WorldWideScience

Sample records for underground storage site

  1. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  2. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  3. Underground storage

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-10

    A procedure is described for making an underground storage cavity in a soluble formation. Two holes are drilled, and fluid is pumped into the first hole. This fluid is a non-solute for the formation material. Then pressure is applied to the fluid until the formation is fractured in the direction of the second hole. More non-solute fluid is injected to complete the fracture between the 2 holes. A solute fluid is then circulated between the 2 holes, which results in removal of that part of the formation next to the fracture and the forming of a chamber.

  4. The Cigeo project: an industrial storage site for radioactive wastes in deep underground

    International Nuclear Information System (INIS)

    Krieguer, Jean-Marie

    2017-01-01

    In 2006, France has decided to store its high-level and long-lived radioactive wastes, mostly issued from the nuclear industry, in a deep geological underground disposal site. This document presents the Cigeo project, a deep underground disposal site (located in the East of France) for such radioactive wastes, which construction is to be started in 2021 (subject to authorization in 2018). After a brief historical review of the project, started 20 years ago, the document presents the radioactive waste disposal context, the ethical choice of underground storage (in France and elsewhere) for these types of radioactive wastes, the disposal site safety and financing aspects, the progressive development of the underground facilities and, of most importance, its reversibility. In a second part, the various works around the site are presented (transport, buildings, water and power supply, etc.) together with a description of the various radioactive wastes (high and intermediate level and long-lived wastes and their packaging) that will be disposed in the site. The different steps of the project are then reviewed (the initial design and initial construction phases, the pilot industrial phase (expected in 2030), the operating phase, and the ultimate phases that will consist in the definitive closure of the site and its monitoring), followed by an extensive description of the various installations of surface and underground facilities, their architecture and their equipment

  5. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  6. Feasibility studies for pump and treat technology at leaking underground storage tank sites in Michigan

    International Nuclear Information System (INIS)

    O'Brien, J.M.; Pekas, B.S.

    1993-01-01

    Releases from underground storage tanks have resulted in impacts to groundwater at thousands of sites across the US. Investigations of these sites were initiated on a national basis with the implementation of federal laws that became effective December 22, 1989 (40 CFR 280). Completion of these investigations has led to a wave of design and installation of pump and treat aquifer restoration systems where impacts to groundwater have been confirmed. The purpose of this paper is to provide managers with a demonstration of some of the techniques that can be used by the consulting industry in evaluating the feasibility of pump and treat systems. With knowledge of these tools, managers can better evaluate proposals for system design and their cost effectiveness. To evaluate the effectiveness of typical pump and treat systems for leaking underground storage tank (LUST) sites in Michigan, ten sites where remedial design had been completed were randomly chosen for review. From these ten, two sites were selected that represented the greatest contrast in the types of site conditions encountered. A release of gasoline at Site 1 resulted in contamination of groundwater and soil with benzene, toluene, ethylbenzene, and xylenes

  7. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  8. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome

  9. Lower Colorado River GRP Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  10. Lower Colorado River GRP Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  11. Report on technical feasibility of underground pumped hydroelectric storage in a marble quarry site in the Northeast United States

    Energy Technology Data Exchange (ETDEWEB)

    Chas. T. Main, Inc.

    1982-03-01

    The technical and economic aspects of constructing a very high head underground hydroelectric pumped storage were examined at a prefeasibility level. Excavation of existing caverns in the West Rutland Vermont marble quarry would be used to construct the underground space. A plant capacity of 1200 MW and 12 h of continuous capacity were chosen as plant operating conditions. The site geology, plant design, and electrical and mechanical equipment required were considered. The study concluded that the cost of the 1200 MW underground pumped storage hydro electric project at this site even with the proposed savings from marketable material amounts to between $581 and $595 per kilowatt of installed capacity on a January 1982 pricing level. System studies performed by the planning group of the New England Power System indicate that the system could economically justify up to about $442 per kilowatt on an energy basis with no credit for capacity. To accommodate the plant with the least expensive pumping energy, a coal and nuclear generation mix of approximately 65% would have to be available before the project becomes feasible. It is not expected that this condition can be met before the year 2000 or beyond. It is therefore concluded that the West Rutland underground pumped storage facility is uneconomic at this time. Several variables however could have marked influence on future planning and should be examined on periodic basis.

  12. Site-specific issues related to structural/seismic design of an underground independent spent fuel storage installation (ISFSI)

    International Nuclear Information System (INIS)

    Tripathi, B.P.

    2005-01-01

    Utilities owning and operating commercial nuclear power plants (NPP) in USA may choose to build an underground Independent Spent Fuel Storage Installation (ISFSI) to store the spent nuclear fuels. The regulatory requirements and other guidance are based on 10 CFR Part 72, Regulatory Guide RG 3.73, Standard Review Plans NUREG-1536 and NUREG-1567, and Interim staff Guidance (ISG) documents as applicable. Structures, Systems, and Components (SSCs) classified as important to safety are designed to withstand the effects of site-specific environmental conditions and natural phenomena such as earthquake, tornado, flood, etc. An underground ISFSI for storage of spent nuclear fuel, presents some unique analysis and design challenges. This paper will briefly address some of these challenges and discuss site-specific loads, including seismic for the ISFSI design. (authors)

  13. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  14. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  15. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  16. Revised corrective action plan for underground storage tank 2331-U at the Building 9201-1 Site

    International Nuclear Information System (INIS)

    Bohrman, D.E.; Ingram, E.M.

    1993-09-01

    This document represents the Corrective Action Plan for underground storage tank (UST) 2331-U, previously located at Building 9201-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2331-U, a 560-gallon UST, was removed on December 14, 1988. This document presents a comprehensive summary of all environmental assessment investigations conducted at the Building 9201-1 Site and the corrective action measures proposed for remediation of subsurface petroleum product contamination identified at the site. This document is written in accordance with the regulatory requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-15-.06(7)

  17. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Cox, D. H.

    2000-01-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved

  18. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2000-07-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

  19. Streamlined approach for environmental restoration closure report for Corrective Action Unit No. 456: Underground storage tank release site 23-111-1, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    The underground storage tank (UST) release site 23-111-1 is located in Mercury, Nevada. The site is in Area 23 of the Nevada Test Site, (NTS) located on the north side of Building 111. The tank associated with the release was closed in place using cement grout on September 6, 1990. The tank was not closed by removal due to numerous active underground utilities, a high-voltage transformer pad, and overhead power lines. Soil samples collected below the tank bottom at the time of tank closure activities exceeded the Nevada Administrative Code Action Level of 100 milligrams per kilogram (mg/kg) for petroleum hydrocarbons. Maximum concentrations detected were 119 mg/kg. Two passive venting wells were subsequently installed at the tank ends to monitor the progress of biodegradation at the site. Quarterly air sampling from the wells was completed for approximately one year, but was discontinued since data indicated that considerable biodegradation was not occurring at the site

  20. Underground storage tank management plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  1. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  2. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ''A through K'' evaluation was completed to support a request for an Administrative Closure of the site

  3. Streamlined approach for environmental restoration closure report for Corrective Action Unit 464: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the site characterization of two historical underground storage tank petroleum hydrocarbon release sites identified by Corrective Action Site (CAS) Numbers 02-02-03 and 09-02-01. The sites are located at the Nevada Test Site in Areas 2 and 9 and are concrete bunker complexes (Bunker 2-300, and 9-300). Characterization was completed using drilling equipment to delineate the extent of petroleum hydrocarbons at release site 2-300-1 (CAS 02-02-03). Based on site observations, the low hydrocarbon concentrations detected, and the delineation of the vertical and lateral extent of subsurface hydrocarbons, an ``A through K`` evaluation was completed to support a request for an Administrative Closure of the site.

  4. Underground storage of heat

    International Nuclear Information System (INIS)

    Despois, J.; Nougarede, F.

    1976-01-01

    The interest laying in heat storage is envisaged taking account of the new energy context, with a view to optimizing the use of production means of heat sources hardly modulated according to the demand. In such a way, a natural medium, without any constructions cost but only an access cost is to be used. So, porous and permeable rocky strata allowing the use of a pressurized water flow as a transfer fluid are well convenient. With such a choice high temperatures (200 deg C) may be obtained, that are suitable for long transmissions. A mathematical model intended for solving the conservation equations in the case of heat storage inside a confined water layer is discussed. An approach of the operating conditions of storage may involve either a line-up arrangement (with the hot drilling at the center, the cold drillings being aligned on both sides) or a radial arrangement (with cold drillings at the peripheral edge encircling the hot drilling at the center of the layer). The three principal problems encountered are: starting drilling, and the circuit insulation and control [fr

  5. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Open), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  6. Lower Colorado River GRP Leaking Underground Storage Tank Sites (Closed), Nevada, 2012, Nevada Division of Environmental Protection Bureau of Corrective Actions

    Data.gov (United States)

    U.S. Environmental Protection Agency — The BCA layers are derived from a database for Federally Regulated Underground Storage Tanks (UST) and a database for Remediation and Leaking Underground Storage...

  7. Underground storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi [Univ. of Tokyo, Hongo, Bunkyo-ku (Japan)

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  8. Streamlined approach for environmental restoration closure report for Corrective Action Unit 452: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the site characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 25-3101-1, 25-3102-3, and 25-3152-1. The sites are located within the Nevada Test Site in Area 25 at Buildings 3101, 3102, and 3152. The characterization was completed to support administrative closure of the sites. Characterization was completed using drilling equipment to delineate the extent of hydrocarbon impact. Clean closure had been previously attempted at each of these sites using backhoe equipment without success due to adjacent structures, buried utilities, or depth restrictions associated with each site. Although the depth and extent of hydrocarbon impact was determined to be too extensive for clean closure, it was verified through drilling that the sites should be closed through an administrative closure. The Nevada Administrative Code ''A Through K'' evaluation completed for each site supports that there is no significant risk to human health or the environment from the impacted soils remaining at each site

  9. Permanent Closure of the TAN-664 Underground Storage Tank

    Energy Technology Data Exchange (ETDEWEB)

    Bradley K. Griffith

    2011-12-01

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  10. Green Remediation Best Management Practices: Sites with Leaking Underground Storage Tank Systems

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) Principles for Greener Cleanups outline the Agency's policy for evaluating and minimizing the environmental 'footprint' of activities undertaken when cleaning up a contaminated site.

  11. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil

  12. Streamlined approach for environmental restoration closure report for Corrective Action Unit 454: Historical underground storage tank release sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report addresses the characterization of three historical underground storage tank (UST) petroleum hydrocarbon release sites identified as 12-B-1, 12-B-3, and 12-COMM-1. The sites are located within the Nevada Test Site in Area 12 at B Tunnel and a former Communications/Power Maintenance Shop. Release Site 12-B-1 was not able to be clean-closed as proposed in the SAFER Plan. However, hydrocarbon impacted soils were excavated down to bedrock. Release Site 12-B-3 was evaluated to verify that the identified release was not associated with the UST removed from the site. Analytical results support the assumption that wood or possibly a roof sealant used as part of the bunker construction could have been the source of hydrocarbons detected. Release Site 12-COMM-1 was not clean closed as proposed in the SAFER Plan. The vertical extent of impacted soils was determined not to extend below a depth of 2.7 m (9 ft) below ground surface (bgs). The lateral extent could not be defined due to the presence of a discontinuous lens of hydrocarbon-impacted soil.

  13. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  14. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  15. Underground storage of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J E

    1977-12-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commercial radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects.

  16. Leak detection for underground storage tanks

    International Nuclear Information System (INIS)

    Durgin, P.B.; Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases

  17. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  18. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  19. State Certification of Underground Storage Tanks

    National Research Council Canada - National Science Library

    Granetto, Paul

    1998-01-01

    .... The audit was performed in response to a Senate Armed Services Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks...

  20. Underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Dietz, D.N.

    1977-01-01

    An introductory survey of the underground disposal of radioactive wastes is given. Attention is paid to various types of radioactive wastes varying from low to highly active materials, as well as mining techniques and salt deposits

  1. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  2. Regulatory approaches to hydrocarbon contamination from underground storage tanks

    International Nuclear Information System (INIS)

    Daugherty, S.J.

    1991-01-01

    Action or lack of action by the appropriate regulatory agency is often the most important factor in determining remedial action or closure requirements for hydrocarbon contaminated sites. This paper reports that the diversity of regulatory criteria is well known statewide and well documented nationally. In California, the diversity of approaches is due to: that very lack of a clear understanding of the true impact of hydrocarbon contamination: lack of state or federal standards for soil cleanup, and state water quality objectives that are not always achievable; vagueness in the underground storage tank law; and the number and diversity of agencies enforcing the underground storage tank regulations

  3. Nevada test site underground storage tank number 12-13-1: Nevada division of emergency management case number H931130E corrective action unit 450. Closure report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The project site was identified as an abandoned Underground Storage Tank (UST) to be closed under the Department of Energy/Nevada Operations Office (DOE/NV) Environmental Restoration Division (ERD) Program during Fiscal Year 1993. The United States Environmental Protection Agency (EPA) requires that before permanent closure is completed an assessment of the site must take place. The Nevada Division of Environmental Protection (NDEP) requires assessment and corrective actions for a petroleum substance in the soil which exceeds 100 milligrams per kilogram (mg/kg). Subsequent to the tank removal, a hydrocarbon release was identified at the site. The release was reported to the NDEP by DOE/NV on November 30, 1993. Nevada Division of Environmental Management (NDEM) Case Number H931130E was assigned. This final closure report documents the assessment and corrective actions taken for the hydrocarbon release identified at the site. The Notification of Closure, EPA Form 7530-1 dated March 22, 1994, is provided in Appendix A. A 45-day report documenting the notification for a hydrocarbon release was submitted to NDEP on April 6, 1994.

  4. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    Science.gov (United States)

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  5. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  6. Acoustic imaging of underground storage tank wastes

    International Nuclear Information System (INIS)

    Mech, S.J.

    1995-09-01

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  7. Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013

    Energy Technology Data Exchange (ETDEWEB)

    Kerry L. Nisson

    2012-10-01

    This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

  8. Bioremediation of diesel contamination at an underground storage tank site: a spatial analysis of the microbial community.

    Science.gov (United States)

    Andreolli, Marco; Albertarelli, Nicola; Lampis, Silvia; Brignoli, Pierlorenzo; Khoei, Nazaninalsadat Seyed; Vallini, Giovanni

    2016-01-01

    The present study reports on a real case of contamination due to the chronic leakage of diesel fuel from an underground tank at a dismissed service station. Speciation of the microbial community according to both lateral and vertical gradients from the origin of the contaminant release was analyzed by means of the PCR-DGGE technique. Moreover, the effects of a landfarming treatment on both the microbial community structure and the abatement of contamination were analyzed. The concentration of total petrol hydrocarbons (TPHs) decreased along the horizontal gradient (from 7042.2 ± 521.9 to 112.2 ± 24.3 mg kg(-1)), while increased downwards from the position of the tank (from 502.6 ± 43.7 to 4972.5 ± 275.3 mg kg(-1)). PCR-DGGE analyses and further statistical treatment of the data indicated a correlation between structure of the bacterial communities and amount of diesel fuel contamination. On the other hand, level of contamination, soil texture and depth were shown to affect the fungal community. Chloroflexi and Ascomycota were the most abundant microbes ascertained through culture-independent procedures. Landfarming promoted 91.6 % reduction of TPHs in 75 days. Furthermore, PCR-DGGE analyses evidenced that both bacterial and fungal communities of the treated soil were restored to the pristine conditions of uncontaminated topsoil. The present study demonstrated that bacterial and fungal communities were affected differently by soil factors such as level of hydrocarbon contamination as well as soil depth and texture. This report shows that a well-planned landfarming treatment can drive the restoration of the soil in terms of both abatement of the contaminants and resilience of the microbial community structure.

  9. Underground storage of natural gas and LPG

    International Nuclear Information System (INIS)

    1990-01-01

    The Symposium attended by over 200 participants from 23 member countries of the Economic Commission for Europe (ECE), representatives from Australia, Iraq, Israel, Kuwait as well as from 5 international organizations, provided an opportunity for existing and prospective gas markets in the ECE region to exchange experience and information on current trends and developments in natural gas and liquefied petroleum gas underground storage, especially in technical and regulatory matters, including economic, market and social considerations, that influence the planning, development and operations of gas storage facilities. Environmental and safety factors associated with such operations were also examined. A separate abstract was prepared for each of the presented papers. Refs, figs and tabs

  10. Underground gas storage in the World - Cedigaz survey

    International Nuclear Information System (INIS)

    Benquey, R.

    2010-01-01

    The 2010 edition of 'Underground Gas Storage in the World' provides an update to the previous survey released by CEDIGAZ in 2006. At that time, 610 underground gas storage (UGS) facilities were in operation worldwide, with a working capacity of 319 billion cubic metres (bcm). As of 1 January 2010, this number had reached 642 facilities with a working gas capacity of 333 bcm, or 10.8% of world gas consumption. By 2020, the global UGS demand is expected to grow at a pace of 3.3% per year, and according to the projects identified, more than 760 UGS sites could be active in the world with a total working capacity of approximately 465 bcm. In this survey, CEDIGAZ analyses the following trends which characterise the rapid development of underground gas storage in the world: - the strong dynamics of the European storage market, where 127 projects could add 75 bcm of working capacity by 2020, - the continued development of the UGS market in the United States (49 projects), encouraged by market-based rates allowed by the FERC, and rapid permitting processes, - the development of facilities in countries with little or no storage capacities at present, in Asia/Oceania, the C.I.S., and Eastern Europe in particular. This survey provides an analysis of the recent evolutions in the technic-economic aspects of the underground gas storage business, as well as an overview of the UGS markets and their developments in the world, country by country. A specific section is dedicated to the analysis of future UGS needs in Europe by 2020: - Technic-economic aspects of UGS: This part of the survey analyses the latest technical improvements and research axes in the field of underground gas storage. As it is more difficult to build greenfield storage facilities, a lot of work has been done to improve the performance and flexibility of existing storage sites. This section also deals with the evolution of investment and operational costs in storage over the last few years. Furthermore, the

  11. Old radioactive waste storage sites

    International Nuclear Information System (INIS)

    2008-01-01

    After a recall of the regulatory context for the management of old sites used for the storage of radioactive wastes with respect with their activity, the concerned products, the disposal or storage type, this document describes AREVA's involvement in the radioactive waste management process in France. Then, for the different kinds of sites (currently operated sites having radioactive waste storage, storage sites for uranium mineral processing residues), it indicates their location and name, their regulatory status and their control authority, the reference documents. It briefly presents the investigation on the long term impact of uranium mineral processing residues on health and environment, evokes some aspects of public information transparency, and presents the activities of an expertise group on old uranium mines. The examples of the sites of Bellezane (uranium mineral processing residues) and COMURHEX Malvesi (assessment of underground and surface water quality at the vicinity of this installation) are given in appendix

  12. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    BARKER, S.A.

    2006-07-27

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

  13. METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    TU, T.A.

    2007-01-04

    Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

  14. Viewing Systems for Large Underground Storage Tanks

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1996-01-01

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction

  15. Underground storage of natural gas in Italy

    International Nuclear Information System (INIS)

    Henking, E.

    1992-01-01

    After first relating the importance of natural gas storage to the viability of Italian industrial activities, this paper discusses the geo-physical nature of different types of underground cavities which can be used for natural gas storage. These include depleted petroleum and natural gas reservoirs, aquifers and abandoned mines. Attention is given to the geologic characteristics and physical characteristics such as porosity, permeability and pressure that determine the suitability of any given storage area, and to the techniques used to resolve problems relative to partially depleted reservoirs, e.g., the presence of oil, water and salt. A review is made of Italy's main storage facilities. This review identifies the various types of storage techniques, major equipment, operating and maintenance practices. A look is then given at Italy's plans for the development of new facilities to meet rising demand expected to reach 80 billion cubic meters/year by the turn of the century. The operating activities of the two leading participants, SNAM and AGIP, in Italy's natural gas industry are highlighted. Specific problems which contribute to the high operating costs of natural gas storage are identified and a review is made of national normatives governing gas storage. The report comes complete with a glossary of the relative terminology and units of measure

  16. Underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Pinto, S.; Telleschi, P.

    1978-10-01

    Two of the main underground siting alternatives, the rock cavity plant and the pit siting, have been investigated in detail and two layouts, developed for specific sites, have been proposed. The influence of this type of siting on normal operating conditions and during abnormal occurences have been investigated. (Auth.)

  17. 100-N Area underground storage tank closures

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  18. 100-N Area underground storage tank closures

    International Nuclear Information System (INIS)

    Rowley, C.A.

    1993-01-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D

  19. Polymers for subterranean containment barriers for underground storage tanks (USTs)

    International Nuclear Information System (INIS)

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks

  20. Does underground storage still require sophisticated studies?

    International Nuclear Information System (INIS)

    Marsily, G. de

    1997-01-01

    Most countries agree to the necessity of burying high or medium-level wastes in geological layers situated at a few hundred meters below the ground level. The advantages and disadvantages of different types of rock such as salt, clay, granite and volcanic material are examined. Sophisticated studies are lead to determine the best geological confinement but questions arise about the time for which safety must be ensured. France has chosen 3 possible sites. These sites are geologically described in the article. The final place will be proposed after a testing phase of about 5 years in an underground facility. (A.C.)

  1. An Underground Storage Tank Integrated Demonstration report

    International Nuclear Information System (INIS)

    Quadrel, M.J.; Hunter, V.L.; Young, J.K.; Lini, D.C.; Goldberg, C.

    1993-04-01

    The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study's products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge

  2. Site-specific standard request for Underground Storage Tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility Buildings 9754-1 and 9720-15

    International Nuclear Information System (INIS)

    1994-08-01

    This document is a site-specific standard request for underground storage tanks located at the Rust Garage Facility. These standards are justified based on conclusion derived from the exposure assessment that indicates there is no current or forseeable future human health risk associated with petroleum contaminants on the site, that current and future ecological risks would be generally limited to subsurface species and plant life with roots extending into the area, and that most of the impacted area at the site is covered by asphalt or concrete. The vertical and horizontal extent of soil and ground water contamination are limited to immediate area of the Rust Garage Facility

  3. 200 Area plateau inactive miscellaneous underground storage tanks locations

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1997-01-01

    Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years

  4. Underground Gas Storage in the World 2013 (fifth edition)

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-06-01

    Since its first publication in 1990, 'Underground Gas Storage in the World' has been the industry's reference on underground gas storage (UGS). The updated 2013 edition includes in-depth CEDIGAZ's analyses of the latest developments and trends in the storage industry all over the world as well as extensive country analyses with complete datasets including current, under construction and planned Underground Gas Storage facilities in 48 countries. It describes the 688 existing storage facilities in the world and the 236 projects under construction and planned. Future storage demand and its main drivers are presented at global and regional levels. The study builds on the CEDIGAZ Underground Gas Storage Database, the only worldwide Underground Gas Storage database to be updated every year. This document summarizes the key findings of the Survey which includes four main parts: The first part gives an overview of underground gas storage in the world at the beginning of 2013 and analyzes future storage needs by 2030, at regional and international levels. The second part focuses on new trends and issues emerging or developing in key storage markets. It analyzes the emerging storage market in China, reviews the storage business climate in Europe, examines Gazprom's storage strategy in Europe, and reviews recent trends in storage development in the United States. The third part gives some fundamental background on technical, economic and regulatory aspects of gas storage. The fourth part gives a countrywide analysis of the 48 countries in the world holding underground gas storage facilities or planning storage projects. 48 countries are surveyed with 688 existing UGS facilities, 256 projects under construction or planned

  5. Underground storage tanks containing hazardous chemicals

    International Nuclear Information System (INIS)

    Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.; Hillger, R.W.; Tafuri, A.N.

    1991-01-01

    The regulations issued by the United States Environmental Protection Agency in 1988 require, with several exceptions, that underground storage tank systems containing petroleum fuels and hazardous chemicals be routinely tested for releases. This paper summarizes the release detection regulations for tank systems containing chemicals and gives a preliminary assessment of the approaches to release detection currently being used. To make this assessment, detailed discussions were conducted with providers and manufacturers of leak detection equipment and testing services, owners or operators of different types of chemical storage tank systems, and state and local regulators. While these discussions were limited to a small percentage of each type of organization, certain observations are sufficiently distinctive and important that they are reported for further investigation and evaluation. To make it clearer why certain approaches are being used, this paper also summarizes the types of chemicals being stored, the effectiveness of several leak detection testing systems, and the number and characteristics of the tank systems being used to store these products

  6. Underground Storage Tank Integrated Demonstration (UST-ID)

    International Nuclear Information System (INIS)

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m 3 ) to 10 6 gallons (3785 m 3 ). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina

  7. Underground Storage Alternative To Nigeria's Gas Flaring

    International Nuclear Information System (INIS)

    Obi, A.I

    2004-01-01

    Energy demands are increasing as the world's population of energy users grows. At the same time many nations want to decommission nuclear plants in support of a cleaner environment. Clean burning natural gas is the fuel most likely to meet society's complex requirements. Demand for natural gas will rise more strongly than for any fossil fuel. The utilization of the huge gas resources form the petroleum deposit in the Niger Delta area is the major problem confronting the oil/gas industry in Nigeria and the disposal of associated gas has been a major challenge for the barrel of oil; hence with oil production of about 2.0 million barrels per day, some 2.0 billion standard cubic feet of AG is producing everyday. An alarming proportion of the gas is wasted by flaring, while very small proportion is used by oil-producing companies and other most alarming rate of flaring in the world compared with other oil/gas producing countries. This paper highlights the numerous benefits accruing from proper utilization of natural gas using SASOL of South Africa as an example and recommends underground storage of natural gas as an industry that will help check flaring, meet fluctuating demand and create wealth for the nation

  8. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  9. Underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Bender, F.

    1982-01-01

    The symposium gave the opportunity for an international exchange of views on the concepts of underground nuclear power plants, which are presently world wide under consideration. The results of investigations into the advantages and disadvantages with regard to the technical safety aspects of the underground plants in comparison to plants on the surface led to open and sometimes controversal discussions. As a result of the symposium (32 contributions) a general agreement can be stated on the judgement concerning the advantages and the disadvantages of underground nuclear power plants (nnp). The advantages are: increased protection against external events; delayed release of fission products in accident situations, if the closures operate properly. The disadvantages are: increased costs of the construction of underground and restrictions to such sites where either large caverns or deep pits can be constructed, which also requires that certain technical problems must be solved beforehand. Also, additional safety certificates related to the site will be required within the licensing procedures. The importance of these advantages and disadvantages was in some cases assessed very differently. The discussions also showed, that there are a number of topics where some questions have not been finally answered yet. (orig./HP) [de

  10. Underground storage touted as CO2 solution

    International Nuclear Information System (INIS)

    Kishewitsch, S.

    2000-01-01

    As power generating companies weigh the merits of switching from coal to natural gas in order to reduce carbon dioxide emissions into the atmosphere, energy analysts predict that coal will remain a major contributor to world energy supplies well into the 21st century. For example, the Electric Power Institute estimates that a new 1,000 MW power plant need to be built somewhere in the world every two days for the next fifty years to meet the global demand for energy, and that in major emerging economies such as India and China, many of those plants will be fueled by coal. Various methods already are being tried to safely contain the carbon dioxide resulting from this vastly carbon-intensive economy. One of the more promising approaches involves burying the gas deep in the ground where it will stay safely for hundreds, if not thousands of years. Burial underground may take the form of burial in deep exhausted oil or gas formations, or burial in the deep ocean. Injection into exhausted oil and gas formations is favoured because of the ready availability of thousands of gigatonnes of underground formations and because of the extensive knowledge base already in existence regarding the size and geological properties of oil and gas reservoirs and the behaviour of carbon dioxide under these conditions. Injecting carbon dioxide into unmineable coal seams could replace methane bound to the coal; it is already being done in Alberta as one of the two pilot projects in North America, the other being in Mexico. Carbon dioxide injection to stimulate enhanced oil recovery is also being experimented with, among others by PanCanadian Resources Ltd at its Weyburn reservoir in Saskatchewan. Injection into salt domes and deep saline aquifers is another alternative. Sequestration in the ocean in a variety of forms is also the subject of several experiments. To illustrate the attractiveness of deep ocean storage, it is stated that the ocean contains at least 50 times more carbon than the

  11. Underground gas storage in the World - 2013 (fifth Edition)

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-07-01

    Since its first publication in 1990, 'Underground Gas Storage in the World' has been the industry's reference on underground gas storage (UGS). The updated 2013 edition includes in-depth CEDIGAZ's analyses of the latest developments and trends in the storage industry all over the world as well as extensive country analyses with complete datasets including current, under construction and planned Underground Gas Storage facilities in 48 countries. It describes the 688 existing storage facilities in the world and the 236 projects under construction and planned. Future storage demand and its main drivers are presented at global and regional levels. 'Underground Gas Storage in the World 2013' builds on the CEDIGAZ Underground Gas Storage Database, the only worldwide Underground Gas Storage database to be updated every year. The Survey includes four main parts: The first part gives an overview of underground gas storage in the world at the beginning of 2013 and analyzes future storage needs by 2030, at regional and international levels. The second part focuses on new trends and issues emerging or developing in key storage markets. It analyzes the emerging storage market in China, reviews the storage business climate in Europe, examines Gazprom's storage strategy in Europe, and reviews recent trends in storage development in the United States. The third part gives some fundamental background on technical, economic and regulatory aspects of gas storage. The fourth part gives a countrywide analysis of the 48 countries in the world holding underground gas storage facilities or planning storage projects. 48 countries surveyed, 688 existing UGS facilities, 256 projects under construction or planned. The document includes 70 tables, 72 charts and figures, 44 country maps. The countries surveyed are: Europe : Albania, Austria, Belgium, Bosnia, Bulgaria, Croatia, Czech Republic, Denmark, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Netherlands, Poland

  12. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  13. Underground storage development in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Sponheuer, T.

    1990-01-01

    As the demand for gas in the Federal Republic of Germany is increasingly dependent upon temperature, underground storage is becoming a more and more important tool for the adjustment of supply load factors to the patterns of gas demand. Total working gas capacity is expected to double by the year 2000. Capacity requirements must be planned for a design winter, but allowances must also be made for operational flexibility, but management of incidents and the decrease in deliverability mainly from porous rock storage fields towards the end of the withdrawal season. Storage development potential in the Federal Republic of Germany is adequate for these requirements. However, the substantial uncertainties associated with the various factors determining future storage needs, administrative and licensing procedures, difficulties with regard to storage site acceptance by the general public and the resulting long project lead times confront gas companies from the Federal Republic of Germany with a complex planning problem and a major technical and commercial challenge, considering the estimated capital outlay of 4 to 5 billion DM in 1988 Deutschmarks. To master this challenge and to be able to provide secure and competitive gas supplies, the gas industry must continue to operate in a market economy which remains undistorted by new legislation and regulation. (author). 11 figs

  14. Recovery of oil from underground drill sites

    International Nuclear Information System (INIS)

    Streeter, W.S.; Hutchinson, T.S.; Ameri, S.; Wasson, J.A.; Aminian, K.

    1991-01-01

    This paper reports that a significant quantity of oil is left in reservoirs after conventional oil recovery techniques have been applied. In West Virginia and Pennsylvania alone, this oil has been estimated at over 4.5 billion barrels (0.72 billion m 3 ). Conventional recovery methods are already being used when applicable. But a new recovery method is needed for use in reservoirs that have been abandoned. One alternative method for recovery of the residual oil is known as oil recovery from underground drill sites. This recovery technology is a combination of proven methods and equipment from the petroleum, mining, and civil construction industries. Underground oil recovery can be an economically viable method of producing oil. This has been shown in producing fields, field tests, and feasibility, studies. Faced with decreasing domestic oil production, the petroleum industry should give serious consideration to the use of oil recovery from underground drill sites as a safe, practical, and environmentally sensitive alternative method of producing oil from many reservoirs

  15. The underground storages of carbon dioxide. Juridical aspects

    International Nuclear Information System (INIS)

    Bersani, F.

    2006-04-01

    In the framework of the reduction of the carbon dioxide emissions in the air, the underground storage of the CO 2 is studied. Some experimentation are already realized in the world and envisaged in France. This document aims to study the juridical aspects of these first works in France. After a presentation of the realization conditions and some recalls on the carbon dioxide its capture and storage, the natural CO 2 underground storages and the first artificial storages are discussed. The CO 2 waste qualification, in the framework of the environmental legislation is then detailed with a special task on the Lacq region. The problem of the sea underground storages is also presented. (A.L.B.)

  16. Specialized video systems for use in underground storage tanks

    International Nuclear Information System (INIS)

    Heckendom, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1994-01-01

    The Robotics Development Groups at the Savannah River Site and the Hanford site have developed remote video and photography systems for deployment in underground radioactive waste storage tanks at Department of Energy (DOE) sites as a part of the Office of Technology Development (OTD) program within DOE. Figure 1 shows the remote video/photography systems in a typical underground storage tank environment. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and from the tank, and all viewing functions are remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Overview video systems, both monaural and stereo versions, include a camera, zoom lens, camera positioner, vertical deployment system, and positional feedback. Each independent video package can be inserted through a 100 mm (4 in.) diameter opening. A special attribute of these packages is their design to never get larger than the entry hole during operation and to be fully retrievable. The End Effector systems will be deployed on the large robotic Light Duty Utility Arm (LDUA) being developed by other portions of the OTD-DOE programs. The systems implement a multi-functional ''over the coax'' design that uses a single coaxial cable for all data and control signals over the more than 900 foot cable (or fiber optic) link

  17. Aims, organization and activities of the consortium for underground storage

    International Nuclear Information System (INIS)

    Stucky, G.

    1977-01-01

    The consortium of Swiss authorities interested in underground storage (the petroleum oil and gas industries, for fuel storage; the nuclear industry for radioactive waste disposal), was initiated in 1972. The author outlines the motives behind the formation of the consortium and outlines its structure and objectives. The envisaged projects are outlined. (F.Q.)

  18. Natural convection and vapor loss during underground waste storage

    International Nuclear Information System (INIS)

    Plys, M.G.; Epstein, M.; Turner, D.

    1996-01-01

    Natural convection and vapor loss from underground waste storage tanks is examined here. Stability criteria are provided for the onset of natural convection flow within the headspace of a tank, and between tanks and the environment. The flowrate is quantified and used to predict vapor losses during storage

  19. Decision analysis of Hanford underground storage tank waste retrieval systems

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-05-01

    A decision analysis approach has been proposed for planning the retrieval of hazardous, radioactive, and mixed wastes from underground storage tanks. This paper describes the proposed approach and illustrates its application to the single-shell storage tanks (SSTs) at Hanford, Washington

  20. The underground retrievable storage (URS) high-level waste management concept

    International Nuclear Information System (INIS)

    Ramspott, L.D.

    1991-01-01

    This papers presents the concept of long-term underground retrievable storage (URS) of spent reactor fuel in unsaturated rock. Emplacement would be incremental and the system is planned to be experimental and flexible. The rationale for retrievability is examined, and a technical basis for 300-year retrievability is presented. Maximum isolation is the rationale for underground as opposed to surface storage. Although the potential repository site at Yucca Mountain Nevada would be suitable for a URS, alternate sites are discussed. The technical issues involved in licensing a URS for 300 years are simpler than licensing a 10,000 year repository. 16 refs

  1. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  2. Advanced remediation, technology development in the underground storage tank

    International Nuclear Information System (INIS)

    Gates, T.E.; Gilchrist, R.L.

    1992-01-01

    Production of nuclear materials has been a major mission of the U. S. Department of Energy (DOE) over the last 50 years. These activities have contributed to a substantial accumulation of hazardous, radioactive, and mixed wastes. In 1989, the DOE established the Office of Environmental Restoration and Waste Management. This office coordinates and manages the DOE's remediation, waste minimization, and environmental compliance activities. It also has responsibility for waste generated by current operations. Within this office is the Office of Technology Development, which is responsible for providing technology improvements. This paper reports on integrated demonstrations which have been established to efficiently bring the best technologies to bear on the common needs of multiple DOE sites. One such need is resolution of the actions required for final closure and waste disposal of liquid (including sludge and salt cake) radioactive and chemical wastes that have been transferred to underground storage tanks

  3. Siting technology of underground nuclear power station

    International Nuclear Information System (INIS)

    Motojima, M.; Hibino, S.

    1989-01-01

    For the site of a nuclear power station, it may be possible to select a seaside mountain area, if the condition is suitable to excavate large rock caverns in which a reactor and other equipments are installed. As the case study on the siting technology for an underground nuclear power station, the following example was investigated. The site is a seaside steep mountain area, and almost all the equipments are installed in plural tunnel type caverns. The depth from the ground surface to the top of the reactor cavern is about 150 m, and the thickness of the rock pillar between the reactor cavern of 33 m W x 82 mH x 79 mD and the neighboring turbine cavern is 60 m. In this paper, the stability of rock caverns in this example, evaluated by numerical analysis, is described. The numerical analysis was carried out on the central cross section of the reactor cavern, taking the turbine cavern, geostress, the mechanical properties of rock mass and the process of excavation works in consideration. By the analysis, the underground caverns in this example were evaluated as stable, if the rock quality is equivalent to C H class or better according to the CRIEPI rock classification. (K.I.)

  4. Underground storage tanks: State regulations and compliance strategies

    International Nuclear Information System (INIS)

    Robinson, J.E.

    1988-01-01

    In an effort to resolve underground storage tank (UST) management problems, several states and localities have moved ahead of EPA in the promulgation of UST regulations. Developed independently, these regulations represent different strategies for ensuring compliance: from an extensive set of permitting requirements that allow for the implementation of site-specific control measures to a uniform set of technical and operational requirements that vary according to installation date. For the tank owner, complying with these regulations can be a time-consuming and frustrating endeavor. However, during the course of several environmental audits of similar facilities in different states, useful strategies were observed or developed that enabled facilities to respond more effectively to requirements: these included computerization of files, designation of tank custodians, installation of low-maintenance equipment, and increased use of above-ground tanks. Of special additional interest was the wide variation in costs for similar tank services quoted by both private and government sources. These strategies are coupled with general observations on the efficacy of the various regulatory approaches to provide a field view that may be useful to tank owners and others involved in underground tank management and evaluation

  5. Numerical modeling of underground storage system for natural gas

    Science.gov (United States)

    Ding, J.; Wang, S.

    2017-12-01

    Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).

  6. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME I

    Science.gov (United States)

    A set of experiments was conducted to determine whether volumetric leak detection system presently used to test underground storage tanks (USTs) up to 38,000 L (10,000 gal) in capacity could meet EPA's regulatory standards for tank tightness and automatic tank gauging systems whe...

  7. Arrangement for underground storage of materials of every kind

    International Nuclear Information System (INIS)

    Marek, O.; Seisenbacher, H.; Toth, L.

    1982-01-01

    Construction of a spheroidal tank, made of two sheets of concrete, used for underground storage. Space between inner and outer sheet is filled with a vibration absorbing material. The bottom of the outer sheet is made of material with lower rigidness, which allows the line of fault in cases of tectonic motions to slide off. (J.K.) [de

  8. Underground storage tanks cause environmental chaos

    International Nuclear Information System (INIS)

    Cruver, P.C.

    1991-01-01

    This paper reports that during the 1950s and the subsequent three decades, petroleum products were stored in single-walled steel underground tanks; an out-of-sight, out-of-mind philosophy prevailed. Unfathomable amounts of toxic petroleum products leaking into the nation's ground water supplies has prompted enactment of recent and much needed legislation and regulation to remedy this major problem. Is the public aware of this serious ecological imbroglio? No, not as yet; except for the closing of many rural service stations and the plethora of dug-up, exposed tanks at urban stations, one could never imagine the severity of this debacle confronting the petroleum industry and the nation's environment

  9. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  10. Underground siting of nuclear power plants: potential benefits and penalties

    International Nuclear Information System (INIS)

    Allensworth, J.A.; Finger, J.T.; Milloy, J.A.; Murfin, W.B.; Rodeman, R.; Vandevender, S.G.

    1977-08-01

    The potential for improving nuclear power safety is analyzed by siting plants underground in mined cavities or by covering plants with fill earth after construction in an excavated cut. Potential benefits and penalties of underground plants are referenced to analogous plants located on the surface. Three representative regional sites having requisite underground geology were used to evaluate underground siting. The major factors which were evaluated for all three sites were: (1) containment of radioactive materials, (2) transport of groundwater contamination, and (3) seismic vulnerability. External protection, plant security, feasibility, operational considerations, and cost were evaluated on a generic basis. Additionally, the national availability of sites having the requisite geology for both underground siting concepts was determined

  11. Underground or aboveground storage tanks - A critical decision

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  12. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  13. Silos. Optimisation of underground storages' management

    International Nuclear Information System (INIS)

    Formaggio, M.

    1997-01-01

    The operation of Silos in the optimization of storages' management at Snam is presented, together with an assessment of the benefits obtained through closer attention and higher commitment of the staff, as well as better communication between Dispatching and other organizational functions. Silos has proven to be a useful decision-making tool, while applying traditional risk-assessment methods. (au)

  14. An Approach for Developing Site-Specific Lateral and Vertical Inclusion Zones within which Structures Should be Evaluated for Petroleum Vapor Intrusion due to Releases of Motor Fuel from Underground Storage Tanks

    Science.gov (United States)

    Buildings may be at risk from Petroleum Vapor Intrusion (PVI) when they overlie petroleum hydrocarbon contamination in the unsaturated zone or dissolved in groundwater. The U.S. EPA Office of Underground Storage Tanks (OUST) is preparing Guidance for Addressing Petroleum Vapor I...

  15. High temperature underground thermal energy storage system for solar energy

    Science.gov (United States)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  16. Underground storage tank - Integrated Demonstration Technical Task Plan master schedule

    International Nuclear Information System (INIS)

    Johnson, C.M.

    1994-08-01

    This document provides an integrated programmatic schedule (i.e., Master Schedule) for the U.S. Department of Energy (DOE) Underground Storage Tank-Integrated Demonstration (UST-ID) Program. It includes top-level schedule and related information for the DOE Office of Technology Development (EM-50) UST-ID activities. The information is based upon the fiscal year (FY) 1994 technical task plans (TTPS) and has been prepared as a baseline information resource for program participants. The Master Schedule contains Level 0 and Level 1 program schedules for the UST-ID Program. This document is one of a number of programmatic documents developed to support and manage the UST-ID activities. It is composed of the following sections: Program Overview - provides a summary background of the UST-ID Program. This summary addresses the mission, scope, and organizational structure of the program; Activity Description - provides a programmatic description of UST-ID technology development activities and lists the key milestones for the UST-ID systems. Master Schedules - contains the Level 0 and Level 1 programmatic schedules for the UST-ID systems. References - lists the UST-ID programmatic documents used as a basis for preparing the Master Schedule. The appendixes contain additional details related to site-specific technology applications

  17. Review of underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    1974-01-01

    A review of the potential for the underground siting of nuclear power generating plants has been undertaken. The review comprised a survey and assessment of relevant published documents currently available, together with discussions with Government sponsored agencies and other bodies, to evaluate the current status of technology related to the design and construction of underground nuclear power plants. It includes a review of previous work related to the underground siting of power plants and other facilities; a preliminary evaluation of the relative merits of the various concepts of undergrounding which have been proposed or constructed; a review of current technology as it relates to the requirements for the design, construction and operation of underground nuclear power plants; an examination of the safety and environmental aspects; and the identification of areas of further study which will be required if the underground is to be established as a fully viable alternative to surface siting. No attempt has been made to draw final conclusions at this stage. Nothing has been found to suggest that the underground siting concept could not provide a viable alternative to the surface concept. It is also apparent that no major technological developments are required. It is not clear, however, whether the improvements in safety and containment postulated for the underground can be realized at an economic cost; or even whether any additional cost is in fact involved. The problem is essentially site dependent and requires further study for which recommendations are made. (auth)

  18. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  19. Salt creep design consideration for underground nuclear waste storage

    International Nuclear Information System (INIS)

    Li, W.T.; Wu, C.L.; Antonas, N.J.

    1983-01-01

    This paper summarizes the creep consideration in the design of nuclear waste storage facilities in salt, describes the non-linear analysis method for evaluating the design adequacy, and presents computational results for the current storage design. The application of rock mechanics instrumentation to assure the appropriateness of the design is discussed. It also describes the design evolution of such a facility, starting from the conceptual design, through the preliminary design, to the detailed design stage. The empirical design method, laboratory tests and numerical analyses, and the underground in situ tests have been incorporated in the design process to assure the stability of the underground openings, retrievability of waste during the operation phase and encapsulation of waste after decommissioning

  20. Indian Country Leaking Underground Storage Tanks, Region 9, 2016

    Science.gov (United States)

    This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and locational information, status of LUST case, operating status of facility, inspection dates, and links to No Further Action letters for closed LUST cases. This database contains 1230 features, with 289 features having a LUST status of open, closed with no residual contamination, or closed with residual contamination.

  1. Case study of siting technology for underground nuclear power plant

    International Nuclear Information System (INIS)

    Hibino, Satoshi; Komada, Hiroya; Honsho, Shizumitsu; Fujiwara, Yoshikazu; Motojima, Mutsumi; Nakagawa, Kameichiro; Nosaki, Takashi

    1991-01-01

    Underground siting method is one of new feasible siting methods for nuclear power plants. This report presents the results on case studies on underground siting. Two sites of a steeply inclined and plateau like configurations were selected. 'Tunnel type cavern; all underground siting' method was applied for the steeply inclined configuration, and 'shaft type semi-cavern; partial underground siting' method was applied for the plateau like configuration. The following designs were carried out for these two sites as case studies; (1) conceptual designs, (2) geological surveys and rock mechanics tests, (3) stability analysis during cavern excavations, (4) seismic stability analysis of caverns during earthquake, (5) reinforcement designs for caverns, (6) drainage designs. The case studies showed that these two cases were fully feasible, and comparison between two cases revealed that the 'shaft type semi-cavern; partial underground siting' method was more suitable for Japanese islands. As a first step of underground siting, therefore, the authors recommend to construct a nuclear power plant by this method. (author)

  2. Inherent security benefits of underground dry storage of nuclear materials

    International Nuclear Information System (INIS)

    Moore, R.D.; Zahn, T.

    1997-07-01

    This paper, augmented by color slides and handouts, will examine the inherent security benefits of underground dry storage of nuclear materials. Specific items to be presented include: the successful implementation of this type of storage configuration at Argonne National Laboratory - West; facility design concepts with security as a primary consideration; physical barriers achieved by container design; detection, assessment, and monitoring capabilities; and open-quotes self protectionclose quotes strategies. This is a report on the security features of such a facility. The technical operational aspects of the facility are beyond the scope of this paper

  3. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  4. A survey of the underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Pinto, S.

    1979-12-01

    The idea of locating nuclear power plants underground is not new, since in the period of time between the late fifties and the early sixties, four small nuclear plants have been built in Europe in rock cavities. Safety has been, in general, the main motivation for such a siting solution. In the last years several factors such as increasing power transmission costs, decreasing number of suitable sites above ground, increased difficulties in obtaining site approval by the licensing authorities, increasing opposition to nuclear power, increasing concern for extreme - but highly improbable - accidents, together with the possibility of utilizing the waste heat and the urban siting concept have renewed the interest for the underground siting as an alternative to surface siting. The author presents a survey of the main studies carried out on the subject of underground siting. (Auth.)

  5. Model based, sensor-directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Harrigan, R.W.; Thunborg, S.

    1990-01-01

    Sensor-rich, intelligent robots that function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories (SNL) is performing technology development and experimental investigations into the application of intelligent robot control technology to the problem of cleaning up waste stored in underground tanks. The tasks addressed in the SNL experiments are in situ physical characterizations of underground storage tanks (USTs) as well as the contained waste and the removal of the waste from the tank both for laboratory analysis and as part of the tank cleanup process. Both fully automatic and manual robot control technologies are being developed and demonstrated. The SNL-developed concept of human-assisted computer control will be employed whenever manual control of the robot is required. The UST Robot Technology Development Laboratory (URTDL) consists of a commercial gantry robot modified to allow hybrid force/position control

  6. Performance Analysis of Depleted Oil Reservoirs for Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Dr. C.I.C. Anyadiegwu

    2014-02-01

    Full Text Available The performance of underground gas storage in depleted oil reservoir was analysed with reservoir Y-19, a depleted oil reservoir in Southern region of the Niger Delta. Information on the geologic and production history of the reservoir were obtained from the available field data of the reservoir. The verification of inventory was done to establish the storage capacity of the reservoir. The plot of the well flowing pressure (Pwf against the flow rate (Q, gives the deliverability of the reservoir at various pressures. Results of the estimated properties signified that reservoir Y-19 is a good candidate due to its storage capacity and its flow rate (Q of 287.61 MMscf/d at a flowing pressure of 3900 psig

  7. Long-term behaviour of waste-forms in the near-field environment of a deep underground storage site, overview

    International Nuclear Information System (INIS)

    Toulhoat, P.; Lassabatere, Th.; Galle, Ch.; Cranga, M.; Trotignon, L.; Maillard, S.; Iracane, D.

    1997-01-01

    CEA (French Atomic Energy Commission) is responsible for the achievement of high activity and/or long life waste conditioning processes. Various waste-forms are used (glass, bitumen, etc...). ANDRA (French National Agency for Nuclear Waste Management) has to integrate the long-term durability of such waste-forms in the conception of a deep disposal and the assessment of its long-term confinement performances. The influence of near-field and of the boundary conditions imposed by the far-field on the long-term evolution is being more and more documented. Transport properties and reactivity of silica in the near field is one of the best examples of such effects. A coherent framework with relevant successive events (site re-saturation, chemical evolution of the engineered barrier, overpack corrosion) and a thorough analysis of hierarchized couplings are necessary to evaluate the long term durability of waste-form, and finally, to deliver a near-field-integrated source-term of radionuclides versus lime. We present hereafter some preliminary results obtained in the framework of the CEA 'C3P' project - long-term behaviour of waste-forms in their near-field environment. (authors)

  8. Estimating Residual Solids Volume In Underground Storage Tanks

    International Nuclear Information System (INIS)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-01

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  9. Underground storage tanks soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.

    1993-10-01

    Currently 140 million liters (37 million gallons) of waste are stored in the single shell underground storage tanks (SSTs) at Hanford. The wastes contain both hazardous and radioactive constituents. This paper focuses on the Westinghouse Hanford Company's testing program for soft waste dislodging and conveyance technology. This program was initialized to investigate methods of dislodging and conveying soft waste. The main focus was on using air jets, water jets, and/or mechanical blades to dislodge the waste and air conveyance to convey the dislodged waste. These waste dislodging and conveyance technologies would be used in conjunction with a manipulator based retrieval system

  10. Regulatory analysis of the Underground Storage Tank-Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Smith, E.H.

    1992-01-01

    The Underground Storage Tank-Integrated Demonstration (UST-ID) Program has been developed to identify, demonstrate, test, and evaluate technologies that will provide alternatives to the current underground storage tank remediation program. The UST-ID Program is a national program that consists of five participating US Department of Energy (DOE) sites where technologies can be developed an ultimately demonstrated. Once these technologies are demonstrated, the UST-ID Program will transfer the developed technology system to industry (governmental or industrial) for application or back to Research and Development for further evaluation and modification, as necessary. In order to ensure that the UST-ID Program proceeds without interruption, it will be necessary to identify regulatory requirements along with associated permitting and notification requirements early in the technology development process. This document serves as a baseline for identifying certain federal and state regulatory requirements that may impact the UST-ID Program and the demonstration of any identified technologies

  11. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  12. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    International Nuclear Information System (INIS)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks

  13. A research on the excavation and maintenance of underground energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee-Soon; Chung, So-Keul; Ryu, Chang-Ha [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    CAES which is called as a compressed air energy storage was firstly developed at Huntorf, Gen-nan in 1978. The capacity of that system was 290MW, and it can be treated as a first commercial power plant. CAES has a lot of merits, such as saving the unit price of power generation, averaging the peak demand, improvement of maintenance, enlarging the benefit of dynamic use. According to the literature survey, the unlined rock cavern should be proposed to be a reasonable storing style as a method of compressed air storage in Korea. In this study, the most important techniques were evaluated through the investigation of the foreign construction case studies, especially on the unlined rock caverns in hard rock mass. We decided the hill of the Korea Institute of Geology, Mining and Materials as CAES site. If we construct the underground spaces in this site, the demand for electricity nearby Taejon should be considered. So we could determine the capacity of the power plant as a 350MW. This capacity needs a underground space of 200,000, and we can conclude 4 parallel tunnels 550m deep from the surface through the numerical studies. Design parameters were achieved from 300m depth boring job and image processing job. Moreover the techniques for determination of joint characteristics from the images could be obtained. Blasting pattern was designed on the underground spaces, and automatic gas control system and thermomechanical characteristics on caverns were also studied. And finally the following research items could be proposed for future researches. (1) Establishment of criteria for selection of optimal tunnel type. (2) Evaluation of water tightening ability. (3) Investigation of Lining type. (4) Development of techniques for site investigation in deep underground project. (5) Evaluation of construction techniques for underground space and shaft. (6) Investigation of long-term maintenance for pressured tunnel. (author). 14 refs.

  14. Underground storage tank soft waste dislodging and conveyance

    International Nuclear Information System (INIS)

    Wellner, A.F.S.

    1993-01-01

    The primary objective of this task is to demonstrate potential technical solutions and to acquire engineering data and information on the retrieval technologies applicable for use in retrieving waste from underground storage tanks. This task focuses on soft waste dislodging and conveyance technologies that would be used in conjunction with a manipulator-based retrieval system. This retrieval task focuses on Hanford single-shell tanks, but the results may also have applications to other waste retrieval problems. This work is part of the U.S. Department of Energy's (DOE's) Office of Technology Development, sponsored by the DOE's Richland Operations Office under the Underground Storage Tanks Integrated Demonstration (USTID) program. This task is one element of the whole waste dislodging and conveyance system in the USTID. The tank wastes contain both hazardous and radioactive constituents. This task focuses on the processes for dislodging and retrieving soft wastes, mainly sludge. Sludge consists primarily of heavy-metal, iron, and aluminum precipitates. Sludges vary greatly in their physical properties and may contain pockets of liquid. Sludges have been described as varying in consistency from thick slurry to sticky clay and as sandy with hard chunks of material. The waste is believed to have adhesive and cohesive properties. The quantitative physical properties of the wastes have yet to be measured. The waste simulants used in the testing program emulate the physical properties of the tank waste

  15. A GIS-based 3D online information system for underground energy storage in northern Germany

    Science.gov (United States)

    Nolde, Michael; Malte, Schwanebeck; Ehsan, Biniyaz; Rainer, Duttmann

    2015-04-01

    We would like to present the concept and current state of development of a GIS-based 3D online information system for underground energy storage. Its aim is to support the local authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The presented information system uses data of geological features such as rock layers, salt domes and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, powerline arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the process of pre-selecting sites suitable for energy storage. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. While the process of pre-selection itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, so that it can easily be utilized in any web browser. The results are visualized online as interactive 3d graphics. The information system is implemented in the Python programming language in combination with current Web standards, and is build using only free and open source software. It is being developed at Kiel University as part of the ANGUS+ project (lead by Prof. Sebastian Bauer) for the federal state of

  16. War protected underground siting of nuclear power plants -a summary

    International Nuclear Information System (INIS)

    1974-06-01

    In connection with studies concerning the need of war protected nuclear power production the technical and economical conditions with war protection of nuclear power plants have been studied within CDL. Comprehensively one have shown that no technical construction obstacles for siting a nuclear power plant underground exist that the additional costs for underground siting with price level mid 1973 are some 175-250 MSwCr (In today's price level 250 MSwCr will probably correspond to some 300 MSwCr per unit) and that the construction time is some one year longer than for an above ground plant. A study ought to examine more closely the consequences of underground siting from a radiological point of view and what demands on that occasion ought to be put on the technical design. (author)

  17. Radon in an underground excavation site in Helsinki

    International Nuclear Information System (INIS)

    Venelampi, E.

    2004-01-01

    The paper reports on radon measurements and actions taken in a large underground excavation site in Helsinki, where a coal store was excavated underneath an existing power plant. The measurements were carried out by taking grab samples using Lucas type scintillation cells. Large variations in radon concentrations were observed during the three-year study. The reasons for variations are discussed and recommendations are given for radon monitoring procedures in underground excavation sites. The importance of ventilation to reduce the radon level is stressed. (P.A.)

  18. Mines as lower reservoir of an UPSH (Underground Pumping Storage Hydroelectricity): groundwater impacts and feasibility

    Science.gov (United States)

    Bodeux, Sarah; Pujades, Estanislao; Orban, Philippe; Dassargues, Alain

    2016-04-01

    The energy framework is currently characterized by an expanding use of renewable sources. However, their intermittence could not afford a stable production according to the energy demand. Pumped Storage Hydroelectricity (PSH) is an efficient possibility to store and release electricity according to the demand needs. Because of the topographic and environmental constraints of classical PSH, new potential suitable sites are rare in countries whose topography is weak or with a high population density. Nevertheless, an innovative alternative is to construct Underground Pumped Storage Hydroelectricity (UPSH) plants by using old underground mine works as lower reservoir. In that configuration, large amount of pumped or injected water in the underground cavities would impact the groundwater system. A representative UPSH facility is used to numerically determine the interactions with surrounding aquifers Different scenarios with varying parameters (hydrogeological and lower reservoir characteristics, boundaries conditions and pumping/injection time-sequence) are computed. Analysis of the computed piezometric heads around the reservoir allows assessing the magnitude of aquifer response and the required time to achieve a mean pseudo-steady state under cyclic solicitations. The efficiency of the plant is also evaluated taking the leakage into the cavity into account. Combining these two outcomes, some criterions are identified to assess the feasibility of this type of projects within potential old mine sites from a hydrogeological point of view.

  19. Robotic system for remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1990-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  20. Microbial Life in an Underground Gas Storage Reservoir

    Science.gov (United States)

    Bombach, Petra; van Almsick, Tobias; Richnow, Hans H.; Zenner, Matthias; Krüger, Martin

    2015-04-01

    While underground gas storage is technically well established for decades, the presence and activity of microorganisms in underground gas reservoirs have still hardly been explored today. Microbial life in underground gas reservoirs is controlled by moderate to high temperatures, elevated pressures, the availability of essential inorganic nutrients, and the availability of appropriate chemical energy sources. Microbial activity may affect the geochemical conditions and the gas composition in an underground reservoir by selective removal of anorganic and organic components from the stored gas and the formation water as well as by generation of metabolic products. From an economic point of view, microbial activities can lead to a loss of stored gas accompanied by a pressure decline in the reservoir, damage of technical equipment by biocorrosion, clogging processes through precipitates and biomass accumulation, and reservoir souring due to a deterioration of the gas quality. We present here results from molecular and cultivation-based methods to characterize microbial communities inhabiting a porous rock gas storage reservoir located in Southern Germany. Four reservoir water samples were obtained from three different geological horizons characterized by an ambient reservoir temperature of about 45 °C and an ambient reservoir pressure of about 92 bar at the time of sampling. A complementary water sample was taken at a water production well completed in a respective horizon but located outside the gas storage reservoir. Microbial community analysis by Illumina Sequencing of bacterial and archaeal 16S rRNA genes indicated the presence of phylogenetically diverse microbial communities of high compositional heterogeneity. In three out of four samples originating from the reservoir, the majority of bacterial sequences affiliated with members of the genera Eubacterium, Acetobacterium and Sporobacterium within Clostridiales, known for their fermenting capabilities. In

  1. A basic study on underground storage of LNG

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Kyu; Lee, Kyung-Han; Kang, Sun-Duck [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    In 1997, import of LNG was 11,378 thousand of about 2.3 billion US dollars. The demand of LNG(Liquefied Natural Gas) in Korea has been increased since 1987 with the rate of 20% annually. It is also estimated that this trend will be continued until 2010. Long-term estimation says that demand will increase with 9.1% and total demand of 2010 will be 23 million ton that is four times larger than that of 1994. Bases of unloading and store of LNG is necessary to complete the network of LNG distribution system to cover all of the country from import to final supply terminal at home. The construction plan of LNG bases with 49 tanks was published and is going on now at three bases, Pyungtaek, Incheon and Tongyoung. The total cost for this construction will be over 5,400 billion Won. All the LNG tanks are planned to build on the surface. The construction of LNG tanks on the surfaces is conventional but it damage the surface green area and is very vulnerable on safety, especially in Korea Peninsula with potentially unstable of military confrontation. And Korea is so small and limited in available land that it is not easy to find proper places for construction of more LNG tanks on surface. Underground LNG stores in rock will be a good alternative for tanks on surface in the view points of environmental and safety. It is also reported that it can be cheaper than that of on surfaces. It is well known that bed rocks in Korea is good to build underground structure like LNG stores. This report is basic research to seek for the possibility of LNG store construction in underground rocks. The important two questions on it is that whether it is possible technically and economically or not. The technical focus in this report is the stability of underground cavern for storage of LNG, energy conservation in operation, tightness against leakage of stored gas to surface and safety. Some statistic on LNG in Korea is given for this study with its future. (author). 25 refs., 36 tabs., 88 figs.

  2. Corrective action baseline report for underground storage tank 2331-U Building 9201-1

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to provide baseline geochemical and hydrogeologic data relative to corrective action for underground storage tank (UST) 2331-U at the Building 9201-1 Site. Progress in support of the Building 9201-1 Site has included monitoring well installation and baseline groundwater sampling and analysis. This document represents the baseline report for corrective action at the Building 9201-1 site and is organized into three sections. Section 1 presents introductory information relative to the site, including the regulatory initiative, site description, and progress to date. Section 2 includes the summary of additional monitoring well installation activities and the results of baseline groundwater sampling. Section 3 presents the baseline hydrogeology and planned zone of influence for groundwater remediation

  3. Closure Report for Underground Storage Tank 2310-U at the Pine Ridge West Repeater Station

    International Nuclear Information System (INIS)

    1994-07-01

    This document represents the Closure Report for Underground Storage Tank (UST) 2310-U at the Pine Ridge West Repeater Station, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2310-U was a 200-gal gasoline UST which serviced the emergency generator at the Repeater Station. The tank was situated in a shallow tank bay adjacent to the Repeater Station along the crest of Pine Ridge. The tank failed a tightness test in October 1989 and was removed in November 1989. The purpose of this report is to document completion of soil corrective action, present supporting analytical data, and request closure for this site

  4. Using virtual objects to aid underground storage tank teleoperation

    International Nuclear Information System (INIS)

    Anderson, R.J.; Davies, B.

    1994-01-01

    In this paper we describe an algorithm by which obstructions and surface features in an underground storage tank can be modeled and used to generate virtual barrier function for a real-time telerobotic system, which provides an aid to the operator for both real-time obstacle avoidance and for surface tracking. The algorithm requires that the slave's tool and every object in the waste storage tank be decomposed into convex polyhedral primitives, with the waste surface modeled by triangular prisms. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert's polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summed and applied to the manipulator/teleoperator system. Experimental results using a PUMA 560 and a simulated waste surface validate the approach, showing that it is possible to compute the algorithm and generate smooth, realistic pseudo forces for the teleoperator system using standard VME bus hardware

  5. Pyramid mountain diesel fuel storage site remediation

    Energy Technology Data Exchange (ETDEWEB)

    Brolmsa, M.; Sandau, C. [Jacques Whitford Environment Ltd., Burnaby, BC (Canada)

    2005-07-01

    Remediation activities during the decommissioning of a microwave tower facility where a tram line was used to transfer diesel fuel from the base of a mountain to its summit were described. As the site was leased from Parks Canada, federal guidelines were used to assess levels of contamination. Underground storage tanks (USTs) used for diesel storage had been replaced with aboveground storage tanks (AST) in 1994. Remediation was also complicated by the remote location and altitude of the site, as well as by extreme weather conditions. Hand auguring and test pitting were used at both the summit and base to allow characterization and preliminary delineation of impacted soils. A heavy lift helicopter was used to place demolition and excavation equipment on the summit. An excavator was used to remove hydrocarbon impacted soils. Following the remedial excavation for the summit diesel AST, residual soil impacts in excess of the applicable remediation guidelines were present at the bottom of the tank nest and under a floor slab. An environmental liner was installed, and a quantitative screening level risk assessment demonstrated the low level of risk for the area, as well as for waste oil impacted soils on the slope below the summit. Contaminants of potential concern were barium, zinc, naphthalene, and petroleum hydrocarbon fractions F1-F4. It was concluded that there are now no unacceptable ecological or human risks from residual impacts at the site. 1 tab., 19 figs.

  6. Underground storage. Study of radwaste storage in deep geological formations: environmental protection

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.

    1993-01-01

    The purpose of the Agence nationale pour la gestion des dechets radioactifs (Andra) is to monitor the management methods and storage of radioactive waste produced in France. The agency has this undertaken a vast study program for the evaluation of the management conditions of long-life radwaste, which cannot be stored indefinitely in shallow-ground repositories. Underground laboratories are investigating the feasibility of a possible solution which is to store radwaste in a deep geological layer. However, there will be no decision on this type of storage before the year 2006. 7 figs

  7. Treatment of radioactive wastes from DOE underground storage tanks

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Spencer, B.B.; Chase, C.W.; Anderson, K.K.; Bell, J.T.

    1994-01-01

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  8. Underground measurements of seismic vibrations at the SSC site

    International Nuclear Information System (INIS)

    Shiltsev, V.D.; Parkhomchuk, V.V.; Weaver, H.J.

    1995-01-01

    The results of underground measurements of seismic vibrations at the tunnel depth of the Superconducting Super Collider (SSC) site are presented. Spectral analysis of the data obtained in the frequency band from 0.05 Hz to 1500 Hz is performed. It is found that amplitudes of ambient ground motion are less than requirements for the Collider, but cultural vibrations are unacceptably large and will cause fast growth of transverse emittance of the SSC beams

  9. A risk-based approach to prioritize underground storage tanks

    International Nuclear Information System (INIS)

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-01-01

    The purpose of this paper is to present a risk-based approach for rapid prioritization of low level liquid radioactive waste underground storage tanks (LLLW USTs) for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at the Oak Ridge National Laboratory (ORNL) were pumped out at the time the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include, the radionuclides, 9O Sr, 137 Cs and 233 U and the chemicals, carbon tetrachloride, trichloroethene, tetrachloroethene, methyl ethyl ketone, mercury, lead and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank; (2) location of the tanks; and (3) toxic potential of the tank contents

  10. Plan of deep underground construction for investigations on high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Mayanovskij, M.S.

    1996-01-01

    The program of studies of the Japanese PNC corporation on construction of deep underground storage for high-level radioactive wastes is presented. The program is intended for 20 years. The total construction costs equal about 20 billion yen. The total cost of the project is equal to 60 billion yen. The underground part is planned to reach 1000 m depth

  11. Leaking Underground Storage Tank Points, Region 9 Indian Country, 2017, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and...

  12. Environmental Protection: Improved Inspections and Enforcement Would Ensure Safer Underground Storage Tanks

    National Research Council Canada - National Science Library

    Stephenson, John

    2001-01-01

    ...) Underground Storage Tank (UST) program. 1 The program is relevant to today's hearing because studies have shown that tanks that leak hazardous substances, such as methyl tertiary butyl ether (MTBE...

  13. Indian Country Leaking Underground Storage Tanks (LUST) Map Service, Region 9, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This map service displays Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. The service is composed of three layers; one for each unique LUST...

  14. Indian Country Leaking Underground Storage Tank (LUST) Points, Region 9, 2016, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and...

  15. Challenges to and proposals for underground gas storage (UGS business in China

    Directory of Open Access Journals (Sweden)

    Gangxiong Zhang

    2017-05-01

    Full Text Available Underground gas storage (UGS is one of the major storage and peak-shaving means in the world among numerous storage ways via gas fields, small-scale LNG, etc. With the rapid development of natural gas industry in China, the seasonal peak-shaving issues are increasingly prominent, so how to achieve sustainable development of UGS business has become a major problem at present. In view of this, we studied the present status and trend of UGS development abroad and analyzed the following challenges encountered by UGS in China. (1 UGS construction falls behind the world and peak-shaving capacity is insufficient. (2 There is lack of quality gas sources for storage and the complicated geological conditions make the cost of UGS construction high. (3 UGS construction is still at the preliminary stage, so experience is not enough in safety and scientific operation and management. (4 UGS construction, management and operation are not unified as a whole, so its maximum efficiency fails to be exerted. (5 The economic benefit of UGS is difficult to be shown without independent cost accounting. Based on the experience of other countries, some proposals were put forward on UGS development under the actual present situation: to strengthen strategic UGS layout, intensify storage site screening in key areas and steadily promote UGS construction; to establish professional UGS technical and management teams and intensify the research of key technologies; and to set up a complete and rationally-distributed UGS construction, operation and management system.

  16. Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands

    International Nuclear Information System (INIS)

    Vijgen, L.; Nitert, M.; Buijtendijk, B.; Van Dalen, A.

    2009-10-01

    The DCMR Environmental Protection Agency Rijnmond in the Netherlands conducted an Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands, in cooperation with the involved safety and supervision authorities. The following aspects of the entire storage project and its safety issues have been examined: the compressor station in Pernis; the underground pipes between the compressor station and the injection locations; and the injection locations Barendrecht-Ziedewij and Barendrecht. [nl

  17. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  18. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 {times} 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical {1/2}-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi.

  19. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-08-01

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 x 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical 1/2-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi

  20. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis

  1. Tools for Inspecting and Sampling Waste in Underground Radioactive Storage Tanks with Small Access Riser Openings

    International Nuclear Information System (INIS)

    Nance, T.A.

    1998-01-01

    Underground storage tanks with 2 inches to 3 inches diameter access ports at the Department of Energy's Savannah River Site have been used to store radioactive solvents and sludge. In order to close these tanks, the contents of the tanks need to first be quantified in terms of volume and chemical and radioactive characteristics. To provide information on the volume of waste contained within the tanks, a small remote inspection system was needed. This inspection system was designed to provide lighting and provide pan and tilt capabilities in an inexpensive package with zoom abilities and color video. This system also needed to be utilized inside of a plastic tent built over the access port to contain any contamination exiting from the port. This system had to be build to travel into the small port opening, through the riser pipe, into the tank evacuated space, and out of the riser pipe and access port with no possibility of being caught and blocking the access riser. Long thin plates were found in many access riser pipes that blocked the inspection system from penetrating into the tank interiors. Retrieval tools to clear the plates from the tanks using developed sampling devices while providing safe containment for the samples. This paper will discuss the inspection systems, tools for clearing access pipes, and solvent sampling tools developed to evaluate the tank contents of the underground solvent storage tanks

  2. Emerging risk issues in underground storage of bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Sipila, J.

    2013-11-01

    This thesis aims to address the root causes and means of prevention, mitigation and other improvements to the challenges from smouldering fires, coal freezing and occupational risk in an underground storage silo built into granite bedrock. In addition, appropriate performance indicators are suggested, and the benefits of the recommended or adopted actions are estimated. The issues and observed incidents demonstrate hazards that are largely classified to represent issues of emerging risk. To reduce the fire risk, successful measures included bottom maintenance door sealing and modified design of silo filling and discharge. The assessed benefits of these actions suggest a payback period of only about 10 days, assuming that, without these measures, a fire like the one in 2008 could occur once in four years. Additional recommendations are made to reduce air flow through the coal bed and near the silo ceiling, and to improve nitrogen purging at the hoppers. Filling with subzero coal can freeze silo drains, resulting in water inflow and further freezing to hamper discharge. As the heat flow is unlike any previously known cases of coal freezing, conventional mitigation e.g. by freeze conditioning agents, would not help. After implementing modified filling procedures for cold coal, no severe freezing cases have occurred. Safety advantages from the automated and remotely controlled operation do not necessarily apply under exceptional circumstances requiring human involvement. As preventive measures, protection has been sought from additional technical barriers and training effort. The rarity of serious incidents is a challenge in demonstrating success, but also emphasizes the importance of using leading (not only lagging) safety performance indicators for measurable safety promotion. In contrast, suitable leading performance indicators of the fire risk have been suggested for deliveries as an index of coal properties and for storage (gas emissions and temperature

  3. FY 1999 research and development results. Preparatory study for the underground thermal energy storage system; 1999 nendo chichu jiban chikunetsu system gijutsu sendo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The study is conducted for the underground thermal energy storage system which utilizes heat capacity of the underground, e.g., aquifer, to exchange heat with the underground, and the FY 1999 results are described. For establishment of the concept of the underground heat storage systems, 2 sites are selected for each of Tokyo, Osaka and Sapporo for the study as the geological ground models, for their weather characteristics. Two cases are considered for the site where underground heat exchangers are installed, open space and immediately below a building. The heat-storage system comprises a high-efficiency heat pump, water heat-storage tank and cooling tower. The evaluation results indicate that energy saving rate of 37% or more and CO2 reduction rate of 9.5% or more are achievable in all areas except Sapporo, i.e., Tokyo and Osaka. The economic evaluation results indicate that the simple pay-out period is around 100 years for Tokyo and Osaka, and 80 years for Sapporo. The underground heat storage system is approximately 10% lower in life-cycle cost than the conventional system, 3 versus 3.3 billion yen for the period of 60 years. (NEDO)

  4. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  5. Siting, design and construction of underground repositories for radioactive wastes

    International Nuclear Information System (INIS)

    1986-01-01

    The objectives of the Symposium were to provide a forum for exchange of information internationally on the various scientific, technological, engineering and safety bases for the siting, design and construction of underground repositories, and to highlight current important issues and identify possible approaches. Forty-nine papers were presented, covering general approaches and regulatory aspects, disposal in shallow ground and rock cavities, disposal in deep geological formations and safety assessments related to the subject of the Symposium. Separate abstracts were prepared for each of these papers

  6. Close out of the Malargue site: Underground draining system

    International Nuclear Information System (INIS)

    Giordano, Nolberto N.; Liseno, Aldo

    2000-01-01

    An industrial uranium production facility stopped working in Malargue city, Mendoza province. Nowadays, in that place there are 700,000 tons of solid tailings piles from the uranium minerals concentration process. They must be treated inside the site through engineering works included in the final closeout project. This paper describes the project technical details of an underground drainage system, designed to depress the groundwater level and to be sure about the isolation of the solids to be treated from the groundwater. The work was done by a private company, after public bidding process. At the moment the drainage system is in operation control stage. (author)

  7. A GIS Based 3D Online Decision Assistance System for Underground Energy Storage in Northern Germany

    Science.gov (United States)

    Nolde, M.; Schwanebeck, M.; Biniyaz, E.; Duttmann, R.

    2014-12-01

    We would like to present a GIS-based 3D online decision assistance system for underground energy storage. Its aim is to support the local land use planning authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The assistance system uses data of geological features such as rock layers, salt caverns and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, power line arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the decision finding process. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. The decision process is carried out via the 'Analytic Hierarchy Process' (AHP) methodology of the 'Multi Object Decision Making' (MODM) approach. While the process itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, with no software needed to be installed on the user side. The results are visualized as interactive 3d graphics. The implementation of the assistance system is based exclusively on free and open source software, and utilizes the 'Python' programming language in combination with current web technologies, such as 'HTML5', 'CSS3' and 'JavaScript'. It is

  8. Site status monitoring report for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-10-01

    The purpose of this document is to provide hydrogeologic, geochemical, and vapor monitoring data required for site status monitoring of underground storage tanks (UST) 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility. Comprehensive monitoring was conducted at the site in May 1994 as part of a Monitoring Only program approved by Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking. This document presents the results of the first semiannual site status monitoring, which was conducted in September 1994. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of the TDEC Rule 1200-1-15, the TDEC UST Reference Handbook, Second Edition, and direction from TDEC. This document is organized into three sections. Section 1 presents introductory information relative to the site including regulatory initiative and a site description. Section 2 includes the results of sampling of monitoring wells GW-508, GW-631, GW-632, and GW-634. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site

  9. Structural analysis of ORNL underground gunite waste storage tanks

    International Nuclear Information System (INIS)

    Fricke, K.E.

    1995-01-01

    The North Tank Farm (NTF) and the South Tank Farm (STF) located at ORNL contains 8 underground waste storage tanks which were built around 1943. The tanks were used to collect and store the liquid portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at ORNL, but are no longer part of the active Low Level Liquid Waste system of the Laboratory. The tanks were constructed of gunite. The six STF tanks are 50 ft in diameter, and have a 12 ft sidewall, and an arched dome rising another 6.25 ft. The sidewall are 6 in. thick and have an additional 1.5 in. gunite liner on the inside. There is a thickened ring at the wall-dome juncture. The dome consists of two 5 in. layers of gunite. The two tanks in the NTF are similar, but smaller, having a 25 ft diameter, no inner liner, and a dome thickness of 3.5 in. Both sets of tanks have welded wire mesh and vertical rebars in the walls, welded wire mesh in the domes, and horizontal reinforcing hoop bars pre-tensioned to 35 to 40 ksi stress in the walls and thickened ring. The eight tanks are entirely buried under a 6 ft layer of soil cover. The present condition of the tanks is not accurately known, since access to them is extremely limited. In order to evaluate the structural capability of the tanks, a finite element analysis of each size tank was performed. Both static and seismic loads were considered. Three sludge levels, empty, half-full, and full were evaluated. In the STF analysis, the effects of wall deterioration and group spacing were evaluated. These analyses found that the weakest element in the tanks is the steel resisting the circumferential (or hoop) forces in the dome ring, a fact verified separately by an independent reviewer. However, the hoop steel has an adequate demand/capacity ratio. Buckling of the dome and the tank walls is not a concern

  10. Panorama 2014 - The importance of underground storage in the security of European gas supplies

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2013-12-01

    While European capacity for underground gas storage has increased by 16% over the last three years, levels of stock at the beginning of the 2013/2014 winter, in relation to capacity, are the lowest that have been seen since 2010; they represent only 84% of storage capacity. The suppliers of gas have no incentive to reserve storage capacity, for which the cost is considered too high in relation to the spread, currently very low, between the price of gas in winter and in summer. They also rely on sufficient gas supply thanks to other sources of flexibility available on the market: flexibility of production or imports, spot LNG purchases, purchases in the spot market... or even use of the storage capacities of neighbouring countries via European network interconnections. Yet, the 2013/2014 winter is beginning in a gas supply context in Europe that is more difficult: imports of LNG, which had already dropped sharply in 2012, have continued to contract, faced with increased competition from Asian buyers on the international LNG market. Gas imports from Norway are also declining following production limits in that country. Only Russia has strongly increased its exports to Europe in 2013. However, the dispute between Ukraine and Russia about the price of Russian gas delivered to Ukraine still raises the spectre of a threat to the European supply of Russian gas, nearly 60% of which transits via Ukraine. Under these circumstances, as demonstrated by the gas crises of 2006 and 2009 and the cold conditions of February 2012 and March/April 2013, storage is the most efficient means of securing the supply of gas providing, of course, that the storage sites are filled at the beginning of winter. (author)

  11. UNDERGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-11-15

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  12. UNDERGROUND

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  13. Adaptation of magnesian cements to underground storage of nuclear wastes

    International Nuclear Information System (INIS)

    Dufournet, F.

    1987-01-01

    The aim of this thesis is the experimental study of magnesium oxychloride cements as filling materials for underground granitic cavities containing high level radioactive wastes. After a bibliographic study, mechanical properties are examined before and after setting, in function of the ratio MgO/MgCl 2 . Then behavior with water is investigated: swelling, cracking and leaching [fr

  14. Underground Pumped Storage Hydropower using abandoned open pit mines: influence of groundwater seepage on the system efficiency

    Science.gov (United States)

    Pujades, Estanislao; Bodeux, Sarah; Orban, Philippe; Dassargues, Alain

    2016-04-01

    Pumped Storage Hydropower (PSH) plants can be used to manage the production of electrical energy according to the demand. These plants allow storing and generating electricity during low and high demand energy periods, respectively. Nevertheless, PSH plants require a determined topography because two reservoirs located at different heights are needed. At sites where PSH plants cannot be constructed due to topography requirements (flat regions), Underground Pumped Storage Hydropower (UPSH) plants can be used to adjust the electricity production. These plants consist in two reservoirs, the upper one is located at the surface (or at shallow depth) while the lower one is underground (or deeper). Abandoned open pit mines can be used as lower reservoirs but these are rarely isolated. As a consequence, UPSH plants will interact with surrounding aquifers exchanging groundwater. Groundwater seepage will modify hydraulic head inside the underground reservoir affecting global efficiency of the UPSH plant. The influence on the plant efficiency caused by the interaction between UPSH plants and aquifers will depend on the aquifer parameters, underground reservoir properties and pumping and injection characteristics. The alteration of the efficiency produced by the groundwater exchanges, which has not been previously considered, is now studied numerically. A set of numerical simulations are performed to establish in terms of efficiency the effects of groundwater exchanges and the optimum conditions to locate an UPSH plant.

  15. Gis-Based Site Selection for Underground Natural Resources Using Fuzzy Ahp-Owa

    Science.gov (United States)

    Sabzevari, A. R.; Delavar, M. R.

    2017-09-01

    Fuel consumption has significantly increased due to the growth of the population. A solution to address this problem is the underground storage of natural gas. The first step to reach this goal is to select suitable places for the storage. In this study, site selection for the underground natural gas reservoirs has been performed using a multi-criteria decision-making in a GIS environment. The "Ordered Weighted Average" (OWA) operator is one of the multi-criteria decision-making methods for ranking the criteria and consideration of uncertainty in the interaction among the criteria. In this paper, Fuzzy AHP_OWA (FAHP_OWA) is used to determine optimal sites for the underground natural gas reservoirs. Fuzzy AHP_OWA considers the decision maker's risk taking and risk aversion during the decision-making process. Gas consumption rate, temperature, distance from main transportation network, distance from gas production centers, population density and distance from gas distribution networks are the criteria used in this research. Results show that the northeast and west of Iran and the areas around Tehran (Tehran and Alborz Provinces) have a higher attraction for constructing a natural gas reservoir. The performance of the used method was also evaluated. This evaluation was performed using the location of the existing natural gas reservoirs in the country and the site selection maps for each of the quantifiers. It is verified that the method used in this study is capable of modeling different decision-making strategies used by the decision maker with about 88 percent of agreement between the modeling and test data.

  16. Nuclear reactors sited deep underground in steel containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bourque, Robert [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2006-07-01

    Although nuclear power plants are certainly very safe, they are not perceived as safe by the general populace. Also, there are concerns about overland transport of spent fuel rods and other irradiated components. It is hereby proposed that the nuclear components of nuclear power plants be placed in deep underground steel vessels with secondary coolant fed from them to turbines at or near the surface. All irradiated components, including spent fuel, would remain in the chamber indefinitely. This general concept was suggested by the late Edward Teller, generated some activity 20-25 years ago and appears to be recently reviving in interest. Previous work dealt with issues of geologic stability of underground, possibly reinforced, caverns. This paper presents another approach that makes siting independent of geology by placing the reactor components in a robust steel vessel capable of resisting full overburden pressure as well as pressures resulting from accident scenarios. Structural analysis of the two vessel concepts and approximate estimated costs are presented. This work clears the way for the extensive discussions required to evaluate the advantages of this concept. (author)

  17. Pursing other deep pockets: California's underground storage tank cleanup fund and insurance policies

    International Nuclear Information System (INIS)

    Almanza, P.R.

    1995-01-01

    When faced with a potentially very expensive environmental cleanup, most companies and individuals try to do the only sensible thing, which is to find out if anyone else will pay the bill. This presentation will outline two avenues that may provide a substantial financial contribution to environmental cleanups: (a) California's Underground Storage Tank Cleanup Fund and (b) insurance policies. The Underground Storage Tank Cleanup Fund was established in 1989 to help eligible owners and operators of petroleum underground storage tanks (USTs) to: (a) get reimbursed for costs of unauthorized releases of petroleum from USTs; (b) get reimbursed for damages awarded to third parties as a result of unauthorized releases of petroleum from USTs; and (c) meet federal and state requirements that the UST owner and/or operator be able to pay for cleanup costs and damages to third parties caused by unauthorized releases of petroleum

  18. Geological Feasibility of Underground Oil Storage in Jintan Salt Mine of China

    Directory of Open Access Journals (Sweden)

    Xilin Shi

    2017-01-01

    Full Text Available A number of large underground oil storage spaces will be constructed in deep salt mines in China in the coming years. According to the general geological survey, the first salt cavern oil storage base of China is planned to be built in Jintan salt mine. In this research, the geological feasibility of the salt mine for oil storage is identified in detail as follows. (1 The characteristics of regional structure, strata sediment, and impermeable layer distribution of Jintan salt mine were evaluated and analyzed. (2 The tightness of cap rock was evaluated in reviews of macroscopic geology and microscopic measuring. (3 According to the geological characteristics of Jintan salt mine, the specific targeted formation for building underground oil storage was chosen, and the sealing of nonsalt interlayers was evaluated. (4 Based on the sonar measuring results of the salt caverns, the characteristics of solution mining salt caverns were analyzed. In addition, the preferred way of underground oil storage construction was determined. (5 Finally, the results of closed well observation in solution mining salt caverns were assessed. The research results indicated that Jintan salt mine has the basic geological conditions for building large-scale underground oil storage.

  19. Site-specific standard request for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the rust garage facility buildings 9754-1 and 9720-15: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117

    International Nuclear Information System (INIS)

    1994-12-01

    This document represents a Site-specific Standard Request for underground storage tanks (USTs) 1219-U,1222-U and 2082-U previously located at former Building 9754-1, and tank 2086-U previously located at Building 9720-15, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. The tanks previously contained petroleum products. For the purposes of this report, the two building sites will be regarded as a single UST site and will be referred to as the Rust Garage Facility. The current land use associated with the Y-12 Plant is light industrial and the operational period of the plant is projected to be at least 30 years. Thus, potential future residential exposures are not expected to occur for at least 30 years. Based on the degradation coefficient for benzene (the only carcinogenic petroleum constituent detected in soils or groundwater at the Rust Garage Facility), it is expected that the benzene and other contaminants at the site will likely be reduced prior to expiration of the 30-year plant operational period. As the original sources of petroleum contamination have been removed, and the area of petroleum contamination is limited, a site-specific standard is therefore being requested for the Rust Garage Facility

  20. Risk management guidelines for petroleum storage tank sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    These guidelines provide a site management process designed particularly for soil and groundwater pollution originating from existing or former petroleum storage tank (PST) facilities and provide uniform standards for the remediation of polluted PST sites in Alberta. The numerical criteria, risk management objectives and technical information described in this document were compiled from four documents including Remediation Guidelines for Petroleum Storage Tank Sites 1994, the Canada-Wide Standards for Petroleum Hydrocarbons in Soil, Alberta Soil and Water Quality Guidelines for Hydrocarbons at Upstream Oil and Gas Facilities, and Guidelines for Managing Risks at Contaminated Sites in Alberta. The changes in these updated guidelines reflect new remediation criteria and provide a process for determining alternate site-specific management objectives for more petroleum storage tank sites. The guidelines were developed using a risk-based approach that ensures the protection of human health, safety and the environment. The guidelines apply to aboveground and underground storage tank facilities that contain gasoline, diesel, heating oil, and aviation fuel. The guidelines specify requirements by Alberta Environment and the Alberta Fire Code. The chapter on risk management process included information on site investigation, determination of soil type, pollution source removal, land use assessment, selection of exposure pathways, depth of remediation, human inhalation and groundwater protection pathways, and verification of remediation. figs, 4 tabs., 2 appendices.

  1. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  2. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance

  3. Characterization of underground storage tank sludge using fourier transform infrared photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Luo, S.; Bajic, S.J.; Jones, R.W.

    1994-01-01

    Analysis of underground storage tank (UST) contents is critical for the determination of proper disposal protocols and storage procedures of nuclear waste materials. Tank volume reduction processes during the 1940's and 50's have produced a waste form that compositionally varies widely and has a consistency that ranges from paste like sludge to saltcake. The heterogeneity and chemical reactivity of the waste form makes analysis difficult by most conventional methods which require extensive sample preparation. In this paper, a method is presented to characterize nuclear waste from UST's at the Westinghouse Hanford Site in Washington State, using Fourier transform infrared-photoacoustic spectroscopy (FTIR-PAS). FTIR-PAS measurements on milligram amounts of surrogate sludge samples have been used to accurately identify phosphate, sulfate, nitrite, nitrate and ferrocyanide components. A simple sample preparation method was followed to provide a reproducible homogeneous sample for quantitative analysis. The sample preparation method involved freeze drying the sludge sample prior to analysis to prevent the migration of soluble species. Conventional drying (e.g., air or, oven) leads to the formation of crystals near the surface where evaporation occurs. Sample preparation as well as the analytical utility of this method will be discussed

  4. Waste Isolation Pilot Plant supplementary roof support system underground storage area, Panel 1, Room 1

    International Nuclear Information System (INIS)

    1991-10-01

    WIPP is designed to provide a full-scale facility to demonstrate the technical and operational principles for permanent isolation of defense-generated transuranic waste. It is also designed to provide a facility in which studies and experiments can be conducted. Bin Scale Tests are being planned as part of the WIPP Test Phase Performance Assessment Program described in the WIPP Test Phase Plan: Performance Assessment (DOE 1990 b). These Tests are anticipated to be conducted over a period of up to seven years. Room 1 of Panel 1 of the Underground Storage Area is to be used as the location of the Bin-Scale Tests to investigate the generation of gas from the waste that is proposed to be stored at the WIPP in the near future. The original design for the waste storage rooms in Panel 1 provided for a limited period of time during which to mine the openings and to emplace waste. Room 1 was initially mined to rough dimensions in 1986. Information obtained from the Site and Preliminary Design Validation (SPDV) program showed that the rooms would remain stable without ground support and that creep closure would not adversely affect equipment clearances during at least five years following excavation

  5. Site selection under the underground geologic store plan. Procedures of selecting underground geologic stores as disputed by society, science, and politics. Site selection rules

    International Nuclear Information System (INIS)

    Aebersold, M.

    2008-01-01

    The new Nuclear Power Act and the Nuclear Power Ordinance of 2005 are used in Switzerland to select a site of an underground geologic store for radioactive waste in a substantive planning procedure. The ''Underground Geologic Store Substantive Plan'' is to ensure the possibility to build underground geologic stores in an independent, transparent and fair procedure. The Federal Office for Energy (BFE) is the agency responsible for this procedure. The ''Underground Geologic Store'' Substantive Plan comprises these principles: - The long term protection of people and the environment enjoys priority. Aspects of regional planning, economics and society are of secondary importance. - Site selection is based on the waste volumes arising from the five nuclear power plants currently existing in Switzerland. The Substantive Plan is no precedent for or against future nuclear power plants. - A transparent and fair procedure is an indispensable prerequisite for achieving the objectives of a Substantive Plan, i.e., finding accepted sites for underground geologic stores. The Underground Geologic Stores Substantive Plan is arranged in two parts, a conceptual part defining the rules of the selection process, and an implementation part documenting the selection process step by step and, in the end, naming specific sites of underground geologic stores in Switzerland. The objective is to be able to commission underground geologic stores in 25 or 35 years' time. In principle, 2 sites are envisaged, one for low and intermediate level waste, and one for high level waste. The Swiss Federal Council approved the conceptual part on April 2, 2008. This marks the beginning of the implementation phase and the site selection process proper. (orig.)

  6. Optimization of basic parameters of cyclic operation of underground gas storages

    Directory of Open Access Journals (Sweden)

    Віктор Олександрович Заєць

    2015-04-01

    Full Text Available The problem of optimization of process parameters of cyclic operation of underground gas storages in gas mode is determined in the article. The target function is defined, expressing necessary capacity of compressor station for gas injection in the storage. Its minimization will find the necessary technological parameters, such as flow and reservoir pressure change over time. Limitations and target function are reduced to a linear form. Solution of problems is made by the simplex method

  7. Correction: Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2017-01-01

    Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479.......Correction for ‘Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4’ by S. H. Jensen et al., Energy Environ. Sci., 2015, 8, 2471–2479....

  8. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Science.gov (United States)

    2010-07-01

    ... areas; construction and safety precautions. 75.1903 Section 75.1903 Mineral Resources MINE SAFETY AND...; construction and safety precautions. (a) Permanent underground diesel fuel storage facilities must be— (1... with at least 240 pounds of rock dust and provided with two portable multipurpose dry chemical type...

  9. RCRA corrective action for underground storage tanks -- Subtitle C for Subtitle I

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of this report is to provide guidance to DOE and DOE contractor personnel responsible for planning and implementation of corrective measures addressing cleanup of releases of hazardous materials or regulated substances from underground storage tanks regulated under RCRA Subtitle C or Subtitle I

  10. The underground storage tank is the key; Der Speicher ist der Schluessel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Jens-Peter

    2013-08-06

    Plus energy houses also succeed withoutpassive house insulation. Because the combination of solar collectors, ventilation and heat pump achieves excellent energy efficiency, if one preserves the solar heat in an underground storage tank. [German] Plusenergiehaeuser gelingen auch ohne Passivhausdaemmung. Denn die Kombination von Sonnenkollektoren, Lueftung und Waermepumpe erreicht eine ausgezeichnete energetische Effizienz, sofern man die Solarwaerme in einem Erdspeicher konserviert.

  11. Extensive optimisation analyses of the piping of two large underground gas storage ariel compressors

    NARCIS (Netherlands)

    Eijk, A.; Korst, H.J.C.; Ploumen, G.; Heyer, D.

    2007-01-01

    Two large identical 6-cylinder Ariel JGB/6 compressors of each 7.5 Mw, are used for the underground gas storage (UGS) plant of Essent in Epe, Germany. The compressors can be operated at a wide range of operating conditions, e.g. variable suction and discharge pressures, 2-stage mode during gas

  12. Instability risk analysis and risk assessment system establishment of underground storage caverns in bedded salt rock

    Science.gov (United States)

    Jing, Wenjun; Zhao, Yan

    2018-02-01

    Stability is an important part of geotechnical engineering research. The operating experiences of underground storage caverns in salt rock all around the world show that the stability of the caverns is the key problem of safe operation. Currently, the combination of theoretical analysis and numerical simulation are the mainly adopts method of reserve stability analysis. This paper introduces the concept of risk into the stability analysis of underground geotechnical structure, and studies the instability of underground storage cavern in salt rock from the perspective of risk analysis. Firstly, the definition and classification of cavern instability risk is proposed, and the damage mechanism is analyzed from the mechanical angle. Then the main stability evaluating indicators of cavern instability risk are proposed, and an evaluation method of cavern instability risk is put forward. Finally, the established cavern instability risk assessment system is applied to the analysis and prediction of cavern instability risk after 30 years of operation in a proposed storage cavern group in the Huai’an salt mine. This research can provide a useful theoretical base for the safe operation and management of underground storage caverns in salt rock.

  13. Bedrock instability of underground storage systems in the Czech Republic, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucie; Brož, Milan; Záruba, J.; Sosna, K.; Najser, J.; Rukavičková, L.; Franěk, J.; Rudajev, V.

    2016-01-01

    Roč. 13, č. 2 (2016), s. 315-325 ISSN 1672-7975 R&D Projects: GA MPO(CZ) FR-TI1/367 Institutional support: RVO:67985891 ; RVO:67985530 Keywords : underground storage * instability * seismicity * Bohemian Massif Subject RIV: DD - Geochemistry Impact factor: 0.796, year: 2016

  14. Paradigms of underground gas storage operation; Paradigmas del funcionamiento de un almacenamiento subterraneo de gas

    Energy Technology Data Exchange (ETDEWEB)

    Bonoris, Patricia; Vizcarra, Rodolfo; Buciak, Jorge [Companias Asociadas Petroleras S.A. (Argentina)

    2004-07-01

    The main objective of the study was to determine, for the underground storage of gas, the Current Useful Volume and Maximum Useful Current of operation, as well as have an acceptable interpretation that allows calculating the investment needed to reach this Maximum Usable Volume.

  15. VOLUMETRIC LEAK DETECTION IN LARGE UNDERGROUND STORAGE TANKS - VOLUME II: APPENDICES A-E

    Science.gov (United States)

    The program of experiments conducted at Griffiss Air Force Base was devised to expand the understanding of large underground storage tank behavior as it impacts the performance of volumetric leak detection testing. The report addresses three important questions about testing the ...

  16. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Science.gov (United States)

    2010-07-01

    ... Diesel-Powered Equipment § 75.1912 Fire suppression systems for permanent underground diesel fuel storage... system by a nationally recognized independent testing laboratory and appropriate for installation at a... recommended inspection and maintenance program and as required by the nationally recognized independent...

  17. Underground radionuclide migration at the Nevada Test Site

    International Nuclear Information System (INIS)

    Nimz, G.J.; Thompson, J.L.

    1992-01-01

    This document reviews results from a number of studies concerning underground migration of radionuclides from nuclear test cavities at the Nevada Test Site (NTS). Discussed are all cases known to the Department of Energy's Hydrology and Radionuclide Migration Program where radionuclides have been detected outside of the immediate vicinity of nuclear test cavities that are identifiable as the-source of the nuclides, as well as cases where radionuclides might have been expected and were intentionally sought but not fixed. There are nine locations where source-identifiable radionuclide migration has been detected, one where migration was purposely induced by pumping, and three where migration might be expected but was not found. In five of the nine cases of non-induced migration, the inferred migration mechanism is prompt fracture injection during detonation. In the other four cases, the inferred migration mechanism is water movement. In only a few of the reviewed cases can the actual migration mechanism be stated with confidence, and the attempt has been made to indicate the level of confidence for each case. References are cited where more information may be obtained. As an aid to future study, this document concludes with a brief discussion of the aspects of radionuclide migration that, as the present review indicates, are not yet understood. A course of action is suggested that would produce a better understanding of the phenomenon of radionuclide migration

  18. A new principle for underground pumped hydroelectric storage

    DEFF Research Database (Denmark)

    Olsen, Jan; Paasch, Kasper; Lassen, Benny

    2015-01-01

    cost is movement of soil. A cost analysis indicates that a full scale system will be economically viable when connected to the European power grid where the main revenue will come from selling ancillary services. The storage cost for a full scale 30 MW/200 MWh system is estimated to be approximately 5...

  19. 18 CFR 157.213 - Underground storage field facilities.

    Science.gov (United States)

    2010-04-01

    ... the storage reservoir boundary, as defined by fluid contacts or natural geological barriers; the... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES... 7 OF THE NATURAL GAS ACT Interstate Pipeline Blanket Certificates and Authorization Under Section 7...

  20. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  1. Underground storage tank 431-D1U1, Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.

    1993-09-01

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  2. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    Science.gov (United States)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could

  3. Estimating heel retrieval costs for underground storage tank waste at Hanford. Draft

    International Nuclear Information System (INIS)

    DeMuth, S.

    1996-01-01

    Approximately 100 million gallons (∼400,000 m 3 ) of existing U.S. Department of Energy (DOE) owned radioactive waste stored in underground tanks can not be disposed of as low-level waste (LLW). The current plan for disposal of UST waste which can not be disposed of as LLW is immobilization as glass and permanent storage in an underground repository. Disposal of LLW generally can be done sub-surface at the point of origin. Consequently, LLW is significantly less expensive to dispose of than that requiring an underground repository. Due to the lower cost for LLW disposal, it is advantageous to separate the 100 million gallons of waste into a small volume of high-level waste (HLW) and a large volume of LLW

  4. The underground laboratory. A unique scientific tool to design a reversible storage

    International Nuclear Information System (INIS)

    2010-07-01

    The National Radioactive Waste Management Agency (Andra), was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. The Andra is carrying out studies on deep reversible waste storage for high-level and long living intermediate-level radioactive wastes thanks to the underground laboratory of its Meuse/Haute-Marne center. This brochure presents the geologic surveys which have led to the selection of the Callovo-Oxfordian argillite formation for the sitting of the underground lab and the underground architecture of the lab. The rock mechanic, heat transfer and rock-fluid interaction experiments carried out in the lab in collaboration with several scientific partners are briefly summarised

  5. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    International Nuclear Information System (INIS)

    Li, Yipeng; Liu, Quanzhen; Meng, He; Sun, Lifu; Zhang, Yunpeng

    2013-01-01

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 10 11 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m −3 , which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  6. Development of simulated tank wastes for the US Department of Energy's Underground Storage Tank Integrated Demonstration

    International Nuclear Information System (INIS)

    Elmore, M.R.; Colton, N.G.; Jones, E.O.

    1992-08-01

    The purpose of the Underground Storage Tank Integrated Demonstration (USTID) is to identify and evaluate technologies that may be used to characterize, retrieve, treat, and dispose of hazardous and radioactive wastes contained in tanks on US Department of Energy sites. Simulated wastes are an essential component of the evaluation process because they provide controlled samples for technology assessment, and minimize costs and risks involved when working with radioactive wastes. Pacific Northwest Laboratory has developed a recipe to simulate Hanford single-shell tank, (SST) waste. The recipe is derived from existing process recipes, and elemental concentrations are based on characterization data from 18 SSTs. In this procedure, salt cake and metal oxide/hydroxide sludge are prepared individually, and mixed together at varying ratios depending on the specific tank, waste to be simulated or the test being conducted. Elemental and physical properties of the stimulant are comparable with analyzed tank samples, and chemical speciation in the simulant is being improved as speciation data for actual wastes become available. The nonradioactive chemical waste simulant described here is useful for testing technologies on a small scale

  7. Revised cost savings estimate with uncertainty for enhanced sludge washing of underground storage tank waste

    International Nuclear Information System (INIS)

    DeMuth, S.

    1998-01-01

    Enhanced Sludge Washing (ESW) has been selected to reduce the amount of sludge-based underground storage tank (UST) high-level waste at the Hanford site. During the past several years, studies have been conducted to determine the cost savings derived from the implementation of ESW. The tank waste inventory and ESW performance continues to be revised as characterization and development efforts advance. This study provides a new cost savings estimate based upon the most recent inventory and ESW performance revisions, and includes an estimate of the associated cost uncertainty. Whereas the author's previous cost savings estimates for ESW were compared against no sludge washing, this study assumes the baseline to be simple water washing which more accurately reflects the retrieval activity along. The revised ESW cost savings estimate for all UST waste at Hanford is $6.1 B ± $1.3 B within 95% confidence. This is based upon capital and operating cost savings, but does not include development costs. The development costs are assumed negligible since they should be at least an order of magnitude less than the savings. The overall cost savings uncertainty was derived from process performance uncertainties and baseline remediation cost uncertainties, as determined by the author's engineering judgment

  8. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    Science.gov (United States)

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  9. Office building with an underground storage system. Operational experiences after one year; Buerogebaeude mit Erdspeicher. Betriebserfahrungen nach einem Jahr

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Dorothee; Wehrli, Stefan [Basler und Hofmann AG, Zuerich (Switzerland)

    2011-07-01

    Self-sufficient heating and cooling - that was the principle of Basler paragraph Hofmann AG (Zuerich, Switzerland) and Stuecheli Architects (Zuerich, Switzerland) in the planning and constructing of a new office building in the Canton of Zuerich. For the first time an underground storage system was implemented in a commercial building. This underground storage refuels the solar energy in summer and supplies heating energy in winter. The office building was settled in in September, 2010. The pioneering project now delivers first empirical values with the underground storage system. These empirical values show: The concept comes up, but needs time.

  10. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer

    Science.gov (United States)

    Sáinz-García, Alvaro; Abarca, Elena; Rubí, Violeta; Grandia, Fidel

    2017-04-01

    Renewable energies are unsteady, which results in temporary mismatches between demand and supply. The conversion of surplus energy to hydrogen and its storage in geological formations is one option to balance this energy gap. This study evaluates the feasibility of seasonal storage of hydrogen produced from wind power in Castilla-León region (northern Spain). A 3D multiphase numerical model is used to test different extraction well configurations during three annual injection-production cycles in a saline aquifer. Results demonstrate that underground hydrogen storage in saline aquifers can be operated with reasonable recovery ratios. A maximum hydrogen recovery ratio of 78%, which represents a global energy efficiency of 30%, has been estimated. Hydrogen upconing emerges as the major risk on saline aquifer storage. However, shallow extraction wells can minimize its effects. Steeply dipping geological structures are key for an efficient hydrogen storage.

  11. Recent progress of the waste processing and disposal projects within the Underground Storage Tank-Integrated Demonstration

    International Nuclear Information System (INIS)

    Hunt, R.D.; McGinnis, C.P.; Cruse, J.M.

    1994-01-01

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Remediation has created the Office of Technology Development (OTD) to provide new and improved remediation technologies for the 1 x 10 8 gal of radioactive waste in the underground storage tanks (USTs) at five DOE sites. The OTD established and the Underground Storage Tank-Integrated Demonstration (UST-ID) to perform demonstrations, tests, and evaluations on these new technologies before these processes are transferred to the tank sites for use in full-scale remediation of the USTs. The UST-ID projects are performed by the Characterization and Waste Retrieval Program or the Waste Processing and Disposal Program (WPDP). During FY 1994, the WPDP is funding 12 projects in the areas of supernate processing, sludge processing, nitrate destruction, and final waste forms. The supernate projects are primarily concerned with cesium removal. A mobile evaporator and concentrator for cesium-free supernate is also being demonstrated. The sludge projects are emphasizing sludge dissolution and the evaluation of the TRUEX and diamide solvent extraction processes for transuranic waste streams. One WPDP project is examining both supernate and sludge processes in an effort to develop a system-level plan for handling all UST waste. The other WPDP studies are concerned with nitrate and organic destruction as well as subsequent waste forms. The current status of these WPDP projects is presented

  12. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Billingsley, K.; Burks, B.L.; Johnson, M.; Mims, C.; Powell, J.; Hoesen, D. van

    1998-05-01

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  13. A review of technology for verification of waste removal from Hanford Underground Storage Tanks (WHC Issue 30)

    International Nuclear Information System (INIS)

    Thunborg, S.

    1994-09-01

    Remediation of waste from Underground Storage Tanks (UST) at the Hanford Waste storage sites will require removal of all waste to a nearly clean condition. Current requirements are 99% clean. In order to meet remediation legal requirements, a means to remotely verify that the waste has been removed to sufficient level is needed. This report discusses the requirements for verification and reviews major technologies available for inclusion in a verification system. The report presents two operational scenarios for verification of residual waste volume. Thickness verification technologies reviewed are Ultrasonic Sensors, Capacitance Type Sensors, Inductive Sensors, Ground Penetrating Radar, and Magnetometers. Of these technologies Inductive (Metal Detectors) and Ground Penetrating Radar appear to be the most suitable for use as waste thickness sensors

  14. Model based, sensor directed remediation of underground storage tanks

    International Nuclear Information System (INIS)

    Christensen, B.; Drotning, W.; Thunborg, S.

    1991-01-01

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  15. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  16. High water level installation of monitoring wells for underground storage tanks

    International Nuclear Information System (INIS)

    Treadway, C.

    1990-01-01

    This paper briefly describes a common monitoring well installation design for shallow ground water contamination resulting from leaky underground storage tanks. The paper describes drilling techniques used in unconsolidated Florida aquifers using hollow-stem augers. It describes methods for the prevention of heaving sands and sand-locking problems. It then goes on to describe the proper well casing placement and sealing techniques using neat cements. The proper sell screen level is also discussed to maximize the detection of floating hydrocarbons

  17. RECOMMENDATIONS ON THE MONITORING SYSTEM OF UNDERGROUND GAS STORAGE (in Russian

    Directory of Open Access Journals (Sweden)

    Victor NORDIN

    2014-07-01

    Full Text Available The article in accordance with the "process approach" ISO 9000 is substantiated the necessity of creating underground gas storage system monitoring and control, including objects, parameters, methods, frequency and corrective action, on the basis of which made structural formula monitoring cycle. Qualimetrical approach allows to define complex criteria of an estimation of efficiency of operation, which will help to make timely and effective management decisions, including from the perspective of environmental protection.

  18. Underground storage with floating cover. An overview; Erdbeckenspeicher mit schwimmender Abdeckung. Eine Uebersicht

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.; Maureschat, G.; Duer, K. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Buildings and Energy

    1998-12-31

    A number of underground stores have been developed in recent years in Denmark. The development has been subsidised with funds of `Development program renewable energy` launched by the Danish Ministry for Environment and Energy. First experience reports on underground storage show that more emphasis must be put on the development of storage sealing and cover construction. Hence research works currently focuses on the investigation of liner material and further development of floating cover constructions. The target is the development of underground storage using solar energy for heating that can compete with conventional heating systems technically and economically. (orig.) [Deutsch] In Daenemark hat man in den letzten Jahren eine Reihe von Erdbeckenspeichern entwickelt. Die Entwicklung wird mit Mitteln aus dem `Entwicklungsprogramm Erneuerbare Energie` vom daenischen Umwelt- und Energieministerium finanziell gefoerdert. Die ersten Erfahrungen mit Erdbeckenspeichern haben gezeigt, dass ein verstaerkter Einsatz bei der Entwicklung von Abdichtungen des Speichers und von Deckelkonstruktionen gefordert ist. Deshalb wird in Daenemark aktuell mit der Untersuchung von Linermaterialien und der Weiterentwicklung von schwimmenden Deckelkonstruktionen gearbeitet. Das Ziel dieser Arbeit ist es, Erdbeckenspeicher zu entwickeln, die die Ausnutzung von Sonnenenergie zur Waermeversorgung im Vergleich mit herkoemmlicher Waermeversorgung sowohl technisch als auch oekonomisch konkurrenzfaehig macht. (orig.)

  19. Assessment of the potential of the Mainfranken region, northern Bavaria, for underground storage of geothermal energy; Erkundung des regionalen Potentials fuer die Untergrundspeicherung thermischer Energie in Mainfranken (UTEM)

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, R; Heinrichs, G; Udluft, P [Lehr- und Forschungsbereich Hydrogeologie und Umwelt, Inst. fuer Geologie, Univ. Wuerzburg (Germany); Ebert, H P; Fricke, J [Abt. Waermedaemmung/Waermetransport, Bayerisches Zentrum fuer Angewandte Energieforschung e.V., Wuerzburg (Germany)

    1997-12-01

    The following paper presents a research project that is planned as a cooperation of the Geological Institute, University of Wuerzburg and the Bavarian Center of Applied Energy Research. In this project the potentials for underground thermal energy storage will be investigated in the region of Mainfranken, Northern Bavaria (Main = the river `Main`, Franken = Franconia). All aspects of underground storage will be studied with respect to the specific geographical and geological situation of the area. The study will provide a detailed map of possible storage sites, from which several case studies and at least one demonstration projects will result. (orig.) [Deutsch] Im vorliegenden Beitrag wird ein Forschungsprojekt vorgestellt, das gemeinsam vom Institut fuer Geologie der Universitaet Wuerzburg und dem Zentrum fuer Angewandte Energieforschung in Bayern geplant wird. Ziel des Projekts ist die Erkundung des Potentials fuer die Untergrundspeicherung thermischer Energie in Mainfranken (Nordbayern). Alle Aspekte der Untergrundspeicherung werden regionalspezifisch betrachtet. Neben der Erstellung differenzierter Karten geeigneter Standorte sind Fallstudien und Demonstrationsprojekte in Planung. (orig.)

  20. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  1. Vitrification of underground storage tanks: Technology development, regulatory issues, and cost analysis

    International Nuclear Information System (INIS)

    Tixier, J.S.; Corathers, L.A.; Anderson, L.D.

    1992-03-01

    In situ vitrification (ISV), developed by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE), is a thermal treatment process for the remediation of hazardous, radioactive, or mixed waste sites. The process has been broadly patented both domestically and abroad. Since the inception of ISV in 1980, developmental activities have been focused on applications to contaminated soils, and more recently the potential for application to buried wastes and underground structures (tanks). Research performed to date on the more advanced ISV applications (i.e., application to buried wastes and underground tanks) shows that significant technical and economic potential exists for using ISV to treat buried wastes and underground structures containing radionuclides and/or hazardous constituents. Present ISV applications are directed to the treatment of contaminated soils; the likelihood of using ISV to treat underground tanks depends on the resolution of significant technical and institutional issues related to this advanced application. This paper describes the ISV process and summarizes the technical progress of underground tank vitrification (UTV), discusses pertinent regulatory issues facing the use of UTV, and presents the potential cost of UTV relative to other remedial action alternatives

  2. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  3. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  4. Design and operation problems related to water curtain system for underground water-sealed oil storage caverns

    Directory of Open Access Journals (Sweden)

    Zhongkui Li

    2016-10-01

    Full Text Available The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years' experiences obtained from the first large-scale (millions of cubic meters underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles

  5. High-temperature acquifer thermal storage and underground heat storage; IEA ECES Annex 12: Hochtemperatur-Erdwaermesonden- und Aquiferwaermespeicher

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B.; Knoblich, K. [Giessen Univ. (Germany). Inst. fuer Angewandte Geowissenschaften; Koch, M.; Adinolfi, M. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete und Abfallwirtschaft

    1998-12-31

    Heat storage is essential for the reconciliation of heat supply and demand. The earth has already proved to be an excellent medium for storing large amounts of heat over longer periods of time, for instance during the cold and hot season. The efficiency of the storage is the better the lower storage losses are at high temperature levels. Unfortunately this can not be easily achieved. While thermal underground stores, which are widely used for cold storage, have proved to perform quite well at temperatures between 10 C - 40 C, it has been rather difficult to achieve similar results at higher temperatures up to 150 C as test and demonstration plants of the 1980s proved. This issue has again attracted so much interest that the IEA launched a project on high temperature underground storage in December 1998. (orig.) [Deutsch] Waermespeicherung ist von entscheidender Bedeutung, wenn es darum geht, ein Waermeangebot mit einer Waermenachfrage zeitlich zur Deckung zu bringen. Der Untergrund hat sich schon seit vielen Jahren als ein geeignetes Medium erwiesen, groessere Waermepumpen ueber laengere Zeitraeume wie etwa die kalten und warmen Jahreszeiten zu speichern. Die Effizienz eines solchen Speichers steigt mit der Hoehe des erreichten Temperaturniveaus und mit sinkenden Speicherverlusten, was leider eher gegenlaeufige Erscheinungen sind. Waehrend thermische Untergrundspeicher im Temperaturbereich von 10-40 C inzwischen erfolgreich demonstriert wurden und vor allem zur Kaeltespeicherung auch bereits vielfach eingesetzt werden, haben hoehere Temperaturen bis etwa 150 C in den Versuchs- und Demonstrationsanlagen der 80er Jahre vielfaeltige Probleme bereitet. Im Gefolge eines erneuten Interesses an unterirdischer thermischer Energiespeicherung wurde im Dezember 1997 ein Vorhaben des IEA Energiespeicherprogramms zu Untergrund-Waermespeichern hoeherer Temperatur eingerichtet. (orig.)

  6. Radioactive waste on-site storage alternative

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1983-01-01

    The first, most frequently evaluated approach for the large producer is the construction of a relatively expensive storage building. However, with the likely possibility that at least one disposal site will remain available and the building never used, such expenditures are difficult to justify. A low cost, but effective alternative, is the use of ''On-Site Storage Containers'' (OSSC) when and if required. Radwaste is only stored in the OSSC if a disposal site is not available. A small number of OSSC's would be purchased initially just to assure immediate access to storage. Only in the unlikely event of total disposal sites closure would additional OSSC's have to be obtained and even this is cost effective. With two or three months of storage available on site, production lead time is sufficient for the delivery of additional units at a rate faster than the waste can be produced. The recommended OSSC design would be sized and shielding optimized to meet the needs of the waste generator. Normally, this would duplicate the shipping containers (casks or vans) currently in use. The reinforced concrete design presented is suitable for outside storage, contains a leakproof polyethylene liner and has remote sampling capability. Licensing would be under 10CFR50.59 for interim storage with long-term storage under 10CFR30 not an impossibility. Cost comparisons of this approach vs. building construction show that for a typical reactor plant installation, the OSSC offers direct savings even under the worst case assumption that no disposal sites are available and the time value of money is zero

  7. Ground penetrating radar for fracture mapping in underground hazardous waste disposal sites: A case study from an underground research tunnel, South Korea

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee

    2017-06-01

    Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.

  8. Underground storage at Saint-Illiers-la-Ville. Initial results of filling. Reservoir control problems

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, D

    1968-01-01

    The underground storage at Saint-Illiers-la-Ville (Yvelines in the Paris area) was discussed by Toche at the time when it was filled with gas in 1965. Now, 2-1/2 yr after the initial input, the volume of storage has reached 500 million cu m, and the first industrial withdrawals took place during the winter of 1967-1968. The results obtained in the operation of this underground storage are extremely satisfactory. In spite of differences in the composition of the sand layer, the gas bubble developed in a very regular way, horizontally and vertically, and the full penetration well equipment made a high output rate easy to obtain. Reservoir control was handled efficiently and the movements of the bubble contour were shown for every fluctuation of the injection and withdrawal volumes. Tests for production capacity showed the low extent to which the wells were affected by the phenomenon of water- coning and indicated measures to be taken to prevent the formation of hydrates. The measures effected and the conclusions which can be derived are discussed.

  9. Underground Pumped Hydroelectric Storage (UPHS). Program report, April 1-September 30, 1979. ANL Activity No. 49964

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, C.A.; Frigo, A.A.; Tam, S.W.; Clinch, J.M.

    1979-10-01

    The Argonne National Laboratory Underground Pumped Hydroelectric Storage activities for the second half of FY 1979 are described. Activities include program management and support, subcontract work, and systems studies. Information is given on the preliminary design, hydraulic performance, and cost of high-head, 350-MW capacity, single- and two-stage reversible, Francis-type pump turbines. Similar information is also presented on 350- and 500-MW capacity, multistage, unregulated, reversible, pump turbines. An assessment of the application potential of controlled-flow rate pumps and pump turbines is included. The effects of the charge/discharge ratio of a pumped stoage plant is also discussed.

  10. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    International Nuclear Information System (INIS)

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  11. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 204: STORAGE BUNKERS, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    Corrective Action Unit (CAU) 330 consists of four Corrective Action Sites (CASs) located in Areas 6, 22, and 23 of the Nevada Test Site (NTS). The unit is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites. CAU 330 consists of the following CASs: CAS 06-02-04, Underground Storage Tank (UST) and Piping CAS 22-99-06, Fuel Spill CAS 23-01-02, Large Aboveground Storage Tank (AST) Farm CAS 23-25-05, Asphalt Oil Spill/Tar Release

  12. Efficiency and impacts of hythane (CH4+H2) underground storage

    Science.gov (United States)

    Sáinz-García, Alvaro; Abarca, Elena; Grandia, Fidel

    2016-04-01

    The foreseen increase share of renewable energy production requires energy storage to mitigate shortage periods of energy supply. Hydrogen is an efficient energy carrier that can be transported and storage. A very promising way to store large amounts of hydrogen is underground geological reservoirs. Hydrogen can be stored, among other options, as a mixture of natural gas and less than 20% of hydrogen (hythane) to avoid damages on the existing infrastructure for gas transport. This technology is known as power-to-gas and is being considered by a number of European countries (Simon et al., 2015). In this study, the feasibility of a deep aquifer to store CH4-H2 mixtures in the Lower Triassic of the Paris Basin is numerically analyzed. The solubility of gas mixture in the groundwater is extremely low (Panfilov, 2015) and, therefore, gas and water are considered immiscible and non-reactive. An immiscible multiphase flow model is developed using the coefficient-form PDE interface of the finite element method code, COMSOL Multiphysics. The modelled domain is a 2D section of 2500 x 290 m resembling the Lower Triassic aquifer of the Paris basin, consisting of 2 layers of sandstone separated by a layer of conglomerates. The domain dips 0.5% from east to west. The top of the aquifer is 500 m-deep and the lateral boundaries are assumed to be open. This case is considered conservative compared to a dome-like geological trap, which could be more favorable to retain higher gas concentration. A number of cycles of gas production and injection were modelled. An automatic shut-down of the pump is implemented in case pressure on the well exceeds an upper or lower threshold. The influence of the position of the well, the uncertain residual gas saturation and the regional flow are studied. The model shows that both gas and aquifer properties have a significant impact on storage. Due to its low viscosity, the mobility of the hythane is quite high and gas expands significantly, reducing

  13. Accessing leaking underground storage tank case studies and publications through the EPA's Computerized On-Line Information System (COLIS)

    International Nuclear Information System (INIS)

    Hillger, R.; Tibay, P.

    1991-01-01

    The US EPA's regulations for underground storage tanks (USTs) require corrective action to be taken in response to leaking USTs. Recent developments of UST programs nationwide as well as the introduction of new technologies to clean up UST sites have increased the diversity of experience levels among personnel involved with this type of work. The EPA's Computerized On-Line Information System (COLIS) has been developed to facilitate technology transfer among the personnel involved in UST cleanup. The system allows for the quick and simple retrieval of data relating to UST incidents, as well as other hazardous waste-related information. The system has been used by response personnel at all levels of government, academia, and private industry. Although it has been in existence for many years, users are just now realizing the potential wealth of information stored in this system. COLIS access can be accomplished via telephone lines utilizing a personal computer and a modem

  14. Character and levels of radioactive contamination of underground waters at Semipalatinsk test site

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, S.; Lukashenko, S.; Turchenko, Y. [Institute of radiation safety and ecology (Kazakhstan)

    2014-07-01

    According to the data of RK government commission, 470 explosions have been set off at the Semipalatinsk Test Site (STS), inclusive of 26 surface, 90 in the air and 354 underground nuclear explosions (UNE), 103 of those have been conducted in tunnels and 251 - in boreholes. Underground nuclear explosions have been conducted at STS in horizontal mines, called - 'tunnels' ('Degelen' test site) and vertical mines called 'boreholes' ('Balapan' and 'Sary-Uzen' test sites). Gopher cavities of boreholes and tunnels are in different geotechnical conditions, that eventually specify migration of radioactive products with underground waters. Central cavities of UNE in holes are located significantly below the level of distribution of underground water. High temperature remains for a long time due to presence of overlying rock mass. High temperatures contribute to formation of thermal convection. When reaching the cavity, the water heat up, dissolve chemical elements and radionuclides and return with them to the water bearing formation. In the major part of 'Balapan' site for underground water of regional basin is characterized by low concentrations of radionuclides. High concentrations of {sup 137}Cs in underground water have been found only in immediate vicinity to 'warfare' boreholes. Formation of radiation situation in the 'Balapan' test site area is also affected by local area of underground water discharge. It is located in the valley of Shagan creek, where the concentration of {sup 3}H reaches 700 kBq/l. Enter of underground water contaminated with tritium into surface water well continue. In this case it is expected that tritium concentration in discharge zone can significantly change, because this migration process depends on hydro geological factors and the amount of atmospheric precipitation. Central cavities of nuclear explosions, made in tunnels, are above the level of underground

  15. 3rd Sino-German Conference “Underground Storage of CO2 and Energy”

    CERN Document Server

    Xie, Heping; Were, Patrick

    2013-01-01

    Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group “Underground Storage of CO2 and Energy”, is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme “Clean Energy Systems in the Subsurface: Production, Storage and Conversion”.   This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coa...

  16. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.

    Science.gov (United States)

    Gniese, Claudia; Bombach, Petra; Rakoczy, Jana; Hoth, Nils; Schlömann, Michael; Richnow, Hans-Hermann; Krüger, Martin

    2014-01-01

    This chapter gives the reader an introduction into the microbiology of deep geological systems with a special focus on potential geobiotechnological applications and respective risk assessments. It has been known for decades that microbial activity is responsible for the degradation or conversion of hydrocarbons in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a typical characteristic of such deep ecosystems. The understanding of the responsible microbial processes and their environmental regulation is not only of great scientific interest. It also has substantial economic and social relevance, inasmuch as these processes directly or indirectly affect the quantity and quality of the stored oil or gas. As outlined in the following chapter, in addition to the conventional hydrocarbons, new interest in such deep subsurface systems is rising for different technological developments. These are introduced together with related geomicrobiological topics. The capture and long-termed storage of large amounts of carbon dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas reservoirs, is considered to be an important options to mitigate greenhouse gas emissions and global warming. On the other hand, the increasing contribution of energy from natural and renewable sources, such as wind, solar, geothermal energy, or biogas production leads to an increasing interest in underground storage of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are often produced in a nonconstant manner and renewable energy may be produced at some distance from the place where it is needed. Therefore, storing the energy after its conversion to methane or hydrogen in porous reservoirs or salt caverns is extensively discussed. All these developments create new research fields and challenges for microbiologists and geobiotechnologists. As a basis for respective future work, we introduce the three major topics, that is

  17. An Assessment of Hydrological Safety for the Guri Underground Oil Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Young; Kim, Kyung Su; Koh, Yong Kwon; Bae, Dae Seok; Park, Kyung Woo; Ji, Sung Hoon; Ryu, Ji Hoon

    2009-08-15

    Hydrological and geochemical analysis of the various kinds of water including observation borehole groundwater was carried out for the assessment of the hydrological safety of the underground oil storage cavern and the potentiality of mineralogical and microbiological clogging was estimated. There was no distinct chemical difference in the various kinds of water. All kinds of water are undersaturated with the calcite which is the major clogging mineral. Most water samples have low Fe and Mn concentrations. However, they are saturated or oversaturated with the iron-oxide/hydroxide minerals and have high dissolved oxygen contents which softiies the possibility of clogging by the iron-oxide/hydroxide minerals as a long-term aspect. Statistical analysis shows the degree of mineral precipitation or dissolution is mainly controlled by pH, Eh and DO of water samples. Because the slime forming bacteria ate dominant microbe in several observation boreholes, the clogging can be caused by it as a long-term aspect. In addition, the possibility of clogging can be increased if the microbial effect is combined with the mineralogical effect such as iron oxide/hydroxide minerals for the possibility of clogging. Therefore, the systematic and long-term program for the assessment of clogging is required for the safe operation of underground oil storage cavern.

  18. An Assessment of Hydrological Safety for the Guri Underground Oil Storage Facility

    International Nuclear Information System (INIS)

    Kim, Geon Young; Kim, Kyung Su; Koh, Yong Kwon; Bae, Dae Seok; Park, Kyung Woo; Ji, Sung Hoon; Ryu, Ji Hoon

    2009-08-01

    Hydrological and geochemical analysis of the various kinds of water including observation borehole groundwater was carried out for the assessment of the hydrological safety of the underground oil storage cavern and the potentiality of mineralogical and microbiological clogging was estimated. There was no distinct chemical difference in the various kinds of water. All kinds of water are undersaturated with the calcite which is the major clogging mineral. Most water samples have low Fe and Mn concentrations. However, they are saturated or oversaturated with the iron-oxide/hydroxide minerals and have high dissolved oxygen contents which softiies the possibility of clogging by the iron-oxide/hydroxide minerals as a long-term aspect. Statistical analysis shows the degree of mineral precipitation or dissolution is mainly controlled by pH, Eh and DO of water samples. Because the slime forming bacteria ate dominant microbe in several observation boreholes, the clogging can be caused by it as a long-term aspect. In addition, the possibility of clogging can be increased if the microbial effect is combined with the mineralogical effect such as iron oxide/hydroxide minerals for the possibility of clogging. Therefore, the systematic and long-term program for the assessment of clogging is required for the safe operation of underground oil storage cavern

  19. Method of disposing of earth contaminated by leaking underground storage tanks

    International Nuclear Information System (INIS)

    Ruehl, P.A.

    1993-01-01

    A process is described for disposing of earth contaminated with petroleum products from a leaking underground storage tank wherein the earth contains a significant amount of material comprised primarily of a mixture of one part Al 2 O 3 and two to three parts SiO 2 , the process comprising: digging up a leaking underground storage tank and the surrounding contaminated earth; separating the excavated earth into a Al 2 O 3 +SiO 2 material and a non-Al 2 O 3 + SiO 2 material; mixing the Al 2 O 3 + SiO 2 material and other cement precursor raw materials together to form a mixture, and grinding the mixture to form a feed mix; introducing the feed mix into a rotary cement kiln causing any remaining petroleum product contained therein to be volatilized and burned within the kiln as cement clinker is being produced; and grinding the cement clinker together to form cement which is free of petroleum product

  20. Registration of Hanford Site Class V underground injection wells

    International Nuclear Information System (INIS)

    1988-05-01

    This document was requested by the Washington State Department of Ecology. Based on the State Underground Injection Control Program, as described in the Washington Administrative Code, French drains and reverse wells are being registered as Class V wells. Information on out-of-service French drains, out-of-service reverse wells, and out-of-service cribs that are deeper than their largest surface dimension is also provided. The data for this submittal were taken from the Waste Information Database System (WIDS) and the Hanford Environmental Compliance Record (HECR) database. The current definition used in WIDS for an ''inactive facility'' is one that either no longer receives waste or plans to in the future. The facilities listed in WIDS as inactive have all been listed as ''out-of-service.'' Information concerning the deactivation method for a facility is included when such information is available. The French drains registered in this submittal are based on the information available at the present time. Additional French drains may be registered on a periodic basis as the drains are identified

  1. Current status of ground source heat pumps and underground thermal energy storage in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanner, B. [Justus Liebig University, Giessen (Germany). Institute of Applied Geosciences; Karytsas, C.; Mendrinos, D. [Center for Renewable Energy Sources, Pikermi (Greece); Rybach, L. [Geowatt AG, Zurich (Switzerland)

    2003-12-01

    Geothermal Heat Pumps, or Ground Coupled Heat Pumps (GCHP), are systems combining a heat pump with a ground heat exchanger (closed loop systems), or fed by ground water from a well (open loop systems). They use the earth as a heat source when operating in heating mode, with a fluid (usually water or a water-antifreeze mixture) as the medium that transfers the heat from the earth to the evaporator of the heat pump, thus utilising geothermal energy. In cooling mode, they use the earth as a heat sink. With Borehole Heat Exchangers (BHE), geothermal heat pumps can offer both heating and cooling at virtually any location, with great flexibility to meet any demands. More than 20 years of R and D focusing on BUE in Europe has resulted in a well-established concept of sustainability for this technology, as well as sound design and installation criteria. Recent developments are the Thermal Response Test, which allows in-situ-determination of ground thermal properties for design purposes, and thermally enhanced grouting materials to reduce borehole thermal resistance. For cooling purposes, but also for the storage of solar or waste heat, the concept of underground thermal energy storage (UTES) could prove successful. Systems can be either open (aquifer storage) or can use BHE (borehole storage). Whereas cold storage is already established on the market, heat storage, and, in particular, high temperature heat storage (> 50{sup o}C) is still in the demonstration phase. Despite the fact that geothermal heat pumps have been in use for over 50 years now (the first were in the USA), market penetration of this technology is still in its infancy, with fossil fuels dominating the space heating market and air-to-air heat pumps that of space cooling. In Germany, Switzerland, Austria, Sweden, Denmark, Norway, France and the USA, large numbers of geothermal heat pumps are already operational, and installation guidelines, quality control and contractor certification are now major issues

  2. A study of feasibility, design and cost of excavations for underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    1976-02-01

    A study conducted for the State Power Board on underground siting of nuclear power plants is presented. The report is divided into two chapters, both concerning the technical aspects of large underground openings. The first chapter gives a brief general survey of the problems involved, and the second outlines the technical aspects of a PWR project at a specific site. Details are given in 8 appendices and arrangement drawings. The project differs from conventional hydroelectric excavation schemes mainly in the fact that the spherical reactor containment requires a vault of 60m free span, and the turbine hall a cylindrical vault of 45m span, both of which exceed any span hitherto built for similar purposes. This requires a comparatively wide extrapolation of tested and available experience in underground excavations for permanent civil use. To what extent and under what circumstances such extrapolation is tenable must be tested in practice, preferably in a specially controlled prototype test. However the study indicates that conventional nuclear power plants can be sited underground when the topography and rock conditions are suitable. A 1000-2000 MW conventional plant adapted for underground siting will require large span caverns, tunnels and shafts, totalling about 1.0 mill. cubic metres of underground excavation. In addition access and cooling water tunnels, depending on the location, will require 0.2-0.5 mill. cubic metres of tunnel excavations. The excavations and support work can be completed within a construction time of about 2 1/2 years at an estimated total cost of 215 mill. Norwegian kroner (1975 value). (JIW)

  3. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    International Nuclear Information System (INIS)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all

  4. US Department of Energy DOE Nevada Operations Office, Nevada Test Site: Underground safety and health standards

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The Nevada Test Site Underground Safety and Health Standards Working Group was formed at the direction of John D. Stewart, Director, Nevada Test Site Office in April, 1990. The objective of the Working Group was to compile a safety and health standard from the California Tunnel Safety Orders and OSHA for the underground operations at the NTS, (excluding Yucca Mountain). These standards are called the NTS U/G Safety and Health Standards. The Working Group submits these standards as a RECOMMENDATION to the Director, NTSO. Although the Working Group considers these standards to be the most integrated and comprehensive standards that could be developed for NTS Underground Operations, the intent is not to supersede or replace any relevant DOE orders. Rather the intent is to collate the multiple safety and health references contained in DOE Order 5480.4 that have applicability to NTS Underground Operations into a single safety and heath standard to be used in the underground operations at the NTS. Each portion of the standard was included only after careful consideration by the Working Group and is judged to be both effective and appropriate. The specific methods and rationale used by the Working Group are outlined as follows: The letter from DOE/HQ, dated September 28, 1990 cited OSHA and the CTSO as the safety and health codes applicable to underground operations at the NTS. These mandated codes were each originally developed to be comprehensive, i.e., all underground operations of a particular type (e.g., tunnels in the case of the CTSO) were intended to be adequately regulated by the appropriate code. However, this is not true; the Working Group found extensive and confusing overlap in the codes in numerous areas. Other subjects and activities were addressed by the various codes in cursory fashion or not at all.

  5. A mobile detector for measurements of the atmospheric muon flux in underground sites

    Energy Technology Data Exchange (ETDEWEB)

    Mitrica, Bogdan, E-mail: mitrica@nipne.ro [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Margineanu, Romul; Stoica, Sabin; Petcu, Mirel; Brancus, Iliana [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Jipa, Alexandru; Lazanu, Ionel; Sima, Octavian [Department of Physics, University of Bucharest, P.O.B. MG-11 (Romania); Haungs, Andreas; Rebel, Heinigerd [Institut fur Kernphysik, Karlsruhe Institute of Technology - Campus North, 76021 Karlsruhe (Germany); Petre, Marian; Toma, Gabriel; Saftoiu, Alexandra; Stanca, Denis; Apostu, Ana; Gomoiu, Claudia [Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania)

    2011-10-21

    Muons comprise an important contribution of the natural radiation dose in air (approx. 30 nSv/h of a total dose rate of 65-130 nSv/h), as well as in underground sites even when the flux and relative contribution are significantly reduced. The flux of muons observed underground can be used as an estimator for the depth in mwe (meter water equivalent) of the underground site. The water equivalent depth is important information to devise physics experiments feasible for a specific site. A mobile detector for performing measurements of the muon flux was developed in IFIN-HH, Bucharest. Consisting of two scintillator plates (approx. 0.9 m{sup 2}) which measure in coincidence, the detector is installed on a van which facilitates measurements at different locations at the surface or underground. The detector was used to determine muon fluxes at different sites in Romania. In particular, data were taken and the values of meter water equivalents were assessed for several locations at the salt mine in Slanic-Prahova, Romania. The measurements have been performed in two different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at the surface at different elevations were performed. The results were compared with predictions of Monte-Carlo simulations using the CORSIKA and MUSIC codes.

  6. A mobile detector for measurements of the atmospheric muon flux in underground sites

    International Nuclear Information System (INIS)

    Mitrica, Bogdan; Margineanu, Romul; Stoica, Sabin; Petcu, Mirel; Brancus, Iliana; Jipa, Alexandru; Lazanu, Ionel; Sima, Octavian; Haungs, Andreas; Rebel, Heinigerd; Petre, Marian; Toma, Gabriel; Saftoiu, Alexandra; Stanca, Denis; Apostu, Ana; Gomoiu, Claudia

    2011-01-01

    Muons comprise an important contribution of the natural radiation dose in air (approx. 30 nSv/h of a total dose rate of 65-130 nSv/h), as well as in underground sites even when the flux and relative contribution are significantly reduced. The flux of muons observed underground can be used as an estimator for the depth in mwe (meter water equivalent) of the underground site. The water equivalent depth is important information to devise physics experiments feasible for a specific site. A mobile detector for performing measurements of the muon flux was developed in IFIN-HH, Bucharest. Consisting of two scintillator plates (approx. 0.9 m 2 ) which measure in coincidence, the detector is installed on a van which facilitates measurements at different locations at the surface or underground. The detector was used to determine muon fluxes at different sites in Romania. In particular, data were taken and the values of meter water equivalents were assessed for several locations at the salt mine in Slanic-Prahova, Romania. The measurements have been performed in two different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measurements of the muon flux at the surface at different elevations were performed. The results were compared with predictions of Monte-Carlo simulations using the CORSIKA and MUSIC codes.

  7. Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2003-01-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 262: Area 25 Septic Systems and Underground Discharge Point, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 262 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV, 2002a]). CAU 262 is located at the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada. CAU 262 consists of the following nine Corrective Action Sites (CASs) located in Area 25 of the NTS: CAS 25-02-06, Underground Storage tank CAS 25-04-06, Septic Systems A and B CAS 25-04-07, Septic System CAS 25-05-03, Leachfield CAS 25-05-05, Leachfield CAS 25-05-06, Leachfield CAS 25-05-08, Radioactive Leachfield CAS 25-05-12, Leachfield CAS 25-51-01, Dry Well

  8. Geotechnical site assessment for underground radioactive waste disposal in rock

    International Nuclear Information System (INIS)

    Hudson, J.A.

    1986-05-01

    This report contains a state-of-the-art review of the geotechnical assessment of Land 3 and Land 4 repository sites (at 100 - 300 m depth in rock) for intermediate level radioactive waste disposal. The principles established are also valid for the disposal of low and high level waste in rock. The text summarizes the results of 21 DoE research contract reports, firstly 'in series' by providing a technical review of each report and then 'in parallel' by considering the current state of knowledge in the context of the subjects in an interaction matrix framework. 1214 references are cited. It is concluded that four further research projects are required for site assessment procedures to be developed or confirmed. These are coupled modelling, mechanical properties, water flow and establishment of 2 phase site assessment procedures. (author)

  9. Borehole induction logging for the Dynamic Underground Stripping Project LLNL gasoline spill site

    International Nuclear Information System (INIS)

    Boyd, S.; Newmark, R.; Wilt, M.

    1994-01-01

    Borehole induction logs were acquired for the purpose of characterizing subsurface physical properties and monitoring steam clean up activities at the Lawrence Livermore National Laboratory. This work was part of the Dynamic Underground Stripping Project's demonstrated clean up of a gasoline spin. The site is composed of unconsolidated days, sands and gravels which contain gasoline both above and below the water table. Induction logs were used to characterize lithology, to provide ''ground truth'' resistivity values for electrical resistance tomography (ERT), and to monitor the movement of an underground steam plume used to heat the soil and drive volatile organic compounds (VOCs) to the extraction wells

  10. Industrial hygiene support of underground operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Porter, P.F.

    1992-01-01

    The Industrial Hygiene Section of the Health Protection Department provides industrial hygiene support of underground operations at the Nevada Test Site. This report describes support operations and summarizes the industrial hygiene data collected from July 31, 1989 through June 30, 1991. Air quality data were collected by means of personnel sampling by active and passive techniques using various kinds of industrial hygiene instrumentation and through localized and general area monitoring. The data collected were used to evaluate underground air quality and quantity requirements; evaluate worker exposures to a variety of air contaminants; determine the applicability and effectiveness of personal protective equipment

  11. On-site underground background measurements for the KASKA reactor-neutrino experiment

    International Nuclear Information System (INIS)

    Furuta, H.; Sakuma, K.; Aoki, M.; Fukuda, Y.; Funaki, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Katsumata, M.; Kawasaki, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Matsumoto, T.; Miyata, H.; Nagasaka, Y.; Nakagawa, T.; Nakajima, N.; Nitta, K.; Sakai, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.; Tamura, N.; Tsuchiya, Y.

    2006-01-01

    On-site underground background measurements were performed for the planned reactor-neutrino oscillation experiment KASKA at Kashiwazaki-Kariwa nuclear power station in Niigata, Japan. A small-diameter boring hole was excavated down to 70m underground level, and a detector unit for γ-ray and cosmic-muon measurements was placed at various depths to take data. The data were analyzed to obtain abundance of natural radioactive elements in the surrounding soil and rates of cosmic muons that penetrate the overburden. The results will be reflected in the design of the KASKA experiment

  12. Geochemistry research planning for the underground storage of high-level nuclear waste

    International Nuclear Information System (INIS)

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables

  13. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    K. B. Campbell email = campbek@nv.doe.gov

    2002-01-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are

  14. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  15. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    International Nuclear Information System (INIS)

    Kyle, K.R.; Mayes, E.L.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID)

  16. Safety issue resolution strategy plan for inactive miscellaneous underground storage tanks

    International Nuclear Information System (INIS)

    Wang, O.S.; Powers, T.B.

    1994-09-01

    The purpose of this strategy plan is to identify, confirm, and resolve safely issues associated with inactive miscellaneous underground storage tanks (MUSTs) using a risk-based priority approach. Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations including risk ranking and cost effectiveness. This plan specifies work scope and recommends schedules for activities related to resolving safety issues, such as collecting historical data, searching for authorization documents, performing Unreviewed Safety Question (USQ) screening and evaluation, identifying safety issues, imposing operational controls and monitoring, characterizing waste contents, mitigating and resolving safety issues, and fulfilling other remediation requirements consistent with the overall Tank Waste Remediation System strategy. Recommendations for characterization and remediation are also recommended according to the order of importance and practical programmatic consideration

  17. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L.; Zollars, R.L.

    1992-09-01

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids

  18. Non-uniform regulations of underground storage tanks in the United States

    International Nuclear Information System (INIS)

    Nadim, F.; Hoag, G.E.; Liu, S.; Carley, R.J.; Zack, P.

    2000-01-01

    Leaking underground storage tanks (USTs) are one of the major sources of ground water contamination. United States federal regulations for USTs were established in September of 1988. Since that time little or no amendments have been made to these regulations. In order to protect sensitive areas such as aquifer recharge zones for public water supply wells and wetlands, different states have been obligated to apply more stringent standards than the federal UST regulations. This practice however, has led to a non-uniform application of regulations for USTs throughout the country. In this article, United States regulations for USTs are reviewed and its deficits are highlighted. Based on these regulations and the experience of northeastern states of United States, a sequence of leak and spill preventive measures for USTs is proposed. Application of the proposed measures could substantially reduce the possibility of UST failure and would be more protective of the subsurface environment. (author)

  19. Underground gas storage Lobodice geological model development based on 3D seismic interpretation

    International Nuclear Information System (INIS)

    Kopal, L.

    2015-01-01

    Aquifer type underground gas storage (UGS) Lobodice was developed in the Central Moravian part of Carpathian foredeep in Czech Republic 50 years ago. In order to improve knowledge about UGS geological structure 3D seismic survey was performed in 2009. Reservoir is rather shallow (400 - 500 m below surface) it is located in complicated locality so limitations for field acquisition phase were abundant. This article describes process work flow from 3D seismic field data acquisition to geological model creation. The outcomes of this work flow define geometry of UGS reservoir, its tectonics, structure spill point, cap rock and sealing features of the structure. Improving of geological knowledge about the reservoir enables less risky new well localization for UGS withdrawal rate increasing. (authors)

  20. Acoustic imaging of underground storage tank wastes: A feasibility study. Final report

    International Nuclear Information System (INIS)

    Turpening, R.; Zhu, Z.; Caravana, C.; Matarese, J.

    1995-01-01

    The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy

  1. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L. (Pacific Northwest Lab., Richland, WA (United States)); Zollars, R.L. (Washington State Univ., Pullman, WA (United States))

    1992-09-01

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids.

  2. Techniques for site investigations for underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1985-01-01

    The report provides a more detailed description of the capabilities and applications of the various earth science investigation techniques outlined in the IAEA Technical Reports Series Nos. 177, 215 and 216. These methods are generally appropriate during at least one of the stages of the assessment or selection of a site for any type of waste disposal facility, in shallow ground or in deep geological formations. This report is addressed to technical authorities responsible for or involved in planning, approving, executing and reviewing national waste disposal programmes. It may also help administrative authorities in this field to select appropriate techniques for obtaining the majority of the required information at minimum cost

  3. CPA ups storage at Lavera site

    International Nuclear Information System (INIS)

    Back, R.

    1992-01-01

    Compagnie Parisienne des Asphaltes (CPA; Paris) and its subsidiary Pacsud -owned 65% by CPA and 35% by Shell Chimie (Paris) - have inaugurated their new chemicals storage site at Lavera, France, in the Europort South complex near Marseilles. The facilities, with 60,000-m.t./year capacity, also include a barreling plant that will have output of up to 250 bbl/hour when it comes onstream next spring. Total investment for these facilities amount to F122 million ($22.5 million), including F22 million for the barreling unit. CPA, France's number two storage specialist, after LB Chimie (Paris), is jointly owned by investment company Union Normandie (60%), Elf Aquitaine (Paris; 20%), and Total (Paris; 20%). Adding to its existing French storage sites at Dunkirk and Rouen, CPA says it decided to build on the Pacsud venture because it considered it attractive to invest in the petroleum and petrochemical complex of Fos-Berre-Lavera, particularly since the present trend in the oil and chemical industries is to subcontract all ancillary functions, especially logistics. CPA general manager Rafic Charles Rathle says that customer requirements and the role of the service provider are changing. With that in mid, CPA, in addition to providing storage terminals, converts its depots into distribution and packing centers. At Lavera the company has taken over storage, blending, and barreling operations for Pacsud and its direct customers. For example, Pacsud has a long-term contract with Shell Chimie for the latter's additive production at a 10,000-m.t./year rate. Another long-term contract is being negotiated, but the identity of the customer was not revealed

  4. Advice on Sustainable Use of the Underground for Heat and Cold Storage; Advies Duurzaam Gebruik van de Bodem voor WKO

    Energy Technology Data Exchange (ETDEWEB)

    Oomes, J.

    2009-09-15

    Insights and ideas are given and discussed with regard to sustainable use of soil and underground for heat and cold storage. Also attention is paid to the marginal conditions for the application of heat and cold storage [Dutch] Inzichten en ideeen worden gegeven en besproken over duurzaam gebruik van de bodem voor warmte- koudeopslag (WKO). Daarnaast worden ook de randvoorwaarden van WKO in kaart gebracht.

  5. Optimal use of the Gaz de France underground gas storage facilities; Utilisation optimale des stockages souterrains de Gaz de France

    Energy Technology Data Exchange (ETDEWEB)

    Favret, F.; Rouyer, E.; Bayen, D.; Corgier, B. [Gaz de France (GDF), 75 - Paris (France)

    2000-07-01

    This paper describes the tools developed by Gaz de France to optimize the use of its whole set of underground gas storage facilities. After a short introduction about the context and the purposes, the methodology and the models are detailed. The operational results obtained during the last three years are presented, and some conclusions and perspectives are given. (authors)

  6. Root cause analysis of the fatigue failures of the pulsation dampers of a large underground gas storage (UGS) system

    NARCIS (Netherlands)

    Eijk, A.; Lange, D. de; Maljaars, J.; Tenbrock-Ingenhorst, A.; Gottmer, A.

    2014-01-01

    Two large identical 6-cylinder Ariel JGB/6 reciprocating compressors each of 7.5 MW, are used for an underground gas storage system (UGS) plant of RWE Gasspeicher GmbH located in Epe, Germany. The system is in operation since 2005. In 2011 several internals parts (baffle plates and baffle choke

  7. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite trademark that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE's waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  8. Fiscal 2000 report on result of R and D of underground storage technology for carbon dioxide; 2000 nendo nisanka tanso chichu choryu gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This paper presents the fiscal 2000 results of R and D of underground storage technology for carbon dioxide. As basic experiments, a measurement apparatus was manufactured for simulating the pressure and temperature conditions in aquifers to measure the rate at which CO{sub 2} is dissolved in water and the reactivity between CO{sub 2} and rocks, with the basic performance verified. Methods were investigated and classified that monitor environmental impact and safety. For the purpose of anticipating the long-term behaviors of CO{sub 2} sequestered underground, a simulator was developed, extracting, from investigation of the literature, natural phenomena required for the anticipation. As the system studies, examination was conducted for analysis of the energy balance of the underground storage technology, rational design (safety and economy) of an entire system ranging from source to storage point, investigation from social and economic perspectives, and estimation of the effect of suppressing global warming. In the injection experiment, Minami-Nagaoka natural gas field was selected as a prospective experiment site from the characteristics of the cap rock and aquifer. One injection well was drilled to a depth of 1,230 m, with investigations performed such as physical well-logging and core sampling. Existing data were utilized in the simulation study of CO{sub 2} behavior underground during the injection period. The information of the basic geophysical survey/exploratory well by the Japan National Oil Corporation was collected and compiled, with the preliminary geological study undertaken in the areas described. (NEDO)

  9. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  10. Preliminary studies of tunnel interface response modeling using test data from underground storage facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, Steven Ronald; Bartel, Lewis Clark

    2010-11-01

    In attempting to detect and map out underground facilities, whether they be large-scale hardened deeply-buried targets (HDBT's) or small-scale tunnels for clandestine border or perimeter crossing, seismic imaging using reflections from the tunnel interface has been seen as one of the better ways to both detect and delineate tunnels from the surface. The large seismic impedance contrast at the tunnel/rock boundary should provide a strong, distinguishable seismic response, but in practice, such strong indicators are often lacking. One explanation for the lack of a good seismic reflection at such a strong contrast boundary is that the damage caused by the tunneling itself creates a zone of altered seismic properties that significantly changes the nature of this boundary. This report examines existing geomechanical data that define the extent of an excavation damage zone around underground tunnels, and the potential impact on rock properties such as P-wave and S-wave velocities. The data presented from this report are associated with sites used for the development of underground repositories for the disposal of radioactive waste; these sites have been excavated in volcanic tuff (Yucca Mountain) and granite (HRL in Sweden, URL in Canada). Using the data from Yucca Mountain, a numerical simulation effort was undertaken to evaluate the effects of the damage zone on seismic responses. Calculations were performed using the parallelized version of the time-domain finitedifference seismic wave propagation code developed in the Geophysics Department at Sandia National Laboratories. From these numerical simulations, the damage zone does not have a significant effect upon the tunnel response, either for a purely elastic case or an anelastic case. However, what was discovered is that the largest responses are not true reflections, but rather reradiated Stoneley waves generated as the air/earth interface of the tunnel. Because of this, data processed in the usual way may not

  11. A comparative study of gas-gas miscibility processes in underground gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    Intermixture of gases in underground gas reservoirs have had great weight for natural gas storage in UGS projects with substitution of cushion gas by inert gases or changing the stored gas quality or origin, as for the replacement of town gas by natural gas. It was also investigated during the last years for Enhanced Gas Recovery (EGR) and Carbon Capture and Storage (CCS) projects. The actual importance of its mechanisms is discussed for the H{sub 2} storage in Power to Gas to Power projects (PGP). In these approaches miscibility of the injected gas with the gas in place in the reservoir plays an important role in the displacement process. The conditions and parameters for the gas-gas displacement and mixing have been investigated in previous projects, as e.g. the miscibility of CO{sub 2} with natural gas (CLEAN). Furthermore the miscibility process of town gas with natural gas and sauer gas with sweet gas were also previously measured and compared in laboratory. The objective of this work is to investigate the miscibility of H{sub 2} injection into natural gas reservoirs using a compositional and a black oil reservoir simulator. Three processes of convection, dispersion and diffusion are considered precisely. The effect of gas miscibility is studied for both simulators and the results are compared to find optimum miscibility parameters. The findings of this work could be helpful for further pilot and field case studies to predict and monitor the changes in gas composition and quality. In future this monitoring might become more important when PGP together with H{sub 2}-UGS, as storage technology, will help to successfully implement the change to an energy supply from more renewable sources. Similarly the method confirms the use of the black oil simulator as an alternative for gas-gas displacement and sequestration reservoir simulation in comparison to the compositional simulator. (orig.)

  12. Control and monitoring of landfill gas underground migration at the City of Montreal sanitary landfill site

    International Nuclear Information System (INIS)

    Heroux, M.; Turcotte, L.

    1997-01-01

    The proposed paper covers the various aspects of control and monitoring of potential landfill gas (LFG) migration through soil voids or rock fractures at the City of Montreal sanitary landfill site. It depicts the social, geographical and geological context and presents a brief history of the landfill site. It describes the LFG collecting system and LFG migration monitoring equipment and programs. Finally it presents monitoring data taken over last few years. The landfill site is located in a well populated urban area. Since 1968, about 33 million metric tons of domestic and commercial waste have been buried in a former limestone quarry. Because of houses and buildings in the vicinity, 100 m in some locations, LFG underground migration is a major risk. LFG could indeed infiltrate buildings and reach explosive concentrations. So it must be controlled. The City of Montreal acquired the site in 1988 and has progressively built a LFG collecting system, composed of more than 288 vertical wells, to pump out of the landfill 280 million m 3 of gas annually. To verify the efficiency of this system to minimize LFG underground migration, monitoring equipment and programs have also been designed and put into operation. The monitoring network, located all around the landfill area, is composed of 21 well nests automated to monitor presence of gas in the ground in real time. In addition, 55 individual wells, where manual measurements are made, are also available. To complete the monitoring program, some measurements are also taken in buildings, houses and underground utilities in the neighborhood of the site. Monitoring data show that LFG underground migration is well controlled. They also indicate significant decrease of migration over the years corresponding to improvements to the LFG collecting system

  13. Heat storage in underground caverns - measurements and simulations; Speicherung von Waerme in Grubenraeumen - Messung und Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schaberg, A; Krause, H; Poetke, W [TU Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Technische Thermodynamik

    1997-12-01

    Among the different discussed underground concepts for longterm storing of solar or waste heat old waterfilled mines can be an interesting solution. To examine the temperature behaviour of this storage type a testing store is built in a mine belonging to the Freiberg University of Mining and Technology in Saxonia. In a longterm project temperatures are measured inside the water volume and in the adjacent rock. The temperature behaviour depends on the operating conditions. Inside the water volume temperature stratification can be observed. During loading and standstill heat is transported into the rock surrounding. A certain part of this amount of heat can be discharged again. For designing and optimizing this storage type a numerical modell is developed. The modell is validated with experimental data from the testing plant. (orig.) [Deutsch] Unter den verschiedenen, in der Diskussion stehenden Untegrund-Waermespeichern fuer Solarwaerme oder Abwaerme bieten sich auch geflutete Gruben als Waermespeicher an. Zur Untersuchung des Temperaturverhaltens dieses Speichertyps ist im Saechsischen Lehr- und Besucherbergwerk der TU Bergakademie Freiberg ein Versuchsspeicher errichtet worden. In einem Langzeitversuch wird das Temperaturfeld im Wasser und im angrenzenden Gestein aufgezeichnet. Das Temperaturverhalten ist von den Betriebsgroessen abhaengig. Im Grubenwasser stellt sich eine stabile Temperaturschichtung ein. Waehrend der Beladung und der Stillstandszeiten wird Waerme in die Gesteinsumgebung transportiert. Ein Teil dieser Waermemenge kann wider entspeichert werden. Zur Auslegung und Optimierung von Gruben-Waermespeichern ist ein numerisches Modell entwickelt worden. Das Modell ist anhand der Messergebnisse des Versuchsspeichers validiert worden. (orig.)

  14. Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Luke; Baker, Stephen; Bowen, Bob [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom); Mallick, Pramod; Smith, Gary [US Department of Energy (United States); King, Bill [Savannah River National Laboratory (United States); Judd, Laurie [NuVision Engineering (United States)

    2013-07-01

    The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

  15. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  16. Novel, low-vibration excavation techniques for underground radioactive waste storage

    International Nuclear Information System (INIS)

    Kogelmann, W.J.

    1994-01-01

    In order to meet the construction specifications of the challenging Yucca Mountain nuclear waste repository, novel, low-vibration tunneling and shaft sinking techniques must be applied. Conventional roadheaders, even with reduced cutting speed, cannot be employed due to the high strength and widely varying physical properties of the rock formations. The Multi Tool Miner (MTM) concept utilizes both an impact hammer, for efficient hard rock mining, and a cutter head, tooled with drag-bits (picks), to profile tunnel walls down to the sound, undisturbed rock, in order to meet the 10,000-year stability requirement for underground structures. As the operational requirements and rock conditions at the Yucca Mountain site are not suitable for wide, transverse open-quotes ripperclose quotes cutting drums, a small diameter, in-line, open-quotes milling augerclose quotes cutter head was developed. The synergetic combination of high-production hammer excavation and precise milling will facilitate the construction of stable, long-life underground structures within the budget limitations mandated by Congress

  17. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  18. Storage of oil above ground for underground: Regulations, costs, and risks

    International Nuclear Information System (INIS)

    Lively-Diebold, B.; Driscoll, W.; Ameer, P.; Watson, S.

    1993-01-01

    Some owners of underground storage tank systems (USTs) appear to be replacing their systems with aboveground storage tank systems (ASTs) without full knowledge of the US Government environmental regulations that apply to facilities with ASTs, and their associated costs. This paper discusses the major federal regulatory requirements for USTs and ASTS, and presents the compliance costs for new tank systems that range in capacity from 1,000 to 10,000 gallons. The costs of two model UST system and two model AST systems are considered for new oil storage capacity, expansion of existing capacity, and replacement of an existing UST or AS T. For new capacity, ASTs are less expensive than USTs, although ASTs do have significant regulatory compliance costs that range from an estimated $8,000 to $14,000 in present value terms, depending on the size and type of system. For expanded or replacement capacity, ASTs are in all but one case less expensive than USTS; the exception is the expansion of capacity at an existing UST facility. In this case, the cost of a protected steel tank UST system is comparable to the cost of an AST system. Considering the present value of all costs over a 30 year useful life, the cost for an AST with a concrete dike is less than the cost of an AST with an earthen dike, for the tank sizes considered. This is because concrete dikes are cost competitive for small tanks, and the costs to clean up a release are higher for earthen dikes, due to the cost of disposal and replacement of oil-contaminated soil. The cost analyses presented here are not comprehensive, and are intended primarily for illustrative purposes. Only the major costs of tank purchase, installation, and regulatory compliance were considered

  19. Measurements of Argon-39 at the U20az underground nuclear explosion site.

    Science.gov (United States)

    McIntyre, J I; Aalseth, C E; Alexander, T R; Back, H O; Bellgraph, B J; Bowyer, T W; Chipman, V; Cooper, M W; Day, A R; Drellack, S; Foxe, M P; Fritz, B G; Hayes, J C; Humble, P; Keillor, M E; Kirkham, R R; Krogstad, E J; Lowrey, J D; Mace, E K; Mayer, M F; Milbrath, B D; Misner, A; Morley, S M; Panisko, M E; Olsen, K B; Ripplinger, M D; Seifert, A; Suarez, R

    2017-11-01

    Pacific Northwest National Laboratory reports on the detection of 39 Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39 Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37 Ar and 85 Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39 Ar from the fission product 85 Kr. Proportional counters are currently used for high-sensitivity measurement of 37 Ar and 39 Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85 Kr can be mistaken for that of 39 Ar, and the presence of either isotope increases the measurement background level for the measurement of 37 Ar. Measured values for the 39 Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion. Published by Elsevier Ltd.

  20. About working of the research program on development of underground space of Russia

    International Nuclear Information System (INIS)

    Kartoziya, B.A.

    1995-01-01

    Basic proposition relative to the developed federal program on scientific research in the area of assimilating underground space in Russia are presented. The underground objects are divided by their purpose into four groups: 1) underground objects of house-hold purpose (energy and mining complex, industrial enterprises, storages, garages, etc); 2) underground objects of social purpose (libraries, shops, restaurants, etc); 3) underground objects of ecological purpose (storages, disposal sites for radioactive wastes and hazardous substances, dangerous productions, etc); 4) underground objects of defense purpose. Trends in the scientific-research program formation, relative to underground space assimilation are enumerated. 7 refs

  1. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.

    2004-01-01

    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  2. The role of the underground for massive storage of energy: a preliminary glance of the French case

    Science.gov (United States)

    Audigane, Pascal; Gentier, Sylvie; Bader, Anne-Gaelle; Beccaletto, Laurent; Bellenfant, Gael

    2014-05-01

    The question of storing energy in France has become of primary importance since the launch of a road map from the government which places in pole position this topic among seven major milestones to be challenged in the context of the development of innovative technology in the country. The European objective to reach 20% of renewables in the energy market, from which a large part would come from wind and solar power generation, raises several issues regarding the capacity of the grid to manage the various intermittent energy sources in line with the variability of the public demand and offer. These uncertainties are highly influenced by unpredictable weather and economic fluctuations. To facilitate the large-scale integration of variable renewable electricity sources in grids, massive energy storage is needed. In that case, electric energy storage techniques involving the use of underground are often under consideration as they offer a large storage capacity volume with a adapted potential of confining and the space required for the implantation. Among the panel of massive storage technologies, one can find (i) the Underground Pumped Hydro-Storage (UPHS) which are an adaptation of classical Pumped Hydro Storage system often connected with dam constructions, (ii) the compressed air storage (CAES) and (iii) the hydrogen storage from conversion of electricity into H2 and O2 by electrolysis. UPHS concept is based on using the potential energy between two water reservoirs positioned at different heights. Favorable natural locations like mountainous areas or cliffs are spatially limited given the geography of the territory. This concept could be extended with the integration of one of these reservoirs in an underground cavities (specifically mined or reuse of preexisting mines) to increase opportunities on the national territory. Massive storage based on compression and relaxation of air (CAES) requires high volume and confining pressure around the storage that exists

  3. Regulatory analysis for the use of underground barriers at the Hanford Site tank farms

    International Nuclear Information System (INIS)

    Hampsten, K.L.

    1994-01-01

    Sixty-seven of the single-shell tanks at the Hanford Site, Richland, Washington, are assumed to have leaked in the past. Some of the waste retrieval options being considered, such as past-practice sluicing (a process that uses hot water to dislodge waste for subsequent removal by pumping), have the potential for increasing releases of dangerous waste from these tanks. Underground barrier systems are being evaluated as a method to mitigate releases of tank waste to the soil and groundwater that may occur during retrieval activities. The following underground barrier system options are among those being evaluated to determine whether their construction at the Single-Shell Tank Farms is viable. (1) A desiccant barrier would be created by circulating air through the subsurface soil to lower and then maintain the water saturation below the levels required for liquids to flow. (2) An injected materials barrier would be created by injecting materials such as grout or silica into the subsurface soils to form a barrier around and under a given tank or tank farm. (3) A cryogenic barrier would be created by freezing subsurface soils in the vicinity of a tank or tank farm. An analysis is provided of the major regulatory requirements that may impact full scale construction and operation of an underground barrier system and a discussion of factors that should be considered throughout the barrier selection process, irrespective of the type of underground barrier system being considered. However, specific barrier systems will be identified when a given regulation will have significant impact on a particular type of barrier technology. Appendix A provides a matrix of requirements applicable to construction and operation of an underground barrier system

  4. Carbon neutral and flexible underground storage of renewable excess energy; Klimaneutrale Flexibilisierung regenerativer Ueberschussenergie mit Untergrundspeichern

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Michael; Nakatem, Natalie; Streibel, Martin; Kempka, Thomas [GeoForschungsZentrum Potsdam (Germany)

    2013-10-15

    We present an innovative, extended and carbon neutral 'Power-to-Gas-to-Power' concept. Excess electricity from wind and sun can be transformed into hydrogen and with carbon dioxide subsequently into methane. When needed, electricity is regained in a combined cycle plant burning the methane. To close the carbon cycle carbon dioxide is captured on site. Two subsurface storage formations for both gases are required for the technology. Our regional showcase of two German cities, Potsdam and Brandenburg/Havel, demonstrates that about 30% of their electricity demand can be provided in that way, using 17.2% of renewable electricity generated in the State of Brandenburg. We calculate the overall efficiency of the system with 27.7% and the associated costs of electricity are 20,43 Euro-cent/ kWh. Compared to pump storage hydro power and compressed air storage the determined efficiency is worse, however the costs of electricity are competitive. (orig.)

  5. Economic competitiveness of underground coal gasification combined with carbon capture and storage in the Bulgarian energy network

    Energy Technology Data Exchange (ETDEWEB)

    Nakaten, Natalie Christine

    2014-11-15

    Underground coal gasification (UCG) allows for exploitation of deep-seated coal seams not economically exploitable by conventional coal mining. Aim of the present study is to examine UCG economics based on coal conversion into a synthesis gas to fuel a combined cycle gas turbine power plant (CCGT) with CO2 capture and storage (CCS). Thereto, a techno-economic model is developed for UCG-CCGT-CCS costs of electricity (COE) determination which, considering sitespecific data of a selected target area in Bulgaria, sum up to 72 Euro/MWh in total. To quantify the impact of model constraints on COE, sensitivity analyses are undertaken revealing that varying geological model constraints impact COE with 0.4% to 4%, chemical with 13%, technical with 8% to 17% and market-dependent with 2% to 25%. Besides site-specific boundary conditions, UCG-CCGT-CCS economics depend on resources availability and infrastructural characteristics of the overall energy system. Assessing a model based implementation of UCG-CCGT-CCS and CCS power plants into the Bulgarian energy network revealed that both technologies provide essential and economically competitive options to achieve the EU environmental targets and a complete substitution of gas imports by UCG synthesis gas production.

  6. Assessment of ground-water contamination from a leaking underground storage tank at a defense supply center near Richmond, Virginia

    International Nuclear Information System (INIS)

    Powell, J.D.; Wright, W.G.

    1990-01-01

    During 1988-89, 24 wells were installed in the vicinity of the post-exchange gasoline station on the Defense General Supply Center, near Richmond, Virginia, to collect and analyze groundwater samples for the presence of gasoline contamination from a leaking underground storage tank. Concentrations of total petroleum hydrocarbons and benzene were as high as 8.2 mg/L and 9,000 microg/L, respectively, in water from wells in the immediate vicinity of the former leaking tank, and benzene concentrations were as high as 2,300 microg/L in a well 600 ft down gradient from the gasoline station. Groundwater flow rate are estimated to be about 60 to 80 ft/yr; on the basis of these flow rates, the contaminants may have been introduced into the groundwater as long as 7-10 yrs ago. Groundwater might infiltrate a subsurface storm sewer, where the sewer is below the water table, and discharge into a nearby stream. Preliminary risk assessment for the site identified no potential human receptors to the groundwater contamination because there were no groundwater users identified in the area. Remediation might be appropriate if exposure of future potential users is concern. Alternatives discussed for remediation of groundwater contamination in the upper aquifer at the PX Service Station include no-action, soil vapor extraction, and groundwater pumping and treatment alternatives

  7. Economic competitiveness of underground coal gasification combined with carbon capture and storage in the Bulgarian energy network

    International Nuclear Information System (INIS)

    Nakaten, Natalie Christine

    2014-01-01

    Underground coal gasification (UCG) allows for exploitation of deep-seated coal seams not economically exploitable by conventional coal mining. Aim of the present study is to examine UCG economics based on coal conversion into a synthesis gas to fuel a combined cycle gas turbine power plant (CCGT) with CO2 capture and storage (CCS). Thereto, a techno-economic model is developed for UCG-CCGT-CCS costs of electricity (COE) determination which, considering sitespecific data of a selected target area in Bulgaria, sum up to 72 Euro/MWh in total. To quantify the impact of model constraints on COE, sensitivity analyses are undertaken revealing that varying geological model constraints impact COE with 0.4% to 4%, chemical with 13%, technical with 8% to 17% and market-dependent with 2% to 25%. Besides site-specific boundary conditions, UCG-CCGT-CCS economics depend on resources availability and infrastructural characteristics of the overall energy system. Assessing a model based implementation of UCG-CCGT-CCS and CCS power plants into the Bulgarian energy network revealed that both technologies provide essential and economically competitive options to achieve the EU environmental targets and a complete substitution of gas imports by UCG synthesis gas production.

  8. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and 90 Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste

  9. Storage of intermediate level waste at UKAEA sites

    International Nuclear Information System (INIS)

    Goodill, D.R.; Tymons, B.J.

    1985-08-01

    This report describes the storage of wastes at UKAEA sites and accordingly contributes to the investigations conducted by the Department of the Environment into the Best Practicable Environmental Option (BPEO) for radioactive waste storage and/or disposal. This report on the storage of ILW should be read in conjunction with a similar NII funded CTS study for Licensed Sites in the UK. (author)

  10. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike; Mehboob, Farrakh; van Gelder, Antonie H; Rijpstra, W Irene C; Damsté , Jaap S Sinninghe; Stams, Alfons J M

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  11. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  12. Steam reforming as a method to treat Hanford underground storage tank (UST) wastes

    International Nuclear Information System (INIS)

    Miller, J.E.; Kuehne, P.B.

    1995-07-01

    This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale

  13. Underground seasonal storage of industrial waste heat; Saisonale Speicherung industrieller Abwaerme im Untergrund

    Energy Technology Data Exchange (ETDEWEB)

    Reuss, M.; Mueller, J. [Bayerische Landesanstalt fuer Landtechnik, TU Muenchen-Weihenstephan, Freising (Germany)

    1998-12-31

    The thermal efficiency of subject systems, especially at higher temperatures is influenced by heat and humidity transport underground. Thermal conductivity and specific thermal capacity depend on the humidity content of the soil. A simulation model was developed that describes the coupled heat and humidity transport in the temperature range up to 90 C. This model will be validated in laboratory and field tests and then be used for designing and analysing underground stores. Pilot plants for the storage of industrial waste heat were designed and planned on the basis of this simulation. In both cases these are cogeneration plants whose waste heat was to be used for space heating and as process energy. Both plants have a very high demand of electric energy which is mostly supplied by the cogeneration plant. The waste heat is put into the store during the summer. In the winter heat is supplied by both the store and the cogeneration plant. In both cases the store has a volume of approx. 15,000 cubic metres with 140 and 210 pits located in a depth of 30 and 40 metres. The plants are used to carry out extensive measurements for the validation of simulation models. (orig.) [Deutsch] Die thermische Leistungsfaehigkeit solcher Systeme wird insbesondere im hoeheren Temperaturbereich durch den Waerme- und Feuchtetransport im Untergrund beeinflusst. Sowohl die Waermeleitfaehigkeit als auch die spezifische Waermekapazitaet sind vom Feuchtegehalt des Bodens abhaengig. Es wurde ein Simulationsmodell entwickelt, das den gekoppelten Waerme- und Feuchtetransport im Temperaturbereich bis 90 C beschreibt. Dieses Modell wird an Labor- und Feldexperimenten validiert und dient dann zur Auslegung und Analyse von Erdwaermesonden-Speichern. Basierend auf diesen theoretischen Grundlagenarbeiten wurden Pilotanlagen zur saisonalen Speicherung industrieller Abwaerme ausgelegt und geplant. In beiden Faellen handelt es sich um Kraft/Waermekopplungsanlagen, deren Abwaerme zur Gebaeudeheizung und

  14. Draft Underground Test Plan for site characterization and testing in an exploratory shaft facility in salt

    International Nuclear Information System (INIS)

    1987-05-01

    An exploratory shaft facility (ESF) at the Deaf Smith County, Texas is a potential candidate repository site in salt. This program of underground testing constitutes part of the effort to determine site suitability, provide data for repository design and performance assessment, and prepare licensing documentation. This program was developed by defining the information needs, as derived from the governing regulatory requirements and associated performance issues; evaluating the efficacy of available tests in satisfying the information needs; and selecting the suite of underground tests that are most cost-effective and timely, considering the other surface-based, surface borehole, and laboratory test programs. Tests are described conceptually, categorized in terms of geology, geomechanics, thermomechanics, geohydrology, or geochemistry, and range in scope from site characterization to site/engineered system interactions. The testing involves construction testing, conducted in the shafts during construction, and in situ testing at depth, conducted in the shafts and in the at-depth test facility at the repository horizon after shaft connection. 41 refs., 67 figs., 16 tabs

  15. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2001-01-01

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  16. Los Alamos National Laboratory environmental restoration program group audit report for underground storage tank removal: Audit ER-92- 04, July 22--August 11, 1992

    International Nuclear Information System (INIS)

    Gillespie, P.F.

    1992-01-01

    Audit ER-92-04 was conducted on activities being performed by Waste Management (EM-7), Environmental Protection (EM-8), and Environmental Restoration (EM-13) groups for the LANL's underground storage tank removal program. Scope of the audit was limited to an evaluation of the implementation of the State of New Mexico requirements for underground storage-tank removal. Activities were evaluated using requirements specified in the State of New Mexico Environmental Improvement Board Underground Storage Tank Regulations, EIB/USTR. Two recommendations are made: (1) that a single organization be given the responsibility and authority for the implementation of the program, and (2) that the requirements of the NM State environmental improvement board underground storage tank regulations be reviewed and a Los Alamos procedure written to address requirements and interfaces not contained in SOP-EM7-D ampersand D-001

  17. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  18. UST/LUST Site Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset contains all Underground Storage Tank (UST) site information. It includes details such as property location, acreage, identification and characterization,...

  19. Field tracer transport experiments at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Frost, L.H.; Davison, C.C.; Vandergraaf, T.T.; Scheier, N.W.; Kozak, E.T.

    1997-01-01

    To gain a better understanding of the processes affecting solute transport in fractured crystalline rock, groundwater tracer experiments are being performed within natural fracture domains and excavation damage zones at various scales at the site of AECL's Underground Research Laboratory (URL). The main objective of these experiments is to develop and demonstrate methods for characterizing the solute transport properties within fractured crystalline rock. Estimates of these properties are in turn being used in AECL's conceptual and numerical models of groundwater flow and solute transport through the geosphere surrounding a nuclear fuel waste disposal vault in plutonic rock of the Canadian Shield. (author)

  20. Estimation of the proximity of private domestic wells to underground storage tanks: Oklahoma pilot study.

    Science.gov (United States)

    Weaver, James W; Murray, Andrew R; Kremer, Fran V

    2017-12-31

    For protecting drinking water supplies, the locations of areas with reliance on private domestic wells (hereafter referred to as "wells") and their relationship to contaminant sources need to be determined. A key resource in the U.S. was the 1990 Census where the source of domestic drinking water was a survey question. Two methods are developed to update estimates of the areal density of well use using readily accessible data. The first uses well logs reported to the states and the addition of housing units reported to the Census Bureau at the county, census tract and census block group scales. The second uses housing units reported to the Census and an estimated well use fraction. To limit the scope and because of abundant data, Oklahoma was used for a pilot project. The resulting well density estimates were consistent among spatial scales, and were statistically similar. High rates of well use were identified to the north and east of Oklahoma City, primarily in expanding cities located over a productive aquifer. In contrast, low rates of well use were identified in rural areas without public water systems and in Oklahoma's second largest city, Tulsa, each attributable to lack of suitable ground water. High densities of well use may be expected in rural areas without public water systems, expanding cities and suburbs, and legacy areas of well usage. The completeness of reported well logs was tested by counts from neighborhoods with known reliance on wells which showed reporting rates of 20% to 98%. Well densities in these neighborhoods were higher than the larger-scale estimates indicating that locally high densities typically exist within analysis units. A Monte Carlo procedure was used to determine that 27% of underground storage tanks that had at least one well within a typical distance of concern of 300m (1000ft). Published by Elsevier B.V.

  1. Thermal hardening of saturated clays. Application to underground storage of radioactive wastes

    International Nuclear Information System (INIS)

    Picard, Jean-Marc

    1994-01-01

    Saturated clays submitted to constant mechanical loading and slow temperature increase frequently undergo irreversible contractions. This phenomena is described here by means of a change of plastic limits induced by temperature only, called thermal hardening. Constitutive laws adapted to this kind of plastic behaviour can be formulated within a general framework that satisfies thermodynamical principles. It shows that this coupling results from the presence of a latent heat during the isothermal hardening of plastic limits. A thermomechanical extension of Cam Clay model is then proposed and used in the analysis of laboratory thermomechanical tests performed on clay materials. Making use of tests already published, we show the adequacy of the concept of thermal hardening for clay behaviour. Some clay from deep geological formation considered for the disposal of radioactive waste exhibit thermal hardening in laboratory tests. The consequences for the underground storage facilities during the thermal loading created by the waste are investigated by means of in situ tests as well as numerical computation. The measurement around a heating probe buried in the clay mass demonstrate the significance of thermo-hydro-mechanical couplings. An accurate understanding of in situ measurements is achieved by means of numerical modeling in which the interaction between the various loading of the tests (excavation, pore pressure seepage, and heating) is carefully taken into account. Thermal hardening of the clay appears to be of little influence in these in situ tests. On the other hand, the magnitude of thermo-hydro-mechanical couplings observed in situ are higher than might have been expected from laboratory tests. A more accurate prediction is obtained if one takes into account the more stiffer behaviour of clays when they are subjected to small deformations. (authors)

  2. Thermoluminescence response of calcic bentonite subjected to conditions of high nuclear waste underground storage

    International Nuclear Information System (INIS)

    Dies, J.; Miralles, L.; Tarrasa, F.; Pueyo, J.J.; Cuevas, C. de las

    2002-01-01

    Bentonite is regarded as a backfilling material for underground storage facilities of highly radioactive nuclear waste built on granite formations. In these facilities, bentonite will be subjected to a gradient of temperature and dose rate, achieving a very high integrated dose and, therefore, changes in its structure and physical properties may take place. Two experiments to discriminate between the thermal and the irradiation effect were performed. In the first (named BIC-2A), samples were subjected to temperature while in second (named BIC-2B) the combined effect of temperature and irradiation was studied. The experimental conditions were: a thermal gradient between 130 deg. C and 90 deg. C, a maximum dose rate of 3.5 kGy.h -1 and a gradient of the integrated dose between 1.75 MGy and 10 MGy. Both experiments lasted a total of 124 days. An irradiation source of 60 Co with an activity close to 300,000 Ci, and bentonite samples of 200 mm in length and 50 mm in diameter were used. After the experiment, the samples were ground and two fractions were obtained: a fine fraction ( 80 μm). The results are described of thermoluminescence analyses on the two fractions obtained which showed that the coarse fractions can be 100 times more sensitive to radiation than the fine fraction. On the other hand, the heated and irradiated samples showed a thermoluminescence response around 50 times greater than the samples that were only heated. In addition to this, the temperature and dose rate conditions are relevant parameters in the generation and stabilisation of radiation induced defects. Finally, the response of samples heated and irradiated for two months was quite similar to that obtained on samples heated and irradiated for four months, indicating a saturation phenomenon. (author)

  3. Report from SG 1.2: use of 3-D seismic data in exploration, production and underground storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objective of this study was to investigate the experience gained from using 3D and 4D techniques in exploration, production and underground storage. The use of 3D seismic data is increasing and considerable progress in the application of such data has been achieved in recent years. 3D is now in extensive use in exploration, field and storage development planning and reservoir management. By using 4D (or time-lapse) seismic data from a given producing area, it is also possible to monitor gas movement as a function of time in a gas field or storage. This emerging technique is therefore very useful in reservoir management, in order to obtain increased recovery, higher production, and to reduce the risk of infill wells. These techniques can also be used for monitoring underground gas storage. The study gives recommendations on the use of 3D and 4D seismic in the gas industry. For this purpose, three specific questionnaires were proposed: the first one dedicated to exploration, development and production of gas fields (Production questionnaire), the second one dedicated to gas storages (Storage questionnaire) and the third one dedicated to the servicing companies. The main results are: - The benefit from 3D is clear for both producing and storage operators in improving structural shape, fault pattern and reservoir knowledge. The method usually saves wells and improve gas volume management. - 4D seismic is an emerging technique with high potential benefits for producers. Research in 4D must focus on the integration of seismic methodology and interpretation of results with production measurements in reservoir models. (author)

  4. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient

  5. Geomechanical problems of an underground storage of spent nuclear fuel and their mathematic modelling

    Czech Academy of Sciences Publication Activity Database

    Blaheta, Radim; Byczanski, Petr; Šňupárek, Richard; Hájek, Antonín

    2007-01-01

    Roč. 12, č. 1 (2007), s. 140-146 ISSN 1335-1788 Institutional research plan: CEZ:AV0Z30860518 Keywords : mathematical modelling * thermo-mechanical processes * underground deposition Subject RIV: BA - General Mathematics

  6. Underground rock storage concepts for natural gas and LPG in Finland

    International Nuclear Information System (INIS)

    Saerkkae, P.

    1990-01-01

    Natural gas storage concepts are developed in Finland for both deep, unlined rock storages and cryogenic lined, near-surface storages. For butane and propane, Neste Oy has two unlined rock storages in Porvoo. Up to now, experiences are good on storage of LPG in rock temperature and higher than hydrostatic pressure. (author). 3 refs, 8 figs

  7. Selection of a site adapted to the realization of an underground laboratory in clay formations

    International Nuclear Information System (INIS)

    Benvegnu, F.

    1984-01-01

    Research carried out in Italy by ENEA for site selection of an underground laboratory in a clay formation are presented. Mine roadways, abandoned tunnels, natural or artificial escarpments are prospected. The Pasquasia potash mine in Sicily was selected. The decline reach the lower pliocen starta from -110m to -200m below surface through a clay formation. The site selected for the laboratory is 160 m deep. A 50 meter-long horizontal tunnel will be dug. Experiments planned include thermal, hydrological, mechanical and thermomechanical behavior of clays. Data on temperature variations, interstitial fluid pressure, total pressure, deformations produced by a heater placed in clay will be obtained. Data related to mechanical behavior of formation will be recorded before, during and after the construction of the gallerie. Convergence of borehole will be also studied

  8. CO2 Storage Feasibility: A Workflow for Site Characterisation

    Directory of Open Access Journals (Sweden)

    Nepveu Manuel

    2015-04-01

    Full Text Available In this paper, we present an overview of the SiteChar workflow model for site characterisation and assessment for CO2 storage. Site characterisation and assessment is required when permits are requested from the legal authorities in the process of starting a CO2 storage process at a given site. The goal is to assess whether a proposed CO2 storage site can indeed be used for permanent storage while meeting the safety requirements demanded by the European Commission (EC Storage Directive (9, Storage Directive 2009/31/EC. Many issues have to be scrutinised, and the workflow presented here is put forward to help efficiently organise this complex task. Three issues are highlighted: communication within the working team and with the authorities; interdependencies in the workflow and feedback loops; and the risk-based character of the workflow. A general overview (helicopter view of the workflow is given; the issues involved in communication and the risk assessment process are described in more detail. The workflow as described has been tested within the SiteChar project on five potential storage sites throughout Europe. This resulted in a list of key aspects of site characterisation which can help prepare and focus new site characterisation studies.

  9. Integrated underground gas storage of CO2 and CH4 to decarbonize the "power-to-gas-to-gas-to-power" technology

    Science.gov (United States)

    Kühn, Michael; Streibel, Martin; Nakaten, Natalie; Kempka, Thomas

    2014-05-01

    Massive roll-out of renewable energy production units (wind turbines and solar panels) leads to date to excess energy which cannot be consumed at the time of production. So far, long-term storage is proposed via the so called 'power-to-gas' technology. Energy is transferred to methane gas and subsequently combusted for power production - 'power-to-gas-to-power' (PGP) - when needed. PGP profits from the existing infrastructure of the gas market and could be deployed immediately. However, major shortcoming is the production of carbon dioxide (CO2) from renewables and its emission into the atmosphere. We present an innovative idea which is a decarbonised extension of the PGP technology. The concept is based on a closed carbon cycle: (1) Hydrogen (H2) is generated from renewable energy by electrolysis and (2) transformed into methane (CH4) with CO2 taken from an underground geological storage. (3) CH4 produced is stored in a second storage underground until needed and (4) combusted in a combined-cycled power plant on site. (5) CO2 is separated during energy production and re-injected into the storage formation. We studied a show case for the cities Potsdam and Brandenburg/Havel in the Federal State of Brandenburg in Germany to determine the energy demand of the entire process chain and the costs of electricity (COE) using an integrated techno-economic modelling approach (Nakaten et al. 2014). Taking all of the individual process steps into account, the calculation shows an overall efficiency of 27.7 % (Streibel et al. 2013) with total COE of 20.43 euro-cents/kWh (Kühn et al. 2013). Although the level of efficiency is lower than for pump and compressed air storage, the resulting costs are similar in magnitude, and thus competitive on the energy storage market. The great advantage of the concept proposed here is that, in contrast to previous PGP approaches, this process is climate-neutral due to CO2 utilisation. For that purpose, process CO2 is temporally stored in an

  10. Development of road hydronic snow-ice melting system with solar energy and seasonal underground thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Q.; Liu, Y.; Ma, C.Q.; Li, M.; Huang, Y.; Yu, M. [Jilin Univ., Changchun (China). Dept. of Thermal Energy Engineering; Liu, X.B. [Climate Master Inc., OK (United States)

    2008-07-01

    Snow and ice melting technologies that used thermal energy storage were explored. The study included analyses of solar heat slab, seasonal underground thermal energy storage, and embedded pipe technologies. Different road materials, roadbed construction methods, and underground rock and soil conditions were also discussed. New processes combining all 3 of the main technologies were also reviewed. Other thermal ice melting technologies included conductive concrete and asphalt; heating cables, and hydronic melting systems. Geothermal energy is increasingly being considered as a means of melting snow and ice from roads and other infrastructure. Researchers have also been focusing on simulating heat transfer in solar collectors and road-embedded pipes. Demonstration projects in Japan, Switzerland, and Poland are exploring the use of combined geothermal and solar energy processes to remove snow and ice from roads. Research on hydronic melting technologies is also being conducted in the United States. The study demonstrated that snow-ice melting energy storage systems will become an important and sustainable method of snow and ice removal in the future. The technology efficiently uses renewable energy sources, and provides a cost-effective means of replacing or reducing chemical melting agents. 33 refs., 1 fig.

  11. Geomechanical problems of an underground storage of spent nuclear fuel and their mathematic modelling

    Directory of Open Access Journals (Sweden)

    Antonín Hájek

    2007-01-01

    Full Text Available The paper is devoted to the use of mathematical modelling for analysis of the thermo-mechanical (T-M processes, which are relevant for the assessment of underground repositories of the spent nuclear fuel. Wes shall discuss mathematical formulation, numerical methods and parallel alghorithms, which are capable to solve large-scale complicated and coupled 3D problems. Particularly, we show an application of the described methods and parallel computer simulations for analysis of model problems concerning the Swedish KBS3 concept of underground repository.

  12. Hydrogeological characterization, modelling and monitoring of the site of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Davison, C.C.; Guvanasen, V.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is constructing an Underground Research Laboratory (URL) to a depth of 250 m in a previously undisturbed granitic pluton located near Lac du Bonnet, Manitoba, as one of the major research projects within the Canadian Nuclear Fuel Waste Management Program. This paper discusses the hydrogeological characterization of the URL site, the modelling approach used to represent this information, the hydrogeological monitoring system installed to monitor the actual drawdown conditions that develop in response to the excavation, and the procedures employed to calibrate the numerical model. Comparisons between the drawdown predictions made by the model prior to any excavation and the actual drawdowns that have been measured since shaft excavation began in May 1984 are also discussed

  13. On-site inspection for the radionuclide observables of an underground nuclear explosion

    International Nuclear Information System (INIS)

    Burnett, J.L.

    2015-01-01

    Under the Comprehensive Nuclear-Test-Ban Treaty an on-site inspection (OSI) may be undertaken to identify signatures from a potential nuclear explosion. This includes the measurement of 17 particulate radionuclides ( 95 Zr, 95 Nb, 99 Mo, 99m Tc, 103 Ru, 106 Rh, 132 Te, 131 I, 132 I, 134 Cs, 137 Cs, 140 Ba, 140 La, 141 Ce, 144 Ce, 144 Pr, 147 Nd). This research provides an assessment of the potential to detect these radionuclides during an OSI within 1 week to 2 years after a nuclear explosion at two locations. A model has been developed that simulates the underground detonation of a 1 kT 235 U nuclear weapon with 1 % venting. This indicates a requirement to minimise the time since detonation with accurate determination of the test location. (author)

  14. Investigation of surface and underground waters about the Blayais nuclear site - 2010

    International Nuclear Information System (INIS)

    Migeon, A.; Bernollin, A.; Dunand, E.; Barbey, P.; Boilley, D.; Josset, M.

    2011-01-01

    This investigation aims at proposing a first assessment of the impact of releases on surface and underground waters around the Blayais nuclear power station, i.e. the assessment of the (mainly radiological) quality of waters. The report identifies the various pollution sources: old sources (like atmospheric nuclear tests, nuclear accidents), incidents in the Blayais station, and potential sources for the present contamination. Different radionuclides are searched like tritium, carbon 14, gamma radioactivity (from different elements), some beta emitters, radon as well as some chemicals related to the station activity (hydrazine, boric acid, EDTA, lithium, morpholine). Sampling sites are presented (estuary, canals, reservoirs). Radiological and chemical analysis are reported and commented. Significant presence of Tritium and Nickel-63 are noticed

  15. Interactions between fluids and natural clay rich sediments: experimental study in conditions simulating radioactive wastes underground storage

    International Nuclear Information System (INIS)

    Roubeuf, V.

    2000-10-01

    The behaviour of clay rich sediments, especially an argilite from Oxfordian of Haute-Marne, a siltite from Albian series of Marcoule (Gard) and a bentonite from Wyoming, were experimentally studied under physical-chemical conditions close of those of an underground radioactive waste storage. The several steps of the creation of the storage in deep formation were simulated experimentally, in particular: - the effect due to oxidation at ambient temperature and moisture degree related to the arrival of air in the gallery, was tested, especially the interaction between acid fluids generated at the micron-scale of the altered pyrite micro-site and the surrounding minerals of the sediment, - the alteration due to weathering (damping/drying cycles) to simulate the effect of a surface storage of the sediments, - and finally, water-rock interactions at 80 and 200 deg C, which reproduce the thermic stress induced by the deposit of type C radioactive containers (stage of re-hydration under thermic stress). The various simulations lead to rather similar behaviour of minerals in the sediment and solutions. Mineralogical, geochemical and crystallographic analyses show that most minerals in sediments are preserved with no evidence of mineral neo-formation. Nevertheless, the study by X-ray diffraction shows variations in the interlayer spacing in relation with modifications of the hydration states. Changes in the interlayer occupancy of the clays are due to cationic exchange of the sodium of the interlayer by the calcium issued from the dissolution of carbonate and gypsum dissolution. I/S like minerals crystal-chemistry generally display little changes in the tetrahedral and octahedral occupancy and a rather good stability of crystal structure. The cationic exchange capacity (CEC) of the clay sediment display un-significant variations: after the damping/drying cycles, the argilite of Haute-Marne has lost about 15 % of their bulk CEC and the effect of acid micro-environment at

  16. Underground facility for geoenvironmental and geotechnical research at the SSC Site in Texas

    International Nuclear Information System (INIS)

    Wang, H.F.; Myer, L.R.

    1994-01-01

    The subsurface environment is an important national resource that is utilized for construction, waste disposal and groundwater supply. Conflicting and unwise use has led to problems of groundwater contamination. Cleanup is often difficult and expensive, and perhaps not even possible in many cases. Construction projects often encounter unanticipated difficulties that increase expenses. Many of the difficulties of predicting mechanical behavior and fluid flow and transport behavior stem from problems in characterizing what cannot be seen. An underground research laboratory, such as can be developed in the nearly 14 miles of tunnel at the Superconducting Super Collider (SSC) site, will provide a unique opportunity to advance scientific investigations of fluid flow, chemical transport, and mechanical behavior in situ in weak and fractured, porous rock on a scale relevant to civil and environmental engineering applications involving the subsurface down to a depth of 100 m. The unique element provided by underground studies at the SSC site is three-dimensional access to a range of fracture conditions in two rock types, chalk and shale. Detailed experimentation can be carried out in small sections of the SSC tunnel where different types of fractures and faults occur and where different rock types or contacts are exposed. The entire length of the tunnel can serve as an observatory for large scale mechanical and fluid flow testing. The most exciting opportunity is to mine back a volume of rock to conduct a post-experiment audit following injection of a number of reactive and conservative tracers. Flow paths and tracer distributions can be examined directly. The scientific goal is to test conceptual models and numerical predictions. In addition, mechanical and hydrological data may be of significant value in developing safe and effective methods for closing the tunnel itself

  17. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, 90 Sr, and 137 Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test

  18. Assessment of hydrologic transport of radionuclides from the Gasbuggy underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gasbuggy site in northwestern New Mexico was the location of an underground detonation of a 29-kiloton nuclear device in 1967. The test took place in the Lewis Shale, approximately 182 m below the Ojo Alamo Sandstone, which is the aquifer closest to the detonation horizon. The conservative assumption was made that tritium was injected from the blast-created cavity into the Ojo Alamo Sandstone by the force of the explosion, via fractures created by the shot. Model results suggest that if radionuclides produced by the shot entered the Ojo Alamo, they are most likely contained within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity, followed by the variance in hydraulic conductivity, the correlation scale of hydraulic conductivity, the transverse hydrodynamic dispersion coefficient, and uncertainty in the source size. This modeling was performed to investigate how the uncertainty in various physical parameters affects calculations of radionuclide transport at the Gasbuggy site, and to serve as a starting point for discussion regarding further investigation at the site; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values

  19. International Symposium on Site Characterization for CO2Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  20. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Science.gov (United States)

    2010-07-01

    ....4262 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention... provided with fire protection of a type, size, and quantity that can extinguish fires of any class in their...

  1. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    Science.gov (United States)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of

  2. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  3. Preliminary assessment of potential underground stability (wedge and spalling) at Forsmark, Simpevarp and Laxemar sites

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Derek [Univ. of Alberta, Edmonton (Canada). Geotechnical Engineering

    2005-12-15

    In SKB's Underground Design Premises the objective in the early design phase is to estimate if there is sufficient space for the repository at a site. One of the conditions that could limit the space available is stability of the underground openings, i.e., deposition tunnels and deposition boreholes. The purpose of this report is to provide a preliminary assessment of the potential for wedge instability and spalling that may be encountered at the Forsmark, Simpevarp and Laxemar sites based on information from the site investigations program up to July 30, 2004. The rock mass spalling strength was defined using the in-situ results from SKB's Aespoe Pillar Stability Experiment and AECL's Mine-by Experiment. These experiments suggest that the rock mass spalling strength for crystalline rocks can be estimated as 0.57 of the mean laboratory uniaxial compressive strength. A probability-based methodology utilizing this in-situ rock mass spalling strength has been developed for assessing the risk for spalling in a repository at the Forsmark, Simpevarp and Laxemar sites. The in-situ stresses and the uniaxial compressive strength data from these sites were used as the bases for the analyses. Preliminary findings from all sites suggest that, generally, the risk for spalling increases as the depth of the repository increases, simply because the stress magnitudes increase with depth. The depth at which the risk for spalling is significant, depends on the individual sites which are discussed below. The greatest uncertainty in the spalling analyses for Forsmark is related to the uncertainty in the horizontal stress magnitudes and associated stress gradients with depth. The confidence in these analyses can only be increased by increasing the confidence in the stress and geology model for the site. From the analyses completed it appears that spalling in the deposition tunnels can be controlled by orienting the tunnels approximately parallel to the maximum horizontal

  4. Water management issues in the underground gasification of coal and the subsequent use of the voids for long-term carbon dioxide storage

    Energy Technology Data Exchange (ETDEWEB)

    Younger, P.L. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). Newcastle Inst. for Research on Sustainability; Gonzalez, G. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). Sir Joseph Swan Inst. for Energy Research; Amezaga, J.M. [Newcastle Univ., Newcastle Upon Tyne (United Kingdom). School of Civil Engineering and Geosciences, Hydrogeochemical Engineering Research and Outreach

    2010-07-01

    A coupled underground coal gasification (UCG) and carbon capture and storage (CCS) technology was discussed. The technologies can be coupled so that voids created by mining can be uses as carbon dioxide (CO{sub 2}) storage sites. UCG involves the in-situ gasification of coal using directionally-drilled wells. The gasification is achieved by spontaneous combustion initiated by the injection of steam and oxygen. The rate of UCG is controlled by varying the availability of oxygen. The syngas produced during the process is drawn to the surface via neighbouring production boreholes where it can then be transported by pipeline for use in range of applications. Voids created by the UCG process will collapse, leaving high permeability zones isolated from the surface by low permeability superincumbent strata. The UCG goaf and relaxed roof strata will have permeabilities 1 to 3 orders of magnitude greater than the permeabilities of deep saline aquifers or hydrocarbon reservoirs. The void volume needed to store the CO{sub 2} produced from the syngas can be 4 or 5 times the volume occupied by the extracted coal. Risks for groundwater arising from UCG are groundwater depletion, contamination, and gas leakage. Prudent site selection and the use of an effective risk assessment framework are needed to ensure the successful implementation of UCG-CCS processes. 11 refs., 2 figs.

  5. Feasibility and economic consequences of retrievable storage of radioactive waste in the deep underground

    International Nuclear Information System (INIS)

    Prij, J.; Heijdra, J.J.

    1995-01-01

    The economic consequences of retrievable storage have been investigated by comparing two extreme options of retrievable storage. In one option the storage facility is kept in operation using minimal backfill of the storage galleries. In the other option the storage facility is completely backfilled, sealed and abandoned. In the second option construction of a new mine will be necessary in case of retrieval. The point in time has been determined when the second option will be cheaper than the first. This has been done for clay, granite and rock salt as host formation, and both for vitrified waste and spent fuel. (authors)

  6. Technical review of managed underground storage of water study of the upper Catherine Creek watershed, Union County, northeastern Oregon

    Science.gov (United States)

    Snyder, Daniel T.

    2014-01-01

    Because of water diversions during summer, flow in Catherine Creek, a tributary to the Grande Ronde River in northeastern Oregon, is insufficient to sustain several aquatic species for which the stream is listed as critical habitat. A feasibility study for managed underground storage (MUS) in the upper Catherine Creek watershed in Union County, Oregon, was undertaken by Anderson Perry and Associates, Inc., to address the issue of low flows in summer. The results of the study were released as a report titled “Upper Catherine Creek Storage Feasibility Study for Grande Ronde Model Watershed,” which evaluated the possibility of diverting Catherine Creek streamflow during winter (when stream discharge is high), storing the water by infiltration or injection into an aquifer adjacent to the stream, and discharging the water back to the stream in summer to augment low flows. The method of MUS would be accomplished using either (1) aquifer storage and recovery (ASR) that allows for the injection of water that meets drinking-water-quality standards into an aquifer for later recovery and use, or (2) artificial recharge (AR) that involves the intentional addition of water diverted from another source to a groundwater reservoir. Concerns by resource managers that the actions taken to improve water availability for upper Catherine Creek be effective, cost-efficient, long-term, and based on sound analysis led the National Fish and Wildlife Foundation to request that the U.S. Geological Survey conduct an independent review and evaluation of the feasibility study. This report contains the results of that review. The primary objectives of the Anderson Perry and Associates study reviewed here included (1) identifying potentially fatal flaws with the concept of using AR and (or) ASR to augment the streamflow of Catherine Creek, (2) identifying potentially favorable locations for augmenting streamflow, (3) developing and evaluating alternatives for implementing AR and (or) ASR, and

  7. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    International Nuclear Information System (INIS)

    Foxall, W; Vincent, P; Walter, W

    1999-01-01

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT-underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An

  8. RADIATION SAFETY JUSTIFICATION FOR THE LONG-TERM STORAGE OF GAS CONDENSATE IN THE UNDERGROUND RESERVOURS FORMED BY THE NUCLEAR EXPLOSION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    I. K. Romanovich

    2010-01-01

    Full Text Available The paper presents approaches to the safety justification of the gas condensate and brine long-term storage in the underground reservoirs formed by the nuclear explosion technology. Gas condensate and brine are the intermediate level liquid radioactive waste containing isotopes: 3Н, 137Cs and 90Sr, in traces - 239Pu, 235U, 241Am.Safety of the gas condensate and brine long-term storage in the underground reservoirs is assessed on the base of the multi-barrier principle implementation, used during radioactive waste disposal. It is shown that the gas condensate and brine long-term storage in the sealed underground reservoirs formed by nuclear explosion technologies in salt domes does not lead to the surface radioactive contamination and population exposure.

  9. Remediation and assessment of the national radioactive waste storage and disposal site in Tajikistan - 59110

    International Nuclear Information System (INIS)

    Buriev, Nazirzhon T.; Abdushukurov, Dzhamshed A.; Vandergraaf, Tjalle T.

    2012-01-01

    The National Radioactive Waste Storage and Disposal Site was established in 1959 in the Faizabad region approximately 50 km east of the capital, Dushanbe. The site is located on the southern flank of the Fan Mountains facing the Gissar Valley in a sparsely populated agricultural area, with the nearest villages located a few km from the site. The site was initially designed to accept a wide range of contaminated materials, including obsolete smoke detectors, sealed radioactive sources, waste from medical institutions, and radioactive liquids. Between 1962 and 1976, 363 tonnes and 1146 litres of material, contaminated with a range of radionuclides were shipped to the site. Between 1972 - 1980 and 1985 - 1991, ∼4.8 x 10 14 and 2 x 10 13 Bq, respectively, were shipped to the site. An additional 7 x 10 14 Bq was shipped to the site in 1996. Partly as a result of the dissolution of the former Soviet Union, the disposal site had fallen into disrepair and currently presents both an environmental hazard and a potential for the proliferation of radionuclides that could potentially be used for illicit purposes. Remediation of the disposal site was started in 2005. New security fences were erected and a new superstructure over an in-ground storage site constructed. A central alarm monitoring and observation station has been constructed and is now operational. The geology, flora, and fauna of the region have been documented. Radiation surveys of the buildings and the storage and disposal sites have been carried out. Samples of soil, surface water and vegetation have been taken and analyzed by gamma spectrometry. Results show a slight extent of contamination of soils near the filling ports of the underground liquid storage container where a Cs-137 concentration of 2.3 x 104 Bq/kg was obtained. Similar values were obtained for Ra- 226. Radiation fields of the in-ground storage site were generally 3 . Most of the activity appears to be associated with the sediments in the tank

  10. The mechanism study between 3D Space-time deformation and injection or extraction of gas pressure change, the Hutubi Underground gas storage

    Science.gov (United States)

    Xiaoqiang, W.; Li, J.; Daiqing, L.; Li, C.

    2017-12-01

    The surface deformation of underground gas reservoir with the change of injection pressure is an excellent opportunity to study the load response under the action of tectonic movement and controlled load. This paper mainly focuses on the elastic deformation of underground structure caused by the change of the pressure state of reservoir rock under the condition of the irregular change of pressure in the underground gas storage of Hutubi, the largest underground gas storage in Xinjiang, at the same time, it makes a fine study on the fault activities of reservoir and induced earthquakes along with the equilibrium instability caused by the reservoir. Based on the 34 deformation integrated observation points and 3 GPS continuous observation stations constructed in the underground gas storage area of Hutubi, using modern measurement techniques such as GPS observation, precise leveling survey, flow gravity observation and so on, combined with remote sensing technology such as InSAR, the 3d space-time sequence images of the surface of reservoir area under pressure change were obtained. Combined with gas well pressure, physical parameters and regional seismic geology and geophysical data, the numerical simulation and analysis of internal changes of reservoir were carried out by using elastic and viscoelastic model, the deformation mechanical relationship of reservoir was determined and the storage layer under controlled load was basically determined. This research is financially supported by National Natural Science Foundation of China (Grant No.41474016, 41474051, 41474097)

  11. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  12. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    International Nuclear Information System (INIS)

    Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-03-01

    Hanford's underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report

  13. Feasibility of underground storage/disposal of noble gas fission products

    International Nuclear Information System (INIS)

    Winar, R.M.; Trevorrow, L.E.; Steindler, M.J.

    1979-08-01

    The quantities of 85 Kr that can be released to the environment from nuclear energy production are to be limited after 1983 by Federal regulations. Although procedures for collecting the 85 Kr released in the nuclear fuel cycle have been developed to the point that they are commercially available, procedures for terminal disposal of the collected gas are still being examined for their feasibility. In this work, the possibilities of underground disposal of 85 Kr by several techniques were evaluated. It was concluded that (1) disposal of 85 Kr as a solution in water or other solvents in deep wells would have the major disadvantages of liquid migration and the requirement of extremely large volumes of solvent; (2) disposal as bubbles entrained in cement grout injected underground presents the uncertainty of gaseous migration through permeable solid grout; (3) disposal by injection into abandoned oil fields would be favored by solubility of krypton in residual hydrocarbons, but has the disadvantages that such fields contain numerous shafts offering avenues of escape and also that the fields may be reworked in the future for their hydrocarbon residues; (4) underground retention of 85 Kr injected as a gas may be promising, given the right lithology, through entrapment in interstices between fine sand grains held together by the interfacial tension of wetted surfaces. 9 figures, 5 tables

  14. Monitoring of surface chemical and underground nuclear explosions with help of ionospheric radio-sounding above test site

    International Nuclear Information System (INIS)

    Krasnov, V.M.; Drobzheva, Ya.V.

    2000-01-01

    We describe the basic principles, advantages and disadvantages of ionospheric method to monitor surface chemical and underground nuclear explosions. The ionosphere is 'an apparatus' for the infra-sound measurements immediately above the test site. Using remote radio sounding of the ionosphere you can obtain that information. So you carry out the inspection at the test site. The main disadvantage of the ionospheric method is the necessity to sound the ionosphere with radio waves. (author)

  15. Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing

    International Nuclear Information System (INIS)

    Budny, Christoph; Madlener, Reinhard; Hilgers, Christoph

    2015-01-01

    Highlights: • Study of cost effectiveness of power-to-gas and storage of H 2 and renewable methane. • NPV analysis and Monte Carlo simulation to address fuel and electricity price risks. • Gas sale is compared with power and gas market arbitrage and balancing market gains. • Power-to-gas for linking the balancing markets for power and gas is not profitable. • Pipe storage is the preferred option for temporal arbitrage and balancing energy. - Abstract: This paper investigates the economic feasibility of power-to-gas (P2G) systems and gas storage options for both hydrogen and renewable methane. The study is based on a techno-economic model in which the net present value (NPV) method and Monte Carlo simulation of risks and price forward curves for the electricity and the gas market are used. We study three investment cases: a Base Case where the gas is directly sold in the market, a Storage & Arbitrage Case where temporal arbitrage opportunities between the electricity and the gas market are exploited, and a Storage & Balancing Case where the balancing markets (secondary reserve market for electricity, external balancing market for natural gas) are addressed. The optimal type and size of different centralized and decentralized storage facilities are determined and compared with each other. In a detailed sensitivity and cost analysis, we identify the key factors which could potentially improve the economic viability of the technological concepts assessed. We find that the P2G system used for bridging the balancing markets for power and gas cannot be operated profitably. For both, temporal arbitrage and balancing energy, pipe storage is preferred. Relatively high feed-in tariffs (100 € MW −1 for hydrogen, 130 € MW −1 for methane) are required to render pipe storage for P2G economically viable

  16. Building arrangement and site layout design guides for on site low level radioactive waste storage facilities

    International Nuclear Information System (INIS)

    McMullen, J.W.; Feehan, M.J.

    1986-01-01

    Many papers have been written by AE's and utilities describing their onsite storage facilities, why they are needed, NRC regulations, and disposal site requirements. This paper discusses a typical storage facility and address the design considerations and operational aspects that are generally overlooked when designing and siting a low level radioactive waste storage facility. Some topics to be addressed are: 1. Container flexibility; 2. Modular expansion capabilities; 3. DOT regulations; 4. Meterological requirements; 5. OSHA; 6. Fire protection; 7. Floods; 8. ALARA

  17. International and European legal aspects on underground geological storage of CO2

    International Nuclear Information System (INIS)

    Wall, C.; Olvstam, M.-L.; Bernstone, C.

    2005-01-01

    The often disconnected international and European legal rules regarding carbon dioxide (CO 2 ) storage in geological formations create legal uncertainty and a slow down in investments. Existing rules for waste dumping, such as the OSPAR and London Conventions implies that CO 2 storage in sub seabed geological formations is not permitted for climate change mitigating purposes. This paper emphasized that even in cases when complete certainty about the exact application of a legal rule is not possible, it is necessary to know if an activity is lawful. It also emphasized that CO 2 storage should be a priority in the international agenda. The current gaps in knowledge concerning the relevant international and European legislation directly related to CO 2 storage were identified in this paper, including long-term liability for risk of damages caused during the injection phase of the well. The current relevant legislation that is not directly concerned with CO 2 storage but which might have an impact on future legislation was also discussed along with relevant legal principles that might influence future legislation. Some of the many ongoing projects concerning CO 2 storage were reviewed along with papers and reports on regulating CO 2 storage. It was concluded that if CO 2 capture and storage is going to be a large-scale concept for mitigating climate change, the legal issues and requirements need to be an area of priority. 16 refs

  18. Recent developments in the use of discrete fractures models for investigating the siting of an underground repository of radioactive waste

    International Nuclear Information System (INIS)

    Billaux, D.; Guerin, F.; Riss, J.; Dewiere, L.; Fillion, E.

    2000-01-01

    The sitting of a nuclear waste repository in a geological medium involves, among other aspects, predicting water inflows in the shafts and drifts, and evaluating possible geometries for the waste handling and storage galleries. In sedimentary host rocks, porous medium hydrogeology can be used easily to provide water inflow estimates, while geology will describe the geometry of the various layers, as well as the limited number of faults that may cut them. However, crystalline rocks such as the Vienne site, may be cut by numerous faults and fractures. To deal with such host rocks, we need new concepts - which have been under development during the last 15 years - in order to describe properly the spatial arrangement of discontinuities, its consequences in terms of the site hydrogeology, and in terms of the geometry of volumes available between faults for designing the underground storage cavities. A starting point is building a model of the fractures, using the statistical description of the investigated fracture field, including dips, dip directions, sizes, and intensities noted in boreholes or on outcrops. Such a model can then be used to compute flows. It is based on idealizing fractures as planar objects, often disks, with statistical geometrical properties inferred from available data. The model realism can be improved by conditioning the geometry on data, either directly observed - by fixing in space observed fractures - or indirectly inferred - by integrating the results of hydraulic, or even tracer tests. Discrete fracture models can then be used for many treatments, well beyond simple flow and transport computations. We illustrate this through two studies applied to the crystalline Vienne massif. First, image analysis techniques that were first developed for two dimensions, and have been recently extended to three dimensions, help with describing the space available between discontinuities, in order to define the sound rock blocks available for the waste

  19. Structural analysis of an underground reinforced concrete waste storage tank due to over-pressurization

    International Nuclear Information System (INIS)

    Xu, J.; Bandyopadhyay, K.; Shteyngart, S.

    1993-01-01

    This paper presents the results of a structural analysis performed by use of the finite element method in determining the pressure-carrying capacity of an underground tank which contains nuclear wastes. The tank and surrounding soil were modeled and analyzed using the ABAQUS program. Special emphasis as given to determining the effects of soil-containment interaction by employing a Coulomb friction model. The effect of material properties was investigated by considering two sets of stress-strain data for the steel plates. In addition, a refined mesh was used to evaluate the strain concentration effects at steel liner thickness discontinuities

  20. Development and testing of redundant optical fiber sensing systems with self-control, for underground nuclear waste disposal site monitoring. Vol. 1: Summary and evaluation. Final report

    International Nuclear Information System (INIS)

    Jobmann, M.; Fischer, S.; Voet, M.

    2000-01-01

    Fiber optic sensors have been developed or further developed, for specific tasks of the research project reported, as for instance detecting and signalling changes of geophysical or geochemical parameters in underground waste storage sites which are of relevance to operating safety. Such changes include e.g. materials dislocations, extensions, temperatures, humidity, pH value and presence of gaseous carbon dioxide and hydrogen. The measuring principle chosen is the fiber Bragg Grating method, as a particularly versatile method easy to integrate into fiber optic networks. After development and successful lab-scale testing of all sensors, except for the gas sensors, field test systems have been made for underground applications and have been tested in situ in the experimental Konrad mine of DBE. Most of the problems discovered with these tests could be resolved within the given project period, so that finally field-test proven sensing systems are available for further activities. The report explains the system performance with a concrete example which shows inter alia beneficial aspects of the system with respect to on-site operation, and the potentials offered in establishing more direct connections between numerical safety analyses and measured results. (orig./CB) [de

  1. Suggestions on selection of clay site as a key alternative of underground repository for HLW geological disposal in China

    International Nuclear Information System (INIS)

    Zheng Hualing; Fu Bingjun; Fan Xianhua; Chen Shi; Sun Donghui

    2006-01-01

    Site selection for the underground repository is a vital problem with respect to the HLW geological disposal. Over the past decades, we have been focusing our attention on granite as a priority in China. However, there are some problems have to be discussed on this matter. In this paper, both experiences gained and lessons learned in the international community regarding the site selection are described. And then, after analyzing a lot of some key factors affecting the site selection, some comments and suggestions on selection of clay site as a key alternative before final decision making in China are presented. (authors)

  2. Economic efficiency of underground natural gas storage: The case of Canada

    International Nuclear Information System (INIS)

    Charette, Y.

    1990-01-01

    The paper describes the current situation of natural gas storage in Canada and attempts to provide valuable information and analytical tools so that the key players, including government and industry, will be in a better position to make enlightened choices for future investments in natural gas storage. Central to the analysis of the efficiency of storage is the notion of efficient peak-load pricing. It is usually recognized that storage may be efficient or welfare increasing because, with fixed consumption, it may allow the substitution of cheaper off-peak production for more costly production. The theoretical conclusions are used of a number of static peak-load pricing models, as well as investment decision models, to analyze the various costs and benefits of storage. The main conclusion is made that, when storage is possible, the welfare maximizing peak/off-peak price differential can be reduced, and therefore, storage can increase the efficiency of the gas transmission system. 10 refs, 2 figs, 5 tabs

  3. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1994-01-01

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970's and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D ampersand RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program

  4. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  5. Seismic design of circular-section concrete-lined underground openings: Preclosure performance considerations for the Yucca Mountain Site

    International Nuclear Information System (INIS)

    Richardson, A.M.; Blejwas, T.E.

    1992-01-01

    Yucca Mountain, the potential site of a repository for high-level radioactive waste, is situated in a region of natural and man-made seismicity. Underground openings excavated at this site must be designed for worker safety in the seismic environment anticipated for the preclosure period. This includes accesses developed for site characterization regardless of the ultimate outcome of the repository siting process. Experience with both civil and mining structures has shown that underground openings are much more resistant to seismic effects than surface structures, and that even severe dynamic strains can usually be accommodated with proper design. This paper discusses the design and performance of lined openings in the seismic environment of the potential site. The types and ranges of possible ground motions (seismic loads) are briefly discussed. Relevant historical records of underground opening performance during seismic loading are reviewed. Simple analytical methods of predicting liner performance under combined in situ, thermal, and seismic loading are presented, and results of calculations are discussed in the context of realistic performance requirements for concrete-lined openings for the preclosure period. Design features that will enhance liner stability and mitigate the impact of the potential seismic load are reviewed. The paper is limited to preclosure performance concerns involving worker safety because present decommissioning plans specify maintaining the option for liner removal at seal locations, thus decoupling liner design from repository postclosure performance issues

  6. DSND report on radio-ecological monitoring of INBS and management of radioactive waste old storage sites

    International Nuclear Information System (INIS)

    2010-01-01

    In its first part, this report describes the radiological monitoring of secret base nuclear installations (INBS): applicable arrangements and actors in terms of transparency and information on nuclear safety, regulatory arrangements related to surveillance of underground and surface water quality, assessment of the application of regulatory arrangements, arrangements in terms of public information, and actions of the ASND. The second part describes the management of nuclear waste old storage sites: INBS coming under the ministry of defence (air force sites, military harbors), INBS coming under the minister in charge of energy

  7. Development of a computer code to predict a ventilation requirement for an underground radioactive waste storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Dalpiaz, E.L. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1997-08-01

    Computer code, WTVFE (Waste Tank Ventilation Flow Evaluation), has been developed to evaluate the ventilation requirement for an underground storage tank for radioactive waste. Heat generated by the radioactive waste and mixing pumps in the tank is removed mainly through the ventilation system. The heat removal process by the ventilation system includes the evaporation of water from the waste and the heat transfer by natural convection from the waste surface. Also, a portion of the heat will be removed through the soil and the air circulating through the gap between the primary and secondary tanks. The heat loss caused by evaporation is modeled based on recent evaporation test results by the Westinghouse Hanford Company using a simulated small scale waste tank. Other heat transfer phenomena are evaluated based on well established conduction and convection heat transfer relationships. 10 refs., 3 tabs.

  8. Processing of hazardous material, or damage treatment method for shallow layer underground storage structure

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sakaguchi, Takehiko; Nishioka, Yoshihiro.

    1997-01-01

    In radioactive waste processing facilities and shallow layer underground structures for processing hazardous materials, sheet piles having freezing pipes at the joint portions are spiked into soils at the periphery of a damaged portion of the shallow layer underground structure for processing or storing hazardous materials. Liquid nitrogen is injected to the freezing pipes to freeze the joint portions of adjacent sheet piles. With such procedures, continuous waterproof walls are formed surrounding the soils at the peripheries of the damaged portion. Further, freezing pipes are disposed in the surrounding soils, and liquid nitrogen is injected to freeze the soils. The frozen soils are removed, and artificial foundation materials are filled in the space except for the peripheries of the damaged portion after the removal thereof, and liquid suspension is filled in the peripheries of the damaged portion, and restoration steps for closing the damaged portion are applied. Then, the peripheries of the damaged portion are buried again. With such procedures, series of treatments for removing contaminated soils and repairing a damaged portion can be conducted efficiently at a low cost. (T.M.)

  9. Geological data acquisition for site characterisation at Olkiluoto: a framework for the phase of underground investigations

    International Nuclear Information System (INIS)

    Milnes, A.G.; Aaltonen, I.; Kemppainen, K.; Mattila, J.; Wikstroem, L.; Front, K.; Kaerki, A.; Gehoer, S.; Paulamaeki, S.; Paananen, M.; Ahokas, T.

    2007-05-01

    'Geological data acquisition' is a general term for the collection of observations and measurements by direct observation of exposed bedrock in the field (i.e. in natural outcrops and trenches, in drillholes, and in tunnels and other underground excavations). Only field-based data acquisition is included in this report: laboratory-based investigations will be continued, based on the field data and sampling, and all the data will be subject to discipline-specific processing, as the project proceeds. The ultimate aim of geological data acquisition is to provide the necessary data base for geological models of the bedrock of the Olkiluoto site, in connection with the construction of an underground rock characterisation facility, ONKALO, and a repository for spent nuclear fuel, at about 500m depth. Geological data acquisition plays a central role in site characterisation and modelling, and is intended to provide a solid platform on which the other disciplines (rock mechanics, hydrogeology, seismic risk assessment, etc.) can base their investigations. Based on consideration of a series of guidelines (e.g. modelling scale, source of data, level of investigation, national and international experience, special conditions at Olkiluoto, need for process understanding), a project-oriented 'framework' has been developed as a background to the different projects within the geological data acquisition programme. Each project will require its own system of data acquisition (methodology, spreadsheets, protocols, etc.), as described in the corresponding reports; the present report concentrates on the general principles which lie behind the different methodologies and data sheets. These principles are treated under three main headings: characterization of intact rock, characterization of deformation zone intersections, and characterization of individual fractures. Geological mapping of natural outcrops and trenches at Olkiluoto, and lithological logging of more than 40 rock cores

  10. Effects of Formation Damage on Productivity of Underground Gas Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    C.I.C. Anyadiegwu

    2013-12-01

    Full Text Available Analysis of the effects of formation damage on the productivity of gas storage reservoirs was performed with depleted oil reservoir (OB-02, located onshore, Niger Delta, Nigeria. Information on the reservoir and the fluids from OB-02 were collected and used to evaluate the deliverabilities of the gas storage reservoir over a 10-year period of operation. The results obtained were used to plot graphs of deliverability against permeability and skin respectively. The graphs revealed that as the permeability decreased, the skin increased, and hence a decrease in deliverability of gas from the reservoir during gas withdrawal. Over the ten years of operating the reservoir for gas storage, the deliverability and permeability which were initially 2.7 MMscf/d and 50 mD, with a skin of 0.2, changed to new values of 0.88 MMscf/d and 24 mD with the skin as 4.1 at the tenth year.

  11. Underground storage of imported water in the San Gorgonio Pass area, southern California

    Science.gov (United States)

    Bloyd, Richard M.

    1971-01-01

    The San Gorgonio Pass ground-water basin is divided into the Beaumont, Banning, Cabazon, San Timoteo, South Beaumont, Banning Bench, and Singleton storage units. The Beaumont storage unit, centrally located in the agency area, is the largest in volume of the storage units. Estimated long-term average annual precipitation in the San Gorgonio Pass Water Agency drainage area is 332,000 acre-feet, and estimated average annual recoverable water is 24,000 acre-feet, less than 10 percent of the total precipitation. Estimated average annual surface outflow is 1,700 acre-feet, and estimated average annual ground-water recharge is 22,000 acre-feet. Projecting tack to probable steady-state conditions, of the 22.000 acre-feet of recharge, 16,003 acre-feet per year became subsurface outflow into Coachella Valley, 6,000 acre-feet into the Redlands area, and 220 acre-feet into Potrero Canyon. After extensive development, estimated subsurface outflow from the area in 1967 was 6,000 acre-feet into the Redlands area, 220 acre-feet into Potrero Canyon, and 800 acre-feet into the fault systems south of the Banning storage unit, unwatered during construction of a tunnel. Subsurface outflow into Coachella Valley in 1967 is probably less than 50 percent of the steady-state flow. An anticipated 17,000 .acre-feet of water per year will be imported by 1980. Information developed in this study indicates it is technically feasible to store imported water in the eastern part of the Beaumont storage unit without causing waterlogging in the storage area and without losing any significant quantity of stored water.

  12. Analysis of trace neptunium in the vicinity of underground nuclear tests at the Nevada National Security Site.

    Science.gov (United States)

    Zhao, P; Tinnacher, R M; Zavarin, M; Kersting, A B

    2014-11-01

    A high sensitivity analytical method for (237)Np analysis was developed and applied to groundwater samples from the Nevada National Security Site (NNSS) using short-lived (239)Np as a yield tracer and HR magnetic sector ICP-MS. The (237)Np concentrations in the vicinity of the Almendro, Cambric, Dalhart, Cheshire, and Chancellor underground nuclear test locations range from nuclear tests at very low but measureable concentrations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  14. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  15. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach

  16. Modelling of seismic reflection data for underground gas storage in the Pečarovci and Dankovci structures - Mura Depression

    Directory of Open Access Journals (Sweden)

    Andrej Gosar

    1995-12-01

    Full Text Available Two antiform structures in the Mura Depression were selected as the most promising in Slovenia for the construction of an underground gas storage facility in an aquifer. Seventeen reflection lines with a total length of 157km were recorded, and three boreholes were drilled. Structural models corresponding to two different horizons (the pre-Tertiary basement and the Badenian-Sarmatianboundary were constructed using the Sierra Mimic program. Evaluation of different velocity data (velocity analysis, sonic log, the down-hole method, and laboratory measurements on cores was carried out in order to perform correct timeto-depth conversion and to estabUsh lateral velocity variations. The porous rock in Pečarovci structure is 70m thick layer of dolomite, occurring at a depth of 1900m, whereas layers of marl, several hundred meter thick, represent the impermeable cap-rock. Due to faults, the Dankovci structure, at a depth of 1200m,where the reservoir rocks consist of thin layers of conglomerate and sandstone,was proved to be less reliable. ID synthetic seismograms were used to correlatethe geological and seismic data at the borehole locations, especially at intervals with thin layers. The raytracing method on 2D models (the Sierra Quik packagewas applied to confirm lateral continuity of some horizons and to improve the interpretation of faults which are the critical factor for gas storage.

  17. A new shape design method of salt cavern used as underground gas storage

    International Nuclear Information System (INIS)

    Wang, Tongtao; Yan, Xiangzhen; Yang, Henglin; Yang, Xiujuan; Jiang, Tingting; Zhao, Shuai

    2013-01-01

    Graphical abstract: Safety factor contours of four salt cavern gas storages after running 10 years. Highlights: ► We propose a new model to design the shape of salt cavern gas storage. ► The concepts of slope instability and pressure arch are introduced into the shape design. ► The max. gas pressure determines the shapes and dimensions of cavern lower structure. ► The min. gas pressure decides the shapes and dimensions of cavern upper structure. - Abstract: A new model used to design the shape and dimension of salt cavern gas storage is proposed in the paper. In the new model, the cavern is divided into two parts, namely the lower and upper structures, to design. The concepts of slope instability and pressure arch are introduced into the shape design of the lower and upper structures respectively. Calculating models are established according to the concepts. Field salt cavern gas storage in China is simulated as examples, and its shape and dimension are proposed. The effects of gas pressure, friction angle and cohesion of rock salt on the cavern stability are discussed. Moreover, the volume convergence, displacement, plastic volume rate, safety factor, and effective strain are compared with that of three other existing shapes salt caverns to validate the performance of newly proposed cavern. The results show that the max. gas pressure determines the shape and dimension of cavern lower structure, while the min. gas pressure decides that of cavern upper structure. With the increase of friction angle and cohesion of rock salt, the stability of salt cavern is increased. The newly proposed salt cavern gas storage has more notable advantages than the existing shapes of salt cavern in volume convergence, displacement, plastic volume rate, safety factor, and effective strain under the same conditions

  18. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  19. Site selection for nuclear power plants

    International Nuclear Information System (INIS)

    Ehjchkholz, D.

    1980-01-01

    Problem of NPP site selection in the USA including engineering factors, radiation and environmental protection factors is stated in detail. Floating and underground sites are considered especially. The attention in paid to waste storage and risk criterium in siting [ru

  20. Structural evaluations of existing underground reinforced concrete tanks for radioactive waste storage

    International Nuclear Information System (INIS)

    Vollert, F.R.

    1979-10-01

    Structural integrity evaluations are being conducted for underground, steel-lined reinforced concrete tanks for storing radioactive wastes. The tanks sustain large soil overburden loads and elevated temperatures from the waste for long time periods. The evaluations include laboratory experiments to determine the long-term effects of elevated temperatures on the elastic properties of concrete, and to estimate the effect of the waste chemicals on concrete durability. Available concrete samples from the tanks were also tested to determine the quality of the concrete in the tanks and for comparison with the laboratory data. Finite element, nonlinear, time-dependent analyses are performed to show the thermal creep, cracking, and stresses occurring in the concrete tanks due to the service conditions. Ultimate load analyses are made to assess the safety margin in the tanks. Finally, seismic analyses of a tank in the stressed condition due to the soil and thermal loadings were conducted to determine that the structure has sufficient reserve capacity to withstand 0.25 g earthquake accelerations

  1. Geophysical void detection at the site of an abandoned limestone quarry and underground mine in southwestern Pennsylvania

    International Nuclear Information System (INIS)

    Cohen, K.K.; Trevits, M.A.

    1992-01-01

    Locating underground voids, tunnels, and buried collapse structures continues to present a difficult problem for engineering geoscientists charged with this responsibility for a multitude of different studies. Solutions used and tested for void detection have run the gamut of surface geophysical and remote sensing techniques, to invasive trenching and drilling on closely-spaced centers. No where is the problem of locating underground voids more ubiquitous than in abandoned mined lands, and the U.S. Bureau of Mines continues to investigate this problem for areas overlying abandoned coal, metal, and nonmetal mines. Because of the great diversity of resources mined, the problem of void detection is compounded by the myriad of geologic conditions which exist for abandoned mined lands. At a control study site in southwestern Pennsylvania at the Bureau's Lake Lynn Laboratory, surface geophysical techniques, including seismic and other methods, were tested as a means to detect underground mine voids in the rather simple geologic environment of flat-lying sedimentary strata. The study site is underlain by an abandoned underground limestone mine developed in the Wymps Gap Limestone member of the Mississippian Mauch Chunk Formation. Portals or entrances into the mine, lead to drifts or tunnels driven into the limestone; these entries provided access to the limestone where it was extracted by the room-and-pillar method. The workings lie less than 300 ft from the surface, and survey lines or grids were positioned over the tunnels, the room-and-pillar zones, and the areas not mined. Results from these geophysical investigations are compared and contrasted. The application of this control study to abandoned mine void detection is apparent, but due to the carbonate terrain of the study site, the results may also have significance to sinkhole detection in karst topography

  2. Final storage site for radioactive waste. Gorleben mine

    International Nuclear Information System (INIS)

    1995-02-01

    Out of more than 20 salt stocks, the Gorleben salt stock was chosen. In addition to the preliminary information available on its size and depth, detailed exploratory investigations were carried out in order to test its suitability as a site for ultimate storage of all types of radioactive waste. (orig.) [de

  3. The underground as a storage facility. Modelling of nuclear waste repositories and aquifer thermal energy stores

    International Nuclear Information System (INIS)

    Probert, T.

    1998-06-01

    This thesis, which consists of eleven papers and reports, deals with nuclear waste repositories in solid rock and with aquifer thermal energy storage systems. All these storage systems induce multidimensional, time-variable thermo-hydro-elastic processes in the ground in and around the storage region. The partial differential equations that govern the physical processes are solved analytically in some cases, and in other cases numerical models are developed. Many methods of classical mathematical physics are employed for the solution. The analytical approach provides a deeper physical understanding of the processes and their interactions. At large depths, the salinity of groundwater, and hence its density, often increases downwards. In the first study, the upward buoyancy flow of groundwater in fracture planes due to heat release from the nuclear waste is studied considering the added effect of a salt gradient. The aim of the study is to determine the natural barrier effect caused by the salt. A simple formula for the largest upward displacement from the repository is derived. There may be a strong natural barrier, which is independent of fracture permeabilities. In two papers, the temperature field in rock due to a large rectangular grid of heat-releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. A complete analytical solution is presented. In the next set of papers, the thermoelastic response from the rectangular field of nuclear waste is analysed. Another study concerns the use of heat as a tracer to investigate flow in a fracture plane. Two papers deal with the thermohydraulic evaluations of two aquifer thermal energy storage projects in southern Sweden. Both plants have been successfully simulated using models based on conformal flow and entropy

  4. Study of blasting seismic effects of underground powerhouse of pumped storage project in granite condition

    Science.gov (United States)

    Wan, Sheng; Li, Hui

    2018-03-01

    Though the test of blasting vibration, the blasting seismic wave propagation laws in southern granite pumped storage power project are studied. Attenuation coefficient of seismic wave and factors coefficient are acquired by the method of least squares regression analysis according to Sadaovsky empirical formula, and the empirical formula of seismic wave is obtained. This paper mainly discusses on the test of blasting vibration and the procedure of calculation. Our practice might as well serve as a reference for similar projects to come.

  5. Analysis of an underground electric heating system with short-term energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, B.H. [Michigan State Univ., East Lansing, MI (United States). Dept. of Mechanical Engineering

    1994-12-31

    The principal commercially active heat storage application in which concrete is used as the storage medium is in the use of subfloor electric heaters embedded in a layer of sand. The resistance heaters are energized when utility offpeak rates are in effect. The sand bed and the concrete floor are then heated to some predetermined temperature, and the floor releases heat slowly and remains warm during the subsequent period of high demand. Analysis of the slab-heating system for varying design parameters, such as the depth of the placement of the heaters, the sand properties, the energy input, and the insulation thickness, was considered. The system was also optimized based on life-cycle costs. The suitability of using this system for heating a warehouse in four representative cities in the United States was also considered The response of the system was found to be greatly influenced by the depth of the placement of the heaters, the sand`s moisture content, and the heating strategy. Optimum insulation levels were determined for the prototypical building in all four of the representative cities. Because of the difficulty of controlling the energy release from the heating mats, this system may not be suitable for heating residential and office buildings but may be more appropriate for heating maintenance and storage facilities.

  6. Design cost scoping studies. Nevada Test Site Terminal Waste Storage Program, Subtask 1.3: facility hardening studies

    International Nuclear Information System (INIS)

    Yanev, P.I.; Owen, G.N.

    1978-04-01

    As part of a program being conducted by the U.S. Department of Energy, Nevada Operations Office, to determine the feasibility of establishing a terminal waste storage repository at the Nevada Test Site, URS/John A. Blume and Associates, Engineers, made approximate determinations of the additional costs required to provide protection of structures against seismic forces. A preliminary estimate is presented of the added costs required to harden the surface structures, underground tunnels and storage rooms, and vertical shafts of the repository against ground motion caused by earthquakes and underground nuclear explosions (UNEs). The conceptual design of all of the structures was adapted from proposed bedded-salt waste-isolation repositories. Added costs for hardening were calculated for repositories in three candidate geological materials (Eleana argillite, Climax Stock granite, and Jackass Flats tuff) for several assumed peak ground accelerations caused by earthquakes (0.3g, 0.5g, and 0.7g) and by UNEs (0.5g, 0.7g, and 1.0g). Hardening procedures to protect the tunnels, storage rooms, and shafts against incremental seismic loadings were developed from (1) qualitative considerations of analytically determined seismic stresses and (2) engineering evaluations of the dynamic response of the rock mass and the tunnel support systems. The added costs for seismic hardening of the surface structures were found to be less than 1% of the estimated construction cost of the surface structures. For the underground structures, essentially no hardening was required for peak ground accelerations up to 0.3g; however, added costs became significant at 0.5g, with a possible increase in structural costs for the underground facilities of as much as 35% at 1.0g

  7. Cursory search for carbonates suitable for developing dry underground storage space in the midcontinent, U.S.A

    International Nuclear Information System (INIS)

    Byerly, D.W.

    1975-01-01

    This search for carbonate strata for possible use as nuclear waste repository was prompted by studies of two sites: a deep limestone mine near Barberton, Ohio, and near-surface drift limestone mines near Kansas City, Missouri. Geomorphology, bedrock geology, tectonics and seismicity, and hydrology of the two sites are discussed. It is concluded that the geology of the Barberton site probably offers the greater potential for dry storage over a longer duration of time. Carbonate rocks in North America are evaluated briefly using the criteria just developed, and areas in the midcontinent warranting further study are identified. 26 figures

  8. Removal of CO2 by storage in the deep underground, chemical utilization and biofixation. Options for the Netherlands

    International Nuclear Information System (INIS)

    Over, J.A.; De Vries, J.E.; Stork, J.

    1999-07-01

    The Utrecht University in Utrecht, Netherlands, initially put the subject of CO2-storage on the agenda as a possible necessary policy element. During 1990/1991 a number of research institutes and engineering consultants carried out several studies. Also in 1991 the lEA Greenhouse Gas Group (IEA GHG) was initiated, including participation from The Netherlands. The Netherlands Agency for Energy and the Environment (Novem) and the Dutch Ministry of Economic Affairs both attended the meetings of the Executive Committee (ExCo) from the start. This Group started paying attention to the subject of CO2-capturing at large point sources (electricity stations). They then went subsequently from capturing from other (smaller and/or more diffuse) sources, ranking relative to other large scale options to combat or reduce CO2-emissions (i.e. vast areas of forest) to influence and controlling other 'greenhouse gases' such as methane. During 1992/1993 Novem prepared - on request of the Ministry of Economic Affairs - research proposals for investigations and demonstration projects, having a 10 to 15 year horizon, with regard to CO2-capturing technologies. In the beginning of 1994, the Dutch Ministry of Environment (VROM) put more emphasis on demonstration of the feasibility of CO2-storage. When the first 'Kok-government' (the so-called 'Purple Cabinet') came into being, attention shifted to studies on CO2-storage; the central question being whether there would be sufficient potential capacity if the necessity to store CO2 would ever occur. Within this framework Novem was authorized by the Ministry of Economic Affairs to carry out an investigation program on possibilities of CO2-storage. The present publication deals with the results of these studies. The main subject of investigation were: Storage in underground formations (depleted gas fields and aquifers) and the conditions under which this is feasible; Possibilities for enhanced gas recovery by carbon dioxide injection and its

  9. Atmospheric radiation environment analyses based-on CCD camera at various mountain altitudes and underground sites

    Directory of Open Access Journals (Sweden)

    Li Cavoli Pierre

    2016-01-01

    Full Text Available The purpose of this paper is to discriminate secondary atmospheric particles and identify muons by measuring the natural radiative environment in atmospheric and underground locations. A CCD camera has been used as a cosmic ray sensor. The Low Noise Underground Laboratory of Rustrel (LSBB, France gives the access to a unique low-noise scientific environment deep enough to ensure the screening from the neutron and proton radiative components. Analyses of the charge levels in pixels of the CCD camera induced by radiation events and cartographies of the charge events versus the hit pixel are proposed.

  10. Numerical modeling of the viscoplastic damage behaviour of rocks and application to underground storage facilities

    International Nuclear Information System (INIS)

    Hajdu, A.

    2003-12-01

    The long-term behavior of large, underground works of a civil engineering nature carried out in a rock mass is currently the subject of numerous studies. The object is to attain a better understanding of complex phenomena, such as the convergence of excavated cavities or the outbreak and development of damaged zones in the rock mass neighboring the works, in order to foresee them. This Ph.D. thesis is devoted to the analysis of viscoplastic strain in rocks and to the degradation of their mechanical properties with time, often referred to as deferred damage. A bibliographical record presents the current depth of understanding as regards underlying microstructural phenomena and summarizes the main theories upon which the modeling of these phenomena at the macroscopic scale is based. The formulations enabling a coupling between the viscous effects and the deferred damage are revisited and discussed in detail. One phenomenological model in particular, Lemaitre's viscoplastic constitutive damage law is retained for the numerical modeling. The calculations were performed with the help of a finite element code (CAST3M). Designs of nuclear waste disposal structures at great depth make up the subject of different case studies. The Lemaitre model, originally designed for metallic materials, is next the subject of a theoretical development of which the aim is to better adapt it to the description of the long-term mechanical behavior of rocks. The modifications focus on several points; notably that the hypotheses of anelastic strain at constant volume and of isotropy of damage are rejected. The main characteristics of time-dependent strain in rocks; in particular the phenomena of viscoplastic dilation and contraction as well as the anisotropy induced by damage to the rock matrix are reproduced by the proposed model. A parametric study is then undertaken, using the experimental results obtained on different types of rock, in order to demonstrate the model's capabilities

  11. [Assessment of Cyto- and Genotoxicity of Underground Waters from the Far Eastern Center on Radioactive Waste Treatment Site].

    Science.gov (United States)

    Oudalova, A A; Pyatkova, S V; Geras'kin, S A; Kiselev, S M; Akhromeev, S V

    2016-01-01

    This study has been completed in the frames of activities on the environment assessment in the vicinity of the Far Eastern center (FEC) on radioactive waste treatment (a branch of Fokino, Sysoev Bay). Underground waters collected at the FEC technical site were surveyed both with instrumental techniques and bioassays. Concentrations of some chemicals (ranged to the third hazard category) in the samples collected are over the permitted limits. Activities of 137Cs and 90Sr in waters amount up to 3.8 and 16.2 Bq/l, correspondingly. The integral pollution index is over 1 in all the samples and could amount up to 165. The Allium-test application allows the detection of the sample points where underground waters have an enhanced mutagenic potential. Dependencies between biological effects and pollution levels are analyzed. The findings obtained could be used for the monitoring optimized and decision making on rehabilitation measures to decrease negative influence of the enterprise on the environment.

  12. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    Science.gov (United States)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  13. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    Science.gov (United States)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  14. The legal ensurance of underground ultimate storage of radioactive wastes without risk

    International Nuclear Information System (INIS)

    Prasse, R.

    1974-01-01

    1. The legal position towards the property owner: a) with a view to the freedom of property claim, b) in the light of the influence of the property owner. 2. The legal position towards the neighbouring property owners: a) resistance rights of the body corporate responsible for the ultimate storage, b) resistance rights of the neighbouring property owner. 3. The legal position towards those authorized to mine: a) mining free minerals, b) mining minerals reserved for the state. 4. The legal position towards prospectors. (orig./HP) [de

  15. Perry Nuclear Plant's Plans for on-site storage

    International Nuclear Information System (INIS)

    Ratchen, J.T.

    1993-01-01

    Because of current radwaste disposal legislation and the eventual denial of access to the Barnwell, Richland, and Beatty burial sites, it was imperative for the Perry nuclear power plant to develop alternative means for handling its generated radioactive waste. The previous radwaste facilities at Perry were developed for processing, packaging, short-term storage, and shipment for burial. In order to meet the changing needs, new facilities have been constructed to handle the processing, packaging, and 5-yr interim storage of both dry active waste (DAW) and dewatered or solidified resin, filter media, etc

  16. Techno-Economic Assessment of Four CO2 Storage Sites

    Directory of Open Access Journals (Sweden)

    Gruson J.-F.

    2015-04-01

    Full Text Available Carbon Capture and Storage (CCS should be a key technology in order to achieve a decline in the CO2 emissions intensity of the power sector and other intensive industry, but this potential deployment could be restricted by cost issues as the International Energy Agency (IEA in their last projections (World Energy Outlook 2013 has considered only around 1% of global fossil fuel-fired power plants could be equipped with CCS by 2035. The SiteChar project funded by 7th Framework Programme of European Commission gives the opportunity to evaluate the most influential parameters of techno-economic evaluations of four feasible European projects for CO2 geological storage located onshore and offshore and related to aquifer storage or oil and gas reservoirs, at different stages of characterization. Four potential CO2 storage sites have been assessed in terms of storage costs per tonne of CO2 permanently stored (equivalent cost based. They are located offshore UK, onshore Denmark, offshore Norway and offshore Italy. The four SiteChar techno-economic evaluations confirm it is not possible to derive any meaningful average cost for a CO2 storage site. The results demonstrate that the structure of costs for a project is heterogeneous and the storage cost is consequently site dependent. The strategy of the site development is fundamental, the technical choices such as the timing, rate and duration of injection are also important. The way monitoring is managed, using observation wells and logging has a strong impact on the estimated monitoring costs. Options to lower monitoring costs, such as permanent surveys, exist and should be further investigated. Table 1 below summarizes the cost range in Euro per tonne (Discount Rate (DR at 8% for the different sites, which illustrates the various orders of magnitude due to the specificities of each site. These figures have how to be considered with care. In particular the Italian and Norwegian sites present very specific

  17. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force

  18. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed site and facility designs...'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluated potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the task force presented in this report includes: site screening (Sections 3, 4, and 5), the MRS facilities which are to be sited are described; the criteria, process and outcome of the screening process is presented; and descriptions of the candidate MRS facility sites are given, and site evaluations (Sections 6 through 9) where the rational for the site evaluations are presented, along with each evaluation and findings of the Task Force.

  19. Underground gas storage Uelsen: Findings from planning, building and commissioning. Part 1: Deposit; Untertagegasspeicher Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme. Teil 1: Lagerstaette

    Energy Technology Data Exchange (ETDEWEB)

    Wallbrecht, J.; Beckmann, H.; Reiser, H.; Wilhelm, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    The underground gas storage at Uelsen which was built as a H-gas storage in a former variegated sandstone gasfield in Western Lower Saxony close to the town of Nordhorn has added to the gas supply system of the BEB Erdgas and Erdoel GmbH. The underground storage is connected to the Bunde-Rheine transport pipeline BEB-grid gas system by a 27 km pipeline and is a consequent expansion of BEB`s underground storage/transport system. Planning, building and commissioning were handled by BEB. Findings to date are described. [Deutsch] Der Untertagegasspeicher (UGS) Uelsen, der in einem ehemaligen Buntsandstein Gasfeld im westlichen Niedersachsen in der Naehe der Stadt Nordhorn als H-Gasspeicher eingerichtet wurde, hat die BEB Erdgas und Erdoel GmbH eine weitere Staerkung ihres Gasversorgungssystems erreicht. Der UGS Uelsen ist ueber eine 27 km lange Anbindungsleitung mit der zum BEB - Ferngasleitungssystems gehoerenden Bunde-Rheine Transportleitung verbunden und stellt eine konsequente Erweiterung des BEB Untertagegasspeicher-/Transportsystems dar. Planung, Bau und Inbetriebnahme erfolgten durch BEB im Rahmen einer integrierten bereichsuebergreifenden Projektbearbeitung. Die hierbei gewonnenen Erkenntnisse werden im Folgenden fuer den Untertagebereich dargestellt. (orig.)

  20. Study on underground gas storage in Europe and Central Asia; Etude sur le stockage souterrain du gaz en Europe et en Asie Centrale

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, R. [NlfB, Germany (Germany); Rott, W. [Wintershall AG, Celle (Germany); Rokosz, W. [POGC, Poland (PL)] (and others)

    2000-07-01

    The Working Party on Gas of the United Nations Economic Commission for Europe (UN/ECE), at its sixth session in 1996, decided to undertake a study on 'Underground gas storage in Europe and Central Asia'. The study was launched by the Working Party on Gas in the recognition of the role of underground gas storage (UGS) in the creation of unified European gas market, its liberalization, security of gas supply and cooperation among gas enterprises. The data analysed by the study was collected through the comprehensive questionnaire, circulated among gas companies/organizations of the ECE member-countries. To carry out the study, a special Ad Hoc Group of Experts, representing leading gas companies of the region, was set up. The study deals with a wide range of issues related to the underground storage of gas, such as current status of UGS in Europe and Central Asia, new and emerging technologies, new and existing UGS projects, regulatory framework, cost of storage in USA and in Europe, future gas markets development. An attempt was also made to identify the UGS facilities that play (and could provide in the future) the international contract border services. (authors)

  1. A technique for the geometric modeling of underground surfaces: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Williams, R.L.

    1988-03-01

    There is a need within the Nevada Nuclear Waste Storage Investigation (NNWSI) project to develop three-dimensional surface definitions for the subterranean stratigraphies at Yucca Mountain, Nevada. The nature of the data samples available to the project require an interpolation technique that can perform well with sparse and irregularly spaced data. Following an evaluation of the relevant existing methods, a new technique, Multi-Kernel Modulation (MKM), is presented. MKM interpolates sparse and irregularly spaced data by modulating a polynomial trend surface with a linear summation of regular surfaces (kernels). A perspective discussion of MKM, Kriging, and Multiquadric Analysis reveals that MKM has the advantage of simplicity and efficiency when used with sparse samples. An example of the use of MKM to model a complex topography is presented. 24 refs., 6 figs., 2 tabs

  2. Project on effects of gas in underground storage facilities for radioactive waste (Pegasus project)

    International Nuclear Information System (INIS)

    Haijtink, B.; McMenamin, T.

    1993-01-01

    Whereas the subject of gas generation and gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular, in the fourth five-year R and D programme on management and storage of radioactive waste (1990-94), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called Pegasus, about 20 organizations and research institutes are involved. The project covers theoretical and experimental studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations such as clay, salt and granite. In this report the present status of the various research activities are described and 13 papers have been selected

  3. From clay bricks to deep underground storage; vom lehmziegel bis zum tiefenlager -- anwendung von ton

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted.

  4. Multinational underground nuclear parks

    Energy Technology Data Exchange (ETDEWEB)

    Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  5. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Kim, Hyung-Mok; Ryu, Dong-Woo; Synn, Joong-Ho; Song, Won-Kyong

    2012-06-01

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be

  6. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    International Nuclear Information System (INIS)

    Samuels, W.D.; Camaioni, D.M.; Babad, H.

    1994-01-01

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H 2 , CO, NH 3 , CH 4 , and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  7. Nevada National Security Site Underground Radionuclide Inventory, 1951-1992: Accounting for Radionuclide Decay through September 30, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Finnegan, David Lawrence [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bowen, Scott Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thompson, Joseph L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Charles M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baca, Phyllis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Loretta F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Geoffrion, Carmen G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, David K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Goishi, Wataru [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Esser, Bradley K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meadows, Jesse W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Namboodiri, Neil [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wild, John F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-16

    This report is an update of report LA-13859-MS (Bowen et al., 2001). In that original report, the underground radionuclide inventory at the Nevada National Security Site (NNSS) was decay corrected to September 23, 1992, the date of the last underground nuclear test at the NNSS. In this report, the inventory is updated to account for the decay of radionuclides over two additional decades (1992-2012) and revised tritium, fission product and actinide inventory figures and tables are presented. The maximum contaminant levels for radionuclides were also updated to Safe Drinking Water Act Maximum Contaminant Levels (MCLs) (CFR, 2013). Also, a number of minor errata found in the original publication were corrected. An inventory of radionuclides produced by 828 underground nuclear tests conducted at the NNSS by the Lawrence Livermore National Laboratory, the Los Alamos National Laboratory, and the Department of the Defense from 1951 to 1992 includes tritium, fission products, actinides, and activation products. The inventory presented in this report provides an estimate of radioactivity remaining underground at the NNSS after nuclear testing. The original test inventory is decayed to September 30, 2012, and predictions of inventory decay over the subsequent 1000 years are presented. For the purposes of summary and publication, the Los Alamos National Laboratory and Lawrence Livermore National Laboratory authors of this report subdivided the inventory into five areas corresponding to the principal geographic test centers at the NNSS. The five areas roughly correspond to Underground Test Area “Corrective Action Units” (CAUs) for remediation of groundwater. In addition, the inventory is further subdivided for the Yucca Flat region by tests where the working point depth is more than 328 feet (100 meters) above the water table and tests that were detonated below that level. Water levels used were those from the U. S. Department of Energy, Nevada Operations Office (1997

  8. Niagara Falls Storage Site, Lewiston, New York: geologic report

    International Nuclear Information System (INIS)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area

  9. Niagara Falls Storage Site, Lewiston, New York: geologic report

    Energy Technology Data Exchange (ETDEWEB)

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  10. Ground motion effects of underground nuclear testing on perennial vegetation at Nevada Test Site

    International Nuclear Information System (INIS)

    Rhoads, W.A.

    1976-07-01

    In this study to estimate the potential injury to vegetation from earth movement caused by underground nuclear detonations and to estimate the extent to which this may have occurred at NTS, two explosions in the megaton range on Pahute Mesa were studied in some detail: Boxcar, which caused a surface subsidence, and Benham, which did not. Because of the subsidence phenomenology, shock propagation through the earth and along the surface, and the resulting fractures, shrubs were killed at Boxcar around the perimeter of the subsidence crater. Both trees and shrubs were killed along tectonic faults, which became the path for earth fractures, and along fractures and rock falls elsewhere. There was also evidence at Boxcar of tree damage which antedated the nuclear testing program, presumably from natural earthquakes. With the possible exception of damage to aged junipers this investigation did not reveal any good evidence of immediate effects from underground testing on vegetation beyond that recognized earlier as the edge effect

  11. The French experimentation at the underground nuclear testing site in the Sahara desert

    Energy Technology Data Exchange (ETDEWEB)

    Gauvenet, Andre [Commissariat a l' Energie Atomique (France)

    1970-05-01

    The present paper will be essentially an introduction to the technical exposes which will be delivered during the Las Vegas Meeting. The presentation is divided in two parts. The first part summarizes very briefly the experience that has been gained from the underground nuclear shots which took place in the Sahara desert from 1961 to 1966. in the second part, an idea is given of the studies at present carried on in France in the domain of peaceful applications of nuclear explosions.

  12. Underground Test Area Activity Communication/Interface Plan, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States); Rehfeldt, Kenneth [Navarro, Las Vegas, NV (United States)

    2016-10-01

    The purpose of this plan is to provide guidelines for effective communication and interfacing between Underground Test Area (UGTA) Activity participants, including the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and its contractors. This plan specifically establishes the following: • UGTA mission, vision, and core values • Roles and responsibilities for key personnel • Communication with stakeholders • Guidance in key interface areas • Communication matrix

  13. The French experimentation at the underground nuclear testing site in the Sahara desert

    International Nuclear Information System (INIS)

    Gauvenet, Andre

    1970-01-01

    The present paper will be essentially an introduction to the technical exposes which will be delivered during the Las Vegas Meeting. The presentation is divided in two parts. The first part summarizes very briefly the experience that has been gained from the underground nuclear shots which took place in the Sahara desert from 1961 to 1966. in the second part, an idea is given of the studies at present carried on in France in the domain of peaceful applications of nuclear explosions

  14. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  15. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  16. Monitored retrievable storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document

  17. Monitored Retrievable Storage facility site screening and evaluation report

    International Nuclear Information System (INIS)

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to ''complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, ''for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs hor-ellipsis'' as well as a recommendation of ''the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume

  18. Monitored retrievable storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs{hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report include: site evaluations (sections 10 through 12) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This in Volume 2 of a three volume document.

  19. Monitored Retrievable Storage facility site screening and evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1985-05-01

    The Nuclear Waste Policy Act of 1982 directs the Department of Energy to complete a detailed study of the need for and feasibility of, and to submit to the Congress a proposal for, the construction of one or more monitored retrievable storage facilities for high level radioactive waste and spent nuclear fuel.'' The Act directs that the proposal includes site specific designs. Further, the proposal is to include, for the first such facility, at least three alternative sites and at least five alternative combinations of such proposed sites and facility designs {hor ellipsis}'' as well as a recommendation of the combination among the alternatives that the Secretary deems preferable.'' An MRS Site Screening Task Force has been formed to help identify and evaluate potential MRS facility sites within a preferred region and with the application of a siting process and criteria developed by the DOE. The activities of the Task Force presented in this report, all site evaluations (sections 13 through 16) where the rationale for the site evaluations are presented, along with each evaluation and findings of the Task Force. This is Volume 3 of a three volume document. References are also included in this volume.

  20. Soil structure interaction analysis for the Hanford Site 241-SY-101 double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Giller, R.A.; Weiner, E.O.

    1991-09-01

    The 241-SY-101 tank is a double-shell waste storage tank buried in the 241-SY tank farm in the 200 West Area of the Hanford Site. This analysis addresses the effects of seismic soil-structure interaction on the tank structure and includes a parametric soil-structure interaction study addressing three configurations: two-dimensional soil structure, a two-dimensional structure-soil-structure, and a three-dimensional soil-structure interaction. This study was designed to determine an optimal method for addressing seismic-soil effects on underground storage tanks. The computer programs calculate seismic-soil pressures on the double-shell tank walls and and seismic acceleration response spectra in the tank. The results of this soil-structure interaction parametric study as produced by the computer programs are given in terms of seismic soil pressures and response spectra. The conclusions of this soil-structure interaction evaluation are that dynamically calculated soil pressures in the 241-SY-101 tank are significantly reduce from those using standard hand calculation methods and that seismic evaluation of underground double-shell waste storage tanks must consider soil-structure interaction effects in order to predict conservative structural response. Appendixes supporting this study are available in Volume 2 of this report

  1. Radionuclide migration at sites of temporary storage of SNF and RW in North-West Russia - Contribution to regulatory development

    International Nuclear Information System (INIS)

    Sneve, M.K.; Shandala, N.K.; Orlova, E.I.; Titov, A.V.; Kochetkov, O.A.; Smith, G.M.; Barraclough, I.M.

    2007-01-01

    Two technical bases of the Northern Fleet were created in the Russian northwest in the 1960s at Andreeva in the Kola Bay and Gremikha village on the coast of the Barents Sea. They maintained nuclear submarines, performing receipt and storage of radioactive waste and spent nuclear fuel. No further stored material was received after 1985. These technical bases have since been re-categorised as sites of temporary storage. It is necessary to note that, during the storage of RW and SNF, certain conditions arose which resulted in failure of the storage barrier system, resulting in release of radionuclides. Remediation activities at the site focus on reduction of major risks associated with most hazardous radioactive source terms. In addition, the long term management of the sites includes consideration of how to remediate contaminated areas, not only because they affect continuing work at the site, but also because this work will influence final radiological status of the sites. The optimum approach to remediation will be affected by how quickly radionuclides could move, both during the remediation works and, so far as any residual activity is concerned, after the works are completed. Present investigations reported here are directed to determination of sorption-desorption parameters of radionuclides in the studied areas, which will affect their underground migration, with the purpose of accounting for regional peculiarities in optimization process of the STSs remediation. The work is being carried out by the TSO State Research Centre - Institute of Biophysics, of Russian Federation, with assistance from western experts. The work forms part of a regulatory collaboration programme on-going between the Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency which is designed to support the development of norms and standards to be applied in the remediation of these sites of temporary storage. (author)

  2. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  3. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  4. Detection of leaks in underground storage tanks using electrical resistance methods: 1996 results

    International Nuclear Information System (INIS)

    Ramirez, A.; Daily, W.

    1996-10-01

    This document provides a summary of a field experiment performed under a 15m diameter steel tank mockup located at the Hanford Reservation, Washington. The purpose of this test was to image a contaminant plume as it develops in soil under a tank already contaminated by previous leakage and to determine whether contaminant plumes can be detected without the benefit of background data. Measurements of electrical resistance were made before and during a salt water release. These measurements were made in soil which contained the remnants of salt water plumes released during previous tests in 1994 and in 1995. About 11,150 liters of saline solution were released along a portion of the tank's edge in 1996. Changes in electrical resistivity due to release of salt water conducted in 1996 were determined in two ways: (1) changes relative to the 1996 pre-spill data, and (2) changes relative to data collected near the middle of the 1996 spill after the release flow rate was increased. In both cases, the observed resistivity changes show clearly defined anomalies caused by the salt water release. These results indicate that when a plume develops over an existing plume and in a geologic environment similar to the test site environment, the resulting resistivity changes are easily detectable. Three dimensional tomographs of the resistivity of the soil under the tank show that the salt water release caused a region of low soil resistivity which can be observed directly without the benefit of comparing the tomograph to tomographs or data collected before the spill started. This means that it may be possible to infer the presence of pre-existing plumes if there is other data showing that the regions of low resistivity are correlated with the presence of contaminated soil. However, this approach does not appear reliable in defining the total extent of the plume due to the confounding effect that natural heterogeneity has on our ability to define the margins of the anomaly

  5. Remaining Sites Verification Package for the 100-B-20, 1716-B Maintenance Garage Underground Tank, Waste Site Reclassification Form 2006-019

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2006-09-27

    The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.

  6. Remaining Sites Verification Package for the 100-B-20, 1716-B Maintenance Garage Underground Tank. Attachment to Waste Site Reclassification Form 2006-019

    International Nuclear Information System (INIS)

    Dittmer, L.M.

    2006-01-01

    The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River

  7. Current use of wild plants with edible underground storage organs in a rural population of Patagonia: between tradition and change.

    Science.gov (United States)

    Ochoa, Juan José; Ladio, Ana Haydee

    2015-09-25

    Edible plants with underground storage organs (USOs) are neglected resources. We studied the local ecological knowledge edible plants with (USOs) in rural populations of North-Patagonia in order to establish how people are utilizing these plants. Some aspect of corpus-praxis-cosmos complex associated to the local ecological knowledge was documented and discussed. In addition, variation in this ecological knowledge due to age, gender, family structure, ethnic self-determination was also evaluated. Semi-structured interviews were conducted with 51 inhabitants in order to study the relationship between the current use of plants with USOs and the age, sex, family group composition and ethnic self-identification of interviewees. In addition, the Cultural Importance Index for each species was calculated. The current richness of known species in these populations is a total of 9 plants. Plants with USOs tend to be used more frequently as the age of the interviewee increases. Women and men showed no differences in the average richness of species cited. The interviewees who share their homes with other generations use these plants more frequently than those who live alone. Our results indicate that the interviewees who identified themselves as belonging to the Mapuche people use these plants more frequently. For the Mapuche people, wild plants have constituted material and symbolic resources of great importance in their historical subsistence. In addition, they are currently being redefined as elements which present a connection with ancestral practices, produce a strong relationship with the 'land', and become markers which identify the 'natural' (historical) ways of their people; these are key elements in the current political processes of identity revaluation. This research is valuable to stimulate cultural revival and health promotion programs in the communities with their own local, cultural food.

  8. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site.

    Science.gov (United States)

    Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S

    2012-11-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Science.gov (United States)

    Morales, Sergio E; Holben, William E

    2013-01-01

    Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA) and activity (mRNA) of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface) CO2 using FACE (Free-Air CO2 Enrichment) systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  10. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2018-06-01

    Full Text Available With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area, located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations, including borehole drilling, geological mapping, geophysical surveying, hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological, hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel (BET, which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone (EDZ, and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction. According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned. Keywords: Beishan, Xinchang site, Granite

  11. Underground gas storage Uelsen: Findings from planning, building and commissioning the surface buildings and structures; Untertagegasspeicher (UGS) Uelsen: Erkenntnisse aus Planung, Bau und Inbetriebnahme der obertaegigen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Focke, H.; Brueggmann, R.; Mende, F.; Steinkraus, D.; Wauer, R. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    The article describes the concepts of the plants and equipment and the specific features of the underground storage at Uelsen. The underground storage will be purpose-built as an H-gas storage in a nearly depleted sandstone deposit. At a nominal deliverability of 250.000 cubic m/h (Vn) the storage at Uelsen has more potential for expansion. This potential was taken into account by designing appropriate pressure stages, capacities, performance characteristics and space. (orig.). [Deutsch] Die nachfolgende Veroeffentlichung stellt das anlagentechnische Grundkonzept und die spezifischen Besonderheiten des UGS Uelsen dar. Der im suedwestlichen Niedersachsen als H-Gasspeicher in einer nahezu ausgefoerderten Buntsandsteinlagerstaette eingerichtete UGS Uelsen wird in mehreren Ausbaustufen bedarfsgerecht fertiggestellt. Bei einer Nennentnahmekapazitaet von 450.000 m{sup 3}/h (Vn) und einer Nenninjektionsleistung von 250.000 m{sup 3}/h (Vn) weist der UGS Uelsen noch weiteres Potential fuer Erweiterungen auf. Dieses Ausbaupotential wurde bei der Planung und dem Bau der bestehenden Anlagen durch Festlegung entsprechender Druckstufen, Kapazitaeten, Leistungsgroessen und Platzanordnungen beruecksichtigt. (orig.)

  12. Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G.A.

    1999-09-21

    Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to

  13. Geology in the Vicinity of the TYBO and BENHAM Underground Nuclear Tests, Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    L. B. Prothro

    2001-12-01

    Recent radiochemical evidence from groundwater characterization and monitoring wells in the vicinity of the TYBO and BENHAM underground nuclear tests in Area 20 of the Nevada Test Site, suggests that migration of radionuclides within groundwater beneath this portion of Area 20 may be more rapid than previously thought. In order to gain a better understanding of the hydrogeologic conditions in the TYBO-BENHAM area for more accurate flow and transport modeling, a reevaluation of the subsurface geologic environment in the vicinity of the two underground tests was conducted. Eight existing drill holes provided subsurface control for the area. These holes included groundwater characterization and monitoring wells, exploratory holes, and large-diameter emplacement holes used for underground nuclear weapons tests. Detailed and consistent geologic descriptions of these holes were produced by updating existing geologic descriptions with data from petrographic, chemical, and mineralogic analyses, and current stratigraphic concepts of the region. The updated descriptions, along with surface geologic data, were used to develop a detailed geologic model of the TYBO-BENHAM area. This model is represented by diagrams that correlate stratigraphic, lithologic, and alteration intervals between holes, and by isopach and structure maps and geologic cross sections. Regional data outside the TYBO-BENHAM area were included in the isopach and structure maps to better evaluate the geology of the TYBO-BENHAM area in a regional context. The geologic model was then evaluated with regard to groundwater flow and radionuclide migration to assess the model's implications for flow and transport modeling. Implications include: (1) confirmation of the general hydrogeology of the area described in previous studies; (2) the presence of two previously unrecognized buried faults that could act as zones of enhanced permeability within aquifers; and (3) secondary alteration within tuff confining

  14. First observations of tritium in ground water outside chimneys of underground nuclear explosions, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Crow, N.B.

    1976-01-01

    Abnormal levels of radionuclides had not been detected in ground water at the Nevada Test Site beyond the immediate vicinity of underground nuclear explosions until April 1974, when above-background tritium activity levels were detected in ground-water inflow from the tuff beneath Yucca Flat to an emplacement chamber being mined in hole U2aw in the east-central part of Area 2. No other radionuclides were detected in a sample of water from the chamber. In comparison with the amount of tritium estimated to be present in the ground water in nearby nuclear chimneys, the activity level at U2aw is very low. To put the tritium activity levels at U2aw into proper perspective, the maximum tritium activity level observed was significantly less than the maximum permissible concentration (MPC) for a restricted area, though from mid-April 1974 until the emplacement chamber was expended in September 1974, the tritium activity exceeded the MPC for the general public. Above-background tritium activity was also detected in ground water from the adjacent exploratory hole, Ue2aw. The nearest underground nuclear explosion detonated beneath the water table, believed to be the source of the tritium observed, is Commodore (U2am), located 465 m southeast of the emplacement chamber in U2aw. Commodore was detonated in May 1967. In May 1975, tritium activity May significantly higher than regional background. was detected in ground water from hole Ue2ar, 980 m south of the emplacement chamber in U2aw and 361 m from a second underground nuclear explosion, Agile (U2v), also detonated below the water table, in February 1967. This paper describes these occurrences of tritium in the ground water. A mechanism to account for the movement of tritium is postulated

  15. Contaminated site investigation using nuclear technique: a case study of temporary transformer storage sites in Ghana

    International Nuclear Information System (INIS)

    Sanu, J. K.

    2013-07-01

    Recent introduction of man-made toxic chemicals, and the massive relocation of natural materials to different environmental compartment like soil, ground water and atmosphere, has resulted in severe pressure on the self- cleansing capacity of recipient ecosystems. Various accomulated pollutants and contaminants such as polychlorinated biphenyls (PCBs) are of much concern relative to both human and ecosystemm exposure and potential health impact. PCBs which are resistant to degradation and bioremediation accumulated in different niches of the biosphere. This significantly affects the ecological balances and cause adverse health effect on both human and the environment. Temporal transformer storage sites at four locations in Ghana (Tema, Temale, Bolgatanga and Wa) were investigated for PCB contamination using nuclear techniques. Analysis of soil samples from four temporal transformer storage sites revealed that the soil samples from Tema, Tamale, Bolgatanga and Wa were generally sandy with pH and EC ranging between 6.24 - 7.29 and 44.60 - 188.30 respectively. The PCB levels detected in the soil samples from the various locations varied considerably with mean ranging between 7.69 and 51.92 mg/kg. The highest mean PCB level was recorded at the Tema temporal transformer storage site (51.92 mg/kg), whilst the least mean level of 7.69 mg/kg was recorded at Wa storage site. At Tamale the individual levels range between 3.57 mg/kg and 38.70 mg/kg while at Bolgatanga it was 6.85 - 16.30 mg/kg and Wa, 6.08 - 14.70mg/kg. About 9% of soil samples from temporal transformer storage sites analysed had total PCBs concentrations above the 25mg/kg and 33 mg/kg level recommended by the Canadian Council of Ministers of environment (CCME) and EPA Ghana respectively for the protection of environment and human health. Generally, the Levels of PCBs in soil samples were found to decrease with increasing depth at all the temporal transformer storage sites. Results obtained using the EPA's L

  16. Shaft sealing issue in CO2 storage sites

    Science.gov (United States)

    Dieudonné, A.-C.; Charlier, R.; Collin, F.

    2012-04-01

    Carbon capture and storage is an innovating approach to tackle climate changes through the reduction of greenhouse gas emissions. Deep saline aquifers, depleted oil and gas reservoirs and unmineable coal seams are among the most studied reservoirs. However other types of reservoir, such as abandonned coal mines, could also be used for the storage of carbon dioxide. In this case, the problem of shaft sealing appears to be particularly critical regarding to the economic, ecologic and health aspects of geological storage. The purpose of the work is to study shaft sealing in the framework of CO2 storage projects in abandoned coal mines. The problem of gas transfers around a sealing system is studied numerically using the finite elements code LAGAMINE, which has been developped for 30 years at the University of Liege. A coupled hydro-mechanical model of unsaturated geomaterials is used for the analyses. The response of the two-phase flow model is first studied through a simple synthetic problem consisting in the injection of gas in a concrete-made column. It stands out of this first modeling that the advection of the gas phase represents the main transfer mechanism of CO2 in highly unsaturated materials. Furthermore the setting of a bentonite barrier seal limits considerably the gas influx into the biosphere. A 2D axisymetric hydromechanical modeling of the Anderlues natural gas storage site is then performed. The geological and hydrogeological contexts of the site are used to define the problem, for the initial and boundary conditions, as well as the material properties. In order to reproduce stress and water saturation states in the shale before CO2 injection in the mine, different phases corresponding to the shaft sinking, the mining and the set up of the sealing system are simulated. The system efficiency is then evaluated by simulating the CO2 injection with the imposed pressure at the shaft wall. According to the modeling, the low water saturation of concrete and

  17. Addendum to the corrective action plan for Underground Storage Tanks 1219-U, 1222-U, 2082-U, 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID number-sign 0-010117

    International Nuclear Information System (INIS)

    1994-01-01

    This document represents an addendum to the Corrective Action Plan (CAP) for underground storage tanks 1219-U, 2082-U, and 2068-U located at Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, TN. The site of the four underground storage tanks is commonly referred to as the Rust Garage Facility. The original CAP was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review in May 1992. During the time period after submission of the original CAP for the Rust Garage Facility, Y-12 Plant Underground Storage Tank (UST) Program personnel continued to evaluate improvements that would optimize resources and expedite the activities schedule presented in the original CAP. Based on these determinations, several revisions to the original corrective action process options for remediation of contaminated soils are proposed. The revised approach will involve excavation of the soils from the impacted areas, on-site thermal desorption of soil contaminants, and final disposition of the treated soils by backfilling into the subject site excavations. Based on evaluation of the corrective actions with regard to groundwater, remediation of groundwater under the Y-12 Plant CERCLA Program is proposed for the facility

  18. Magnox Swarf Storage Silo Liquor Effluent Management -Sellafield Site, Cumbria, UK - Legacy radioactive waste storage - 59271

    International Nuclear Information System (INIS)

    Le Clere, Stephen

    2012-01-01

    The Sellafield Magnox Swarf Storage Silo (MSSS) was constructed to provide an underwater storage facility for irradiated magnox cladding metal Swarf, as well as miscellaneous beta-gamma waste from several sources. Liquid effluent arisings from hazard reduction activities at this facility represent the toughest effluent treatment challenge within the company's Legacy Ponds and Silos portfolio. The key requirement for hazard reduction has generated many substantial challenges as the facility is readied for decommissioning. This has demanded the production of carefully thought out strategies for managing, and overcoming, the key difficulties to be encountered as hazard reduction progresses. The complexity associated with preparing for waste retrievals from the Magnox Swarf Storage Silo, has also generated the demand for a mix of creativity and perseverance to meet the challenges and make progress. Challenging the status quo and willingness to accept change is not easy and the road to overall hazard reduction for the high hazard MSSS facility will demand the skills and investment of individuals, teams, and entire facility work-forces. The first steps on this road have been taken with the successful introduction of liquor management operations, however much more is yet to be achieved. Clear communication, investing in stakeholder management, perseverance in the face of difficulty and a structured yet flexible programme delivery approach, will ensure the continued success of tackling the complex challenges of treating liquid effluent from a legacy fuel storage silo at the Sellafield Site. (authors)

  19. Underground Politics

    DEFF Research Database (Denmark)

    Galis, Vasilis; Summerton, Jane

    Public spaces are often contested sites involving the political use of sociomaterial arrangements to check, control and filter the flow of people (see Virilio 1977, 1996). Such arrangements can include configurations of state-of-the-art policing technologies for delineating and demarcating borders...... status updates on identity checks at the metro stations in Stockholm and reports on locations and time of ticket controls for warning travelers. Thus the attempts by authorities to exert control over the (spatial) arena of the underground is circumvented by the effective developing of an alternative...... infrastructural "underground" consisting of assemblages of technologies, activists, immigrants without papers, texts and emails, homes, smart phones and computers. Investigating the embedded politics of contested spatial arrangements as characteristic of specific societies one can discover not only the uses...

  20. Detecting and modeling persistent self-potential anomalies from underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    McKague, H.L.; Kansa, E.; Kasameyer, P.W.

    1992-01-01

    Self-potential anomalies are naturally occurring, nearly stationary electric fields that are detected by measuring the potential difference between two points on (or in) the ground. SP anomalies arise from a number of causes: principally electrochemical reactions, and heat and fluid flows. SP is routinely used to locate mineral deposits, geothermal systems, and zones of seepage. This paper is a progress report on our work toward detecting explosion-related SP signals at the Nevada Test Site (NTS) and in understanding the physics of these anomalies that persist and continue changing over periods of time that range from months to years. As background, we also include a brief description of how SP signals arise, and we mention their use in other areas such as exploring for geothermal resources and locating seepage through dams. Between the years 1988 and 1991, we surveyed the areas around seven underground nuclear tests for persistent SP anomalies. We not only detected anomalies, but we also found that various phenomena could be contributing to them and that we did not know which of these were actually occurring. We analyzed our new data with existing steady state codes and with a newly developed time-dependent thermal modeling code. Our results with the new code showed that the conductive decay of the thermal pulse from an underground nuclear test could produce many of the observed signals, and that others are probably caused by movement of fluid induced by the explosion. 25 refs

  1. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Lyakhova, O.N.; Lukashenko, S.N.; Larionova, N.V.; Tur, Y.S.

    2012-01-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on “Degelen” site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water–atmosphere, tunnel air–atmosphere, soil water–atmosphere, vegetation–atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area “Degelen”. - Highlights: ► The basic mechanisms for tritium distribution in the air of nuclear testing sites were examined. ► We researched the distribution of tritium in the systems such as water–atmosphere, tunnel air–atmosphere, soil water–atmosphere and vegetation–atmosphere. ► An analytical calculation of tritium concentration in the atmosphere was performed. ► We experimentally obtained the dependence for predictive assessment of tritium concentrations in

  2. A review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wolfsberg, K.; Thompson, J.L.; Rundberg, R.S.; Fraser, S.L.; Daniels, K.S.

    1984-01-01

    Results from a long-term (9 year) field study of the distribution of radionuclides around an underground nuclear explosion cavity at the Nevada Test Site are reviewed. The goals of this Radionuclide Migration project are to examine the rates of migration underground in various media and to determine the potential for movement, both on and off the Nevada Test Site, of radioactivity from such explosions, with particular interest in possible contamination of water supplies. Initial studies were undertaken near the site of the low-yield test Cambric, which was detonated 73 m beneath the water table in tuffaceous alluvium. Solid samples were obtained from just below ground surface to 50 m below the detonation point, and water was sampled from five different regions in the vicinity of the explosion. Ten years after the test, most of the radioactivity was found to be retained in the fused debris in the cavity region and no activity above background was found 50 m below. Only tritium and 90 Sr were present in water in the cavity at levels greater than recommended concentration guides for water in uncontrolled areas. A satellite well is being used to remove water 91 m from the detonation point. During seven years (7x10 6 m 3 ) of pumping, tritium, 85 Kr, 36 Cl and 129 I have been detected in the water. Approximately 40% of the total tritium from the cavity region has been removed by pumping at the satellite well, and the maximum in the tritium concentration is clearly defined. Use of sensitive analytical techniques has permitted measurement of the very low concentrations of 36 Cl and 129 I present in the water. The 36 Cl peak precedes the tritiated water, possibly as a result of anion exclusion. Additional analyses are in progress to better define the shape of the 129 I concentration curve. (author)

  3. Review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wolfsberg, K.; Thompson, J.L.; Rundberg, R.S.; Fraser, S.L.; Daniels, K.S.

    1983-01-01

    Results from a long-term (9 year) field study of the distribution of radionuclides around an underground nuclear explosion cavity at the Nevada Test Site are reviewed. The goals of this Radionuclide Migration project are to examine the rates of migration underground in various media and to determine the potential for movement, both on and off the Nevada Test Site, of radioactivity from such explosions, with particular interest in possible contamination of water supplies. Initial studies were undertaken near the site of the low-yield test Cambric, which was detonated 73 m beneath the water table in tuffaceous alluvium. Solid samples were obtained from just below ground surface to 50 m below the detonation point, and water was sampled from five different regions in the vicinity of the explosion. Ten years after the test, most of the radioactivity was found to be retained in the fused debris in the cavity region and no activity above background was found 50 m below. Only tritium and 90 Sr were presented in water in the cavity at levels greater than recommended concentration guides for water in uncontrolled areas. A satellite well is being used to remove water 91 m from the detonation point. During seven years (7 x 10 6 m 3 ) of pumping, tritium, 85 Kr, 36 Cl, and 129 I have been detected in the water. Approximately 40% of the total tritium from the cavity region has been removed by pumping at the satellite well, and the maximum in the tritium concentration is clearly defined. Use of sensitive analytical techniques has permitted measurement of the very low concentrations of 36 Cl and 129 I present in the water. The 36 Cl peak precedes the tritiated water, possibly as a result of anion exclusion. Additional analyses are in progress to better define the shape of the 129 I concentration curve

  4. Identifying suitable piercement salt domes for nuclear waste storage sites

    International Nuclear Information System (INIS)

    Kehle, R.; e.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes

  5. Wayne Interim Storage Site annual environmental report for calendar year 1991, Wayne, New Jersey. [Wayne Interim Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-01

    This document describes the envirormental monitoring program at the Wayne Interim Storage Site (WISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of WISS and surrounding area began in 1984 when Congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. WISS is a National Priorities List site. The environmental monitoring program at WISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation exposure; and radium-226, radium-228, thorium-232, and total uranium concentrations in surface water, sediment, and groundwater. Several nonradiological parameters are also measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides, dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  6. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2016-08-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  7. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    International Nuclear Information System (INIS)

    Farnham, Irene

    2016-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  8. Study on the leach mechanism of 90-19/U glass form in underground water of disposal site

    International Nuclear Information System (INIS)

    Sheng Jiawei; Luo Shanggeng; Tang Baolong

    1996-01-01

    The leach behavior of 90-19/U glass form in underground water (UW) of disposal site and in the deionized water (DIW) is studied. The total mass losses of glass form and the normalized element mass losses of B, Li and Si in UW are presented and compared to DIW. It is found that the ions in UW affect the leach behavior of 90-19/U glass. At the beginning of the reaction the reaction rate of the glass is smaller in UW than in DIW due to the low glass dissolution affinity in UW which is defined as (1-c/K). The rate determining step of leach reaction of 90-19/U glass in UW during the entire reaction period is the ion-exchange reaction. The apparent activation energy of glass reaction in UW is 51.6 kJ/mol

  9. Underground Test Area Fiscal Year 2012 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Marutzky, Sam [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2013-01-01

    This report is mandated by the Underground Test Area (UGTA) Quality Assurance Project Plan (QAPP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2012. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2012. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, revising the QAPP, and publishing documents. In addition, processes and procedures were developed to address deficiencies identified in the FY 2011 QAPP gap analysis.

  10. Safety Assessment Document for the Spent Reactor Fuel Geologic Storage Test in the Climax Granite Stock at the Nevada Test site

    International Nuclear Information System (INIS)

    1980-01-01

    The objective of the Spent Fuel Geologic Storage Test in the Climax Granite Stock is to evaluate the response of a granitic rock mass to the underground storage of encapsulated spent reactor fuel in a geometry that simulates a module of a large-scale geologic repository. This document reports an assessment of the safety of conducting this test. Descriptions are provided of the geography, meteorology, hydrology, geology, and seismology of the Climax Site; the effects of postulated natural phenomena and other activities at the nevada Test Site on the safety of the test; and the design and operation of the test facility and associated equipment. Evaluations are made of both the radiological and nonradiological impacts of normal operations, abnormal operations, and postulated accidents. It is concluded that conduct of the spent fuel test at the Climax Site will not result in any undue risk to the public, property, environment, or site employees

  11. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Krenzien, Susan [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2015-06-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1D, Change 1, Quality Assurance (DOE, 2013a); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). If a participant’s requirement document differs from this QAP, the stricter requirement will take precedence. NNSA/NFO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  12. Underground Test Area Activity Preemptive Review Guidance Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States); Rehfeldt, Kenneth [Navarro, Las Vegas, NV (United States)

    2016-10-01

    Preemptive reviews (PERs) of Underground Test Area (UGTA) Activity corrective action unit (CAU) studies are an important and long-maintained quality improvement process. The CAU-specific PER committees provide internal technical review of ongoing work throughout the CAU lifecycle. The reviews, identified in the UGTA Quality Assurance Plan (QAP) (Sections 1.3.5.1 and 3.2), assure work is comprehensive, accurate, in keeping with the state of the art, and consistent with CAU goals. PER committees review various products, including data, documents, software/codes, analyses, and models. PER committees may also review technical briefings including Federal Facility Agreement and Consent Order (FFACO)-required presentations to the Nevada Division of Environmental Protection (NDEP) and presentations supporting key technical decisions (e.g., investigation plans and approaches). PER committees provide technical recommendations to support regulatory decisions that are the responsibility of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and NDEP.

  13. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the

  14. Site selection under the underground geologic store plan. Procedures of selecting underground geologic stores as disputed by society, science, and politics. Site selection rules; Mit dem Sachplan Geologische Tiefenlager auf Standortsuche. Auswahlverfahren fuer geologische Tiefenlager im Spannungsfeld von Gesellschaft, Wissenschaft und Politik, Regeln fuer die Standortsuche

    Energy Technology Data Exchange (ETDEWEB)

    Aebersold, M. [Bundesamt fuer Energie BFE, Sektion Entsorgung Radioaktive Abfaelle, Bern (Switzerland)

    2008-10-15

    The new Nuclear Power Act and the Nuclear Power Ordinance of 2005 are used in Switzerland to select a site of an underground geologic store for radioactive waste in a substantive planning procedure. The ''Underground Geologic Store Substantive Plan'' is to ensure the possibility to build underground geologic stores in an independent, transparent and fair procedure. The Federal Office for Energy (BFE) is the agency responsible for this procedure. The ''Underground Geologic Store'' Substantive Plan comprises these principles: - The long term protection of people and the environment enjoys priority. Aspects of regional planning, economics and society are of secondary importance. - Site selection is based on the waste volumes arising from the five nuclear power plants currently existing in Switzerland. The Substantive Plan is no precedent for or against future nuclear power plants. - A transparent and fair procedure is an indispensable prerequisite for achieving the objectives of a Substantive Plan, i.e., finding accepted sites for underground geologic stores. The Underground Geologic Stores Substantive Plan is arranged in two parts, a conceptual part defining the rules of the selection process, and an implementation part documenting the selection process step by step and, in the end, naming specific sites of underground geologic stores in Switzerland. The objective is to be able to commission underground geologic stores in 25 or 35 years' time. In principle, 2 sites are envisaged, one for low and intermediate level waste, and one for high level waste. The Swiss Federal Council approved the conceptual part on April 2, 2008. This marks the beginning of the implementation phase and the site selection process proper. (orig.)

  15. Homogenization of a storage and/or disposal site in an underground damage or fractured medium

    International Nuclear Information System (INIS)

    Khvoenkova, N.

    2007-07-01

    The aim of this work was to model the flow and the transport of a radionuclide in a fractured rock. In order to be able to simulate numerically these phenomena in an industrial context, it has been chosen to apply the homogenization method. The theoretical study has consisted in 1)determining a microscopic model in the fractured medium 2)homogenizing the microscopic model. In this study, two media have been studied: a granitic medium and a calcareous medium. With the obtained experimental data, six possible microscopic models have been deduced for each type of medium and in terms of the choice of the fracturing (thin or thick) and of the relation between the porosities and the delay coefficients. With the homogenization, three types of exchange of pollutant between the fractures and the porous blocks have been revealed: 1)the instantaneous exchange for which the presence of the porous blocks has no influence on the global behaviour of the system 2)the instantaneous exchange for which the porous blocks absorb a non-negligible quantity of pollutant. This influence is only determined by the fractures system 3)the non-instantaneous exchange. These homogenized models have been numerically studied (resolution with the Cast3M code). The simulation of the homogenized models has given results similar to those of the direct models. Moreover, the study of the homogenized diffusion tensor has shown that the homogenized model takes into account the dispersion produced by the fractures system. By all these results, it can be concluded that the risk estimation of the contamination of the fractured rock is possible for long times by the use of homogenized models. (O.M.)

  16. Niagara Falls Storage Site annual environmental report for calendar year 1991, Lewiston, New York. [Niagara Falls Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This document describes the environmental monitoring program at the Niagara Falls Storage Site (NFSS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring at NFSS began in 1981. The site is owned by the US Department of Energy (DOE) and is assigned to the DOE Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a program to decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at NFSS includes sampling networks for radon concentrations in air; external gamma radiation exposure; and total uranium and radium-226 concentrations in surface water, sediments, and groundwater. Additionally, several nonradiological parameters including seven metals are routinely measured in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  17. Maywood Interim Storage Site annual environmental report for calendar year 1991, Maywood, New Jersey. [Maywood Interim Storage Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-01

    This document describes the environmental monitoring program at the Maywood Interim Storage Site (MISS) and surrounding area, implementation of the program, and monitoring results for 1991. Environmental monitoring of MISS began in 1984 when congress added the site to the US Department of Energy's (DOE) Formerly Utilized Sites Remedial Action Program (FUSRAP). FUSRAP is a DOE program to identify and decontaminate or otherwise control sites where residual radioactive materials remain from the early years of the nation's atomic energy program or from commercial operations causing conditions that Congress has authorized DOE to remedy. The environmental monitoring program at MISS includes sampling networks for radon and thoron concentrations in air; external gamma radiation-exposure; and total uranium, radium-226, radium-228, thorium-232, and thorium-230 concentrations in surface water, sediment, and groundwater. Additionally, several nonradiological parameters are measured in surface water, sediment, and groundwater. Monitoring results are compared with applicable Environmental Protection Agency standards, DOE derived concentration guides (DCGs), dose limits, and other requirements in DOE orders. Environmental standards are established to protect public health and the environment.

  18. Artificial radionuclides in oils from the underground nuclear test site (Perm region, Russia)

    International Nuclear Information System (INIS)

    Kalmykov, S.N.; Sapozhnikov, Yu.A.; Goloubov, B.N.

    1998-01-01

    Underground nuclear tests (UNT) are one of the possible sources of radioactive contamination of environment. About 2500 UNTs were carried out both for military and industrial (peaceful) purposes. In the former Soviet Union most of peaceful UNTs were oriented to the needs of the gas- and oil-extracting industry. Earlier it was considered that the holes of UNT are hermetic and the leakage of radionuclides is negligible. In this work nine oil samples from Gezh oil deposit in Perm region of Russia collected from different holes both where the explosion took part and from distant holes were analyzed for 3 H and 14 C and such fission products as 90 Sr and 134,137 Cs. For the determination of gamma-emitting radionuclides the gamma spectrometry with HPGe detector was used. For 90 Sr determination the measurements of Cherenkov radiation generated by daughter 90 Y were carried out with liquid scintillation equipment. It showed that even in the oil samples from the hole where the explosion took place no measurable 134,137 Cs and 90 Sr activities were detected. For 3 H and 14 C determination the oil samples were fractionated by distillation. For each sample 10-12 fractions were taken. Liquid scintillation spectrometry was used for 3 H and 14 C simultaneous determination. It was shown that in all samples the 3 H and 14 C concentrations are higher than the background level and for the hole where the explosion took place reached the value of about 1.3 x 10 5 Bq/L for low boiling fraction (40-750C). The 3 H and 14 C enrichment of oils from distant holes shows that UNT cavities are not hermetic and the radionuclide migration is not negligible. (author)

  19. Underground layout tradeoff study

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the results of a technical and economic comparative study of four alternative underground layouts for a nuclear waste geologic repository in salt. The four alternatives considered in this study are (1) separate areas for spent fuel (SF) and commercial high-level waste (CHLW); (2) panel alternation, in which SF and CHLW are emplaced in adjacent panels of rooms; (3) room alternation, in which SF and CHLW are emplaced in adjacent rooms within each panel; and (4) intimate mixture, in which SF and CHLW are emplaced in random order within each storage room. The study concludes that (1) cost is not an important factor; (2) the separate-areas and intimate-mixture alternatives appear, technically, to be more desirable than the other alternatives; and (3) the selection between the separate-areas and intimate mixture alternatives depends upon future resolution of site-specific and reprocessing questions. 5 refs., 6 figs., 12 tabs

  20. Inventory of geochemical sensors available for monitoring an underground site of nuclear waste repository research pathways for new developments

    International Nuclear Information System (INIS)

    Ignatiadis, I.; Gaucher, E.; Buschaert, S.

    2010-01-01

    Document available in extended abstract form only. The principle of the nuclear waste storage is based on the installation of a whole of robust barriers in order to make safe the secular containment of waste. In many industrial countries deep argillaceous formations are considered as potential host media for high level radioactive wastes. This is because clayey geo-materials have the ability to adsorb a large amount of ions and they possess the low permeability required to slow down the percolations of fluids. Containers with radioactive waste will be also protected with barriers made from porous materials such as bentonite. For the safety assessment of long-term radioactive waste disposals, a critical issue is the continuous disposal monitoring of the repository. In this framework, it is desirable to have non-invasive tools in order to determine in situ some geochemical, thermal and mechanical parameters for the suitable detection of changes that can take place during the life of the underground repository. The major objective of this work is to carry out a detailed inventory of robust geochemical sensor concepts being able to be devoted (after adaptation or development and/or implementation) to the observation and monitoring of the underground components of a nuclear waste storage. These sensors must answer precise specifications related to the requirements and constraints of observation and monitoring of the storage components (architecture, geological environment and associated phenomenology). In addition to the technical aspects, the major constraint seems to be the operation life, which will have to be based on the robustness and the perseverance (durability) of the principle of the sensors. Among the geochemical parameters to be followed, the most significant are: temperature, pH, conductivity, redox potential, the speciation of certain elements, and measurement of H 2 , O 2 , CO 2 and H 2 S. The inventory and the assessment of the currently available

  1. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  2. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  3. Assessment of hydrologic transport of radionuclides from the Rio Blanco underground nuclear test site, Colorado

    International Nuclear Information System (INIS)

    Chapman, J.; Earman, S.; Andricevic, R.

    1996-10-01

    DOE is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations used for nuclear testing. Evaluation of radionuclide transport by groundwater is part of preliminary risk analysis. These evaluations allow prioritization of test areas in terms of risk, provide a basis for discussions with regulators and the public about future work, and provide a framework for assessing site characterization data needs. The Rio Blanco site in Colorado was the location of the simultaneous detonation of three 30-kiloton nuclear devices. The devices were located 1780, 1899, and 2039 below ground surface in the Fort Union and Mesaverde formations. Although all the bedrock formations at the site are thought to contain water, those below the Green River Formation (below 1000 in depth) are also gas-bearing, and have very low permeabilities. The transport scenario evaluated was the migration of radionuclides from the blast-created cavity through the Fort Union Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. This modeling was performed to investigate how the uncertainty in various physical parameters affect radionuclide transport at the site, and to serve as a starting point for discussion regarding further investigation; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values. Given the sparse data, the modeling results may differ significantly from reality. Confidence in transport predictions can be increased by obtaining more site data, including the amount of radionuclides which would have been available for transport (i.e., not trapped in melt glass or vented during gas flow testing), and the hydraulic properties of the formation. 38 refs., 6 figs., 1 tab

  4. On-site interim storage of spent nuclear fuel: Emerging public issues

    International Nuclear Information System (INIS)

    Feldman, D.L.; Tennessee Univ., Knoxville, TN

    1992-01-01

    Failure to consummate plans for a permanent repository or above- ground interim Monitored Retrievable Storage (MRS) facility for spent nuclear fuel has spurred innovative efforts to ensure at-reactor storage in an environmentally safe and secure manner. This article examines the institutional and socioeconomic impacts of Dry Cask Storage Technology (DCST)-an approach to spent fuel management that is emerging as the preferred method of on-site interim spent fuel storage by utilities that exhaust existing storage capacity

  5. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    International Nuclear Information System (INIS)

    Preston, E.L.

    1986-01-01

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management

  6. 241-CX-70, 241-CX-71, and 241-CX-72 underground storage tanks at the strontium semiworks facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the underground storage tanks at the Strontium Semiworks Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. Radioactive material is contained in three underground storage tanks: 241-CX-70, 241-CX-71, and 241-CX-72. Tank 241-CX-70 has been emptied, except for residual quantities of waste, and has been classified as an elementary neutralization tank under the RCRA. Tanks 241-CX-71 and 241-CX-72 contain radioactive and Washington State-only dangerous waste material, but do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the Strontium Semiworks Facility

  7. Subsurface Completion Report for Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Echelard, Tim

    2006-09-01

    Three underground nuclear tests were conducted on Amchitka Island, Alaska, in 1965, 1969, and 1971. The effects of the Long Shot, Milrow, and Cannikin tests on the environment were extensively investigated during and following the detonations, and the area continues to be monitored today. This report is intended to document the basis for the Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin (hereafter referred to as ''Amchitka Site'') subsurface completion recommendation of No Further Remedial Action Planned with Long-Term Surveillance and Maintenance, and define the long-term surveillance and maintenance strategy for the subsurface. A number of factors were considered in evaluating and selecting this recommendation for the Amchitka Site. Historical studies and monitoring data, ongoing monitoring data, the results of groundwater modeling, and the results of an independent stakeholder-guided scientific investigation were also considered in deciding the completion action. Water sampling during and following the testing showed no indication that radionuclides were released to the near surface, or marine environment with the exception of tritium, krypton-85, and iodine-131 found in the immediate vicinity of Long Shot surface ground zero. One year after Long Shot, only tritium was detectable (Merritt and Fuller, 1977). These tritium levels, which were routinely monitored and have continued to decline since the test, are above background levels but well below the current safe drinking water standard. There are currently no feasible means to contain or remove radionuclides in or around the test cavities beneath the sites. Surface remediation was conducted in 2001. Eleven drilling mud pits associated with the Long Shot, Milrow and Cannikin sites were remediated. Ten pits were remediated by stabilizing the contaminants and constructing an impermeable cap over each pit. One pit was remediated by removing all of the contaminated mud

  8. Challenges in defining a radiologic and hydrologic source term for underground nuclear test centers, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Smith, D.K.

    1995-06-01

    The compilation of a radionuclide inventory for long-lived radioactive contaminants residual from nuclear testing provides a partial measure of the radiologic source term at the Nevada Test Site. The radiologic source term also includes potentially mobile short-lived radionuclides excluded from the inventory. The radiologic source term for tritium is known with accuracy and is equivalent to the hydrologic source term within the saturated zone. Definition of the total hydrologic source term for fission and activation products that have high activities for decades following underground testing involves knowledge and assumptions which are presently unavailable. Systematic investigation of the behavior of fission products, activation products and actinides under saturated or Partially saturated conditions is imperative to define a representative total hydrologic source term. This is particularly important given the heterogeneous distribution of radionuclides within testing centers. Data quality objectives which emphasize a combination of measurements and credible estimates of the hydrologic source term are a priority for near-field investigations at the Nevada Test Site

  9. Site characterization data for Solid Waste Storage Area 6

    International Nuclear Information System (INIS)

    Boegly, W.J. Jr.

    1984-12-01

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic conditions in SWSA-6 for use in further studies related to assessing compliance with 5820.2. Burial operations in SWSA-6 began in 1969 on a limited scale, and full operation was initiated in 1973. Since that time, ca. 29,100 m 3 of low-level waste containing ca. 251,000 Ci of activity has been buried in SWSA-6. No transuranic waste has been disposed of in SWSA-6; rather this waste is retrievably stored in SWSA-5. Estimates of the remaining usable space in SWSA-6 vary; however, in 1982 sufficient useful land was reported for about 10 more years of operation. Analysis of the information available on SWSA-6 indicates that more information is required to evaluate the surface water hydrology, the geology at depths below the burial trenches, and the nature and extent of soils within the site. Also, a monitoring network will be required to allow detection of potential contaminant movement in groundwater. Although these are the most obvious needs, a number of specific measurements must be made to evaluate the spatial heterogeneity of the site and to provide background information for geohydrological modeling. Some indication of the nature of these measurements is included

  10. SiteChar – Methodology for a Fit-for-Purpose Assessment of CO2 Storage Sites in Europe

    Directory of Open Access Journals (Sweden)

    Delprat-Jannaud F.

    2015-04-01

    Full Text Available The FP7-funded SiteChar project examined the entire CO2 geological storage site characterisation process, from the initial feasibility studies through to the final stage of application for a CO2 storage permit based on criteria defined by the relevant European legislation. The SiteChar workflow for CO2 geological storage site characterisation provides a description of all elements of a site characterisation study, as well as guidance to streamline the site characterisation process and make sure that the output covers the aspects mentioned in the European Community (EC Storage Directive. Five potential European storage sites, representative of prospective geological contexts, were considered as test sites for the research work: a North Sea multi-store site (hydrocarbon field and aquifer offshore Scotland; an onshore aquifer in Denmark; an onshore gas field in Poland; an aquifer offshore in Norway; and an aquifer in the Southern Adriatic Sea. This portfolio combines complementary sites that allowed to encompass the different steps of the characterisation workflow. A key innovation was the development of internal ‘dry-run’ permit applications at the Danish and Scottish sites and their review by relevant regulatory authorities. This process helped to refine the site characterisation workflow, and aimed to identify remaining gaps in site-specific characterisation, needed to secure storage permits under the EC Storage Directive as implemented in ‘host’ Member States. SiteChar considered the important aspect of the public awareness and public opinions of these new technologies, in parallel to technical issues, on the onshore Polish and offshore Scottish sites. A new format to assist public opinion-forming processes was tested involving a small sample of local communities. Generic as well as site-specific information was made available to the general and local public via the internet and at information meetings. These exercises provide insight

  11. Corrective Action Investigation Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada, Revision No. 1 (9/2001)

    International Nuclear Information System (INIS)

    2000-01-01

    This corrective action investigation plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 262 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 262 consists of nine Corrective Action Sites (CASs): Underground Storage Tank (25-02-06), Septic Systems A and B (25-04-06), Septic System (25-04-07), Leachfield (25-05-03), Leachfield (25-05-05), Leachfield (25-05-06), Radioactive Leachfield (25-05-08), Leachfield (25-05-12), and Dry Well (25-51-01). Situated in Area 25 at the Nevada Test Site (NTS), sites addressed by CAU 262 are located at the Reactor-Maintenance, Assembly, and Disassembly (R-MAD); Test Cell C; and Engine-Maintenance, Assembly, and Disassembly (E-MAD) facilities. The R-MAD, Test Cell C, and E-MAD facilities supported nuclear rocket reactor and engine testing as part of the Nuclear Rocket Development Station. The activities associated with the testing program were conducted between 1958 and 1973. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern (COPCs) for the site include oil/diesel-range total petroleum hydrocarbons, volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, strontium-90, and tritium. The scope of the corrective action field investigation at the CAU will include the inspection of portions of the collection systems, sampling the contents of collection system features in situ of leachfield logging materials, surface soil sampling, collection of samples of soil underlying the base of inlet and outfall ends of septic tanks and outfall ends of diversion structures and distribution boxes, collection of soil samples from biased or a combination of

  12. Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Graves, Christopher R.; Mogensen, Mogens Bjerg

    2015-01-01

    Electricity storage is needed on an unprecedented scale to sustain the ongoing transition of electricity generation from fossil fuels to intermittent renewable energy sources like wind and solar power. Today pumped hydro is the only commercially viable large-scale electricity storage technology......-scale electricity storage with a round-trip efficiency exceeding 70% and an estimated storage cost around 3 b kW-1 h-1, i.e., comparable to pumped hydro and much better than previously proposed technologies...

  13. Modern radionuclide content of the underground water and soils near the epicentral zone of cratering explosion at the Semipalatinsk test site

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.K.; Kvasnikova, E.V. [Institute of Global Climate and Ecology, Moscow (Russian Federation)

    2004-07-01

    The investigation wells for a control of the underground water contamination were bored after the cratering explosions at the Semipalatinsk Test Site, now they are restored partially. The analysis of the retrospective information of the Institute of Global Climate and Ecology (Moscow, Russia) give a possibility to choose wells and terrains for the successful study of radionuclide migration with the underground water. The epicentral zone, the crater and the territory with radius 1,5 km around the underground cratering explosion '1003' were investigated under the ISTC project K-810. Underground water and soil samples were taken at the two expeditions of 2003. The chemical extraction methods taking into account the water mineral composition, gamma-spectrum methods, methods of the liquid scintillation spectrometry and methods of alpha-spectrometry were used. The modern radionuclide content ({sup 3}H, {sup 90}Sr, {sup 137}Cs, {sup 239+240}Pu, {sup 241}Am) of the underground water will be presented and compare with a radionuclide content of soils around crater. The retrospective information will be added by these modern data. The vertical radionuclide distribution in soils will be presented. (author)

  14. Modern radionuclide content of the underground water and soils near the epicentral zone of cratering explosion at the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Gordeev, S.K.; Kvasnikova, E.V.

    2004-01-01

    The investigation wells for a control of the underground water contamination were bored after the cratering explosions at the Semipalatinsk Test Site, now they are restored partially. The analysis of the retrospective information of the Institute of Global Climate and Ecology (Moscow, Russia) give a possibility to choose wells and terrains for the successful study of radionuclide migration with the underground water. The epicentral zone, the crater and the territory with radius 1,5 km around the underground cratering explosion '1003' were investigated under the ISTC project K-810. Underground water and soil samples were taken at the two expeditions of 2003. The chemical extraction methods taking into account the water mineral composition, gamma-spectrum methods, methods of the liquid scintillation spectrometry and methods of alpha-spectrometry were used. The modern radionuclide content ( 3 H, 90 Sr, 137 Cs, 239+240 Pu, 241 Am) of the underground water will be presented and compare with a radionuclide content of soils around crater. The retrospective information will be added by these modern data. The vertical radionuclide distribution in soils will be presented. (author)

  15. Bure's underground research laboratory: general framework, objectives, siting process and schedule of the URL project

    International Nuclear Information System (INIS)

    Gaussen, J.L.

    2001-01-01

    Bure URL project is one of the components of the French research program dedicated to the study of HLLLW (High Level Long Lived Radioactive Waste) disposal in geologic repository within the framework of the 1991 Radioactive Waste Act. Pursuant to the said act, the objective of the URL project is to participate in the ''evaluation of options for retrievable or non- retrievable disposal in deep geologic formations''. More precisely, the goal of this URL, which is situated 300 km East of Paris, is to gain a better knowledge of a site capable of hosting a geologic repository. (author)

  16. Work plan for defining a standard inventory estimate for wastes stored in Hanford Site underground tanks

    International Nuclear Information System (INIS)

    Hodgson, K.M.

    1996-01-01

    This work plan addresses the Standard Inventory task scope, deliverables, budget, and schedule for fiscal year 1997. The goal of the Standard Inventory task is to resolve differences among the many reported Hanford Site tank waste inventory values and to provide inventory estimates that will serve as Standard Inventory values for all waste management and disposal activities. These best-basis estimates of chemicals and radionuclides will be reported on both a global and tank-specific basis and will be published in the Tank Characterization Database

  17. CCS acceptability: social site characterization and advancing awareness at prospective storage sites in Poland and Scotland

    International Nuclear Information System (INIS)

    Brunsting, Suzanne; Mastop, Jessanne; Kaiser, Marta; Zimmer, Rene; Shackley, Simon; Mabon, Leslie; Howell, Rhys

    2015-01-01

    This paper summarizes the work on the social dimension conducted within the EU FP7 SiteChar project. The most important aim of the research was to advance public awareness and draw lessons for successful public engagement activities when developing a CO 2 storage permit application. To this end, social site characterization (e.g. representative surveys) and public participation activities (focus conference) were conducted at two prospective Carbon Capture and Storage (CCS) sites: an onshore site in Poland and an offshore site in Scotland. The research consisted of four steps over a time period of 1.5 year, from early 2011 to mid-2012. The first step consisted of four related qualitative and quantitative research activities to provide a social characterization of the areas: desk research, stakeholder interviews, media analyses, and a survey among representative samples of the local community. The aim was to identify: - stakeholders or interested parties; - factors that may drive their perceptions of and attitudes towards CCS. Results were used to as input for the second step, in which a new format for public engagement named 'focus conferences' was tested at both sites involving a small sample of the local community. The third step consisted of making available generic as well as site-specific information to the general and local public, by: - setting up a bilingual set of information pages on the project web site suitable for a lay audience; - organizing information meetings at both sites that were open to all who took interest. The fourth step consisted of a second survey among a new representative sample of the local community. The survey was largely identical to the survey in step 1 to enable the monitoring of changes in awareness, knowledge and opinions over time. Results provide insight in the way local CCS plans may be perceived by the local stakeholders, how this can be reliably assessed at early stage without raising unnecessary concerns, and how

  18. Hazelwood Interim Storage Site annual site environmental report: Calendar year 1986

    International Nuclear Information System (INIS)

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Hazelwood Interim Storage Site (HISS), a US Department of Energy (DOE) facility located in the City of Hazelwood, Missouri. Originally known as the Cotter Corporation site on Latty Avenue in Hazelwood, the HISS is presently used for the storage of soils contaminated with residual radioactive material. As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring program are being conducted at the site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the HISS measures radon gas concentrations in air; external gamma radiation levels; and uranium, radium, and thorium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the scenario described in this report, the maximally exposed individual at the HISS would receive an annual external exposure approximately equivalent to 2% of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles. The cumulative dose to the population within an 80-km (50-mi) radius of the HISS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the HISS is in compliance with the DOE radiation protection standard. 11 refs., 6 figs., 10 tabs

  19. Unsaturated zone investigation at the radioactive waste storage facility site

    Energy Technology Data Exchange (ETDEWEB)

    Skuratovic, Zana; Mazeika, Jonas; Petrosius, Rimantas; Jakimaviciute-Maseliene, Vaidote [Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius (Lithuania); Klizas, Petras; Mokrik, Robert [Vilnius University, M.K. Ciurlionio St. 21/27, LT-03101 Vilnius (Lithuania)

    2014-07-01

    Unsaturated zone is an important part of water circulation cycle and an integral part of many hydrological and hydrogeological factors and processes. The soils of unsaturated zone are regarded as the first natural barrier to a large extent able to limit the spread of contaminants. Nuclear waste disposal site (Maisiagala radioactive waste storage facility site) was analysed in terms of the moisture movement through the unsaturated zone. Extensive data sets of the hydraulic properties, water content and isotope composition have been collected and summarized. The main experimental and observational tasks included the collection of soil samples; determination of the physical properties and the hydraulic conductivity values of soil samples, moisture extraction from the soil sample for isotopic studies; observation of the groundwater dynamics at the Maisiagala piezometer; groundwater sampling for isotopic analysis ({sup 3}H, {sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H ); and monthly precipitation isotopic analysis. Distribution features of globally widespread radionuclide tritium ({sup 3}H) and the water molecule tracer isotopes in precipitation, unsaturated zone soil moisture profiles and groundwater were determined. It was used the well-known unsaturated flow and transport model of HYDRUS-1D (Simunek et al., 2008). In this study, van Genuchten equations for the retention and conductivity estimations have been used. The retention characteristics and van Genuchten model parameters were estimated internally by HYDRUS based on the empirical equations involved in the program. Basic inputs of the tritium transport simulation are the tritium input function and meteorological variables (precipitation and potential evapotranspiration). In order to validate the representativeness of the hydraulic parameters, the model has been used to estimate the tritium distribution in the unsaturated zone, which properly represents the dynamics of the unsaturated zone. The uniformity of the daily

  20. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement

  1. The transition from monopoly to competition on natural gas markets in europe. The strategic stakes of underground storage

    International Nuclear Information System (INIS)

    Esnault, B.

    2000-01-01

    The liberalization of the natural gas market permits to the actors the use of the existing distribution networks, which remain managed by ancient monopolies. To manage efficiently a variable demand in spite of the importations and the bottleneck on canalizations, the monopolies have to install storages near the consumption areas. Meanwhile the storages are a rare resource owned by the historical operators, thus it reinforces their market power. The european directive proposes to define an access right to the storage. What kind of legislation should we applied? This thesis analyses the process of deregulation and the storage needs of the different actors. Propositions of regulations are presented. (A.L.B.)

  2. Element Content of Surface and Underground Water Sources around a Cement Factory Site in Calabar, Nigeria

    Directory of Open Access Journals (Sweden)

    Edmund Richard Egbe

    2017-01-01

    Full Text Available Background: Cement production is associated with heavy metal emissions and environmental pollution by cement dust. The degree of contamination of drinking water sources by major and trace elements present in cement dust generated by united cement factory (UNICEM is still uncertain. This study estimated the element content of ground and surface water samples (hand-dug wells, boreholes and streams around the factory site to determine the impact of cement dust exposure on the water levels of these elements. Methods: This study was conducted at UNICEM at Mfamosing, Akamkpa local government area, Cross River State, Nigeria. Drinking water samples (5 from each location were collected from the cement factory quarry site camp, 3 surrounding communities and Calabar metropolis (45 km away from factory serving as control. The lead (Pb, copper (Cu, manganes (Mn, iron (Fe, cadmium (Cd, selenium (Se, chromium (Cr, zinc (Zn and arsenic (As levels of samples were determined using Atomic Absorption Spectrometry (AAS. Data were analyzed using ANOVA and LSD post hoc at P = 0.05. Results: As and Pb content of samples from camp were above the WHO recommendations of 0.01mg/l and 0.01mg/l respectively. Chromium and cadmium content of all water samples were above and others below WHO recommendations. Water levels of Mn, Fe, Zn, As, Se, Cd, Ca and Si were significantly elevated (though below WHO recommendations in camp than other locations (P<0.05. Conclusion: Production of cement results in As, Pb, Cr and cd contamination of drinking water sources near the factory. Treatment of all drinking water sources is recommended before public use to avert deleterious health consequences.

  3. Surface motion near underground nuclear explosions in desert alluvium Operation Nougat I, Area 3, Nevada Test Site

    International Nuclear Information System (INIS)

    Perret, W.R.

    1978-05-01

    During Operation Nougat I, which was conducted in late 1961 and the first half of 1962, Sandia Laboratories measured surface motion in the vicinity of all contained underground nuclear explosions conducted by the Los Alamos Scientific Laboratory in Area 3 of the Nevada Test Site. This report presents and analyses most of the data derived from that study. Propagation velocities in the desert alluvium, 4440 ft/sec, and underlying tuff, 6020 ft/sec, are typical of those derived from later measurements. Motion attenuation data exhibit considerable scatter, in part because of early measurement and data reduction techniques but primarily because of differences in the characteristics of the geologic media which had not then been recognized. However, regression fits to the scaled data show attenuation of scaled acceleration at a rate 35% greater than that observed for Merlin event data (Merlin was conducted later in Area 3). The attenuation rate for particle velocity data from Nougat I events was 47% less than that for Merlin data, and the Nougat I scaled displacement data attenuation rate was 87% less than that for Merlin data. Analysis of data from a vertical string of gages extending to the surface above the Mink explosion has established a significant difference between normal spallation above contained explosions in competent rock and the reaction of uncemented alluvium to similar explosive loading

  4. Emissions characterization in the contained underground demilitarization laboratory at Nevada Test Site

    International Nuclear Information System (INIS)

    Velsko, C A; Watkins, B E; Pruneda, C O; Lipkin, J

    1999-01-01

    The US Departments of Defense and Energy (DOD and DOE) have established a Joint Demilitarization Technology (JDT) Program to demonstrate and validate technologies for resource recovery and recycling, as well as alternative destruction or treatment technologies as appropriate to specific conventional stockpile segments. X-Tunnel at the DOE Nevada Test Site is a facility for emissions characterization from detonation of conventional munitions and burning of rocket motors. We conducted seven detonations of M107, high explosive 155-mm projectiles, four from December 1996 through March 1997 and three during July and August 1999. We also completed three burns of rocket motors from May through June 1997.Standard (DOD) procedures for open detonation (DOD) of ordinance and open burn (OB) of rocket motors were followed in order to establish baseline emissions. Measurements inside the chamber included pressures, temperatures, relative humidity and gas concentrations. Grab samples were collected f or gas, organic, metal and particulate analyses. Results and implications for developing alternative destruction techniques will be presented

  5. Characterizing Excavation Damaged Zone and Stability of Pressurized Lined Rock Caverns for Underground Compressed Air Energy Storage

    Science.gov (United States)

    Kim, Hyung-Mok; Rutqvist, Jonny; Jeong, Ju-Hwan; Choi, Byung-Hee; Ryu, Dong-Woo; Song, Won-Kyong

    2013-09-01

    In this paper, we investigate the influence of the excavation damaged zone (EDZ) on the geomechanical performance of compressed air energy storage (CAES) in lined rock caverns. We conducted a detailed characterization of the EDZ in rock caverns that have been excavated for a Korean pilot test program on CAES in (concrete) lined rock caverns at shallow depth. The EDZ was characterized by measurements of P- and S-wave velocities and permeability across the EDZ and into undisturbed host rock. Moreover, we constructed an in situ concrete lining model and conducted permeability measurements in boreholes penetrating the concrete, through the EDZ and into the undisturbed host rock. Using the site-specific conditions and the results of the EDZ characterization, we carried out a model simulation to investigate the influence of the EDZ on the CAES performance, in particular related to geomechanical responses and stability. We used a modeling approach including coupled thermodynamic multiphase flow and geomechanics, which was proven to be useful in previous generic CAES studies. Our modeling results showed that the potential for inducing tensile fractures and air leakage through the concrete lining could be substantially reduced if the EDZ around the cavern could be minimized. Moreover, the results showed that the most favorable design for reducing the potential for tensile failure in the lining would be a relatively compliant concrete lining with a tight inner seal, and a relatively stiff (uncompliant) host rock with a minimized EDZ. Because EDZ compliance depends on its compressibility (or modulus) and thickness, care should be taken during drill and blast operations to minimize the damage to the cavern walls.

  6. Strategic use of the underground for an energy mix plan, synergies among CO2 and CH4 Geological Storage and Geothermal Energy: Italian Energy review and Latium case study

    Science.gov (United States)

    Procesi, M.; Cantucci, B.; Buttinelli, M.; Armezzani, G.; Quattrocchi, F.

    2012-04-01

    Since the world-wide energy demand has been growing so much in the last years, it is necessary to develop a strategic mix-energy plan to supply low GHG (GreenHouseGas) emissions energy and solve the problem of CO2 emission increasing. A recent study published by European Commission shows that, if existing trends continue, by 2050 CO2 emissions will be unsustainably high: 900-1000 parts per million by volume. The European Commission in 2007 underline the necessity to elaborate, at European level, a Strategic Energy Technology Plan focused on non-carbon or reduced-carbon sources of energy, as renewable energies, CO2 capture and storage technologies, smart energy networks and energy efficiency and savings. Future scenarios for 2030 elaborated by the International Energy Agency (IEA) shows as a mix energy plan could reduce the global CO2 emissions from 27Gt to 23 Gt (about 15%). A strategic use of the underground in terms of: - development of CCS (Carbon dioxide Capture and Storage) associated to fossil fuel combustion; - increase of CH4 geological storage sites; - use of renewable energies as geothermic for power generation; could open a new energy scenario, according to the climate models published by IPCC. Nowadays CCS market is mainly developed in USA and Canada, but still not much accounted in Europe. In Italy there aren't active CCS projects, even if potential areas have been already identified. Many CH4 storage sites are located in Northern America, while other are present in Europe and Italy, but the number of sites is limited despite the huge underground potentiality. In Italy the power generation from geothermal energy comes exclusively from Tuscany (Larderello-Travale and Mt. Amiata geothermal fields) despite the huge potentiality of other regions as Latium, Campania and Sicily (Central and South Italy). The energy deficit and the relevant CO2 emissions represent a common status for many Italian regions, especially for the Latium Region. This suggests that a

  7. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  8. Maywood Interim Storage Site: Annual site environmental report, Maywood, New Jersey, Calendar year 1986: Formerly Utilized Sites Remedial Action Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-06-01

    During 1986, the environmental monitoring program was continued at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. The MISS is presently used for the storage of low-level radioactively contaminated soils. The MISS is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). As part of the decontamination research and development project authorized by Congress under the 1984 Energy and Water Appropriations Act, remedial action and environmental monitoring programs are being conducted at this site and at vicinity properties by Bechtel National, Inc., Project Management Contractor for FUSRAP. The monitoring program at the MISS measures thoron and radon gas concentrations in air; external gamma radiation levels; and thorium, uranium, and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/y) and to assess the potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, the maximally exposed individual would receive an annual external exposure approximately equivalent to 1% of the DOE radiation protection standard of 100 mrem/y. This exposure is less than the exposure a person would receive during a round-trip flight from New York to Los Angeles (due to greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the MISS that would result from radioactive materials present at the site would be indistinguishable from the dose the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the MISS is in compliance with the DOE radiation protection standard. 16 refs., 8 figs., 15 tabs.

  9. Recycling of underground storage tanks: a way-out to the risks; Reciclagem de tanques de combustiveis: solucoes para os riscos envolvidos

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Cristiano J.P.; Santos, Joao David [Companhia Brasileira de Petroleo Ipiranga, Porto Alegre, RS (Brazil)

    2004-07-01

    In petrol stations, the removal of an underground storage tank happens when it becomes unnecessary or inappropriate. Among the several reasons which motivate this removal, we can mention the environmental license process. According to the Resolution CONAMA 273/00, all the petrol stations are subjected to the previous, installation and operation licenses (including the ones in operation). This will cause the substitution of a large number of tanks all over Brazil along the following years. However, so that the license process can be successful, it is necessary that the environmental impacts caused by its implementation are properly managed, avoiding safety problems and providing that there won't be any damage to the environment. This work shows alternatives for the recycling of the tank, the destination of residue and the maintenance of safety all over the process. (author)

  10. The underground heat storage for solar-assisted district heating in Neckarsulm. First measuring results; Der Erdsonden-Waermespeicher fuer die solarunterstuetzte Nahwaermeversorgung in Neckarsulm. Erste Messergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Seiwald, H.; Hahne, E. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-12-31

    A solar-assisted district heating system with seasonal underground heat storage is currently under construction in Neckarsulm (Baden-Wurttemberg). In the new residential area approximately 1,300 flats are going to be built during the next years. The overall energy demand (hot water and space heating) is supposed to be covered by 50% with solar energy. During the first phase the project will be subsidised in the frame of the BMBF programme `Solarthermie 2000, Teilprogramm III`. A solar plant consisting of 2,700 square metres of collectors, a buffer tank (100 cubic metre) and an underground heat storage with a volume of approx. 20,000 cubic metres will be constructed by the end of 1998. It will be the first plant in Germany where thermal energy generated of solar energy is stored at high temperatures (up to 80 C) directly in the earth and utilised without a heat pump. (orig.) [Deutsch] In Neckarsulm (Baden-Wuerttemberg) befindet sich derzeit eine solar unterstuetzte Nahwaermeversorgung mit saisonalem Endsonden-Waermespeicher im Aufbau. Im Neubaugebiet Amorbach werden in den naechsten Jahren rund 1300 Wohneinheiten entstehen, deren Gesamtwaermebedarf (Warmwasser und Raumheizung) zu rund 50% mit Sonnenenergie gedeckt werden soll. In der ersten Phase wird das Projekt im Rahmen des BMBF-Programms `Solarthermie 2000, Teilprogramm III` gefoerdert. Bis Ende 1998 wird eine Solaranlage bestehend aus 2.700 m{sup 2} Kollektoren, einem Pufferspeicher (100 m{sup 3}) und einem Endsonden-Waermespeicher mit einem Volumen von ca. 20.000 m{sup 3} erstellt. Damit wird in Deutschland erstmalig eine Anlage realisiert, bei der solar erzeugte Waerme auf hohem Temperaturniveau (bis zu 80 C) direkt im Erdreich gespeichert und ohne Waermepumpe genutzt werden soll. (orig.)

  11. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  12. Hazelwood interim storage site: Annual site environmental report, Hazelwood, Missouri, Calendar Year 1988

    International Nuclear Information System (INIS)

    1989-04-01

    The monitoring program at Hazelwood Interim Storage Site (HISS) measures radon concentrations in air; external gamma radiation levels; and uranium, radium, and thorium, concentrations in surface water, groundwater and sediment. To verify that the site is in compliance with the DOE radiation protection standard (100 mrem/yr) and assess its potential effect or public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the scenario described in this report, this hypothetical individual at HISS would receive an annual external exposure approximately equivalent to 1 percent of the DOE radiation protection standard. This exposure is less than the exposure a person receives during a flight from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of HISS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. The results of 1988 monitoring show that HISS is in compliance with the DOE radiation protection standard. 15 refs., 16 figs., 13 tabs

  13. Storage of radioactive wastes in geological formations. Technical criteria for site selection. Report by the work-group chaired by Professor Goguel

    International Nuclear Information System (INIS)

    Goguel, Jean; Candes, Pierre; Izabel, Cecile; Autran, Albert; Barthoux, Alain; Baudin, Guy; Devillers, Christian; Habib, Pierre; Lafuma, Jacques; Lefevre, Jean; Peaudecerf, Pierre; Pradel, Jacques; Salle, Claude; Treuil, Michel; Lebrun, Patrick; Tissier, Marie-Solange

    1985-06-01

    This document is the result of a prospective mission on the long term storage of radioactive wastes containing long-period emitters (wastes of B and C categories), and notably on a definitive storage in deep continental geological formations. After a presentation of hypotheses (brief description of the storage concept, main safety principles, objectives in terms of radiological safety, safety options, time-related considerations), the authors addressed the following issues: safety before closing during the exploitation period, and safety after closure (after backfilling and sealing of all underground cavities). For the first issue, they discuss the impacts of works on safety and thermal effects during exploitation. For the second issue, they discuss the site natural hydro-geological context, the disturbances brought by the storage (access of water to the storage, and return of water into the biosphere), and the influence of external factors (geological phenomena, human intrusion). Then, the authors make recommendations regarding reconnaissance programs and studies for the selection and qualification of a site. They finally propose technical criteria and main recommendations for site selection. Appendices propose a list of hearings, a presentation of the storage concept, a report on the impact of works, a report on the presence of mineralisation in granite massifs, reports on radiological consequences of intrusions in salt formations and in granite massif containing storage of radioactive wastes or vitrified wastes, a report on the characterization of unsteady parts of the French continental construction, a presentation of the evolution of climate and icings, and a study of seismic movements in the case of deep storages

  14. GIS Analysis of Available Data to Identify regions in the U.S. Where Shallow Ground Water Supplies are Particularly Vulnerable to Contamination by Releases to Biofuels from Underground Storage Tanks

    Science.gov (United States)

    GIS analysis of available data to identify regions in the U.S. where shallow ground water supplies are particularly vulnerable to contamination by releases of biofuels from underground storage tanks. In this slide presentation, GIS was used to perform a simple numerical and ...

  15. Structural analysis within the Rožná and Olší uranium deposits (Strážek Moldanubicum) for the estimation of deformation and stress conditions of underground gas storage

    Czech Academy of Sciences Publication Activity Database

    Ptáček, Jiří; Melichar, R.; Hájek, Antonín; Koníček, Petr; Souček, Kamil; Staš, Lubomír; Kříž, P.; Lazárek, J.

    2013-01-01

    Roč. 10, č. 2 (2013), s. 237-246 ISSN 1214-9705 Institutional support: RVO:68145535 Keywords : structural analysis * deformation * stress * underground gas storage Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_13_Ptacek_237-246.pdf

  16. Mechanical stability of a salt cavern submitted to rapid pressure variations: Application to the underground storage of natural gas, compressed air and hydrogen

    International Nuclear Information System (INIS)

    Djizanne-Djakeun, Hippolyte

    2014-01-01

    Salt caverns used for the underground storage of large volumes of natural gas are in high demand given the ever-increasing energy needs. The storage of renewable energy is also envisaged in these salt caverns for example, storage of compressed air and hydrogen mass storage. In both cases, salt caverns are more solicited than before because they are subject to rapid injection and withdrawal rates. These new operating modes raise new mechanical problems, illustrated in particular by sloughing, and falling of overhanging blocks at cavern wall. Indeed, to the purely mechanical stress related to changes in gas pressure variations, repeated dozens of degrees Celsius of temperature variation are superimposed; causes in particular during withdrawal, additional tensile stresses whom may lead to fractures at cavern wall; whose evolution could be dangerous. The mechanical behavior of rock salt is known: it is elasto-viscoplastic, nonlinear and highly thermo sensitive. The existing rock salt constitutive laws and failures and damages criteria have been used to analyze the behavior of caverns under the effects of these new loading. The study deals with the thermo mechanics of rocks and helps to analyze the effects of these new operations modes on the structural stability of salt caverns. The approach was to firstly design and validate a thermodynamic model of the behavior of gas in the cavern. This model was used to analyze blowout in gas salt cavern. Then, with the thermo mechanical coupling, to analyze the effects of rapid withdrawal, rapid injection and daily cycles on the structural stability of caverns. At the experimental level, we sought the optimal conditions to the occurrence and the development of cracks on a pastille and a block of rock salt. The creep behavior of rock salt specimens in triaxial extension also was analyzed. (author)

  17. Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1980-01-01

    This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography

  18. Geo-science aims of underground exploration of the Gorleben salt mine

    International Nuclear Information System (INIS)

    Langer, M.; Venzlaff, H.

    1987-01-01

    The measures taken are explained separately, according to the technical areas geology/petrography - geophysics - engineering geology/geotechnology - geo-chemistry. The results of the underground exploration are used directly to produce documents for the planning process, securing proof and the final storage planning (specific site mine dimensions, analysis of accidents, storage strategies). After completion of underground exploration, geoscience information on the suitability of the salt mine at Gorleben will be available in connection with a storage concept agreed between the geo-technologists and the mining engineers. (orig.) [de

  19. Report of working committee 1 ''exploration, production, treatment and underground storage of natural gas''; Rapport du comite de travail 1 ''exploration, production, traitement et stockage souterrain du gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    Rekdal, Ottar

    2000-07-01

    This report describes the activities of Working Committee 1 during the triennium 1997 - 2000. The first part of the report gives an overview of the current situation world-wide within the basic activities of the committee, i.e. exploration, production, treatment and underground storage of natural gas. In the second part of the report analyses of three prioritized topics important to the industry are described: - Improving the performance of existing gas storages; - Use of 3-D seismic data in exploration, production and underground storage. - Development of small-scale offshore gas fields. The report will be presented during the WOC 1 sessions at the World Gas Conference 2000, together with papers selected by the committee. Other relevant papers will be presented during the poster session. Furthermore, the committee will organize a round table session addressing reductions of greenhouse gas emissions along the gas chain. Representatives from industry, environmental organisations and politicians will take part in this round table discussion. (author)

  20. Fuel Assemblies Thermal Analysis in the New Spent Fuel Storage Facility at Inshass Site

    International Nuclear Information System (INIS)

    Khattab, M.; Mariy, Ahmed

    1999-01-01

    New Wet Storage Facility (NSF) is constructed at Inshass site to solve the problem of spent fuel storage capacity of ETRR-1 reactor . The Engineering Safety Heat Transfer Features t hat characterize the new facility are presented. Thermal analysis including different scenarios of pool heat load and safety limits are discussed . Cladding temperature limit during handling and storage process are specified for safe transfer of fuel

  1. The dry spent RBMK fuel cask storage site at the Ignalina NPP in Lithuania

    International Nuclear Information System (INIS)

    Penkov, V.V.; Diersch, R.

    1999-01-01

    At present, there are about 15,000 spent RBMK fuel assemblies stored in the water pools near the reactors at the Ignalina Nuclear Power Plant (INPP). Part of them are cut in two bundles and stored in standardized baskets in the pools. Each basket is loaded with 102 bundles. For long-term interim storage of this fuel, it was decided to use dry storage in casks. For this reason, the total activity to be stored is split into individual units (casks). Each cask represents a closed and independent safety system, fulfilling all safety-relevant requirements for both normal operational and hypothetical accidental conditions. The main safety relevant features of the storage cask system are: (1) Inherent safety system; (2) Double barrier system; (3) Passive cooling by natural convection; (4) Safety against accidents. The cask dry storage system is a cost effective and multi-functional system for storage, transport after the operation time and final disposal under consideration of additional protective elements. From an economical point of view, cask storage has a number of advantages. Two cask types have been intended for the INPP storage site: (1) The CASTOR RBMK cask made of ductile cast iron; (2) The CONSTOR RBMK sandwich cask made of an inner and outer steel shell and reinforced heavy concrete. The CASTOR RBMK and the CONSTOR RBMK casks are designed to withstand severe storage site accidents and with help of impact limiters - to fulfil the IAEA test criteria for type B(U)F packages. The INPP spent RBMK fuel storage site is designed as an open air storage for an operational time of 50 years. The casks are arranged on the concrete storage pad. The site is equipped with a crane for cask handling and technological buildings and security systems. The safety analyses for fuel and cask handling and for cask handling and for cask technology at the site have been made and accepted by the Lithuanian Competent Authority. (author)

  2. The swelling of clays and its effects on underground storage works; Le Gonflement des argiles et ses effets sur les ouvrages souterrains de stockage

    Energy Technology Data Exchange (ETDEWEB)

    Gaombalet, J

    2004-03-15

    The aim of this work is to study the swelling of clays and more generally the clayey media in relation to storage. Different types of clays, natural or reworked, have been studied in a rheological point of view, with the aim to result in behavior laws allowing to reproduce some identified phenomena. The first part of this work is a presentation of the concept of geological underground storage. The second part deals with clays. They are studied at a microscopic level and their macroscopic behavior are presented too. In the third part, the equations of the couplings: mechanics/transport in the porous media in general and applied to clays are formulated. Three types of clays have particularly been studied: a stiff clay, a plastic clay and a reworked clay. The following part deals with the swelling of clays. The analysis carried out through a bibliographical study has led us to propose a behavior law for the swelling-retirement. This part concerns essentially the mechanics. The behavior model, which integrates the swelling, involves the concentration of the ions present in solution in the interstitial water. Concerning the transport, of water or ions, the research of coherent models have led us to revise some models described in the second part and concerning the transport of solutions in porous media. The last part concerns the computerized simulation. It begins by a brief description of the computer code. We show how the equations described in the work are dealt with in the computer code. At last, some storage applications (computerized simulation) are given. (O.M.)

  3. Approche économique de l'exploration des stockages souterrains de gaz en nappe aquifère Economic Approach to Exploration for Underground Gas Storage Facilities in Aquifers

    Directory of Open Access Journals (Sweden)

    Colonna J.

    2006-11-01

    Full Text Available Dans le cadre de la recherche des stockages souterrains de gaz, le Département Réservoirs Souterrains de Gaz de France est amené à établir un programme d'exploration destiné à sélectionner définitivement, et au moindre coût, les structures capables de satisfaire la demande. Cette sélection passe par une estimation des probabilités de rejet ou d'abandon affectant les différentes structures susceptibles de donner lieu à une exploration. Il faut ensuite constituer le programme d'exploration de chacun des sites retenus après cet examen; ce programme consiste en une liste d'opérations (forage, sismique, essai hydraulique, forage à faible profondeur etc. qui mettront le plus vite possible en évidence : - d'une part les défauts; - d'autre part les principales caractéristiques techniques de la structure étudiée. La règle est d'atteindre la décision sur la faisabilité du site au stockage avec le moindre coût d'exploration. Pour ce faire, une analyse détaillée des causes potentielles d'abandon (recensement des défauts permet de choisir les opérations à effectuer, et d'associer à chacun des défauts recensés, l'opération ou l'ensemble d'opérations permettant de le détecter de façon certaine. Alors les estimateurs économiques tels que l'espérance de dépense, le risque financier, l'espérance de gain, sont calculés pour chacun des programmes, en vue de déterminer l'ordre d'exécution optimal des opérations. L'intérêt d'une telle approche, en ce qui concerne la réduction des dépenses d'exploration, est illustré par un exemple. As part of its work concerning the search for underground gas storage sites, the Underground Storage Department of Gaz de France has established an exploration program for the definitive and lowcost selection of suitable geological structures. This selection involves estimating probabilities of rejecting or abandoning different structures liable to be targets for exploration. The

  4. A Bookless Library, Part I: Relocating Print Materials to Off-Site Storage

    Science.gov (United States)

    Sewell, Bethany B.

    2013-01-01

    This article presents an analysis of the feasibility of a bookless library in a research setting. As spaces for collections are being converted for increased study and community spaces, many libraries have been moving low-use collections to off-site storage. Issues regarding the types of storage spaces available are addressed. Concerns and…

  5. Seismic site survey investigations in urban environments: The case of the underground metro project in Copenhagen, Denmark.

    Science.gov (United States)

    Martínez, K.; Mendoza, J. A.; Colberg-Larsen, J.; Ploug, C.

    2009-05-01

    Near surface geophysics applications are gaining more widespread use in geotechnical and engineering projects. The development of data acquisition, processing tools and interpretation methods have optimized survey time, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of wide-scale geophysical methods under urban environments continues to face great challenges due to multiple noise sources and obstacles inherent to cities. A seismic pre-investigation was conducted to investigate the feasibility of using seismic methods to obtain information about the subsurface layer locations and media properties in Copenhagen. Such information is needed for hydrological, geotechnical and groundwater modeling related to the Cityringen underground metro project. The pre-investigation objectives were to validate methods in an urban environment and optimize field survey procedures, processing and interpretation methods in urban settings in the event of further seismic investigations. The geological setting at the survey site is characterized by several interlaced layers of clay, till and sand. These layers are found unevenly distributed throughout the city and present varying thickness, overlaying several different unit types of limestone at shallow depths. Specific results objectives were to map the bedrock surface, ascertain a structural geological framework and investigate bedrock media properties relevant to the construction design. The seismic test consisted of a combined seismic reflection and refraction analyses of a profile line conducted along an approximately 1400 m section in the northern part of Copenhagen, along the projected metro city line. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 10 m spacing. Complementarily, six vertical seismic profiles (VSP) were performed at boreholes located along the line. The reflection

  6. The National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site (NIAGADS)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) is a national genetics data repository facilitating access to genotypic...

  7. Flexible OSSC or the on-site storage alternative and how it grew

    International Nuclear Information System (INIS)

    Dufrane, K.H.

    1986-01-01

    The On-Site Storage Container (OSSC) is an accepted and proven concept currently in widespread use for both operations and the storage of low level radioactive waste. In addition, it represents a very attractive enhancement to a geological low-level waste disposal site. Use of the proven OSSC concept at a site can provide additional safety to the environment by combining the benefits of an engineered storage facility with the proven safety of a sound geological repository. The concept of flexibility which was built into the OSSC concept for the temporary above ground storage of low-level waste is directly applicable to a permanent storage facility. Manufacturing costs, size flexibility, handling systems, and real-world operational advantages are well known and proven. This background provides a high confidence level for adapting this technology to a disposal site while keeping in mind the significance of both operational economics, safety to the environment, and ALARA principles. The development, design and cost effectiveness features of the OSSC as a temporary storage facility are discussed in detail. The flexible OSSC provides significant economic advantages over a permanent storage building. The application of the OSSC to a permanent geological disposal site provides the environmental advantages of an engineered facility while maintaining the inherent operational and economic benefits of the flexible OSSC concept

  8. Investigative study of the underground excavations for a nuclear waste repository in tuff: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-07-01

    Numerical studies were conducted on the behavior of a tuff rock mass within which emplacement drifts for a nuclear waste repository are excavated. The first study evaluated the effects of rockbolting and excavation-induced damage on the behavior of the rock mass round typical drifts. The second study provided a simple means of assessing the significance of drift shape, drift size, and in-situ state of stress on the deformation and stress in the vicinity of drifts for vertical and horizontal emplacement of waste. Neither study considered the effect of heating of the rock mass after emplacement of the waste so the conclusions pertain only to the conditions immediately after excavation of the underground openings. The results of analyses of the rockbolted excavations indicated that rockbolts do not have a significant influence on the states of deformation or stress within the rock mass, and that the rockbolts are subjected to acceptable levels of stress even if installed as close to the face of the excavation as possible. Accordingly, rockbolts were not considered in the study of drift shape, drift size, and the in-situ state of stress. That study indicated that stable openings of the dimensions investigated can be constructed within a tuff rock mass with the properties assumed. Of the parameters investigated, the in-situ state of stress appeared to be most important. Potentially adverse conditions were predicted if the in-situ horizontal stress is very low, but current indications are that it lies within a range which is consistent with good conditions and a stable roof. 28 refs., 49 figs., 11 tabs

  9. Initial Operation of the Savannah River Site Advanced Storage Monitoring Facility

    International Nuclear Information System (INIS)

    McCurry, D.R.

    2001-01-01

    An advanced storage monitoring facility has been constructed at the Savannah River Site capable of storing sensitive nuclear materials (SNM) with access to monitoring information available over the Internet. This system will also have monitoring information available over the Internet to appropriate users. The programs will ultimately supply authenticated and encrypted data from the storage sites to certified users to demonstrate the capability of using the Internet as a safe and secure communications medium for remote monitoring of sensitive items

  10. On-site concrete cask storage system for spent nuclear fuel

    International Nuclear Information System (INIS)

    Craig, P.A.; Haelsig, R.T.; Kent, J.D.; Schmoker, D.S.

    1989-01-01

    A method is described of storing spent nuclear fuel assemblies including the steps of: transferring the fuel assemblies from a spent-fuel pool to a moveable concrete storage cask located outside the spent-fuel pool; maintaining a barrier between the fuel and the concrete in the cask to prevent contamination of the concrete by the fuel; maintaining the concrete storage cask containing the spent-fuel on site at the reactor complex for some predetermined period; transferring the fuel assemblies from the concrete storage cask to a shipping container; and, recycling the concrete storage cask

  11. Spent nuclear fuel storage. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1997-07-01

    The bibliography contains citations concerning spent nuclear fuel storage technologies, facilities, sites, and assessment. References review wet and dry storage, spent fuel casks and pools, underground storage, monitored and retrievable storage systems, and aluminum-clad spent fuels. Environmental impact, siting criteria, regulations, and risk assessment are also discussed. Computer codes and models for storage safety are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Hanford Site existing irradiated fuel storage facilities description

    Energy Technology Data Exchange (ETDEWEB)

    Willis, W.L.

    1995-01-11

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  13. Using RFID to Enhance Security in Off-Site Data Storage

    Science.gov (United States)

    Lopez-Carmona, Miguel A.; Marsa-Maestre, Ivan; de la Hoz, Enrique; Velasco, Juan R.

    2010-01-01

    Off-site data storage is one of the most widely used strategies in enterprises of all sizes to improve business continuity. In medium-to-large size enterprises, the off-site data storage processes are usually outsourced to specialized providers. However, outsourcing the storage of critical business information assets raises serious security considerations, some of which are usually either disregarded or incorrectly addressed by service providers. This article reviews these security considerations and presents a radio frequency identification (RFID)-based, off-site, data storage management system specifically designed to address security issues. The system relies on a set of security mechanisms or controls that are arranged in security layers or tiers to balance security requirements with usability and costs. The system has been successfully implemented, deployed and put into production. In addition, an experimental comparison with classical bar-code-based systems is provided, demonstrating the system’s benefits in terms of efficiency and failure prevention. PMID:22163638

  14. Using RFID to enhance security in off-site data storage.

    Science.gov (United States)

    Lopez-Carmona, Miguel A; Marsa-Maestre, Ivan; de la Hoz, Enrique; Velasco, Juan R

    2010-01-01

    Off-site data storage is one of the most widely used strategies in enterprises of all sizes to improve business continuity. In medium-to-large size enterprises, the off-site data storage processes are usually outsourced to specialized providers. However, outsourcing the storage of critical business information assets raises serious security considerations, some of which are usually either disregarded or incorrectly addressed by service providers. This article reviews these security considerations and presents a radio frequency identification (RFID)-based, off-site, data storage management system specifically designed to address security issues. The system relies on a set of security mechanisms or controls that are arranged in security layers or tiers to balance security requirements with usability and costs. The system has been successfully implemented, deployed and put into production. In addition, an experimental comparison with classical bar-code-based systems is provided, demonstrating the system's benefits in terms of efficiency and failure prevention.

  15. Production of inert gas for substitution of a part of the cushion gas trapped in an aquifer underground storage reservoir

    International Nuclear Information System (INIS)

    Berger, L.; Arnoult, J.P.

    1990-01-01

    In a natural gas storage reservoir operating over the different seasons, a varying fraction of the injected gas, the cushion gas, remains permanently trapped. This cushion gas may represent more than half the total gas volume, and more than 50% of the initial investment costs for the storage facility. Studies conducted by Gaz de France, backed up by experience acquired over the years, have shown that at least 20% of the cushion gas could be replaced by a less expensive inert gas. Nitrogen, carbon dioxide, or a mixture of the two, satisfy the specifications required for this inert gas. Two main production methods exist: recovery of natural gas combustion products (mixture of 88% N 2 and 12% Co 2 ) and physical separation of air components (more or less pure N 2 , depending on industrial conditions). For the specific needs of Gaz de France, the means of production must be suited to its programme of partial cushion gas substitution. The equipment must satisfy requirements of autonomy, operating flexibility and mobility. Gaz de France has tested two units for recovery of natural gas combustion products. In the first unit, the inert gas is produced in a combustion chamber, treated in a catalytic reactor to reduce nitrogen oxide content and then compressed by gas engine driven compressors. In the second unit, the exhaust gases of the compressor gas engines are collected, treated to eliminate nitrogen oxides and then compressed. The energy balance is improved. A PSA method nitrogen production unit by selective absorption of nitrogen in the air, will be put into service in 1989. The specific features of these two methods and the reasons for choosing them will be reviewed. (author). 1 fig

  16. Natural phenomena evaluations of the K-25 site UF6 cylinder storage yards

    International Nuclear Information System (INIS)

    Fricke, K.E.

    1996-01-01

    The K-25 Site UF 6 cylinder storage yards are used for the temporary storage of UF 6 normal assay cylinders and long-term storage of other UF 6 cylinders. The K-25 Site UF 6 cylinder storage yards consist of six on-site areas: K-1066-B, K-1066-E, K-1066-F, K-1066-J, K-1066-K and K-1066-L. There are no permanent structures erected on the cylinder yards, except for five portable buildings. The operating contractor for the K-25 Site is preparing a Safety Analysis Report (SAR) to examine the safety related aspects of the K-25 Site UF 6 cylinder storage yards. The SAR preparation encompasses many tasks terminating in consequence analysis for the release of gaseous and liquid UF 6 , one of which is the evaluation of natural phenomena threats, such as earthquakes, floods, and winds. In support of the SAR, the six active cylinder storage yards were evaluated for vulnerabilities to natural phenomena, earthquakes, high winds and tornados, tornado-generated missiles, floods (local and regional), and lightning. This report summarizes those studies. 30 refs

  17. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  18. Batch test equilibration studies examining the removal of Cs, Sr, and Tc from supernatants from ORNL underground storage tanks by selected ion exchangers

    International Nuclear Information System (INIS)

    Collins, J.L.; Egan, B.Z.; Anderson, K.K.; Chase, C.W.; Bell, J.T.

    1995-01-01

    Bench-scale batch equilibration tests have been conducted with supernatants from two underground tanks at the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to determine the effectiveness of selected ion exchangers in removing cesium, strontium, and technetium. Seven sorbents were evaluated for cesium removal, nine for strontium removal, and four for technetium removal. The results indicate that granular potassium cobalt hexacyanoferrate was the most effective of the exchangers evaluated for removing cesium from the supernatants. The powdered forms of sodium titanate (NaTiO) and cystalline silicotitanate (CST) were superior in removing the strontium; however, for the sorbents of suitable particle size for column use, titanium monohydrogen phosphate (TiHP φ), sodium titanate/polyacrylonitrile (NaTiO-PAN), and titanium monohydrogen phosphate/polyacrylonitrile (TiP-PAN) gave the best results and were about equally effective. Reillex trademark 402 was the most effective exchanger in removing the technetium; however, it was only slightly more satisfactory than Reillex trademark HPQ

  19. Finite Element Optimised Back Analysis of In Situ Stress Field and Stability Analysis of Shaft Wall in the Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Yifei Yan

    2016-01-01

    Full Text Available A novel optimised back analysis method is proposed in this paper. The in situ stress field of an underground gas storage (UGS reservoir in a Turkey salt cavern is analysed by the basic theory of elastic mechanics. A finite element method is implemented to optimise and approximate the objective function by systematically adjusting boundary loads. Optimising calculation is performed based on a novel method to reduce the error between measurement and calculation as much as possible. Compared with common back analysis methods such as regression method, the method proposed can further improve the calculation precision. By constructing a large circular geometric model, the effect of stress concentration is eliminated and a minimum difference between computed and measured stress can be guaranteed in the rectangular objective region. The efficiency of the proposed method is investigated and confirmed by its capability on restoring in situ stress field, which agrees well with experimental results. The characteristics of stress distribution of chosen UGS wells are obtained based on the back analysis results and by applying the corresponding fracture criterion, the shaft walls are proven safe.

  20. Establishing the Ohio Petroleum Underground Storage Tank Release Compensation Board: Dispelling the notion of a open-quotes Pot of Goldclose quotes

    International Nuclear Information System (INIS)

    Murray, R.C.; Miller, J.J.

    1993-01-01

    The authors are the Executive Director and the Chief Financial Officer of the Ohio Petroleum Underground Storage Tank Release Compensation Board. Under the guidance of a public-sector governing board, they are responsible for implementing Ohio's UST Financial Assurance Fund program and for managing the resources and priorities necessary to maintain a solvent, practical approach to legislatively-mandated UST corrective action costs in Ohio. The paper will discuss: (1) the challenges of legislating and implementing a state assurance fund; (2) the task of defining the program's mission and coming to terms with open-quotes great expectationsclose quotes of tank owners and clean-up contractors; (3) implementing true cost-controls; how the regulatory back-drop contributes to costs and success; (4) managing the financial assets of an assurance fund and estimating future clean-up needs; (5) the search for the proper mix of financing alternatives, including reinsurance; (6) defining long-term success. The paper will develop the evolution of the essential elements of the Ohio Financial Assurance Fund and focus on the financial management of necessary resources to fulfill the public-sector mission. Managing claim costs and meeting the grassroots expectation of claimants underscore critical development issues: (1) establishing and communicating the Fund's purpose and management philosophy; (2) forging a companion relationship between industry and regulator; (3) how do such funds maintain solvency and dispel the notion that they constitute a open-quotes pot of goldclose quotes for environmental liability?

  1. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, A.A.; Pistner, C.

    1980-08-01

    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  2. Risk-based prioritization for the interim remediation of inactive low-level liquid radioactive waste underground storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-09-01

    The paper presents a risk-based approach for rapid prioritization of low-level liquid radioactive waste underground storage tanks (LLLW USTs), for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at Oak Ridge National Laboratory were pumped out when the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include the radionuclides 90 Sr, 137 Cs, and 233 U and the chemicals carbon tetrachloride, trichloroethane, tetrachloroethene, methyl ethyl ketone, mercury, lead, and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank, (2) location of the tanks, and (3) toxic potential of the tank contents. Leaking characteristics of LLLW USTs will aid in establishing the potential for the release of contaminants to environmental media. In this study, only the liquid phase was assumed to be released to the environment. Scoring criteria for release potential of LLLW USTs was determined after consideration of the magnitude of any known leaks and the tank type for those that are not known to leak

  3. Site Specific Waste Management Instruction for the 116-F-4 soil storage unit

    International Nuclear Information System (INIS)

    Hopkins, G.G.

    1996-08-01

    This Site Specific Waste Management Instruction provides guidance for management of waste generated during the excavation and remediation of soil and debris from the 116-4 soil storage unit located at the Hanford Site in Richland, Washington. This document outlines the waste management practices that will be performed in the field to implement federal, state, and US Department of Energy requirements

  4. Geological setting of the Novi Han radioactive waste storage site

    International Nuclear Information System (INIS)

    Evstatiev, D.; Kozhukharov, D.

    2000-01-01

    The geo environment in the area of the only operating radioactive waste repository in Bulgaria has been analysed. The repository is intended for storage of all kinds of low and medium level radioactive wastes with the exception of these from nuclear power production. The performed investigations prove that the 30 years of operation have not caused pollution of the geo environment. Meanwhile the existing complex geological settings does not provide prerequisites to rely on the natural geological safety barriers. The studies performed so far are considered to be incomplete since they do not provide the necessary information for the development of a model describing the radionuclide migration as well as for understanding of the neotectonic circumstances. The tasks of the future activities are described in order to obtain more detailed information about the geology in the area. (authors)

  5. How to characterize a potential site for CO2 storage with sparse data coverage - a Danish onshore site case

    International Nuclear Information System (INIS)

    Nielsen, Carsten Moller; Frykman, Peter; Dalhoff, Finn

    2015-01-01

    The paper demonstrates how a potential site for CO 2 storage can be evaluated up to a sufficient level of characterization for compiling a storage permit application, even if the site is only sparsely explored. The focus of the paper is on a risk driven characterization procedure. In the initial state of a site characterization process with sparse data coverage, the regional geological and stratigraphic understanding of the area of interest can help strengthen a first model construction for predictive modeling. Static and dynamic modeling in combination with a comprehensive risk assessment can guide the different elements needed to be evaluated for fulfilling a permit application. Several essential parameters must be evaluated; the storage capacity for the site must be acceptable for the project life of the operation, the trap configuration must be efficient to secure long term containment, the injectivity must be sufficient to secure a longstanding stable operation and finally a satisfactory and operational measuring strategy must be designed. The characterization procedure is demonstrated for a deep onshore aquifer in the northern part of Denmark, the Vedsted site. The site is an anticlinal structural closure in an Upper Triassic - Lower Jurassic sandstone formation at 1 800-1 900 m depth. (authors)

  6. Numerical simulation for the coupled thermo-mechanical performance of a lined rock cavern for underground compressed air energy storage

    Science.gov (United States)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-12-01

    Compressed air energy storage (CAES) is a technology that uses compressed air to store surplus electricity generated from low power consumption time for use at peak times. This paper presents a thermo-mechanical modeling for the thermodynamic and mechanical responses of a lined rock cavern used for CAES. The simulation was accomplished in COMSOL Multiphysics and comparisons of the numerical simulation and some analytical solutions validated the thermo-mechanical modeling. Air pressure and temperatures in the sealing layer and concrete lining exhibited a similar trend of ‘up-down-down-up’ in one cycle. Significant temperature fluctuation occurred only in the concrete lining and sealing layer, and no strong fluctuation was observed in the host rock. In the case of steel sealing, principal stresses in the sealing layer were larger than those in the concrete and host rock. The maximum compressive stresses of the three layers and the displacement on the cavern surface increased with the increase of cycle number. However, the maximum tensile stresses exhibited the opposite trend. Polymer sealing achieved a relatively larger air temperature and pressure compared with steel and air-tight concrete sealing. For concrete layer thicknesses of 0 and 0.1 m and an initial air pressure of 4.5 MPa, the maximum rock temperature could reach 135 °C and 123 °C respectively in a 30 day simulation.

  7. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  8. FY 2000 report on the results of the advanced R and D for the UTES (underground thermal energy storage) system; 2000 nendo chichu jiban chikunetsu system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In this study, study was made of the commercialization of the UTES (underground thermal energy storage) system using the underground heat source heat pump system technology as the base, considering that this is a technology suitable for the urban area where the heat demand intensively increases and a lot of exhaust heat and usable heat exist. By the realization of the UTES system technology, it is expected that the system promotes Japan's utilization of the unused energy and contributes to the construction of the CO2 emission control type society for Japan's energy policy and global warming prevention and secondarily to leveling of power loads and elimination of the heat island phenomenon in large cities. As to the UTES system which is aimed at being used for space heating and cooling and hot water supply in buildings, the following two were studied: the indirect system, BTES (borehole thermal energy storage) system, in which heat is collected/radiated from the ground by the heat exchanger installed underground; the direct system, ATES (aquifer thermal energy storage) system, in which the groundwater stored in aquifer is directly pumped up and used. The study was made in the items written below: 1) establishment of an system image of the UTES system; 2) evaluation study of effects of the introduction, practical applicability, etc. 3) extraction of the subjects for development. As a result, system images of the indirect/direct systems were obtained. (NEDO)

  9. FY 2000 report on the results of the advanced R and D for the UTES (underground thermal energy storage) system; 2000 nendo chichu jiban chikunetsu system gijutsu sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In this study, study was made of the commercialization of the UTES (underground thermal energy storage) system using the underground heat source heat pump system technology as the base, considering that this is a technology suitable for the urban area where the heat demand intensively increases and a lot of exhaust heat and usable heat exist. By the realization of the UTES system technology, it is expected that the system promotes Japan's utilization of the unused energy and contributes to the construct