therapeutic target discovery. We studied supraspinatus tendons from patients experiencing pain before and after surgical subacromial decompression treatment. Tendons were classified as having early, intermediate or advanced disease and inflammation was characterized through activation of pathways mediated by Interferon, NF-κB, glucocorticoid receptor and STAT-6. Inflammation signatures revealed expression of genes and proteins induced by Interferon and NF-κB in early stage disease and genes and proteins induced by STAT-6 and glucocorticoid receptor activation in advanced stage disease. The pro-resolving proteins FPR2/ALX and ChemR23 were increased in early stage disease compared to intermediate-advanced stage disease. Patients who were pain-free post-treatment had tendons with increased expression of CD206 and ALOX15 mRNA compared to tendons from patients who continued to experience pain post-treatment, suggesting that these genes and their pathways may moderate tendon pain. Stromal cells from diseased tendons cultured in vitro showed increased expression of NF-κB and Interferon target genes after treatment with lipopolysaccharide or IFNγ compared to stromal cells derived from healthy tendons. We identified 15-epi Lipoxin A4, a stable lipoxin metabolite derived from aspirin treatment, as potentially beneficial in the resolution of tendon inflammation. PMID:26511510

  11. Human genetics of infectious diseases: between proof of principle and paradigm.

    Science.gov (United States)

    Alcaïs, Alexandre; Abel, Laurent; Casanova, Jean-Laurent

    2009-09-01

    The observation that only a fraction of individuals infected by infectious agents develop clinical disease raises fundamental questions about the actual pathogenesis of infectious diseases. Epidemiological and experimental evidence is accumulating to suggest that human genetics plays a major role in this process. As we discuss here, human predisposition to infectious diseases seems to cover a continuous spectrum from monogenic to polygenic inheritance. Although many studies have provided proof of principle that infectious diseases may result from various types of inborn errors of immunity, the genetic determinism of most infectious diseases in most patients remains unclear. However, in the future, studies in human genetics are likely to establish a new paradigm for infectious diseases.

  12. Distinct myocardial mechanisms underlie cardiac dysfunction in endotoxemic male and female mice

    OpenAIRE

    Hobai, Ion A.; Aziz, Kanwal; Buys, Emmanuel S.; Brouckaert, Peter; Siwik, Deborah A.; Colucci., Wilson S.

    2016-01-01

    In male mice, Sepsis-Induced Cardiomyopathy develops as a result of dysregulation of myocardial calcium (Ca2+) handling, leading to depressed cellular Ca2+ transients (ΔCai). ΔCai depression is partially due to inhibition of sarcoplasmic reticulum Ca2+ ATP-ase (SERCA) via oxidative modifications, which are partially opposed by cGMP generated by the enzyme soluble guanylyl cyclase (sGC). Whether similar mechanisms underlie Sepsis-Induced Cardiomyopathy in female mice is unknown.

  13. How to become a top model: impact of animal experimentation on human Salmonella disease research.

    Science.gov (United States)

    Tsolis, Renée M; Xavier, Mariana N; Santos, Renato L; Bäumler, Andreas J

    2011-05-01

    Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sustained influence on the ideas driving research on Salmonella serotypes. This article reviews important milestones in the use of animal models to study human Salmonella disease and identify research needs to guide future work.

  14. An atlas of genetic correlations across human diseases and traits

    DEFF Research Database (Denmark)

    Bulik-Sullivan, Brendan; Finucane, Hilary K; Anttila, Verneri

    2015-01-01

    Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are t...

  15. Role of Human Leukocyte Antigens (HLA) in Autoimmune Diseases.

    Science.gov (United States)

    Bodis, Gergely; Toth, Victoria; Schwarting, Andreas

    2018-03-07

    Since the discovery of HLA 60 years ago, it has contributed to the understanding of the immune system as well as of the pathogenesis of several diseases. Aside from its essential role in determining donor-recipient immune compatibility in organ transplantation, HLA genotyping is meanwhile performed routinely as part of the diagnostic work-up of certain autoimmune diseases. Considering the ability of HLA to influence thymic selection as well as peripheral anergy of T cells, its role in the pathogenesis of autoimmunity is understandable. The aim of this paper is to provide a brief overview of the role and current clinical relevance of HLA-B27 in spondyloarthritis and HLA-B51 in Behçet's disease as well as HLA-DQ2/DQ8 in celiac disease and HLA-DRB1 in rheumatoid arthritis and to discuss possible future implications.

  16. Pulmonary disease in patients with human immunodeficiency virus infection

    DEFF Research Database (Denmark)

    Lundgren, J D; Orholm, Marianne; Lundgren, B

    1989-01-01

    cause pulmonary disease alone or in combination. Bilateral interstitial infiltrates are the most frequent chest x-ray abnormality and are most frequently caused by infection with Pneumocystis carinii. Cytomegalovirus, Mycobacterium tuberculosis, nonspecific interstitial pneumonitis and pulmonary Kaposi...

  17. Human Fatty Liver Disease: Old Questions and New Insights

    OpenAIRE

    Cohen, Jonathan C.; Horton, Jay D.; Hobbs, Helen H.

    2011-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem that affects one-third of adults and an increasing number of children in developed countries. The disease begins with the aberrant accumulation of triglyceride in the liver, which in some individuals elicits an inflammatory response that can progress to cirrhosis and liver cancer. Although NAFLD is strongly associated with obesity and insulin resistance, its pathogenesis remains poorly understood, and therapeutic options ...

  18. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives

    International Nuclear Information System (INIS)

    Mostafalou, Sara; Abdollahi, Mohammad

    2013-01-01

    Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. There is a huge body of evidence on the relation between exposure to pesticides and elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. There is also circumstantial evidence on the association of exposure to pesticides with some other chronic diseases like respiratory problems, particularly asthma and chronic obstructive pulmonary disease (COPD), cardiovascular disease such as atherosclerosis and coronary artery disease, chronic nephropathies, autoimmune diseases like systemic lupus erythematous and rheumatoid arthritis, chronic fatigue syndrome, and aging. The common feature of chronic disorders is a disturbance in cellular homeostasis, which can be induced via pesticides' primary action like perturbation of ion channels, enzymes, receptors, etc., or can as well be mediated via pathways other than the main mechanism. In this review, we present the highlighted evidence on the association of pesticide's exposure with the incidence of chronic diseases and introduce genetic damages, epigenetic modifications, endocrine disruption, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum stress and unfolded protein response (UPR), impairment of ubiquitin proteasome system, and defective autophagy as the effective mechanisms of action. - Highlights: ► There is a link between exposure to pesticides and incidence of chronic diseases. ► Genotoxicity and proteotoxicity are two main involved mechanisms. ► Epigenetic knowledge may help diagnose the relationships. ► Efficient policies on safe use of pesticides should be set up

  19. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Mostafalou, Sara; Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca

    2013-04-15

    Along with the wide use of pesticides in the world, the concerns over their health impacts are rapidly growing. There is a huge body of evidence on the relation between exposure to pesticides and elevated rate of chronic diseases such as different types of cancers, diabetes, neurodegenerative disorders like Parkinson, Alzheimer, and amyotrophic lateral sclerosis (ALS), birth defects, and reproductive disorders. There is also circumstantial evidence on the association of exposure to pesticides with some other chronic diseases like respiratory problems, particularly asthma and chronic obstructive pulmonary disease (COPD), cardiovascular disease such as atherosclerosis and coronary artery disease, chronic nephropathies, autoimmune diseases like systemic lupus erythematous and rheumatoid arthritis, chronic fatigue syndrome, and aging. The common feature of chronic disorders is a disturbance in cellular homeostasis, which can be induced via pesticides' primary action like perturbation of ion channels, enzymes, receptors, etc., or can as well be mediated via pathways other than the main mechanism. In this review, we present the highlighted evidence on the association of pesticide's exposure with the incidence of chronic diseases and introduce genetic damages, epigenetic modifications, endocrine disruption, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum stress and unfolded protein response (UPR), impairment of ubiquitin proteasome system, and defective autophagy as the effective mechanisms of action. - Highlights: ► There is a link between exposure to pesticides and incidence of chronic diseases. ► Genotoxicity and proteotoxicity are two main involved mechanisms. ► Epigenetic knowledge may help diagnose the relationships. ► Efficient policies on safe use of pesticides should be set up.

  20. Molecular and Genetic Inflammation Networks in Major Human Diseases

    OpenAIRE

    Zhao, Yongzhong; Forst, Christian V.; Sayegh, Camil E.; Wang, I-Ming; Yang, Xia; Zhang, Bin

    2016-01-01

    It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured most critical inflammation involved molecules, genetic susceptibilities, epigenetic factors, and environmental exposures, our schemata on role of inflammation in complex disease, remain largely patchy, in part due to the success of reductionism in terms of research method...

  1. Cell biomechanics and its applications in human disease diagnosis

    Science.gov (United States)

    Nematbakhsh, Yasaman; Lim, Chwee Teck

    2015-04-01

    Certain diseases are known to cause changes in the physical and biomechanical properties of cells. These include cancer, malaria, and sickle cell anemia among others. Typically, such physical property changes can result in several fold increases or decreases in cell stiffness, which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions. While there are developed biochemical and biological assays to detect the onset or presence of diseases, there is always a need to develop more rapid, precise, and sensitive methods to detect and diagnose diseases. Biomechanical property changes can play a significant role in this regard. As such, research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression, but can also serve as a powerful tool for detection and diagnosis. This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis. We will also showcase several technologies that have already been developed to perform such detection and diagnosis.

  2. [Oral microbiota: a promising predictor of human oral and systemic diseases].

    Science.gov (United States)

    Xin, Xu; Junzhi, He; Xuedong, Zhou

    2015-12-01

    A human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in human oral cavity. Oral microbiota exists mostly in the form of a biofilm and maintains a dynamic ecological equilibrium with the host body. However, the disturbance of this ecological balance inevitably causes oral infectious diseases, such as dental caries, apical periodontitis, periodontal diseases, pericoronitis, and craniofacial bone osteomyelitis. Oral microbiota is also correlated with many systemic diseases, including cancer, diabetes mellitus, rheumatoid arthritis, cardiovascular diseases, and preterm birth. Hence, oral microbiota has been considered as a potential biomarker of human diseases. The "Human Microbiome Project" and other metagenomic projects worldwide have advanced our knowledge of the human oral microbiota. The integration of these metadata has been the frontier of oral microbiology to improve clinical translation. By reviewing recent progress on studies involving oral microbiota-related oral and systemic diseases, we aimed to propose the essential role of oral microbiota in the prediction of the onset, progression, and prognosis of oral and systemic diseases. An oral microbiota-based prediction model helps develop a new paradigm of personalized medicine and benefits the human health in the post-metagenomics era.

  3. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology.

    Science.gov (United States)

    Spataro, Nino; Rodríguez, Juan Antonio; Navarro, Arcadi; Bosch, Elena

    2017-02-01

    Do genes presenting variation that has been linked to human disease have different biological properties than genes that have never been related to disease? What is the relationship between disease and fitness? Are the evolutionary pressures that affect genes linked to Mendelian diseases the same to those acting on genes whose variation contributes to complex disorders? The answers to these questions could shed light on the architecture of human genetic disorders and may have relevant implications when designing mapping strategies in future genetic studies. Here we show that, relative to non-disease genes, human disease (HD) genes have specific evolutionary profiles and protein network properties. Additionally, our results indicate that the mutation-selection balance renders an insufficient account of the evolutionary history of some HD genes and that adaptive selection could also contribute to shape their genetic architecture. Notably, several biological features of HD genes depend on the type of pathology (complex or Mendelian) with which they are related. For example, genes harbouring both causal variants for Mendelian disorders and risk factors for complex disease traits (Complex-Mendelian genes), tend to present higher functional relevance in the protein network and higher expression levels than genes associated only with complex disorders. Moreover, risk variants in Complex-Mendelian genes tend to present higher odds ratios than those on genes associated with the same complex disorders but with no link to Mendelian diseases. Taken together, our results suggest that genetic variation at genes linked to Mendelian disorders plays an important role in driving susceptibility to complex disease. © The Author 2017. Published by Oxford University Press.

  4. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases.

    Science.gov (United States)

    Noor, Fozia

    2015-12-01

    Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  5. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond.

    Science.gov (United States)

    Liu, Chun; Oikonomopoulos, Angelos; Sayed, Nazish; Wu, Joseph C

    2018-03-08

    The advent of human induced pluripotent stem cells (iPSCs) presents unprecedented opportunities to model human diseases. Differentiated cells derived from iPSCs in two-dimensional (2D) monolayers have proven to be a relatively simple tool for exploring disease pathogenesis and underlying mechanisms. In this Spotlight article, we discuss the progress and limitations of the current 2D iPSC disease-modeling platform, as well as recent advancements in the development of human iPSC models that mimic in vivo tissues and organs at the three-dimensional (3D) level. Recent bioengineering approaches have begun to combine different 3D organoid types into a single '4D multi-organ system'. We summarize the advantages of this approach and speculate on the future role of 4D multi-organ systems in human disease modeling. © 2018. Published by The Company of Biologists Ltd.

  6. Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients

    Directory of Open Access Journals (Sweden)

    Meng-Lu Liu

    2016-01-01

    Full Text Available Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS. Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.

  7. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease.

    Science.gov (United States)

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G

    2014-12-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.

  8. Relevance of the Human Genome Project to inherited metabolic disease.

    Science.gov (United States)

    Burn, J

    1994-01-01

    The Human Genome Project is an international effort to identify the complete structure of the human genome. HUGO, the Human Genome Organization, facilitates international cooperation and exchange of information while the Genome Data Base will act as the on-line information retrieval and storage system for the huge amount of information being accumulated. The clinical register MIM (Mendelian Inheritance in Man) established by Victor McKusick is now an on-line resource that will allow biochemists working with inborn errors of metabolism to access the rapidly expanding body of knowledge. Biochemical and molecular genetics are complementary and should draw together to find solutions to the academic and clinical problems posed by inborn errors of metabolism.

  9. Diurnal and seasonal molecular rhythms in human neocortex and their relation to Alzheimer's disease.

    Science.gov (United States)

    Lim, Andrew S P; Klein, Hans-Ulrich; Yu, Lei; Chibnik, Lori B; Ali, Sanam; Xu, Jishu; Bennett, David A; De Jager, Philip L

    2017-04-03

    Circadian and seasonal rhythms are seen in many species, modulate several aspects of human physiology, including brain functions such as mood and cognition, and influence many neurological and psychiatric illnesses. However, there are few data regarding the genome-scale molecular correlates underlying these rhythms, especially in the human brain. Here, we report widespread, site-specific and interrelated diurnal and seasonal rhythms of gene expression in the human brain, and show their relationship with parallel rhythms of epigenetic modification including histone acetylation, and DNA methylation. We also identify transcription factor-binding sites that may drive these effects. Further, we demonstrate that Alzheimer's disease pathology disrupts these rhythms. These data suggest that interrelated diurnal and seasonal epigenetic and transcriptional rhythms may be an important feature of human brain biology, and perhaps human biology more broadly, and that changes in such rhythms may be consequences of, or contributors to, diseases such as Alzheimer's disease.

  10. Human secretory phospholipase A(2), group IB in normal eyes and in eye diseases

    DEFF Research Database (Denmark)

    Kolko, Miriam; Prause, Jan U; Bazan, Nicolas G

    2007-01-01

    study was to identify human GIB (hGIB) in the normal human eye and investigate the pattern of expression in patients with eye diseases involving hGIB-rich cells. METHODS: Human GIB mRNA was identified in the human retina by means of in situ hybridization and polymerase chain reaction. Antibodies against...... hGIB-rich cells and found downregulation of hGIB in proliferating RPE cells as well as in diseased corneal endothelial cells. CONCLUSIONS: Human GIB is highly expressed in cells with neurodermal origin. The pattern of expression of hGIB in diseases involving hGIB-rich cells demonstrated......PURPOSE: Secretory phospholipases A(2) (sPLA(2)) are enzymes involved in lipid turnover. We recently identified sPLA(2) group IB (GIB) in the rat retina as well as in cerebral neurons and found upregulation to occur in response to light damage and seizures, respectively. The purpose of the present...

  11. Diseases of Poverty and Lifestyle, Well-Being and Human Development

    OpenAIRE

    Singh, Ajai R.; Singh, Shakuntala A.

    2008-01-01

    The problems of the haves differ substantially from those of the have-nots. Individuals in developing societies have to fight mainly against infectious and communicable diseases, while in the developed world the battles are mainly against lifestyle diseases. Yet, at a very fundamental level, the problems are the same-the fight is against distress, disability, and premature death; against human exploitation and for human development and self-actualisation; against the callousness to critical c...

  12. Safety and efficacy of recombinant human interleukin 10 in chronic active Crohn's disease. Crohn's Disease IL-10 Cooperative Study Group

    NARCIS (Netherlands)

    Schreiber, S.; Fedorak, R. N.; Nielsen, O. H.; Wild, G.; Williams, C. N.; Nikolaus, S.; Jacyna, M.; Lashner, B. A.; Gangl, A.; Rutgeerts, P.; Isaacs, K.; van Deventer, S. J.; Koningsberger, J. C.; Cohard, M.; LeBeaut, A.; Hanauer, S. B.

    2000-01-01

    Interleukin (IL)-10 is a cytokine with potent anti-inflammatory properties. We investigated the safety and efficacy of different doses of human recombinant (rhu)IL-10 in patients with Crohn's disease (CD). A prospective, multicenter, double-blind, placebo-controlled study was conducted in 329

  13. Kynurenine Pathway Metabolites in Humans: Disease and Healthy States

    Directory of Open Access Journals (Sweden)

    Yiquan Chen

    2009-01-01

    Full Text Available Tryptophan is an essential amino acid that can be metabolised through different pathways, a major route being the kynurenine pathway. The first enzyme of the pathway, indoleamine-2,3-dioxygenase, is strongly stimulated by inflammatory molecules, particularly interferon gamma. Thus, the kynurenine pathway is often systematically up-regulated when the immune response is activated. The biological significance is that 1 the depletion of tryptophan and generation of kynurenines play a key modulatory role in the immune response; and 2 some of the kynurenines, such as quinolinic acid, 3-hydroxykynurenine and kynurenic acid, are neuroactive. The kynurenine pathway has been demonstrated to be involved in many diseases and disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, AIDS dementia complex, malaria, cancer, depression and schizophrenia, where imbalances in tryptophan and kynurenines have been found. This review compiles most of these studies and provides an overview of how the kynurenine pathway might be contributing to disease development, and the concentrations of tryptophan and kynurenines in the serum, cerebrospinal fluid and brain tissues in control and patient subjects.

  14. Dynamics of the human gut microbiome in inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Halfvarson, Jonas; Brislawn, Colin J.; Lamendella, Regina; Vázquez-Baeza, Yoshiki; Walters, William A.; Bramer, Lisa M.; D' Amato, Mauro; Bonfiglio, Ferdinando; McDonald, Daniel; Gonzalez, Antonio; McClure, Erin E.; Dunklebarger, Mitchell F.; Knight, Rob; Jansson, Janet K.

    2017-02-13

    Inflammatory bowel disease (IBD) is characterized by flares of inflammation with periodic need for increased medication and sometimes even surgery. IBD etiology is partly attributed to a deregulated immune response to gut microbiome dysbiosis. Cross-sectional studies have revealed microbial signatures for different IBD diseases, including ulcerative colitis (UC), colonic Crohn’s Disease (CCD), and ileal CD (ICD). Although IBD is dynamic, microbiome studies have primarily focused on single timepoints or few individuals. Here we dissect the long-term dynamic behavior of the gut microbiome in IBD and differentiate this from normal variation. Microbiomes of IBD subjects fluctuate more than healthy individuals, based on deviation from a newly-defined healthy plane (HP). ICD subjects deviated most from the HP, especially subjects with surgical resection. Intriguingly, the microbiomes of some IBD subjects periodically visited the HP then deviated away from it. Inflammation was not directly correlated with distance to the healthy plane, but there was some correlation between observed dramatic fluctuations in the gut microbiome and intensified medication due to a flare of the disease. These results help guide therapies that will re-direct the gut microbiome towards a healthy state and maintain remission in IBD.

  15. Effects of Forest Fragmentation on Human Risk of Lyme Disease

    Science.gov (United States)

    Percent forest-herbaceous edge repeatedly explained most of the variability in reported Lyme disease rates within a rural-to-urban study gradient across central Maryland and southeastern Pennsylvania. A one-percent increase in forest-herbaceous edge was associated with an increas...

  16. Serum Inflammatory Mediators as Markers of Human Lyme Disease Activity

    Science.gov (United States)

    Soloski, Mark J.; Crowder, Lauren A.; Lahey, Lauren J.; Wagner, Catriona A.

    2014-01-01

    Chemokines and cytokines are key signaling molecules that orchestrate the trafficking of immune cells, direct them to sites of tissue injury and inflammation and modulate their states of activation and effector cell function. We have measured, using a multiplex-based approach, the levels of 58 immune mediators and 7 acute phase markers in sera derived from of a cohort of patients diagnosed with acute Lyme disease and matched controls. This analysis identified a cytokine signature associated with the early stages of infection and allowed us to identify two subsets (mediator-high and mediator-low) of acute Lyme patients with distinct cytokine signatures that also differed significantly (pLyme disease (p = 0.01) and the decrease correlates with chemokine levels (p = 0.0375). The levels of CXCL9/10 did not relate to the size or number of skin lesions but elevated levels of serum CXCL9/CXCL10 were associated with elevated liver enzymes levels. Collectively these results indicate that the levels of serum chemokines and the levels of expression of their respective chemokine receptors on T cell subsets may prove to be informative biomarkers for Lyme disease and related to specific disease manifestations. PMID:24740099

  17. Localization of the Wilson's disease protein in human liver

    NARCIS (Netherlands)

    Schaefer, M; Roelofsen, H; Wolters, H; Hofmann, WJ; Muller, M; Kuipers, F; Stremmel, W; Vonk, RJ

    1999-01-01

    Background & Aims: Wilson's disease is an autosomal-recessive disorder of copper metabolism that results from the absence or dysfunction of a copper-transporting P-type adenosine triphosphatase that leads to impaired biliary copper excretion and disturbed holoceruloplasmin synthesis, To gain further

  18. Linking disease associations with regulatory information in the human genome

    KAUST Repository

    Schaub, M. A.

    2012-09-01

    Genome-wide association studies have been successful in identifying single nucleotide polymorphisms (SNPs) associated with a large number of phenotypes. However, an associated SNP is likely part of a larger region of linkage disequilibrium. This makes it difficult to precisely identify the SNPs that have a biological link with the phenotype. We have systematically investigated the association of multiple types of ENCODE data with disease-associated SNPs and show that there is significant enrichment for functional SNPs among the currently identified associations. This enrichment is strongest when integrating multiple sources of functional information and when highest confidence disease-associated SNPs are used. We propose an approach that integrates multiple types of functional data generated by the ENCODE Consortium to help identify "functional SNPs" that may be associated with the disease phenotype. Our approach generates putative functional annotations for up to 80% of all previously reported associations. We show that for most associations, the functional SNP most strongly supported by experimental evidence is a SNP in linkage disequilibrium with the reported association rather than the reported SNP itself. Our results show that the experimental data sets generated by the ENCODE Consortium can be successfully used to suggest functional hypotheses for variants associated with diseases and other phenotypes.

  19. Emerging human infectious diseases: anthroponoses, zoonoses, and sapronoses

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Zdeněk

    2003-01-01

    Roč. 9, č. 3 (2003), s. 403-404 ISSN 1080-6040 R&D Projects: GA AV ČR KSK6005114 Keywords : zoonoses Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 5.340, year: 2003 http://www.cdc.gov.ncidod/EID/vol9no3/02-0208-app.htm

  20. Application of RNA interference in treating human diseases

    Indian Academy of Sciences (India)

    2000) and neuronal death prevented, using. RNAi methods. Also, DiGeorge syndrome is a rare congen- ital disease whose symptoms vary but include heart defects and characteristic facial features. It is caused by a large dele- tion from chromosome 22 and two recent studies revealed that dgcr8, a gene located within the ...

  1. Positions of human dwellings affect few tropical diseases near ...

    African Journals Online (AJOL)

    user

    for the sandflies which is the vector of visceral leishmaniasis. It seems that the effect of microclimate was not on the considerations of villagers to build their dwellings as the very dense of date palms trees, vegetable farms and irrigation canals which are a determinant factors in the prevalence of diseases. Some dwellings ...

  2. Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery.

    Science.gov (United States)

    Corti, Stefania; Faravelli, Irene; Cardano, Marina; Conti, Luciano

    2015-06-01

    Although intensive efforts have been made, effective treatments for neurodegenerative and neurodevelopmental diseases have not been yet discovered. Possible reasons for this include the lack of appropriate disease models of human neurons and a limited understanding of the etiological and neurobiological mechanisms. Recent advances in pluripotent stem cell (PSC) research have now opened the path to the generation of induced pluripotent stem cells (iPSCs) starting from somatic cells, thus offering an unlimited source of patient-specific disease-relevant neuronal cells. In this review, the authors focus on the use of human PSC-derived cells in modeling neurological disorders and discovering of new drugs and provide their expert perspectives on the field. The advent of human iPSC-based disease models has fuelled renewed enthusiasm and enormous expectations for insights of disease mechanisms and identification of more disease-relevant and novel molecular targets. Human PSCs offer a unique tool that is being profitably exploited for high-throughput screening (HTS) platforms. This process can lead to the identification and optimization of molecules/drugs and thus move forward new pharmacological therapies for a wide range of neurodegenerative and neurodevelopmental conditions. It is predicted that improvements in the production of mature neuronal subtypes, from patient-specific human-induced pluripotent stem cells and their adaptation to culture, to HTS platforms will allow the increased exploitation of human pluripotent stem cells in drug discovery programs.

  3. Integrated Human and Animal Disease Control for Tanzanian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The research focuses on two agro-ecological zones of the cattle corridor in Tanzania - Ngorongoro and Kibaha/Kilosa districts - and will be led by a regional scientific network, the ... They will look at interactions between human and animal health, environmental change, gender, and other socio-economic conditions.

  4. Teaching Methods in Nutrition: Free Radicals, Antioxidants, and Human Disease.

    Science.gov (United States)

    Janowiak, John J.

    This article presents a teaching methodology for free radical theory and discusses the role of antioxidants in human health. Free radicals are a normal byproduct of respiration, which allows the body to use oxygen, liberate energy, and dispose of harmful substances. The body's antioxidants and nutritional antioxidants quench most of the free…

  5. Human Metapneumovirus and Respiratory Syncytial Virus Disease in Children, Yemen

    Science.gov (United States)

    Al-Sonboli, Najla; Hart, Charles A.; Al-Aghbari, Nasher; Al-Ansi, Ahmed; Ashoor, Omar

    2006-01-01

    Factors increasing the severity of respiratory infections in developing countries are poorly described. We report factors associated with severe acute respiratory illness in Yemeni children (266 infected with respiratory syncytial virus and 66 with human metapneumovirus). Age, indoor air pollution, and incomplete vaccinations were risk factors and differed from those in industrialized countries. PMID:17073098

  6. The role of airborne mineral dusts in human disease

    Science.gov (United States)

    Morman, Suzette A.; Plumlee, Geoffrey S.

    2013-01-01

    Exposure to fine particulate matter (PM) is generally acknowledged to increase risk for human morbidity and mortality. However, particulate matter (PM) research has generally examined anthropogenic (industry and combustion by-products) sources with few studies considering contributions from geogenic PM (produced from the Earth by natural processes, e.g., volcanic ash, windborne ash from wildfires, and mineral dusts) or geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities, e.g., dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices). Globally, public health concerns are mounting, related to potential increases in dust emission from climate related changes such as desertification and the associated long range as well as local health effects. Recent epidemiological studies have identified associations between far-traveled dusts from primary sources and increased morbidity and mortality in Europe and Asia. This paper provides an outline of public health research and history as it relates to naturally occurring inorganic mineral dusts. We summarize results of current public health research and describe some of the many challenges related to understanding health effects from exposures to dust aerosols.

  7. Human rabies: Still a neglected preventable disease in Nigeria | Eke ...

    African Journals Online (AJOL)

    Background/Objectives: Adequate surveillance and monitoring of dog bite incidents are veritable tools in the determination of the epidemiology of human rabies infections. There is a paucity of data with regards to rabies in Nigeria. Hence, this study was aimed at describing the pattern and outcomes of dog bites and rabies ...

  8. Interstitial cells of Cajal in human gut and gastrointestinal disease

    DEFF Research Database (Denmark)

    Vanderwinden, J M; Rumessen, J J

    1999-01-01

    This paper reviews the distribution of interstitial cells of Cajal (ICC) in the human gastrointestinal (GI) tract, based on ultrastructural and immunohistochemical evidence. The distribution and morphology of ICC at each level of the normal GI tracts is addressed from the perspective of their fun...

  9. Modelling the influence of human behaviour on the spread of infectious diseases: a review.

    Science.gov (United States)

    Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A A

    2010-09-06

    Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps.

  10. North Atlantic weather oscillation and human infectious diseases in the Czech Republic, 1951-2003

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Zdeněk

    2005-01-01

    Roč. 20, č. 3 (2005), s. 263-270 ISSN 0393-2990 R&D Projects: GA ČR(CZ) GA206/03/0726 Institutional research plan: CEZ:AV0Z60930519 Keywords : climate change * cluster analysis * human infectious diseases Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 1.361, year: 2005

  11. The mousetrap: what we can learn when the mouse model does not mimic the human disease.

    Science.gov (United States)

    Elsea, Sarah H; Lucas, Rebecca E

    2002-01-01

    In recent years, mouse models for human metabolic diseases have become commonplace because the information gained from in vivo study of biochemical pathways is invaluable, and many metabolic diseases are relatively easy to recreate in mice through gene knockout technology in embryonic stem cells. In certain cases, however, the knockout mice may reproduce only some of the human disease phenotype, may be more severely affected than human cases, or may have no clinical phenotype at all. Under these circumstances, the disease pathology can become more complex, causing the researcher to evaluate basic differences in mouse and human biology as well as questions of genetic background, alternate pathways, and possible gene interactions. This review is a brief analysis of gene knockout models for Lesch-Nyhan syndrome, Lowe syndrome, X-linked adrenoleukodystrophy, Fabry disease, galactosemia, glycogen storage disease type II, metachromatic leukodystrophy, and Tay-Sachs disease, which produce a biochemical model of disease but often do not reproduce clinical symptoms. These mice may be useful for studying the biochemical and physiological pathways in which certain metabolites function toward embryonic and fetal development, as well as specific functions in various organs, and they may provide an inexpensive and useful model system for development of new therapeutic techniques.

  12. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease

    DEFF Research Database (Denmark)

    Benraiss, Abdellatif; Wang, Su; Herrlinger, Stephanie

    2016-01-01

    chimeras are hyperexcitable. Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal transplantation of normal glia rescues aspects of electrophysiological and behavioural phenotype, restores interstitial potassium homeostasis, slows disease progression and extends...... survival in R6/2 HD mice. These observations suggest a causal role for glia in HD, and further suggest a cell-based strategy for disease amelioration in this disorder....

  13. Metabolic syndrome: is equine disease comparable to what we know in humans?

    Science.gov (United States)

    Ertelt, Antonia; Barton, Ann-Kristin; Schmitz, Robert R; Gehlen, Heidrun

    2014-01-01

    This review summarizes similarities and differences between the metabolic syndromes in humans and equines, concerning the anatomy, symptoms, and pathophysiological mechanisms. In particular, it discusses the structure and distribution of adipose tissue and its specific metabolic pathways. Furthermore, this article provides insights and focuses on issues concerning laminitis in horses and cardiovascular diseases in humans, as well as their overlap. PMID:24894908

  14. ANIMAL PATHOGENS THAT MAY CAUSE HUMAN DISEASE THAT ORIGINATE FROM FARM OPERATIONS

    Science.gov (United States)

    The recent increase in concentrated animal feeding operations in the United States has caused renewed concern regarding the infectious diseases that may be passed from farm animals to humans via the environment. It is also known that more than 20 recent epidemics among humans cou...

  15. Worms under stress: C. elegans stress response and its relevance to complex human disease and aging

    NARCIS (Netherlands)

    Rodriguez Sanchez, M.; Snoek, L.B.; Bono, de M.; Kammenga, J.E.

    2013-01-01

    Many organisms have stress response pathways, components of which share homology with players in complex human disease pathways. Research on stress response in the nematode worm Caenorhabditis elegans has provided detailed insights into the genetic and molecular mechanisms underlying complex human

  16. Acetylome in Human Fibroblasts From Parkinson's Disease Patients

    Directory of Open Access Journals (Sweden)

    Sokhna M. S. Yakhine-Diop

    2018-04-01

    Full Text Available Parkinson's disease (PD is a multifactorial neurodegenerative disorder. The pathogenesis of this disease is associated with gene and environmental factors. Mutations in leucine-rich repeat kinase 2 (LRRK2 are the most frequent genetic cause of familial and sporadic PD. Moreover, posttranslational modifications, including protein acetylation, are involved in the molecular mechanism of PD. Acetylation of lysine proteins is a dynamic process that is modulated in PD. In this descriptive study, we characterized the acetylated proteins and peptides in primary fibroblasts from idiopathic PD (IPD and genetic PD harboring G2019S or R1441G LRRK2 mutations. Identified acetylated peptides are modulated between individuals' groups. Although acetylated nuclear proteins are the most represented in cells, they are hypoacetylated in IPD. Results display that the level of hyperacetylated and hypoacetylated peptides are, respectively, enhanced in genetic PD and in IPD cells.

  17. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease

    OpenAIRE

    Chen, Hui; Jiang, Wen

    2014-01-01

    The oral microbiome is one of most diversity habitat in the human body and they are closely related with oral health and disease. As the technique developing,, high throughput sequencing has become a popular approach applied for oral microbial analysis. Oral bacterial profiles have been studied to explore the relationship between microbial diversity and oral diseases such as caries and periodontal disease. This review describes the application of high-throughput sequencing for characterizati...

  18. Incidence of malignant diseases in humans injected with radium-224.

    Science.gov (United States)

    Nekolla, Elke Anna; Walsh, Linda; Spiess, Heinz

    2010-09-01

    The "Spiess study" follows the health of 899 persons who received multiple injections of the short-lived alpha-particle emitter (224)Ra mainly between 1945 and 1955 for the treatment of tuberculosis, ankylosing spondylitis and some other diseases. In December 2007, 124 persons were still alive. The most striking health effect, observed shortly after (224)Ra injections, was a temporal wave of 57 malignant bone tumors. During the two most recent decades of observation, a significant excess of non-skeletal malignant diseases has become evident. Expected numbers of cases were computed from the age, gender and calendar year distribution of person years at risk and incidence rates from the German Saarland Cancer Registry. Poisson statistics were applied to test for statistical significance of the standardized incidence ratios. Up to the end of December 2007, the total number of observed malignant non-skeletal diseases was 270 (248 specified cases of non-skeletal solid cancers and 22 other malignant diseases, among these 16 malignant neoplasms of lymphatic and hematopoietic tissue, six without specification of site) compared to 192 expected cases. Accounting for a 5-year minimum latent period and excluding 13 cases of non-melanoma skin cancer, 231 non-skeletal solid cancers were observed compared to 151 expected cases. Significantly increased cancer rates were observed for breast (32 compared to 9.7), soft and connective tissue (11 compared to 1.0), thyroid (7 compared to 1.0), liver (10 compared to 2.4), kidney (13 compared to 5.0), pancreas (9 compared to 4.1), bladder (16 compared to 8.0), and female genital organs (15 compared to 7.8).

  19. The dopamine transporter: role in neurotoxicity and human disease

    International Nuclear Information System (INIS)

    Bannon, Michael J.

    2005-01-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  20. Active transmission of human chagas disease in Colima Mexico

    OpenAIRE

    Coll-Cárdenas, Rafael; Espinoza-Gómez, Francisco; Maldonado-Rodríguez, Arcadio; Reyes-López, Pedro A; Huerta-Viera, Miguel; Rojas-Larios, Fabián

    2004-01-01

    Despite efforts to eradicate American trypanosomiasis (AT) and Chagas disease from the Americas, there are still areas of active transmission that can eventually become a source of reinfection in previously controlled regions. Mexico could be one of those areas, where there are no formal preventive control programs despite the presence of communities infested by Triatominae bugs infected with Trypanosoma cruzi. This study explored the prevalence of T. cruzi infection in 405 habitants of 17 co...

  1. Cross-pollination of research findings, although uncommon, may accelerate discovery of human disease genes

    Directory of Open Access Journals (Sweden)

    Duda Marlena

    2012-11-01

    Full Text Available Abstract Background Technological leaps in genome sequencing have resulted in a surge in discovery of human disease genes. These discoveries have led to increased clarity on the molecular pathology of disease and have also demonstrated considerable overlap in the genetic roots of human diseases. In light of this large genetic overlap, we tested whether cross-disease research approaches lead to faster, more impactful discoveries. Methods We leveraged several gene-disease association databases to calculate a Mutual Citation Score (MCS for 10,853 pairs of genetically related diseases to measure the frequency of cross-citation between research fields. To assess the importance of cooperative research, we computed an Individual Disease Cooperation Score (ICS and the average publication rate for each disease. Results For all disease pairs with one gene in common, we found that the degree of genetic overlap was a poor predictor of cooperation (r2=0.3198 and that the vast majority of disease pairs (89.56% never cited previous discoveries of the same gene in a different disease, irrespective of the level of genetic similarity between the diseases. A fraction (0.25% of the pairs demonstrated cross-citation in greater than 5% of their published genetic discoveries and 0.037% cross-referenced discoveries more than 10% of the time. We found strong positive correlations between ICS and publication rate (r2=0.7931, and an even stronger correlation between the publication rate and the number of cross-referenced diseases (r2=0.8585. These results suggested that cross-disease research may have the potential to yield novel discoveries at a faster pace than singular disease research. Conclusions Our findings suggest that the frequency of cross-disease study is low despite the high level of genetic similarity among many human diseases, and that collaborative methods may accelerate and increase the impact of new genetic discoveries. Until we have a better

  2. Oxidative Stress in Obesity: A Critical Component in Human Diseases

    Directory of Open Access Journals (Sweden)

    Lucia Marseglia

    2014-12-01

    Full Text Available Obesity, a social problem worldwide, is characterized by an increase in body weight that results in excessive fat accumulation. Obesity is a major cause of morbidity and mortality and leads to several diseases, including metabolic syndrome, diabetes mellitus, cardiovascular, fatty liver diseases, and cancer. Growing evidence allows us to understand the critical role of adipose tissue in controlling the physic-pathological mechanisms of obesity and related comorbidities. Recently, adipose tissue, especially in the visceral compartment, has been considered not only as a simple energy depository tissue, but also as an active endocrine organ releasing a variety of biologically active molecules known as adipocytokines or adipokines. Based on the complex interplay between adipokines, obesity is also characterized by chronic low grade inflammation with permanently increased oxidative stress (OS. Over-expression of oxidative stress damages cellular structures together with under-production of anti-oxidant mechanisms, leading to the development of obesity-related complications. The aim of this review is to summarize what is known in the relationship between OS in obesity and obesity-related diseases.

  3. Plague: A Disease Which Changed the Path of Human Civilization.

    Science.gov (United States)

    Bramanti, Barbara; Stenseth, Nils Chr; Walløe, Lars; Lei, Xu

    2016-01-01

    Plague caused by Yersinia pestis is a zoonotic infection, i.e., it is maintained in wildlife by animal reservoirs and on occasion spills over into human populations, causing outbreaks of different entities. Large epidemics of plague, which have had significant demographic, social, and economic consequences, have been recorded in Western European historical documents since the sixth century. Plague has remained in Europe for over 1400 years, intermittently disappearing, yet it is not clear if there were reservoirs for Y. pestis in Western Europe or if the pathogen was rather reimported on different occasions from Asian reservoirs by human agency. The latter hypothesis thus far seems to be the most plausible one, as it is sustained by both ecological and climatological evidence, helping to interpret the phylogeny of this bacterium.

  4. Human genetics of infectious diseases: Unique insights into immunological redundancy.

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2018-04-01

    For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious

  5. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?

    OpenAIRE

    Leclerc, Marion; Hugot, Jean P.

    2016-01-01

    Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the ...

  6. Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA-Seq

    Science.gov (United States)

    2017-09-01

    individual cell types within human adipose tissue interact to regulate adipose tissue physiology . Specifically, we have developed the molecular and...AWARD NUMBER: W81XWH-15-1-0251 TITLE: “Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA...TYPE Annual 3. DATES COVERED 1 AUG 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Evaluation of Human Adipose Tissue Stromal

  7. SIDD: a semantically integrated database towards a global view of human disease.

    Science.gov (United States)

    Cheng, Liang; Wang, Guohua; Li, Jie; Zhang, Tianjiao; Xu, Peigang; Wang, Yadong

    2013-01-01

    A number of databases have been developed to collect disease-related molecular, phenotypic and environmental features (DR-MPEs), such as genes, non-coding RNAs, genetic variations, drugs, phenotypes and environmental factors. However, each of current databases focused on only one or two DR-MPEs. There is an urgent demand to develop an integrated database, which can establish semantic associations among disease-related databases and link them to provide a global view of human disease at the biological level. This database, once developed, will facilitate researchers to query various DR-MPEs through disease, and investigate disease mechanisms from different types of data. To establish an integrated disease-associated database, disease vocabularies used in different databases are mapped to Disease Ontology (DO) through semantic match. 4,284 and 4,186 disease terms from Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM) respectively are mapped to DO. Then, the relationships between DR-MPEs and diseases are extracted and merged from different source databases for reducing the data redundancy. A semantically integrated disease-associated database (SIDD) is developed, which integrates 18 disease-associated databases, for researchers to browse multiple types of DR-MPEs in a view. A web interface allows easy navigation for querying information through browsing a disease ontology tree or searching a disease term. Furthermore, a network visualization tool using Cytoscape Web plugin has been implemented in SIDD. It enhances the SIDD usage when viewing the relationships between diseases and DR-MPEs. The current version of SIDD (Jul 2013) documents 4,465,131 entries relating to 139,365 DR-MPEs, and to 3,824 human diseases. The database can be freely accessed from: http://mlg.hit.edu.cn/SIDD.

  8. SIDD: A Semantically Integrated Database towards a Global View of Human Disease

    Science.gov (United States)

    Cheng, Liang; Wang, Guohua; Li, Jie; Zhang, Tianjiao; Xu, Peigang; Wang, Yadong

    2013-01-01

    Background A number of databases have been developed to collect disease-related molecular, phenotypic and environmental features (DR-MPEs), such as genes, non-coding RNAs, genetic variations, drugs, phenotypes and environmental factors. However, each of current databases focused on only one or two DR-MPEs. There is an urgent demand to develop an integrated database, which can establish semantic associations among disease-related databases and link them to provide a global view of human disease at the biological level. This database, once developed, will facilitate researchers to query various DR-MPEs through disease, and investigate disease mechanisms from different types of data. Methodology To establish an integrated disease-associated database, disease vocabularies used in different databases are mapped to Disease Ontology (DO) through semantic match. 4,284 and 4,186 disease terms from Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM) respectively are mapped to DO. Then, the relationships between DR-MPEs and diseases are extracted and merged from different source databases for reducing the data redundancy. Conclusions A semantically integrated disease-associated database (SIDD) is developed, which integrates 18 disease-associated databases, for researchers to browse multiple types of DR-MPEs in a view. A web interface allows easy navigation for querying information through browsing a disease ontology tree or searching a disease term. Furthermore, a network visualization tool using Cytoscape Web plugin has been implemented in SIDD. It enhances the SIDD usage when viewing the relationships between diseases and DR-MPEs. The current version of SIDD (Jul 2013) documents 4,465,131 entries relating to 139,365 DR-MPEs, and to 3,824 human diseases. The database can be freely accessed from: http://mlg.hit.edu.cn/SIDD. PMID:24146757

  9. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    KAUST Repository

    Hoehndorf, Robert

    2015-06-08

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  10. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    Science.gov (United States)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  11. Systematic review of brucellosis in Kenya: disease frequency in humans and animals and risk factors for human infection

    Directory of Open Access Journals (Sweden)

    J. Njeru

    2016-08-01

    Full Text Available Abstract Background Brucellosis is a debilitating zoonotic disease affecting humans and animals. A comprehensive, evidence-based assessment of literature and officially available data on animal and human brucellosis for Kenya are missing. The aim of the current review is to provide frequency estimates of brucellosis in humans, animals and risk factors for human infection, and help to understand the current situation in Kenya. Methods A total of accessible 36 national and international publications on brucellosis from 1916 to 2016 were reviewed to estimate the frequency of brucellosis in humans and animals, and strength of associations between potential risk factors and seropositivity in humans in Kenya. Results The conducted studies revealed only few and fragmented evidence of the disease spatial and temporal distribution in an epidemiological context. Bacteriological evidence revealed the presence of Brucella (B. abortus and B. melitensis in cattle and human patients, whilst B. suis was isolated from wild rodents only. Similar evidence for Brucella spp infection in small ruminants and other animal species is unavailable. The early and most recent serological studies revealed that animal brucellosis is widespread in all animal production systems. The animal infection pressure in these systems has remained strong due to mixing of large numbers of animals from different geographical regions, movement of livestock in search of pasture, communal sharing of grazing land, and the concentration of animals around water points. Human cases are more likely seen in groups occupationally or domestically exposed to livestock or practicing risky social-cultural activities such as consumption of raw blood and dairy products, and slaughtering of animals within the homesteads. Many brucellosis patients are misdiagnosed and probably mistreated due to lack of reliable laboratory diagnostic support resulting to adverse health outcomes of the patients and routine

  12. Systematic review of brucellosis in Kenya: disease frequency in humans and animals and risk factors for human infection.

    Science.gov (United States)

    Njeru, J; Wareth, G; Melzer, F; Henning, K; Pletz, M W; Heller, R; Neubauer, H

    2016-08-22

    Brucellosis is a debilitating zoonotic disease affecting humans and animals. A comprehensive, evidence-based assessment of literature and officially available data on animal and human brucellosis for Kenya are missing. The aim of the current review is to provide frequency estimates of brucellosis in humans, animals and risk factors for human infection, and help to understand the current situation in Kenya. A total of accessible 36 national and international publications on brucellosis from 1916 to 2016 were reviewed to estimate the frequency of brucellosis in humans and animals, and strength of associations between potential risk factors and seropositivity in humans in Kenya. The conducted studies revealed only few and fragmented evidence of the disease spatial and temporal distribution in an epidemiological context. Bacteriological evidence revealed the presence of Brucella (B.) abortus and B. melitensis in cattle and human patients, whilst B. suis was isolated from wild rodents only. Similar evidence for Brucella spp infection in small ruminants and other animal species is unavailable. The early and most recent serological studies revealed that animal brucellosis is widespread in all animal production systems. The animal infection pressure in these systems has remained strong due to mixing of large numbers of animals from different geographical regions, movement of livestock in search of pasture, communal sharing of grazing land, and the concentration of animals around water points. Human cases are more likely seen in groups occupationally or domestically exposed to livestock or practicing risky social-cultural activities such as consumption of raw blood and dairy products, and slaughtering of animals within the homesteads. Many brucellosis patients are misdiagnosed and probably mistreated due to lack of reliable laboratory diagnostic support resulting to adverse health outcomes of the patients and routine disease underreporting. We found no studies of disease

  13. Domesticated animals and human infectious diseases of zoonotic origins: domestication time matters.

    Science.gov (United States)

    Morand, Serge; McIntyre, K Marie; Baylis, Matthew

    2014-06-01

    The rate of emergence for emerging infectious diseases has increased dramatically over the last century, and research findings have implicated wildlife as an importance source of novel pathogens. However, the role played by domestic animals as amplifiers of pathogens emerging from the wild could also be significant, influencing the human infectious disease transmission cycle. The impact of domestic hosts on human disease emergence should therefore be ascertained. Here, using three independent datasets we showed positive relationships between the time since domestication of the major domesticated mammals and the total number of parasites or infectious diseases they shared with humans. We used network analysis, to better visualize the overall interactions between humans and domestic animals (and amongst animals) and estimate which hosts are potential sources of parasites/pathogens for humans (and for all other hosts) by investigating the network architecture. We used centrality, a measure of the connection amongst each host species (humans and domestic animals) in the network, through the sharing of parasites/pathogens, where a central host (i.e. high value of centrality) is the one that is infected by many parasites/pathogens that infect many other hosts in the network. We showed that domesticated hosts that were associated a long time ago with humans are also the central ones in the network and those that favor parasites/pathogens transmission not only to humans but also to all other domesticated animals. These results urge further investigation of the diversity and origin of the infectious diseases of domesticated animals in their domestication centres and the dispersal routes associated with human activities. Such work may help us to better understand how domesticated animals have bridged the epidemiological gap between humans and wildlife. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Development of a Mouse Model of Helicobacter pylori Infection that Mimics Human Disease

    Science.gov (United States)

    Marchetti, Marta; Arico, Beatrice; Burroni, Daniela; Figura, Natale; Rappuoli, Rino; Ghiara, Paolo

    1995-03-01

    The human pathogen Helicobacter pylori is associated with gastritis, peptic ulcer disease, and gastric cancer. The pathogenesis of H. pylori infection in vivo was studied by adapting fresh clinical isolates of bacteria to colonize the stomachs of mice. A gastric pathology resembling human disease was observed in infections with cytotoxin-producing strains but not with noncytotoxic strains. Oral immunization with purified H. pylori antigens protected mice from bacterial infection. This mouse model will allow the development of therapeutic agents and vaccines against H. pylori infection in humans.

  15. Update on the use of immunoglobulin in human disease: A review of evidence.

    Science.gov (United States)

    Perez, Elena E; Orange, Jordan S; Bonilla, Francisco; Chinen, Javier; Chinn, Ivan K; Dorsey, Morna; El-Gamal, Yehia; Harville, Terry O; Hossny, Elham; Mazer, Bruce; Nelson, Robert; Secord, Elizabeth; Jordan, Stanley C; Stiehm, E Richard; Vo, Ashley A; Ballow, Mark

    2017-03-01

    Human immunoglobulin preparations for intravenous or subcutaneous administration are the cornerstone of treatment in patients with primary immunodeficiency diseases affecting the humoral immune system. Intravenous preparations have a number of important uses in the treatment of other diseases in humans as well, some for which acceptable treatment alternatives do not exist. We provide an update of the evidence-based guideline on immunoglobulin therapy, last published in 2006. Given the potential risks and inherent scarcity of human immunoglobulin, careful consideration of its indications and administration is warranted. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  17. Human organoids: a model system for intestinal diseases

    OpenAIRE

    Wiegerinck, C.L.

    2015-01-01

    You are what you eat. A common saying that indicates that your physical or mental state can be influenced by your choice of food. Unfortunately, not all people have the luxury to choose what to eat; this can be related to place of birth, social, economic state, or the physical inability of the diseased intestine to take up certain food. A cell layer, the epithelium, covers the intestine, and harbors the main functions of the intestine: uptake, digestion of food, and a barrier against unwanted...

  18. [Role of defective intracellular proteolysis in human degenerative diseases].

    Science.gov (United States)

    Nezelof, Christian

    2012-11-01

    the nature of proteolysis. In this article, therefore, the following distinction should be made:--Lysosomal failures. They represent hereditary metabolic disorders involving all categories of cells. They are characterized by the accumulation of homogeneous material related to the underlying disease. Young people are predominantly affected--UPS failures. They represent sporadic conditions principally involving long-lived cells. The accumulated material is heterogeneous, composed of abnormal proteins and various "garbage-like" waste, including pigments. The elderly are predominatly affected, suggesting an epigenetic wear and tear process. Hypothetically, most the sporadic neurodegenerative diseases, from retinal macular degeneration and its associated drüsen to Alzheimer's disease, Parkinson's disease may represent fairly good examples of the UPS deficit.

  19. Trends in population-based studies of human genetics in infectious diseases.

    Science.gov (United States)

    Rowell, Jessica L; Dowling, Nicole F; Yu, Wei; Yesupriya, Ajay; Zhang, Lyna; Gwinn, Marta

    2012-01-01

    Pathogen genetics is already a mainstay of public health investigation and control efforts; now advances in technology make it possible to investigate the role of human genetic variation in the epidemiology of infectious diseases. To describe trends in this field, we analyzed articles that were published from 2001 through 2010 and indexed by the HuGE Navigator, a curated online database of PubMed abstracts in human genome epidemiology. We extracted the principal findings from all meta-analyses and genome-wide association studies (GWAS) with an infectious disease-related outcome. Finally, we compared the representation of diseases in HuGE Navigator with their contributions to morbidity worldwide. We identified 3,730 articles on infectious diseases, including 27 meta-analyses and 23 GWAS. The number published each year increased from 148 in 2001 to 543 in 2010 but remained a small fraction (about 7%) of all studies in human genome epidemiology. Most articles were by authors from developed countries, but the percentage by authors from resource-limited countries increased from 9% to 25% during the period studied. The most commonly studied diseases were HIV/AIDS, tuberculosis, hepatitis B infection, hepatitis C infection, sepsis, and malaria. As genomic research methods become more affordable and accessible, population-based research on infectious diseases will be able to examine the role of variation in human as well as pathogen genomes. This approach offers new opportunities for understanding infectious disease susceptibility, severity, treatment, control, and prevention.

  20. [Detection of human parvovirus B19, human bocavirus and human parvovirus 4 infections in blood samples among 95 patients with liver disease in Nanjing by nested PCR].

    Science.gov (United States)

    Tong, Rui; Zhou, Wei-Min; Liu, Xi-Jun; Wang, Yue; Lou, Yong-Liang; Tan, Wen-Jie

    2013-04-01

    To analyze the infection of human parvovirus B19, human bocavirus (HBoV) and human parvovirus 4 (PARV4) in blood samples among patients with liver disease in Nanjing by molecular detection. Nested PCR assays were designed and validated to detect B19, HBoV and PARV4, respectively. The assays were used to screen three parvoviruses in blood samples from 95 patients with different liver disease in Nanjing. The parvovirus infection was analyzed statistically. The detection limits were 10 copies of genomic DNA equivalents per reaction for each assays and the good specificity were observed. The frequency of B19 and HBoV were 2/95 (2.1%) and 9/95 (9.5%) in blood samples respectively. No PARV4 was detected. HBoV was detected in 3/5 patients with drug-induced hepatitis. Both B19 and HBoV infection were detected in blood from patients with liver disease.

  1. Dizeez: an online game for human gene-disease annotation.

    Science.gov (United States)

    Loguercio, Salvatore; Good, Benjamin M; Su, Andrew I

    2013-01-01

    Structured gene annotations are a foundation upon which many bioinformatics and statistical analyses are built. However the structured annotations available in public databases are a sparse representation of biological knowledge as a whole. The rate of biomedical data generation is such that centralized biocuration efforts struggle to keep up. New models for gene annotation need to be explored that expand the pace at which we are able to structure biomedical knowledge. Recently, online games have emerged as an effective way to recruit, engage and organize large numbers of volunteers to help address difficult biological challenges. For example, games have been successfully developed for protein folding (Foldit), multiple sequence alignment (Phylo) and RNA structure design (EteRNA). Here we present Dizeez, a simple online game built with the purpose of structuring knowledge of gene-disease associations. Preliminary results from game play online and at scientific conferences suggest that Dizeez is producing valid gene-disease annotations not yet present in any public database. These early results provide a basic proof of principle that online games can be successfully applied to the challenge of gene annotation. Dizeez is available at http://genegames.org.

  2. CRISPR-Cas9 technology: applications and human disease modelling.

    Science.gov (United States)

    Torres-Ruiz, Raul; Rodriguez-Perales, Sandra

    2017-01-01

    Genome engineering is a powerful tool for a wide range of applications in biomedical research and medicine. The development of the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has revolutionized the field of gene editing, thus facilitating efficient genome editing through the creation of targeted double-strand breaks of almost any organism and cell type. In addition, CRISPR-Cas9 technology has been used successfully for many other purposes, including regulation of endogenous gene expression, epigenome editing, live-cell labelling of chromosomal loci, edition of single-stranded RNA and high-throughput gene screening. The implementation of the CRISPR-Cas9 system has increased the number of available technological alternatives for studying gene function, thus enabling generation of CRISPR-based disease models. Although many mechanistic questions remain to be answered and several challenges have yet to be addressed, the use of CRISPR-Cas9-based genome engineering technologies will increase our knowledge of disease processes and their treatment in the near future. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  4. Natural Human Mobility Patterns and Spatial Spread of Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Vitaly Belik

    2011-08-01

    Full Text Available We investigate a model for spatial epidemics explicitly taking into account bidirectional movements between base and destination locations on individual mobility networks. We provide a systematic analysis of generic dynamical features of the model on regular and complex metapopulation network topologies and show that significant dynamical differences exist to ordinary reaction-diffusion and effective force of infection models. On a lattice we calculate an expression for the velocity of the propagating epidemic front and find that, in contrast to the diffusive systems, our model predicts a saturation of the velocity with an increasing traveling rate. Furthermore, we show that a fully stochastic system exhibits a novel threshold for the attack ratio of an outbreak that is absent in diffusion and force of infection models. These insights not only capture natural features of human mobility relevant for the geographical epidemic spread, they may serve as a starting point for modeling important dynamical processes in human and animal epidemiology, population ecology, biology, and evolution.

  5. The human RNase MRP complex : composition, assembly and role in human disease

    NARCIS (Netherlands)

    Eenennaam, Hans van

    2002-01-01

    Not all RNA molecules in human cells are being translated into proteins. Some of them function in binding proteins, thereby forming so-called RNA-protein complexes. The RNase MRP complex is an example of such an RNA-protein complex. In this thesis two new protein components of the human RNase MRP

  6. Human Induced Pluripotent stem cells and their derivatives for disease modeling and therapeutic applications in Alzheimer's disease

    DEFF Research Database (Denmark)

    Pires, C.; Hall, V.; Freude, K. K.

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) have recently been generated for various inherited diseases. These hiPSC have the capacity to differentiate into any given cell type withthe help of small compounds and growth factors aiding the process. In Alzheimer’s disease (AD) several specific...... neural subpopulations in the brain are more susceptible to degeneration and apoptosis and hiPSCs can be used in order to generate these subpopulations in cell culture dishes via directed differentiation. Subsequently these cells can be used to optimize small compound screens to identify novel drug...

  7. Global analysis of the human pathophenotypic similarity gene network merges disease module components.

    Science.gov (United States)

    Reyes-Palomares, Armando; Rodríguez-López, Rocío; Ranea, Juan A G; Sánchez-Jiménez, Francisca; Sánchez Jiménez, Francisca; Medina, Miguel Angel

    2013-01-01

    The molecular complexity of genetic diseases requires novel approaches to break it down into coherent biological modules. For this purpose, many disease network models have been created and analyzed. We highlight two of them, "the human diseases networks" (HDN) and "the orphan disease networks" (ODN). However, in these models, each single node represents one disease or an ambiguous group of diseases. In these cases, the notion of diseases as unique entities reduces the usefulness of network-based methods. We hypothesize that using the clinical features (pathophenotypes) to define pathophenotypic connections between disease-causing genes improve our understanding of the molecular events originated by genetic disturbances. For this, we have built a pathophenotypic similarity gene network (PSGN) and compared it with the unipartite projections (based on gene-to-gene edges) similar to those used in previous network models (HDN and ODN). Unlike these disease network models, the PSGN uses semantic similarities. This pathophenotypic similarity has been calculated by comparing pathophenotypic annotations of genes (human abnormalities of HPO terms) in the "Human Phenotype Ontology". The resulting network contains 1075 genes (nodes) and 26197 significant pathophenotypic similarities (edges). A global analysis of this network reveals: unnoticed pairs of genes showing significant pathophenotypic similarity, a biological meaningful re-arrangement of the pathological relationships between genes, correlations of biochemical interactions with higher similarity scores and functional biases in metabolic and essential genes toward the pathophenotypic specificity and the pleiotropy, respectively. Additionally, pathophenotypic similarities and metabolic interactions of genes associated with maple syrup urine disease (MSUD) have been used to merge into a coherent pathological module.Our results indicate that pathophenotypes contribute to identify underlying co-dependencies among disease

  8. Functional annotation of structural ncRNAs within enhancer RNAs in the human genome: implications for human disease.

    Science.gov (United States)

    Ren, Chao; Liu, Feng; Ouyang, Zhangyi; An, Gaole; Zhao, Chenghui; Shuai, Jun; Cai, Shuhong; Bo, Xiaochen; Shu, Wenjie

    2017-11-14

    Enhancer RNAs (eRNAs) are a novel class of non-coding RNA (ncRNA) molecules transcribed from the DNA sequences of enhancer regions. Despite extensive efforts devoted to revealing the potential functions and underlying mechanisms of eRNAs, it remains an open question whether eRNAs are mere transcriptional noise or relevant biologically functional species. Here, we identified a catalogue of eRNAs in a broad range of human cell/tissue types and extended our understanding of eRNAs by demonstrating their multi-omic signatures. Gene Ontology (GO) analysis revealed that eRNAs play key roles in human cell identity. Furthermore, we detected numerous known and novel functional RNA structures within eRNA regions. To better characterize the cis-regulatory effects of non-coding variation in these structural ncRNAs, we performed a comprehensive analysis of the genetic variants of structural ncRNAs in eRNA regions that are associated with inflammatory autoimmune diseases. Disease-associated variants of the structural ncRNAs were disproportionately enriched in immune-specific cell types. We also identified riboSNitches in lymphoid eRNAs and investigated the potential pathogenic mechanisms by which eRNAs might function in autoimmune diseases. Collectively, our findings offer valuable insights into the function of eRNAs and suggest that eRNAs might be effective diagnostic and therapeutic targets for human diseases.

  9. Forgotten fungi-the gut mycobiome in human health and disease.

    Science.gov (United States)

    Huseyin, Chloe E; O'Toole, Paul W; Cotter, Paul D; Scanlan, Pauline D

    2017-07-01

    The human body is home to a complex and diverse microbial ecosystem that plays a central role in host health. This includes a diversity of fungal species that is collectively referred to as our 'mycobiome'. Although research into the mycobiome is still in its infancy, its potential role in human disease is increasingly recognised. Here we review the existing literature available on the human mycobiota with an emphasis on the gut mycobiome, including how fungi interact with the human host and other microbes. In doing so, we provide a comprehensive critique of the methodologies available to research the human mycobiota as well as highlighting the latest research findings from mycological surveys of different groups of interest including infants, obese and inflammatory bowel disease cohorts. This in turn provides new insights and directions for future studies in this burgeoning research area. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Using therapeutic cloning to fight human disease: a conundrum or reality?

    Science.gov (United States)

    Hall, Vanessa J; Stojkovic, Petra; Stojkovic, Miodrag

    2006-07-01

    The development and transplantation of autologous cells derived from nuclear transfer embryonic stem cell (NT-ESC) lines to treat patients suffering from disease has been termed therapeutic cloning. Human NT is still a developing field, with further research required to improve somatic cell NT and human embryonic stem cell differentiation to deliver safe and effective cell replacement therapies. Furthermore, the implications of transferring mitochondrial heteroplasmic cells, which may harbor aberrant epigenetic gene expression profiles, are of concern. The production of human NT-ESC lines also remains plagued by ethical dilemmas, societal concerns, and controversies. Recently, a number of alternate therapeutic strategies have been proposed to circumvent the moral implications surrounding human nuclear transfer. It will be critical to overcome these biological, legislative, and moral restraints to maximize the potential of this therapeutic strategy and to alleviate human disease.

  11. TMEM39A and Human Diseases: A Brief Review.

    Science.gov (United States)

    Tran, Quangdon; Park, Jisoo; Lee, Hyunji; Hong, Youngeun; Hong, Suntaek; Park, Sungjin; Park, Jongsun; Kim, Seon-Hwan

    2017-07-01

    Transmembrane Protein 39A (TMEM39A) is a member of TMEM family. The understanding about this protein is still limited. The earlier studies indicated that TMEM39A was a key mediator of autoimmune disease. TMEM39A seems to be involved in systemic lupus erythematosus and multiple sclerosis in numerous of populations. All of these works stop at insufficient information by using gene functioning methods such as: Genome-wide association studies (GWASs) and/or follow-up study. It is the fact that the less understood of TMEM39A actually is the attraction to the scientist in near future. In this review the current knowledge about TMEM39A and its possible roles in cell biology, physiology and pathology will be described.

  12. Human stem cells as a model of motoneuron development and diseases

    Science.gov (United States)

    Liu, Yan; Zhang, Su-Chun

    2010-01-01

    Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) possess potentiality to produce all cell and tissue types of the human body. Under chemically defined culture systems, hESCs and hiPSCs have been efficiently directed to functional spinal motoneurons and astrocytes. The differentiation process faithfully recapitulates the developmental process predicted from studies in vertebrate animals and human specimens, suggesting the usefulness of stem cell differentiation systems in understanding human cellular development. Motoneurons and astrocytes differentiated from genetically altered hESCs or disease hiPSCs exhibit predicted phenotypes. They thus offer a simplified dynamic model for analyzing pathological processes that lead to human motoneuron degeneration, which in turn may serve as a template for pharmaceutical screening. In addition, the human stem cell-derived motoneurons and astrocytes, including those specifically derived from a patient, may become a source for cell therapy. PMID:20536934

  13. Climate change and Ixodes tick-borne diseases of humans.

    Science.gov (United States)

    Ostfeld, Richard S; Brunner, Jesse L

    2015-04-05

    The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease.

  14. The suggestion of common cause of disease, characteristics of human body, and medical treatment

    Directory of Open Access Journals (Sweden)

    Byung-Jun Cho

    2011-06-01

    Full Text Available Objectives & Methods: This suggestion was attempted to be elevated the recognition of common characteristics in disease. So, we performed to analyze the correlation of common cause of disease, characteristics of human body, and medical treatment. And the results are as follows. Results: 1. The cause of disease is consist of genetic factor, aging, habit, food of not good in health, weather, environment, deficit of the physical activity, stress and so on. 2. Generally, human has common and individual weakness. Individual weakness is appeared similar to the occurrence of volcano and lapse. 3. The correlation of disease and medical treatments is possible to explain using the quotation of the law of motion made by Isaac Newton, the great physicist. 4. When the process of the medical treatment was not progressed, the prognosis is determined by the correlation of the homeostasis(H' in human body and the homeostasis(H of disease. 5. The prognosis of disease is determined by the relationship between the energy of disease(F and medical treatment(F'. 6. The exact diagnosis is possible to predict the treatment sequence, and the facts that homeostasis in human body and disease, relationship between the energy of disease(F and medical treatment(F', action and reaction are important to determine the prognosis. 7. The careful observation of improving response and worsening action of disease becomes available for exact prognosis. Conclusion: The above described contents may be useful in clinical studies, and the concrete clinical reports about this will be made afterward.

  15. Rapidly progressive periodontal disease associated with human immunodeficiency virus

    International Nuclear Information System (INIS)

    Hezaim, K.A.; Javed, F.; Askar, A.; Rasheed, A.A.

    2012-01-01

    Severe periodontal inflammation with generalized dental plaque accumulation, spontaneous and severe gingival bleeding, fungal infection, and inter dental papillae necrosis are presented in a patient infected with human immunodeficiency virus (HIV). Bite-wing radiographs revealed a generalized horizontal alveolar bone loss of 7-8 millimetres in both arches. Erythematous patches were noted on the gingival mucosa in both jaws. DNA testing was performed to identify the periodontopathogens. The patient had no signs or symptoms of acquired immunodeficiency syndrome. This case-report presents the massive periodontal destruction that occurred in a patient infected with HIV. Therefore, it is highly recommended that patients infected with HIV should be regularly monitored to aid in early detection and to provide proper management of periodontal inflammatory conditions to minimize its destruction. (author)

  16. Neural regions that underlie reinforcement learning are also active for social expectancy violations.

    Science.gov (United States)

    Harris, Lasana T; Fiske, Susan T

    2010-01-01

    Prediction error, the difference between an expected and an actual outcome, serves as a learning signal that interacts with reward and punishment value to direct future behavior during reinforcement learning. We hypothesized that similar learning and valuation signals may underlie social expectancy violations. Here, we explore the neural correlates of social expectancy violation signals along the universal person-perception dimensions trait warmth and competence. In this context, social learning may result from expectancy violations that occur when a target is inconsistent with an a priori schema. Expectancy violation may activate neural regions normally implicated in prediction error and valuation during appetitive and aversive conditioning. Using fMRI, we first gave perceivers high warmth or competence behavioral information that led to dispositional or situational attributions for the behavior. Participants then saw pictures of people responsible for the behavior; they represented social groups either inconsistent (rated low on either warmth or competence) or consistent (rated high on either warmth or competence) with the behavior information. Warmth and competence expectancy violations activate striatal regions that represent evaluative and prediction error signals. Social cognition regions underlie consistent expectations. These findings suggest that regions underlying reinforcement learning may work in concert with social cognition regions in warmth and competence social expectancy. This study illustrates the neural overlap between neuroeconomics and social neuroscience.

  17. ROLES OF HUMAN AND VECTOR DERIVED PHENOTYPES OF DENV IN CAUSING HUMAN DISEASE- CAN MOSQUITO MEDIATION BE BYPASSED?

    Directory of Open Access Journals (Sweden)

    Rajan Joseph Payyappilly

    2017-03-01

    Full Text Available BACKGROUND Plasma membrane of midgut epithelial cells of the mosquito differs from that of human dendritic cells in composition with respect to protein and lipid content and posttranslational modifications, viz. glycosylation. Virus acquires its envelope from the host cell membrane. Expectedly therefore, such differences are reflected in the construction of its envelope, which may influence virulence. Lipid composition and glycosylation pattern of envelope protein E1 (with important roles in viral entry are different in the virus grown in insect cell lines and mammalian cells. As consequence, they have 'different modes' of cell entry each with role at different stages in disease course. Virions that initiate primary infection are mosquito derived; but then on, it is a phenotype of human cell origin that multiplies and spreads in the host. MATERIALS AND METHODS In a hospital-based yearlong prospective study conducted at our institute, we have tried to highlight (indirectly albeit, all important role of antibody mediated cell infection by DENV in the human host and how it modified disease process. RESULTS Mediation of the biological vector thus is required essential in ‘initiation’ of primary infection (emphasising the role of vector control as numero uno strategy for disease control; in the human tissues, thereafter, antibody mediated cell infection seems to take the lead role. CONCLUSION Mediation of the biological vector mosquito is required in natural cycle of transmission of DNV from man to man. Unique features of the envelope of 'mosquito derived' virions enabling them to enter human cells nonpermissive to human derived phenotype maybe capitalised and such mechanisms be targeted in designing vaccine or drugs against dengue and besides this emphasises the relative importance of vector control in dengue control.

  18. Drosophila as a Model for Human Diseases-Focus on Innate Immunity in Barrier Epithelia.

    Science.gov (United States)

    Bergman, P; Seyedoleslami Esfahani, S; Engström, Y

    2017-01-01

    Epithelial immunity protects the host from harmful microbial invaders but also controls the beneficial microbiota on epithelial surfaces. When this delicate balance between pathogen and symbiont is disturbed, clinical disease often occurs, such as in inflammatory bowel disease, cystic fibrosis, or atopic dermatitis, which all can be in part linked to impairment of barrier epithelia. Many innate immune receptors, signaling pathways, and effector molecules are evolutionarily conserved between human and Drosophila. This review describes the current knowledge on Drosophila as a model for human diseases, with a special focus on innate immune-related disorders of the gut, lung, and skin. The discovery of antimicrobial peptides, the crucial role of Toll and Toll-like receptors, and the evolutionary conservation of signaling to the immune systems of both human and Drosophila are described in a historical perspective. Similarities and differences between human and Drosophila are discussed; current knowledge on receptors, signaling pathways, and effectors are reviewed, including antimicrobial peptides, reactive oxygen species, as well as autophagy. We also give examples of human diseases for which Drosophila appears to be a useful model. In addition, the limitations of the Drosophila model are mentioned. Finally, we propose areas for future research, which include using the Drosophila model for drug screening, as a validation tool for novel genetic mutations in humans and for exploratory research of microbiota-host interactions, with relevance for infection, wound healing, and cancer. © 2017 Elsevier Inc. All rights reserved.

  19. Human Genome Epidemiology : A scientific foundation for using genetic information to improve health and prevent disease

    Directory of Open Access Journals (Sweden)

    Stefania Boccia

    2005-03-01

    Full Text Available

    Human health is determined by the interplay of genetic factors and the environment. In this context the recent advances in human genomics are expected to play a central role in medicine and public health by providing genetic information for disease prediction and prevention.

    After the completion of the human genome sequencing, a fundamental step will be represented by the translation of these discoveries into meaningful actions to improve health and prevent diseases, and the field of epidemiology plays a central role in this effort. These are some of the issues addressed by Human Genome Epidemiology –A scientific foundation for using genetic information to improve health and prevent disease, a volume edited by Prof. M. Khoury, Prof. J. Little, Prof.W. Burke and published by Oxford university Press 2004.

    This book describes the important role that epidemiological methods play in the continuum from gene discovery to the development and application of genetic tests. The Authors calls this continuum human genome epidemiology (HuGE to denote an evolving field of inquiry that uses systematic applications of epidemiological methods to assess the impact of human genetic variation on health and disease.

    The book is divided into four sections and it is structured to allow readers to proceed systematically from the fundamentals of genome technology and discovery, to the epidemiological approaches, to gene characterisation, to the evaluation of genetic tests and their use in health services and public health.

  20. Steroid synthesis by primary human keratinocytes; implications for skin disease

    International Nuclear Information System (INIS)

    Research highlights: → Primary keratinocytes express the steroid enzymes required for cortisol synthesis. → Normal primary human keratinocytes can synthesise cortisol. → Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. → StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3βHSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7- 3 H]-pregnenolone through each steroid intermediate to [7- 3 H]-cortisol in cultured PHK. Trilostane (a 3βHSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data show that PHK are capable of extra

  1. Steroid synthesis by primary human keratinocytes; implications for skin disease

    Energy Technology Data Exchange (ETDEWEB)

    Hannen, Rosalind F., E-mail: r.f.hannen@qmul.ac.uk [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Michael, Anthony E. [Centre for Developmental and Endocrine Signalling, Academic Section of Obstetrics and Gynaecology, Division of Clinical Developmental Sciences, 3rd Floor, Lanesborough Wing, St. George' s, University of London, Cranmer Terrace, Tooting, London SW17 0RE (United Kingdom); Jaulim, Adil [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom); Bhogal, Ranjit [Life Science, Unilever R and D Colworth House, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Burrin, Jacky M. [Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ (United Kingdom); Philpott, Michael P. [Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT (United Kingdom)

    2011-01-07

    Research highlights: {yields} Primary keratinocytes express the steroid enzymes required for cortisol synthesis. {yields} Normal primary human keratinocytes can synthesise cortisol. {yields} Steroidogenic regulators, StAR and MLN64, are expressed in normal epidermis. {yields} StAR expression is down regulated in eczema and psoriatic epidermis. -- Abstract: Cortisol-based therapy is one of the most potent anti-inflammatory treatments available for skin conditions including psoriasis and atopic dermatitis. Previous studies have investigated the steroidogenic capabilities of keratinocytes, though none have demonstrated that these skin cells, which form up to 90% of the epidermis are able to synthesise cortisol. Here we demonstrate that primary human keratinocytes (PHK) express all the elements required for cortisol steroidogenesis and metabolise pregnenolone through each intermediate steroid to cortisol. We show that normal epidermis and cultured PHK express each of the enzymes (CYP11A1, CYP17A1, 3{beta}HSD1, CYP21 and CYP11B1) that are required for cortisol synthesis. These enzymes were shown to be metabolically active for cortisol synthesis since radiometric conversion assays traced the metabolism of [7-{sup 3}H]-pregnenolone through each steroid intermediate to [7-{sup 3}H]-cortisol in cultured PHK. Trilostane (a 3{beta}HSD1 inhibitor) and ketoconazole (a CYP17A1 inhibitor) blocked the metabolism of both pregnenolone and progesterone. Finally, we show that normal skin expresses two cholesterol transporters, steroidogenic acute regulatory protein (StAR), regarded as the rate-determining protein for steroid synthesis, and metastatic lymph node 64 (MLN64) whose function has been linked to cholesterol transport in steroidogenesis. The expression of StAR and MLN64 was aberrant in two skin disorders, psoriasis and atopic dermatitis, that are commonly treated with cortisol, suggesting dysregulation of epidermal steroid synthesis in these patients. Collectively these data

  2. The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease

    Science.gov (United States)

    Groza, Tudor; Köhler, Sebastian; Moldenhauer, Dawid; Vasilevsky, Nicole; Baynam, Gareth; Zemojtel, Tomasz; Schriml, Lynn Marie; Kibbe, Warren Alden; Schofield, Paul N.; Beck, Tim; Vasant, Drashtti; Brookes, Anthony J.; Zankl, Andreas; Washington, Nicole L.; Mungall, Christopher J.; Lewis, Suzanna E.; Haendel, Melissa A.; Parkinson, Helen; Robinson, Peter N.

    2015-01-01

    The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available. PMID:26119816

  3. Azithromycin as treatment for cryptosporidiosis in human immunodeficiency virus disease.

    Directory of Open Access Journals (Sweden)

    Kadappu K

    2002-07-01

    Full Text Available BACKGROUND: Cryptosporidiosis caused by the protozoa Cryptosporidium, is the common cause of diarrhoea in Acquired Immune Deficiency Syndrome (AIDS. AIM: To study the efficacy of short-term azithromycin in the management of cryptosporidiosis. SETTINGS AND DESIGN: Randomised, controlled trial. MATERIAL AND METHODS: All consecutive patients infected with Human Immunodeficiency Virus (HIV, who were positive for cryptosporidial oocysts were taken for this prospective randomised study. RESULT: Short-term azithromycin treatment for cryptosporidial diarrhoea in AIDS patients was associated with good clinical improvement but parasitological benefit was doubtful. All 13 patients, who had symptoms of cryptosporidiosis, symptomatically improved with 5 days of treatment with azithromycin and became asymptomatic after 7 days of antibiotic, but stool sample was positive for cryptosporidium even after 7 days of therapy. After 14 days of treatment with azithromycin in 13 patients, in five patients stool was free of cryptosporidial oocyst. The drug was well tolerated in all the patients. CONCLUSION: Short-term azithromycin can be used as a safe and effective treatment for symptomatic Cryptosporidiosis but not effective in eradicating Cryptosporidial infection.

  4. HUMAN MICROBIOMES AND THEIR ROLES IN DYSBIOSIS, COMMON DISEASES AND NOVEL THERAPEUTIC APPROACHES

    Directory of Open Access Journals (Sweden)

    Jose Ernesto Belizario

    2015-10-01

    Full Text Available The human body is the residence of a large number of commensal (non-pathogenic and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics as well as phages engineered with CRISPR/cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community and common diseases (e.g. diabetes and obesity. The designing and production of pharmaceuticals based on our own body’s microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies.

  5. Mineral Density Volume Gradients in Normal and Diseased Human Tissues

    Science.gov (United States)

    Djomehri, Sabra I.; Candell, Susan; Case, Thomas; Browning, Alyssa; Marshall, Grayson W.; Yun, Wenbing; Lau, S. H.; Webb, Samuel; Ho, Sunita P.

    2015-01-01

    Clinical computed tomography provides a single mineral density (MD) value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca) to phosphorus (P) and Ca to zinc (Zn) elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT) benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF) using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males) contained significant mineral density variations (enamel: 2820-3095mg/cc, bone: 570-1415mg/cc, cementum: 1240-1340mg/cc, dentin: 1480-1590mg/cc, cementum affected by periodontitis: 1100-1220mg/cc, hypomineralized carious dentin: 345-1450mg/cc, hypermineralized carious dentin: 1815-2740mg/cc, and dental calculus: 1290-1770mg/cc). A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49), hypomineralized dentin (0.32-0.46), cementum (1.51), and bone (1.68) were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765) and in cementum (595-990), highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations. PMID:25856386

  6. Ethical issues in Alzheimer's disease research involving human subjects.

    Science.gov (United States)

    Davis, Dena S

    2017-12-01

    As we aggressively pursue research to cure and prevent Alzheimer's disease, we encounter important ethical challenges. None of these challenges, if handled thoughtfully, would pose insurmountable barriers to research. But if they are ignored, they could slow the research process, alienate potential study subjects and do damage to research recruits and others. These challenges are (1) the necessity of very large cohorts of research subjects, recruited for lengthy studies, probably ending only in the subjects' death; (2) the creation of cohorts of 'study ready' volunteers, many of whom will be competent to consent at the beginning of the process, but move into cognitive impairment later; (3) reliance on adaptive trial design, creating challenges for informed consent, equipoise and justice; (4) the use of biomarkers and predictive tests that describe risk rather than certainty, and that can threaten participants' welfare if the information is obtained by insurance companies or long-term care providers; (5) the use of study partners that creates unique risks of harm to the relationship of subject and study partner. We need greater attention, at all levels, to these complex ethical issues. Work on these issues should be included in research plans, from the federal to the local, and should be supported through NIH in the same way that it supported work on the ethical, legal and social implications of genetic research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Mineral density volume gradients in normal and diseased human tissues.

    Directory of Open Access Journals (Sweden)

    Sabra I Djomehri

    Full Text Available Clinical computed tomography provides a single mineral density (MD value for heterogeneous calcified tissues containing early and late stage pathologic formations. The novel aspect of this study is that, it extends current quantitative methods of mapping mineral density gradients to three dimensions, discretizes early and late mineralized stages, identifies elemental distribution in discretized volumes, and correlates measured MD with respective calcium (Ca to phosphorus (P and Ca to zinc (Zn elemental ratios. To accomplish this, MD variations identified using polychromatic radiation from a high resolution micro-computed tomography (micro-CT benchtop unit were correlated with elemental mapping obtained from a microprobe X-ray fluorescence (XRF using synchrotron monochromatic radiation. Digital segmentation of tomograms from normal and diseased tissues (N=5 per group; 40-60 year old males contained significant mineral density variations (enamel: 2820-3095 mg/cc, bone: 570-1415 mg/cc, cementum: 1240-1340 mg/cc, dentin: 1480-1590 mg/cc, cementum affected by periodontitis: 1100-1220 mg/cc, hypomineralized carious dentin: 345-1450 mg/cc, hypermineralized carious dentin: 1815-2740 mg/cc, and dental calculus: 1290-1770 mg/cc. A plausible linear correlation between segmented MD volumes and elemental ratios within these volumes was established, and Ca/P ratios for dentin (1.49, hypomineralized dentin (0.32-0.46, cementum (1.51, and bone (1.68 were observed. Furthermore, varying Ca/Zn ratios were distinguished in adapted compared to normal tissues, such as in bone (855-2765 and in cementum (595-990, highlighting Zn as an influential element in prompting observed adaptive properties. Hence, results provide insights on mineral density gradients with elemental concentrations and elemental footprints that in turn could aid in elucidating mechanistic processes for pathologic formations.

  8. Automation Diagnosis of Skin Disease in Humans using Dempster-Shafer Method

    Science.gov (United States)

    Khairina, Dyna Marisa; Hatta, Heliza Rahmania; Rustam; Maharani, Septya

    2018-02-01

    Skin disease is an infectious disease that is common in people of all ages. Disorders of the skin often occur because there are factors, among others, are climate, environment, shelter, unhealthy living habits, allergies and others. Skin diseases in Indonesia are mostly caused by bacterial, fungal, parasitic, and allergies. The objective of the research is to diagnose skin diseases in humans by using the method of making decision tree then performing the search by forward chaining and calculating the probability value of Dempster-Shafer method. The results of research in the form of an automated system that can resemble an expert in diagnosing skin disease accurately and can help in overcoming the problem of skin diseases.

  9. Analysis of the genetic basis of disease in the context of worldwide human relationships and migration.

    Directory of Open Access Journals (Sweden)

    Erik Corona

    2013-05-01

    Full Text Available Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation.

  10. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery

    Science.gov (United States)

    Smith, Alec S.T.; Davis, Jennifer; Lee, Gabsang; Mack, David L.

    2016-01-01

    Engineered in vitro models using human cells, particularly patient-derived induced pluripotent stem cells (iPSCs), offer a potential solution to issues associated with the use of animals for studying disease pathology and drug efficacy. Given the prevalence of muscle diseases in human populations, an engineered tissue model of human skeletal muscle could provide a biologically accurate platform to study basic muscle physiology, disease progression, and drug efficacy and/or toxicity. Such platforms could be used as phenotypic drug screens to identify compounds capable of alleviating or reversing congenital myopathies, such as Duchene muscular dystrophy (DMD). Here, we review current skeletal muscle modeling technologies with a specific focus on efforts to generate biomimetic systems for investigating the pathophysiology of dystrophic muscle. PMID:27109386

  11. Biodiversity loss, emerging infectious diseases and impact on human and crops

    International Nuclear Information System (INIS)

    Shinwari, Z.K.; Gilani, S.A.; Khan, A.L.

    2012-01-01

    We are losing biodiversity through several factors ranging from global warming, climatic change, unsustainable use of natural resources, human settlements, demand for food, medicine etc. Consequently, the biodiversity losses are causing emergence of infectious diseases (EIDs) which are making them more virulent than the past. Both biodiversity loss and emergence of diseases significantly impact the human derived benefits in-terms of economy and food. Ecological stability, productivity and food-web interactions are indirectly correlated with biodiversity and any change in these will cause losses in biodiversity that would certainly influence the human derived benefits and crops. The current article reviews the biodiversity losses and emerging infectious diseases at various levels reported by recent literature which will help in current status of EIDs and future recommendations. (author)

  12. Perturbation of the Human Microbiome as a Contributor to Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Bayan Missaghi

    2014-06-01

    Full Text Available The human microbiome consist of the composite genome of native flora that have evolved with humanity over millennia and which contains 150-fold more genes than the human genome. A “healthy” microbiome plays an important role in the maintenance of health and prevention of illness, inclusive of autoimmune disease such as inflammatory bowel disease (IBD. IBD is a prevalent spectrum of disorders, most notably defined by Crohn’s disease (CD and ulcerative colitis (UC, which are associated with considerable suffering, morbidity, and cost. This review presents an outline of the loss of a normal microbiome as an etiology of immune dysregulation and IBD pathogenesis initiation. We, furthermore, summarize the knowledge on the role of a healthy microbiome in terms of its diversity and important functional elements and, lastly, conclude with some of the therapeutic interventions and modalities that are now being explored as potential applications of microbiome-host interactions.

  13. Insights into the transmission of respiratory infectious diseases through empirical human contact networks

    Science.gov (United States)

    Huang, Chunlin; Liu, Xingwu; Sun, Shiwei; Li, Shuai Cheng; Deng, Minghua; He, Guangxue; Zhang, Haicang; Wang, Chao; Zhou, Yang; Zhao, Yanlin; Bu, Dongbo

    2016-01-01

    In this study, we present representative human contact networks among Chinese college students. Unlike schools in the US, human contacts within Chinese colleges are extremely clustered, partly due to the highly organized lifestyle of Chinese college students. Simulations of influenza spreading across real contact networks are in good accordance with real influenza records; however, epidemic simulations across idealized scale-free or small-world networks show considerable overestimation of disease prevalence, thus challenging the widely-applied idealized human contact models in epidemiology. Furthermore, the special contact pattern within Chinese colleges results in disease spreading patterns distinct from those of the US schools. Remarkably, class cancelation, though simple, shows a mitigating power equal to quarantine/vaccination applied on ~25% of college students, which quantitatively explains its success in Chinese colleges during the SARS period. Our findings greatly facilitate reliable prediction of epidemic prevalence, and thus should help establishing effective strategies for respiratory infectious diseases control. PMID:27526868

  14. New perspectives on evolutionary medicine: the relevance of microevolution for human health and disease.

    Science.gov (United States)

    Rühli, Frank Jakobus; Henneberg, Maciej

    2013-04-29

    Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations.

  15. New perspectives on evolutionary medicine: the relevance of microevolution for human health and disease

    Science.gov (United States)

    2013-01-01

    Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations. PMID:23627943

  16. Circular RNAs: Biogenesis, Function and Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    John Greene

    2017-06-01

    potential disease biomarkers and therapeutic targets in cancer.

  17. Enhanced vulnerability of human proteins towards disease-associated inactivation through divergent evolution.

    Science.gov (United States)

    Medina-Carmona, Encarnación; Fuchs, Julian E; Gavira, Jose A; Mesa-Torres, Noel; Neira, Jose L; Salido, Eduardo; Palomino-Morales, Rogelio; Burgos, Miguel; Timson, David J; Pey, Angel L

    2017-09-15

    Human proteins are vulnerable towards disease-associated single amino acid replacements affecting protein stability and function. Interestingly, a few studies have shown that consensus amino acids from mammals or vertebrates can enhance protein stability when incorporated into human proteins. Here, we investigate yet unexplored relationships between the high vulnerability of human proteins towards disease-associated inactivation and recent evolutionary site-specific divergence of stabilizing amino acids. Using phylogenetic, structural and experimental analyses, we show that divergence from the consensus amino acids at several sites during mammalian evolution has caused local protein destabilization in two human proteins linked to disease: cancer-associated NQO1 and alanine:glyoxylate aminotransferase, mutated in primary hyperoxaluria type I. We demonstrate that a single consensus mutation (H80R) acts as a disease suppressor on the most common cancer-associated polymorphism in NQO1 (P187S). The H80R mutation reactivates P187S by enhancing FAD binding affinity through local and dynamic stabilization of its binding site. Furthermore, we show how a second suppressor mutation (E247Q) cooperates with H80R in protecting the P187S polymorphism towards inactivation through long-range allosteric communication within the structural ensemble of the protein. Our results support that recent divergence of consensus amino acids may have occurred with neutral effects on many functional and regulatory traits of wild-type human proteins. However, divergence at certain sites may have increased the propensity of some human proteins towards inactivation due to disease-associated mutations and polymorphisms. Consensus mutations also emerge as a potential strategy to identify structural hot-spots in proteins as targets for pharmacological rescue in loss-of-function genetic diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please

  18. Lipidomic analysis of epidermal lipids: a tool to predict progression of inflammatory skin disease in humans.

    Science.gov (United States)

    Li, Shan; Ganguli-Indra, Gitali; Indra, Arup K

    2016-05-01

    Lipidomics is the large-scale profiling and characterization of lipid species in a biological system using mass spectrometry. The skin barrier is mainly comprised of corneocytes and a lipid-enriched extracellular matrix. The major skin lipids are ceramides, cholesterol and free fatty acids (FFA). Lipid compositions are altered in inflammatory skin disorders with disrupted skin barrier such as atopic dermatitis (AD). Here we discuss some of the recent applications of lipidomics in human skin biology and in inflammatory skin diseases such as AD, psoriasis and Netherton syndrome. We also review applications of lipidomics in human skin equivalent and in pre-clinical animal models of skin diseases to gain insight into the pathogenesis of the skin disease. Expert commentary: Skin lipidomics analysis could be a fast, reliable and noninvasive tool to characterize the skin lipid profile and to monitor the progression of inflammatory skin diseases such as AD.

  19. Dissecting the role of AMP-activated protein kinase in human diseases

    Directory of Open Access Journals (Sweden)

    Jin Li

    2017-05-01

    Full Text Available AMP-activated protein kinase (AMPK, known as a sensor and a master of cellular energy balance, integrates various regulatory signals including anabolic and catabolic metabolic processes. Accompanying the application of genetic methods and a plethora of AMPK agonists, rapid progress has identified AMPK as an attractive therapeutic target for several human diseases, such as cancer, type 2 diabetes, atherosclerosis, myocardial ischemia/reperfusion injury and neurodegenerative disease. The role of AMPK in metabolic and energetic modulation both at the intracellular and whole body levels has been reviewed elsewhere. In the present review, we summarize and update the paradoxical role of AMPK implicated in the diseases mentioned above and put forward the challenge encountered. Thus it will be expected to provide important clues for exploring rational methods of intervention in human diseases.

  20. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Afford New Opportunities in Inherited Cardiovascular Disease Modeling

    Directory of Open Access Journals (Sweden)

    Daniel R. Bayzigitov

    2016-01-01

    Full Text Available Fundamental studies of molecular and cellular mechanisms of cardiovascular disease pathogenesis are required to create more effective and safer methods of their therapy. The studies can be carried out only when model systems that fully recapitulate pathological phenotype seen in patients are used. Application of laboratory animals for cardiovascular disease modeling is limited because of physiological differences with humans. Since discovery of induced pluripotency generating induced pluripotent stem cells has become a breakthrough technology in human disease modeling. In this review, we discuss a progress that has been made in modeling inherited arrhythmias and cardiomyopathies, studying molecular mechanisms of the diseases, and searching for and testing drug compounds using patient-specific induced pluripotent stem cell-derived cardiomyocytes.

  1. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    Science.gov (United States)

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  2. Functional Connectivity under Optogenetic Control Allows Modeling of Human Neuromuscular Disease.

    Science.gov (United States)

    Steinbeck, Julius A; Jaiswal, Manoj K; Calder, Elizabeth L; Kishinevsky, Sarah; Weishaupt, Andreas; Toyka, Klaus V; Goldstein, Peter A; Studer, Lorenz

    2016-01-07

    Capturing the full potential of human pluripotent stem cell (PSC)-derived neurons in disease modeling and regenerative medicine requires analysis in complex functional systems. Here we establish optogenetic control in human PSC-derived spinal motorneurons and show that co-culture of these cells with human myoblast-derived skeletal muscle builds a functional all-human neuromuscular junction that can be triggered to twitch upon light stimulation. To model neuromuscular disease we incubated these co-cultures with IgG from myasthenia gravis patients and active complement. Myasthenia gravis is an autoimmune disorder that selectively targets neuromuscular junctions. We saw a reversible reduction in the amplitude of muscle contractions, representing a surrogate marker for the characteristic loss of muscle strength seen in this disease. The ability to recapitulate key aspects of disease pathology and its symptomatic treatment suggests that this neuromuscular junction assay has significant potential for modeling of neuromuscular disease and regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Understanding multicellular function and disease with human tissue-specific networks

    Science.gov (United States)

    Greene, Casey S.; Krishnan, Arjun; Wong, Aaron K.; Ricciotti, Emanuela; Zelaya, Rene A.; Himmelstein, Daniel S.; Zhang, Ran; Hartmann, Boris M.; Zaslavsky, Elena; Sealfon, Stuart C.; Chasman, Daniel I.; FitzGerald, Garret A.; Dolinski, Kara; Grosser, Tilo; Troyanskaya, Olga G.

    2016-01-01

    Tissue and cell-type identity lie at the core of human physiology and disease. Understanding the genetic underpinnings of complex tissues and individual cell lineages is crucial for developing improved diagnostics and therapeutics. We present genome-wide functional interaction networks for 144 human tissues and cell types developed using a data-driven Bayesian methodology that integrates thousands of diverse experiments spanning tissue and disease states. Tissue-specific networks predict lineage-specific responses to perturbation, reveal genes’ changing functional roles across tissues, and illuminate disease-disease relationships. We introduce NetWAS, which combines genes with nominally significant GWAS p-values and tissue-specific networks to identify disease-gene associations more accurately than GWAS alone. Our webserver, GIANT, provides an interface to human tissue networks through multi-gene queries, network visualization, analysis tools including NetWAS, and downloadable networks. GIANT enables systematic exploration of the landscape of interacting genes that shape specialized cellular functions across more than one hundred human tissues and cell types. PMID:25915600

  4. Humans in a Dish: The Potential of Organoids in Modeling Immunity and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Nino Iakobachvili

    2017-12-01

    Full Text Available For many decades, human infectious diseases have been studied in immortalized cell lines, isolated primary cells from blood and a range of animal hosts. This research has been of fundamental importance in advancing our understanding of host and pathogen responses but remains limited by the absence of multicellular context and inherent differences in animal immune systems that result in altered immune responses. Recent developments in stem cell biology have led to the in vitro growth of organoids that faithfully recapitulate a variety of human tissues including lung, intestine and brain amongst many others. Organoids are derived from human stem cells and retain the genomic background, cellular organization and functionality of their tissue of origin. Thus they have been widely used to characterize stem cell development, numerous cancers and genetic diseases. We believe organoid technology can be harnessed to study host–pathogen interactions resulting in a more physiologically relevant model that yields more predictive data of human infectious diseases than current systems. Here, we highlight recent work and discuss the potential of human stem cell-derived organoids in studying infectious diseases and immunity.

  5. Human case of West Nile neuroinvasive disease in Portugal, summer 2015.

    Science.gov (United States)

    Zé-Zé, Líbia; Proença, Paula; Osório, Hugo C; Gomes, Salomé; Luz, Teresa; Parreira, Paulo; Fevereiro, Miguel; Alves, Maria João

    2015-01-01

    A case of West Nile virus (WNV) infection was reported in the Algarve region, Portugal, in the first week of September 2015. WNV is known to circulate in Portugal, with occasional reports in horses and birds (2004 to 2011) and very sporadically human cases (in 2004 and in 2010). Here we present the clinical and laboratory aspects related to the first human case of West Nile neuroinvasive disease reported in Portugal.

  6. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  7. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease.

    Science.gov (United States)

    Beraldi, Rosanna; Chan, Chun-Hung; Rogers, Christopher S; Kovács, Attila D; Meyerholz, David K; Trantzas, Constantin; Lambertz, Allyn M; Darbro, Benjamin W; Weber, Krystal L; White, Katherine A M; Rheeden, Richard V; Kruer, Michael C; Dacken, Brian A; Wang, Xiao-Jun; Davis, Bryan T; Rohret, Judy A; Struzynski, Jason T; Rohret, Frank A; Weimer, Jill M; Pearce, David A

    2015-11-15

    Ataxia telangiectasia (AT) is a progressive multisystem disorder caused by mutations in the AT-mutated (ATM) gene. AT is a neurodegenerative disease primarily characterized by cerebellar degeneration in children leading to motor impairment. The disease progresses with other clinical manifestations including oculocutaneous telangiectasia, immune disorders, increased susceptibly to cancer and respiratory infections. Although genetic investigations and physiological models have established the linkage of ATM with AT onset, the mechanisms linking ATM to neurodegeneration remain undetermined, hindering therapeutic development. Several murine models of AT have been successfully generated showing some of the clinical manifestations of the disease, however they do not fully recapitulate the hallmark neurological phenotype, thus highlighting the need for a more suitable animal model. We engineered a novel porcine model of AT to better phenocopy the disease and bridge the gap between human and current animal models. The initial characterization of AT pigs revealed early cerebellar lesions including loss of Purkinje cells (PCs) and altered cytoarchitecture suggesting a developmental etiology for AT and could advocate for early therapies for AT patients. In addition, similar to patients, AT pigs show growth retardation and develop motor deficit phenotypes. By using the porcine system to model human AT, we established the first animal model showing PC loss and motor features of the human disease. The novel AT pig provides new opportunities to unmask functions and roles of ATM in AT disease and in physiological conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease

    Science.gov (United States)

    Beraldi, Rosanna; Chan, Chun-Hung; Rogers, Christopher S.; Kovács, Attila D.; Meyerholz, David K.; Trantzas, Constantin; Lambertz, Allyn M.; Darbro, Benjamin W.; Weber, Krystal L.; White, Katherine A.M.; Rheeden, Richard V.; Kruer, Michael C.; Dacken, Brian A.; Wang, Xiao-Jun; Davis, Bryan T.; Rohret, Judy A.; Struzynski, Jason T.; Rohret, Frank A.; Weimer, Jill M.; Pearce, David A.

    2015-01-01

    Ataxia telangiectasia (AT) is a progressive multisystem disorder caused by mutations in the AT-mutated (ATM) gene. AT is a neurodegenerative disease primarily characterized by cerebellar degeneration in children leading to motor impairment. The disease progresses with other clinical manifestations including oculocutaneous telangiectasia, immune disorders, increased susceptibly to cancer and respiratory infections. Although genetic investigations and physiological models have established the linkage of ATM with AT onset, the mechanisms linking ATM to neurodegeneration remain undetermined, hindering therapeutic development. Several murine models of AT have been successfully generated showing some of the clinical manifestations of the disease, however they do not fully recapitulate the hallmark neurological phenotype, thus highlighting the need for a more suitable animal model. We engineered a novel porcine model of AT to better phenocopy the disease and bridge the gap between human and current animal models. The initial characterization of AT pigs revealed early cerebellar lesions including loss of Purkinje cells (PCs) and altered cytoarchitecture suggesting a developmental etiology for AT and could advocate for early therapies for AT patients. In addition, similar to patients, AT pigs show growth retardation and develop motor deficit phenotypes. By using the porcine system to model human AT, we established the first animal model showing PC loss and motor features of the human disease. The novel AT pig provides new opportunities to unmask functions and roles of ATM in AT disease and in physiological conditions. PMID:26374845

  9. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    Energy Technology Data Exchange (ETDEWEB)

    Yannam, Govardhana Rao [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Han, Bing [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Setoyama, Kentaro [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamamoto, Toshiyuki [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Ito, Ryotaro; Brooks, Jenna M. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Guzman-Lepe, Jorge [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Galambos, Csaba [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Fong, Jason V. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Deutsch, Melvin; Quader, Mubina A. [Department of Radiation Oncology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamanouchi, Kosho [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York (United States); Kabarriti, Rafi; Mehta, Keyur [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Soto-Gutierrez, Alejandro [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  10. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    International Nuclear Information System (INIS)

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro

    2014-01-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury

  11. Genetic variation in lipid desaturases and its impact on the development of human disease.

    Science.gov (United States)

    Merino, Diana M; Ma, David W L; Mutch, David M

    2010-06-18

    Perturbations in lipid metabolism characterize many of the chronic diseases currently plaguing our society, such as obesity, diabetes, and cardiovascular disease. Thus interventions that target plasma lipid levels remain a primary goal to manage these diseases. The determinants of plasma lipid levels are multi-factorial, consisting of both genetic and lifestyle components. Recent evidence indicates that fatty acid desaturases have an important role in defining plasma and tissue lipid profiles. This review will highlight the current state-of-knowledge regarding three desaturases (Scd-1, Fads1 and Fads2) and their potential roles in disease onset and development. Although research in rodent models has provided invaluable insight into the regulation and functions of these desaturases, the extent to which murine research can be translated to humans remains unclear. Evidence emerging from human-based research demonstrates that genetic variation in human desaturase genes affects enzyme activity and, consequently, disease risk factors. Moreover, this genetic variation may have a trans-generational effect via breastfeeding. Therefore inter-individual variation in desaturase function is attributed to both genetic and lifestyle components. As such, population-based research regarding the role of desaturases on disease risk is challenged by this complex gene-lifestyle paradigm. Unravelling the contribution of each component is paramount for understanding the inter-individual variation that exists in plasma lipid profiles, and will provide crucial information to develop personalized strategies to improve health management.

  12. Effect of cocoa/chocolate ingestion on brachial artery flow-mediated dilation and its relevance to cardiovascular health and disease in humans.

    Science.gov (United States)

    Monahan, Kevin D

    2012-11-15

    Prospective studies indicate that high intake of dietary flavanols, such as those contained in cocoa/chocolate, are associated with reduced rates of cardiovascular-related morbidity and mortality in humans. Numerous mechanisms may underlie these associations such as favorable effects of flavanols on blood pressure, platelet aggregation, thrombosis, inflammation, and the vascular endothelium. The brachial artery flow-mediated dilation (FMD) technique has emerged as a robust method to quantify endothelial function in humans. Collectively, the preponderance of evidence indicates that FMD is a powerful surrogate measure for firm cardiovascular endpoints, such as cardiovascular-related mortality, in humans. Thus, literally thousands of studies have utilized this technique to document group differences in FMD, as well as to assess the effects of various interventions on FMD. In regards to the latter, numerous studies indicate that both acute and chronic ingestion of cocoa/chocolate increases FMD in humans. Increases in FMD after cocoa/chocolate ingestion appear to be dose-dependent such that greater increases in FMD are observed after ingestion of larger quantities. The mechanisms underlying these responses are likely diverse, however most data suggest an effect of increased nitric oxide bioavailability. Thus, positive vascular effects of cocoa/chocolate on the endothelium may underlie (i.e., be linked mechanistically to) reductions in cardiovascular risk in humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Comparison of transforming growth factor beta expression in healthy and diseased human tendon.

    Science.gov (United States)

    Goodier, Henry C J; Carr, Andrew J; Snelling, Sarah J B; Roche, Lucy; Wheway, Kim; Watkins, Bridget; Dakin, Stephanie G

    2016-02-17

    Diseased tendons are characterised by fibrotic scar tissue, which adversely affects tendon structure and function and increases the likelihood of re-injury. The mechanisms and expression profiles of fibrosis in diseased tendon is understudied compared to pulmonary and renal tissues, where transforming growth factor (TGF)β and its associated superfamily are known to be key drivers of fibrosis and modulate extracellular matrix homeostasis. We hypothesised that differential expression of TGFβ superfamily members would exist between samples of human rotator cuff tendons with established disease compared to healthy control tendons. Healthy and diseased rotator cuff tendons were collected from patients presenting to an orthopaedic referral centre. Diseased tendinopathic (intact) and healthy rotator cuff tendons were collected via ultrasound-guided biopsy and torn tendons were collected during routine surgical debridement. Immunohistochemistry and quantitative real-time polymerase chain reaction were used to investigate the protein and gene expression profiles of TGFβ superfamily members in these healthy and diseased tendons. TGFβ superfamily members were dysregulated in diseased compared to healthy tendons. Specifically, TGFβ-1, TGFβ receptor (R)1 and TGFβ R2 proteins were reduced (p tendons. At the mRNA level, TGFβ R1 was significantly reduced in samples of diseased tendons, whereas TGFβ R2 was increased (p tendon disease. We propose that downregulation of TGFβ pathways in established tendon disease may be a protective response to limit disease-associated fibrosis. The disruption of the TGFβ axis with disease suggests associated downstream pathways may be important for maintaining healthy tendon homeostasis. The findings from our study suggest that patients with established tendon disease would be unlikely to benefit from therapeutic TGFβ blockade, which has been investigated as a treatment strategy in several animal models. Future studies should investigate

  14. Human infectious disease burdens decrease with urbanization but not with biodiversity.

    Science.gov (United States)

    Wood, Chelsea L; McInturff, Alex; Young, Hillary S; Kim, DoHyung; Lafferty, Kevin D

    2017-06-05

    Infectious disease burdens vary from country to country and year to year due to ecological and economic drivers. Recently, Murray et al. (Murray CJ et al 2012 Lancet 380 , 2197-2223. (doi:10.1016/S0140-6736(12)61689-4)) estimated country-level morbidity and mortality associated with a variety of factors, including infectious diseases, for the years 1990 and 2010. Unlike other databases that report disease prevalence or count outbreaks per country, Murray et al. report health impacts in per-person disability-adjusted life years (DALYs), allowing comparison across diseases with lethal and sublethal health effects. We investigated the spatial and temporal relationships between DALYs lost to infectious disease and potential demographic, economic, environmental and biotic drivers, for the 60 intermediate-sized countries where data were available and comparable. Most drivers had unique associations with each disease. For example, temperature was positively associated with some diseases and negatively associated with others, perhaps due to differences in disease agent thermal optima, transmission modes and host species identities. Biodiverse countries tended to have high disease burdens, consistent with the expectation that high diversity of potential hosts should support high disease transmission. Contrary to the dilution effect hypothesis, increases in biodiversity over time were not correlated with improvements in human health, and increases in forestation over time were actually associated with increased disease burden. Urbanization and wealth were associated with lower burdens for many diseases, a pattern that could arise from increased access to sanitation and healthcare in cities and increased investment in healthcare. The importance of urbanization and wealth helps to explain why most infectious diseases have become less burdensome over the past three decades, and points to possible levers for further progress in improving global public health.This article is part

  15. Protecting the Innocence of Youth: Moral Sanctity Values Underlie Censorship From Young Children.

    Science.gov (United States)

    Anderson, Rajen A; Masicampo, E J

    2017-11-01

    Three studies examined the relationship between people's moral values (drawing on moral foundations theory) and their willingness to censor immoral acts from children. Results revealed that diverse moral values did not predict censorship judgments. It was not the case that participants who valued loyalty and authority, respectively, sought to censor depictions of disloyal and disobedient acts. Rather, censorship intentions were predicted by a single moral value-sanctity. The more people valued sanctity, the more willing they were to censor from children, regardless of the types of violations depicted (impurity, disloyalty, disobedience, etc.). Furthermore, people who valued sanctity objected to indecent exposure only to apparently innocent and pure children-those who were relatively young and who had not been previously exposed to immoral acts. These data suggest that sanctity, purity, and the preservation of innocence underlie intentions to censor from young children.

  16. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information

    Directory of Open Access Journals (Sweden)

    Wang S Alex

    2010-01-01

    Full Text Available Abstract Background The genetic contributions to human common disorders and mouse genetic models of disease are complex and often overlapping. In common human diseases, unlike classical Mendelian disorders, genetic factors generally have small effect sizes, are multifactorial, and are highly pleiotropic. Likewise, mouse genetic models of disease often have pleiotropic and overlapping phenotypes. Moreover, phenotypic descriptions in the literature in both human and mouse are often poorly characterized and difficult to compare directly. Methods In this report, human genetic association results from the literature are summarized with regard to replication, disease phenotype, and gene specific results; and organized in the context of a systematic disease ontology. Similarly summarized mouse genetic disease models are organized within the Mammalian Phenotype ontology. Human and mouse disease and phenotype based gene sets are identified. These disease gene sets are then compared individually and in large groups through dendrogram analysis and hierarchical clustering analysis. Results Human disease and mouse phenotype gene sets are shown to group into disease and phenotypically relevant groups at both a coarse and fine level based on gene sharing. Conclusion This analysis provides a systematic and global perspective on the genetics of common human disease as compared to itself and in the context of mouse genetic models of disease.

  17. Prioritizing Zoonotic Diseases: Differences in Perspectives Between Human and Animal Health Professionals in North America.

    Science.gov (United States)

    Ng, V; Sargeant, J M

    2016-05-01

    Zoonoses pose a significant burden of illness in North America. Zoonoses represent an additional threat to public health because the natural reservoirs are often animals, particularly wildlife, thus eluding control efforts such as quarantine, vaccination and social distancing. As there are limited resources available, it is necessary to prioritize diseases in order to allocate resources to those posing the greatest public health threat. Many studies have attempted to prioritize zoonoses, but challenges exist. This study uses a quantitative approach, conjoint analysis (CA), to overcome some limitations of traditional disease prioritization exercises. We used CA to conduct a zoonoses prioritization study involving a range of human and animal health professionals across North America; these included epidemiologists, public health practitioners, research scientists, physicians, veterinarians, laboratory technicians and nurses. A total of 699 human health professionals (HHP) and 585 animal health professionals (AHP) participated in this study. We used CA to prioritize 62 zoonotic diseases using 21 criteria. Our findings suggest CA can be used to produce reasonable criteria scores for disease prioritization. The fitted models were satisfactory for both groups with a slightly better fit for AHP compared to HHP (84.4% certainty fit versus 83.6%). Human-related criteria were more influential for HHP in their decision to prioritize zoonoses, while animal-related criteria were more influential for AHP resulting in different disease priority lists. While the differences were not statistically significant, a difference of one or two ranks could be considered important for some individuals. A potential solution to address the varying opinions is discussed. The scientific framework for disease prioritization presented can be revised on a regular basis by updating disease criteria to reflect diseases as they evolve over time; such a framework is of value allowing diseases of

  18. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    NRF1. Some of these genes are involved with brain diseases, such as Alzheimer’s Disease (AD, Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorder, and Brain Neoplasms. For example, the search of enriched pathways showed that top ten E2 interacting genes in AD—APOE, APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B, MAPT, PSEN2 and TNF—underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG AD pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1. These genes are also responsive to the following EEDs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1, BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1, dibutyl phthalate (DPYSL2, EIF2S1, and ENO1, diethylhexyl phthalate (DPYSL2 and MAPT. To validate findings from Comparative Toxicogenomics Database (CTD curated data, we used Bayesian network (BN analysis on microarray data of AD patients. We observed that both gender and NRF1 were associated with AD. The female NRF1 gene network is completely different from male human AD patients. AD-associated NRF1 target genes—APLP1, APP, GRIN1, GRIN2B, MAPT, PSEN2, PEN2, and IDE—are also regulated by E2. NRF1 regulates targets genes with diverse functions, including cell growth, apoptosis/autophagy, mitochondrial biogenesis, genomic instability, neurogenesis, neuroplasticity, synaptogenesis, and senescence. By activating or repressing the genes involved in cell proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy, angiogenesis, estrogen signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide range of DNA damage, genomic instability and DNA methylation and transcriptional repression, NRF1 may act as a major regulator of EEDs-induced brain health deficits. In summary, estrogenic endocrine disrupting chemicals-modified genes in brain health deficits are part of both estrogen and NRF1 signaling pathways. Our

  19. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases.

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-12-13

    these genes are involved with brain diseases, such as Alzheimer's Disease (AD), Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorder, and Brain Neoplasms. For example, the search of enriched pathways showed that top ten E2 interacting genes in AD- APOE , APP , ATP5A1 , CALM1 , CASP3 , GSK3B , IL1B , MAPT , PSEN2 and TNF- underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) AD pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2 , DPYSL2 , EIF2S1 , ENO1 , MAPT , and PAXIP1 . These genes are also responsive to the following EEDs: ethinyl estradiol ( APBB2 , DPYSL2 , EIF2S1 , ENO1 , MAPT , and PAXIP1 ), BPA ( APBB2 , EIF2S1 , ENO1 , MAPT , and PAXIP1 ), dibutyl phthalate (DPYSL2, EIF2S1, and ENO1), diethylhexyl phthalate ( DPYSL2 and MAPT ). To validate findings from Comparative Toxicogenomics Database (CTD) curated data, we used Bayesian network (BN) analysis on microarray data of AD patients. We observed that both gender and NRF1 were associated with AD. The female NRF1 gene network is completely different from male human AD patients. AD-associated NRF1 target genes- APLP1 , APP , GRIN1 , GRIN2B , MAPT , PSEN2 , PEN2 , and IDE -are also regulated by E2. NRF1 regulates targets genes with diverse functions, including cell growth, apoptosis/autophagy, mitochondrial biogenesis, genomic instability, neurogenesis, neuroplasticity, synaptogenesis, and senescence. By activating or repressing the genes involved in cell proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy, angiogenesis, estrogen signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide range of DNA damage, genomic instability and DNA methylation and transcriptional repression, NRF1 may act as a major regulator of EEDs-induced brain health deficits. In summary, estrogenic endocrine disrupting chemicals-modified genes in brain health deficits are part of both estrogen and NRF1

  20. Prevalence of Hookworm infection and Strongyloidiasis in Cats and Potential Risk Factor of Human Diseases

    Science.gov (United States)

    Sedionoto, Blego; Anamnart, Witthaya

    2018-02-01

    Hookworm infection and Stronyloidiasis are public health problem in the worldwide which both of them could infective in human by penetrated on skin and they have potential risk from Gastrointestinal zoonotic helminths of pets, including cats. We investigated the prevalence soil transmitted helminths infection in human and cats used modified Formal-Ether Concentration and agar plate culture. Fecal samples of 23 cats and human from Naitung and Subua Villages (area study 1), and fecal samples of 15 cats and 17 humans from Thasala Beach villages (area study 2) were collected. Result of study in area study 1 showed prevalence of infection in human was not hookworm and strongyloidiasis but 10% humans have infected Ascaris and Tricuris, and in cats have infected by hookworm 75.2% and S. strercoralis 8.5%, toxocara 13%, spirometra 13% and overall prevalence 82.5%. In area study 2 showed in human has infected by Trichuris 100% and S. stercoralis 29.4% and in cats have infected by hookworm 100% and S. strercoralis 40%, toxocora 20%, and spirometra 20%. Helminth infection found in both humans in two areas study are S. strercoralis. Hookworms were the most common helminth in cats but did not connection with infection in human, while S. strercoralis was helminth infection in cats which has potential zoonotic disease to human.

  1. Nutriepigenomics: the role of nutrition in epigenetic control of human diseases.

    Science.gov (United States)

    Remely, Marlene; Stefanska, Barbara; Lovrecic, Luca; Magnet, Ulrich; Haslberger, Alexander G

    2015-07-01

    Nutrients or even diets affect the epigenome by lifelong remodeling. Nutritional imbalances are associated with noncommunicable diseases. Thus, nutriepigenomics is a promising field in the treatment of complex human diseases. The epigenome is susceptible to changes and can be shaped by nutritional states, especially in prenatal period through transgenerational mechanisms and in early postnatal life when critical developmental processes are taking place. Although more stable, the epigenetic marks in adulthood are also dynamic and modifiable by environmental factors including diet. The present review is focused on the most recent knowledge of epigenetically active nutrients/diets including transgenerational inheritance and prenatal predispositions related to increased risk for cancer, metabolic syndrome, and neurodegenerative diseases.

  2. Probiotics in the treatment of human inflammatory bowel diseases: update 2008.

    Science.gov (United States)

    Fedorak, Richard Neil; Dieleman, Levinus Albert

    2008-07-01

    Probiotic research and clinical trials have been forging ahead over the last decade. Although much has been learnt in relation to probiotic intestinal epithelial-mucosal immune interactions, the evidence for substantial clinical efficacy of probiotics continues to progress much slower. This review outlines the probiotic clinical studies before 2005 that formed the foundation of probiotic clinical trials in inflammatory bowel disease and then examines indepth those inflammatory bowel disease probiotic clinical trials published after 2005 that are leading to new understanding of the role of probiotics in the induction and remission of inflammatory bowel disease in humans.

  3. A New Face of Cardiac Emergencies: Human Immunodeficiency Virus-Related Cardiac Disease.

    Science.gov (United States)

    Tsabedze, Nqoba; Vachiat, Ahmed; Zachariah, Don; Manga, Pravin

    2018-02-01

    The human immunodeficiency virus epidemic is a major health challenge of the twenty-first century as the transition from infectious complications to noncommunicable disease becomes more evident. These patients may present to the emergency department with a variety of cardiovascular diseases, such as acute coronary syndromes, heart failure, pericardial disease, infective endocarditis, venothromboembolism, and other conditions. Increased awareness is needed among health care professionals to enhance adequate identification and promote prompt management of these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. [SWOT Analysis of the National Survey on Current Status of Major Human Parasitic Diseases in China].

    Science.gov (United States)

    ZHU, Hui-hui; ZHOU, Chang-hai; CHEN, Ying-dan; ZANG, Wei; XIAO, Ning; ZHOU, Xiao-nong

    2015-10-01

    The National Survey on Current Status of Major Human Parasitic Diseases in China has been carried out since 2014 under the organization of the National Health and Family Planning Commission of the People's Republic of China. The National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (NIPD, China CDC) provided technical support and was responsible for quality control in this survey. This study used SWOT method to analyze the strengths, weaknesses, opportunities and threats that were encountered by he NIPD, China CDC during the completion of the survey. Accordingly, working strategies were proposed to facilitate the future field work.

  5. RT-ABCDE strategy for management and prevention of human diseases.

    Science.gov (United States)

    Hu, Chun-song

    2008-06-01

    In this article, the authors summarized the RT-ABCDE strategy for the management and prevention of human diseases, which includes ReTro-ABCDE (Examination regularity, Disease and risk factor control, Changing lifestyle and reducing pathways of infection and spread, Biochemical and Antagonistic index control and therapeutic treatment as well as RT--Routine and Right Treatment). The RT-ABCDE strategy, a novel concept and an essential method, should be a routine strategy for disease control and prevention. It should be proposed and applied in both clinical and preventive medicine.

  6. PHD fingers in human diseases: Disorders arising from misinterpreting epigenetic marks

    International Nuclear Information System (INIS)

    Baker, Lindsey A.; Allis, C. David; Wang, Gang G.

    2008-01-01

    Histone covalent modifications regulate many, if not all, DNA-templated processes, including gene expression and DNA damage response. The biological consequences of histone modifications are mediated partially by evolutionarily conserved 'reader/effector' modules that bind to histone marks in a modification- and context-specific fashion and subsequently enact chromatin changes or recruit other proteins to do so. Recently, the Plant Homeodomain (PHD) finger has emerged as a class of specialized 'reader' modules that, in some instances, recognize the methylation status of histone lysine residues, such as histone H3 lysine 4 (H3K4). While mutations in catalytic enzymes that mediate the addition or removal of histone modifications (i.e., 'writers' and 'erasers') are already known to be involved in various human diseases, mutations in the modification-specific 'reader' proteins are only beginning to be recognized as contributing to human diseases. For instance, point mutations, deletions or chromosomal translocations that target PHD fingers encoded by many genes (such as recombination activating gene 2 (RAG2), Inhibitor of Growth (ING), nuclear receptor-binding SET domain-containing 1 (NSD1) and Alpha Thalassaemia and Mental Retardation Syndrome, X-linked (ATRX)) have been associated with a wide range of human pathologies including immunological disorders, cancers, and neurological diseases. In this review, we will discuss the structural features of PHD fingers as well as the diseases for which direct mutation or dysregulation of the PHD finger has been reported. We propose that misinterpretation of the epigenetic marks may serve as a general mechanism for human diseases of this category. Determining the regulatory roles of histone covalent modifications in the context of human disease will allow for a more thorough understanding of normal and pathological development, and may provide innovative therapeutic strategies wherein 'chromatin readers' stand as potential drug

  7. Linking human diseases to animal models using ontology-based phenotype annotation.

    Directory of Open Access Journals (Sweden)

    Nicole L Washington

    2009-11-01

    Full Text Available Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ methodology, wherein the affected entity (E and how it is affected (Q are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM. These human annotations were loaded into our Ontology-Based Database (OBD along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify

  8. Studying human respiratory disease in animals--role of induced and naturally occurring models.

    Science.gov (United States)

    Williams, Kurt; Roman, Jesse

    2016-01-01

    Respiratory disorders like asthma, emphysema, and pulmonary fibrosis affect millions of Americans and many more worldwide. Despite advancements in medical research that have led to improved understanding of the pathophysiology of these conditions and sometimes to new therapeutic interventions, these disorders are for the most part chronic and progressive; current interventions are not curative and do not halt disease progression. A major obstacle to further advancements relates to the absence of animal models that exactly resemble the human condition, which delays the elucidation of relevant mechanisms of action, the unveiling of biomarkers of disease progression, and identification of new targets for intervention in patients. There are currently many induced animal models of human respiratory disease available for study, and even though they mimic features of human disease, discoveries in these models have not always translated into safe and effective treatments in humans. A major obstacle relates to the genetic, anatomical, and functional variations amongst species, which represents the major challenge to overcome when searching for appropriate models of respiratory disease. Nevertheless, rodents, in particular mice, have become the most common species used for experimentation, due to their relatively low cost, size, and adequate understanding of murine genetics, among other advantages. Less well known is the fact that domestic animals also suffer from respiratory illnesses similar to those found in humans. Asthma, bronchitis, pneumonia, and pulmonary fibrosis are among the many disorders occurring naturally in dogs, cats, and horses, among other species. These models might better resemble the human condition and are emphasized here, but further investigations are needed to determine their relevance. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  9. DISEASES

    DEFF Research Database (Denmark)

    Pletscher-Frankild, Sune; Pallejà, Albert; Tsafou, Kalliopi

    2015-01-01

    Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease-gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition...... of human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences. We show that this approach is able to extract half of all manually curated associations with a false positive rate of only 0.16%. Nonetheless, text mining should...... not stand alone, but be combined with other types of evidence. For this reason, we have developed the DISEASES resource, which integrates the results from text mining with manually curated disease-gene associations, cancer mutation data, and genome-wide association studies from existing databases...

  10. High Leptospira Diversity in Animals and Humans Complicates the Search for Common Reservoirs of Human Disease in Rural Ecuador.

    Science.gov (United States)

    Barragan, Veronica; Chiriboga, Jorge; Miller, Erin; Olivas, Sonora; Birdsell, Dawn; Hepp, Crystal; Hornstra, Heidie; Schupp, James M; Morales, Melba; Gonzalez, Manuel; Reyes, Soraya; de la Cruz, Carmen; Keim, Paul; Hartskeerl, Rudy; Trueba, Gabriel; Pearson, Talima

    2016-09-01

    Leptospirosis is a zoonotic disease responsible for high morbidity around the world, especially in tropical and low income countries. Rats are thought to be the main vector of human leptospirosis in urban settings. However, differences between urban and low-income rural communities provide additional insights into the epidemiology of the disease. Our study was conducted in two low-income rural communities near the coast of Ecuador. We detected and characterized infectious leptospira DNA in a wide variety of samples using new real time quantitative PCR assays and amplicon sequencing. We detected infectious leptospira in a high percentage of febrile patients (14.7%). In contrast to previous studies on leptospirosis risk factors, higher positivity was not found in rats (3.0%) but rather in cows (35.8%) and pigs (21.1%). Six leptospira species were identified (L. borgpetersenii, L kirschnerii, L santarosai, L. interrogans, L noguchii, and an intermediate species within the L. licerasiae and L. wolffii clade) and no significant differences in the species of leptospira present in each animal species was detected (χ2 = 9.89, adj.p-value = 0.27). A large portion of the world's human population lives in low-income, rural communities, however, there is limited information about leptospirosis transmission dynamics in these settings. In these areas, exposure to peridomestic livestock is particularly common and high prevalence of infectious leptospira in cows and pigs suggest that they may be the most important reservoir for human transmission. Genotyping clinical samples show that multiple species of leptospira are involved in human disease. As these genotypes were also detected in samples from a variety of animals, genotype data must be used in conjunction with epidemiological data to provide evidence of transmission and the importance of different potential leptospirosis reservoirs.

  11. Current evidence on the transmissibility of chronic wasting disease prions to humans-A systematic review.

    Science.gov (United States)

    Waddell, L; Greig, J; Mascarenhas, M; Otten, A; Corrin, T; Hierlihy, K

    2018-02-01

    A number of prion diseases affect humans, including Creutzfeldt-Jakob disease; most of these are due to genetic mutations in the affected individual and occur sporadically, but some result from transmission of prion proteins from external sources. Of the known animal prion diseases, only bovine spongiform encephalopathy prions have been shown to be transmissible from animals to humans under non-experimental conditions. Chronic wasting disease (CWD) is a prion disease that affects cervids (e.g., deer and elk) in North America and isolated populations in Korea and Europe. Systematic review methodology was used to identify, select, critically appraise and analyse data from relevant research. Studies were evaluated for adherence to good conduct based on their study design following the Cochrane collaboration's approach to grading the quality of evidence and the strength of recommendations (GRADE). Twenty-three studies were included after screening 800 citations from the literature search and evaluating 78 full papers. Studies examined the transmissibility of CWD prions to humans using epidemiological study design, in vitro and in vivo experiments. Five epidemiological studies, two studies on macaques and seven studies on humanized transgenic mice provided no evidence to support the possibility of transmission of CWD prions to humans. Ongoing surveillance in the United States and Canada has not documented CWD transmission to humans. However, two studies on squirrel monkeys provided evidence that transmission of CWD prions resulting in prion disease is possible in these monkeys under experimental conditions and seven in vitro experiments provided evidence that CWD prions can convert human prion protein to a misfolded state. Therefore, future discovery of CWD transmission to humans cannot be entirely ruled out on the basis of current studies, particularly in the light of possible decades-long incubation periods for CWD prions in humans. It would be prudent to continue

  12. The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases.

    Science.gov (United States)

    Brodziak, Andrzej; Ziółko, Ewa; Muc-Wierzgoń, Małgorzata; Nowakowska-Zajdel, Ewa; Kokot, Teresa; Klakla, Katarzyna

    2012-06-01

    This paper presents a new, recently formulated theory, which concerns the etiopathological process of autoimmune diseases. This theory takes into account the existence in the human genome, since approximately 40 million years, of so-called human endogenous retroviruses (HERVs), which are transmitted to descendants "vertically" by the germ cells. It was recently established that these generally silent sequences perform some physiological roles, but occasionally become active and influence the development of some chronic diseases like diabetes, some neoplasms, chronic diseases of the nervous system (eg, sclerosis multiplex), schizophrenia and autoimmune diseases. We present a short synopsis of immunological processes involved in the pathogenesis of autoimmune diseases, such as molecular mimicry, epitope spreading and activation of the superantigen. We then focus on experimental findings related to systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and some diseases of hepar and otorhinal tissues. We conclude the outline of this new model of the development of chronic diseases and indicate the conclusions important for the teaching of the basis of pathology.

  13. Type 2 Diabetes Risk Alleles Demonstrate Extreme Directional Differentiation among Human Populations, Compared to Other Diseases

    Science.gov (United States)

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed

  14. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases.

    Directory of Open Access Journals (Sweden)

    Rong Chen

    Full Text Available Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may

  15. Global burden of human brucellosis: a systematic review of disease frequency.

    Directory of Open Access Journals (Sweden)

    Anna S Dean

    Full Text Available BACKGROUND: This report presents a systematic review of scientific literature published between 1990-2010 relating to the frequency of human brucellosis, commissioned by WHO. The objectives were to identify high quality disease incidence data to complement existing knowledge of the global disease burden and, ultimately, to contribute towards the calculation of a Disability-Adjusted Life Years (DALY estimate for brucellosis. METHODS/PRINCIPAL FINDINGS: Thirty three databases were searched, identifying 2,385 articles relating to human brucellosis. Based on strict screening criteria, 60 studies were selected for quality assessment, of which only 29 were of sufficient quality for data analysis. Data were only available from 15 countries in the regions of Northern Africa and Middle East, Western Europe, Central and South America, Sub-Saharan Africa, and Central Asia. Half of the studies presented incidence data, six of which were longitudinal prospective studies, and half presented seroprevalence data which were converted to incidence rates. Brucellosis incidence varied widely between, and within, countries. Although study biases cannot be ruled out, demographic, occupational, and socioeconomic factors likely play a role. Aggregated data at national or regional levels do not capture these complexities of disease dynamics and, consequently, at-risk populations or areas may be overlooked. In many brucellosis-endemic countries, health systems are weak and passively-acquired official data underestimate the true disease burden. CONCLUSIONS: High quality research is essential for an accurate assessment of disease burden, particularly in Eastern Europe, the Asia-Pacific, Central and South America and Africa where data are lacking. Providing formal epidemiological and statistical training to researchers is essential for improving study quality. An integrated approach to disease surveillance involving both human health and veterinary services would allow a

  16. Genomic risk prediction of complex human disease and its clinical application.

    Science.gov (United States)

    Abraham, Gad; Inouye, Michael

    2015-08-01

    Recent advances in genome-wide association studies have stimulated interest in the genomic prediction of disease risk, potentially enabling individual-level risk estimates for early intervention and improved diagnostic procedures. Here, we review recent findings and approaches to genomic prediction model construction and performance, then contrast the potential benefits of such models in two complex human diseases, aiding diagnosis in celiac disease and prospective risk prediction for cardiovascular disease. Early indications are that optimal application of genomic risk scores will differ substantially for each disease depending on underlying genetic architecture as well as current clinical and public health practice. As costs decline, genomic profiles become common, and popular understanding of risk and its communication improves, genomic risk will become increasingly useful for the individual and the clinician. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Hypoxia as a therapy for mitochondrial disease.

    Science.gov (United States)

    Jain, Isha H; Zazzeron, Luca; Goli, Rahul; Alexa, Kristen; Schatzman-Bone, Stephanie; Dhillon, Harveen; Goldberger, Olga; Peng, Jun; Shalem, Ophir; Sanjana, Neville E; Zhang, Feng; Goessling, Wolfram; Zapol, Warren M; Mootha, Vamsi K

    2016-04-01

    Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability. Genetic or small-molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology, and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction. Copyright © 2016, American Association for the Advancement of Science.

  18. Human infectious disease burdens decrease with urbanization but not with biodiversity

    Science.gov (United States)

    Wood, Chelsea L.; McInturff, Alex; Young, Hillary S.; Kim, DoHyung; Lafferty, Kevin D.

    2017-01-01

    nfectious disease burdens vary from country to country and year to year due to ecological and economic drivers. Recently, Murray et al. (Murray CJ et al. 2012 Lancet 380, 2197–2223. (doi:10.1016/S0140-6736(12)61689-4)) estimated country-level morbidity and mortality associated with a variety of factors, including infectious diseases, for the years 1990 and 2010. Unlike other databases that report disease prevalence or count outbreaks per country, Murray et al. report health impacts in per-person disability-adjusted life years (DALYs), allowing comparison across diseases with lethal and sublethal health effects. We investigated the spatial and temporal relationships between DALYs lost to infectious disease and potential demographic, economic, environmental and biotic drivers, for the 60 intermediate-sized countries where data were available and comparable. Most drivers had unique associations with each disease. For example, temperature was positively associated with some diseases and negatively associated with others, perhaps due to differences in disease agent thermal optima, transmission modes and host species identities. Biodiverse countries tended to have high disease burdens, consistent with the expectation that high diversity of potential hosts should support high disease transmission. Contrary to the dilution effect hypothesis, increases in biodiversity over time were not correlated with improvements in human health, and increases in forestation over time were actually associated with increased disease burden. Urbanization and wealth were associated with lower burdens for many diseases, a pattern that could arise from increased access to sanitation and healthcare in cities and increased investment in healthcare. The importance of urbanization and wealth helps to explain why most infectious diseases have become less burdensome over the past three decades, and points to possible levers for further progress in improving global public health.

  19. KIR and Human Leukocyte Antigen Genotype Associated Risk of Cytomegalovirus Disease in Renal Transplant Patients.

    Science.gov (United States)

    Michelo, Clive M; van der Meer, Arnold; Tijssen, Henk J; Zomer, Ramona; Stelma, Foekje; Hilbrands, Luuk B; Joosten, Irma

    2015-07-01

    Cytomegalovirus(CMV) infections have a significant effect on morbidity and mortality in kidney transplants. We conducted a study to ascertain the association of natural killer cell killer immunoglobulin-like receptors and human leukocyte antigen (HLA) genotype with risk of CMV disease. The 90 CMV-negative patients receiving a first renal transplantation from a CMV-positive donor in this study received triple immunosuppressive therapy and prophylactic CMV treatment for up to 3 months after transplantation. We observed a 43.3% incidence rate of CMV disease within the first year after transplantation. Twenty-seven recipients experienced a rejection episode, 14 of which had CMV disease, mostly after rejection, suggesting that in this group, CMV disease is not a risk factor for rejection. KIR gene or genotype distribution were similar between the CMV diseased and CMV disease-free group. Twenty-seven recipients (30%) carried KIR-AA genotype, of which nine (33%) had CMV disease. Of the remaining 63 (70%) recipients with KIR-BX genotype, 30 (48%) had CMV disease. There was no significant difference between the two genotype groups with regard to occurrence of CMV disease, although there was a trend toward a lower incidence of CMV disease in recipients carrying the KIR-AA genotype. For CMV disease, we found no significant risk associated with the number of activating or inhibitory KIRs. Neither was missing KIR ligands for the inhibitory KIRs (HLA-C1/C2/Bw4) in recipients associated with lower rates of CMV disease. In CMV-negative recipients, genotypic analysis of KIR repertoire and HLA ligands does not provide risk factors for primary CMV disease after renal transplantation.

  20. Protein instability, haploinsufficiency, and cortical hyper-excitability underlie STXBP1 encephalopathy.

    Science.gov (United States)

    Kovacevic, Jovana; Maroteaux, Gregoire; Schut, Desiree; Loos, Maarten; Dubey, Mohit; Pitsch, Julika; Remmelink, Esther; Koopmans, Bastijn; Crowley, James; Cornelisse, L Niels; Sullivan, Patrick F; Schoch, Susanne; Toonen, Ruud F; Stiedl, Oliver; Verhage, Matthijs

    2018-03-12

    De novo heterozygous mutations in STXBP1/Munc18-1 cause early infantile epileptic encephalopathies (EIEE4, OMIM #612164) characterized by infantile epilepsy, developmental delay, intellectual disability, and can include autistic features. We characterized the cellular deficits for an allelic series of seven STXBP1 mutations and developed four mouse models that recapitulate the abnormal EEG activity and cognitive aspects of human STXBP1-encephalopathy. Disease-causing STXBP1 variants supported synaptic transmission to a variable extent on a null background, but had no effect when overexpressed on a heterozygous background. All disease variants had severely decreased protein levels. Together, these cellular studies suggest that impaired protein stability and STXBP1 haploinsufficiency explain STXBP1-encephalopathy and that, therefore, Stxbp1+/- mice provide a valid mouse model. Simultaneous video and EEG recordings revealed that Stxbp1+/- mice with different genomic backgrounds recapitulate the seizure/spasm phenotype observed in humans, characterized by myoclonic jerks and spike-wave discharges that were suppressed by the antiepileptic drug levetiracetam. Mice heterozygous for Stxbp1 in GABAergic neurons only, showed impaired viability, 50% died within 2-3 weeks, and the rest showed stronger epileptic activity. c-Fos staining implicated neocortical areas, but not other brain regions, as the seizure foci. Stxbp1+/- mice showed impaired cognitive performance, hyperactivity and anxiety-like behaviour, without altered social behaviour. Taken together, these data demonstrate the construct, face and predictive validity of Stxbp1+/- mice and point to protein instability, haploinsufficiency and imbalanced excitation in neocortex, as the underlying mechanism of STXBP1-encephalopathy. The mouse models reported here are valid models for development of therapeutic interventions targeting STXBP1-encephalopathy.

  1. Possible roles of transglutaminases in molecular mechanisms responsible for human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Nicola Gaetano Gatta

    2016-11-01

    Full Text Available Transglutaminases are a family of Ca2+-dependent enzymes which catalyze post-translational modifications of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second nucleophilic co-substrates may include monoamines or polyamines (to form mono- or bi-substituted/crosslinked adducts or –OH groups (to form ester linkages. In absence of co-substrates, the nucleophile may be water, resulting in the net deamidation of the glutaminyl residue. Transglutaminase activity has been suggested to be involved in molecular mechanisms responsible for both physiological or pathological processes. In particular, transglutaminase activity has been shown to be responsible for human autoimmune diseases, Celiac Disease is just one of them. Interestingly, neurodegenerative diseases, such as Alzheimer’s Disease, Parkinson’s Disease, supranuclear palsy, Huntington’s Disease and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. This review describes the possible molecular mechanisms by which these enzymes could be responsible for such diseases and the possible use of transglutaminase inhibitors for patients with diseases characterized by aberrant transglutaminase activity.

  2. Genome-wide association study of behavioural and psychiatric features in human prion disease.

    Science.gov (United States)

    Thompson, A G B; Uphill, J; Lowe, J; Porter, M-C; Lukic, A; Carswell, C; Rudge, P; MacKay, A; Collinge, J; Mead, S

    2015-04-21

    Prion diseases are rare neurodegenerative conditions causing highly variable clinical syndromes, which often include prominent neuropsychiatric symptoms. We have recently carried out a clinical study of behavioural and psychiatric symptoms in a large prospective cohort of patients with prion disease in the United Kingdom, allowing us to operationalise specific behavioural/psychiatric phenotypes as traits in human prion disease. Here, we report exploratory genome-wide association analysis on 170 of these patients and 5200 UK controls, looking for single-nucleotide polymorphisms (SNPs) associated with three behavioural/psychiatric phenotypes in the context of prion disease. We also specifically examined a selection of candidate SNPs that have shown genome-wide association with psychiatric conditions in previously published studies, and the codon 129 polymorphism of the prion protein gene, which is known to modify various aspects of the phenotype of prion disease. No SNPs reached genome-wide significance, and there was no evidence of altered burden of known psychiatric risk alleles in relevant prion cases. SNPs showing suggestive evidence of association (Ppsychiatric and neurodegenerative diseases. These include ANK3, SORL1 and a region of chromosome 6p containing several genes implicated in schizophrenia and bipolar disorder. We would encourage others to acquire phenotype data in independent cohorts of patients with prion disease as well as other neurodegenerative and neuropsychiatric conditions, to allow meta-analysis that may shed clearer light on the biological basis of these complex disease manifestations, and the diseases themselves.

  3. Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies.

    Science.gov (United States)

    Jung, Yong Wook; Hysolli, Eriona; Kim, Kun-Yong; Tanaka, Yoshiaki; Park, In-Hyun

    2012-04-01

    The lack of effective treatments for various neurodegenerative disorders has placed huge burdens on society. We review the current status in applying induced pluripotent stem cell (iPSC) technology for the cellular therapy, drug screening, and in-vitro modeling of neurodegenerative diseases. iPSCs are generated from somatic cells by overexpressing four reprogramming factors (Oct4, Sox2, Klf4, and Myc). Like human embryonic stem cells, iPSCs have features of self-renewal and pluripotency, and allow in-vitro disease modeling, drug screening, and cell replacement therapy. Disease-specific iPSCs were derived from patients of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. Neurons differentiated from these iPSCs recapitulated the in-vivo phenotypes, providing platforms for drug screening. In the case of Parkinson's disease, iPSC-derived dopaminergic neurons gave positive therapeutic effect on a rodent Parkinson's disease model as a proof of principle in using iPSCs as sources of cell replacement therapy. Beyond iPSC technology, much effort is being made to generate neurons directly from dermal fibroblasts with neuron-specific transcription factors, which does not require making iPSCs as an intermediate cell type. We summarize recent progress in using iPSCs for modeling the progress and treatment of neurodegenerative diseases and provide evidence for future perspectives in this field.

  4. Celiac disease as a model for the evolution of multifactorial disease in humans.

    Science.gov (United States)

    Sams, Aaron; Hawks, John

    2014-01-01

    Celiac disease (CD) is a multifactorial chronic inflammatory condition that results in injury of the mucosal lining of the small intestine upon ingestion of wheat gluten and related proteins from barley and rye. Although the exact mechanisms leading to CD are not fully understood, the genetic basis of CD has been relatively well characterized. In this review we briefly review the history of discovery, clinical presentation, pathophysiology, and current understanding of the genetics underlying CD risk. Then, we discuss what is known about the current distribution and evolutionary history of genes underlying CD risk in light of other evolutionary models of disease. Specifically, we conclude that the set of loci underlying CD risk did not cohesively evolve as a response to a single past selection event such as the development of agriculture. Rather, deterministic and stochastic evolutionary processes have both contributed to the present distribution of variation in CD risk loci. Selection has shaped some components of this network, but this selection appears to have occurred at different points in the past. Other parts of the CD risk network have likely arisen due to stochastic processes such as genetic drift. Copyright © 2014 Wayne State University Press, Detroit, Michigan 48201-1309.

  5. Alzheimer’s disease is not “brain aging”: neuropathological, genetic, and epidemiological human studies

    Science.gov (United States)

    Head, Elizabeth; Schmitt, Frederick A.; Davis, Paulina R.; Neltner, Janna H.; Jicha, Gregory A.; Abner, Erin L.; Smith, Charles D.; Van Eldik, Linda J.; Kryscio, Richard J.; Scheff, Stephen W.

    2011-01-01

    Human studies are reviewed concerning whether “aging”-related mechanisms contribute to Alzheimer’s disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes involved in APP-related mechanisms, there is no firm connection between genes implicated in human “accelerated aging” diseases (progerias) and AD. The epidemiology of AD in advanced age is highly relevant but deceptively challenging to address given the low autopsy rates in most countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain diseases other than AD afflict older human brains and contribute to cognitive impairment. Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both high-morbidity brain diseases that appear to peak in incidence later than AD chronologically. Because of these common brain diseases of extreme old age, the epidemiology differs between clinical “dementia” and the subset of dementia cases with AD pathology. Additional aging-associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to AD and these hypotheses are discussed. Criteria are proposed to define an “aging-linked” disease, and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging. PMID:21516511

  6. Creutzfeldt-Jakob disease 38 years after diagnostic use of human growth hormone

    NARCIS (Netherlands)

    E.A. Croes (Esther); F. Forey; G.H. Jansen; P.C. Nijssen; C.M. van Duijn (Cornelia)

    2002-01-01

    textabstractA 47 year old man is described who developed pathology proven Creutzfeldt-Jakob disease (CJD) 38 years after receiving a low dose of human derived growth hormone (hGH) as part of a diagnostic procedure. The patient presented with a cerebellar syndrome, which is compatible with iatrogenic

  7. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin

    2012-01-01

    Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (e2, e3, and e4) reflecting single...

  8. The Application of Human iPSCs in Neurological Diseases: From Bench to Bedside

    Directory of Open Access Journals (Sweden)

    Nina Xie

    2016-01-01

    Full Text Available In principle, induced pluripotent stem cells (iPSCs are generated from somatic cells by reprogramming and gaining the capacity to self-renew indefinitely as well as the ability to differentiate into cells of different lineages. Human iPSCs have absolute advantages over human embryonic stem cells (ESCs and animal models in disease modeling, drug screening, and cell replacement therapy. Since Takahashi and Yamanaka first described in 2007 that iPSCs can be generated from human adult somatic cells by retroviral transduction of the four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, disease specific iPSC lines have sprung up worldwide like bamboo shoots after a spring rain, making iPSC one of the hottest and fastest moving topics in modern science. The craze for iPSCs has spread throughout main branches of clinical medicine, covering neurology, hematology, cardiology, endocrinology, hepatology, ophthalmology, and so on. Here in this paper, we will focus on the clinical application of human iPSCs in disease modeling, drug screening, and cell replacement therapy for neurological diseases.

  9. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes.

    Directory of Open Access Journals (Sweden)

    Jibril Hirbo

    Full Text Available Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB, a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23-34% are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.

  10. Non-communicable diseases and human rights: Global synergies, gaps and opportunities.

    Science.gov (United States)

    Ferguson, Laura; Tarantola, Daniel; Hoffmann, Michael; Gruskin, Sofia

    2017-10-01

    The incorporation of human rights in health policy and programmes is known to strengthen responses to health problems and help address disparities created or exacerbated by illness yet this remains underexplored in relation to non-communicable diseases (NCDs). Aiming to understand existing synergies and how they might be further strengthened, we assessed the extent to which human rights are considered in global NCD policies and strategies and the degree of attention given to NCDs by select United Nations human rights mechanisms. Across global NCD policies and strategies, rhetorical assertions regarding human rights appear more often than actionable statements, thus limiting their implementation and impact. Although no human rights treaty explicitly mentions NCDs, some human rights monitoring mechanisms have been paying increasing attention to NCDs. This provides important avenues for promoting the incorporation of human rights norms and standards into NCD responses as well as for accountability. Linking NCDs and human rights at the global level is critical for encouraging national-level action to promote better outcomes relating to both health and human rights. The post-2015 development agenda constitutes a key entry point for highlighting these synergies and strengthening opportunities for health and rights action at global, national and local levels.

  11. The emerging paradigm of network medicine in the study of human disease.

    Science.gov (United States)

    Chan, Stephen Y; Loscalzo, Joseph

    2012-07-20

    The molecular pathways that govern human disease consist of molecular circuits that coalesce into complex, overlapping networks. These network pathways are presumably regulated in a coordinated fashion, but such regulation has been difficult to decipher using only reductionistic principles. The emerging paradigm of "network medicine" proposes to utilize insights garnered from network topology (eg, the static position of molecules in relation to their neighbors) as well as network dynamics (eg, the unique flux of information through the network) to understand better the pathogenic behavior of complex molecular interconnections that traditional methods fail to recognize. As methodologies evolve, network medicine has the potential to capture the molecular complexity of human disease while offering computational methods to discern how such complexity controls disease manifestations, prognosis, and therapy. This review introduces the fundamental concepts of network medicine and explores the feasibility and potential impact of network-based methods for predicting individual manifestations of human disease and designing rational therapies. Wherever possible, we emphasize the application of these principles to cardiovascular disease.

  12. Huntington's disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain.

    Science.gov (United States)

    Rüb, U; Seidel, K; Heinsen, H; Vonsattel, J P; den Dunnen, W F; Korf, H W

    2016-11-01

    Huntington's disease (HD) is an autosomal dominantly inherited, and currently untreatable, neuropsychiatric disorder. This progressive and ultimately fatal disease is named after the American physician George Huntington and according to the underlying molecular biological mechanisms is assigned to the human polyglutamine or CAG-repeat diseases. In the present article we give an overview of the currently known neurodegenerative hallmarks of the brains of HD patients. Subsequent to recent pathoanatomical studies the prevailing reductionistic concept of HD as a human neurodegenerative disease, which is primarily and more or less exclusively confined to the striatum (ie, caudate nucleus and putamen) has been abandoned. Many recent studies have improved our neuropathological knowledge of HD; many of the early groundbreaking findings of neuropathological HD research have been rediscovered and confirmed. The results of this investigation have led to the stepwise revision of the simplified pathoanatomical and pathophysiological HD concept and culminated in the implementation of the current concept of HD as a multisystem degenerative disease of the human brain. The multisystem character of the neuropathology of HD is emphasized by a brain distribution pattern of neurodegeneration (i) which apart from the striatum includes the cerebral neo-and allocortex, thalamus, pallidum, brainstem and cerebellum, and which (ii) therefore, shares more similarities with polyglutamine spinocerebellar ataxias than previously thought. © 2016 International Society of Neuropathology.

  13. High Resolution Discovery Proteomics Reveals Candidate Disease Progression Markers of Alzheimer’s Disease in Human Cerebrospinal Fluid

    Science.gov (United States)

    Lee, Anita Y. H.; Song, Qinghua; Liaw, Andy; Wiener, Matt; Paweletz, Cloud P.; Seeburger, Jeffrey L.; Li, Jenny; Meng, Fanyu; Deyanova, Ekaterina G.; Mazur, Matthew T.; Settlage, Robert E.; Zhao, Xuemei; Southwick, Katie; Du, Yi; Holder, Dan; Sachs, Jeffrey R.; Laterza, Omar F.; Dallob, Aimee; Chappell, Derek L.; Snyder, Karen; Modur, Vijay; King, Elizabeth; Joachim, Catharine; Bondarenko, Andrey Y.; Shearman, Mark; Soper, Keith A.; Smith, A. David; Potter, William Z.; Koblan, Ken S.; Sachs, Alan B.

    2015-01-01

    Disease modifying treatments for Alzheimer’s disease (AD) constitute a major goal in medicine. Current trends suggest that biomarkers reflective of AD neuropathology and modifiable by treatment would provide supportive evidence for disease modification. Nevertheless, a lack of quantitative tools to assess disease modifying treatment effects remains a major hurdle. Cerebrospinal fluid (CSF) biochemical markers such as total tau, p-tau and Ab42 are well established markers of AD; however, global quantitative biochemical changes in CSF in AD disease progression remain largely uncharacterized. Here we applied a high resolution open discovery platform, dMS, to profile a cross-sectional cohort of lumbar CSF from post-mortem diagnosed AD patients versus those from non-AD/non-demented (control) patients. Multiple markers were identified to be statistically significant in the cohort tested. We selected two markers SME-1 (p<0.0001) and SME-2 (p = 0.0004) for evaluation in a second independent longitudinal cohort of human CSF from post-mortem diagnosed AD patients and age-matched and case-matched control patients. In cohort-2, SME-1, identified as neuronal secretory protein VGF, and SME-2, identified as neuronal pentraxin receptor-1 (NPTXR), in AD were 21% (p = 0.039) and 17% (p = 0.026) lower, at baseline, respectively, than in controls. Linear mixed model analysis in the longitudinal cohort estimate a decrease in the levels of VGF and NPTXR at the rate of 10.9% and 6.9% per year in the AD patients, whereas both markers increased in controls. Because these markers are detected by mass spectrometry without the need for antibody reagents, targeted MS based assays provide a clear translation path for evaluating selected AD disease-progression markers with high analytical precision in the clinic. PMID:26270474

  14. New variant of Creutzfeldt-Jakob (vCJD disease and other human prion diseases under epidemiological surveillance in Brazil

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Gattás

    Full Text Available Abstract To increase the timeliness of detection of human cases of the new variant of Creutzfeldt-Jakob disease (vCJD and to reduce the risk of transmission, the Brazilian Ministry of Health has established and standardized rules and control measures. These include the definition of criteria for suspect cases, reporting, monitoring, and control measures for illness prevention and transmission. Guidelines to be used by the team of health care staff were published and distributed to health workers. A detailed proposal for a simplified system of surveillance for prion diseases was developed and mandatory reporting introduced. Additional effort is necessary to increase vCJD case detection, thus making it necessary to establish a partnership with health care services for best identification of suspected cases and dissemination of information to all involved in the service dealing with vCJD investigation.

  15. Estimating the global burden of thalassogenic diseases: human infectious diseases caused by wastewater pollution of the marine environment.

    Science.gov (United States)

    Shuval, Hillel

    2003-06-01

    This paper presents a preliminary attempt at obtaining an order-of-magnitude estimate of the global burden of disease (GBD) of human infectious diseases associated with swimming/bathing in coastal waters polluted by wastewater, and eating raw or lightly steamed filter-feeding shellfish harvested from such waters. Such diseases will be termed thalassogenic--caused by the sea. Until recently these human health effects have been viewed primarily as local phenomena, not generally included in the world agenda of marine scientists dealing with global marine pollution problems. The massive global scale of the problem can be visualized when one considers that the wastewater and human body wastes of a significant portion of the world's population who reside along the coastline or in the vicinity of the sea are discharged daily, directly or indirectly, into the marine coastal waters, much of it with little or no treatment. Every cubic metre of raw domestic wastewater discharged into the sea can carry millions of infectious doses of pathogenic microorganisms. It is estimated that globally, foreign and local tourists together spend some 2 billion man-days annually at coastal recreational resorts and many are often exposed there to coastal waters polluted by wastewater. Annually some 800 million meals of potentially contaminated filter-feeding shellfish/bivalves and other sea foods, harvested in polluted waters are consumed, much of it raw or lightly steamed. A number of scientific studies have shown that swimmers swallow significant amounts of polluted seawater and can become ill with gastrointestinal and respiratory diseases from the pathogens they ingest. Based on risk assessments from the World Health Organization (WHO) and academic research sources the present study has made an estimate that globally, each year, there are in excess of 120 million cases of gastrointestinal disease and in excess of 50 million cases of more severe respiratory diseases caused by swimming and

  16. Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases

    Science.gov (United States)

    Zhuang, Jian-Jun; Ning, Xin-Bao; Yang, Xiao-Dong; Hou, Feng-Zhen; Huo, Cheng-Yu

    2008-03-01

    In this paper the decrease in the Hurst exponent of human gait with aging and neurodegenerative diseases was observed by using an improved rescaled range (R/S) analysis method. It indicates that the long-range correlations of gait rhythm from young healthy people are stronger than those from the healthy elderly and the diseased. The result further implies that fractal dynamics in human gait will be altered due to weakening or impairment of neural control on locomotion resulting from aging and neurodegenerative diseases. Due to analysing short-term data sequences rather than long datasets required by most nonlinear methods, the algorithm has the characteristics of simplicity and sensitivity, most importantly, fast calculation as well as powerful anti-noise capacities. These findings have implications for modelling locomotor control and also for quantifying gait dynamics in varying physiologic and pathologic states.

  17. Decrease in Hurst exponent of human gait with aging and neurodegenerative diseases

    International Nuclear Information System (INIS)

    Zhauang Jianjun; Ning Xinbao; Yang Xiaodong; Huo Chengyu; Hou Fengzhen

    2008-01-01

    In this paper the decrease in the Hurst exponent of human gait with aging and neurodegenerative diseases was observed by using an improved rescaled range (R/S) analysis method. It indicates that the long-range correlations of gait rhythm from young healthy people are stronger than those from the healthy elderly and the diseased. The result further implies that fractal dynamics in human gait will be altered due to weakening or impairment of neural control on locomotion resulting from aging and neurodegenerative diseases. Due to analysing short-term data sequences rather than long datasets required by most nonlinear methods, the algorithm has the characteristics of simplicity and sensitivity, most importantly, fast calculation as well as powerful anti-noise capacities. These findings have implications for modelling locomotor control and also for quantifying gait dynamics in varying physiologic and pathologic states

  18. Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives.

    Science.gov (United States)

    Precone, Vincenza; Del Monaco, Valentina; Esposito, Maria Valeria; De Palma, Fatima Domenica Elisa; Ruocco, Anna; Salvatore, Francesco; D'Argenio, Valeria

    2015-01-01

    Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.

  19. Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives

    Directory of Open Access Journals (Sweden)

    Vincenza Precone

    2015-01-01

    Full Text Available Next-generation sequencing (NGS technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology’s flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.

  20. Possible pathophysiological roles of transglutaminase-catalyzed reactions in the pathogenesis of human neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Enrica Serretiello

    2015-09-01

    Full Text Available Transglutaminases (TG, E.C. 2.3.2.13 are related and ubiquitous enzymes that catalyze the cross linking of a glutaminyl residue of a protein/peptide substrate to a lysyl residue of a protein/peptide co-substrate. These enzymes are also capable of catalyzing other post-translational reactions important for cell life. The distribution and the physiological roles of human TGs have been widely studied in numerous cell types and tissues and recently their roles in several diseases have begun to be identified. It has been hypothesized that transglutaminase activity is directly involved in the pathogenetic mechanisms responsible for several human diseases. In particular, tissue TG (tTG, TG2, a member of the TG enzyme family, has been recently shown to be involved in the molecular mechanisms responsible for a very widespread human pathology, Celiac Disease (CD, one of the most common food intolerances described in the western population. The main food agent that provokes the strong and diffuse clinical symptoms has been known for several years to be gliadin, a protein present in a very large number of human foods derived from vegetables. Recently, some biochemical and immunological aspects of this very common disease have been clarified, and “tissue” transglutaminase, a multifunctional and ubiquitous enzyme, has been identified as one of the major factors. The aim of this review is to summarize the most recent findings concerning the relationships between the biochemical properties of the transglutaminase activity and the basic molecular mechanisms responsible for some human diseases, with particular reference to neuropsychiatric disorders. Possible molecular links between CD and neuropsychiatric disorders, and the use of transglutaminase inhibitors are also discussed.

  1. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata.

    Science.gov (United States)

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L; Porter, James W; Lipp, Erin K

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.

  2. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Kathryn Patterson Sutherland

    Full Text Available Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS, a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens to a marine invertebrate (A. palmata. These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.

  3. Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity.

    Directory of Open Access Journals (Sweden)

    Kristen Fortney

    2015-12-01

    Full Text Available We developed a new statistical framework to find genetic variants associated with extreme longevity. The method, informed GWAS (iGWAS, takes advantage of knowledge from large studies of age-related disease in order to narrow the search for SNPs associated with longevity. To gain support for our approach, we first show there is an overlap between loci involved in disease and loci associated with extreme longevity. These results indicate that several disease variants may be depleted in centenarians versus the general population. Next, we used iGWAS to harness information from 14 meta-analyses of disease and trait GWAS to identify longevity loci in two studies of long-lived humans. In a standard GWAS analysis, only one locus in these studies is significant (APOE/TOMM40 when controlling the false discovery rate (FDR at 10%. With iGWAS, we identify eight genetic loci to associate significantly with exceptional human longevity at FDR < 10%. We followed up the eight lead SNPs in independent cohorts, and found replication evidence of four loci and suggestive evidence for one more with exceptional longevity. The loci that replicated (FDR < 5% included APOE/TOMM40 (associated with Alzheimer's disease, CDKN2B/ANRIL (implicated in the regulation of cellular senescence, ABO (tags the O blood group, and SH2B3/ATXN2 (a signaling gene that extends lifespan in Drosophila and a gene involved in neurological disease. Our results implicate new loci in longevity and reveal a genetic overlap between longevity and age-related diseases and traits, including coronary artery disease and Alzheimer's disease. iGWAS provides a new analytical strategy for uncovering SNPs that influence extreme longevity, and can be applied more broadly to boost power in other studies of complex phenotypes.

  4. Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity.

    Science.gov (United States)

    Fortney, Kristen; Dobriban, Edgar; Garagnani, Paolo; Pirazzini, Chiara; Monti, Daniela; Mari, Daniela; Atzmon, Gil; Barzilai, Nir; Franceschi, Claudio; Owen, Art B; Kim, Stuart K

    2015-12-01

    We developed a new statistical framework to find genetic variants associated with extreme longevity. The method, informed GWAS (iGWAS), takes advantage of knowledge from large studies of age-related disease in order to narrow the search for SNPs associated with longevity. To gain support for our approach, we first show there is an overlap between loci involved in disease and loci associated with extreme longevity. These results indicate that several disease variants may be depleted in centenarians versus the general population. Next, we used iGWAS to harness information from 14 meta-analyses of disease and trait GWAS to identify longevity loci in two studies of long-lived humans. In a standard GWAS analysis, only one locus in these studies is significant (APOE/TOMM40) when controlling the false discovery rate (FDR) at 10%. With iGWAS, we identify eight genetic loci to associate significantly with exceptional human longevity at FDR Alzheimer's disease), CDKN2B/ANRIL (implicated in the regulation of cellular senescence), ABO (tags the O blood group), and SH2B3/ATXN2 (a signaling gene that extends lifespan in Drosophila and a gene involved in neurological disease). Our results implicate new loci in longevity and reveal a genetic overlap between longevity and age-related diseases and traits, including coronary artery disease and Alzheimer's disease. iGWAS provides a new analytical strategy for uncovering SNPs that influence extreme longevity, and can be applied more broadly to boost power in other studies of complex phenotypes.

  5. Genome-Wide Scan Informed by Age-Related Disease Identifies Loci for Exceptional Human Longevity

    Science.gov (United States)

    Fortney, Kristen; Dobriban, Edgar; Garagnani, Paolo; Pirazzini, Chiara; Monti, Daniela; Mari, Daniela; Atzmon, Gil; Barzilai, Nir; Franceschi, Claudio; Owen, Art B.; Kim, Stuart K.

    2015-01-01

    We developed a new statistical framework to find genetic variants associated with extreme longevity. The method, informed GWAS (iGWAS), takes advantage of knowledge from large studies of age-related disease in order to narrow the search for SNPs associated with longevity. To gain support for our approach, we first show there is an overlap between loci involved in disease and loci associated with extreme longevity. These results indicate that several disease variants may be depleted in centenarians versus the general population. Next, we used iGWAS to harness information from 14 meta-analyses of disease and trait GWAS to identify longevity loci in two studies of long-lived humans. In a standard GWAS analysis, only one locus in these studies is significant (APOE/TOMM40) when controlling the false discovery rate (FDR) at 10%. With iGWAS, we identify eight genetic loci to associate significantly with exceptional human longevity at FDR Alzheimer’s disease), CDKN2B/ANRIL (implicated in the regulation of cellular senescence), ABO (tags the O blood group), and SH2B3/ATXN2 (a signaling gene that extends lifespan in Drosophila and a gene involved in neurological disease). Our results implicate new loci in longevity and reveal a genetic overlap between longevity and age-related diseases and traits, including coronary artery disease and Alzheimer’s disease. iGWAS provides a new analytical strategy for uncovering SNPs that influence extreme longevity, and can be applied more broadly to boost power in other studies of complex phenotypes. PMID:26677855

  6. Web-Based Surveillance Systems for Human, Animal, and Plant Diseases.

    Science.gov (United States)

    Madoff, Lawrence C; Li, Annie

    2014-02-01

    The emergence of infectious diseases, caused by novel pathogens or the spread of existing ones to new populations and regions, represents a continuous threat to humans and other species. The early detection of emerging human, animal, and plant diseases is critical to preventing the spread of infection and protecting the health of our species and environment. Today, more than 75% of emerging infectious diseases are estimated to be zoonotic and capable of crossing species barriers and diminishing food supplies. Traditionally, surveillance of diseases has relied on a hierarchy of health professionals that can be costly to build and maintain, leading to a delay or interruption in reporting. However, Internet-based surveillance systems bring another dimension to epidemiology by utilizing technology to collect, organize, and disseminate information in a more timely manner. Partially and fully automated systems allow for earlier detection of disease outbreaks by searching for information from both formal sources (e.g., World Health Organization and government ministry reports) and informal sources (e.g., blogs, online media sources, and social networks). Web-based applications display disparate information online or disperse it through e-mail to subscribers or the general public. Web-based early warning systems, such as ProMED-mail, the Global Public Health Intelligence Network (GPHIN), and Health Map, have been able to recognize emerging infectious diseases earlier than traditional surveillance systems. These systems, which are continuing to evolve, are now widely utilized by individuals, humanitarian organizations, and government health ministries.

  7. M. paratuberculosis Heat Shock Protein 65 and Human Diseases: Bridging Infection and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Coad Thomas Dow

    2012-01-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (MAP is the known infectious cause of Johne’s disease, an enteric inflammatory disease mostly studied in ruminant animals. MAP has also been implicated in the very similar Crohn’s disease of humans as well as sarcoidosis. Recently, MAP has been associated with juvenile sarcoidosis (Blau syndrome, autoimmune diabetes, autoimmune thyroiditis, and multiple sclerosis. While it is intuitive to implicate MAP in granulomatous diseases where the microbe participates in the granuloma, it is more difficult to assign a role for MAP in diseases where autoantibodies are a primary feature. MAP may trigger autoimmune antibodies via its heat shock proteins. Mycobacterial heat shock protein 65 (HSP65 is an immunodominant protein that shares sequential and conformational elements with several human host proteins. This molecular mimicry is the proposed etiopathology by which MAP stimulates autoantibodies associated with autoimmune (type 1 diabetes, autoimmune (Hashimoto’s thyroiditis, and multiple sclerosis. This paper proposes that MAP is a source of mycobacterial HSP65 and acts as a trigger of autoimmune disease.

  8. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease.

    Science.gov (United States)

    Fattahi, Faranak; Steinbeck, Julius A; Kriks, Sonja; Tchieu, Jason; Zimmer, Bastian; Kishinevsky, Sarah; Zeltner, Nadja; Mica, Yvonne; El-Nachef, Wael; Zhao, Huiyong; de Stanchina, Elisa; Gershon, Michael D; Grikscheit, Tracy C; Chen, Shuibing; Studer, Lorenz

    2016-03-03

    The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.

  9. Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease.

    Science.gov (United States)

    Shirato, Kazuya; Imada, Yoshio; Kawase, Miyuki; Nakagaki, Keiko; Matsuyama, Shutoku; Taguchi, Fumihiro

    2014-12-01

    Although human coronavirus (HCoV)-NL63 was once considered a possible causative agent of Kawasaki disease based on RT-PCR analyses, subsequent studies could not confirm the result. In this study, this possibility was explored using serological tests. To evaluate the role of HCoV infection in patients with Kawasaki disease, immunofluorescence assays and virus neutralizing tests were performed. Paired serum samples were obtained from patients with Kawasaki disease who had not been treated with γ-globulin. HCoV-NL63 and two antigenically different isolates of HCoV-229E (ATCC-VR740 and a new isolate, Sendai-H) were examined as controls. Immunofluorescence assays detected no difference in HCoV-NL63 antibody positivity between the patients with Kawasaki disease and controls, whereas the rate of HCoV-229E antibody positivity was higher in the patients with Kawasaki disease than that in controls. The neutralizing tests revealed no difference in seropositivity between the acute and recovery phases of patients with Kawasaki disease for the two HCoV-229Es. However, the Kawasaki disease specimens obtained from patients in recovery phase displayed significantly higher positivity for Sendai-H, but not for ATCC-VR740, as compared to the controls. The serological test supported no involvement of HCoV-NL63 but suggested the possible involvement of HCoV-229E in the development of Kawasaki disease. © 2014 Wiley Periodicals, Inc.

  10. From animal models to human disease: a genetic approach for personalized medicine in ALS.

    Science.gov (United States)

    Picher-Martel, Vincent; Valdmanis, Paul N; Gould, Peter V; Julien, Jean-Pierre; Dupré, Nicolas

    2016-07-11

    Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases.

  11. MicroRNAs: control and loss of control in human physiology and disease.

    Science.gov (United States)

    Li, Min; Marin-Muller, Christian; Bharadwaj, Uddalak; Chow, Kwong-Hon; Yao, Qizhi; Chen, Changyi

    2009-04-01

    Analysis of the human genome indicates that a large fraction of the genome sequences are RNAs that do not encode any proteins, also known as non-coding RNAs. MicroRNAs (miRNAs) are a group of small non-coding RNA molecules 20-22 nucleotides (nt) in length that are predicted to control the activity of approximately 30% of all protein-coding genes in mammals. miRNAs play important roles in many diseases, including cancer, cardiovascular disease, and immune disorders. The expression of miRNAs can be regulated by epigenetic modification, DNA copy number change, and genetic mutations. miRNAs can serve as a valuable therapeutic target for a large number of diseases. For miRNAs with oncogenic capabilities, potential therapies include miRNA silencing, antisense blocking, and miRNA modifications. For miRNAs with tumor suppression functions, overexpression of those miRNAs might be a useful strategy to inhibit tumor growth. In this review, we discuss the current progress of miRNA research, regulation of miRNA expression, prediction of miRNA targets, and regulatory role of miRNAs in human physiology and diseases, with a specific focus on miRNAs in pancreatic cancer, liver cancer, colorectal cancer, cardiovascular disease, the immune system, and infectious disease. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in miRNAs as important mediators in human physiology and diseases.

  12. The Impact of Immunosenescence on Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Michelle A. Murray

    2015-01-01

    Full Text Available The global population is aging with significant gains in life expectancy particularly in the developed world. Consequently, greater focus on understanding the processes that underlie physiological aging has occurred. Key facets of advancing age include genomic instability, telomere shortening, epigenetic changes, and declines in immune function termed immunosenescence. Immunosenescence and its associated chronic low grade systemic “inflamm-aging” contribute to the development and progression of pulmonary disease in older individuals. These physiological processes predispose to pulmonary infection and confer specific and unique clinical phenotypes observed in chronic respiratory disease including late-onset asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. Emerging concepts of the gut and airway microbiome further complicate the interrelationship between host and microorganism particularly from an immunological perspective and especially so in the setting of immunosenescence. This review focuses on our current understanding of the aging process, immunosenescence, and how it can potentially impact on various pulmonary diseases and the human microbiome.

  13. The Impact of Immunosenescence on Pulmonary Disease.

    LENUS (Irish Health Repository)

    Murray, Michelle A

    2015-08-01

    The global population is aging with significant gains in life expectancy particularly in the developed world. Consequently, greater focus on understanding the processes that underlie physiological aging has occurred. Key facets of advancing age include genomic instability, telomere shortening, epigenetic changes, and declines in immune function termed immunosenescence. Immunosenescence and its associated chronic low grade systemic "inflamm-aging" contribute to the development and progression of pulmonary disease in older individuals. These physiological processes predispose to pulmonary infection and confer specific and unique clinical phenotypes observed in chronic respiratory disease including late-onset asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. Emerging concepts of the gut and airway microbiome further complicate the interrelationship between host and microorganism particularly from an immunological perspective and especially so in the setting of immunosenescence. This review focuses on our current understanding of the aging process, immunosenescence, and how it can potentially impact on various pulmonary diseases and the human microbiome.

  14. Identification of Human Disease Genes from Interactome Network Using Graphlet Interaction

    Science.gov (United States)

    Yang, Lun; Wei, Dong-Qing; Qi, Ying-Xin; Jiang, Zong-Lai

    2014-01-01

    Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes. PMID:24465923

  15. Identification of human disease genes from interactome network using graphlet interaction.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Wang

    Full Text Available Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes.

  16. The gnotobiotic piglet as a model for studies of disease pathogenesis and immunity to human rotaviruses.

    Science.gov (United States)

    Saif, L J; Ward, L A; Yuan, L; Rosen, B I; To, T L

    1996-01-01

    Gnotobiotic piglets serve as a useful animal model for studies of human rotavirus infections, including disease pathogenesis and immunity. An advantage of piglets over laboratory animal models is their prolonged susceptibility to human rotavirus-induced disease, permitting cross-protection studies and an analysis of active immunity. Major advances in rotavirus research resulting from gnotobiotic piglet studies include: 1) the adaptation of the first human rotavirus to cell culture after passage and amplification in piglets; 2) delineation of the independent roles of the two rotavirus outer capsid proteins (VP4 and VP7) in induction of neutralizing antibodies and cross-protection; and 3) recognition of a potential role for a nonstructural protein (NSP4) in addition to VP4 and VP7, in rotavirus virulence. Current studies of the pathogenesis of group A human rotavirus infections in gnotobiotic piglets in our laboratory have confirmed that villous atrophy is induced in piglets given virulent but not cell culture attenuated human rotavirus (G1, P1A, Wa strain) and have revealed that factors other than villous atrophy may contribute to the early diarrhea induced. A comprehensive examination of these factors, including a proposed role for NSP4 in viral-induced cytopathology, may reveal new mechanisms for induction of viral diarrhea. Finally, to facilitate and improve rotavirus vaccination strategies, our current emphasis is on the identification of correlates of protective active immunity in the piglet model of human rotavirus-induced diarrhea. Comparison of cell-mediated and antibody immune responses induced by infection with a virulent human rotavirus (to mimic host response to natural infection) with those induced by a live attenuated human rotavirus (to mimic attenuated oral vaccines) in the context of homotypic protection has permitted an analysis of correlates of protective immunity. Results of these studies have indicated that the magnitude of the immune response

  17. Appropriate clinical use of human leukocyte antigen typing for coeliac disease: an Australasian perspective

    Science.gov (United States)

    Tye-Din, J A; Cameron, D J S; Daveson, A J; Day, A S; Dellsperger, P; Hogan, C; Newnham, E D; Shepherd, S J; Steele, R H; Wienholt, L; Varney, M D

    2015-01-01

    The past decade has seen human leukocyte antigen (HLA) typing emerge as a remarkably popular test for the diagnostic work-up of coeliac disease with high patient acceptance. Although limited in its positive predictive value for coeliac disease, the strong disease association with specific HLA genes imparts exceptional negative predicti