WorldWideScience

Sample records for underground research facilities

  1. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  2. The Sanford underground research facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J.

    2014-01-01

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability

  3. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J.

    2015-01-01

    The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability

  4. The Sanford Underground Research Facility at Homestake

    International Nuclear Information System (INIS)

    Heise, J

    2015-01-01

    The former Homestakegold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinolessdouble-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low- background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long- baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability. (paper)

  5. Underground characterisation and research facility ONKALO

    International Nuclear Information System (INIS)

    Ikonen, Antti; Ylae-Mella, Mia; Aeikaes, Timo

    2006-01-01

    Posiva's repository for geological disposal of the spent fuel from Finnish nuclear reactors will be constructed at Olkiluoto. The selection of Olkiluoto was made based on site selection research programme conducted between 1987-2001. The next step is to carry out complementary investigations of the site and apply for the construction license for the disposal facility. The license application will be submitted in 2012. To collect detailed information of the geological environment at planned disposal depth an underground characterisation and research facility will be built at the site. This facility, named as ONKALO, will comprise a spiral access tunnel and two vertical shafts. The excavation of ONKALO is in progress and planned depth (400 m) will be reached in 2009. During the course of the excavation Posiva will conduct site characterisation activities to assess the structure and other properties of the site geology. The aim is that construction will not compromise the favourable conditions of the planned disposal depth or introduce harmful effects in the surrounding bedrock which could jeopardize the long-term safety of the geological disposal. (author)

  6. Sanford Underground Research Facility - The United State's Deep Underground Research Facility

    Science.gov (United States)

    Vardiman, D.

    2012-12-01

    The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser

  7. Design study of the underground facilities, the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on the deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at the Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU consisted of surface and underground facilities excavated to a depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program, includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed in 1998, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  8. Design study of underground facility of the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU is consisted of surface and underground facilities down to the depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program which includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed last year, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  9. Cosmic muon flux measurements at the Kimballton Underground Research Facility

    International Nuclear Information System (INIS)

    Kalousis, L N; Guarnaccia, E; Link, J M; Mariani, C; Pelkey, R

    2014-01-01

    In this article, the results from a series of muon flux measurements conducted at the Kimballton Underground Research Facility (KURF), Virginia, United States, are presented. The detector employed for these investigations, is made of plastic scintillator bars readout by wavelength shifting fibers and multianode photomultiplier tubes. Data was taken at several locations inside KURF, spanning rock overburden values from ∼ 200 to 1450 m.w.e. From the extracted muon rates an empirical formula was devised, that estimates the muon flux inside the mine as a function of the overburden. The results are in good agreement with muon flux calculations based on analytical models and MUSIC

  10. The Use of Underground Research Laboratories to Support Repository Development Programs. A Roadmap for the Underground Research Facilities Network.

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, Robert J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-26

    Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. This report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.

  11. Horonobe Underground Research Laboratory project. Plans of investigations during shaft and drift excavation (Construction of underground facilities: Phase II)

    International Nuclear Information System (INIS)

    2005-06-01

    Horonobe Underground Research Laboratory Project is planned for over 20 years to establish the scientific and technical basis for the underground disposal of high-level radioactive wastes in Japan. The investigations are conducted by JNC in three phases, from the surface (Phase I), during the construction of the underground facilities (Phase II), and using the facilities (Phase III). This report concerns the investigation plans for Phase II. During excavation of shafts and drifts, detailed geological and borehole investigation will be conducted and the geological model constructed in Phase I is evaluated and revised by newly acquired data of geophysical and geological environment. Detailed in-situ experiments, as well as the effects of shaft excavation, are also done to study long-term changes, rock properties, groundwater flow and chemistry to ensure the reliability of repository technology and establish safety assessment methodology. (S. Ohno)

  12. Experiments, conceptual design, preliminary cost estimates and schedules for an underground research facility

    International Nuclear Information System (INIS)

    Korbin, G.; Wollenberg, H.; Wilson, C.; Strisower, B.; Chan, T.; Wedge, D.

    1981-09-01

    Plans for an underground research facility are presented, incorporating techniques to assess the hydrological and thermomechanical response of a rock mass to the introduction and long-term isolation of radioactive waste, and to assess the effects of excavation on the hydrologic integrity of a repository and its subsequent backfill, plugging, and sealing. The project is designed to utilize existing mine or civil works for access to experimental areas and is estimated to last 8 years at a total cost for contruction and operation of $39.0 million (1981 dollars). Performing the same experiments in an existing underground research facility would reduce the duration to 7-1/2 years and cost $27.7 million as a lower-bound estimate. These preliminary plans and estimates should be revised after specific sites are identified which would accommodate the facility

  13. KAERI Underground Research Facility (KURF) for the Demonstration of HLW Disposal Technology

    International Nuclear Information System (INIS)

    Hahn, P. S.; Cho, W. J.; Kwon, S.

    2006-01-01

    In order to dispose of high-level radioactive waste(HLW) safely in geological formations, it is necessary to assess the feasibility, safety, appropriateness, and stability of the disposal concept at an underground research site, which is constructed in the same geological formation as the host rock. In this paper, the current status of the conceptual design and the construction of a small scale URL, which is named as KURF, were described. To confirm the validity of the conceptual design of the underground facility, a geological survey including a seismic refraction survey, an electronic resistivity survey, a borehole drilling, and in situ and laboratory tests had been carried out. Based on the site characterization results, it was possible to effectively design the KURF. The construction of the KURF was started in May 2005 and the access tunnel was successfully completed in March 2006. Now the construction of the research modules is under way

  14. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  15. First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility

    Science.gov (United States)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Clark, K.; Coffey, T.; Currie, A.; Curioni, A.; Dazeley, S.; de Viveiros, L.; Dobi, A.; Dobson, J.; Dragowsky, E. M.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hanhardt, M.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kastens, L.; Kazkaz, K.; Knoche, R.; Kyre, S.; Lander, R.; Larsen, N. A.; Lee, C.; Leonard, D. S.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Lyashenko, A.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Morii, M.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Nikkel, J. A.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Skulski, W.; Sofka, C. J.; Solovov, V. N.; Sorensen, P.; Stiegler, T.; O'Sullivan, K.; Sumner, T. J.; Svoboda, R.; Sweany, M.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; White, D.; Witherell, M. S.; Wlasenko, M.; Wolfs, F. L. H.; Woods, M.; Zhang, C.; LUX Collaboration

    2014-03-01

    The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6×10-46 cm2 at a WIMP mass of 33 GeV/c2. We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

  16. First results from the LUX dark matter experiment at the Sanford underground research facility.

    Science.gov (United States)

    Akerib, D S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Bedikian, S; Bernard, E; Bernstein, A; Bolozdynya, A; Bradley, A; Byram, D; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Clark, K; Coffey, T; Currie, A; Curioni, A; Dazeley, S; de Viveiros, L; Dobi, A; Dobson, J; Dragowsky, E M; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Flores, C; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C; Hanhardt, M; Hertel, S A; Horn, M; Huang, D Q; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Kyre, S; Lander, R; Larsen, N A; Lee, C; Leonard, D S; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J; Morii, M; Murphy, A St J; Nehrkorn, C; Nelson, H; Neves, F; Nikkel, J A; Ott, R A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Reichhart, L; Shutt, T; Silva, C; Skulski, W; Sofka, C J; Solovov, V N; Sorensen, P; Stiegler, T; O'Sullivan, K; Sumner, T J; Svoboda, R; Sweany, M; Szydagis, M; Taylor, D; Tennyson, B; Tiedt, D R; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, J T; White, D; Witherell, M S; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2014-03-07

    The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

  17. The State of stress in the Sanford Underground Research Facility (SURF) in Lead South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moo Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    As a part of the U.S. Department of Energy (DOE) SubTER (Subsurface Technology and Engineering Research, Development and Demonstration) initiative, University of Wisconsin- Madison, Sandia National Laboratories, and Lawrence Berkeley National Laboratory conducted the Permeability (k) and Induced Seismicity Management for Energy Technologies (kISMET) project. The objectives of the project are to define the in situ status of stress in the Sanford Underground Research Facility (SURF) in Lead, South Dakota and to establish the relations between in situ stress and induced fracture through hydraulically stimulating the fracture. (SURF) in Lead, South Dakota. In situ tests are conducted in a 7.6 cm diameter and 100 long vertical borehole located in the 4850 Level West Access Drift near Davies Campus of SURF (Figure 1). The borehole is located in the zone of Precambrian Metamorphic Schist.

  18. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  19. In situ water and gas injection experiments performed in the Hades Underground Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Volckaert, G.; Ortiz, L.; Put, M. [SCK-CEN, Mol (Belgium). Geological Waste Disposal Unit

    1995-12-31

    The movement of water and gas through plastic clay is an important subject in the research at SCK-CEN on the possible disposal of high level radioactive waste in the Boom clay layer at Mol. Since the construction of the Hades underground research facility in 1983, SCK-CEN has developed and installed numerous piezometers for the geohydrologic characterization and for in situ radionuclide migration experiments. In situ gas and water injection experiments have been performed at two different locations in the underground laboratory. The first location is a multi filter piezometer installed vertically at the bottom of the shaft in 1986. The second location is a three dimensional configuration of four horizontal multi piezometers installed from the gallery. This piezometer configuration was designed for the MEGAS (Modelling and Experiments on GAS migration through argillaceous rocks) project and installed in 1992. It contains 29 filters at distances between 10 m and 15 m from the gallery in the clay. Gas injection experiments show that gas breakthrough occurs at a gas overpressure of about 0.6 MPa. The breakthrough occurs by the creation of gas pathways along the direction of lowest resistance i.e. the zone of low effective stress resulting from the drilling of the borehole. The water injections performed in a filter -- not used for gas injection -- show that the flow of water is also influenced by the mechanical stress conditions. Low effective stress leads to higher hydraulic conductivity. However, water overpressures up to 1.3 MPa did not cause hydrofracturing. Water injections performed in a filter previously used for gas injections, show that the occluded gas hinders the water flow and reduces the hydraulic conductivity by a factor two.

  20. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  1. Modelling an in-situ ventilation test in the Andra Underground Research Facilities

    Directory of Open Access Journals (Sweden)

    Collin Frédéric

    2016-01-01

    Full Text Available Wastes resulting from the nuclear electricity production have to be isolated from the biosphere for a very long period of time. For this purpose, deep underground repository in weak permeable geological layers is considered as a reliable solution for the nuclear waste storage. It is however well established that during excavation, the underground drilling process engenders cracks and eventually fractures [1] that deteriorate the hydro-mechanical properties of the surrounding host material in the so-called Excavation Damaged Zone (EDZ. The EDZ behaviour is a major issue because it may constitute a preferential flow path for radionuclide migration. Consequently, the characterisation of the material transport properties and of the transfer kinetics that occur around galleries still need to be investigated. The EDZ properties may be also affected by host rock-gallery air interactions. Ventilation induced drying may also provoke additional cracking, which potentially alters the transport properties of the damaged zone. Large-scale air ventilation experiments are performed in Underground Research Laboratories (URL that have been constructed to check the feasibility of the repository. A numerical modelling of the SDZ air ventilation test (Andra URL performed in a low permeability rock is proposed in order to both predict the development of the EDZ during excavation and study the air interaction with the host formation during maintenance phases.

  2. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  3. Underground facility for geoenvironmental and geotechnical research at the SSC Site in Texas

    International Nuclear Information System (INIS)

    Wang, H.F.; Myer, L.R.

    1994-01-01

    The subsurface environment is an important national resource that is utilized for construction, waste disposal and groundwater supply. Conflicting and unwise use has led to problems of groundwater contamination. Cleanup is often difficult and expensive, and perhaps not even possible in many cases. Construction projects often encounter unanticipated difficulties that increase expenses. Many of the difficulties of predicting mechanical behavior and fluid flow and transport behavior stem from problems in characterizing what cannot be seen. An underground research laboratory, such as can be developed in the nearly 14 miles of tunnel at the Superconducting Super Collider (SSC) site, will provide a unique opportunity to advance scientific investigations of fluid flow, chemical transport, and mechanical behavior in situ in weak and fractured, porous rock on a scale relevant to civil and environmental engineering applications involving the subsurface down to a depth of 100 m. The unique element provided by underground studies at the SSC site is three-dimensional access to a range of fracture conditions in two rock types, chalk and shale. Detailed experimentation can be carried out in small sections of the SSC tunnel where different types of fractures and faults occur and where different rock types or contacts are exposed. The entire length of the tunnel can serve as an observatory for large scale mechanical and fluid flow testing. The most exciting opportunity is to mine back a volume of rock to conduct a post-experiment audit following injection of a number of reactive and conservative tracers. Flow paths and tracer distributions can be examined directly. The scientific goal is to test conceptual models and numerical predictions. In addition, mechanical and hydrological data may be of significant value in developing safe and effective methods for closing the tunnel itself

  4. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    Science.gov (United States)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10-7-10-8 m/s and that of influx is about 10-4-10-1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  5. Master plan of Mizunami underground research laboratory

    International Nuclear Information System (INIS)

    1999-04-01

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  6. Smoothwall blasting planned for the underground research facility at Yucca Mountain

    International Nuclear Information System (INIS)

    Bullock, R.L.; McKenzie, J.

    1990-01-01

    This paper discusses whether or not the Exploratory Shaft Facility (ESF) at yucca Mountain, Nevada will be completely mechanically excavated, completely developed by drilling and blasting or whether both methods will be utilized on different parts of the ESF. Where drilling and blasting may be used, smoothwall blasting techniques will be used and strict controls will be placed on drill hole placement and alignment, and the correct use of limiting damage explosive, so that minimum amount of fracturing will occur beyond the perimeter of the openings. The authors discuss why this is necessary and how it is achievable

  7. Muon flux measurements at the davis campus of the sanford underground research facility with the MAJORANA DEMONSTRATOR veto system

    Science.gov (United States)

    Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schmitt, C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.

    2017-07-01

    We report the first measurement of the total muon flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were performed using the MAJORANADEMONSTRATOR muon veto system arranged in two different configurations. The measured total flux is (5.31 ± 0.17) ×10-9 μ /s/cm2. Demonstrate a path forward to achieving a background rate at or below 1 count/(ROI-t-y)in the 4-keV region of interest (ROI) around the 2039-keV Q-value for 76Ge ββ(0ν) decay. This is required for tonne-scale germanium-based searches that will probe the inverted-ordering neutrino-mass parameter space for the effective Majorana neutrino mass in ββ(0ν) decay. Show technical and engineering scalability toward a tonne-scale instrument. Perform searches for additional physics beyond the Standard Model, such as dark matter and axions. The MAJORANA Collaboration has designed a modular instrument composed of two cryostats built from ultra-pure electroformed copper, with each cryostat capable of housing over 20 kg of HPGe detectors. The MAJORANADEMONSTRATOR contains 30 kg of detectors fabricated from Ge material enriched to 88% in 76Ge and another 15 kg fabricated from natural Ge (7.8% 76Ge). The modular approach allows us to assemble and optimize each cryostat independently, providing a fast deployment with minimal effect on already-operational detectors.Starting from the innermost cavity, the cryostats are surrounded by a compact graded shield composed of an inner layer of electroformed copper, a layer of commercially sourced C10100 copper, high-purity lead, an active muon veto, borated polyethylene, and pure polyethylene shielding. The cryostats, copper, and lead shielding are enclosed in a radon exclusion box and rest on an over-floor table that has openings for the active muon veto and polyethylene shielding panels situated below the detector. The entire experiment is located in a clean room at the 4850 ft level of SURF. A high

  8. Microbes, Minerals and Electrodes at the Sanford Underground Research Facility (SURF): Electrochemistry 4100 ft below the surface.

    Science.gov (United States)

    Rowe, A. R.; Abuyen, K.; Casar, C. P.; Osburn, M. R.; Kruger, B.; El-Naggar, M.; Amend, J.

    2017-12-01

    Little is known about the importance of mineral oxidation processes in subsurface environments. This stems, in part from our limited insight into the biochemistry of many of these metabolisms, especially where redox interactions with solid surfaces is concerned. To this aim, we have been developing electrochemical cultivation techniques, to target enrichment and isolation of microbes capable of oxidative extracellular electron transfer (oxEET)—transfer of electrons from the exterior of the cell to the interior. Our previous worked focused on marine sediments; using an electrode poised at a given redox potential to isolate mineral-oxidizing microbes. Electrode oxidizing microbes isolated from these enrichments belong to the genera Thioclava, Marinobacter, Halomonas, Idiomarina, Thalassospira, and Pseudamonas; organisms commonly detected in marine and deep sea sediments but not generally associated with mineral, sulfur and/or iron oxidation. At the Sanford Underground Research Facility (SURF) in Leed, South Dakota, we have been utilizing similar electrocultivation techniques to understand: 1) the potential for mineral oxidation by subsurface microbes, 2) their selective colonization on mineral vs. electrode surfaces, as well as 3) the community composition of microbes capable of these metabolic interactions. An electrochemical and mineral enrichment scheme was designed and installed into a sulfidic groundwater flow, located at the 4100 ft level of the former gold mine. The communities enriched on electrodes (graphite and indium tin oxide coated glass) and minerals (sulfur, pyrite, and schists from the location) were compared to the long-term ground water microbial community observed. Ultimately, these observations will help inform the potential activity of a lithotrophic microbes in situ and will in turn guide our culturing efforts.

  9. Development of a Comprehensive Plan for Scientific Research, Exploration, and Design: Creation of an Underground Radioactive Waste Isolation Facility at the Nizhnekansky Rock Massif

    International Nuclear Information System (INIS)

    Jardine, L J

    2005-01-01

    ISTC Partner Project No.2377, ''Development of a General Research and Survey Plan to Create an Underground RW Isolation Facility in Nizhnekansky Massif'', funded a group of key Russian experts in geologic disposal, primarily at Federal State Unitary Enterprise All-Russian Design and Research Institute of Engineering Production (VNIPIPT) and Mining Chemical Combine Krasnoyarsk-26 (MCC K-26) (Reference 1). The activities under the ISTC Partner Project were targeted to the creation of an underground research laboratory which was to justify the acceptability of the geologic conditions for ultimate isolation of high-level waste in Russia. In parallel to this project work was also under way with Minatom's financial support to characterize alternative sections of the Nizhnekansky granitoid rock massif near the MCC K-26 site to justify the possibility of creating an underground facility for long-term or ultimate isolation of radioactive waste (RW) and spent nuclear fuel (SNF). (Reference 2) The result was a synergistic, integrated set of activities several years that advanced the geologic repository site characterization and development of a proposed underground research laboratory better than could have been expected with only the limited funds from ISTC Partner Project No.2377 funded by the U.S. DOE-RW. There were four objectives of this ISTC Partner Project 2377 geologic disposal work: (1) Generalize and analyze all research work done previously at the Nizhnekansky granitoid massif by various organizations; (2) Prepare and issue a declaration of intent (DOI) for proceeding with an underground research laboratory in a granite massif near the MCC K-26 site. (The DOI is similar to a Record of Decision in U.S. terminology). (3) Proceeding from the data obtained as a result of scientific research and exploration and design activities, prepare a justification of investment (JOI) for an underground research laboratory in as much detail as the available site characterization

  10. kISMET: Stress analysis and intermediate-scale hydraulic fracturing at the Sanford Underground Research Facility

    Science.gov (United States)

    Dobson, P. F.; Oldenburg, C. M.; Wu, Y.; Cook, P. J.; Kneafsey, T. J.; Nakagawa, S.; Ulrich, C.; Siler, D. L.; Guglielmi, Y.; Ajo Franklin, J. B.; Rutqvist, J.; Daley, T. M.; Birkholzer, J. T.; Wang, H. F.; Lord, N.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Ingraham, M. D.; Huang, H.; Mattson, E.; Johnson, T. C.; Zhou, J.; Zoback, M. D.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.

    2017-12-01

    In 2015, we established a field test facility at the Sanford Underground Research Facility (SURF), and in 2016 we carried out in situ hydraulic fracturing experiments to characterize the stress field, understand the effects of crystalline rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) project test site was established in the West Access Drift at the 4850 ft level, 1478 m below ground in phyllite of the Precambrian Poorman Formation. The kISMET team drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume 40 m below the drift invert (floor) at a total depth of 1518 m. Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale ( 1 cm or smaller) changes in the mechanical properties of the rock. Tensile strength ranges between 3‒7.5 MPa and 5‒12 MPa. Pre-fracturing numerical simulations with a discrete element code were carried out to predict fracture size and magnitude of microseismicity. Field measurements of the stress field were made using hydraulic fracturing, which produced remarkably uniformly oriented fractures suggesting rock fabric did not play a significant role in controlling fracture orientation. Electrical resistivity tomography (ERT) and continuous active seismic source monitoring (CASSM) were deployed in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift were carried out during the generation of a larger fracture (so-called stimulation test). ERT was not able to detect the fracture created, nor did the accelerometers in the drift, but microseismicity was detected for the first (deepest) hydraulic-fracturing stress measurement. Analytical

  11. Research Status and Feasibility Analysis on the Participation in International Joint Studies for Radionuclide and Colloid Migration Using Foreign Underground Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Min Hoon; Park, Chung Kyun; Lee, Jae Kwang; Choi, Jong Won

    2007-12-15

    The research status of the potential international joint projects that we can join were analyzed by investigating world-wide underground research facilities. Based upon the investigations, we visited Aspo in Sweden and GTS in Switzerland, discussed about the participation in the international joint projects and mutual cooperation, and then discussed in detail about time and method for the participation by inviting an expert from Nagra. It is resulted from the investigations and discussions that it is most relevant to participate in the following two international joint projects. 1) Task Force on Modelling of Groundwater Flow and Transport of Solutes in Aspo, 2) CFM project in GTS. We also summarized the on-going current status for the participation in the two international joint projects.

  12. Illite K-Ar dating of fault breccia samples from ONKALO underground research facility, Olkiluoto, Eurajoki, SW Finland

    International Nuclear Information System (INIS)

    Maenttaeri, I.; Mattila, J.; Zwingmann, H.; Todd, A.J.

    2007-08-01

    Illite K-Ar age determinations were done on five fault breccia samples from the ONKALO underground research facility, Olkiluoto, Eurajoki, S-W Finland. The XRD, SEM, and TEM studies and K-Ar analyses were done in John deLaeter Center in Mass Spectrometry at Curtin University, Perth, Western Australia. The <2 micron grain size fractions contain illite, chlorite, dickite, and quartz. All fractions had minor contamination phases comprising mainly of quartz but traces of K-feldspar contamination could be identified in all samples. The authigenic illite shows variable K concentrations. The illite contents of the ONK-PL68 and ONK-PL87 samples are the smallest. The K-Ar ages for the <2 micron fractions vary from ∼0.55 Ga to 1.38 Ga. The sample ONKPL68 yields a K-Ar age of 912 ± 18 Ma corresponding to a Neoproterozoic-Tonian age. This age can be roughly temporally linked with late events related to Sveconorwegian orogeny. Sample ONK-PL87 has a K-Ar age of 550 ± 11 Ma corresponding to a Neoproterozoic - Lower Cambrian age. The samples ONK-PL522 and ONK-PL901 sampled from the storage hall fault show identical K-Ar ages of 1385 ± 27 Ma and 1373 ± 27 Ma, respectively. These correspond to a Mesoproterozoic-Ectasian age related to Subjotnian or Postjotnian events. ONK-PL960 yields a K-Ar age of 1225 ± 24 Ma corresponding to a Mesoproterozoic-Ectasian age. This age agrees well with the ages from Postjotnian diabase dykes in W Finland. The 2-3 % detrital K-feldspar contamination in clay fractions increases the age. Especially for the youngest sample ONK-PL87, the effect may be geologically meaningful as after the correction the age clearly indicates Caledonian events. Moreover, the age for the low K sample ONKPL901 shifts to indicate Postjotnian diabase age. (orig.)

  13. Horonobe underground research program. Research report of 2002 FY investigation

    International Nuclear Information System (INIS)

    2003-06-01

    Main results of investigation about Horonobe deep underground research center in 2002 FY were reported. It consists of six chapters: introduction, main results, selection of research center area, underground science research, R and D of geological disposal, and the environmental survey and research center on the ground. The research center area at about 3 km north of Horonobe (B1) was selected in the four areas: A, B1, B2 and C on the basis of data, researches in the sky, aboveground and underground and other conditions. The model of geological environment was constructed by physical, geological, surface water supply researches. Development of geological environment monitoring techniques, investigation of long stabilization of geological environment and design of underground facilities are reported. The basic design of preparation of research center was investigated. (S.Y.)

  14. Physics at the proposed National Underground Science Facility

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1983-01-01

    The scientific, technical, and financial reasons for building a National Underground Science Facility are discussed. After reviewing examples of other underground facilities, we focus on the Los Alamos proposal and the national for its choice of site

  15. Underground large scale test facility for rocks

    International Nuclear Information System (INIS)

    Sundaram, P.N.

    1981-01-01

    This brief note discusses two advantages of locating the facility for testing rock specimens of large dimensions in an underground space. Such an environment can be made to contribute part of the enormous axial load and stiffness requirements needed to get complete stress-strain behavior. The high pressure vessel may also be located below the floor level since the lateral confinement afforded by the rock mass may help to reduce the thickness of the vessel

  16. SuperCDMS Underground Detector Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.; Orrell, John L.

    2018-03-01

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discovery of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.

  17. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  18. Outcome of the geological mapping of the ONKALO underground research facility access tunnel, chainage 1980-3116

    International Nuclear Information System (INIS)

    Nordbaeck, N.

    2010-06-01

    This report describes the lithology and geological structures of the ONKALO underground rock characterization facility access tunnel in chainage 1980-3116. This part of the tunnel was excavated and mapped from spring 2007 to autumn 2008. The bedrock is very heterogeneous and mainly composed of veined gneiss and diatexitic gneiss, but many felsic dykes and sections of pegmatitic granite also occur. In addition, small sections of mica gneiss and K-feldspar porphyry are present. There are also numerous inclusions of mica gneiss, quartz gneiss and skarn. The foliation dips moderately towards SE. 14 fold axes and axial planes were measured from the ONKALO tunnel in chainage 1980-3116 and all have been interpreted to belong to deformation phase D 3 . The measured fold axes have various orientations, but most have moderate plunges and ENE- or WSW-trending ones dominate. The axial planes typically dip moderately towards SE. An almost vertical lineation was also measured from mica gneiss on two locations. A total of 7668 fractures were measured. Three main fracture sets were distinguished from the measured orientations: set 1 fractures are vertical and strike approximately NS, set 2 fractures are more or less horizontal and set 3 fractures are vertical and ENEWSW- striking. The most common filling minerals are calcite, pyrite, chlorite, kaolinite, epidote, muscovite, quartz, biotite, and illite. Of the measured fractures, 579 were slickensided. The slickensided fractures are mainly either sub-vertical N-S-trending (set 1) or sub-vertical NE-SW-trending, with dip to SE. Slickenside surfaces show N-S- and NE-SW-trending lineations, with shallow dip. The slickensided fractures are mostly strike-slip faults with both sinistral and dextral sense of movement. The chainage 1980- 3116 contains 170 tunnel-crosscutting fractures. The orientation is mostly vertical N-Sstriking, sub-horizontal or vertical E-W- trending. 27 deformation zone intersections were also observed, 23 brittle

  19. The arrangement of the seismic design method of the underground facility

    International Nuclear Information System (INIS)

    Tanai, Kenji; Horita, Masakuni; Dewa, Katsuyuki; Gouke, Mitsuo

    2002-03-01

    Earthquake resistance for the underground structure is higher than the ground structure. Therefore, the case of examining the earthquake resistance of underground structure was little. However, it carries out the research on the aseismic designing method of underground structure, since the tunnel was struck by Hyogo-ken Nanbu Earthquake, and it has obtained a much knowledge. However, an object of the most study was behavior at earthquake of the comparatively shallow underground structure in the alluvial plain board, and it not carry out the examination on behavior at earthquake of underground structure in the deep rock mass. In the meantime, underground disposal facility of the high level radioactive waste constructs in the deep underground, and it carries out the operation in these tunnels. In addition, it has made almost the general process of including from the construction start to the backfilling to be about 60 years (Japan Nuclear Fuel Cycle Development Institute, 1999). During these periods, it is necessary to also consider the earthquake resistance as underground structure from the viewpoint of the safety of facilities. Then, it extracted future problem as one of the improvement of the basis information for the decision of the safety standard and guideline of the country on earthquake-resistant design of the underground disposal facility, while it carried out investigation and arrangement of earthquake-resistant design cases, guidelines and analysis method on existing underground structure, etc. And, the research items for the earthquake resistance assessment of underground structure as case study of the underground research laboratory. (author)

  20. Physical security of cut-and-cover underground facilities

    International Nuclear Information System (INIS)

    Morse, W.D.

    1998-01-01

    To aid designers, generic physical security objectives and design concepts for cut-and-cover underground facilities are presented. Specific aspects addressing overburdens, entryways, security doors, facility services, emergency egress, security response force, and human elements are discussed

  1. The Predictive Capability of Conditioned Simulation of Discrete Fracture Networks using Structural and Hydraulic Data from the ONKALO Underground Research Facility, Finland

    Science.gov (United States)

    Williams, T. R. N.; Baxter, S.; Hartley, L.; Appleyard, P.; Koskinen, L.; Vanhanarkaus, O.; Selroos, J. O.; Munier, R.

    2017-12-01

    Discrete fracture network (DFN) models provide a natural analysis framework for rock conditions where flow is predominately through a series of connected discrete features. Mechanistic models to predict the structural patterns of networks are generally intractable due to inherent uncertainties (e.g. deformation history) and as such fracture characterisation typically involves empirical descriptions of fracture statistics for location, intensity, orientation, size, aperture etc. from analyses of field data. These DFN models are used to make probabilistic predictions of likely flow or solute transport conditions for a range of applications in underground resource and construction projects. However, there are many instances when the volumes in which predictions are most valuable are close to data sources. For example, in the disposal of hazardous materials such as radioactive waste, accurate predictions of flow-rates and network connectivity around disposal areas are required for long-term safety evaluation. The problem at hand is thus: how can probabilistic predictions be conditioned on local-scale measurements? This presentation demonstrates conditioning of a DFN model based on the current structural and hydraulic characterisation of the Demonstration Area at the ONKALO underground research facility. The conditioned realisations honour (to a required level of similarity) the locations, orientations and trace lengths of fractures mapped on the surfaces of the nearby ONKALO tunnels and pilot drillholes. Other data used as constraints include measurements from hydraulic injection tests performed in pilot drillholes and inflows to the subsequently reamed experimental deposition holes. Numerical simulations using this suite of conditioned DFN models provides a series of prediction-outcome exercises detailing the reliability of the DFN model to make local-scale predictions of measured geometric and hydraulic properties of the fracture system; and provides an understanding

  2. THE JOSEF REGIONAL UNDERGROUND RESEARCH CENTRE (JOSEF URC

    Directory of Open Access Journals (Sweden)

    Dana Pacovská

    2012-07-01

    Full Text Available The Josef Gallery, located in the central Bohemia region of the Czech Republic was first excavated in 1981 as an exploration complex for the potential mining of gold. In 2007, the gallery was substantially reconstructed to house the Josef Underground Educational Facility (Josef UEF, which subsequently became an autonomous workplace under the direction of the Czech Technical University in Prague. At the beginning of 2010, the UEF was renamed the Josef Regional Underground Research Centre (Josef URC which, along with the extensive underground complex, features modern above-ground facilities. One of the most important roles of this research center is to provide practical in-situ instruction in the fields of geotechnical engineering, geology, geochemistry, radiochemistry and radioecology. The training of future experts in this authentic underground setting involves the participation of several other Czech universities and numerous experienced specialists from outside the academic sphere. The IAEA (International Atomic Energy Agency has added the Josef URC to its prestigious list of international training canters involved in the “Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities – A Network of Centers of Excellence” project.

  3. Workshop on Seismic Performance of Underground Facilities: proceedings

    International Nuclear Information System (INIS)

    Marine, I.W.

    1982-01-01

    A workshop entitled Seismic Performance of Underground Facilities was held in Augusta, GA, February 11-13, 1981. The Workshop was organized and conducted by The Savannah River Laboratory of E.I. du Pont de Nemours and Co. and was sponsored by The Department of Energy and The Office of Nuclear Waste Isolation of Battelle. The objective of the Workshop was to review and assess the state of the science of determining and predicting damage to underground facilities from earthquakes, with particular emphasis on the ultimate goal of developing criteria for siting and design of mined geologic nuclear waste repositories. The Workshop consisted of a day of presentations in the categories of Introduction, Data Collection and Analysis, Modeling, and Design. The second day consisted of assessments of the science by subgroups in the subjects of Seismology; Rock Mechanics and Hydrology; Modeling; Licensing, Siting, and Tectonics; and Design. Most Scientists in attendance believed that enough was known of the subsurface effects of earthquakes to proceed with site selection, design, and licensing of a waste repository. There was, however, recognition of several items of research that would enhance the understanding of the subsurface effects of seismicity

  4. Earthquake damage to underground facilities and earthquake related displacement fields

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1982-01-01

    The potential seismic risk for an underground facility is considered in the evaluation of its location and design. The possible damage resulting from either large-scale displacements or high accelerations should be considered in evaluating potential sites of underground facilities. Scattered through the available literature are statements to the effect that below a few hundred meters shaking and damage in mines is less than at the surface; however, data for decreased damage underground have not been completely reported or explained. In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  5. U-Pb ages for PGR dykes, KFP, and adjacent older leucosomic PGRs from ONKALO underground research facility, Olkiluoto, Eurajoki, SW Finland

    International Nuclear Information System (INIS)

    Maenttaeri, I.; Engstroem, J.; Lahaye, Y.; Pere, T.

    2010-06-01

    Zircon LA-MC-ICP-MS and monazite TIMS ages have been determined for three PGR dykes (A2018, A2020, and A2070) and a KFP (A2022) from the ONKALO underground research facility, Olkiluoto, Eurajoki, SW Finland. For purposes of comparison, leucosomic PGRs (A2019, A2021, and A2023) crosscut by the PGR dykes and the KFP were also dated. Minimum ages for the PGR dykes and the A2022 KFP were determined by the monazite U-Pb ages. PGR dykes reveal partially overlapping ages of 1826 ± 7 Ma (A2018), 1811 ± 5 Ma (A2020), and 1817 ± 3 Ma (A2070). Monazite age of 1808 ± 6 Ma for the KFP is coeval with the youngest PGR dyke monazite. The ∼1.81-1.80 Ga ages for the supposed PGR dyke zircon agree within the error limits with the monazite ages. For the KFP, obvious co-magmatic zircon was not identified. The metamorphic zircon rims and domains found from the PGR dykes reveal multiphase overprinting, the ages ranging from 1.86 Ga to 1.80 Ga. Subsequently, the high-U PGR dyke zircon suffered major lead loss during the Rapakivi event at 1.58 Ga and finally, a few grains show early Devonian age of ∼400 Ma. In the KFP, many structurally homogeneous zircon domains and rims plot on a ∼1.80 Ga discordia line, while the concordant data are ∼1.83 Ga. Leucosomic PGRs A2019 and A2021 crosscut by the PGR dykes enclose 1.87-1.85 Ga zircon resembling and being contemporaneous with the tonalite zircon in the Olkiluoto area. The concordia ages of 1836 ± 13 Ma (A2019) and 1807 ± 11 Ma (A2021) for the metamorphic zircon domains in the leucosomes correlate perfectly with the supposed ages of the crosscutting PGR dykes. The youngest metamorphic zircon phases in leucosome A2023 are dated at 1.82-1.80 Ga. That is in good accordance with the monazite age 1808 ± 6 Ma from the KFP A2022 crosscutting the leucosome A2023. The samples contain also abundant older inherited zircon cores and grains. Archaean ages vary from 3.1 Ga to 2.7 Ga and the older Palaeoproterozoic between 2.1 Ga and 1.9 Ga. The

  6. Controlled drill ampersand blast excavation at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Thompson, P.M.

    1996-01-01

    A controlled drill and blast method has been developed and used to excavate the Underground Research Laboratory, a geotechnical facility constructed by Atomic Energy of Canada Limited (AECL) in crystalline rock. It has been demonstrated that the method can effectively reduce the excavation disturbed zone (EDZ) and is suitable for the construction of a used fuel disposal vault in the plutonic rock of the Canadian Shield

  7. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  8. Effects of earthquakes on underground facilities. Literature review and discussion

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Chung, D.H.

    1986-06-01

    A review of literature concerning effects of ground motion on underground facilities has been completed, and an annotated bibliography has been prepared. This information provides useful background for the science and engineering of underground nuclear waste management facility development. While some conflicts are evident in the literature reviewed, the following tentative conclusions may be drawn from the available information: (1) damage is expectable if fault displacement occurs through a site, but damage from shaking alone is generally confined to facilities located within the epicentral region and may be less than to surface facilities at the same site. (2) Seismic data are mixed, but favors reduction of amplitude with depth; observations appear quite dependent upon station characteristics. (3) The frequency content of earthquake mitions is important to the stability of underground openings and the applicability of attenuation relationships developed in areas where geologic and tectonic characteristics favor high attenuation rates to mid-continental sites is questionable. (4) Model studies indicate problems for shafts and the potential for problems with waste-handling equipment in shafts. The results of the review indicate the need to assure that site-specific response spectra and attenuation relationships are developed for proposed sites, and that detailed assessments of seismic aspects of shaft designs, hoists and in-shaft waste-handling equipment are required

  9. AECL's underground research laboratory: technical achievements and lessons learned

    International Nuclear Information System (INIS)

    Ohta, M.M.; Chandler, N.A.

    1997-03-01

    During the development of the research program for the Canadian Nuclear Fuel Waste Management Program in the 1970's, the need for an underground facility was recognized. AECL constructed an Underground Research Laboratory (URL) for large-scale testing and in situ engineering and performance-assessment-related experiments on key aspects of deep geological disposal in a representative geological environment. Ale URL is a unique geotechnical research and development facility because it was constructed in a previously undisturbed portion of a granitic pluton that was well characterized before construction began, and because most of the shaft and experimental areas are below the water table. The specific areas of research, development and demonstration include surface and underground characterization; groundwater and solute transport; in situ rock stress conditions; temperature and time-dependent deformation and failure characteristics of rock; excavation techniques to minimize damage to surrounding rock and to ensure safe working conditions; and the performance of seals and backfills. This report traces the evolution of the URL and summarizes the technical achievements and lessons learned during its siting, design and construction, and operating phases over the last 18 years. (author)

  10. The planning of future research program of underground laboratories in overseas

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Tanai, Kenji; Hasegawa, Hiroshi

    2002-02-01

    The objectives of this study is to identify the research issues, which are to be conducted in the future underground research laboratory, about operation and logistics systems for the planning of future research and development program. The research programs and experiments, etc. were investigated for the geological disposal projects in overseas sedimentary rocks and coastal geological environments aiming to reflect in the future underground research facility plan in Japan. In the investigation, information on the engineered-barrier performance, design and construction of underground facilities, tunnel support, transportation and emplacement, and backfilling technology, etc. were collected. Based on these informations, the purpose, the content, and the result of each investigations and tests were arranged. The strategy and the aim in the entire underground research facility, and the flow of investigations and tests, etc. were also arranged from the purpose, the relations and the sequence of each investigation and experiment, and the usage of results, etc. (author)

  11. Development of excavation technologies at the Canadian underground research laboratory

    International Nuclear Information System (INIS)

    Kuzyk, Gregory W.; Martino, Jason B.

    2008-01-01

    Several countries, Canada being among them, are developing concepts for disposal of used fuel from power generating nuclear reactors. As in underground mining operations, the disposal facilities will require excavation of many kilometres of shafts and tunnels through the host rock mass. The need to maintain the stability of excavations and safety of workers will be of paramount importance. Also, excavations required for many radioactive waste repositories will ultimately need to be backfilled and sealed to maintain stability and minimize any potential for migration of radionuclides, should they escape their disposal containers. The method used to excavate the tunnels and shafts, and the rock damage that occurs due to excavation, will greatly affect the performance characteristics of repository sealing systems. The underground rock mechanics and geotechnical engineering work performed at the Canadian Underground Research Laboratory (URL) has led to the development of excavation technologies that reduce rock damage in subsurface excavations. This paper discusses the excavation methods used to construct the URL and their application in planning for the construction of similar underground laboratories and repositories for radioactive wastes. (author)

  12. The Horonobe Underground Research Laboratory (Tentative name) Project. A program on survey and research performed from earth surface

    International Nuclear Information System (INIS)

    2001-03-01

    The Horonobe Underground Research Laboratory (Tentative name) Project under planning at Horonobe-machi by the Japan Nuclear Cycle Development Institute (JNC) is a research facility on deep underground shown in the Long-term program on research, development and application of nuclear energy (June, 1994)' (LPNE), where some researches on the deep underground targeted at sedimentary rocks are carried out. The plan on The Horonobe Underground Research Laboratory performed at Horonobe-machi' is an about 20 years plan ranging from beginning to finishing of its survey and research, which is carried out by three steps such as 'Survey and research performed from earth surface', 'Survey and research performed under excavation of road', and Survey and research performed by using the road'. The Horonobe Underground Research Laboratory is one of research facilities on deep underground shown its importance in LPNE, and carries out some researches on the deep underground at a target of the sedimentary rocks. And also The Horonobe Underground Research Laboratory confirms some technical reliability and support on stratum disposal shown in the 'Technical reliability on stratum disposal of the high level radioactive wastes. The Second Progress Report of R and D on geological disposal' summarized on November, 1999 by JNC through actual tests and researches at the deep stratum. The obtained results are intended to reflect to disposal business of The Horonobe Underground Research Laboratory and safety regulation and so on performed by the government, together with results of stratum science research, at the Tono Geoscience Center, of geological disposal R and D at the Tokai Works, or of international collaborations. For R and D at the The Horonobe Underground Research Laboratory after 2000, following subjects are shown: 1) Survey technique on long-term stability of geological environment, 2) Survey technique on geological environment, 3) Engineering technique on engineered barrier and

  13. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  14. Horonobe Underground Research Laboratory project. Investigation report for the 2006 fiscal year

    International Nuclear Information System (INIS)

    Matsui, Hiroya; Nakayama, Masashi; Sanada, Hiroyuki

    2008-05-01

    The Horonobe Underground Research Laboratory is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2006 fiscal year (2006/2007), the second year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2006 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in, collaboration with experts from domestic and overseas research organisation. (author)

  15. Horonobe Underground Research Laboratory project investigation report for the 2008 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sano, Michiaki; Sanada, Hiroyuki; Sugita, Yutaka

    2009-11-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations' 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2008 fiscal year (2008/2009), the 4th year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2008 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  16. Horonobe Underground Research Laboratory project. Investigation report for the 2010 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sawada, Sumiyuki; Sugita, Yutaka

    2011-09-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2010 fiscal year (2010/2011). The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2010 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  17. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  18. Safety distance between underground natural gas and water pipeline facilities

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Yusof, M.Z.

    2014-01-01

    A leaking water pipe bursting high pressure water jet in the soil will create slurry erosion which will eventually erode the adjacent natural gas pipe, thus causing its failure. The standard 300 mm safety distance used to place natural gas pipe away from water pipeline facilities needs to be reviewed to consider accidental damage and provide safety cushion to the natural gas pipe. This paper presents a study on underground natural gas pipeline safety distance via experimental and numerical approaches. The pressure–distance characteristic curve obtained from this experimental study showed that the pressure was inversely proportional to the square of the separation distance. Experimental testing using water-to-water pipeline system environment was used to represent the worst case environment, and could be used as a guide to estimate appropriate safety distance. Dynamic pressures obtained from the experimental measurement and simulation prediction mutually agreed along the high-pressure water jetting path. From the experimental and simulation exercises, zero effect distance for water-to-water medium was obtained at an estimated horizontal distance at a minimum of 1500 mm, while for the water-to-sand medium, the distance was estimated at a minimum of 1200 mm. - Highlights: • Safe separation distance of underground natural gas pipes was determined. • Pressure curve is inversely proportional to separation distance. • Water-to-water system represents the worst case environment. • Measured dynamic pressures mutually agreed with simulation results. • Safe separation distance of more than 1200 mm should be applied

  19. Pilot tests on radioactive waste disposal in underground facilities

    International Nuclear Information System (INIS)

    Haijtink, B.

    1992-01-01

    The report describes the pilot test carried out in the underground facilities in the Asse salt mine (Germany) and in the Boom clay beneath the nuclear site at Mol (Belgium). These tests include test disposal of simulated vitrified high-level waste (HAW project) and of intermediate level waste and spent HTR fuel elements in the Asse salt mine, as well as an active handling experiment with neutron sources, this last test with a view to direct disposal of spent fuel. Moreover, an in situ test on the performance of a long-term sealing system for galleries in rock salt is described. Regarding the tests in the Boom clay, a combined heating and radiation test, geomechanical and thermo-hydro mechanical tests are dealt with. Moreover, the design of a demonstration test for disposal of high-level waste in clay is presented. Finally the situation concerning site selection and characterization in France and the United Kingdom are described

  20. Researching radioactive waste disposal. [Underground repository

    Energy Technology Data Exchange (ETDEWEB)

    Feates, F; Keen, N [UKAEA Research Group, Harwell. Atomic Energy Research Establishment

    1976-02-16

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared.

  1. Research on prognostics and health management of underground pipeline

    Science.gov (United States)

    Zhang, Guangdi; Yang, Meng; Yang, Fan; Ni, Na

    2018-04-01

    With the development of the city, the construction of the underground pipeline is more and more complex, which has relation to the safety and normal operation of the city, known as "the lifeline of the city". First of all, this paper introduces the principle of PHM (Prognostics and Health Management) technology, then proposed for fault diagnosis, prognostics and health management in view of underground pipeline, make a diagnosis and prognostics for the faults appearing in the operation of the underground pipeline, and then make a health assessment of the whole underground pipe network in order to ensure the operation of the pipeline safely. Finally, summarize and prospect the future research direction.

  2. Guide to research facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  3. ONKALO. Underground characterisation and research programme (UCRP)

    International Nuclear Information System (INIS)

    2003-09-01

    The purpose of the ONKALO Underground Characterisation and Research Programme (UCRP) is to explore Olkiluoto rock conditions and thereby enhance the current geoscientific understanding of the site, to allow the submission of an application for a construction licence for the deep repository. The characterisation programme has the following geoscientific goals: to develop and demonstrate techniques for detailed characterising volumes of rock from the underground, to update the current descriptive model of Olkiluoto bedrock and to increase confidence in this model such that it will serve the needs of construction and the Preliminary Safety Assessment Report (PSAR) in the construction licence application, and to identify volumes of rock that could be suitable for housing parts of the repository. The development of ONKALO will be based on coordinated investigation, design and construction activities. Mapping data from the tunnel front and data obtained from short probe holes will constitute most of the data needed to control the construction of ONKALO. Pilot holes will be drilled along the tunnel profile as the excavation proceeds and investigations will be carried out for geological, rock mechanics, hydrogeological and hydrogeochemical characterisation. Investigations cover more detailed mapping and sampling in parts of the tunnel, mapping and sampling of potential groundwater inflows to the tunnel and investigations from characterisation bore holes drilled from ONKALO. In addition, monitoring is planned in surface-drilled boreholes, in boreholes drilled from ONKALO, and in ONKALO itself. Monitoring will reveal changes in bedrock conditions and thus provide important information for site characterisation. The information collected by characterisation and monitoring will all be assessed in an integrated modelling effort. The aim of this modelling is both to successively enhance the description and understanding of the rock volume around ONKALO and to assess potential

  4. Environmental Toxicology Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Fully-equipped facilities for environmental toxicology researchThe Environmental Toxicology Research Facility (ETRF) located in Vicksburg, MS provides over 8,200 ft...

  5. Principal provisions of engineering and geological survey methodology in designing and construction of underground laboratory as a part of facility of RW underground isolation

    International Nuclear Information System (INIS)

    Prokopova, O.A.

    2006-01-01

    The most critical moment is the choice of a site for radioactive waste geological repository. Here the role of engineering and geological prospecting as a basis for the construction of a facility for underground isolation appears especially important; it is followed by finding a suitable area and subsequent allocation of the site and facility construction sites. The decision on the selection of construction site for the underground repository is taken by the principle 'descent from the general to the particular', which is a continuous process with the observance of stages in research for the design and exploration work. Each stage of research is typified by specific scale and methods of geological and geophysical studies and scientific research to be fulfilled in scopes sufficient for solution of basic problems for the designing. (author)

  6. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  7. Horonobe Underground Research Laboratory project. Investigation program for the 2008 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sanada, Hiroyuki; Yamaguchi, Takehiro; Sugita, Yutaka

    2008-09-01

    As part of the research and development program on geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2008 fiscal year (2008/2009), the 4th year of the Phase 2 investigations. In the 2008 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for long-term monitoring of the geological environment', 'development of engineering techniques for use in the deep underground environment' and studies on the long-term stability of the geological environment', are continuously carried out. Investigations in 'research and development on geological disposal technology', including 'improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies', are also continuously carried out

  8. UNDERGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-11-15

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  9. UNDERGROUND

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  10. Geodynamics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This GSL facility has evolved over the last three decades to support survivability and protective structures research. Experimental devices include three gas-driven...

  11. Magnetics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetics Research Facility houses three Helmholtz coils that generate magnetic fields in three perpendicular directions to balance the earth's magnetic field....

  12. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  13. Flexible Electronics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Flexible Electronics Research Facility designs, synthesizes, tests, and fabricates materials and devices compatible with flexible substrates for Army information...

  14. Underground laboratories in Europe

    International Nuclear Information System (INIS)

    Coccia, E

    2006-01-01

    The only clear evidence today for physics beyond the standard model comes from underground experiments and the future activity of underground laboratories appears challenging and rich. I review here the existing underground research facilities in Europe. I present briefly the main characteristics, scientific activity and perspectives of these Laboratories and discuss the present coordination actions in the framework of the European Union

  15. Eves government invests $9.3 million to establish new facility for underground science in Sudbury

    CERN Multimedia

    2003-01-01

    The Sudbury Neutrino Observatory Institute (SNO), in co-operation with a number of private and public sector partners, will establish the International Facility for Underground Science at Creighton Mine in Sudbury (1 page)

  16. Pilot research projects for underground disposal of radioactive wastes in the United States of America

    International Nuclear Information System (INIS)

    Stein, R.; Collyer, P.L.

    1984-01-01

    Disposal of commercial radioactive waste in the United States of America in a deep underground formation will ensure permanent isolation from the biosphere with minimal post-closure surveillance and maintenance. The siting, design and development, performance assessment, operation, licensing, certification and decommissioning of an underground repository have stimulated the development of several pilot research projects throughout the country. These pilot tests and projects, along with their resulting data base, are viewed as important steps in the overall location and construction of a repository. Beginning in the 1960s, research at pilot facilities has progressed from underground spent fuel tests in an abandoned salt mine to the production of vitrified nuclear waste in complex borosilicate glass logs. Simulated underground repository experiments have been performed in the dense basalts of Washington State, the volcanic tuffaceous rock of Nevada and both domal and bedded salts of Louisiana and Kansas. In addition to underground pilot in situ tests, other facilities have been constructed or modified to monitor the performance of spent fuel in dry storage wells and self-shielded concrete casks. As the National Waste Terminal Storage (NWTS) programme advances to the next stage of underground site characterization for each of three different geological sites, additional pilot facilities are under consideration. These include a Test and Evaluation Facility (TEF) for site verification and equipment performance and testing, as well as a salt testing facility for verification of in situ simulation equipment. Although not associated with the NWTS programme, the construction of the Waste Isolation Pilot Plant (WIPP) in the bedded salts of New Mexico is well under way for deep testing and experimentation with the defence programme's transuranic nuclear waste. (author)

  17. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityUnderground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  18. Field Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...

  19. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  20. Frost Effects Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Full-scale study in controlled conditionsThe Frost Effects Research Facility (FERF) is the largest refrigerated warehouse in the United States that can be used for a...

  1. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  2. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  3. Groundwater flow modeling in construction phase of the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Onoe, Hironori; Saegusa, Hiromitsu; Takeuchi, Ryuji

    2016-01-01

    This paper comprehensively describes the result of groundwater flow modeling using data of hydraulic responses due to construction of Mizunami Underground Research Laboratory (MIU) in Mizunami, Gifu, in order to update hydrogeological model based on stepwise approach for crystalline fractured rock in Japan. The results showed that large scale hydraulic compartment structures which has significant influence on change of groundwater flow characteristics are distributed around MIU. Furthermore, it is concluded that hydrogeological monitoring data and groundwater flow modeling during construction of deep underground facilities are effective for hydrogeological characterization of heterogeneous fractured rock. (author)

  4. Horonobe Underground Research Laboratory project. Investigation report for the 2007 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sanada, Hiroyuki; Sugita, Yutaka

    2008-09-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2007 fiscal year (2007/2008), the 3rd year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2007 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in collaboration with experts from domestic and overseas research organisation. (author)

  5. Co-ordinated management of two underground gas facilities in aquifer

    International Nuclear Information System (INIS)

    D'Haussy, P.L.

    1990-01-01

    Coordinated management of two underground natural gas storage facilities which are approximately 10 km apart is described. The essential part of service installations allowing their operation is provided at a single location and is common to both facilities, which contributes to ensuring safety gas supply in France

  6. Measurement plan and observational construction program on drift excavation at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Yamasaki, Masanao; Yamaguchi, Takehiro; Funaki, Hironori; Fujikawa, Daisuke; Tsusaka, Kimikazu

    2008-09-01

    The Horonobe URL Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, 'Geoscientific Research' and 'R and D' on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. On the Horonobe URL Project, 'Phase 1' was finished in 2005FY and construction of the underground facility was started since then. Now, 'Phase 2' (investigations during construction of the underground facilities) is on-going. On the 'Development of engineering techniques for use in the deep underground environment' in Phase 1, based on the various types of data acquired on investigations from the surface, the design of underground facility in advance was planned. At the inception of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe URL Project' (hereinafter referred to as 'Observational Construction Program') was published. The Observational Construction Program summarizes followings from the Phase I investigations: measurements for safety/reasonable construction, measurements for R and D on enhancement of shaft design/construction technology, and measurements for verification of the deep geological environment model estimated before shaft excavation, and it is on-going. This report summarizes the measurement plan during construction of drifts based on the design in advance and the observational construction program for feedback measurements data into design and construction on subsequent steps. This report also describes about design and construction management program of underground facility and R and D program on

  7. Blasting Impact by the Construction of an Underground Research Tunnel in KAERI

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.

    2005-12-01

    The underground research tunnel, which is under construction in KAERI for the validation of HLW disposal system, is excavated by drill and blasting method using high-explosives. In order not to disturb the operation at the research facilities such as HANARO reactor, it is critical to develop a blasting design , which will not influence on the facilities, even though several tens of explosives are detonated almost simultaneously. To develop a reasonable blasting design, a test blasting at the site should be performed. A preliminary analysis for predicting the expected vibration and noise by the blasting for the construction of the underground research tunnel was performed using a typical empirical equation. From the study, a blasting design could be developed not to influence on the major research facilities in KAERI. For the validation of the blasting design, a test blasting was carried out at the site and the parameters of vibration equation could be determined using the measured data during the test blasting. Using the equation, it was possible to predict the vibration at different locations at KAERI and to conclude that the blasting design would meet the design criteria at the major facilities in KAERI. The study would verify the applicability of blasting method for the construction of a research tunnel in a rock mass and that would help the design and construction of large scale underground research laboratory, which might be carried out in the future. It is also meaningful to accumulate technical experience for enhancing the reliability and effectiveness of the design and construction of the HLW disposal repository, which will be constructed in deep underground by drill and blasting technique

  8. Exploring a Common Past: Researching and Interpreting the Underground Railroad.

    Science.gov (United States)

    National Park Service (Dept. of Interior), Washington, DC.

    Although the Underground Railroad has been an integral part of U.S. history and folklore for well over 150 years, the recent past has seen an increased public interest in the identification of historic sites associated with the experiences of fugitive slaves. This booklet is part of a National Park Service initiative to design research methods…

  9. Horonobe Underground Research Laboratory project investigation program for the 2007 fiscal year (Translated document)

    International Nuclear Information System (INIS)

    Matsui, Hiroya; Nakayama, Masashi; Sanada, Hiroyuki; Yamaguchi, Takehiro

    2008-09-01

    As past of the research and development program on the geological disposal of high-level radioactive waste (HLW), the Horonobe Underground Research Center, a division of the Japan Atomic Energy Agency (JAEA), is implementing the Horonobe Underground Research Laboratory Project (Horonobe URL Project) with the aim at investigating sedimentary rock formations. According to the research plan described in the Midterm Plan of JAEA, geological investigations are to be carried out during the drilling of a shaft down to intermediate depth, while research and development in the areas of engineering technology and safety assessment are to be promoted by collaboration with other research organizations. The results of the R and D activities will be systematized as a 'knowledge base' that supports a wide range of arguments related to the safety of geological disposal. The Horonobe URL Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the investigation program for the 2007 fiscal year (2007/2008), the third year of the Phase 2 investigations. In the 2007 fiscal year, investigations in geoscientific research', including 'development of techniques for investigating the geological environment', 'development of techniques for use in the deep underground environment' and 'studies on the long-term stability of the geological environment', is continuously carried out. Investigations in 'research and development on geological disposal technology', including improving the reliability of disposal technologies' and 'enhancement of safety assessment methodologies' are also continuously carried out. Construction of the underground facilities is ongoing at the Ventilation Shaft and the East Shaft

  10. Staff Technical Position on geological repository operations area underground facility design: Thermal loads

    International Nuclear Information System (INIS)

    Nataraja, M.S.

    1992-12-01

    The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff's position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design

  11. Advantages of co-located spent fuel reprocessing, repository and underground reactor facilities

    International Nuclear Information System (INIS)

    Mahar, James M.; Kunze, Jay F.; Wes Myers, Carl; Loveland, Ryan

    2007-01-01

    The purpose of this work is to extend the discussion of potential advantages of the underground nuclear park (UNP) concept by making specific concept design and cost estimate comparisons for both present Generation III types of reactors and for some of the modular Gen IV or the GNEP modular concept. For the present Gen III types, we propose co-locating reprocessing and (re)fabrication facilities along with disposal facilities in the underground park. The goal is to determine the site costs and facility construction costs of such a complex which incorporates the advantages of a closed fuel cycle, nuclear waste repository, and ultimate decommissioning activities all within the UNP. Modular power generation units are also well-suited for placement underground and have the added advantage of construction using current and future tunnel boring machine technology. (authors)

  12. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  13. Shallow groundwater intrusion to deeper depths caused by construction and drainage of a large underground facility. Estimation using 3H, CFCs and SF6 as trace materials

    International Nuclear Information System (INIS)

    Hagiwara, Hiroki; Iwatsuki, Teruki; Hasegawa, Takuma; Nakata, Kotaro; Tomioka, Yuichi

    2015-01-01

    This study evaluates a method to estimate shallow groundwater intrusion in and around a large underground research facility (Mizunami Underground Research Laboratory-MIU). Water chemistry, stable isotopes (δD and δ 18 O), tritium ( 3 H), chlorofluorocarbons (CFCs) and sulfur hexafluoride (SF 6 ) in groundwater were monitored around the facility (from 20 m down to a depth of 500 m), for a period of 5 years. The results show that shallow groundwater inflows into deeper groundwater at depths of between 200–400 m. In addition, the content of shallow groundwater estimated using 3 H and CFC-12 concentrations is up to a maximum of about 50%. This is interpreted as the impact on the groundwater environment caused by construction and operation of a large facility over several years. The concomitant use of 3 H and CFCs is an effective method to determine the extent of shallow groundwater inflow caused by construction of an underground facility. (author)

  14. Study of the retrievability of radioactive waste from a deep underground disposal facility

    International Nuclear Information System (INIS)

    Heijdra, J.J.; Bekkering, J.; Gaag, J. van der; Kleyn, P.H. van der; Prij, J.

    1993-11-01

    In the reporting period the main activities have been the detailed set-up of a planning for the underground facilities. This planning has been produced in such a manner that modification in the underground facilities can easily be incorporated. The basic planning has been set up as a series of computer spread sheets which break down the construction of the mine into elementary cost- and activity centres. The principles, assumptions and models which underlay these planning are given, and a selection and evaluation of the retrieval method has been performed. (orig.)

  15. The Mizunami underground research laboratory in Japan - programme for study of the deep geological environment

    International Nuclear Information System (INIS)

    Sakuma, Hideki; Sugihara, Kozo; Koide, Kaoru; Mikake, Shinichiro

    1998-01-01

    This paper is an overview of the PNC's Mizunami Underground Research Laboratory project in Mizunami City, central Japan. The Mizunami Underground Research Laboratory now will succeed the Kamaishi Mine as the main facility for the geoscientific study of the crystalline environment. The site will never be considered as a site for a repository. The surface-based investigations, planned to continue for some 5 years commenced in the autumn 1997. The construction of the facility to the depth of 1000 m is currently planned to: Develop comprehensive investigation techniques for geological environment; Acquire data on the deep geological environment and to; Develop a range of engineering techniques for deep underground application. Besides PNC research, the facility will also be used to promote deeper understanding of earthquakes, to perform experiments under micro-gravity conditions etc. The geology of the site is shortly as follows: The sedimentary overburden some 20 - 100 m in thickness is of age 2 - 20 million years. The basement granite is approx. 70 million years. A reverse fault is crosscutting the site. The identified fault offers interesting possibilities for important research. Part of the work during the surface-based investigations, is to drill and test deep boreholes to a planned depth up to 2000 m. Based on the investigations, predictions will be made what geological environment will be encountered during the Construction Phase. Also the effect of construction will be predicted. Methodology for evaluation of predictions will be established

  16. About working of the research program on development of underground space of Russia

    International Nuclear Information System (INIS)

    Kartoziya, B.A.

    1995-01-01

    Basic proposition relative to the developed federal program on scientific research in the area of assimilating underground space in Russia are presented. The underground objects are divided by their purpose into four groups: 1) underground objects of house-hold purpose (energy and mining complex, industrial enterprises, storages, garages, etc); 2) underground objects of social purpose (libraries, shops, restaurants, etc); 3) underground objects of ecological purpose (storages, disposal sites for radioactive wastes and hazardous substances, dangerous productions, etc); 4) underground objects of defense purpose. Trends in the scientific-research program formation, relative to underground space assimilation are enumerated. 7 refs

  17. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  18. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Science.gov (United States)

    2010-07-01

    ... areas; construction and safety precautions. 75.1903 Section 75.1903 Mineral Resources MINE SAFETY AND...; construction and safety precautions. (a) Permanent underground diesel fuel storage facilities must be— (1... with at least 240 pounds of rock dust and provided with two portable multipurpose dry chemical type...

  19. 10 CFR 60.133 - Additional design criteria for the underground facility.

    Science.gov (United States)

    2010-01-01

    ... specific site conditions identified through in situ monitoring, testing, or excavation. (c) Retrieval of... maintained. (2) Openings in the underground facility shall be designed to reduce the potential for... creating a preferential pathway for groundwater to contact the waste packages or radionuclide migration to...

  20. Mission of mediation on planting underground research laboratories

    International Nuclear Information System (INIS)

    Bataille, C.

    1994-01-01

    France, who chose to have a strong nuclear industry, is confronted to the problem of management, treatment, storage and elimination of radioactive waste. The law defined an important research program with a study of underground storage in laboratories. Here is the report of this mission. A problem of people confidence arose; there is a difference between the great level of science or technology and the level of understanding of public opinion. The only answer brought by a democratic society is to develop information

  1. Mizunami Underground Research Project annual report in the 2002 fiscal year

    International Nuclear Information System (INIS)

    Ota, Kunio; Amano, Kenji; Kumazaki, Naoki

    2003-07-01

    The current geoscientific research of the Mizunami Underground Research Laboratory (MIU) Project have been carried out since the 1996 fiscal year at the Shobasama site in Akeyo-cho, Mizunami City, Gifu Prefecture. The main goals of the MIU Project are to establish appropriate methodologies for reliably investigating and assessing a deep subsurface, and to develop a range of engineering techniques for deep underground application in granite. This site for MIU construction was changed in January 2002, from the Shobasama site to city-owned land (MIU Construction Site) after lease contract with Mizunami city. The surface-based investigations at the MIU Construction site have started since February 2002. In 2002 fiscal year, geophysical survey and shallow borehole investigations were conducted and deep borehole investigations have started for modeling and characterization of geological environment in the MIU Construction Site before sinking the shafts. Detail of study and survey during the construction phase of MIU project was planned based on the layout and plan of construction of the underground facilities as one of the results of development of engineering technologies in a deep underground. In the Shobasama site, VSP survey was carried out to improve the model of geological environment. Hydrogeological model was calibrated using the results of long-term pumping test and long-term subsurface and groundwater monitoring. Important factors for hydrogeological modeling were evaluated as the results of numerical analysis by multiple approaches of groundwater flow modeling. The preliminary analysis based on the rock mechanical model at the Shobasama site was performed to estimate the deformation caused by excavation of the underground facilities. (author)

  2. Study on applicability of low alkaline cement in Horonobe Underground Research Laboratory project (2) (Contract research)

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Kobayashi, Yasushi; Matsuda, Takeshi; Noda, Masaru; Iriya, Keishiro; Takeda, Nobufumi

    2009-11-01

    In Horonobe Underground Research Center construction of underground facility began in 2005 and a construction practicality test with HFSC (Highly Fly-ash contained Silica-fume Cement) is planned in a part of the gallery. Before the HFSC is used as a tunnel support in the gallery, it is necessary to validate that the HFSC is valid under the actual construction condition. The research results in the FY 2007 are as follows. For evaluating corrosion behavior in the HFSC and the durability of the HFSC, reinforced concrete specimen with HFSC 226 have been exposed to off-shore condition in saline water and splashed zone for 6 years and analyzed the corrosion rate and the amount of chloride intrusion. The durability of the HFSC reinforced concrete was assessed to be more than 50 years until cracking due to corrosion is generated. The pH measurements and the analysis of the chemical composition of solid and liquid phase in the HFSC cocrete-water immersion experiments, which were started in the FY 2002, were carried out. Also for the experiments of cement paste for shotcreting, which were started in the FY 2005, were analyzed. Furthermore, results and findings obtained in earlier studies including this study were summarized, and based on those, method of quality control including test method, frequency, standards etc. was suggested. (author)

  3. Information collection regarding geoscientific monitoring techniques during closure of underground facility in crystalline rock

    International Nuclear Information System (INIS)

    Hosoya, Shinichi; Yamashita, Tadashi; Iwatsuki, Teruki; Saegusa, Hiromitsu; Onoe, Hironori; Ishibashi, Masayuki

    2016-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami City in Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified the critical issues on the geoscientific research program: “Development of modelling technologies for mass transport”, “Development of drift backfilling technologies” and “Development of technologies for reducing groundwater inflow”, based on the latest results of the synthesizing R and D. The purposes of the “Development of drift backfilling technologies” are to develop closure methodology and technology, and long-term monitoring technology, and to evaluate resilience of geological environment. In order to achieve the purposes, previous information from the case example of underground facility constructed in crystalline rock in Europe has been collected in this study. In particular, the boundary conditions for the closure, geological characteristics, technical specifications, and method of monitoring have been focused. The information on the international project regarding drift closure test and development of monitoring technologies has also been collected. In addition, interviews were conducted to Finnish and Swedish specialists who have experiences involving planning, construction management, monitoring, and safety assessment for the closure to obtain the technical knowledge. Based on the collected information, concept and point of attention, which are regarding drift closure testing, and planning, execution management and monitoring on the closure of MIU, have been specified. (author)

  4. Collection of URL measurement data in 2010 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Inagaki, Daisuke; Sawada, Sumiyuki; Tokiwa, Tetsuya; Tsusaka, Kimikazu; Amano, Yuki; Niinuma, Hiroaki

    2012-09-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the begining of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2010 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition the basic data for

  5. Collection of URL measurement data in 2011 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Inagaki, Daisuke; Tokiwa, Tetsuya; Murakami, Hiroaki

    2013-02-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the beginning of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2011 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition the basic data for

  6. Collection of measurement data in 2012 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Inagaki, Daisuke

    2014-03-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the begining of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') and an investigation report titled 'Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project' were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2012 fiscal year based on the Observational Construction Program. The report summarizes the measurements data for the purpose of acquisition of the basic data

  7. A design concept of underground facilities for the deep geologic disposal of spent fuel

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Choi, Heui Joo; Choi, Jong Won; Hahn, Pil Soo

    2005-01-01

    Spent nuclear fuel from nuclear power plants can be disposed in the underground repository. In this paper, a concept of Korean Reference HLW disposal System (KRS-1) design is presented. Though no site for the underground repository has been specified in Korea, but a generic site with granitic rock is considered for reference spent fuel repository design. To implement the concept, design requirements such as spent fuel characteristics and capacity of the repository and design principles were established. Then, based on these requirements and principles, a concept of the disposal process, the facilities and the layout of the repository was developed

  8. Horonobe Underground Research Laboratory Project. Plans for surface-based investigations. Phase 1

    International Nuclear Information System (INIS)

    Goto, Junichi; Hama, Katsuhiro

    2003-10-01

    The Horonobe Underground Research Laboratory Project is an investigation project which is planned over 20 years. The investigations are conducted in the three phases: investigations from surface (Phase 1), investigations during construction of the underground facility (Phase 2) and investigations using the facility (Phase 3). Taking into account the results from 'H12: Project of Establish the Scientific and Technical Basis for HLW Disposal in Japan - Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan-' (JNC, 2000), research and development goals for the Horonobe URL project were re-defined as follows; a) Development of investigation technologies for the geological environment, b) Development of monitoring technologies for the geological environment, c) Study on the long-term stability of the geological environment, d) Development of the basis for engineering technologies in deep underground, e) Verification of technologies for engineered barriers, f) Development of detailed designing technologies of the repositories, and g) Improvement of safety assessment methodologies. Investigations for the goals a) to d) and e) to g) are conducted in the 'Geoscientific Research' and 'Research and Development on Geological Disposal', respectively. In Phase 1, a 'laboratory construction area' of a few kilometers square is selected based on the results from early stage investigations. Subsequent investigations are concentrated in the selected area and its periphery. Acquisition of data by surface-based investigations, modeling of the geological environment and predictions of changes in the geological environment caused by the construction of the underground facility, are conducted in a) Development of investigation technologies for the geological environment. Development and installation of monitoring equipments and data acquisition prior to the construction of the underground facility fall under b) Development of monitoring technologies

  9. Current status of the Demonstration Test of Underground Cavern-Type Disposal Facilities

    International Nuclear Information System (INIS)

    Akiyama, Yoshihiro; Terada, Kenji; Oda, Nobuaki; Yada, Tsutomu; Nakajima, Takahiro

    2011-01-01

    In Japan, the underground cavern-type disposal facilities for low-level waste (LLW) with relatively high radioactivity, mainly generated from power reactor decommissioning, and for certain transuranic (TRU) waste, mainly from spent fuel reprocessing, are designed to be constructed in a cavern 50-100 m underground and to employ an engineered barrier system (EBS) made of bentonite and cement materials. To advance a disposal feasibility study, the Japanese government commissioned the Demonstration Test of Underground Cavern-Type Disposal Facilities in fiscal year (FY) 2005. Construction of a full-scale mock-up test facility in an actual subsurface environment started in FY 2007. The main test objective is to establish the construction methodology and procedures that ensure the required quality of the EBS on-site. A portion of the facility was constructed by 2010, and the test has demonstrated both the practicability of the construction and the achievement of quality standards: low permeability of less than 5x10 -13 m/s and low-diffusion of less than 1x10 -12 m 2 /s at the completion of construction. This paper covers the test results from the construction of certain parts using bentonite and cement materials. (author)

  10. Search for underground openings for in situ test facilities in crystalline rock

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O' Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

    1980-01-01

    With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

  11. Search for underground openings for in situ test facilities in crystalline rock

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O'Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

    1980-01-01

    With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock

  12. Low background germanium detectors: From environmental laboratory to underground counting facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceuppens, M [Canberra Semiconductor N.V., Geel (Belgium); [Canberra Industries, Inc., Meriden (United States); Verplancke, J [Canberra Semiconductor N.V., Geel (Belgium); [Canberra Industries, Inc., Meriden (United States); Tench, O [Canberra Semiconductor N.V., Geel (Belgium); [Canberra Industries, Inc., Meriden (United States)

    1997-03-01

    Presentation and overview of different Low Level measuring systems ranging from the environmental lab to low-background detection systems and to the deep underground counting facility. Examples and performances for each of these will be given. Attention will be given to the standardised ultra low-background detectors and shields which provide excellent performance without the high cost in time and money associated with custom designed systems. (orig./DG)

  13. Low background germanium detectors: From environmental laboratory to underground counting facility

    International Nuclear Information System (INIS)

    Ceuppens, M.; Verplancke, J.; Tench, O.

    1997-01-01

    Presentation and overview of different Low Level measuring systems ranging from the environmental lab to low-background detection systems and to the deep underground counting facility. Examples and performances for each of these will be given. Attention will be given to the standardised ultra low-background detectors and shields which provide excellent performance without the high cost in time and money associated with custom designed systems. (orig./DG)

  14. Information base for waste repository design. Volume 5. Decommissioning of underground facilities. Technical report

    International Nuclear Information System (INIS)

    Giuffre, M.S.; Plum, R.L.; Koplik, C.M.; Talbot, R.

    1979-03-01

    This report is Volume 5 of a seven volume document on nuclear waste repository design issues. This report discusses the requirements for decommissioning a deep underground facility for the disposal of radioactive waste. The techniques for sealing the mined excavations are presented and an information base on potential backfill materials is provided. Possible requirements for monitoring the site are discussed. The performance requirements for backfill materials are outlined. The advantages and disadvantages of each sealing method are stated

  15. Collection of measurement data in 2014 fiscal year at the Horonobe Underground Research Laboratory Project

    International Nuclear Information System (INIS)

    Sakurai, Akitaka; Aoyagi, Kazuhei

    2016-07-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations were planned. At the beginning of the Phase II investigations, investigation reports related to measurement plan and observational construction program on shaft and drift excavation were published. The observational construction program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. Currently, Phase III investigation related to geological disposal in underground facilities has been conducting. Also, measurement for consideration of long-term stability of the tunnel has been continued. This report summarizes the measurements data acquired at the West Shaft in 2014 fiscal year for the purpose of the basic data for carrying out the Observational Construction Program. A DVD-ROM is attached as an appendix. (J.P.N.)

  16. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Simmons, G.R.; Bilinsky, D.M.; Davison, C.C.; Gray, M.N.; Kjartanson, B.H.; Martin, C.D.; Peters, D.A.; Lang, P.A.

    1992-09-01

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  17. Test plan: Gas-threshold-pressure testing of the Salado Formation in the WIPP underground facility

    International Nuclear Information System (INIS)

    Saulnier, G.J. Jr.

    1992-03-01

    Performance assessment for the disposal of radioactive waste from the United States defense program in the WIPP underground facility must assess the role of post-closure was generation by waste degradation and the subsequent pressurization of the facility. be assimilated by the host formation will Whether or not the generated gas can be assimilated by the host formation will determine the ability of the gas to reach or exceed lithostatic pressure within the repository. The purpose of this test plan is (1) to present a test design to obtain realistic estimates of gas-threshold pressure for the Salado Formation WIPP underground facility including parts of the formation disturbed by the underground of the Salado, and (2) to provide a excavations and in the far-field or undisturbed part framework for changes and amendments to test objectives, practices, and procedures. Because in situ determinations of gas-threshold pressure in low-permeability media are not standard practice, the methods recommended in this testplan are adapted from permeability-testing and hydrofracture procedures. Therefore, as the gas-threshold-pressure testing program progresses, personnel assigned to the program and outside observers and reviewers will be asked for comments regarding the testing procedures. New and/or improved test procedures will be documented as amendments to this test plan, and subject to similar review procedures

  18. Collection of measurement data in 2013 fiscal year at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Aoyagi, Kazuhei; Kawate, Satoshi

    2015-12-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The URL project consists of two major research areas, “Geoscientific Research” and “R and D on Geological Disposal Technologies”, and proceeds in three overlapping phases, “Phase I: Surface-based investigations”, “Phase II: Investigations during tunnel excavation” and “Phase III: Investigations in the underground facilities”, over a period of around 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations were planned. At the beginning of the Phase II investigations, an investigation report titled “Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project” (hereinafter referred to as “Observational Construction Programs”) and an investigation report titled “Measurement Plan and Observational Construction Program on Drift Excavation at the Horonobe Underground Research Laboratory Project” were published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the West Shaft and the drifts in 2013 fiscal year for the purpose of the basic data for carrying out the Observational Construction Program. A DVD-ROM is

  19. Monitoring and information management system at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J.

    1996-01-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  20. Monitoring and information management system at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada)

    1996-07-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)

  1. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  2. Advances in technology for the construction of deep-underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-31

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  3. Present state on research and development of underground disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    In September, 1996, Power Reactor and Nuclear Fuel Development Corp. (PNC) arranged her old research and development (R and D) results to issue as a shape of `Technical report on R and D of high level radioactive waste underground disposal`. On the other hand, Radioactive waste special party in Committee of Atomic Energy at that time evaluated that technical possibility for safety establishment of underground disposal in Japan was elucidated and showed future problems in the technical development. Therefore, PNC proceeded further R and D for the second arrangement under consideration of such comments. As a result, in investigation of geological environment condition, main points were laid at study on rear-field feature and its long-term stability. In development of disposal technique, main points were laid at elucidation of design requirements confirmable to the near-field evaluation, main points were laid at upgrading validity of evaluation model to analytically evaluate the near-field feature using data with high reliability. (G.K.)

  4. Present state on research and development of underground disposal

    International Nuclear Information System (INIS)

    1996-12-01

    In September, 1996, Power Reactor and Nuclear Fuel Development Corp. (PNC) arranged her old research and development (R and D) results to issue as a shape of 'Technical report on R and D of high level radioactive waste underground disposal'. On the other hand, Radioactive waste special party in Committee of Atomic Energy at that time evaluated that technical possibility for safety establishment of underground disposal in Japan was elucidated and showed future problems in the technical development. Therefore, PNC proceeded further R and D for the second arrangement under consideration of such comments. As a result, in investigation of geological environment condition, main points were laid at study on rear-field feature and its long-term stability. In development of disposal technique, main points were laid at elucidation of design requirements confirmable to the near-field evaluation, main points were laid at upgrading validity of evaluation model to analytically evaluate the near-field feature using data with high reliability. (G.K.)

  5. Studies and researches in the underground laboratory at Pasquasia mine

    International Nuclear Information System (INIS)

    Tassoni, E.; Cautilli, F.; Polizzano, C.; Zarlenga, F.

    1989-01-01

    The reliability of the geological disposal of radioactive wastes has to be verified both by laboratory and on site researches, under both surface and underground conditions. The tests carried out under high lithostatic stress can allow extrapolations to be made having absolute value at the depths planned for the construction of the repository. An underground laboratory was excavated at the Pasquasia mine (Enna-Sicilia). On the selected area a detailed geological survey (1:5000 scale) was carried out; for the purpose of studying the effects induced by the advancement of the excavation's face into the clayey mass and over the cross section of the transversal tunnel, several geotechnical measurement stations were installed. Structural observations were made on both the fronts and the walls of the tunnel for the purpose of characterizing the mechanical behaviour of the clayey mass. The 37 cubic blocks and the 72 samples collected during the excavation were analyzed from different point of view (sedimentological, mineralogical, geotechnical, etc.). After the excavation of the tunnel and the installation of the geotechnical stations, the measurements were carried out up to March 1987. At this date the work programme was unfortunately stopped by local authorities, unfoundly suspecting Pasquasia mine would be used as waste repository

  6. Evaluation of the effects of underground water usage and spillage in the Exploratory Studies Facility

    International Nuclear Information System (INIS)

    Dunn, E.; Sobolik, S.R.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level radioactive waste repository. Analyses reported herein were performed to support the design of site characterization activities so that these activities will have a minimal impact on the ability of the site to isolate waste and a minimal impact on underground tests performed as part of the characterization process. These analyses examine the effect of water to be used in the underground construction and testing activities for the Exploratory Studies Facility on in situ conditions. Underground activities and events where water will be used include construction, expected but unplanned spills, and fire protection. The models used predict that, if the current requirements in the Exploratory Studies Facility Design Requirements are observed, water that is imbibed into the tunnel wall rock in the Topopah Springs welded tuff can be removed over the preclosure time period by routine or corrective ventilation, and also that water imbibed into the Paintbrush Tuff nonwelded tuff will not reach the potential waste storage area

  7. Creation and Plan of an Underground Geologic Radioactive Waste Isolation Facility at the Nizhnekansky Rock Massif in Russia

    International Nuclear Information System (INIS)

    Gupalo, T A; Kudinov, K G; Jardine, L J; Williams, J

    2004-01-01

    This joint geologic repository project in Russia was initiated in May 2002 between the United States (U.S.) International Science and Technology Center (ISTC) and the Federal State Unitary Enterprise ''All-Russian Research and Design Institute of Production Engineering'' (VNIPIPT). The project (ISTC Partner Project 2377) is funded by the U.S. Department of Energy Office of Civilian Radioactive Waste Management (DOE-RW) for a period of 2-1/2 years. ISTC project activities were integrated into other ongoing geologic repository site characterization activities near the Mining and Chemical Combine (MCC K-26) site. This allowed the more rapid development of a plan for an underground research laboratory, including underground design and layouts. It will not be possible to make a final choice between the extensively studied Verkhne-Itatski site or the Yeniseiski site for construction of the underground laboratory during the project time frame because additional data are needed. Several new sources of data will become available in the next few years to help select a final site. Studies will be conducted at the 1-km deep borehole at the Yeniseisky site where drilling started in 2004. And in 2007, after the scheduled shutdown of the last operating reactor at the MCC K-26 site, data will be collected from the rock massif as the gneiss rock cools, and the cool-down responses modeled. After the underground laboratory is constructed, the data collected and analyzed, this will provide the definitive evidence regarding the safety of the proposed geologic isolation facilities for radioactive wastes (RW). This data will be especially valuable because they will be collected at the same site where the wastes will be subsequently placed, rather than on hypothetical input data only. Including the operating costs for 10 to 15 years after construction, the cost estimate for the laboratory is $50M. With additional funding from non-ISTC sources, it will be possible to complete this

  8. Research on communication system of underground safety management based on leaky feeder cable

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-hong; ZHANG Tao; CHENG Yun-cai; ZHANG Han

    2007-01-01

    According to the current working status of underground safety management and production scheduling, the importance and existed problem of underground mine radio communication were summarized, and the basic principle and classification of leaky feeder cable were introduced and the characteristics of cable were analyzed specifically in depth, and the application model of radio communication system for underground mine safety management was put forward. Meanwhile, the research explanation of the system component, function and evaluation was provided. The discussion result indicates that communication system of underground mine safety management which is integrated two-way relay amplifier and other equipment has many communication functions, and underground mine mobile communication can be achieved well.

  9. A Global Survey and Interactive Map Suite of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges: (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D)

    Science.gov (United States)

    Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.

    2017-12-01

    This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  10. Survey of existing underground openings for in-situ experimental facilities

    International Nuclear Information System (INIS)

    Wollenberg, H.; Graf, A.; Strisower, B.; Korbin, G.

    1981-07-01

    In an earlier project, a literature search identified 60 underground openings in crystalline rock capable of providing access for an in-situ experimental facility to develop geochemical and hydrological techniques for evaluating sites for radioactive waste isolation. As part of the current project, discussions with state geologists, owners, and operators narrowed the original group to 14. Three additional sites in volcanic rock and one site in granite were also identified. Site visits and application of technical criteria, including the geologic and hydrologic settings and depth, extent of the rock unit, condition, and accessibility of underground workings, determined four primary candidate sites: the Helms Pumped Storage Project in grandiodorite of the Sierra Nevada, California; the Tungsten Queen Mine in Precambrian granodiorite of the North Carolina Piedmont; the Mount Hope Mine in Precambrian granite and gneiss of northern New Jersey; and the Minnamax Project in the Duluth gabbro complex of northern Minnesota

  11. Hanford facility RCRA permit condition II.U.1 report: mapping of underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Hays, C.B.

    1996-09-27

    The purpose of this report is to fulfill Condition Il.U.1. of the Hanford Facility (HF) Resource Conservation and Recovery Act (RCRA) Permit. The HF RCRA Permit, Number WA7890008967, became effective on September 28, 1994 (Ecology 1994). Permit Conditions Il.U. (mapping) and II.V. (marking) of the HF RCRA Permit, Dangerous Waste (OW) Portion, require the mapping and marking of dangerous waste underground pipelines subject to the provisions of the Washington Administrative Code (WAC) Chapter 173-303. Permit Condition Il.U.I. requires the submittal of a report describing the methodology used to generate pipeline maps and to assure their quality. Though not required by the Permit, this report also documents the approach used for the field marking of dangerous waste underground pipelines.

  12. Radioactive waste storage facility and underground disposal method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Endo, Yoshihiro.

    1997-01-01

    A sealed container storage chamber is formed in underground rocks. A container storage pool is formed on the inner bottom of the sealed vessel storage chamber. A heat exchanger for cooling water and a recycling pump are disposed on an operation floor of the sealed vessel storage chamber. Radioactive wastes sealed vessels in which radioactive wastes are sealed are transferred from the ground to the sealed vessel storage chamber through a sealed vessel transferring shaft, and immersed in cooling water stored in the vessel storage pool. When after heat of the radioactive wastes is removed by the cooling water, the cooling water in the vessel storage pool is sucked up to the ground surface. After dismantling equipments, bentonite-type fillers are filled in the inside of the sealed vessel storage chamber, sealed vessel transferring shaft, air supplying shaft and air exhaustion shaft, and the radioactive waste-sealed vessels can be subjected stably to into underground disposal. (I.N.)

  13. Mizunami Underground Research Laboratory project. Rock mechanical investigations annual report for fiscal year 2013

    International Nuclear Information System (INIS)

    Sato, Toshinori; Sanada, Hiroyuki; Tanno, Takeo

    2015-02-01

    In order to establish the scientific and technical basis for geological disposal of technology, Japan Atomic Energy Agency (JAEA) is pursuing the geoscientific research project namely the Mizunami Underground Research Laboratory (MIU) in the crystalline rock environment at Tono Geoscience Center (TGC). In the MIU Project, geoscientific research is being carried out in three overlapping phases; Surface-based Investigation Phase (Phase I: FY1996 - 2004), Construction Phase (Phase II: FY2004- in progress) and Operation Phase (Phase III: FY2010- in progress). In the rock mechanical investigations at the Phase II, the research aims at “Characterization of geological environment in the Excavation Disturbed Zone (EDZ)” from the viewpoint of safety assessment. For the research, the specific information of the EDZ such as (1) size and structures, (2) petrophysical/geomechanical properties, and (3) stress state are required. The research also aims at “Characterization of geomechanical stability around tunnel” from the viewpoint of design and construction of underground facilities. For the research, the specific information such as (4) local stress regime, (5) spatial variability of petrophysical/geomechanical properties of rocks, and (6) distribution of discontinuities intersecting underground tunnels are required. The measurement system for rock mass behavior has been manufactured and set for groundwater recovery experiment in the Phase III. This report presents the results of following rock mechanical investigations conducted in FY 2013. In-situ stress measurements using Compact Conical-ended Borehole Overcoring Technique were performed at the - 500m stage. Measurement system for rock mass displacement using optical fiber was installed at the - 500m stage as part of the groundwater recovery experiment. Study on the modeling based on equivalent continuum model was continued. Phenomenological study and theoretical study on long-term behavior of crystalline rock were

  14. Robotics Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This 60 feet x 100 feet structure on the grounds of the Fort Indiantown Gap Pennsylvania National Guard (PNG) Base is a mixed-use facility comprising office space,...

  15. Countermeasures planned for reducing water inflow into deep shafts at the Mizunami Underground Research Laboratory. Research for post-excavation grouting

    International Nuclear Information System (INIS)

    Kuji, Masayoshi; Matsui, Hiroya; Hara, Masato; Mikake, Shinichiro; Takeuchi, Shinji; Asai, Hideaki; Minamide, Masashi; Sato, Toshinori

    2009-01-01

    A large amount of water inflow is frequently occurs during the excavation of an underground cavern, such as road and railway tunnels, and underground electric facilities etc. The reduction of water inflow is sometimes quite important for the cost reduction for the water treatment and pumping during the construction of an underground cavern. The Mizunami Underground Research Laboratory (MIU) is currently being constructed by Japan Atomic Energy Agency. During its excavation, a large amount of water inflow into the shafts has been increasing and affecting the project progress. Therefore, a field experiment of post-excavation grouting around the Ventilation Shaft in a sedimentary formation carried out to confirm the effect of existing grouting technology for sedimentary formations in MIU project. The result shows that the applied methods in this field experiment are effective to prevent water inflow. This report describes the summary of the field experiment and the knowledge obtained through the experiment. (author)

  16. Field observations and failure analysis of an excavation damaged zone in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Aoyagi, Kazuhei; Ishii, Eiichi; Ishida, Tsuyoshi

    2017-01-01

    In the construction of a deep underground facility, the hydromechanical properties of the rock mass around an underground opening are changed significantly due to stress redistribution. This zone is called an excavation damaged zone (EDZ). In high-level radioactive waste disposal, EDZs can provide a shortcut for the escape of radionuclides to the surface environment. Therefore, it is important to develop a method for predicting the detailed characteristics of EDZs. For prediction of the EDZ in the Horonobe Underground Research Laboratory of Japan, we conducted borehole televiewer surveys, rock core analyses, and repeated hydraulic conductivity measurements. We observed that niche excavation resulted in the formation of extension fractures within 0.2 to 1.0 m into the niche wall, i.e., the extent of the EDZ is within 0.2 to 1.0 m into the niche wall. These results are largely consistent with the results of a finite element analysis implemented with the failure criteria considering failure mode. The hydraulic conductivity in the EDZ was increased by 3 to 5 orders of magnitude compared with the outer zone. The hydraulic conductivity in and around the EDZ has not changed significantly in the two years following excavation of the niche. These results show that short-term unloading due to excavation of the niche created a highly permeable EDZ. (author)

  17. Engine Environment Research Facility (EERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility supports research and development testing of the behavior of turbine engine lubricants, fuels and sensors in an actual engine environment....

  18. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  19. [The Research Advancement and Conception of the Deep-underground Medicine].

    Science.gov (United States)

    Xie, He-Ping; Liu, Ji-Feng; Gao, Ming-Zhong; Wan, Xue-Hong; Liu, Shi-Xi; Zou, Jian; Wu, Jiang; Ma, Teng-Fei; Liu, Yi-Lin; Bu, Hong; Li, Wei-Min

    2018-03-01

    The 21th century is the century of exploring and utilizing the underground space. In the future, more and more people will spend more and more time living or/and working in the underground space. However,we know little about the effect on the health of human caused by the underground environment. Herein,we systematically put forward the strategic conception of the deep-underground medicine,in order to reveal relative effects and mechanism of the potential factors in the deep underground space on human's physiological and psychological healthy,and to work out the corresponding countermeasures. The original deep-underground medicine includes the following items. ①To model different depth of underground environment according to various parameters (such as temperature,radiation,air pressure, rock,microorganism), and to explore their quantitative character and effects on human health and mechanism. ② To study the psychological change, maintenance of homeostasis and biothythm of organism in the deep underground space. ③ To learn the association between psychological healthy of human and the depth, structure, physical environment and working time of underground space. ④ To investigate the effect of different terrane and lithology on healthy of human and to deliberate their contribution on organism growth. ⑤ To research the character and their mechanism of growth,metabolism,exchange of energy,response of growth, aging and adaptation of cells living in deep underground space. ⑥ To explore the physiological feature,growth of microbiome and it's interaction with host in the deep underground space. ⑦ To develop deep-underground simulation space, the biologically medical technology and equipments. As a research basis,a deep-underground medical lab under a rock thickness of about 1 470 m has been built,which aims to operate the research of the effect on living organism caused by different depth of underground environment. Copyright© by Editorial Board of Journal

  20. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  1. Operational safety assessment of underground test facilities for mined geologic waste disposal

    International Nuclear Information System (INIS)

    Elder, H.K.

    1993-01-01

    This paper describes the operational safety assessment for the underground facilities for the exploratory studies facility (ESF) at the Yucca Mountain Project. The systematic identification and evaluation of hazards related to the ESF is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach based on the analysis of potential accidents was used since radiological safety analysis was not required. The risk assessment summarized credible accident scenarios and the design provides mitigation of the risks to a level that the facility can be constructed and operated with an adequate level of safety. The risk assessment also provides reasonable assurance that all identifiable major accident scenarios have been reviewed and design mitigation features provided to ensure an adequate level of safety

  2. Construction of an underground facility for ''in-situ'' experimentation in the boom clay

    International Nuclear Information System (INIS)

    Bonne, A.; Manfroy, P.; Van Haelewijn, R.; Heremans, R.

    1985-01-01

    The Belgian R and D Programme concerning the disposal of high-level and alpha-bearing radioactive waste in continental geological formations was launched by SCK/CEN, Mol in 1974. The programme is characterised by its site and formation specific approach, i.e. Mol and Boom clay. In the framework of site confirmation, an important issue is the ''in situ'' experimentation which should allow to determine with a higher degree of confidence the numerical value of the data needed for the evaluations, assessments and designs. The present report deals with the construction of an underground experimental facility, which was scheduled to be fully completed in mid 1984. Initially, the completion was scheduled for the end of 1983, but supplementary experiments related to geomechanics and mining capabilities and to be performed during the construction phase of the experimental facility delayed the completion of the underground facility. During the construction, a continuous observation was made of the behaviour of the clay mass and the structures. In this final contract-report, only the as-built structure, the time schedule and the ''in situ'' experiments launched or performed during the construction phase are dealt with

  3. Studies on engineering technologies in the Mizunami Underground Research Laboratory. FY 2007 (Contract research)

    International Nuclear Information System (INIS)

    Noda, Masaru; Suyama, Yasuhiro; Nobuto, Jun; Ijiri, Yuji; Mikake, Shinichiro; Matsui, Hiroya

    2009-07-01

    The Mizunami Underground Research Laboratory (MIU) of the Japan Atomic Energy Agency is a major site for geoscientific research to advance the scientific and technological basis for geological disposal of high-level radioactive waste in crystalline rock. Studies on relevant engineering technologies in the MIU consist of a) research on design and construction technology for very deep underground applications, and b) research on engineering technology as a basis of geological disposal. In the Second Phase of the MIU project (the construction phase), engineering studies have focused on research into design and construction technologies for deep underground. The main subjects in the study of very deep underground structures consist of the following: 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction'. In the FY 2007 studies, identification and evaluation of the subjects for study of engineering technologies in the construction phase were carried out to optimize future research work. Specific studies included: validation of the existing design methodology based on data obtained during construction; validation of existing and supplementary rock excavation methods for very deep shafts; estimation of rock stability under high differential water pressures, methodology on long-term maintenance of underground excavations and risk management systems for construction of underground structures have been performed. Based on these studies, future research focused on the four subject areas, which are 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction', has been identified. The design methodology in the first phase of the MIU Project (surface-based investigation phase) was verified to

  4. Using drugs in un/safe spaces: Impact of perceived illegality on an underground supervised injecting facility in the United States.

    Science.gov (United States)

    Davidson, Peter J; Lopez, Andrea M; Kral, Alex H

    2018-03-01

    Supervised injection facilities (SIFs) are spaces where people can consume pre-obtained drugs in hygienic circumstances with trained staff in attendance to provide emergency response in the event of an overdose or other medical emergency, and to provide counselling and referral to other social and health services. Over 100 facilities with formal legal sanction exist in ten countries, and extensive research has shown they reduce overdose deaths, increase drug treatment uptake, and reduce social nuisance. No facility with formal legal sanction currently exists in the United States, however one community-based organization has successfully operated an 'underground' facility since September 2014. Twenty three qualitative interviews were conducted with people who used the underground facility, staff, and volunteers to examine the impact of the facility on peoples' lives, including the impact of lack of formal legal sanction on service provision. Participants reported that having a safe space to inject drugs had led to less injections in public spaces, greater ability to practice hygienic injecting practices, and greater protection from fatal overdose. Constructive aspects of being 'underground' included the ability to shape rules and procedures around user need rather than to meet political concerns, and the rapid deployment of the project, based on immediate need. Limitations associated with being underground included restrictions in the size and diversity of the population served by the site, and reduced ability to closely link the service to drug treatment and other health and social services. Unsanctioned supervised injection facilities can provide a rapid and user-driven response to urgent public health needs. This work draws attention to the need to ensure such services remain focused on user-defined need rather than external political concerns in jurisdictions where supervised injection facilities acquire local legal sanction. Copyright © 2017 Elsevier B.V. All

  5. Development of a groundwater monitoring system at Horonobe Underground Research Center

    International Nuclear Information System (INIS)

    Nanjo, Isao; Amano, Yuki; Iwatsuki, Teruki; Murakami, Hiroaki; Kunimaru, Takanori; Morikawa, Keita; Hosoya, Shinichi

    2012-03-01

    Japan Atomic Energy Agency (JAEA) develops basic investigation techniques for deep geological environment around Underground Research Laboratory (URL) at Horonobe area, Japan. The observation technique of hydrochemical condition in low permeable sedimentary rock around the facility is one of R and D subjects. We report, 1) development of hydrochemical monitoring system to observe water pressure, pH, electric conductivity, dissolved oxygen, redox potential and temperature, 2) hydrochemical observation results around URL under construction. The applicability of the hydrochemical monitoring system is evaluated for low permeable sedimentary rock bearing abundant dissolved gases. The hydrochemical observation during facility construction demonstrates that pH and redox potential of groundwater almost did not changed even at hydraulic disturbed zone (water pressure decreased zone). A CD-ROM is attached as an appendix. (J.P.N.)

  6. Mizunami Underground Research Laboratory project. Plan for fiscal year 2017

    International Nuclear Information System (INIS)

    Ishibashi, Masayuki; Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Takeuchi, Ryuji; Ikeda, Koki; Mikake, Shinichiro; Iyatomi, Yosuke; Sasao, Eiji; Koide, Kaoru

    2017-10-01

    The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami, Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: 'Development of countermeasure technologies for reducing groundwater inflow', 'Development of modelling technologies for mass transport' and 'Development of drift backfilling technology', based on the latest results of the synthesizing research and development (R and D). The R and D on three remaining important issues has been carrying out on the MIU Project. This report summarizes the R and D activities planned for fiscal year 2017 on the basis of the MIU Master Plan updated in 2015 and Investigation Plan for the Third Medium to Long-term Research Phase. (author)

  7. Jose f Regional Underground Research Centre: a new and attractive location for interdisciplinary teaching, research and training in the field of nuclear engineering

    International Nuclear Information System (INIS)

    Pacovsky, J.; Vasicek, R.

    2010-10-01

    The Jose f Gallery, located in the central Bohemia region of the Czech Republic (not far from the capital, Prague), was first excavated in 1981 as an exploration complex for the potential mining of gold. In 2007, the gallery was substantially reconstructed to house the Jose f Underground Educational Facility (Jose f UEF), which subsequently became an autonomous workplace under the direction of the Czech Technical University in Prague. At the beginning of 2010, the UEF was renamed the Jose f Regional Underground Research Centre (Jose f URC) which, along with the extensive underground complex, features modern above-ground facilities. One of the most important roles of this research centre is to provide practical -in situ- instruction in the fields of geotechnical engineering, geology, geochemistry, radiochemistry and radioecology. The training of future experts in this authentic underground setting involves the participation of several other Czech universities and numerous experienced specialists from outside the academic sphere. The IAEA has recently added the Jose f URC to its prestigious list of international training centres involved in the Training in and demonstration of waste disposal technologies in underground research facilities - A network of centres of excellence project. In addition to teaching and training, the Jose f URC is heavily involved in a wide range of research and development activities. The Jose f URC underground facilities are currently being used for research purposes as part of several European Union International experimental projects addressing various issues related to deep repository radioactive waste disposal (TIMODAZ - FP6, Forge - FP7, PETRUS II - FP7) as well as for hosting domestic projects supported by the Czech Ministry of Industry and Trade and the Czech Science Foundation. The Jose f URC is also working in close cooperation with the private construction sector providing practical training in underground construction

  8. Jose f Regional Underground Research Centre: a new and attractive location for interdisciplinary teaching, research and training in the field of nuclear engineering

    Energy Technology Data Exchange (ETDEWEB)

    Pacovsky, J.; Vasicek, R., E-mail: Pacovsky@fsv.cvut.c [Czech Technical University in Prague, Faculty of Civil Engineering, Centre of Experimental Geotechnics, Thakurova 7, 166-29 Prague 6 (Czech Republic)

    2010-10-15

    The Jose f Gallery, located in the central Bohemia region of the Czech Republic (not far from the capital, Prague), was first excavated in 1981 as an exploration complex for the potential mining of gold. In 2007, the gallery was substantially reconstructed to house the Jose f Underground Educational Facility (Jose f UEF), which subsequently became an autonomous workplace under the direction of the Czech Technical University in Prague. At the beginning of 2010, the UEF was renamed the Jose f Regional Underground Research Centre (Jose f URC) which, along with the extensive underground complex, features modern above-ground facilities. One of the most important roles of this research centre is to provide practical -in situ- instruction in the fields of geotechnical engineering, geology, geochemistry, radiochemistry and radioecology. The training of future experts in this authentic underground setting involves the participation of several other Czech universities and numerous experienced specialists from outside the academic sphere. The IAEA has recently added the Jose f URC to its prestigious list of international training centres involved in the Training in and demonstration of waste disposal technologies in underground research facilities - A network of centres of excellence project. In addition to teaching and training, the Jose f URC is heavily involved in a wide range of research and development activities. The Jose f URC underground facilities are currently being used for research purposes as part of several European Union International experimental projects addressing various issues related to deep repository radioactive waste disposal (TIMODAZ - FP6, Forge - FP7, PETRUS II - FP7) as well as for hosting domestic projects supported by the Czech Ministry of Industry and Trade and the Czech Science Foundation. The Jose f URC is also working in close cooperation with the private construction sector providing practical training in underground construction

  9. Geological aspects of a deep underground disposal facility in the Czech Republic

    International Nuclear Information System (INIS)

    Skopovy, J.; Woller, F.

    1997-01-01

    The basic requirements for the geological situation at a deep underground radioactive waste disposal site are highlighted, a survey of candidate host sites worldwide is presented, and the situation in the Czech Republic is analyzed. A 'General Project of Geological Activities Related to the Development of a Deep Underground Disposal Site for Radioactive Wastes and Spent Fuel in the Czech Republic' has been developed by the Nuclear Research Institute and approved and financed by the authorities. The Project encompasses the following stages: (i) preliminary study and research; (ii) examination of the seismicity, neotectonics, and geodynamics; (iii) search and critical assessment of archived geological information; (iv) non-destructive survey; and (v) destructive survey. The Project should take about 30 years and its scope will be updated from time to time. (P.A.)

  10. The French underground research laboratory program, contribution to the feasibility and safety studies of geological disposal

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.; Niezborala, J.M.; Ben Slimane, K.

    2001-01-01

    The paper presents the content of the research program to be performed during the construction and the operation of the National Agency for Radioactive Waste Management's (ANDRA) underground laboratory, located in the east of France. The general architecture of the program is presented. Emphasis is put on an iterative process, the purpose of which is mainly to: Prepare site behavior models before starting each phase of the field work (bore hole drilling, shaft sinking, construction of underground galleries, specific experiments); Test and check each model through actual observations and measurements; Adjust the models to take into account the results of the former phase and predict the results expected during the following one. All these models, after validation, will be exploited during the assessment of the safety related performance of the components of the potential repository as well as the whole facility; Obtain necessary data related to the feasibility study of the disposal facility (mechanical design, thermal design, etc.,) and its safety assessment. The relationship between the experimental program, the conceptual design program and the safety evaluation program is explained in order to reach the project objectives which is the final document set to be provided to French authorities in 2006 according to the French law of December 1991. (author)

  11. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon

    2016-04-01

    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  12. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in the Mizunami Group and the Toki Granite. Fiscal year 2014

    International Nuclear Information System (INIS)

    Hayashida, Kazuki; Munemoto, Takashi; Iwatsuki, Teruki; Aosai, Daisuke; Inui, Michiharu

    2016-06-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2014. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described. (author)

  13. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in the Mizunami group and the Toki granite. Fiscal year 2015

    International Nuclear Information System (INIS)

    Hayashida, Kazuki; Kato, Toshihiro; Munemoto, Takashi; Kubota, Mitsuru; Iwatsuki, Teruki; Aosai, Daisuke; Inui, Michiharu

    2017-03-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2015. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described. (author)

  14. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in the Mizunami group and the Toki granite. Fiscal year 2013

    International Nuclear Information System (INIS)

    Ohmori, Kazuaki; Hasegawa, Takashi; Munemoto, Takashi; Iwatsuki, Teruki; Masuda, Kaoru; Aosai, Daisuke; Inui, Michiharu

    2014-12-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2013. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described. (author)

  15. Hydrochemical investigation at the Mizunami Underground Research Laboratory. Compilation of groundwater chemistry data in Mizunami group and Toki granite. Fiscal year 2012

    International Nuclear Information System (INIS)

    Ohmori, Kazuaki; Iwatsuki, Teruki; Shingu, Shinya; Masuda, Kaoru; Aosai, Daisuke; Inui, Michiharu

    2014-03-01

    Japan Atomic Energy Agency has been investigating groundwater chemistry on excavating and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry obtained at the MIU in the fiscal year 2012. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method, analytical method) and methodology for quality control are described. (author)

  16. ''DIANA'' - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments

    International Nuclear Information System (INIS)

    Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

    2009-01-01

    The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges

  17. Draft Underground Test Plan for site characterization and testing in an exploratory shaft facility in salt

    International Nuclear Information System (INIS)

    1987-05-01

    An exploratory shaft facility (ESF) at the Deaf Smith County, Texas is a potential candidate repository site in salt. This program of underground testing constitutes part of the effort to determine site suitability, provide data for repository design and performance assessment, and prepare licensing documentation. This program was developed by defining the information needs, as derived from the governing regulatory requirements and associated performance issues; evaluating the efficacy of available tests in satisfying the information needs; and selecting the suite of underground tests that are most cost-effective and timely, considering the other surface-based, surface borehole, and laboratory test programs. Tests are described conceptually, categorized in terms of geology, geomechanics, thermomechanics, geohydrology, or geochemistry, and range in scope from site characterization to site/engineered system interactions. The testing involves construction testing, conducted in the shafts during construction, and in situ testing at depth, conducted in the shafts and in the at-depth test facility at the repository horizon after shaft connection. 41 refs., 67 figs., 16 tabs

  18. Radioactive waste processing facility and underground processing method for radioactive wastes using the facility

    International Nuclear Information System (INIS)

    Hasegawa, Yasuyuki

    1998-01-01

    There are disposed a communication pit laterally extended in an underground base rock, an access pit extended from the ground surface to the communication pit, discarding pits laterally extended at a plurality of longitudinal positions of the communication pit and layered buffer materials for keeping a radioactive waste-sealing container at substantially the center of the discarding pit. The layered buffer material comprises fan-shaped buffer blocks divided so that the axial end faces of inner and outer layers are displaced with each other in the axial direction of the discarding pit and so that the circumferential end faces of the inner and the outer layers are circumferentially displaced with each other. Even if the base lock should move, the layered buffer material reduces the propagation of the movement to the radioactive waste-sealing vessel thereby enabling to enhance supporting strength. (N.H.)

  19. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  20. Navy Fuel Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research to understand the underlying chemistry that impacts the use, handling, and storage of current and future Navy mobility...

  1. Preliminary studies of tunnel interface response modeling using test data from underground storage facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Sobolik, Steven Ronald; Bartel, Lewis Clark

    2010-11-01

    In attempting to detect and map out underground facilities, whether they be large-scale hardened deeply-buried targets (HDBT's) or small-scale tunnels for clandestine border or perimeter crossing, seismic imaging using reflections from the tunnel interface has been seen as one of the better ways to both detect and delineate tunnels from the surface. The large seismic impedance contrast at the tunnel/rock boundary should provide a strong, distinguishable seismic response, but in practice, such strong indicators are often lacking. One explanation for the lack of a good seismic reflection at such a strong contrast boundary is that the damage caused by the tunneling itself creates a zone of altered seismic properties that significantly changes the nature of this boundary. This report examines existing geomechanical data that define the extent of an excavation damage zone around underground tunnels, and the potential impact on rock properties such as P-wave and S-wave velocities. The data presented from this report are associated with sites used for the development of underground repositories for the disposal of radioactive waste; these sites have been excavated in volcanic tuff (Yucca Mountain) and granite (HRL in Sweden, URL in Canada). Using the data from Yucca Mountain, a numerical simulation effort was undertaken to evaluate the effects of the damage zone on seismic responses. Calculations were performed using the parallelized version of the time-domain finitedifference seismic wave propagation code developed in the Geophysics Department at Sandia National Laboratories. From these numerical simulations, the damage zone does not have a significant effect upon the tunnel response, either for a purely elastic case or an anelastic case. However, what was discovered is that the largest responses are not true reflections, but rather reradiated Stoneley waves generated as the air/earth interface of the tunnel. Because of this, data processed in the usual way may not

  2. Horonobe Underground Research Laboratory project. Synthesis of phase 1 investigation 2001-2005, Volume 'geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Ota, Kunio; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Hama, Katsuhiro; Kunimaru, Takanori; Takeuchi, Ryuji; Tanai, Kenji; Kurikami, Hiroshi; Wakasugi, Keiichiro; Ishii, Eiichi

    2011-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project, of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the project as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  3. Horonobe Underground Research Laboratory project synthesis of phase I investigation 2001-2005. Volume 'Geological disposal research'

    International Nuclear Information System (INIS)

    Fujita, Tomoo; Taniguchi, Naoki; Tanai, Kenji; Nishimura, Mayuka; Kobayashi, Yasushi; Hiramoto, Masayuki; Maekawa, Keisuke; Sawada, Atsushi; Makino, Hitoshi; Sasamoto, Hiroshi; Yoshikawa, Hideki; Shibata, Masahiro; Wakasugi, Keiichiro; Nakano, Katsushi; Seo, Toshihiro; Miyahara, Kaname; Naito, Morimasa; Yui, Mikazu; Matsui, Hiroya; Kurikami, Hiroshi; Kunimaru, Takanori; Ishii, Eiichi; Ota, Kunio; Hama, Katsuhiro; Takeuchi, Ryuji

    2007-03-01

    This report summarizes the progress of research and development on geological disposal during the surface-based investigation phase (2001-2005) in the Horonobe Underground Research Laboratory project (HOR), of which aims are to apply the design methods of geological disposal and mass transport analysis to actual geological conditions obtained from the surface-based investigations in HOR as an example of actual geological environment. For the first aim, the design methods for the geological disposal facility proposed in 'H12 report (the second progress report)' was reviewed and then improved based on the recent knowledge. The applicability of design for engineered barrier system, backfill of disposal tunnel, underground facility was illustrated. For the second aim, the conceptual structure from site investigation and evaluation to mass transport analysis was developed as a work flow at first. Then following this work flow a series of procedures for mass transport analysis was applied to the actual geological conditions to illustrate the practical workability of the work flow and the applicability of this methodology. Consequently, based on the results, future subjects were derived. (author)

  4. A research on the excavation, support, and environment control of large scale underground space

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Pil Chong; Kwon, Kwang Soo; Jeong, So Keul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    With the growing necessity of the underground space due to the deficiency of above-ground space, the size and shape of underground structures tend to be complex and diverse. This complexity and variety force the development of new techniques for rock mass classification, excavation and supporting of underground space, monitoring and control of underground environment. All these techniques should be applied together to make the underground space comfortable. To achieve this, efforts have been made on 5 different areas; research on the underground space design and stability analysis, research on the techniques for excavation of rock by controlled blasting, research on the development of monitoring system to forecast the rock behaviour of underground space, research on the environment inspection system in closed space, and research on dynamic analysis of the airflow and environmental control in the large geos-spaces. The 5 main achievements are improvement of the existing structure analysis program(EXCRACK) to consider the deformation and failure characteristics of rock joints, development of new blasting design (SK-cut), prediction of ground vibration through the newly proposed wave propagation equation, development and In-Situ application of rock mass deformation monitoring system and data acquisition software, and trial manufacture of the environment inspection system in closed space. Should these techniques be applied to the development of underground space, prevention of industrial disaster, cut down of construction cost, domestication of monitoring system, improvement of tunnel stability, curtailment of royalty, upgrade of domestic technologies will be brought forth. (Abstract Truncated)

  5. Room 209 excavation response test in the underground research laboratory

    International Nuclear Information System (INIS)

    Lang, P.A.

    1989-01-01

    An in situ excavation response test was conducted at the Canadian Underground Research Laboratory (URL) in conjunction with excavation of a tunnel (Room 209) through a near-vertical water-bearing fracture oriented perpendicular to the tunnel axis. Encountering a fracture with such desirable characteristics provided a unique opportunity during construction of the URL to try out instrumentation and analytical methods for use in the Excavation Response Experiment (ERE) planned as one of the major URL experiments. The test has produced a valuable data set for validating numerical models. Four modelling groups predicted the response that would be monitored by the instruments. The predictions of the mechanical response were generally good. However, the predictions of the permeability and hydraulic pressure changes in the fracture, and the water flows into the tunnel, were poor. It is concluded that we may not understand the mechanisms that occur in the fracture in response to excavation. Laboratory testing, and development of a contracting joint code, has been initiated to further investigate this phenomenon. Preliminary results indicate that the excavation damaged zone in the walls and crown is less than 0.5 m thick and has relatively low permeability. The damaged zone in the floor is at least 1 m thick and has relatively high permeability. The damage in the floor could be reduced in future excavations by using controlled blasting methods similar to those used for the walls and crown

  6. Detonation Engine Research Facility (DERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility is configured to safely conduct experimental pressuregain combustion research. The DERF is capable of supporting up to 60,000 lbf thrust...

  7. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2015-04-01

    Full Text Available Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor.

  8. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1990-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  9. Research on application of mobile diesel equipment in underground mines (IV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, researches on filtering of diesel particulate matter, design of underground layout and disaster prevention have been carried out. 1) A study to reduce DPM(Diesel Particulate Matter) emission: It was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. 2) Design of underground layout and their maintenance: Layout of underground structure has to be designed based on rock mechanical analysis and the concept of active support has to be adopted considering the large openings are requested to accommodate heavy duty diesel equipment in underground. Rock bolt and shotcrete will be the most applicable method to support such a large dimensional tunnels. 3) A study for disaster prevention in the case of the underground fire: There are two categories of possible disaster or hazard in workings where diesel equipment are operating. One is the disasters by exhaust pollutants and the other is the underground fire. (author). 35 refs., 27 tabs., 56 figs.

  10. Development of an underground HPGe array facility for ultra low radioactivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sala, E.; Kang, W. G.; Kim, Y. D.; Lee, M. H.; Leonard, D. S. [Center for Underground Physics - Institute for Basic Science, Daejeon (Korea, Republic of); Hahn, I. S.; Kim, G. W.; Park, S. Y. [Ewha Womans University, Physics Department, Seoul (Korea, Republic of)

    2015-08-17

    Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGe with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example {sup 106}Cd and {sup 156}Dy) and rare β decays ({sup 96}Zr, {sup 180m}Ta , etc ) are under study.

  11. Ground penetrating radar for fracture mapping in underground hazardous waste disposal sites: A case study from an underground research tunnel, South Korea

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon; Um, Evan Schankee

    2017-06-01

    Secure disposal or storage of nuclear waste within stable geologic environments hinges on the effectiveness of artificial and natural radiation barriers. Fractures in the bedrock are viewed as the most likely passage for the transport of radioactive waste away from a disposal site. We utilize ground penetrating radar (GPR) to map fractures in the tunnel walls of an underground research tunnel at the Korea Atomic Energy Research Institute (KAERI). GPR experiments within the KAERI Underground Research Tunnel (KURT) were carried out by using 200 MHz, 500 MHz, and 1000 MHz antennas. By using the high-frequency antennas, we were able to identify small-scale fractures, which were previously unidentified during the tunnel excavation process. Then, through 3-D visualization of the grid survey data, we reconstructed the spatial distribution and interconnectivity of the multi-scale fractures within the wall. We found that a multi-frequency GPR approach provided more details of the complex fracture network, including deep structures. Furthermore, temporal changes in reflection polarity between the GPR surveys enabled us to infer the hydraulic characteristics of the discrete fracture network developed behind the surveyed wall. We hypothesized that the fractures exhibiting polarity change may be due to a combination of air-filled and mineralogical boundaries. Simulated GPR scans for the considered case were consistent with the observed GPR data. If our assumption is correct, the groundwater flow into these near-surface fractures may form the water-filled fractures along the existing air-filled ones and hence cause the changes in reflection polarity over the given time interval (i.e., 7 days). Our results show that the GPR survey is an efficient tool to determine fractures at various scales. Time-lapse GPR data may be essential to characterize the hydraulic behavior of discrete fracture networks in underground disposal facilities.

  12. Synthesized research report in the second mid-term research phase. Mizunami Underground Research Laboratory project, Horonobe Underground Research Laboratory project and geo-stability project (Translated document)

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Osawa, Hideaki; Nagae, Isako; Natsuyama, Ryoko; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; Nakayama, Masashi; Miyakawa, Kazuya; Ito, Hiroaki; Ohyama, Takuya; Senba, Takeshi; Amano, Kenji

    2016-08-01

    We have synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second mid-term research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High-quality construction techniques and field investigation methods have been developed and implemented, which will be directly applicable to the National Disposal Program (together with general assessments of hazardous natural events and processes). Acquisition of technical knowledge on decisions of partial backfilling and final closure from actual field experiments in the Mizunami/Horonobe URLs will be crucial as the main theme for the next phases. (author)

  13. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities

    International Nuclear Information System (INIS)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J.; Laub, T.W.

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10 -11 /yr to 10 -5 /yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10 -9 /yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution

  14. Improvement of 137Cs analysis in small volume seawater samples using the Ogoya underground facility

    International Nuclear Information System (INIS)

    Hirose, K.; Komura, K.; Kanazawa University, Ishikawa; Aoyama, M.; Igarashi, Y.

    2008-01-01

    137 Cs in seawater is one of the most powerful tracers of water motion. Large volumes of samples have been required for determination of 137 Cs in seawater. This paper describes improvement of separation and purification processes of 137 Cs in seawater, which includes purification of 137 Cs using hexachloroplatinic acid in addition to ammonium phosphomolybdate (AMP) precipitation. As a result, we succeeded the 137 Cs determination in seawater with a smaller sample volume of 10 liter by using ultra-low background gamma-spectrometry in the Ogoya underground facility. 137 Cs detection limit was about 0.1 mBq (counting time: 10 6 s). This method is applied to determine 137 Cs in small samples of the South Pacific deep waters. (author)

  15. Review on chemical processes around the facilities in deep underground and study on numerical approach to evaluate them

    International Nuclear Information System (INIS)

    Sawada, Masataka

    2003-01-01

    The facilities for radioactive waste repositories are constructed in deep underground. Various chemical reactions including microbial activities may affect the long-term performance of the barrier system. An advancement of the evaluation method for the long-term behavior of barrier materials is desired. One of the efficient approaches is numerical simulation based on modeling of chemical processes. In the first part of this report, chemical processes and microbial reactions that can affect the performance of facilities in deep underground are reviewed. For example, dissolution and precipitation of minerals composing bentonite and rock are caused by highly alkaline water from cementitious materials. Numerical approaches to the chemical processes are also studied. Most chemical processes are reactions between groundwater (or solutes in it) and minerals composing barrier materials. So they can be simulated by coupled reaction rate transport analyses. Some analysis codes are developed and applied to problems in radioactive waste disposal. Microbial reaction rate can be modeled using the growth equation of microorganisms. In order to evaluate the performance of the barrier system after altered by chemical processes, not only the change in composition but also properties of altered materials is required to be obtained as output of numerical simulation. If the relationships between reaction rate and material properties are obtained, time history and spatial distribution of material properties can also be obtained by the coupled reaction rate transport analysis. At present, modeling study on the relationships between them is not sufficient, and obtaining such relationships using both theoretical and experimental approaches are also an important research target. (author)

  16. Horonobe underground research laboratory project investigation report for the 2005 fiscal year

    International Nuclear Information System (INIS)

    Matsui, Hiroya; Niizato, Tadafumi; Yamaguchi, Takehiro

    2006-11-01

    The investigations in 2005 fiscal year (2005/2006) were focused on the Hokushin area, which was selected as the area for laboratory construction. The main investigation region extends over approximately 3 km x 3 km. Geophysical, geological and surface hydrogeological investigations are carried out to acquire the geoscientific data needed to develop techniques for investigating the geological environment. And the borehole investigation at HDB-11 was finished in 2005. About development of techniques for long-term monitoring of the geological environment, long-term monitoring systems were operative in boreholes drilled in a previous investigation, and were also installed in the remaining boreholes (HDB-9, 10; drilled in 2004). A remotely operated monitoring system (ACROSS) was also installed and tested. About study on long-term stability of the geological environment, for tracing tectonic changes at Horonobe, geological survey and ground penetrating radar were carried out. Observations using seismograph, global positioning system (GPS) and electromagnetic exploration system installed until 2006 were continuing. About improving the reliability of disposal technology, laboratory tests of low alkaline concrete, shotcrete test at full-size simulated tunnel were carried out. Applicability confirmation of EBS designing methods was carried out with geological environmental data of Phase 1. About sophistication of safety assessment methodologies, Sorption test using drill core was carried out. Solute transport analysis was also carried out. In parallel with these investigations, Phase 2 investigation program were planned. About surface facility, Research and Administration Facility and Test Facility were constructed and started to use since February 2006. Public information house was begun to construct. About underground facility, temporary surplus soil (muck) yard was constructed. Surplus soil yard and drainage line were designed. These caused by toxic substance founded in

  17. Collection of URL measurement data in 2007 at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Yamasaki, Masanao; Funaki, Hironori; Niinuma, Hiroaki; Fujikawa, Daisuke; Sanada, Hiroyuki; Hiraga, Naoto; Tsusaka, Kimikazu; Yamaguchi, Takehiro

    2008-11-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The Phase I geoscientific research was planned from March 2001 to March 2006 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was planned. At the beginning of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as 'Observational Construction Program') was published. The Observational Construction Program summarizes the followings from the results of the Phase I investigations: measurements for safety and reasonable constructions, enhancement of shaft design and construction technologies and evaluation of appropriateness for the deep geological environment model estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft, the East Shaft and the drifts in 2007 based on the Observational Construction Program. The report summarizes for the purpose of the following: sharing the investigation and measurements data, preventing the loss of them and acquisition the basic data for carrying out the Observational Construction Program. Two DVD-ROMs are attached as an appendix. (J.P.N.)

  18. Collection of URL measurement data in 2006 at the Horonobe Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Kumagai, Yasuhito; Funaki, Hironori; Yamasaki, Masanao; Yamaguchi, Takehiro; Sanada, Hiroyuki; Abe, Hironobu; Orukawa, Go

    2008-07-01

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists two major research area, Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The Phase I geoscientific research was carried out from March 2001 to March 2005 in parallel with design and execution scheme on URL facilities. In addition, identifying key issues that need to be addressed in the Phase II/III investigations was carried out. At the inception of the Phase II investigations, an investigation report titled 'Measurement Plan and Observational Construction Program on Shaft Excavation at the Horonobe Underground Research Laboratory Project' (hereinafter referred to as Observational Construction Program') was published. The Observational Construction Program summarizes followings lessons learnt from the Phase I investigations: measurements for safety/reasonable construction, measurements for R and D on enhancement of shaft design/construction technology, and measurements for verification of the deep geological environment estimated before shaft excavation. This report summarizes the measurements data acquired at the Ventilation Shaft (to approx. 50m depth) and the East Shaft (to approx. 40m depth) in 2006 based on the Observational Construction Program. CD-ROM and DVD-ROM are attached as an appendix. (J.P.N.)

  19. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1991-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  20. Optimal use of the Gaz de France underground gas storage facilities; Utilisation optimale des stockages souterrains de Gaz de France

    Energy Technology Data Exchange (ETDEWEB)

    Favret, F.; Rouyer, E.; Bayen, D.; Corgier, B. [Gaz de France (GDF), 75 - Paris (France)

    2000-07-01

    This paper describes the tools developed by Gaz de France to optimize the use of its whole set of underground gas storage facilities. After a short introduction about the context and the purposes, the methodology and the models are detailed. The operational results obtained during the last three years are presented, and some conclusions and perspectives are given. (authors)

  1. The INEL Tritium Research Facility

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-01-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.)

  2. The INEL Tritium Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. (Idaho National Engineering Lab., Idaho Falls (USA))

    1990-06-01

    The Tritium Research Facility (TRF) at the Idaho National Engineering Laboratory (INEL) is a small, multi-user facility dedicated to research into processes and phenomena associated with interaction of hydrogen isotopes with other materials. Focusing on bench-scale experiments, the main objectives include resolution of issues related to tritium safety in fusion reactors and the science and technology pertinent to some of those issues. In this report the TRF and many of its capabilities will be described. Work presently or recently underway there will be discussed, and the implications of that work to the development of fusion energy systems will be considered. (orig.).

  3. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described

  4. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993

  5. The Radiological Research Accelerator Facility:

    International Nuclear Information System (INIS)

    Hall, E.J.; Goldhagen, P.

    1988-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generated a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Radiological Research Laboratory (RRL) of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and put back into operation. Data obtained from experiment using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because they can cause measurable cellular effects by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis. Facilities are available at RARAF for exposing objects to different radiations having a wide range of linear energy transfers (LETs)

  6. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    Science.gov (United States)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  7. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  8. Demonstration test of underground cavern-type disposal facilities, fiscal 2010 status - 59180

    International Nuclear Information System (INIS)

    Akiyama, Yoshihiro; Terada, Kenji; Oda, Nobuaki; Yada, Tsutomu; Nakajima, Takahiro

    2012-01-01

    A test to demonstrate practical construction technology for underground cavern-type disposal facilities is currently underway. Cavern-type disposal facilities are a radioactive waste repository excavated to a depth of 50 to 100 m below ground and constructed with an engineered barrier system (EBS) that is a combination of low-permeable bentonite material and low-diffusive cementitious material. The disposed materials are low-level radioactive waste with relatively high radioactivity, mainly generated from power reactor decommissioning, and certain transuranic wastes that are mainly generated from spent fuel reprocessing. The project started in fiscal 2005*, and since fiscal 2007 a full-scale mock-up of a disposal facility has been constructed in an actual sub-surface environment. The main objective of the demonstration test is to establish construction procedures and methods which ensure the required quality of an EBS on-site. Certain component parts of the facility had been constructed in an underground cavern by fiscal 2010, and tests so far have demonstrated both the practicability of the construction and the achievement of the required quality. This paper covers the project outline and the test results obtained by the construction of certain EBS components. The following results were obtained from the construction test of EBS in the test cavern: 1) The dry density of bentonite buffer at the lower layer constructed by vibratory compaction shows that 95% of core samples have densities within the target range. 2) The specified mix for the low-diffusion layer has uniform density and crack-control properties, and meets the requirements for diffusion performance. 3) The specified mix of the concrete pit has sufficient passing ability through congested reinforcement and meets the requirements of strength performance. 4) The dry density of the bentonite buffer at the lateral layer constructed by the spraying method shows that 65% of the core samples are within the

  9. The underground research laboratory room 209 excavation response test

    International Nuclear Information System (INIS)

    Simmons, G.R.

    1992-02-01

    The response of the rock mass to excavation is an important factor in the design and performance of underground excavations and installations. This is particularly true in the excavation of vaults for the disposal of nuclear fuel waste, where the conditions in the rock mass around the disposal areas may affect the performance of engineered sealing systems installed to isolate the waste. The factors influencing, and mechanisms controlling, rock mass response to excavation must be understood in order to accommodate excavation response effects in disposal vault design and construction

  10. Research in application of mobile diesel equipment in underground mines (III)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    It is third project year on `Application of mobile diesel equipment in underground mines` for providing appropriate measures to improve underground working environment contaminated by the diesel exhaust pollutants. This report consists of 4 articles. 1) The development and site investigation of fume diluter, 2) Development of simulation programs for three dimensional movement of fluid, 3) Study of the local ventilation technology in the working face using diesel equipment, 4) Disaster and hazard prevention research. (author). 22 refs., 19 tabs., 83 figs.

  11. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  12. Control of blast overpressure and vibrations at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Mohanty, B.

    1991-01-01

    AECL Research (AECL) has constructed an Underground Research Laboratory (URL) as a facility for research and development in the Canadian Nuclear Fuel Waste Management Program. The objectives of the program are to develop and evaluate the technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. Several multidisciplinary experiments and engineering demonstrations are planned for the URL over the next ten years. In 1989, AECL excavated a test room for the Buffer/Container Experiment at the 240 Level. The blasts were designed to limit vibration and overpressure damage because the excavation was located close to existing furnishings and services that were very susceptible to blast-induced vibration and overpressure. An experimental room, which contained sensitive instrumentation, was located within 30 m of the initial blasts. A concrete floor slab, timber curtains and a bulkhead were installed to protect furnishings and services from fly-rock and overpressure. Five of the initial blasts were monitored. This paper describes the results of the monitoring program and the effectiveness of the blast design, floor slab and timber curtains and bulkhead in reducing blast overpressure and vibrations at the blast site. It is shown that greater than a 20-fold reduction in both blast vibrations and air overpressures can be achieved with specific combinations of blast design, installation of timber curtains and construction of a concrete floor slab

  13. The internationalisation of research facilities

    International Nuclear Information System (INIS)

    Sabine, T.M.

    1999-01-01

    Full text: During the past twenty five years arrangements have been made for sharing the use of major national research facilities amongst the world community of neutron users. The administrative requirements are simple. Scientists are invited to apply for measurement time. The scientific merit of the application is assessed by a committee appointed by the host organisation. If the application is considered to have sufficient merit time is allocated. The only costs to the user are transport and living expenses. These arrangements have advantages for users and for hosts. The user can apply for time on the most suitable instrument. The host in the user country is freed from the responsibility of supplying all instruments. It can specialise in those instruments in which it has particular expertise. The host retains, through its committee, complete control over the use of instruments. The amount of time allocated to international users is dependent on the national demand. The result is efficient use of national facilities. An equally important result is the interaction between members of the international scientific community. Australian scientists routinely use overseas facilities however Australia has refused to join the international group. There is international resentment to this attitude. We have, for example powder diffraction facilities which others wish to use. We have no small-angle scattering facilities and must do our experiments at international centres. I will argue that we should join the international community now. The capacity of the replacement reactor will be far greater than the internal Australian requirements. We will become the natural host for users from countries in the Asian region. To enable us to make a smooth transition to this stage we should immediately advertise an international program for HIFAR

  14. Development and enhancement of grouting technologies in the Mizunami Underground Research Laboratory (Contract research)

    International Nuclear Information System (INIS)

    Nobuto, Jun; Mikake, Shinichiro

    2008-03-01

    In the Tono Geoscience Center of Japan Atomic Energy Agency (hereafter, JAEA), Mizunami Underground Research Laboratory project is being advanced to develop a scientific and technological basis for geological disposal. The concept of geological disposal is based on a multi-barrier system which combines a stable geological environment with an engineered barrier system (EBS). In order to develop a engineering basis for the construction of disposal system, the enhancement of grouting technologies among engineering technologies is needed. In this study, the comprehensive performance of suspension type grouting materials to seal rock fractures encountered in excavation works at deep underground has been checked, and the clogging phenomenon at the entrance of rock fractures has been investigated following the previous year. Research issues are as follows; Study on grouting concept to secure high-level water sealing, study on the test method to check grout clogging under high injection pressure, study on grouting material which can penetrate into finer fractures. Among these, in the study on penetrability test method, prototype test instruments were made and a series of preliminary tests were conducted. (author)

  15. Application of the results of excavation response experiments at climax and the Colorado School of Mines to the development of an experiment for the underground research laboratory

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.; Hustrulid, W.A.

    1988-01-01

    Large-scale underground experiment programs to examine excavation response have been performed at the Climax facility in Nevada and at the Colorado School of Mines. These two programs provided fundamental information on the behavior of rock and the effects of excavation; on instrument performance and configuration; and on the relationship between test geometry and test behavior. This information is being considered in the development of a major excavation response experiment to be carried out in the Canadian Underground Research Laboratory. 11 refs., 3 figs

  16. Simulation of hydraulic disturbances caused by the underground rock characterisation facility in Olkiluoto, Finland

    International Nuclear Information System (INIS)

    Loefman, J.; Ferenc, M.

    2004-01-01

    Spent fuel from the Finnish nuclear power plants will be disposed of in a repository to be excavated in crystalline bedrock at a depth of 400-700 metres in Olkiluoto. The extensive site investigations carried out since the early 1980's will next focus on the construction of an underground rock characterisation facility (ONKALO) in 2004-2010. The open tunnel system will constitute a major hydraulic disturbance for the site's groundwater conditions for hundreds of years. Especially, inflow of groundwater into the tunnels results in a drawdown of groundwater table and upcoming of deep saline groundwater, which the present study aimed to assess by means of a 3D finite element simulation. The modelled bedrock volume, which horizontally covered the whole Olkiluoto island, was conceptually divided into hydraulic units, planar fracture zones and sparsely fractured rock between the zones, which were both separately treated as porous media. The geometry of the fracture zones was based on the geological bedrock model. Simulations showed that without engineering measures (e.g. grouting) taken to limit inflow of groundwater into the open tunnels, the hydraulic disturbances could be drastic. The tunnels draw groundwater from all directions in the bedrock. A major part of inflow comes from the well-conductive subhorizontal fracture zones intersected by the access tunnel and the shaft. The simulations show that the resulting drawdown of groundwater table may be from tens to hundreds of metres and the depressed area may extend over the area of the island. The results also indicate that the salinity of groundwater is gradually rising around and below the tunnel system, and locally concentration (TDS) may rise rather high in the vicinity of the tunnels. However, the disturbances can significantly be reduced by the grouting of rock. (orig.)

  17. Rock stress measurements in ONKALO underground characterisation facility at Olkiluoto at depth of 120 m

    International Nuclear Information System (INIS)

    Fecker, E.

    2007-04-01

    In November and December 2006 overcoring stress measurements have been conducted in the boreholes ONK-PP74, ONK-PP75 and ONK-PP77 in a niche of the access tunnel of the ONKALO underground characterisation facility at the Olkiluoto site. Measurements have been done using the CSIRO 3D stress measuring cell. This cell is one of the mostly used cells in the whole world for estimation of the state of stress in rock when doing the borehole measurements. The boreholes are at a depth of about 120 m under the ground surface. The rock where the measurements have been conducted is a foliated migmatitic gneiss (subtypes veined and diatexitic gneiss). Parallel to the overcoring measurements a glue test has been conducted in the laboratory to check the quality of the bonding of the stress cells to the rock. The result showed that the glue makes a good contact between the rock and the stress cell, but air bubbles, which have normally been observed within the glue and at the edges, proved this time to be disadvantageous. Normally such air bubbles have dimensions of about one millimetre, but sometimes certain bubbles may become notably bigger. In the ONKALO overcored probes sawn apart such air bubbles were found both in wet and dry probe conditions. In the test series eight stress measurements have been provided, three of them failed for technical reasons. At one of these three tests the glue has extruded too early, at the other two tests the overcoring was not conducted deep enough. At the remaining five tests in spite of the glue test results a calculation of the stress tensor could be made. Four of these five measurements can be seen as relatively successful. The results of these measurements show a major principal stress of 14.8 MPa in average, trending northwest - southeast, and with a dipping of 11 degrees in average. (orig.)

  18. Research of the multibarrier system for an underground deposition of radioactive wastes

    Directory of Open Access Journals (Sweden)

    Marian Šofranko

    2007-01-01

    Full Text Available The paper deals in brief with research problems of multiple protection barrier systems for an underground storage of highly radioactive waste in connection with the problem of resolving a definite liquidation of this waste. This problem has a worlwide importance and is comprehensively investigated, evaluated and resolved in many well accepted research centers. Present the experts agree, that the most suitable way of the long-lived radioactive wastes liquidation is their storage into suitable underground geological formations. The core insulation of radioactive wastes from the biosphere for an extremly long time can be achieved by using a technical isolation barrier in combination with an appropriate rock mass.

  19. Study on an equivalent continuum model at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tanno, Takeo; Sato, Toshinori; Matsui, Hiroya; Sanada, Hiroyuki; Kumasaka, Hiroo; Tada, Hiroyuki

    2012-01-01

    The Japan Atomic Energy Agency (JAEA) is conducting the MIzunami Underground research laboratory (MIU) Project in order to develop comprehensive geological investigation and engineering techniques for deep underground applications (e.g. geological disposal of HLW). This modelling study has a two-fold objective, to contribute to the evaluation of the mechanical stability of shaft and research drifts, and to plan the future studies. A crack tensor model, a method of an equivalent continuum model, has been studied at the MIU. In this study, the relationship between the estimated crack tensor parameters and the rock mass classification was revealed. (author)

  20. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  1. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  2. Final report on the surface-based investigation phase (phase 1) at the Mizunami Underground Research Laboratory project

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Matsuoka, Toshiyuki

    2011-03-01

    The Mizunami Underground Research Laboratory (MIU) Project is a comprehensive research project investigating the deep underground environment within crystalline rock being conducted by Japan Atomic Energy Agency at Mizunami City in Gifu Prefecture, central Japan and its role is defined in 'Framework for Nuclear Energy Policy' by Japan Atomic Energy Commission. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. The overall project goals of the MIU Project from Phase I through to Phase III are: 1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and 2) to develop a range of engineering for deep underground application. During Phase I, the overall project goals were supported by Phase I goals. For the overall project goals 1), the Phase I goals were set to construct models of the geological environment from all surface-based investigation results that describe the geological environment prior to excavation and predict excavation response. For the overall project goals 2), the Phase I goals were set to formulate detailed design concepts and a construction plan for the underground facilities. This report summarizes the Phase I investigation which was completed in March 2005. The authors believe this report will make an important milestone, since this report clarifies how the Phase I goals are achieved and evaluate the future issues thereby direct the research which will be conducted during Phase II. With regard to the overall project goals 1), 'To establish techniques for investigation, analysis and assessment of the deep geological environment,' a step-wise investigation was conducted by iterating investigation, interpretation, and assessment, thereby understanding of geologic environment was progressively and effectively improved with progress of investigation. An optimal

  3. Mechanization of operations in underground workings in coal mines and research project trends. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Reich, K; Skoczynski, W; Sikora, W

    1985-01-01

    Structure of black coal reserves of Poland, imported and Polish made equipment for underground mining, prospects for mechanization of selected operations in underground mines and research programs of the KOMAG Center for Mechanization of Mining are evaluated. Prospects for longwall mining with caving or stowing in thick coal seams (slice mining), thin (0.8 to 1.2 m), level or inclined coal seams and steep seams are analyzed. The following equipment for mechanization of underground mining is evaluated: integrated face systems, shearer loaders, chain conveyors, belt conveyors, coal plows, equipment for mine drivage, hoists, drive systems for mining equipment. The following research programs of the KOMAG Center are reviewed: modernization of face systems for coal seams with uncomplicated mining conditions, development of equipment for thin seam mining, development of types of mining equipment for coal seams from 1.5 to 3.0 m thick with dip angles to 25 degrees, modernization of equipment for thick seam mining, increasing efficiency of mine drivage (new types of heading machines, materials handling equipment for mine drivage), mechanization of auxiliary operations in underground coal mines, improving quality of mining equipment, development of equipment for coal preparation, increasing occupational safety in underground mining.

  4. The Mizunami Underground Research Laboratory Project. A fiscal year program (at fiscal year 2001). Technical report

    International Nuclear Information System (INIS)

    2001-06-01

    Study on stratum science in the Mizunami Underground Research Laboratory (MIU) Project is planned to classify it to the following three steps to progress them by considering some differences such as construction process, subject/object/scale and so on of its survey research accompanied with it in facilities in the MIU; 1) A study step on survey forecasting from earth surface, 2) A study step accompanied with excavation of road for study, and 3) A study step using the road for study. In fiscal year 2001, a trial drilling survey at No. MIU04 hole and a long-term water pumping test in the research items at objects of a series of processes on survey, analysis and evaluation, are planned to carry out. The trial survey is planned to finish at early half of the fiscal year, and its report will be summarized after analysis and evaluation of the trial survey at the No. MIU-4 hole and comparison and evaluation with already made geological environment models. According to these results, by carrying out some investigations on an engineering plan and detailed survey and research plan at the second step, renewal of the engineering plan on the road for study from later half of fiscal year 2001 to fiscal year 2002 and preparation of a basic flow on survey/analysis/evaluation of the second step will be progressed. And, as the long-term water pumping test is planned to be carried out at later half of fiscal year 2001, so its analysis and evaluation are planned to carry continuously out to fiscal year 2002. According to these results, after fiscal year 2002, renewal of engineering plan on the road for study and preparation of detailed survey and research plan at the second step will be progressed. (G.K.)

  5. Study on construction method of concrete in the underground research laboratory. 3

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Mikami, Tetsuji; Takeda, Nobufumi; Akiyoshi, Kenji

    2003-02-01

    The Horonobe underground research laboratory project doesn't carry on only safety assessment study but also demonstration of construction technique upon nuclear waste repositories. Low alkalinity cement is one of candidates for engineered barrier in order to prevent alteration of bentonite and rock by hyper alkaline solution. JNC has developed low alkalinity cement (HFSC) which contains a lot of fly ash, and has studied the physical and chemical properties by laboratory test. Effect on variety of quality of fly ash and monitoring corrosion of rebars in off-shore condition has been studied. In-situ test for actual use of HFSC in constructing the facility was planned. The results are summarized as below. Effects of variety of flay ash upon lower pH are relatively small by testing two type of fly ash and several fly as content. Variety of fly ash effects properties of fresh concrete but its effect is not significant. And it little effects on mechanical behavior. However, it doesn't effect on properties of shotcrete. Although rebars corrode in HFSC in spite of no intrusion of chloride, increment of corrosion is not significant in half an year until an year. Applicability for structural members is demonstrated by loading test of tunnel concrete segments of HFSC. Pre-mixed HFSC can be supplied by mixing fly ash and silica fume in Sapporo and carry to Horonobe by cement truck. (author)

  6. Verification and characterization of continuum behavior of fractured rock at AECL Underground Research Laboratory

    International Nuclear Information System (INIS)

    Long, J.C.S.

    1985-02-01

    The purposes of this study are to determine when a fracture system behaves as a porous medium and what the corresponding permeability tensor is. A two-dimensional fracture system model is developed with density, size, orientation, and location of fractures in an impermeable matrix as random variables. Simulated flow tests through the models measure directional permeability, K/sub g/. Polar coordinate plots of 1/√K/sub g/, which are ellipses for equivalent anistropic homogeneous porous media, are graphed and best fit ellipses are calculated. Fracture length and areal density were varied such that fracture frequency was held constant. The examples showed the permeability increased with fracture length. The modeling techniques were applied to data from the Atomic Energy of Canada Ltd.'s Underground Research Laboratory facility in Manitoba, Canada by assuming the fracture pattern at the surface persists at depth. Well test data were used to estimate the aperture distribution by both correlating and not correlating the aperture with fracture length. The permeability of models with uncorrelated length and aperture were smaller than those for correlated models. A Monte Carlo type study showed that analysis of steady state packer tests consistently underestimate the mean aperture. Finally, a three-dimensional model in which fractures are discs randomly located in space, interactions between the fractures are line segments, and the solution of the steady state flow equations is based on image theory was discussed

  7. Borehole heater test at KAERI Underground Research Tunnel

    International Nuclear Information System (INIS)

    Kwon, S. K.; Cho, W. J.; Jeon, S. W.

    2009-09-01

    thermo-mechanical test in Korea. In the future, the results from the test will be utilized for different projects such as spent fuel storage, geothermal energy, sequestration of carbon-dioxide, and underground petroleum storage, which require the clear understanding on the thermo-mechanical behavior of rock mass

  8. Research on application of mobile diesel equipment in underground mines 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    It is 2 nd year of the research project on application of mobile diesel equipment in underground mines for providing appropriate measures to improve underground working environment contaminated by the diesel exhaust pollutants. Studies on Diesel Particulate Matter(DPM), which is regarded as a carcinogenic substances, was carried out intensively to figure out which substance is the most critical one among the diesel exhaust pollutants. The production mechanism and health effects of DPM, and evaluation of hazard level of underground workings was conducted. For development of exhaust treatment devices and recommendation of the best concept suitable for local conditions has been done. And the basic guidelines for good engine maintenance to provide the safe and healthful use of diesel-powered mine equipment were suggested so that field engineers can use it as a reference in daily operations. (author). 19 refs., 31 figs., 41 tabs.

  9. Underground Research Laboratories for Crystalline Rock and Sedimentary Rock in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, N.; Takeda, S.; Matsui, H.; Yamasaki, S.

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) has started two off-site (generic) underground research laboratory (URL) projects, one for crystalline rock as a fractured media and the other for sedimentary rock as a porous media. This paper introduces an overview and current status of these projects.

  10. Results of single borehole hydraulic testing in the Mizunami Underground Research Laboratory project. Phase 2

    International Nuclear Information System (INIS)

    Daimaru, Shuji; Takeuchi, Ryuji; Onoe, Hironori; Saegusa, Hiromitsu

    2012-09-01

    This report summarize the results of the single borehole hydraulic tests of 79 sections conducted as part of the Construction phase (Phase 2) in the Mizunami Underground Research Laboratory (MIU) Project. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical method used are presented in this report. (author)

  11. Present status of research and development on underground disposal

    International Nuclear Information System (INIS)

    1994-11-01

    Power Reactor and Nuclear Fuel Development Corporation published the technical report 'Research and development of the formation disposal of high level radioactive waste' 1991 in 1992, summarizing the results of the research and development of the formation disposal which have been advanced by dividing into three parts, that is, the investigation and research of geological environment conditions, the research and development of disposal technologies, and the research on the performance evaluation. Based on the subjects pointed out during the process of making the technical report, the results of evaluation by the state, and the opinions of those concerned, the efforts are exerted toward the second summarization expected in about 2000. By informing the present state of the research and development, in order to accept the criticism and advice, this book was published. The way of thinking and the method of advancing of the research and development of formation disposal, the present state of the research on geological environment conditions, disposal technologies and the performance evaluation are described. Also the present state of the research on stratum science in Tono and Kamaishi mines and others is reported. (K.I.)

  12. Present status of research and development on underground disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Power Reactor and Nuclear Fuel Development Corporation published the technical report `Research and development of the formation disposal of high level radioactive waste` 1991 in 1992, summarizing the results of the research and development of the formation disposal which have been advanced by dividing into three parts, that is, the investigation and research of geological environment conditions, the research and development of disposal technologies, and the research on the performance evaluation. Based on the subjects pointed out during the process of making the technical report, the results of evaluation by the state, and the opinions of those concerned, the efforts are exerted toward the second summarization expected in about 2000. By informing the present state of the research and development, in order to accept the criticism and advice, this book was published. The way of thinking and the method of advancing of the research and development of formation disposal, the present state of the research on geological environment conditions, disposal technologies and the performance evaluation are described. Also the present state of the research on stratum science in Tono and Kamaishi mines and others is reported. (K.I.).

  13. On area-specific underground research laboratory for geological disposal of high-level radioactive waste in China

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2014-04-01

    Full Text Available Underground research laboratories (URLs, including “generic URLs” and “site-specific URLs”, are underground facilities in which characterisation, testing, technology development, and/or demonstration activities are carried out in support of the development of geological repositories for high-level radioactive waste (HLW disposal. In addition to the generic URL and site-specific URL, a concept of “area-specific URL”, or the third type of URL, is proposed in this paper. It is referred to as the facility that is built at a site within an area that is considered as a potential area for HLW repository or built at a place near the future repository site, and may be regarded as a precursor to the development of a repository at the site. It acts as a “generic URL”, but also acts as a “site-specific URL” to some extent. Considering the current situation in China, the most suitable option is to build an “area-specific URL” in Beishan area, the first priority region for China's high-level waste repository. With this strategy, the goal to build China's URL by 2020 may be achieved, but the time left is limited.

  14. Stockbridge Antenna Measurement and Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Stockbridge Antenna Measurement Facility is located 23 miles southwest of AFRL¹s Rome Research Site. This unique measurement facility is designed to evaluate the...

  15. 241-CX-70, 241-CX-71, and 241-CX-72 underground storage tanks at the strontium semiworks facility supplemental information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    Ingle, S.J.

    1996-03-01

    This document is a unit-specific contingency plan for the underground storage tanks at the Strontium Semiworks Facility and is intended to be used as a supplement to the Hanford Facility Contingency Plan. This unit-specific plan is to be used to demonstrate compliance with the contingency plan requirements of WAC 173-303 for certain Resource Conservation and Recovery Act of 1976 (RCRA) waste management units. Radioactive material is contained in three underground storage tanks: 241-CX-70, 241-CX-71, and 241-CX-72. Tank 241-CX-70 has been emptied, except for residual quantities of waste, and has been classified as an elementary neutralization tank under the RCRA. Tanks 241-CX-71 and 241-CX-72 contain radioactive and Washington State-only dangerous waste material, but do not present a significant hazard to adjacent facilities, personnel, or the environment. Currently, dangerous waste management activities are not being applied at the tanks. It is unlikely that any incidents presenting hazards to public health or the environment would occur at the Strontium Semiworks Facility

  16. Information base for waste repository design. Volume 5. Decommissioning of underground facilities

    International Nuclear Information System (INIS)

    Guiffre, M.S.; Plum, R.L.; Koplick, C.M.; Talbot, R.

    1979-01-01

    This report discusses the requirements for decommissioning a deep underground facilitiy for the disposal of radioactive waste. The techniques for sealing the mined excavations are presented and an information base on potential backfill materials is provided. Possible requirements for monitoring the site are discussed. The performance requirements for backfill materials are outlined. The advantages and disadvantages of each sealing method are stated

  17. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Science.gov (United States)

    2010-07-01

    ... Diesel-Powered Equipment § 75.1912 Fire suppression systems for permanent underground diesel fuel storage... system by a nationally recognized independent testing laboratory and appropriate for installation at a... recommended inspection and maintenance program and as required by the nationally recognized independent...

  18. Mechanical response of jointed granite during shaft sinking at the Canadian Underground Research Laboratory

    International Nuclear Information System (INIS)

    Chan, T.; Lang, P.A.; Thompson, P.M.

    1985-01-01

    As part of the geoscience research within the Canadian Nuclear Fuel Waste Management Program, Atomic Energy of Canada Limited (AECL) is constructing an underground research laboratory (URL) in a previously undisturbed portion of a granitic intrusive, the Lac du Bonnet batholith, approximately 100 km northeast of Winnipeg, Manitoba. The overall geotechnical objectives of the URL are to assess and improve our ability to interpret and predict the geological, geophysical, geochemical, geomechanical and hydrogeological conditions of large bodies of plutonic rock, as well as to assess the accuracy of mathematical models used to predict the near-field mechanical and hydrogeological responses of the rock mass to excavation and thermal loading. Construction will be completed in July, 1986. Large-scale testing will commence soon afterwards and will last until the facility is decommissioned in the year 2000. A rectangular access shaft, 255 m deep x 2.8 m x 4.8 m, was sunk during the period May 1984 to March 1985. Rock displacements and stress changes were monitored as the excavation face (bottom) of the shaft advanced. The major objectives of this monitoring were (a) to evaluate and improve the ability of numerical models in predicting the mechanical response of the rock mass, (b) to back-calculate the rock-mass deformation modulus as a function of depth, (c) to assess the influence of natural fractures on the mechanical response of the granitic rock mass, and (d) to evaluate the quality of the geomechanical instrumentation, to determine instrumentation needs for future field experiments. Analysis of the data from this monitoring will aid the design and modelling of further experiments in the URL. In this paper, the rock displacements measured by an array of extensometers at 15 m below ground surface are presented and compared with predictions by a three-dimensional elastic continuum finite-element model

  19. The Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Amare, J.; Beltran, B.; Carmona, J.M.; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Gomez, H.; Luzon, G.; Martinez, M.; Morales, J.; Ortiz de Solorzano, A.; Pobes, C.; Puimedon, J.; Rodriguez, A.; Ruz, J.; Sarsa, M.L.; Torres, L.; Villar, J.A.

    2005-01-01

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories

  20. A research on the excavation and maintenance of underground energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee-Soon; Chung, So-Keul; Ryu, Chang-Ha [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    CAES which is called as a compressed air energy storage was firstly developed at Huntorf, Gen-nan in 1978. The capacity of that system was 290MW, and it can be treated as a first commercial power plant. CAES has a lot of merits, such as saving the unit price of power generation, averaging the peak demand, improvement of maintenance, enlarging the benefit of dynamic use. According to the literature survey, the unlined rock cavern should be proposed to be a reasonable storing style as a method of compressed air storage in Korea. In this study, the most important techniques were evaluated through the investigation of the foreign construction case studies, especially on the unlined rock caverns in hard rock mass. We decided the hill of the Korea Institute of Geology, Mining and Materials as CAES site. If we construct the underground spaces in this site, the demand for electricity nearby Taejon should be considered. So we could determine the capacity of the power plant as a 350MW. This capacity needs a underground space of 200,000, and we can conclude 4 parallel tunnels 550m deep from the surface through the numerical studies. Design parameters were achieved from 300m depth boring job and image processing job. Moreover the techniques for determination of joint characteristics from the images could be obtained. Blasting pattern was designed on the underground spaces, and automatic gas control system and thermomechanical characteristics on caverns were also studied. And finally the following research items could be proposed for future researches. (1) Establishment of criteria for selection of optimal tunnel type. (2) Evaluation of water tightening ability. (3) Investigation of Lining type. (4) Development of techniques for site investigation in deep underground project. (5) Evaluation of construction techniques for underground space and shaft. (6) Investigation of long-term maintenance for pressured tunnel. (author). 14 refs.

  1. Prediction accident triangle in maintenance of underground mine facilities using Poisson distribution analysis

    Science.gov (United States)

    Khuluqi, M. H.; Prapdito, R. R.; Sambodo, F. P.

    2018-04-01

    In Indonesia, mining is categorized as a hazardous industry. In recent years, a dramatic increase of mining equipment and technological complexities had resulted in higher maintenance expectations that accompanied by the changes in the working conditions, especially on safety. Ensuring safety during the process of conducting maintenance works in underground mine is important as an integral part of accident prevention programs. Accident triangle has provided a support to safety practitioner to draw a road map in preventing accidents. Poisson distribution is appropriate for the analysis of accidents at a specific site in a given time period. Based on the analysis of accident statistics in the underground mine maintenance of PT. Freeport Indonesia from 2011 through 2016, it is found that 12 minor accidents for 1 major accident and 66 equipment damages for 1 major accident as a new value of accident triangle. The result can be used for the future need for improving the accident prevention programs.

  2. The Diesel Exhaust in Miners Study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    Science.gov (United States)

    Vermeulen, Roel; Coble, Joseph B; Lubin, Jay H; Portengen, Lützen; Blair, Aaron; Attfield, Michael D; Silverman, Debra T; Stewart, Patricia A

    2010-10-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998-2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m³ min⁻¹), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP₁₉₉₀(+)) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947-1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP₁₉₉₀(+)). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC

  3. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: andreas.best@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-03-11

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  4. Mizunami Underground Research Project. Annual report in the 2003 fiscal year

    International Nuclear Information System (INIS)

    Nakama, Shigeo; Takeuchi, Shinji; Amano, Kenji

    2004-12-01

    The current geoscientific research of the Mizunami Underground Research Laboratory (MIU) Project have been carried out since the 1996 fiscal year at the Shobasama Site in Akeyo-cho, Mizunami City, Gifu Prefecture. The main goals of MIU Project are to establish appropriate methodologies for reliably investigation and assessing a deep subsurface, and to develop a range of engineering techniques for deep underground application in granite. The surface-based investigations at city-owned land (MIU Construction Site) have started since the 2001 fiscal year. In 2003 fiscal year, deep borehole investigations were continued in the MIU Construction Site. To understand the state of the deep geological environment before shaft sinking based on these investigations and research, a geological environmental model in/around the MIU Construction Site was constructed. In addition to there groundwater monitoring was carried out using shallow boreholes. As a research on the engineering technology, the review of the design and construction plan of the shafts and galleries and the outbreak event measures and security measures were provided. In Shobasama site, the analysis of an uncertain factor was executed based on the results of the underground water flow analysis. The hydraulic pressure monitoring and surface hydraulic observation were continued. (author)

  5. Horonobe Underground Research Laboratory project. Synthesis of phase I investigation 2001-2005. Volume 'geoscientific research'

    International Nuclear Information System (INIS)

    Ota, Kunio; Abe, Hironobu; Kunimaru, Takanori

    2011-03-01

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe in Hokkaido, northern Japan. The project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. The present report summarises the results of the Phase I geoscientific research carried out from March 2001 to March 2005. Integration of the results from different disciplines ensures that the Phase I goals have been successfully achieved and identifies key issues that need to be addressed in Phases II and III. More importantly, efforts are made to summarise as many lessons learnt from the Phase I investigations and other technical achievements as possible to form a 'knowledge base' that will reinforce the technical basis for both implementation and the formulation of safety regulations. Based on experiences of selecting the URL area and site in Horonobe Town, important factors that should be taken into consideration in such selection processes and their rationale are demonstrated. In the course of stepwise surface-based investigations, a number of achievements have been made, which can eventually provide examples of integrated methodologies for characterising the sedimentary formations. The relevant surface-based investigation techniques have thus been further developed. The Horonobe URL has been designed based on geoscientific information accumulated during the surface-based investigations and the plans for safe construction and operation of the URL have been defined in a feasible manner. In addition, a variety of environmental measures taken during Phase I have proved to be

  6. HA Cells monitoring at the Underground Research Laboratory (URL) in the CMHM (Andra)

    International Nuclear Information System (INIS)

    Gay, Olivier; Allagnat, Dominique; Morel, Jacques; Armand, Gilles

    2010-01-01

    The experimental monitoring program of the HA (High Activity) cells was carried out at the Underground Research Laboratory (URL) in the Meuse Haute Marne department in France (CMHM Andra). Inspections made by video and photographs, section measurements and geo-referenced trajectories, in addition to measurements of convergence, temperature and hygrometry over time, allowed a better analysis of the behaviour of the HA cells after excavation, and subsequently over the long term. (authors)

  7. The use of scientific and technical results from underground research laboratory investigations for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-09-01

    The objective of the report is to provide information on the use of results obtained from underground research laboratory investigations for the development of a deep geological repository system for long lived and/or high level radioactive waste including spent fuel. Specifically, it should provide Member States that intend to start development of a geological disposal system with an overview of existing facilities and of the sorts and quality of results that have already been acquired. The report is structured into six main themes: rock characterization methodologies and testing; assessment of the geological barrier; assessment of the engineered barrier system; respository construction techniques; demonstration of repository operations; confidence building and international co-operation

  8. Data of fractures based on the deep borehole investigations in the Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Kusano, Tomohiro; Ishii, Eiichi

    2016-02-01

    Japan Atomic Energy Agency (JAEA) is performing the Horonobe Underground Research Laboratory Project, which includes a scientific study of the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes (HLW), in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the sedimentary rock. This report aims at compiling fracture data of drill core obtained from the Horonobe Underground Research Laboratory Project (Phase 1). (author)

  9. Research and Development for Underground Science at Black Hills State University

    Science.gov (United States)

    Keeter, Kara

    2010-10-01

    The development of the Deep Underground Science and Engineering Laboratory (DUSEL) in the former Homestake mine in Lead, South Dakota has greatly spurred interest in science research and development along with education and outreach. Early science activities at Black Hills State University associated with the Sanford Underground Laboratory and DUSEL include radon emanation studies of iron oxide sludge and in situ, and radioactive background and magnetic field measurements. Work is also underway for R&D development for depleted argon-based dark matter detectors, neutrinoless double beta decay experiments, and a liquid scintillator immersion tank for whole-body low-background assays. Students from BHSU and across the state of South Dakota have been working alongside scientists on these and other projects. Teachers from high schools throughout South Dakota have also participated in these projects through the newly formed QuarkNet Center at BHSU.

  10. Addressing issues raised by stakeholders: example of the underground research laboratory of Meuse/Haute-Marne

    International Nuclear Information System (INIS)

    Piguet, Jacques-Pierre

    2004-01-01

    The aim of the Underground Research Laboratory (URL) project is the feasibility assessment of a deep underground repository of high activity / long life radioactive wastes, located at about 300 km from Paris near the border of the Lorraine and Champagne-Ardennes regions. It appears that the confidence relating to the URL project needs to be built upon excellent and strong relations and collaboration with the scientific community. The necessary condition for the acceptance of citizens is to be based upon the conviction that the scientific work is carried on seriously, with the best specialists and up-to-date methods, under a rigorous control, and in opened context. However, these considerations today only concern the URL project, and there is no clear indication about the potential acceptance of an eventual repository

  11. In situ tests for investigating thermal and mechanical rock behaviors at an underground research tunnel

    International Nuclear Information System (INIS)

    Kwon, Sangki; Cho, Won-Jin

    2013-01-01

    The understanding of the thermal and mechanical behaviors expected to be happened around an underground high-level radioactive waste (HLW) repository is important for a successful site selection, construction, operation, and closure of the repository. In this study, the thermal and mechanical behaviors of rock and rock mass were investigated from in situ borehole heater test and the studies for characterizing an excavation damaged zone (EDZ), which had been carried out at an underground research tunnel, KURT, constructed in granite for the validation of a HLW disposal concept. Thermal, mechanical, and hydraulic properties in EDZ could be predicted from various in situ and laboratory tests as well as numerical simulations. The complex thermo-mechanical coupling behavior of rock could be modeled using the rock properties. (author)

  12. A Cryogenic Detector Characterization Facility in the Shallow Underground Laboratory at the Technical University of Munich

    Science.gov (United States)

    Langenkämper, A.; Defay, X.; Ferreiro Iachellini, N.; Kinast, A.; Lanfranchi, J.-C.; Lindner, E.; Mancuso, M.; Mondragón, E.; Münster, A.; Ortmann, T.; Potzel, W.; Schönert, S.; Strauss, R.; Ulrich, A.; Wawoczny, S.; Willers, M.

    2018-04-01

    The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides ˜ 160 {m^2} of laboratory space which is shielded from cosmic radiation by ˜ 6 m of gravel and soil, corresponding to a shielding of ˜ 15 {m.w.e.} . The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a ^3 He-^4 He dilution refrigerator with a base temperature of ≤ 12-14 mK . The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of CaWO_4 target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (ν -cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.

  13. An Assessment of Hydrological Safety for the Guri Underground Oil Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Young; Kim, Kyung Su; Koh, Yong Kwon; Bae, Dae Seok; Park, Kyung Woo; Ji, Sung Hoon; Ryu, Ji Hoon

    2009-08-15

    Hydrological and geochemical analysis of the various kinds of water including observation borehole groundwater was carried out for the assessment of the hydrological safety of the underground oil storage cavern and the potentiality of mineralogical and microbiological clogging was estimated. There was no distinct chemical difference in the various kinds of water. All kinds of water are undersaturated with the calcite which is the major clogging mineral. Most water samples have low Fe and Mn concentrations. However, they are saturated or oversaturated with the iron-oxide/hydroxide minerals and have high dissolved oxygen contents which softiies the possibility of clogging by the iron-oxide/hydroxide minerals as a long-term aspect. Statistical analysis shows the degree of mineral precipitation or dissolution is mainly controlled by pH, Eh and DO of water samples. Because the slime forming bacteria ate dominant microbe in several observation boreholes, the clogging can be caused by it as a long-term aspect. In addition, the possibility of clogging can be increased if the microbial effect is combined with the mineralogical effect such as iron oxide/hydroxide minerals for the possibility of clogging. Therefore, the systematic and long-term program for the assessment of clogging is required for the safe operation of underground oil storage cavern.

  14. An Assessment of Hydrological Safety for the Guri Underground Oil Storage Facility

    International Nuclear Information System (INIS)

    Kim, Geon Young; Kim, Kyung Su; Koh, Yong Kwon; Bae, Dae Seok; Park, Kyung Woo; Ji, Sung Hoon; Ryu, Ji Hoon

    2009-08-01

    Hydrological and geochemical analysis of the various kinds of water including observation borehole groundwater was carried out for the assessment of the hydrological safety of the underground oil storage cavern and the potentiality of mineralogical and microbiological clogging was estimated. There was no distinct chemical difference in the various kinds of water. All kinds of water are undersaturated with the calcite which is the major clogging mineral. Most water samples have low Fe and Mn concentrations. However, they are saturated or oversaturated with the iron-oxide/hydroxide minerals and have high dissolved oxygen contents which softiies the possibility of clogging by the iron-oxide/hydroxide minerals as a long-term aspect. Statistical analysis shows the degree of mineral precipitation or dissolution is mainly controlled by pH, Eh and DO of water samples. Because the slime forming bacteria ate dominant microbe in several observation boreholes, the clogging can be caused by it as a long-term aspect. In addition, the possibility of clogging can be increased if the microbial effect is combined with the mineralogical effect such as iron oxide/hydroxide minerals for the possibility of clogging. Therefore, the systematic and long-term program for the assessment of clogging is required for the safe operation of underground oil storage cavern

  15. Meson facility. Powerful new research tool

    International Nuclear Information System (INIS)

    Lobashev, V.M.; Tavkhelidze, A.N.

    A meson facility is being built at the Institute of Nuclear Research, USSR Academy of Sciences, in Troitsk, where the Scientific Center, USSR Academy of Sciences is located. The facility will include a linear accelerator for protons and negative hydrogen ions with 600 MeV energy and 0.5-1 mA beam current. Some fundamental studies that can be studied at a meson facility are described in the areas of elementary particles, neutron physics, solid state physics, and applied research. The characteristics of the linear accelerator are given and the meson facility's experimental complex is described

  16. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  17. Access to major overseas research facilities

    International Nuclear Information System (INIS)

    Bolderman, J. W.

    1997-01-01

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year

  18. A Visualization Tool for Integrating Research Results at an Underground Mine

    Science.gov (United States)

    Boltz, S.; Macdonald, B. D.; Orr, T.; Johnson, W.; Benton, D. J.

    2016-12-01

    Researchers with the National Institute for Occupational Safety and Health are conducting research at a deep, underground metal mine in Idaho to develop improvements in ground control technologies that reduce the effects of dynamic loading on mine workings, thereby decreasing the risk to miners. This research is multifaceted and includes: photogrammetry, microseismic monitoring, geotechnical instrumentation, and numerical modeling. When managing research involving such a wide range of data, understanding how the data relate to each other and to the mining activity quickly becomes a daunting task. In an effort to combine this diverse research data into a single, easy-to-use system, a three-dimensional visualization tool was developed. The tool was created using the Unity3d video gaming engine and includes the mine development entries, production stopes, important geologic structures, and user-input research data. The tool provides the user with a first-person, interactive experience where they are able to walk through the mine as well as navigate the rock mass surrounding the mine to view and interpret the imported data in the context of the mine and as a function of time. The tool was developed using data from a single mine; however, it is intended to be a generic tool that can be easily extended to other mines. For example, a similar visualization tool is being developed for an underground coal mine in Colorado. The ultimate goal is for NIOSH researchers and mine personnel to be able to use the visualization tool to identify trends that may not otherwise be apparent when viewing the data separately. This presentation highlights the features and capabilities of the mine visualization tool and explains how it may be used to more effectively interpret data and reduce the risk of ground fall hazards to underground miners.

  19. Structural Research Facilities | Wind | NREL

    Science.gov (United States)

    -hydraulic equipment and data acquisition systems tailored for researching composite blades and components 61400-23 standard. General types of rotor blade research performed at the NWTC includes: Property

  20. Geochemistry research planning for the underground storage of high-level nuclear waste

    International Nuclear Information System (INIS)

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables

  1. Researches at hadron experiment facility

    International Nuclear Information System (INIS)

    Sawada, Shinya

    2006-01-01

    Some of the nuclear, hadron and elementary particle experiments proposed to hadron experiment facility to use the extracted slow proton beam at J-PARC are overviewed. Characteristic feature of the facility is the secondary beam obtained from the intense proton beam. Nuclear hadron physics experiments and kaon rare decay experiments are presented here as the typical ones. Hypernuclear spectroscopy with S=-2 state is expected to be started as soon as the beam becomes available. The kaon bound systems not only with three nucleons like K-pnn but also more numerous like Li and Be are to be studied systematically. Bound states of two kaons using (K - , K + ) reaction will be challenged. Pentaquark will be searched for and its properties will be studied if it really exists. Nuclear structure studies from the view point of large Bjorken x are planned to be studied by irradiating hydrogen, deuteron or heavier targets with primary proton beam and analyzing generated muon pairs. Properties of vector mesons in nuclear matter are to be studied with the primary beam. Neutral kaon rare decay will be investigated to study CP nonconservation. Large progress of elementary particle physics is anticipated by using the intense proton beam at J-PARC. (S. Funahashi)

  2. Rock fracture dynamics research at AECL's Underground Research Laboratory: applications to geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.P. [Univ. of Toronto, Toronto, ON (Canada); Haycox, J.R. [Applied Seismology Consultants Limited, Shrewsbury, Shropshire (United Kingdom); Martino, J. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Studies of rock fracture dynamics at AECL's Underground Research Laboratory (URL) have helped to provide a fundamental understanding of how crystalline rock responds to stresses induced from excavation, pressurization and temperature changes. The data acquired continue to provide insights into how a facility for the future geological disposal of radioactive waste could be engineered. Research into microseismic (MS), acoustic emission (AE), and ultrasonic velocity measurements has been performed on the full-scale sealed, pressurized, and heated horizontal elliptical tunnel at the Tunnel Sealing Experiment (TSX). The continuous monitoring of the experiment for 8 years provides a unique dataset for the understanding of the medium-term performance of an engineered disposal facility. This paper summarizes the results, interpretations and key findings of the experiment paying particular focus to the heating and cooling/depressurization of the chamber. Initial drilling of the tunnel and bulkheads causes microfracturing around the tunnel, mapped by MS and AEs, and is used as a benchmark for fracturing representing the excavated damaged zone (EDZ). There is no further extension to the volume during pressurization or heating of the tunnel suggesting an increase in crack density and coalescence of cracks rather than extension into unfractured rock. The dominant structure within the seismic cloud has been investigated using a statistical approach applying the three-point method. MS events in the roof exhibit a dominant pattern of sub-horizontal and shallow-dipping well defined planar features, but during cooling and depressurization a 45 degree dip normal to the tunnel axis is observed, which may be caused by movement in the rock-concrete interface due to differential cooling of the bulkhead and host rock. Cooling and depressurization of the TSX have not led to a significant increase in the number of MS or AE events. Ultrasonic results suggest the rock gets even stiffer

  3. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States); Laub, T.W. [Sandia National Labs., Albuquerque, NM (United States)

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  4. Underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, A., E-mail: Bettini@pd.infn.i [Padua University and INFN Section, Dipartimento di Fisca G. Galilei, Via Marzolo 8, 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc, Plaza Ayuntamiento n1 2piso, Canfranc (Huesca) (Spain)

    2011-01-21

    Underground laboratories provide the low radioactive background environment necessary to frontier experiments in particle and nuclear astrophysics and other disciplines, geology and biology, that can profit of their unique characteristics. The cosmic silence allows to explore the highest energy scales that cannot be reached with accelerators by searching for extremely rare phenomena. I will briefly review the facilities that are operational or in an advanced status of approval around the world.

  5. Facility management research in the Netherlands

    NARCIS (Netherlands)

    Thijssen, Thomas; van der Voordt, Theo; Mobach, Mark P.

    This article provides a brief overview of the history and development of facility management research in the Netherlands and indicates future directions. Facility management as a profession has developed from single service to multi-services and integral services over the past 15 years.

  6. Flood Fighting Products Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A wave research basin at the ERDC Coastal and Hydraulics Laboratory has been modified specifically for testing of temporary, barrier-type, flood fighting products....

  7. Zero Gravity Research Facility (Zero-G)

    Data.gov (United States)

    Federal Laboratory Consortium — The Zero Gravity Research Facility (Zero-G) provides a near weightless or microgravity environment for a duration of 5.18 seconds. This is accomplished by allowing...

  8. Mizunami Underground Research Laboratory project. Annual report for fiscal year 2007

    International Nuclear Information System (INIS)

    Nishio, Kazuhisa; Matsuoka, Toshiyuki; Tsuruta, Tadahiko; Amano, Kenji; Ohyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Mizuno, Takashi; Sai, Masataka; Hirano, Toru; Iyatomi, Yosuke; Shimada, Akiomi; Matsui, Hiroya; Ogata, Nobuhisa; Uchida, Masahiro; Sugihara, Kozo; Mikake, Shinichiro; Ikeda, Koki; Yamamoto, Masaru

    2009-03-01

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in fiscal year 2007, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, 1) Investigation at the MIU Construction Site and the Shobasama Site, 2) Construction at the MIU Construction Site, 3) Research Collaboration. (author)

  9. Mizunami Underground Research Laboratory project. Annual report for fiscal year 2005

    International Nuclear Information System (INIS)

    Nishio, Kazuhisa; Matsuoka, Toshiyuki; Tsuruta, Tadahiko; Amano, Kenji; Ohyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Mizuno, Takashi; Sai, Masataka; Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Uchida, Masahiro; Sugihara, Kozo; Mikake, Shinichiro; Ikeda, Koki; Yamamoto, Masaru; Yoshida, Haruo; Nakama, Shigeo; Seno, Yasuhiro; Kuroda, Hidetaka; Semba, Takeshi

    2009-03-01

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2005 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, 1) Investigation at the MIU Construction Site and the Shobasama Site, 2) Construction at the MIU Construction Site, 3) Research Collaboration. (author)

  10. Mizunami Underground Research Laboratory project. Annual report for fiscal year 2008

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Kunimaru, Takanori; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Ohyama, Takuya; Mizuno, Takashi; Hirano, Toru; Ogata, Nobuhisa; Hama, Katsuhiro; Iyatomi, Yosuke; Shimada, Akiomi; Matsui, Hiroya; Ito, Hiroaki; Sugihara, Kozo; Mikake, Shinichiro; Ikeda, Koki; Yamamoto, Masaru

    2010-07-01

    Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in fiscal year 2008, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, 1) Investigation at the MIU Construction Site and the Shobasama Site, 2) Construction at the MIU Construction Site, 3) Research Collaboration. (author)

  11. Field tracer transport experiments at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Frost, L.H.; Davison, C.C.; Vandergraaf, T.T.; Scheier, N.W.; Kozak, E.T.

    1997-01-01

    To gain a better understanding of the processes affecting solute transport in fractured crystalline rock, groundwater tracer experiments are being performed within natural fracture domains and excavation damage zones at various scales at the site of AECL's Underground Research Laboratory (URL). The main objective of these experiments is to develop and demonstrate methods for characterizing the solute transport properties within fractured crystalline rock. Estimates of these properties are in turn being used in AECL's conceptual and numerical models of groundwater flow and solute transport through the geosphere surrounding a nuclear fuel waste disposal vault in plutonic rock of the Canadian Shield. (author)

  12. Mizunami Underground Research Laboratory Project. Annual report for fiscal year 2015

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Mikake, Shinichiro; Ishibashi, Masayuki; Onoe, Hironori; Takeuchi, Ryuji; Nohara, Tsuyoshi; Sasao, Eiji; Ikeda, Koki; Koide, Kaoru

    2016-12-01

    The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami City in Gifu Prefecture, central Japan. On the occasion of the research program and management system revision of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: 'Development of countermeasure technologies for reducing groundwater inflow', 'Development of modeling technologies for mass transport' and 'Development of drift backfilling technologies', based on the latest results of the synthesizing research and development (R and D). The R and D on three important issues has been carrying out on the MIU project. In this report, the current status of R and D activities and construction in 2015 is summarized. (author)

  13. Numerical modeling of the viscoplastic damage behaviour of rocks and application to underground storage facilities

    International Nuclear Information System (INIS)

    Hajdu, A.

    2003-12-01

    The long-term behavior of large, underground works of a civil engineering nature carried out in a rock mass is currently the subject of numerous studies. The object is to attain a better understanding of complex phenomena, such as the convergence of excavated cavities or the outbreak and development of damaged zones in the rock mass neighboring the works, in order to foresee them. This Ph.D. thesis is devoted to the analysis of viscoplastic strain in rocks and to the degradation of their mechanical properties with time, often referred to as deferred damage. A bibliographical record presents the current depth of understanding as regards underlying microstructural phenomena and summarizes the main theories upon which the modeling of these phenomena at the macroscopic scale is based. The formulations enabling a coupling between the viscous effects and the deferred damage are revisited and discussed in detail. One phenomenological model in particular, Lemaitre's viscoplastic constitutive damage law is retained for the numerical modeling. The calculations were performed with the help of a finite element code (CAST3M). Designs of nuclear waste disposal structures at great depth make up the subject of different case studies. The Lemaitre model, originally designed for metallic materials, is next the subject of a theoretical development of which the aim is to better adapt it to the description of the long-term mechanical behavior of rocks. The modifications focus on several points; notably that the hypotheses of anelastic strain at constant volume and of isotropy of damage are rejected. The main characteristics of time-dependent strain in rocks; in particular the phenomena of viscoplastic dilation and contraction as well as the anisotropy induced by damage to the rock matrix are reproduced by the proposed model. A parametric study is then undertaken, using the experimental results obtained on different types of rock, in order to demonstrate the model's capabilities

  14. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  15. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects

    CERN Document Server

    Acciarri, R.; Adamowski, M.; Adams, C.; Adamson, P.; Adhikari, S.; Ahmad, Z.; Albright, C.H.; Alion, T.; Amador, E.; Anderson, J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Anghel, I.; Anjos, J. d.; Ankowski, A.; Antonello, M.; Aranda Fernandez, A.; Ariga, A.; Ariga, T.; Aristizabal, D.; Arrieta-Diaz, E.; Aryal, K.; Asaadi, J.; Asner, D.; Athar, M.S.; Auger, M.; Aurisano, A.; Aushev, V.; Autiero, D.; Avila, M.; Back, J.J.; Bai, X.; Baibussinov, B.; Baird, M.; Balantekin, B.; Baller, B.; Ballett, P.; Bambah, B.; Bansal, M.; Bansal, S.; Barker, G.J.; Barletta, W.A.; Barr, G.; Barros, N.; Bartosz, B.; Bartoszek, L.; Bashyal, A.; Bass, M.; Bay, F.; Beacom, J.; Behera, B.R.; Bellettini, G.; Bellini, V.; Beltramello, O.; Benekos, N.; Benetti, P.A.; Bercellie, A.; Bergevin, M.; Berman, E.; Berns, H.; Bernstein, R.; Bertolucci, S.; Bhandari, B.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Biery, K.; Bishai, M.; Blackburn, T.; Blake, A.; Blaszczyk, F. d. M.; Blaufuss, E.; Bleakley, B.; Blucher, E.; Bocean, V.; Boffelli, F.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bonesini, M.; Boone, T.; Booth, C.; Bordoni, S.; Borysova, M.; Bourguille, B.; Boyd, S.B.; Brailsford, D.; Brandt, A.; Bremer, J.; Brice, S.; Bromberg, C.; Brooijmans, G.; Brown, G.; Brown, R.; Brunetti, G.; Bu, X.; Buchanan, N.; Budd, H.; Bugg, B.; Calafiura, P.; Calligarich, E.; Calvo, E.; Camilleri, L.; Campanelli, M.; Cantini, C.; Carls, B.; Carr, R.; Cascella, M.; Castromonte, C.; Mur, E.Catano; Cavanna, F.; Centro, S.; Cervera Villanueva, A.; Chalifour, M.; Chandratre, V.B.; Chatterjee, A.; Chattopadhyay, S.; Chattopadhyay, S.; Chaussard, L.; Chembra, S.; Chen, H.; Chen, K.; Chen, M.; Cherdack, D.; Chi, C.; Childress, S.; Choubey, S.; Choudhary, B.C.; Christodoulou, G.; Christofferson, C.; Church, E.; Cianci, D.; Cline, D.; Coan, T.; Cocco, A.; Coelho, J.; Cole, P.; Collin, G.; Conrad, J.M.; Convery, M.; Corey, R.; Corwin, L.; Cranshaw, J.; Crivelli, P.; Cronin-Hennessy, D.; Curioni, A.; Cushing, J.; Adams, D.L.; Dale, D.; Das, S.R.; Davenne, T.; Davies, G.S.; Davies, J.; Dawson, J.; De, K.; de Gouvea, A.; de Jong, J.K.; de Jong, P.; De Lurgio, P.; Decowski, M.; Delbart, A.; Densham, C.; Dharmapalan, R.; Dhingra, N.; Di Luise, S.; Diamantopoulou, M.; Diaz, J.S.; Diaz Bautista, G.; Diwan, M.; Djurcic, Z.; Dolph, J.; Drake, G.; Duchesneau, D.; Duvernois, M.; Duyang, H.; Dwyer, D.A.; Dye, S.; Dytman, S.; Eberly, B.; Edgecock, R.; Edmunds, D.; Elliott, S.; Elnimr, M.; Emery, S.; Endress, E.; Eno, S.; Ereditato, A.; Escobar, C.O.; Evans, J.; Falcone, A.; Falk, L.; Farbin, A.; Farnese, C.; Farzan, Y.; Fava, A.; Favilli, L.; Felde, J.; Felix, J.; Fernandes, S.; Fields, L.; Finch, A.; Fitton, M.; Fleming, B.; Forest, T.; Fowler, J.; Fox, W.; Fried, J.; Friedland, A.; Fuess, S.; Fujikawa, B.; Gago, A.; Gallagher, H.; Galymov, S.; Gamble, T.; Gandhi, R.; Garcia-Gamez, D.; Gardiner, S.; Garvey, G.; Gehman, V.M.; Gendotti, A.; Geronimo, G. d.; Ghag, C.; Ghoshal, P.; Gibin, D.; Gil-Botella, I.; Gill, R.; Girardelli, D.; Giri, A.; Glavin, S.; Goeldi, D.; Golapinni, S.; Gold, M.; Gomes, R.A.; Gomez Cadenas, J.J.; Goodman, M.C.; Gorbunov, D.; Goswami, S.; Graf, N.; Graf, N.; Graham, M.; Gramelini, E.; Gran, R.; Grant, C.; Grant, N.; Greco, V.; Greenlee, H.; Greenler, L.; Greenley, C.; Groh, M.; Grullon, S.; Grundy, T.; Grzelak, K.; Guardincerri, E.; Guarino, V.; Guarnaccia, E.; Guedes, G.P.; Guenette, R.; Guglielmi, A.; Habig, A.T.; Hackenburg, R.W.; Hackenburg, A.; Hadavand, H.; Haenni, R.; Hahn, A.; Haigh, M.D.; Haines, T.; Hamernik, T.; Handler, T.; Hans, S.; Harris, D.; Hartnell, J.; Hasegawa, T.; Hatcher, R.; Hatzikoutelis, A.; Hays, S.; Hazen, E.; Headley, M.; Heavey, A.; Heeger, K.; Heise, J.; Hennessy, K.; Hewes, J.; Higuera, A.; Hill, T.; Himmel, A.; Hogan, M.; Holanda, P.; Holin, A.; Honey, W.; Horikawa, S.; Horton-Smith, G.; Howard, B.; Howell, J.; Hurh, P.; Huston, J.; Hylen, J.; Imlay, R.; Insler, J.; Introzzi, G.; Ioanisyan, D.; Ioannisian, A.; Iwamoto, K.; Izmaylov, A.; Jackson, C.; Jaffe, D.E.; James, C.; James, E.; Jediny, F.; Jen, C.; Jhingan, A.; Jimenez, S.; Jo, J.H.; Johnson, M.; Johnson, R.; Johnstone, J.; Jones, B.J.; Joshi, J.; Jostlein, H.; Jung, C.K.; Junk, T.; Kaboth, A.; Kadel, R.; Kafka, T.; Kalousis, L.; Kamyshkov, Y.; Karagiorgi, G.; Karasavvas, D.; Karyotakis, Y.; Kaur, A.; Kaur, P.; Kayser, B.; Kazaryan, N.; Kearns, E.; Keener, P.; Kemboi, S.; Kemp, E.; Kettell, S.H.; Khabibullin, M.; Khandaker, M.; Khotjantsev, A.; Kirby, B.; Kirby, M.; Klein, J.; Kobilarcik, T.; Kohn, S.; Koizumi, G.; Kopylov, A.; Kordosky, M.; Kormos, L.; Kose, U.; Kostelecky, A.; Kramer, M.; Kreslo, I.; Kriske, R.; Kropp, W.; Kudenko, Y.; Kudryavtsev, V.A.; Kulagin, S.; Kumar, A.; Kumar, G.; Kumar, J.; Kumar, L.; Kutter, T.; Laminack, A.; Lande, K.; Lane, C.; Lang, K.; Lanni, F.; Learned, J.; Lebrun, P.; Lee, D.; Lee, H.; Lee, K.; Lee, W.M.; Leigui de Oliveira, M.A.; Li, Q.; Li, S.; Li, S.; Li, X.; Li, Y.; Li, Z.; Libo, J.; Lin, C.S.; Lin, S.; Ling, J.; Link, J.; Liptak, Z.; Lissauer, D.; Littenberg, L.; Littlejohn, B.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N.; Loew, T.; Lokajicek, M.; Long, K.; Lopes, M.D.L.; Lopez, J.P.; Losecco, J.; Louis, W.; Lowery, J.; Luethi, M.; Luk, K.; Lundberg, B.; Lundin, T.; Luo, X.; Lux, T.; Lykken, J.; Machado, A.A.; Macier, J.R.; Magill, S.; Mahler, G.; Mahn, K.; Malek, M.; Malhotra, S.; Malon, D.; Mammoliti, F.; Mancina, S.; Mandal, S.K.; Mandodi, S.; Manly, S.L.; Mann, A.; Marchionni, A.; Marciano, W.; Mariani, C.; Maricic, J.; Marino, A.; Marshak, M.; Marshall, C.; Marshall, J.; Marteau, J.; Martin-Albo, J.; Martinez, D.; Matsuno, S.; Matthews, J.; Mauger, C.; Mavrokoridis, K.; Mayilyan, D.; Mazzucato, E.; McCauley, N.; McCluskey, E.; McConkey, N.; McDonald, K.; McFarland, K.S.; McGowan, A.M.; McGrew, C.; McKeown, R.; McNulty, D.; McTaggart, R.; Mefodiev, A.; Mehrian, M.; Mehta, P.; Mei, D.; Mena, O.; Menary, S.; Mendez, H.; Menegolli, A.; Meng, G.; Meng, Y.; Mertins, D.; Merritt, H.; Messier, M.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Milincic, R.; Miller, W.; Mills, G.; Mineev, O.; Miranda, O.; Mishra, C.S.; Mishra, S.R.; Mitrica, B.; Mladenov, D.; Mocioiu, I.; Mohanta, R.; Mokhov, N.; Montanari, C.; Montanari, D.; Moon, J.; Mooney, M.; Moore, C.; Morfin, J.; Morgan, B.; Morris, C.; Morse, W.; Moss, Z.; Mossey, C.; Moura, C.A.; Mousseau, J.; Mualem, L.; Muether, M.; Mufson, S.; Murphy, S.; Musser, J.; Musser, R.; Nakajima, Y.; Naples, D.; Napolitano, J.; Navarro, J.; Navas, D.; Nelson, J.; Nessi, M.; Newcomer, M.; Ng, Y.; Nichol, R.; Nicholls, T.C.; Nikolics, K.; Niner, E.; Norris, B.; Noto, F.; Novakova, P.; Novella, P.; Nowak, J.; Nunes, M.S.; O'Keeffe, H.; Oldeman, R.; Oliveira, R.; Olson, T.; Onishchuk, Y.; Osta, J.; Ovsjannikova, T.; Page, B.; Pakvasa, S.; Pal, S.; Palamara, O.; Palazzo, A.; Paley, J.; Palomares, C.; Pantic, E.; Paolone, V.; Papadimitriou, V.; Park, J.; Parke, S.; Parsa, Z.; Pascoli, S.; Patterson, R.; Patton, S.; Patzak, T.; Paulos, B.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Peeters, S.; Pennacchio, E.; Perch, A.; Perdue, G.N.; Periale, L.; Perkin, J.D.; Pessard, H.; Petrillo, G.; Petti, R.; Petukhov, A.; Pietropaolo, F.; Plunkett, R.; Pordes, S.; Potekhin, M.; Potenza, R.; Potukuchi, B.; Poudyal, N.; Prokofiev, O.; Pruthi, N.; Przewlocki, P.; Pushka, D.; Qian, X.; Raaf, J.L.; Raboanary, R.; Radeka, V.; Radovic, A.; Raffelt, G.; Rakhno, I.; Rakotondramanana, H.T.; Rakotondravohitra, L.; Ramachers, Y.A.; Rameika, R.; Ramsey, J.; Rappoldi, A.; Raselli, G.; Ratoff, P.; Rebel, B.; Regenfus, C.; Reichenbacher, J.; Reitzner, D.; Remoto, A.; Renshaw, A.; Rescia, S.; Richardson, M.; Rielage, K.; Riesselmann, K.; Robinson, M.; Rochester, L.; Rodrigues, O.B.; Rodrigues, P.; Roe, B.; Rosen, M.; Roser, R.M.; Ross-Lonergan, M.; Rossella, M.; Rubbia, A.; Rubbia, C.; Rucinski, R.; von Rohr, C.Rudolph; Russell, B.; Ruterbories, D.; Saakyan, R.; Sahu, N.; Sala, P.; Samios, N.; Sanchez, F.; Sanchez, M.; Sands, B.; Santana, S.; Santorelli, R.; Santucci, G.; Saoulidou, N.; Scaramelli, A.; Schellman, H.; Schlabach, P.; Schmitt, R.; Schmitz, D.; Schneps, J.; Scholberg, K.; Schukraft, A.; Schwehr, J.; Segreto, E.; Seibert, S.; Sepulveda-Quiroz, J.A.; Sergiampietri, F.; Sexton-Kennedy, L.; Sgalaberna, D.; Shaevitz, M.; Shahi, J.; Shahsavarani, S.; Shanahan, P.; Shankar, S.U.; Sharma, R.; Sharma, R.K.; Shaw, T.; Shrock, R.; Shyrma, I.; Simos, N.; Sinev, G.; Singh, I.; Singh, J.; Singh, J.; Singh, V.; Sinnis, G.; Sippach, W.; Smargianaki, D.; Smy, M.; Snider, E.; Snopok, P.; Sobczyk, J.; Sobel, H.; Soderberg, M.; Solomey, N.; Sondheim, W.; Sorel, M.; Sousa, A.; Soustruznik, K.; Spitz, J.; Spooner, N.J.; Stancari, M.; Stancu, I.; Stefan, D.; Steiner, H.M.; Stewart, J.; Stock, J.; Stoica, S.; Stone, J.; Strait, J.; Strait, M.; Strauss, T.; Striganov, S.; Sulej, R.; Sullivan, G.; Sun, Y.; Suter, L.; Sutera, C.M.; Svoboda, R.; Szczerbinska, B.; Szelc, A.; Soldner-Rembold, S.; Talaga, R.; Tamsett, M.; Tariq, S.; Tatar, E.; Tayloe, R.; Taylor, C.; Taylor, D.; Terao, K.; Thiesse, M.; Thomas, J.; Thompson, L.F.; Thomson, M.; Thorn, C.; Thorpe, M.; Tian, X.; Tiedt, D.; Timm, S.C.; Tonazzo, A.; Tope, T.; Topkar, A.; Torres, F.R.; Torti, M.; Tortola, M.; Tortorici, F.; Toups, M.; Touramanis, C.; Tripathi, M.; Tropin, I.; Tsai, Y.; Tsang, K.V.; Tsenov, R.; Tufanli, S.; Tull, C.; Turner, J.; Tzanov, M.; Tziaferi, E.; Uchida, Y.; Urheim, J.; Usher, T.; Vagins, M.; Vahle, P.; Valdiviesso, G.A.; Valerio, L.; Vallari, Z.; Valle, J.; Van Berg, R.; Van de Water, R.; Van Gemmeren, P.; Varanini, F.; Varner, G.; Vasseur, G.; Vaziri, K.; Velev, G.; Ventura, S.; Verdugo, A.; Viant, T.; Vieira, T.V.; Vignoli, C.; Vilela, C.; Viren, B.; Vrba, T.; Wachala, T.; Wahl, D.; Wallbank, M.; Walsh, N.; Wang, B.; Wang, H.; Wang, L.; Wang, T.; Warburton, T.K.; Warner, D.; Wascko, M.; Waters, D.; Watson, T.B.; Weber, A.; Weber, M.; Wei, W.; Weinstein, A.; Wells, D.; Wenman, D.; Wetstein, M.; White, A.; Whitehead, L.; Whittington, D.; Wilking, M.; Willhite, J.; Wilson, P.; Wilson, R.J.; Winslow, L.; Wittich, P.; Wojcicki, S.; Wong, H.H.; Wood, K.; Worcester, E.; Worcester, M.; Wu, S.; Xin, T.; Yanagisawa, C.; Yang, S.; Yang, T.; Yarritu, K.; Ye, J.; Yeh, M.; Yershov, N.; Yonehara, K.; Yu, B.; Yu, J.; Zalesak, J.; Zalewska, A.; Zamorano, B.; Zang, L.; Zani, A.; Zani, A.; Zavala, G.; Zeller, G.; Zhang, C.; Zhang, C.; Zimmerman, E.D.; Zito, M.; Zwaska, R.

    2016-01-01

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  16. Study on construction method of concrete in the underground research laboratory. 4

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Tajima, Takatoshi; Noda, Masaru

    2004-02-01

    Low alkaline cement is planned to use in construction of Horonobe Underground Research Center as one of in situ experiments. These experiments will be carried out in a part of the vertical shafts and horizontal excavated tunnels. The problems in actual using should be solved and improved until starting construction. This study has been carried out in order to improve the HFSC taking the Horonobe environment into account. Model analysis and preliminary laboratory experiment on hyper alkaline alteration of bentonite and rock have been carried out. And a long term permeability experiment on procedure. (author)or the superfluous exposure dose prevention in IVRbased on results of pH measuring for 546 days and geo-chemical code. Open data and undefined reaction were pointed out in order to accomplish the model on low alkalinity cement with high pozollan content. The effects on fresh concrete properties and harden concrete due to changing properties of fly ash were investigated. Experimental basic planning in situ test of low alkaline cement in Horonobe are proposed. And finally, procedure of improvement HFSC in Horonobe construction are investigated and proposed. It is concluded that HFSC can be applied for construction work of Horonobe underground research center. (author)

  17. Access to major overseas research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bolderman, J. W. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    This paper will describe four schemes which have been established to permit Australian researchers access to some of the most advanced overseas research facilities. These include, access to Major Research Facilities Program, the Australian National Beamline Facility at the Photon Factory, the Australian Synchrotron Research Program and the ISIS Agreement. The details of each of these programs is discussed and the statistics on the scientific output provided. All programs are managed on behalf of the Department of Industry, Science and Tourism by the Australian Nuclear Science and Technology Organisation. One hundred and thirteen senior scientists plus forty, one postgraduate, students were supported through these schemes during the 1996-1997 financial year. 1 fig.

  18. Underground science initiatives at Los Alamos

    International Nuclear Information System (INIS)

    Simmons, L.M. Jr.

    1985-01-01

    Recently, the Los Alamos National Laboratory has proposed two major new initiatives in underground science. Following the dissolution of the original gallium solar neutrino collaboration, Los Alamos has formed a new North American collaboration. We briefly review the rationale for solar neutrino research, outline the proposal and new Monte Carlo simulations, and describe the candidate locations for the experiment. Because there is no dedicated deep underground site in North America suitable for a wide range of experiments, Los Alamos has conducted a survey of possible sites and developed a proposal to create a new National Underground Science Facility. This paper also reviews that proposal

  19. Synthesized research report in the second mid-term research phase. Mizunami Underground Research Laboratory project, Horonobe Underground Research Laboratory project and geo-stability project

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Saegusa, Hiromitsu; Sato, Toshinori; Umeda, Koji; Yasue, Kenichi; Asamori, Koichi; Osawa, Hideaki; Koide, Kaoru; Nagae, Isako; Natsuyama, Ryoko; Mizuno, Takashi; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Yokota, Hideharu; Ishii, Eiichi; Aoyagi, Kazuhei; Nakayama, Masashi; Ito, Hiroaki; Tsusaka, Kimikazu; Ohyama, Takuya; Senba, Takeshi; Amano, Kenji

    2015-08-01

    We have synthesised the research results from Mizunami/Horonobe URLs and geo-stability projects in the second mid-term research phase. It could be used as technical bases for NUMO/Regulator in each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High quality construction techniques and field investigation methods have been developed and implemented and these will be directly applicable to the National Disposal Program (along with general assessments of hazardous natural events and processes). It will be crucial to acquire technical knowledge on decisions of partial backfilling and final closure by actual field experiments in Mizunami/Horonobe URLs as main themes for the next phases. (author)

  20. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    International Nuclear Information System (INIS)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.; Kelley, Richard E.; Champenois, Sean T.

    2017-01-01

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  1. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, Mark C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Russell, Glenn P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Perry, Frank V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kelley, Richard E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Champenois, Sean T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-13

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.

  2. A proposal of constitutive creep model for soft rock to be applied to numerical analysis for mechanical interaction in the underground facilities

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji

    2005-01-01

    In the case that the underground facilities of high-level nuclear waste disposal are constructed in soft rock mass, it is predicted that time-dependent behavior of rock has an important role both on the stability of surrounding rock mass after excavation and on the super long-term stability of barrier system. Existing creep model that has been applied to excavation problems in electric power industry is not sufficient in order to evaluate long-term behavior of the facility constructed in soft rock mass. Therefore, it is necessary to develop an appropriate creep model for soft rock. In this research, we try to develop a prototype of numerical tool for evaluating the stability during and after the excavation and super long-term stability after back-filling. Firstly, a simple rheological model for time-dependent behavior of soft rock is proposed. It is the key feature of this model that two different types of rheological model can be selected in order to describe both failure and non-failure processes. Rock continues to deform until failure in the case where stress applied to the rock exceeds its residual strength, although deformation of the rock finally ceases in the other cases. The applicability of this model is investigated by comparing the calculated results with those in laboratory test results. The proposed model can describe the time-dependent and dilatancy behavior of mudstone of Tertiary period observed in the drained triaxial creep test. Next, we apply the proposed model to the problem of time-dependent behavior of rock mass around a deposition hole. Numerical simulation of excavation problem and long-term mechanical interaction between buffer material and surrounding rock mass is carried out using a hydrological - mechanical coupled FEM code that includes the proposed model. Several mechanical models can be selected in order to apply to the mechanical behavior of materials consisting of underground facility. The main results obtained from this simulation

  3. Influence of rock spalling on concrete lining in shaft sinking at the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tsusaka, Kimikazu; Inagaki, Daisuke; Nago, Makito; Koike, Masashi; Matsubara, Makoto; Sugawara, Kentaro

    2013-01-01

    A shaft is the shortest way to access the deep underground. In shaft sinking through large-scale faults or under low competence factor, spalling of shaft walls is likely to occur. Although earlier studies indicated that rock spalling is an undesirable phenomenon that threatens safety in excavation work and causes delay in construction schedule, there have been few studies which discussed damage to concrete lining induced by spalling. Japan Atomic Energy Agency has been constructing three shafts (one for ventilation and the others for access) to a depth of 500 m in the Horonobe Underground Research Laboratory. During the construction of the Ventilation Shaft (4.5 m diameter) below a depth of 250 m, rock spalling occurred at several depths and an open crack developed in the concrete lining installed just above the location of the rock spalling. In this study, the geometry of the shaft wall was measured using a three-dimensional laser scanner. Numerical analysis was also conducted to estimate changes in stress distribution and deformation induced by rock spalling in both the concrete lining and the surrounding rock. As a result, it was clarified that rock spalling induced a vertical tensile stress in the concrete lining. Especially, the tensile stress in a concrete lining was likely to exceed the tensile strength of the concrete lining when it developed more than 100 cm into the wall rock. (author)

  4. Hydrogeological characterization, modelling and monitoring of the site of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Davison, C.C.; Guvanasen, V.

    1985-01-01

    Atomic Energy of Canada Limited (AECL) is constructing an Underground Research Laboratory (URL) to a depth of 250 m in a previously undisturbed granitic pluton located near Lac du Bonnet, Manitoba, as one of the major research projects within the Canadian Nuclear Fuel Waste Management Program. This paper discusses the hydrogeological characterization of the URL site, the modelling approach used to represent this information, the hydrogeological monitoring system installed to monitor the actual drawdown conditions that develop in response to the excavation, and the procedures employed to calibrate the numerical model. Comparisons between the drawdown predictions made by the model prior to any excavation and the actual drawdowns that have been measured since shaft excavation began in May 1984 are also discussed

  5. Overview of the current and planned activities in the French underground research laboratory at Bure

    International Nuclear Information System (INIS)

    Delay, J.

    2006-01-01

    In November 1999 Andra began building an Underground Research Laboratory (URL) on the border of the Meuse and Haute-Marne departments in eastern France. The research activities of the URL are dedicated to reversible, deep geological disposal of high-activity, long-lived radioactive wastes in an argillaceous host rock. The studies covered four complementary aspects: acquisition of data (waste packages, material behaviour and clay medium), repository design and reversibility studies, analysis of the long term behaviour of the repository, safety analyses. For the next phase starting in 2007, Andra will carry out integrated tests of a technological scope, i.e. trial drift, demonstrator of current drift. The results should make it possible to assess the safety of a disposal over several tens and even hundreds of thousands of years and submit in 2015 a file for permission request for the HLW and ILW deep disposal. (author)

  6. Observation systems with alarm thresholds and their use in designing underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Lars [Geostatistik AB, Tumba (Sweden); Stille, Haakan [Royal Inst. of Tech., Stockholm (Sweden). Div. of Soil and Rock Mechanics

    2002-08-01

    The decision-based methodology described has wide applications in the building process. It can be applied whenever the exact outcome of the work is not known and where countermeasures might be needed. One such application is in the pre-investigations for the siting of spent nuclear fuel facilities aimed at determining the criteria for abandoning work on a given site. It can be seen that the principles of for designing an observation system and determining the alarm threshold are well understood. Several possible theoretical tools are also known, albeit from other disciplines than civil engineering. However, the choice of tools for a real problem should be investigated so that the advantages and drawbacks are illustrated. Reliable methods for designing observation systems in practice are, however, not known and are therefore not in use. A continuation of this study should therefore be aimed at comparing different theoretical tools and examining their practical application, including Quality Assurance and updating. It is therefore suggested that an observation system with alarm thresholds etc should be designed using the principles described in this report and should include testing and comparison of different models for predicting behaviour. This work could be undertaken for a real or for a hypothetical project. A real project is, of course, more difficult but has all the real-world problems that must be solved. A very brief, and not theoretically fully developed, account of the application of an observation system during the expansion of the interim spent fuel storage facility CLAB is enclosed as Appendix 1. Some comments on proposed changes in the system based on the principles set forth in this report are given in Appendix 2.

  7. Observation systems with alarm thresholds and their use in designing underground facilities

    International Nuclear Information System (INIS)

    Olsson, Lars; Stille, Haakan

    2002-08-01

    The decision-based methodology described has wide applications in the building process. It can be applied whenever the exact outcome of the work is not known and where countermeasures might be needed. One such application is in the pre-investigations for the siting of spent nuclear fuel facilities aimed at determining the criteria for abandoning work on a given site. It can be seen that the principles of for designing an observation system and determining the alarm threshold are well understood. Several possible theoretical tools are also known, albeit from other disciplines than civil engineering. However, the choice of tools for a real problem should be investigated so that the advantages and drawbacks are illustrated. Reliable methods for designing observation systems in practice are, however, not known and are therefore not in use. A continuation of this study should therefore be aimed at comparing different theoretical tools and examining their practical application, including Quality Assurance and updating. It is therefore suggested that an observation system with alarm thresholds etc should be designed using the principles described in this report and should include testing and comparison of different models for predicting behaviour. This work could be undertaken for a real or for a hypothetical project. A real project is, of course, more difficult but has all the real-world problems that must be solved. A very brief, and not theoretically fully developed, account of the application of an observation system during the expansion of the interim spent fuel storage facility CLAB is enclosed as Appendix 1. Some comments on proposed changes in the system based on the principles set forth in this report are given in Appendix 2

  8. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10 16 Bq (7.5 x 10 5 Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation of the new hydrofracture facility include: (1) significant 90 Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations. The facility also falls under the provisions of part 3004(u) of the Resource Conservation and Recovery Act pertaining to corrective actions. Nationally, there is an uncertain outlook for the disposal of wastes by underground injection. All wells used for the injection of hazardous wastes (Class I wells) are being reviewed. 8 refs., 4 figs., 2 tabs

  9. Study on systemizing technology on investigation and analysis of deep underground geological environment. Japanese fiscal year, 2007 (Contract research)

    International Nuclear Information System (INIS)

    Kojima, Keiji; Ohnishi, Yuzo; Aoki, Kenji; Watanabe, Kunio; Nishigaki, Makoto; Tosaka, Hiroyuki; Shimada, Jun; Tochiyama, Osamu; Yoshida, Hidekazu; Ogata, Nobuhisa; Nishio, Kazuhisa

    2009-03-01

    In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R and D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements and numerical and chemical analyses were performed particularly for research subjects: 1) engineering technology and 2) geological environment. Based on the results on (1), 3) tasks of collaboration research on intermediate area between the research fields, including the safety assessment field, were selected. Also redefinition of the NFC (Near Field Concept) were discussed. Regarding (2), based on the extracted tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R and D results and detailed research at the research field was carried out. This study contributed to the R and D development for its practical application. Concurrently, information exchange and discussion on the 2nd phase (the Construction Phase) of the MIU (Mizunami Underground Research Laboratory) research program were often held. (author)

  10. Characterisation and geostatistical analysis of clay rocks in underground facilities using hyper-spectral images

    International Nuclear Information System (INIS)

    Becker, J.K.; Marschall, P.; Brunner, P.; Cholet, C.; Renard, P.; Buckley, S.; Kurz, T.

    2012-01-01

    covering a wider area. This, although with very tight limitations, can be seen as an approach to t est the ability of 'up-scaling' the information contained in the classified images. 3. A third step consists of correlating the classified values with relevant petrophysical properties for each of these phases. This may help to relate petrophysical properties based on the mineralogy obtained from the classified hyper-spectral images. 4. The final step is the analysis of the connectivity of the different phases in two dimensions. The work flow briefly described above can of course be extended to the third dimension if scans and/or additional data at suitable positions exist. We present here an attempt to characterize different clay facies utilizing their reflection features in an underground setting. The first characterization is solely based on the 'visual' information obtained from classified hyper-spectral images and their comparison with lab measurements and geological maps. The second part extends this characterization to a more rigorous geostatistical analysis

  11. Research activities by INS cyclotron facility

    International Nuclear Information System (INIS)

    1992-06-01

    Research activities made by the cyclotron facility and the related apparatuses at Institute for Nuclear Study (INS), University of Tokyo, have been reviewed in terms of the associated scientific publications. This publication list, which is to be read as a continuation of INS-Rep.-608 (October, 1986), includes experimental works on low-energy nuclear physics, accelerator technology, instrumental developments, radiation physics and other applications in interdisciplinary fields. The publications are classified into the following four categories. (A) : Internal reports published in INS. (B) : Publications in international scientific journals on experimental research works done by the cyclotron facility and the related apparatuses at INS. Those made by outside users are also included. (C) : Publications in international scientific journals on experimental low-energy nuclear physics, which have been done by the staff of INS Nuclear Physics Division using facilities outside INS. (D) : Contributions to international conferences. (author)

  12. Project on effects of gas in underground storage facilities for radioactive waste (Pegasus project)

    International Nuclear Information System (INIS)

    Haijtink, B.; McMenamin, T.

    1993-01-01

    Whereas the subject of gas generation and gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular, in the fourth five-year R and D programme on management and storage of radioactive waste (1990-94), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called Pegasus, about 20 organizations and research institutes are involved. The project covers theoretical and experimental studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations such as clay, salt and granite. In this report the present status of the various research activities are described and 13 papers have been selected

  13. Status of the Oak Ridge National Laboratory new hydrofracture facility: Implications for the disposal of liquid low-level radioactive wastes by underground injection

    International Nuclear Information System (INIS)

    Haase, C.S.; Stow, S.H.

    1987-01-01

    From 1982 to 1984, Oak Ridge National Laboratory (ORNL) disposed of approximately 2.8 x 10/sup 16/ Bq (7.5 x 10/sup 5/ Ci) of liquid low-level radioactive wastes by underground injection at its new hydrofracture facility. This paper summarizes the regulatory and operational status of that ORNL facility and discusses its future outlook. Operational developments and regulatory changes that have raised major questions about the continued operation and the new hydrofracture facility include: (1) significant /sup 90/Sr contamination of some groundwater in the injection formation; (2) questions about the design of the injection well, completed prior to the application of the underground injection control (UIC) regulations to the ORNL facility; (3) questions about the integrity of the reconfigured injection well put into service following the loss of the initial injection well; and (4) implementation of UIC regulations. Ultimately, consideration of the regulatory and operational factors led to the decision in early 1986 not to proceed with a UIC permit application for the ORNL facility. There are no plans to reactivate the hydrofracture process. Subsequent to the decision not to proceed with a UIC permit application, closure activities were initiated for the ORNL hydrofracture facility. Closure of the facility will occur under both state of Tennessee and federal UIC regulations and under provision 3004(u) of the Resource Conservation and Recovery Act

  14. Facilities Management research in the Nordic Countries

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2011-01-01

    to the establishment of the Centre for Facilities Management – Realdania Research (CFM), and updated information from keynote contributions to CFM’s Nordic FM Conference on 22-23 August 2011 by Suvi Nenonen (Finland), Jan Bröchner (Sweden), Geir K Hansen (Norway) and Per Anker Jensen (Denmark)....

  15. CLOUD: an atmospheric research facility at CERN

    OpenAIRE

    The Cloud Collaboration

    2001-01-01

    This report is the second of two addenda to the CLOUD proposal at CERN (physics/0104048), which aims to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. The document places CLOUD in the framework of a CERN facility for atmospheric research, and provides further details on the particle beam requirements.

  16. Results of single borehole hydraulic tests in the Mizunami Underground Research Laboratory project. FY 2012 - FY 2015

    International Nuclear Information System (INIS)

    Onoe, Hironori; Takeuchi, Ryuji

    2016-11-01

    This report summarize the results of the single borehole hydraulic tests of 151 sections carried out at the -300 m Stage and the -500 m Stage of the Mizunami Underground Research Laboratory from FY 2012 to FY 2015. The details of each test (test interval depth, geology, etc.) as well as the interpreted hydraulic parameters and analytical methods used are presented in this report. Furthermore, the previous results of the single borehole hydraulic tests carried out in the Regional Hydrogeological Study Project and the Mizunami Underground Research Laboratory Project before FY 2012 are also summarized in this report. (author)

  17. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  18. An underground research tunnel for the validation of high-level radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Kwon, S.; Park, S. I.; Park, J. H.; Cho, W. J.; Han, P. S.

    2005-01-01

    In order to dispose of high-level radioactive waste(HLW) safely in geological formations, it is necessary to assess the feasibility, safety, appropriateness, and stability of the disposal concept at an underground research site, which is constructed in the same geological formation as the host rock. In this study, minimum requirements and the conceptual design for an efficient construction of a small scale URL, which is named URT, were derived based on a literature review. To confirm the validity of the conceptual design for construction at KAERI, a geological survey including a seismic refraction survey, electronic resistivity survey, borehole drilling, and in situ and laboratory tests were carried out. Based on the results, it was possible to design URT effectively with a consideration of the site characterization. The construction of URT was started in May 2005 and the first stage of the construction of the access tunnel could be successfully completed in Aug. 2005

  19. Scientific investigation in deep boreholes at the Meuse/Haute Marne underground research laboratory, northeastern France

    International Nuclear Information System (INIS)

    Rebours, H.; Delay, J.; Vinsot, A.

    2006-01-01

    From 1994 to 1996, the preliminary investigation carried out by Andra, identified a sector favourable for hosting a laboratory in argillaceous Callovo-Oxfordian formation which has a thickness of 130 m and lies more than 400 m below ground level. In November 1999 Andra began building an Underground Research Laboratory (URL) with a 3D seismic survey over 4 km 2 . From 2000 to 2004, large programs of boreholes were carried out on site and on the sector in order to define the characteristics of formations, to improve the regional geological and hydrogeological knowledge and to provide an accurate definition of structural features in Callovo-Oxfordian argillites and Dogger limestones. These drilling programs have provided a fine characterization of the argillites on the laboratory area and a good correlation of geological properties at a sector scale. (author)

  20. The international STRIPA project. Experimental research on the underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    1983-03-01

    The International Stripa Project is a joint undertaking by a number of countries, carried out under the sponsorship of the OECD Nuclear Energy Agency. It concerns research into the feasibility and safety of disposal of highly radioactive wastes from nuclear power generation, deep underground in crystalline rock. The Project is managed by the Division KBS of the Swedish Nuclear Fuel Supply Company (SKBF), under the direction of representatives from each participating country. This report summarizes the objectives and preliminary results of experimental work performed within the framework of the Stripa Project and that undertaken prior to the establishment of the Project at the Stripa Mine in Sweden. It also describes the part played by the Project in the development of national policies for the safe disposal of radioactive wastes

  1. Hydrogeological characterization of deep subsurface structures at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Takeuchi, Shinji; Saegusa, Hiromitsu; Amano, Kenji; Takeuchi, Ryuji

    2013-01-01

    Several hydrogeological investigation techniques have been used at the Mizunami Underground Research Laboratory site to assess hydrogeological structures and their control on groundwater flow. For example, the properties of water-conducting features (WCFs) can be determined using high-resolution electrical conductivity measurements of fluids, and compared to measurements using conventional logging techniques. Connectivity of WCFs can be estimated from transmissivity changes over time, calculated from the pressure derivative of hydraulic pressure data obtained from hydraulic testing results. Hydraulic diffusivity, obtained from hydraulic interference testing by considering the flow dimension, could be a key indicator of the connectivity of WCFs between boreholes. A conceptual hydrogeological model of several hundred square meters to several square kilometers, bounded by flow barrier structures, has been developed from pressure response plots, based on interference hydraulic testing. The applicability of several methods for developing conceptual hydrogeological models has been confirmed on the basis of the hydrogeological investigation techniques mentioned above. (author)

  2. Microbial analysis of the buffer/container experiment at AECL's underground research laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1996-07-01

    The Buffer/Container Experiment (BCE) was carried out at AECL's Underground Research Laboratory (URL) for 2.5 years to examine the in situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived the conditions (i.e., compaction, heat and desiccation) in the BCE and to determine which group(s) of microorganisms would be dominant in such a simulated vault environment. Such knowledge will be very useful in assessing the potential effects of microbial activity on the concept for deep disposal of Canada's nuclear fuel waste, proposed by AECL. 46 refs., 31 tabs., 35 figs

  3. Holifield Heavy Ion Research Facility: Users handbook

    International Nuclear Information System (INIS)

    Auble, R.L.

    1987-01-01

    The primary objective of this handbook is to provide information for those who plan to carry out research programs at the Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge National Laboratory. The accelerator systems and experimental apparatus available are described. The mechanism for obtaining accelerator time and the responsibilities of those users who are granted accelerator time are described. The names and phone numbers of ORNL personnel to call for information about specific areas are given

  4. Report of interim evaluation of Horonobe Underground Research Project Plan in FY2004

    International Nuclear Information System (INIS)

    2005-09-01

    The research results on the ground in the first step, until 2004 FY, and the research program of drift work in the second step are evaluated. On the first step, development of the geological environment research technologies, the monitoring technologies and the basic engineering technologies in the deep underground, long period stability of geological environment, and improvement of the geological disposal technologies, and the stability evaluation methods are investigated and these research results were high in estimation. The research program in the second step contains to obtain the geological environment data at sinking shaft, the effects of sinking on the geological environment, validity of the geological environment model in the first step and around the shaft are estimated. Validity of monitoring technologies of geological environment on the ground, engineering technologies of work, maintenance and management of shaft are evaluated. The fault, upheaval, submergence, change of sea level and climate are determined by earthquakes measurements, GPS and time-stratigraphic classification. The geological disposal technologies are improved by storage of data, better model and verification of engineering element techniques. Test program of materials transition in the geological disposal system is work out. (S.Y.)

  5. Research on tractive power of KZC-5 rear dump truck in underground mine

    International Nuclear Information System (INIS)

    Lei Zeyong

    2003-01-01

    The tractive power of KZC-5 rear dump truck in underground mine is studied in this paper. The principles and ways of defining the power are discussed. It is proved that the power of KZC-5 rear dump truck in underground mine is reasonable in the industrial scale test

  6. MBC model analysis for predicting the rock behavior in excavating the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Mori, Takayuki; Iwano, Keita; Nakajima, Makoto; Morikawa, Seiji; Tabei, Kazuto

    2005-03-01

    As a Phase 1 of MIU project (Mizunami Underground Research Laboratory project), through the laboratory and borehole in-situ tests, JNC Tono Geoscience Center plans to constitute the comprehensive geological model and predicts the rock behaviors in excavating the shaft and gallery. These model and results leads to be reflected by the next step research projects. So far, the Phase 1 of MIU project is coming to final stage, and the Phase 2 will start at next year in which the in-situ researches are planned through the excavation. In this study, the comprehensive geometrical model was drawn out through the Phase 1 data, and MBC model analysis was carried out to predict the rock mass behavior around the shaft and gallery. The following results are obtained. 1. With MIZ-1 borehole core, artificial joints, which are assumed to be produced by rock blasting, were formed through the Brazilian test. And through the rock shear test for these joints, these mechanical properties were obtained. 2. By examining the MIZ-1 borehole research data, Mizunami site was classified by mechanical and joint properties and the Geomechanical model were made up. 3. Through the MBC model, the shaft and gallery cases were analyzed which depend on the rock mass classification, Excavation Damaged Zone, and the direction of the galleries. These results showed that in most cases, the joint opening were little because of the rock stiffness, but by the existence of high inclined joints, the side wall of the galleries were damaged by the excavation. (author)

  7. Lewis Research Center R and D Facilities

    Science.gov (United States)

    1991-01-01

    The NASA Lewis Research Center (LeRC) defines and develops advanced technology for high priority national needs. The work of the Center is directed toward new propulsion, power, and communications technologies for application to aeronautics and space, so that U.S. leadership in these areas is ensured. The end product is knowledge, usually in a report, that is made fully available to potential users--the aircraft engine industry, the energy industry, the automotive industry, the space industry, and other NASA centers. In addition to offices and laboratories for almost every kind of physical research in such fields as fluid mechanics, physics, materials, fuels, combustion, thermodynamics, lubrication, heat transfer, and electronics, LeRC has a variety of engineering test cells for experiments with components such as compressors, pumps, conductors, turbines, nozzles, and controls. A number of large facilities can simulate the operating environment for a complete system: altitude chambers for aircraft engines; large supersonic wind tunnels for advanced airframes and propulsion systems; space simulation chambers for electric rockets or spacecraft; and a 420-foot-deep zero-gravity facility for microgravity experiments. Some problems are amenable to detection and solution only in the complete system and at essentially full scale. By combining basic research in pertinent disciplines and generic technologies with applied research on components and complete systems, LeRC has become one of the most productive centers in its field in the world. This brochure describes a number of the facilities that provide LeRC with its exceptional capabilities.

  8. Collaborative Proposal: DUSEL R and D at the Kimballton Underground Facility (ICP-MS Confirmation, Material Assay, and Radon Reduction)

    International Nuclear Information System (INIS)

    Back, Henning O.

    2010-01-01

    Experiments measuring rare events, such as neutrinoless double beta (0νββ) decay, and those searching for, or measuring very weakly interacting particles, such as low energy solar neutrino experiments or direct dark matter searches, require ever lower backgrounds; particularly those from radioactive contamination of detector materials. The underground physics community strives to identify and develop materials with radioactive contamination at permissible levels, and to remove radioactive contaminants from materials, but each such material represents a separate dedicated research and development effort. This project attempted to help these research communities by expanding the capabilities in the United States, for indentifying low levels of radioactive contamination in detector materials through gamma ray spectroscopy. Additionally the project tried to make a cross comparison between well established gamma ray spectroscopy techniques for identifying radioactive contaminations and Inductively Coupled Plasma Mass Spectroscopy, which is a relatively new method for searching for uranium and thorium in materials. The project also studied the removal of radioactive radon gas for laboratory air, which showed that an inexpensive technologically simple radon scrubber can potentially be used for homes or businesses with high radon levels even after the employment of other mitigation techniques.

  9. Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory project. 2011-2010

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yuki; Yamamoto, Yoichi; Nanjyo, Isao; Murakami, Hiroaki; Yokota, Hideharu; Yamazaki, Masanori; Iwatsuki, Teruki [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Horonobe, Hokkaido (Japan); Kunimaru, Takanori [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Mizunami, Gifu (Japan); Oyama, Takahiro [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2012-02-15

    In the Horonobe Underground Research Laboratory (URL) Project, groundwater from boreholes, river water and precipitation have been analyzed for the environmental monitoring since the fiscal year 2001. This report shows the data set of water chemistry since the fiscal year 2001 to the fiscal year 2010. (author)

  10. Mineral and chemical composition of rock core and surface gas composition in Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Hiraga, Naoto; Ishii, Eiichi

    2008-02-01

    The following three kinds of analyses were conducted for the 1st phase of the Horonobe Underground Research Laboratory Project. Mineral composition analysis of core sample. Whole rock chemical composition analysis of core sample. Surface gas composition analysis. This document summarizes the results of these analyses. (author)

  11. Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory project. 2011-2010

    International Nuclear Information System (INIS)

    Amano, Yuki; Yamamoto, Yoichi; Nanjyo, Isao; Murakami, Hiroaki; Yokota, Hideharu; Yamazaki, Masanori; Iwatsuki, Teruki; Kunimaru, Takanori; Oyama, Takahiro

    2012-02-01

    In the Horonobe Underground Research Laboratory (URL) Project, groundwater from boreholes, river water and precipitation have been analyzed for the environmental monitoring since the fiscal year 2001. This report shows the data set of water chemistry since the fiscal year 2001 to the fiscal year 2010. (author)

  12. Research and education by SF cyclotron facility

    International Nuclear Information System (INIS)

    1992-04-01

    This report represents the current activities in research and education using the cyclotron facility and related apparatus which are supported by Nuclear Physics Division and this is a continuation of INS-T-466 (1986, December). In this version an iron-free β-ray spectrometer and a cooler-synchrotron (TARN II) are briefly described also in the first chapter. The second chapter explains experimental programs performed in the last 5 years. The third chapter gives the number of publications on researches performed in 1975-1991, and also gives twelve topics obtained from the cyclotron and the β-ray spectrometer in recent 5 years. The last chapter provides the whole list of the works for Doctor and Master theses performed at the facility in the last 10 years. (J.P.N.)

  13. A US Based Ultrafast Interdisciplinary Research Facility

    Science.gov (United States)

    Gueye, Paul; Hill, Wendell; Johnson, Anthony

    2006-10-01

    The US scientific competitiveness on the world arena has substantially decreased due to the lack of funding and training of qualified personnel. Most of the potential workforce found in higher education is composed of foreign students and post-docs. In the specific field of low- and high-field science, the European and Asian communities are rapidly catching-up with the US, even leading in some areas. To remain the leader in ultrafast science and technology, new visions and commitment must be embraced. For that reason, an international effort of more than 70 countries for a US-based interdisciplinary research facility using ultrafast laser technology is under development. It will provide research and educational training, as well as new venues for a strong collaboration between the fields of astrophysics, nuclear/high energy physics, plasma physics, optical sciences, biological and medical physics. This facility will consist of a uniquely designed high contrast multi-lines concept housing twenty experimental rooms shared between four beams:[0.1 TW, 1 kHz], [10 TW, 9 kHz], [100-200 TW, 10 Hz] and [500 TW, 10 Hz]. The detail schematic of this multi-laser system, foreseen research and educational programs, and organizational structure of this facility will be presented.

  14. Collection of measurement data from in-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory. FY2015

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Ohno, Hirokazu; Nakayama, Mariko; Kobayashi, Masato

    2016-07-01

    The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, 'Geoscientific Research' and 'Research and Development on Geological Disposal Technologies', and proceeds in three overlapping phases, 'Phase I: Surface-based investigations', 'Phase II: Investigations during tunnel excavation' and 'Phase III: Investigations in the underground facilities', over a period of around 20 years. Phase III investigation was started in 2010 fiscal year. The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at G.L.-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the experiment is acquiring data concerned with Thermal - Hydrological - Mechanical - Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report summarizes the measurement data acquired from the EBS experiment from December, 2014 to March, 2016. The summarized data of the EBS experiment will be published periodically. A CD-ROM is attached as an appendix. (J.P.N)

  15. Mizunami Underground Research Laboratory project. A project on research stage of investigating prediction from ground surface. Project report at fiscal year of 2000 to 2004

    International Nuclear Information System (INIS)

    2000-04-01

    This was a detailed plan after fiscal year 2000 on the first stage of the Research stage at investigating prediction from ground surface' in three researches carried out at the Mizunami Underground Research Laboratory (MIU) according to the 'Basic plan on research of underground science at MIU', based on progress of investigation and research before fiscal year 1999. This project contains following three items as its general targets; establishment of general investigating techniques for geological environment, collection of informations on deep underground environment, and development on foundation of engineering technology at super-deep underground. And, targets at investigating prediction stage from ground surface contain acquisition of geological environment data through investigations from ground surface to predict changes of the environment accompanied with underground geological environment and construction of experimental tunnel, to determine evaluating method on prediction results, and to determine plannings of an investigating stage accompanied with excavation of the tunnel by carrying out detail design of the tunnel. Here were introduced about results and problems on the investigation of the first phase, the integration of investigating results, and the investigation and researches on geology/geological structure, hydrology and geochemistry of groundwater, mechanical properties of rocks, and the mass transfer. (G.K.)

  16. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-01-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. The authors emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities

  17. Operating large controlled thermonuclear fusion research facilities

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Tarrh, J.M.; Post, R.S.; Thomas, P.

    1987-10-01

    The MIT Tara Tandem Mirror is a large, state of the art controlled thermonuclear fusion research facility. Over the six years of its design, implementation, and operation, every effort was made to minimize cost and maximize performance by using the best and latest hardware, software, and scientific and operational techniques. After reviewing all major DOE fusion facilities, an independent DOE review committee concluded that the Tara operation was the most automated and efficient of all DOE facilities. This paper includes a review of the key elements of the Tara design, construction, operation, management, physics milestones, and funding that led to this success. We emphasize a chronological description of how the system evolved from the proposal stage to a mature device with an emphasis on the basic philosophies behind the implementation process. This description can serve both as a qualitative and quantitative database for future large experiment planning. It includes actual final costs and manpower spent as well as actual run and maintenance schedules, number of data shots, major system failures, etc. The paper concludes with recommendations for the next generation of facilities. 13 refs., 15 figs., 3 tabs

  18. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    Science.gov (United States)

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  19. Experimental facilities for Generation IV reactors research

    International Nuclear Information System (INIS)

    Krecanova, E.; Di Gabriele, F.; Berka, J.; Zychova, M.; Macak, J.; Vojacek, A.

    2013-06-01

    Centrum Vyzkumu Rez (CVR) is research and development Company situated in Czech Republic and member of the UJV group. One of its major fields is material research for Generation IV reactor concepts, especially supercritical water-cooled reactor (SCWR), very high temperature/gas-cooled fast reactor (VHTR/GFR) and lead-cooled fast reactor (LFR). The CVR is equipped by and is building unique experimental facilities which simulate the environment in the active zones of these reactor concepts and enable to pre-qualify and to select proper constructional materials for the most stressed components of the facility (cladding, vessel, piping). New infrastructure is founded within the Sustainable Energy project focused on implementation the Generation IV and fusion experimental facilities. The research of SCWR concept is divided to research and development of the constructional materials ensured by SuperCritical Water Loop (SCWL) and fuel components research on Fuel Qualification Test loop (SCWL-FQT). SCWL provides environment of the primary circuits of European SCWR, pressure 25 MPa, temperature 600 deg. C and its major purpose is to simulate behavior of the primary medium and candidate constructional materials. On-line monitoring system is included to collect the operational data relevant to experiment and its evaluation (pH, conductivity, chemical species concentration). SCWL-FQT is facility focused on the behavior of cladding material and fuel at the conditions of so-called preheater, the first pass of the medium through the fuel (in case of European SCWR concept). The conditions are 450 deg. C and 25 MPa. SCWL-FQT is unique facility enabling research of the shortened fuel rods. VHTR/GFR research covers material testing and also cleaning methods of the medium in primary circuit. The High Temperature Helium Loop (HTHL) enables exposure of materials and simulates the VHTR/GFR core environment to analyze the behavior of medium, especially in presence of organic compounds and

  20. Synthesis of borehole geophysical data at the Underground Research Laboratory, Manitoba, Canada

    International Nuclear Information System (INIS)

    Keys, W.S.

    1984-07-01

    A suite of borehole-geophysical logs, supported by core data, was used to describe the rock matrix and fractures in a granitic pluton near Lac du Bonnet, Manitoba, Canada. The site is being developed by Atomic Energy of Canada Limited, as an underground research laboratory to conduct geotechnical research and to validate predictive models as part of Canada's nuclear-fuel, waste-management program. However, the site is not planned to be used for waste disposal. Geophysical well logs were used to distinguish and correlate rock types and fractures between drill holes. Two significant fracture zones that are two of the major zones of ground-water movement at the site were identified by acoustic-televiewer logs. A new heat-pulse flowmeter provided repeatable measurements of very low-velocity, vertical flow in drill holes which enabled the identification of specific fractures that were transmitting water. Borehole gamma spectra showed that some fractures are enriched in uranium, and others may be depleted. This study demonstrates some of the advantages of synthesizing available borehole-geophysical logs at a site in fractured plutonic rocks and indicates how this information can contribute to an understanding of the geophysical conditions at the site

  1. Cosmic-muon intensity measurement and overburden estimation in a building at surface level and in an underground facility using two BC408 scintillation detectors coincidence counting system.

    Science.gov (United States)

    Zhang, Weihua; Ungar, Kurt; Liu, Chuanlei; Mailhot, Maverick

    2016-10-01

    A series of measurements have been recently conducted to determine the cosmic-muon intensities and attenuation factors at various indoor and underground locations for a gamma spectrometer. For this purpose, a digital coincidence spectrometer was developed by using two BC408 plastic scintillation detectors and an XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results indicate that the overburden in the building at surface level absorbs a large part of cosmic ray protons while attenuating the cosmic-muon intensity by 20-50%. The underground facility has the largest overburden of 39 m water equivalent, where the cosmic-muon intensity is reduced by a factor of 6. The study provides a cosmic-muon intensity measurement and overburden assessment, which are important parameters for analysing the background of an HPGe counting system, or for comparing the background of similar systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Holifield Heavy Ion Research Facility. Phase II

    International Nuclear Information System (INIS)

    Ball, J.B.; Hudson, E.D.; Lord, R.S.; Johnson, J.W.; Martin, J.A.; McNeilly, G.S.; Milner, W.T.; Mosko, S.W.; Sayer, R.O.; Robinson, R.L.

    1979-01-01

    The Holifield Heavy Ion Research Facility, with the completion of Phase I in late 1979, will include the Oak Ridge Isochronous Cyclotron (ORIC) and associated research areas, the new 25 MV tandem accelerator with new research areas for tandem beams, and modifications to utilize the ORIC as a booster accelerator. The combination of the tandem and ORIC will provide beam energies of 25 MeV/A for light heavy ions and 6 MeV/A up to A = 160. This paper discusses plans for a Phase II expansion of the facility to include an isochronous cyclotron with superconducting magnet and reconfiguration of the existing research areas and the ORIC vault to handle the higher energy beams from the new cyclotron. The new booster cyclotron is a low-flutter high-spiral design patterned after the MSU K = 800 design, with a central magnetic field of about 5 tesla and an extraction radius of 1 meter. The new beam transport system will incorporate an rf beam-splitter system that will be able to deliver successive beam pulses to two or three experiment areas

  3. Interim Storage Facility for LLW of Decommissioning Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Amato, S.; Ugolini, D.; Basile, F. [European Commission, Joint Research Centre, Nuclear Decommissioning and Facility Management Unit, TP 800, Via E. Fermi 2749, 21027 Ispra - VA (Italy)

    2009-06-15

    JRC-Ispra has initiated a Decommissioning and Waste Management (D and WM) Programme of all its nuclear facilities. In the frame of this programme, it has been decided to build an interim storage facility to host conditioned low level waste (LLW) that had been produced during the operation of JRC-Ispra nuclear research reactors and laboratories and that will be produced from their decommissioning. This paper presents the main characteristics of the facility. The storage ISFISF has a rectangular shape with uniform height and it is about 128 m long, 41 m wide and 9 m high. The entire surface affected by the facility, including screening area and access roads, is about 27.000 m{sup 2}. It is divided in three sectors, a central one, about 16 m long, for loading/unloading operations and operational services and two lateral sectors, each about 55 m long, for the conditioned LLW storage. Each storage sector is divided by a concrete wall in two transversal compartments. The ISFISF, whose operational lifetime is 50 years, is designed to host the conditioned LLW boxed in UNI CP-5.2 packages, 2,5 m long, 1.65 m wide, and 1,25 m high. The expected nominal inventory of waste is about 2100 packages, while the maximum storage is 2540 packages, thus a considerably large reserve capacity is available. The packages will be piled in stacks of maximum number of five. The LLW is going to be conditioned with a cement matrix. The maximum weight allowed for each package has been fixed at 16.000 kg. The total radioactivity inventory of waste to be hosted in the facility is about 30 TBq (mainly {beta}/{gamma} emitters). In order to satisfy the structural, seismic, and, most of all, radiological requirements, the external walls of the ISFISF are made of pre-fabricated panels, 32 cm thick, consisting of, from inside to outside, 20 cm of reinforced concrete, 7 cm of insulating material, and again 5 cm of reinforced concrete. For the same reason the roof is made with pre-fabricated panels in

  4. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  5. Underground storage of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J E

    1977-12-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commercial radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects.

  6. Isotopic methods in hydrogeology and their application to the Underground Research Laboratory, Manitoba

    International Nuclear Information System (INIS)

    Gascoyne, M.; Kotzer, T.

    1995-09-01

    This review examines isotopic methods used to determine groundwater sources, residence times and processes of geochemical evolution that have been published in the international literature, with specific reference to AECL's experience in these methods and applications to groundwaters at the Underground Research Laboratory (URL), Manitoba. The program of groundwater sampling and analysis currently being planned for the URL area over the next several years will concentrate on specific isotopic measurements that may assist in understanding the groundwater flow system at the URL site. These results will add to the existing data for the URL area and indicate which isotopes are most useful when applied to the known groundwater flow system of the URL. This program of study is especially important because it not only uses standard geochemical and isotopic measurements (e.g., major ion, trace elements, 2 H/ 18 O, 14 C, 34 S) of groundwaters, but will determine values of more exotic and unusual ratios, such as 6 Li/ 7 Li, and B 11 /B 10 , whose potential for understanding groundwater geochemical evolution is largely unknown at present. In addition, the more established but equally complex methods of isotopic analysis, to determine 3 He/ 4 He, 36 Cl/Cl and 129 I/I, will be used to assess their potential for adding to the hydrogeochemical understanding of flow paths in crystalline rock. (author). 182 refs., 11 tabs., 27 figs

  7. Study on construction method of concrete in the underground research laboratory

    International Nuclear Information System (INIS)

    Iriya, Keshiro; Mikami, Tetsuji; Yasuoka, Tetsuji; Uegaki, Yoshiaki

    2001-05-01

    Although there are several types in low alkalinity cements, highly fly ash contained silicafume cement (HFSC) has been studied in JNC. It is demonstrated that pH of pore water of the cement indicates below 10.5 as results of other TRU study. However although chemical properties and basic mechanical behavior are well understood, workability so on in constructing is little investigated. Since the underground research laboratory plays a important role in investigating constructing technology, HFSC will be adopted for supporting rock cavern so on. It is required that workability of low alkalinity cements should be assessed. Major performance of workability in tunnel construction in rock will be investigated and R and D planning will be done toward the laboratory construction. Conclusion obtained in this study is described as followings. 1) As results of laboratory test, HFSC and LHHPC developed by AECL fulfil the requirements of shotcrete using by hardening accelerator with calcium-salpho-aluminate. It is concluded that HFSC and LHHPC can be applied for shotcrete. 2) The experiment upon corrosion of re-bars by facing saline water at a offshore is planned. 3) It is noted that pH decreases significantly with rise of silicafume content and that silicafume should be used as much as OPC. 4) It is investigated where the low alkalinity cement should be applied in a actual radio waste repository and R and D program in the laboratory is planned. (author)

  8. Low alkaline cement used in the construction of a gallery in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sato, Haruo; Sugita, Yutaka; Ito, Seiji; Minamide, Masashi; Kitagawa, Yoshito

    2011-01-01

    In Japan, any high level radioactive waste (HLW) pos is to be constructed at over 300 m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various admixtures. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly Flyash Contained Silicafume Cement), containing over 60wt% of silica-fume (SF) and fly-ash (FA). HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in the Horonobe Underground Research Laboratory (URL). The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40 wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC. The total length of tunnel using HFSC shotcrete is about 73 m and about 500 m 3 of HESC was used. The workability of HESC shotcrete was confirmed in this experimental construction. (author)

  9. A study on rock mass behaviour induced by shaft sinking in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tsusaka, Kimikazu; Tokiwa, Tetsuya; Inagaki, Daisuke; Hatsuyama, Yoshihiro; Koike, Masashi; Ijiri, Yuji

    2012-01-01

    Japan Atomic Energy Agency has been excavating three deep shafts through soft sedimentary rock in the Horonobe Underground Research Laboratory. In this paper, the authors discussed rock mass behaviour induced by a 6.5 m diameter shaft sinking. They conducted geological mapping in an excavation face and boreholes digged around the shaft wall, field measurements such as convergence measurements and monitoring of rock displacements using multi-interval borehole extensometers around a shaft at around 160 m and 220 m in depths, and three-dimensional numerical analysis which models the shaft excavation procedure such as timing of installation of support elements and setting and removal of a concrete form. As a result, it was clarified that remarkably large compressive strains occurred within about 1 m into the shaft wall in a radial direction since the rock mass behaviour was controlled by the concrete lining and that the behaviour would predominantly be induced by the fractures closing which opened significantly and propagated during excavation steps before the installation of a concrete lining and the directions where the strains occurred heavily depended on the fracture orientation around the shaft. (author)

  10. A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi

    2007-01-01

    A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)

  11. Underground Research Laboratory room 209 instrument array. Vol. 1,2

    International Nuclear Information System (INIS)

    Lang, P.A.; Kuzyk, G.W.; Babulic, P.J.; Bilinsky, D.M.; Everitt, R.A.; Spinney, M.H.; Kozak, E.T.; Davison, C.C.

    1991-06-01

    An in situ excavation response test was conducted at the 240 Level of the Underground Research Laboratory (URL). The test was carried out in conjunction with the drill-and-blast excavation of a near-circular tunnel (Room 209), about 3.5 m in diameter. The tunnel was excavated through a tunnel axis. Three modelling groups made predictions of the response of the rock mass and hydraulic behaviour of the water-bearing fracture to excavation. The tunnel was excavated in two stages, a pilot tunnel followed by a slash, providing two complete sets of response measurements. Careful excavation was carried out to ensure the excavation shape after each blast round agreed closely with the planned shape incorporated in the numerical models. Instrumentation installed before the tunnel was extended monitored the complete strain tensor at eight locations around the tunnel, radial displacements and piezometric pressures at nine locations in the fracture. As well, tunnel convergence, water flows from the fracture, and hydraulic conductivity of the fracture at nine locations, were measured after each excavation step. The final tunnel profiles were accurately surveyed, and the geology was mapped in detail. The results are presented in this report for comparison with the modellers' predictions (reported in AECL--9566-2). Some preliminary conclusions and recommendations regarding the field testing are presented

  12. Isotopic methods in hydrogeology and their application to the Underground Research Laboratory, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Gascoyne, M [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.; Kotzer, T

    1995-09-01

    This review examines isotopic methods used to determine groundwater sources, residence times and processes of geochemical evolution that have been published in the international literature, with specific reference to AECL`s experience in these methods and applications to groundwaters at the Underground Research Laboratory (URL), Manitoba. The program of groundwater sampling and analysis currently being planned for the URL area over the next several years will concentrate on specific isotopic measurements that may assist in understanding the groundwater flow system at the URL site. These results will add to the existing data for the URL area and indicate which isotopes are most useful when applied to the known groundwater flow system of the URL. This program of study is especially important because it not only uses standard geochemical and isotopic measurements (e.g., major ion, trace elements, {sup 2}H/{sup 18}O, {sup 14}C, {sup 34}S) of groundwaters, but will determine values of more exotic and unusual ratios, such as {sup 6}Li/{sup 7}Li, and B{sup 11}/B{sup 10}, whose potential for understanding groundwater geochemical evolution is largely unknown at present. In addition, the more established but equally complex methods of isotopic analysis, to determine {sup 3}He/{sup 4}He, {sup 36}Cl/Cl and {sup 129}I/I, will be used to assess their potential for adding to the hydrogeochemical understanding of flow paths in crystalline rock. (author). 182 refs., 11 tabs., 27 figs.

  13. Hydrogeochemical investigations at the ANDRA Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Vinsot, A.; Delay, J.; Rebours, H.

    2006-01-01

    In November 1999 Andra began building an Underground Research Laboratory (URL) in eastern France. The geological formation selected for this laboratory is a 130-meter thick argillaceous rock level. This clay rich layer is located at a 400 to 600 meter depth. To characterize the confining properties of the clay, pore water composition had to be studied. For this purpose an innovative device was designed for gas equilibration and direct sampling of the pore water. The experimental device consists of a vertical ascending borehole with a 5 meter long test interval at its far end in which a gas circulation is established. After a few weeks, due to the hydraulic gradient between the test interval and the rock formation, the water flows freely at a rate of 0.5 to 1.3 litters per month in the borehole and it is sampled. The chemical composition of this water is compared with a theoretical composition deduced from core analyses and thermodynamic modelling. (author)

  14. ARM Climate Research Facility Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  15. Synchrotron radiation research facility conceptual design report

    International Nuclear Information System (INIS)

    1976-06-01

    A report is presented to define, in general outline, the extent and proportions, the type of construction, the schedule for accomplishment, and the estimated cost for a new Synchrotron Radiation Facility, as proposed to the Energy Research and Development Administration by the Brookhaven National Laboratory. The report is concerned only indirectly with the scientific and technological justification for undertaking this project; the latter is addressed explicitly in separate documents. The report does consider user requirements, however, in order to establish a basis for design development. Preliminary drawings, outline specifications, estimated cost data, and other descriptive material are included as supporting documentation on the current status of the project in this preconstruction phase

  16. Enhancement of organizational and technical solutions regarding anchoring of completed construction facilities of underground railway system to operating control

    Directory of Open Access Journals (Sweden)

    Е. Г. Козин

    2017-12-01

    Full Text Available Stages of practical realization of measures prescribed by requirements documents regarding anchoring of capital structures of underground railway system to operating control are considered in the article. On the basis of algorithm structure analysis, which includes obtaining a permit for putting into operation and cadastre works execution a range of solutions was proposed concerning optimization of construction project owner and operating organization activities with the purpose of terms reduction of capital structures handover to operation. The results of work of a commission responsible for completed underground railway system objects acceptance and putting into operation were analyzed. Considering example of object «Second entrance hall area of «Sportivnaya» station the statistical data of revealed snagging items is consolidated and dynamics of corrective actions is provided.Proposed solutions laid the foundation for corrections of requirements documents and were accepted for realization in the process of works acceptance of Saint-Petersburg underground railway system objects.

  17. SINP MSU accelerator facility and applied research

    International Nuclear Information System (INIS)

    Chechenin, N.G.; Ishkhanov, B.S.; Kulikauskas, V.S.; Novikov, L.S.; Pokhil, G.P.; Romanovskii, E.A.; Shvedunov, V.I.; Spasskii, A.V.

    2004-01-01

    Full text: SINP accelerator facility includes 120 cm cyclotron, electrostatic generator with the upper voltage 3.0 MeV, electrostatic generator with the upper voltage 2.5 MeV, Cocroft -Walton generator with the upper voltage 500 keV, 150 keV accelerator for solid microparticles. A new generation of electron beam accelerators has been developed during the last decade. The SINP accelerator facility will be shortly described in the report. A wide range of basic research in nuclear and atomic physics, physics of ion-beam interactions with condensed matter is currently carried out. SINP activity in the applied research is concentrated in the following areas of materials science: - Materials diagnostics with the Rutherford backscattering techniques (RBS) and channeling of ions (RBS/C). A large number of surface ad-layers and multilayer systems for advanced micro- and nano-electronic technology have been investigated. A selected series of examples will be illustrated. - Concentration depth profiles of hydrogen by the elastic recoils detection techniques (ERD). Primarily, the hydrogen depth profiles in perspective materials for thermonuclear reactors have been investigated. - Lattice site locations of hydrogen by a combination of ERD and channeling techniques. This is a new technique which was successfully applied for investigation of hydrogen and hydrogen-defect complexes in silicon for the smart-cut technology. - Light element diagnostics by RBS and nuclear backscattering techniques (NBS). The technique is illustrated by applications for nitrogen concentration profiling in steels. Nitrogen take-up and release, nitrides precipitate formation will be illustrated. - New medium energy ion scattering (MEIS) facility and applications. Ultra-high vacuum and superior energy resolution electrostatic toroidal analyzer is designed to be applied for characterization of composition and structure of several upper atomic layers of materials

  18. Development of groundwater treatment methods using radiation-induced graft polymerization adsorbent at the Mizunami Underground Research Laboratory. Annual report for 2008 fiscal year (Joint research)

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Hoshina, Hiroyuki; Seko, Noriaki; Kasai, Noboru; Ueki, Yuji; Tamada, Masao

    2011-02-01

    The concentrations of fluorine (7.2-10mg/L) and boron (0.8-1.5mg/L) dissolved in groundwater pumped from the shafts during excavation of the Mizunami Underground Research Laboratory (MIU), Tono Geoscience Center, shall be reduced to levels below the environmental standards for fluorine: 0.8mg/L and boron: 1mg/L. Coagulation and ion exchange methods are being applied for fluorine and boron, respectively, at the operating water treatment facility at the MIU. As well, collaborative research on groundwater treatment started in 2006 between the Environmental and Industrial Materials Research Division, Quantum Beam Science Directorate and the Tono Geoscientific Research Unit, Geological Isolation Research and Development Directorate on a novel method to remove the fluorine and boron. The Quantum Beam Directorate has synthesized fibrous adsorbents with radiation-induced graft polymerization and applied the adsorbents to collect rare metals dissolved in hot springs and sea water. The results of previous testing indicated that the adsorbent was able to remove more than 95% of the boron and fluorine and that performance of adsorbent for boron removal was better than the performance using ion-exchange resin. It was also apparent that the pH of groundwater had an influence on the performance of the adsorbent with respect to boron removal. Therefore we reran the recycling tests using groundwater from the neutralization tank at the groundwater treatment facility were repeated. The results indicated that the performance of the adsorbent using neutral groundwater for boron removal was higher than using uncontrolled groundwater. However the bed volume (BV) with recycled adsorbent decreased compared to first use. It is thought that sulfur added at the groundwater treatment facility was retained by the adsorbent despite elution, and affected the performance such that repeat usage resulted in decreased efficiency. In addition, it is considered that the goals established in the first

  19. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  20. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  1. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  2. How Large-Scale Research Facilities Connect to Global Research

    DEFF Research Database (Denmark)

    Lauto, Giancarlo; Valentin, Finn

    2013-01-01

    Policies for large-scale research facilities (LSRFs) often highlight their spillovers to industrial innovation and their contribution to the external connectivity of the regional innovation system hosting them. Arguably, the particular institutional features of LSRFs are conducive for collaborative...... research. However, based on data on publications produced in 2006–2009 at the Neutron Science Directorate of Oak Ridge National Laboratory in Tennessee (United States), we find that internationalization of its collaborative research is restrained by coordination costs similar to those characterizing other...

  3. Development of groundwater treatment method using radiation-induced graft polymerization adsorbent at the Mizunami Underground Research Laboratory. Annual report on 2007 fiscal year (Joint research)

    International Nuclear Information System (INIS)

    Iyatomi, Yosuke; Shimada, Akiomi; Ogata, Nobuhisa; Sugihara, Kozo; Seko, Noriaki; Kasai, Noboru; Hoshina, Hiroyuki; Ueki, Yuji; Tamada, Masao

    2009-11-01

    The concentrations of fluorine (7.2-10mg/L) and boron (0.8-1.5mg/L) dissolved in groundwater pumped from shafts during excavation at the Mizunami Underground Research Laboratory (MIU), Tono Geoscience Centre, must be reduced to the levels below the environmental standards (fluorine:0.8mg/L, boron:1mg/L). Coagulation treatment and ion exchange treatment are applied for fluorine and boron at a current water treatment facility in MIU, respectively. A collaborative research on groundwater treatment for fluorine and boron was started by the Environment and Industrial Materials Research Division, Quantum Beam Science Directorate and the Tono Geoscientific Research Unit, Geological Isolation Research and Development Directorate in 2006. This is because the Quantum Beam Science Directorate has synthesized fibrous adsorbents with radiation-induced graft polymerization and applied them to collect rare metals dissolved in hot springs and sea water. Boron adsorbent synthesized by grafting showed higher removal rate than that of the ion-exchange resin. Additionally, the durability and the repetitive use of the boron adsorbent were evaluated to estimate the capacity of the boron adsorption. Therefore we produced a test equipment to do scale-up test of the adsorbent. Effects of flow rate and the repetitive use on the adsorption capacity of boron were investigated. As a result, it concluded that the adsorption capacity of the boron adsorbent did not change even when the flow rate increased from SV 50h -1 to 100h -1 . In addition, enough durability was confirmed for the repetitive use of the adsorbent. The adsorption capacity of the adsorbent was affected by pH of the groundwater especially in high alkaline range above a pH of 10. (author)

  4. Solar Energy Research Center Instrumentation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  5. In Vivo Radiobioassay and Research Facility

    International Nuclear Information System (INIS)

    Lynch, Timothy P.

    2011-01-01

    Bioassay monitoring for intakes of radioactive material is an essential part of the internal dosimetry program for radiation workers at the Department of Energy's (DOE) Hanford Site. This monitoring program includes direct measurements of radionuclides in the body by detecting photons that exit the body and analyses of radionuclides in excreta samples. The specialized equipment and instrumentation required to make the direct measurements of these materials in the body are located at the In Vivo Radiobioassay and Research Facility (IVRRF). The IVRRF was originally built in 1960 and was designed expressly for the in vivo measurement of radioactive material in Hanford workers. Most routine in vivo measurements are performed annually and special measurements are performed as needed. The primary source terms at the Hanford Site include fission and activation products (primarily 137Cs and 90Sr), uranium, uranium progeny, and transuranic radionuclides. The facility currently houses five shielded counting systems, men's and women's change rooms and an instrument maintenance and repair shop. Four systems include high purity germanium detectors and one system utilizes large sodium iodide detectors. These systems are used to perform an average of 7,000 measurements annually. This includes approximately 5000 whole body measurements analyzed for fission and activation products and 2000 lung measurements analyzed for americium, uranium, and plutonium. Various other types of measurements are performed periodically to estimate activity in wounds, the thyroid, the liver, and the skeleton. The staff maintains the capability to detect and quantify activity in essentially any tissue or organ. The in vivo monitoring program that utilizes the facility is accredited by the Department of Energy Laboratory Accreditation Program for direct radiobioassay.

  6. A Framework for Managing Core Facilities within the Research Enterprise

    OpenAIRE

    Haley, Rand

    2009-01-01

    Core facilities represent increasingly important operational and strategic components of institutions' research enterprises, especially in biomolecular science and engineering disciplines. With this realization, many research institutions are placing more attention on effectively managing core facilities within the research enterprise. A framework is presented for organizing the questions, challenges, and opportunities facing core facilities and the academic units and institutions in which th...

  7. Study on construction method of concrete in the underground research laboratory. 2

    International Nuclear Information System (INIS)

    Iriya, Keishiro; Mikami, Tetsuji; Akiyoshi, Kenji; Uegaki, Yoshiaki

    2002-02-01

    The underground research laboratory, which will be constructed in Horonobe, plays a role of demonstration of construction technique upon nuclear waste repositories. Low alkalinity cement is one of candidates for repositories as a cementitious material in order to prevent alteration of bentonite and rock by hyper alkaline solution. JNC has developed a low alkalinity cement (HFSC) which contains a lot of fly ash, and has studied the physical and chemical properties by laboratory test. However workability which is required for construction procedure of repositories has not been studied enough yet. This study shows if requirements in actual construction, such as shotcreting, self-compacting, and, grouting, are fulfilled, and if the workability is preferable for tunneling construction. It is demonstrated that HFSC is applicable for shotcreting by testing in a modeled tunnel. It is pointed out that re-bars have a possibility of corrosion in low alkalinity cement. In-site test for saline water which may accelerate corrosion is started by setting specimen made in last year. Analyzing and assessing will be done next year. Construction method of tunnel lining is investigated in case of applying pre-cast segments. Self-compacting concrete is adopted, since added silica-fume needs superplasticizer and its workability is very flowable. Two piece of segment were made for the section which designed for a ordinary urban tunnel. It is noted that pre-casting concrete can be made by HFSC. Super fine cement powder for grouting which indicate low alkalinity can be selected by combination of grinned lime stone powder and silica fume with grinned ordinary Portland cement. The items to be improved toward using in Horonobe construction are pointed out by results of this study and summarized a study plan is described. Major problem to be solved is delaying compressive strength generation of HFSC. It is recognized in shotcrete and self-compacting concrete. Selecting types of fly ash and

  8. Hydrogeology of the rock mass encountered at the 240 level of Canada's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kozak, E.T.; Davison, C.C.

    1992-09-01

    The rock mass surrounding the 240 level of Canada's Underground Research Laboratory (URL) has been hydrogeologically characterized through observations made in the tunnel and room excavations and from a network of radiating low-dipping boreholes. The 240 level complex sits in a wedge of grey-to-pink granite between two important, low-dipping, hydraulically active fracture zones, known as Fracture Zone 2 (FZ2) and Fracture Zone 2.5 (FZ2.5), a splay of FZ2. There is no apparent seepage into the 240 level room and tunnel network from the surrounding rock mass except from a vertical fracture intersected by the Room 209 tunnel. Extensive hydraulic and geomechanical tests have been conducted in boreholes intersecting the Room 209 vertical fracture, and transmissivities were found to range from 10 -10 to 10 -6 m 2 /s. FZ2 and FZ2.5 occur at the 240 m depth approximately 10 m to the west and 100 m to the south respectively of the 240 level tunnel network. Hydraulic testing within packer-isolated boreholes intersecting these fracture zones showed that transmissivities ranged from 10 -7 to 10 -5 m 2 /s in FZ2, and 10 -9 to 10 -7 m 2 /s in FZ2.5. No naturally-occurring fractures were encountered east of the 240 level complex up to 300 m away. The rock mass to the north of the 240 level is dominated by the Room 209 vertical fracture, which tends to splay with distance and has been intersected 95 m from the Room 209 tunnel. (Author) (50 figs., 5 tabs., 10 refs.)

  9. A Review of Underground Coal Gasification Research and Development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Camp, D. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-26

    An intense and productive period of research and development on underground coal gasification (UCG) took place in the United States from the mid-1970’s through the late 1980’s. It began with the translation and review of Soviet literature and ended with the Rocky Mountain 1 field test. This demonstrated the feasibility of newly-developed technologies that form the basis of many UCG projects around the world today. This period began with little domestic understanding of UCG and ended with an accurate observation-based conceptual model and a corresponding predictive multi-physics mathematical model of the process. The many accomplishments of this period form the main content of this report. This report also covers recent U.S. activities and accomplishments during the period 2004-2015, and touches briefly on the Bureau of Mines efforts between 1948 and 1963. Most of the activities were funded by the United States Department of Energy and its predecessors. While private/commercially-funded activities are reviewed here, the emphasis is on government-funded work. It has a much greater extent of publicly available reports and papers, and they generally contain much greater technical detail. Field tests were the marquis activities around which an integrated multi-faceted program was built. These are described in detail in Section 4. Highlights from modeling efforts are briefly covered, as the program was integrated and well-rounded, with field results informing models and vice-versa. The primary goal of this report is to review what has been learned about UCG from the U.S. experience in aggregate. This includes observations, conclusions, lessons-learned, phenomena understood, and technology developed. The latter sections of this report review these things.

  10. Large power supply facilities for fusion research

    International Nuclear Information System (INIS)

    Miyahara, Akira; Yamamoto, Mitsuyoshi.

    1976-01-01

    The authors had opportunities to manufacture and to operate two power supply facilities, that is, 125MVA computer controlled AC generator with a fly wheel for JIPP-T-2 stellerator in Institute of Plasma Physics, Nagoya University and 3MW trial superconductive homopolar DC generator to the Japan Society for Promotion of Machine Industry. The 125MVA fly-wheel generator can feed both 60MW (6kV x 10kA) DC power for toroidal coils and 20MW (0.5kV x 40kA) DC power for helical coils. The characteristic features are possibility of Bung-Bung control based on Pontrjagin's maximum principle, constant current control or constant voltage control for load coils, and cpu control for routine operation. The 3MW (150V-20000A) homopolar generator is the largest in the world as superconductive one, however, this capacity is not enough for nuclear fusion research. The problems of power supply facilities for large Tokamak devices are discussed

  11. MYRRHA. An innovative and unique research facility

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Rafaeol; Neerdael, Bernard; Schyns, Marc; Dyck, Steven Van; Michiels, Sidney; Ait Abderrahim, Hamid, E-mail: myrrha@sckcen.be [Belgian Nuclear Research Centre (SCK-CEN), Mol (Belgium)

    2012-03-15

    The MYRRHA project started in 1998 by SCK{center_dot}CEN in collaboration with Ion Beam Applications (IBA, Louvain-la-Neuve), as an upgrade of the ADONIS project. MYRRHA is designed as a multi-purpose irradiation facility in order to support research programmes on fission and fusion reactor structural materials and nuclear fuel development. Applications of these are found in Accelerator Driven Systems (ADS) systems and in present generation as well as in next generation critical reactors. The first objective of MYRRHA however, will be to demonstrate on one hand the ADS concept at a reasonable power level and on the other hand the technological feasibility of transmutation of Minor Actinides (MA) and Long-Lived Fission Products (LLFP) arising from the reprocessing of radioactive waste. MYRRHA will also help the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) Gen.IV concept. Transmutation of MA can be completed in an efficient way in fast neutron spectrum facilities. Both critical reactors and sub-critical ADS are potential candidates as dedicated transmutation systems. However, critical reactors, heavily loaded with fuel containing large amounts of MA, pose safety problems caused by unfavourable reactivity coefficients due to the little delayed neutron fraction. A sub-critical ADS operates in a flexible and safe manner even with a core loading containing a high amount of MA leading to achieve a high efficient transmutation. Thus, the sub-criticality is not a virtue but rather a necessity for an efficient and economical burning of the MA. Besides the reduction of the HLW burden, the MYRRHA project will serve the purpose of developing the lead alloys technology as a reactor coolant that can be used in one of the Generation IV reactor concepts namely the Lead Fast Reactor (LFR). Although carrying out the MYRRHA project will lead to the demonstration of the efficient and safe transmutation of MA in ADS systems as the ultimate goal the

  12. Current status of geoscientific studies being conducted by Japan Nuclear Cycle Development Institute in regard to geological disposal of high-level radioactive waste. Pt. 2. Horonobe Underground Research Center

    International Nuclear Information System (INIS)

    Eki, Nobuhiro; Yamazaki, Shinichi

    2004-01-01

    Japan Nuclear Cycle Development Institute (JNC) has been conducting two Underground Research Laboratory (URL) Projects. 'The Long-term Program for Research, Development and Utilization of Atomic Energy (Atomic Energy Commission, 2000)' states their technical and social importance for the Japan's program for the Geological Disposal (GD) of HLW and shows an expectation of earlier execution of the projects. One of the URL projects is Neogene argillaceous sedimentary formation hosted Horonobe URL Project. The aims of the Horonobe URL project are; Presenting concrete geological environment as an example of sedimentary formation, Confirming reliability of technologies for geological disposal of High-Level Radioactive Waste (HLW) by applying them to actual geological condition of sedimentary formation, Providing opportunities to experience the actual deep underground circumstance for the general public. The project is composed of six subjects; 1) development of site characterization methodology, 2) development of monitoring techniques, 3) development of engineering techniques for underground development, 4) neotectonic characterization of the area, 5) development of engineering techniques for designing, construction and operation of a repository, 6) development of safety assessment methodology. The project consists of three phases: investigations form the surface (Phase 1), investigations during construction of the underground facility (Phase 2) and researches using the facility (Phase 3). The total duration is about 20 years. From 2000, surface-based site investigations are going on. In course of the investigations, a series of geophysical surveys has been employed. Along with the town-wide investigation, an area for site-scale investigation was selected, a land for facilities construction was acquired in the area and the land preparation has started in 2003. Geological information gave more detailed and concrete figure of URL, which is composed of three shafts down to

  13. Vehicle Thermal Management Facilities | Transportation Research | NREL

    Science.gov (United States)

    Integration Facility The Vehicle Testing and Integration Facility features a pad to conduct vehicle thermal station next to the pad provides a continuous data stream on temperature, humidity, wind speed, and solar

  14. Research on hydraulic system of KZC-5 type rear dump truck in underground mine

    International Nuclear Information System (INIS)

    Lei Zeyong

    2005-01-01

    KZC-5 type rear dump truck in underground mine is introduced in this paper. The determining principles and ways of two main hydraulic systems are discussed. It has been proved that the hydraulic systems are reasonable in the industrial scale test. (author)

  15. Facilities available for actinide research in Prague

    International Nuclear Information System (INIS)

    Sechovský, V.

    2014-01-01

    Since June 2012 the Prague group at the Charles University operates a Czech research infrastructure Magnetism and Low Temperature Laboratories (MLTL - http://mltl.eu orhttp://lmnt.cz)which is financially supported by the Government of Czech Republic. The main mission of MLTL is to provide broad scientific community unique possibilities for comprehensive experimental studies of physical phenomena and properties of materials in multiextreme conditions.MLTL offer open access to a wide range of experimental facilities for sample preparation (SSE refinement of staring metals, synthesis of bulk polycrystals, growth of single crystals), characterization (XRD, SEM + EDX) and measurements of various physical properties in high magnetic fields up to 20 T, temperatures from 30 mK to 1000Kand external pressures up to 25 GPa). Anybody can apply for experimental time with his proposal on the user portal of http://mltl.eu. The main strategic objective is the excellence of the infrastructure on the international scale. Therefore the MLTL Panel evaluation the proposals and allocation of experimental time is based primarily on the quality of intended research. The proposals of students for experiments needed for their theses are promoted within the evaluation process. The research opportunities offered by MLTL will be demonstrated during the lecture with emphasis on methodology

  16. Creation of a new-generation research nuclear facility

    International Nuclear Information System (INIS)

    Girchenko, A.A.; Matyushin, A.P.; Kudryavtsev, E.M.; Skopin, V.P.; Shchepelev, R.M.

    2013-01-01

    The SO-2M research nuclear facility operated on the industrial area of the institute. The facility is now removed from service. In view of this circumstance, it is proposed to restore the facility at the new qualitative level, i.e., to create a new-generation research nuclear facility with a very high safety level consisting of a subcritical bench and a proton accelerator (electronuclear facility). Competitive advantages and design features have been discussed and the productive capacity of the research nuclear facility under development has been evaluated [ru

  17. 30 January 2012 - Danish National Research Foundation Chairman of board K. Bock and University of Copenhagen Rector R. Hemmingsen visiting ATLAS underground experimental area, CERN Control Centre and ALICE underground experimental area, throughout accompanied by J. Dines Hansen and B. Svane Nielsen; signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci and Head of International Relations F. Pauss.

    CERN Document Server

    Jean-Claude Gadmer

    2012-01-01

    30 January 2012 - Danish National Research Foundation Chairman of board K. Bock and University of Copenhagen Rector R. Hemmingsen visiting ATLAS underground experimental area, CERN Control Centre and ALICE underground experimental area, throughout accompanied by J. Dines Hansen and B. Svane Nielsen; signing the guest book with CERN Director for Research and Scientific Computing S. Bertolucci and Head of International Relations F. Pauss.

  18. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  19. CASPAR - Nuclear Astrophysics Underground

    Science.gov (United States)

    Senarath, Chamaka; Caspar Collaboration

    2017-09-01

    The CASPAR mainly focuses on Stellar Nucleosynthesis, its impact on the production of heavy elements and study the strength of stellar neutron sources that propels the s-process, 13C(α,n)16O and 22Ne(α,n)25Mg. Currently, implementation of a 1MV fully refurbished Van de Graaff accelerator that can provide a high intensity Î+/- beam, is being done at the Sanford Underground Research Facility (SURF). The accelerator is built among a collaboration of South Dakota School of Mines and Technology, University of Notre Dame and Colorado School of Mines. It is understood that cosmic ray neutron background radiation hampers experimental Nucleosynthesis studies, hence the need to go underground in search for a neutron free environment, to study these reactions at low energies is evident. The first beam was produced in the middle of summer 2017. The entire accelerator will be run before the end of this year. A detailed overview of goals of CASPAR will be presented. NFS Grant-1615197.

  20. GRS' research on clay rock in the Mont Terri underground laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, Klaus; Czaikowski, Oliver [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH, Braunschweig (Germany)

    2016-07-15

    For constructing a nuclear waste repository and for ensuring the safety requirements are met over very long time periods, thorough knowledge about the safety-relevant processes occurring in the coupled system of waste containers, engineered barriers, and the host rock is indispensable. For respectively targeted research work, the Mont Terri rock laboratory is a unique facility where repository research is performed in a clay rock environment. It is run by 16 international partners, and a great variety of questions are investigated. Some of the work which GRS as one of the Mont Terri partners is involved in is presented in this article. The focus is on thermal, hydraulic and mechanical behaviour of host rock and/or engineered barriers.

  1. In situ chemical osmosis experiment in the Boom Clay at the Mol underground research laboratory

    Science.gov (United States)

    Garavito, A. M.; De Cannière, P.; Kooi, H.

    Studies on the compatibility of Boom Clay with large amounts of nitrate- bearing bituminized radioactive waste have recently raised a particular interest for osmosis-induced effects in this reference formation in Belgium. Indeed, water flow and solute transport may be associated with several types of driving forces, or gradients (chemical, electrical, thermal), in addition to the hydraulic forces, resulting in the so-called coupled flows. Fluid flow caused by driving forces different than hydraulic gradients is referred to as osmosis. Chemical osmosis, the water flow induced by a chemical gradient across a semi-permeable membrane, can generate pressure increase. The question thus arises if there is a risk to create high pore pressures that could damage the near-field of medium-level waste (MLW) galleries, if osmotically driven water flows towards the galleries are produced by the release of large amounts of NaNO 3 (750 t) in the formation. To what extent a low-permeability clay formation such as the Boom Clay acts as an osmotic membrane is thus a key issue to assess the relevance of osmosis phenomena for the disposal of medium-level waste. An in situ osmosis experiment has been conducted at the H ADES underground research laboratory to determine the osmotic efficiency of Boom Clay at the field scale. A recently developed chemical osmosis flow continuum model has been used to design the osmosis experiment, and to interpret the water pressure measurements. Experimental data could be reproduced quite accurately by the model, and the inferred parameter values are consistent with independent determinations for Boom Clay. A rapid water pressure increase (but limited to about a 2 m water column) was observed after 12 h in the filter containing the more saline water. Then, the osmotically induced water pressure slowly decays on several months. So, the experimental results obtained in situ confirm the occurrence of non-hydraulic flow phenomena (chemical osmosis) in a low

  2. Investigation of the development and the effect of an excavation damaged zone at KAERI underground research tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.; Cho, W. J

    2008-01-15

    The understanding of the long term behavior of rock around an underground radioactive waste repository is essential for the safe design and operation of the repository and for assuring the safety and technical feasibility of geological disposal concept. The investigation of the influence of EDZ on rock mass behavior is important for the long term stability, economy, and safety points of view. In the case of underground repository, which requires high level safety criteria, the accurate prediction of the long and short term mechanical, hydraulic, and thermal behaviors is especially important. In this study, the size and characteristics of EDZ developed during the construction of the KAERI underground research tunnel, which was constructed by controlled blasting, were investigated using various methods. Goodman jack test for measuring deformation modulus, Georadar, rock core observation, MPBX, and stressmeter were carried out at KURT. The rock cores from the boreholes were tested in laboratory for estimating the EDZ size. Empirical and theoretical equations were also used for the prediction of EDZ. The results from laboratory and in situ tests were used in three-dimensional hydro-mechanical and thermo-mechanical analysis for the evaluation of the EDZ effect. The understanding of EDZ size and the property changes in EDZ from in situ and laboratory tests will be used for the planning, design, and analysis of in situ experiments in KURT. The results from the EDZ study will be helpful for the system design as well as safety analysis of a radioactive repository.

  3. High Energy Solid State Laser Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  4. Research on Construction Optimization of Three-Connected-Arch Hydraulic Underground Cavities Considering Creep Property

    Directory of Open Access Journals (Sweden)

    Bao-yun Zhao

    2014-01-01

    Full Text Available In order to prevent the creep of surrounding rock in long-term construction, with consideration of different construction methods and other factors during the construction of large-scale underground cavity, three different construction schemes are designed for specific projects and a nonlinear viscoelastic-plastic creep model which can describe rock accelerated creeping is introduced and applied to construction optimization calculation of the large-scale three-connected-arch hydraulic underground cavity through secondary development of FLAC3D. The results show that the adoption of middle cavity construction method, the second construction method, enables the maximum vault displacement of 16.04 mm. This method results in less stress redistribution and plastic zone expansion to the cavity’s surrounding rock than the other two schemes, which is the safest construction scheme. The conclusion can provide essential reference and guidance to similar engineering for construction optimization.

  5. Horonobe Underground Research Laboratory project. Current status on the surface-based investigation

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Ishii, Eiichi

    2004-01-01

    Aims of the Horonobe URL project are presenting concrete geological environment as an example of sedimentary formation and confirming reliability of technologies for geological disposal of High-Level Radioactive Waste (HLW) by applying them to actual geological condition of sedimentary formation. Social aim is providing opportunities for general public to experience the actual deep underground circumstance and R and D activities to be conducted there. (author)

  6. Research in artificial intelligence for nuclear facilities

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, artificial intelligence can increase efficiency and effectiveness in a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) and in research facility experiments. Recent work at the University of Tennessee has demonstrated the feasibility of using neural networks to identify six different transients introduced into the simulation of a steam generator of a nuclear power plant. This work is now being extended to utilize data from a nuclear power plant training simulator. In one configuration, the inputs to the neural network are a subset of the quantities that are typical of those available from the safety parameter display system. The outputs of the network represent the various states of the plant (e.g., normal operation, coolant leakage, inadequate core flow, excessive peak fuel temperature, etc.). Training of the neural network is performed by introducing various faults or conditions to be diagnosed into the simulator. The goal of this work is to demonstrate a neural network diagnostic system that could provide advice to the operators in accordance with the emergency operating procedures

  7. Research for Preseismic Phenomena on the Underground Water Level and Temperature in Selected Areas of Greece

    Science.gov (United States)

    Contadakis, M. E.; Asteriadis, G.

    1997-08-01

    A comprehensive study of the tectonic activity require the contribution of a variety of methods, geological, seismic, geodetic, satellite etc., being currently available in our days. On the other hand, the risk evaluation in areas of high seismicity, like this one of the South Balkan Peninsula, is of vital importance. To this purpose an interdisciplinary following up of the tectonic activity in the area may provide the best provision to the administration for an effective confrontation and intervention for the elimination of the possible disastrous effects in human life cost, financial and social cost of the communities, to which may result a strong earthquake. Among the various methods of indirect monitoring of the tectonic activity in an area, which in addition is of a low cost, is that of the following up of the underground water level and temperature changes in the area of interest. This method is based on the fact that tectonic activity is expected to result to tectonic stresses producing alterations to the local water table which in its turn is expected is expected to be observed as variation of the underground water level and temperature. The method of the following up of the underground water and temperature changes has been applied, among others by the Department of Geodesy and Surveying of the University of Thessaloniki in two areas of high seismicity in Greece: (a) The seismic zone of the lake Volvi in North Greece (40.5 deg N and 23.5 deg E) for ten years (1983-1992) and (b) the area of South Thessaly (39.2 deg N and 21 deg E) for three years (1994-1996). The statistical analysis of the observations, shows that the low frequency constituent (Sa,Ssa,Mf,Mm) of the earth tides and the barometric pressure have a small influence on the water level measurements. The shallow underground water network of South Thessaly is more sensitive to the non tectonic factors than the network of Volvi. Tentative correlation of the underground wat! er and temperature

  8. Study on development of evaluation technique of in-situ tracer test in Horonobe Underground Research Laboratory project (Contract research)

    International Nuclear Information System (INIS)

    Yokota, Hideharu; Amano, Kenji; Maekawa, Keisuke; Kunimaru, Takanori; Naemura, Yumi; Ijiri, Yuji; Motoshima, Takayuki; Suzuki, Shunichi; Teshima, Kazufumi

    2013-06-01

    In the Horonobe Underground Research Laboratory Project, in-situ tracer tests are valuable and important as the investigations to obtain the mass transportation data of fractures in hostrock. However, it is difficult that the in-situ tests are executed under various conditions due to long test period and the tests results are evaluated about permeable heterogeneity in a fracture and/or scale effects. In this study, a number of tracer tests are simulated in a fictitious single plate fracture generated on computer. And the transport parameters are identified by fitting one- and two-dimensional models to the breakthrough curves obtained from the simulations in order to investigate the applicability of these models to the evaluation of in-situ tracer test. As a result, one-dimensional model yields larger longitudinal dispersion length than two-dimensional model in the both cases of homogeneous and heterogeneous hydraulic conductivity fields of the fictitious fracture. This is because that the effect of transverse dispersion has to be included in the longitudinal dispersion length parameter in the one-dimensional model. It is also found that the larger dipole ratio and the larger natural groundwater flow crossing the flow generated between two boreholes make the identified longitudinal dispersion length larger. And, the longitudinal dispersion length identified from a tracer test is smaller and/or larger than the macroscopic longitudinal dispersion length identified from whole fracture. It is clarified that these are occurred by shorter or longer distance between boreholes compare to the correlation length of geostatistical heterogeneity of fictitious fracture. (author)

  9. Combustion Research Facility | A Department of Energy Office of Science

    Science.gov (United States)

    Collaborative Research Facility Back to Sandia National Laboratory Homepage Combustion Research Search the CRF Combustion Chemistry Flame Chemistry Research.Combustion_Chemistry.Flame_Chemistry Theory and Modeling Theory and Modeling Combustion Kinetics High Pressure Chemistry Chemistry of Autoignition

  10. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  11. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    OpenAIRE

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were d...

  12. Shock Thermodynamic Applied Research Facility (STAR)

    Data.gov (United States)

    Federal Laboratory Consortium — The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only...

  13. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  14. Radionuclides in an underground environment

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1996-01-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ''experiments'' conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes

  15. Research highlights from the Holifield Heavy Ion Research Facility

    International Nuclear Information System (INIS)

    Plasil, F.

    1982-01-01

    The purpose of this paper is to present the scope of research carried out at the new Holifield Heavy Ion Research Facility (HHIRF) at Oak Ridge. This will be accomplished with reference to several research projects currently underway. The areas of research represented are microscopic and macroscopic aspects of nuclear reactions and nuclear structure. In view of the scope of this conference, emphasis will be placed on nuclear reactions. A brief description of HHIRF is given, together with its current status. Microscopic aspects of reactions between nuclei are discussed with reference to the prospects for the study of giant resonances by means of heavy ions, and to studies of elastic and inelastic scattering of 60 Ni nuclei. Macroscopic aspects of nuclear reactions are illustrated by means of the study of collisions between 58 Ni nuclei at 15.1 MeV/u and by means of Spin Spectrometer (crystal ball) studies of the 19 F + 159 Tb reaction. Results are presented for lifetime measurements of high-spin states in ytterbium nuclei

  16. Preliminary simulation of degassing of natural gases dissolved in groundwater during shaft excavation in Horonobe underground research project

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Shimo, Michito; Kunimaru, Takanori; Kurikami, Hiroshi

    2007-01-01

    In Neogene-Quaternary sedimentary basins, natural gases such as methane are often dissolved in groundwater significantly. In this paper, two-phase flow simulations incorporating the degassing of methane, and carbon dioxide, were performed for the shaft excavation in Horonobe underground research project. The results drawn from the simulations are summarized as follows. 1) As depth increases, degassing and gas inflow occurs significantly. 2) Degassing increases the compressibility of pore fluids, resulting in slow changes in groundwater pressures. 3) Although the occurrence of gas phase decreases water mobility, the influence of the dissolved gas on the groundwater inflow rate to the shaft was small. (author)

  17. Trends of researches for fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Ozawa, Yasutomo; Enoto, Takeaki

    1975-01-01

    The role of a fusion neutron radiation test facility in the development of a scientific feasibility experimental reactor or demonstration fusion power reactor plant would be analogous to the role of the materials testing and experimental reactors in the development of fission power reactor. While the material testing fission reactor has been developed after successful operation of fission reactors, in the case of fusion reactor development it is desirable to realize the fusion engineering research facility (FERF) in-phase to the development of SFX and/or demonstration fusion power reactor plants. Here so called FERF in near future is the Controlled Thermonuclear Reactor which provides the high-intensity and high-energy neutron and plasma source whether the net power output is produced or not. From the point of direct attainment to SFX, we would like to emphasize that FEFE is the royal road leading to the goal of successful achievement of CTR program and could be useful for the experiment on impurity effects caused by neutron and plasma irradiations onto the wall material for SFX. Further, we rather suppose that hybrid FERF-fission assembly could be fairly and easily realizable in near future. (auth.)

  18. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests

    Directory of Open Access Journals (Sweden)

    Ju Wang

    2018-06-01

    Full Text Available With the rapid development of nuclear power in China, the disposal of high-level radioactive waste (HLW has become an important issue for nuclear safety and environmental protection. Deep geological disposal is internationally accepted as a feasible and safe way to dispose of HLW, and underground research laboratories (URLs play an important and multi-faceted role in the development of HLW repositories. This paper introduces the overall planning and the latest progress for China's URL. On the basis of the proposed strategy to build an area-specific URL in combination with a comprehensive evaluation of the site selection results obtained during the last 33 years, the Xinchang site in the Beishan area, located in Gansu Province of northwestern China, has been selected as the final site for China's first URL built in granite. In the process of characterizing the Xinchang URL site, a series of investigations, including borehole drilling, geological mapping, geophysical surveying, hydraulic testing and in situ stress measurements, has been conducted. The investigation results indicate that the geological, hydrogeological, engineering geological and geochemical conditions of the Xinchang site are very suitable for URL construction. Meanwhile, to validate and develop construction technologies for the Beishan URL, the Beishan exploration tunnel (BET, which is a 50-m-deep facility in the Jiujing sub-area, has been constructed and several in situ tests, such as drill-and-blast tests, characterization of the excavation damaged zone (EDZ, and long-term deformation monitoring of surrounding rocks, have been performed in the BET. The methodologies and technologies established in the BET will serve for URL construction. According to the achievements of the characterization of the URL site, a preliminary design of the URL with a maximum depth of 560 m is proposed and necessary in situ tests in the URL are planned. Keywords: Beishan, Xinchang site, Granite

  19. Hydrogen Infrastructure Testing and Research Facility Video (Text Version)

    Science.gov (United States)

    grid integration, continuous code improvement, fuel cell vehicle operation, and renewable hydrogen Systems Integration Facility or ESIF. Research projects including H2FIRST, component testing, hydrogen

  20. Underground neutrino astronomy

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1983-02-01

    A review is made of possible astronomical neutrino sources detectable with underground facilities. Comments are made about solar neutrinos and gravitational-collapse neutrinos, and particular emphasis is placed on ultra-high-energy astronomical neutrino sources. An appendix mentions the exotic possibility of monopolonium

  1. An outline of research facilities of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  2. Hydrogeological characterization on surface-based investigation phase in the Mizunami underground research laboratory project, in Japan

    International Nuclear Information System (INIS)

    Saegusa, Hiromitsu; Onoe, Hironori; Takeuchi, Shinji; Takeuchi, Ryuji; Ohyama, Takuya

    2007-01-01

    The Mizunami Underground Research Laboratory (MIU) project is being carried out by Japan Atomic Energy Agency in the Cretaceous Toki granite in the Tono area, central Japan. The MIU project is a purpose-built generic underground research laboratory project that is planned for a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes. One of the main goals of the MIU project is to establish comprehensive techniques for investigation, analysis, and assessment of the deep geological environment. The MIU project has three overlapping phases: Surface-based Investigation (Phase I), Construction (Phase II) and Operation (Phase III). Hydrogeological investigations using a stepwise process in Phase I have been carried out in order to obtain information on important properties such as, location of water conducting features, hydraulic conductivity and so on. Hydrogeological modeling and groundwater flow simulations in Phase I have been carried out in order to synthesize these investigation results, to evaluate the uncertainty of the hydrogeological model and to identify the main issues for further investigations. Using the stepwise hydrogeological characterization approach and combining the investigation with modeling and simulation, understanding of the hydrogeological environment has been progressively improved. (authors)

  3. Research on Navigation Path Planning for An Underground Load Haul Dump

    Directory of Open Access Journals (Sweden)

    Qi Yulong

    2015-11-01

    Full Text Available The improved A * algorithm is a method of navigation path planning for articulated underground scrapers. Firstly, an environment model based on a mining Geographic Information System (GIS map is established, and then combined with improved A * algorithm, the underground global path planning problem of the intelligent Load Haul Dump (LHD is solved. In this paper, for the articulated structure, the method of expanding nodes by articulation angle is adopted to make expanded nodes meet the trajectory characteristics. In addition, collision threat cost is introduced in the evaluation function to avoid collisions between the LHD and the tunnel walls. As peran analysis of the simulation test to verify the effectiveness of the improved A * algorithm and a comparison with the traditional A * algorithm, the improved A * algorithm can enhance search efficiency. Acontrast of multiple sets of test parameters suggests that when the price weighted coefficient of collision is 0.2, the shortest path can be derived to avoid impact. Finally, tracking results indicate that the proposed algorithm for navigation path planning can maintain the tracking error to within 0.2 m in line with the structural characteristics of the scraper in the laboratory environment to realize the path planning of unmanned scrapers and trajectory tracking. Moreover, the algorithm can enhance the safety of scrapers and prevent roadway collisions. The feasibility and practicality of the proposed method is verified in this work.

  4. Corium melt researches at VESTA test facility

    Directory of Open Access Journals (Sweden)

    Hwan Yeol Kim

    2017-10-01

    Full Text Available VESTA (Verification of Ex-vessel corium STAbilization and VESTA-S (-small test facilities were constructed at the Korea Atomic Energy Research Institute in 2010 to perform various corium melt experiments. Since then, several tests have been performed for the verification of an ex-vessel core catcher design for the EU-APR1400. Ablation tests of an impinging ZrO2 melt jet on a sacrificial material were performed to investigate the ablation characteristics. ZrO2 melt in an amount of 65–70 kg was discharged onto a sacrificial material through a well-designed nozzle, after which the ablation depths were measured. Interaction tests between the metallic melt and sacrificial material were performed to investigate the interaction kinetics of the sacrificial material. Two types of melt were used: one is a metallic corium melt with Fe 46%, U 31%, Zr 16%, and Cr 7% (maximum possible content of U and Zr for C-40, and the other is a stainless steel (SUS304 melt. Metallic melt in an amount of 1.5–2.0 kg was delivered onto the sacrificial material, and the ablation depths were measured. Penetration tube failure tests were performed for an APR1400 equipped with 61 in-core instrumentation penetration nozzles and extended tubes at the reactor lower vessel. ZrO2 melt was generated in a melting crucible and delivered down into an interaction crucible where the test specimen is installed. To evaluate the tube ejection mechanism, temperature distributions of the reactor bottom head and in-core instrumentation penetration were measured by a series of thermocouples embedded along the specimen. In addition, lower vessel failure tests for the Fukushima Daiichi nuclear power plant are being performed. As a first step, the configuration of the molten core in the plant was investigated by a melting and solidification experiment. Approximately 5 kg of a mixture, whose composition in terms of weight is UO2 60%, Zr 10%, ZrO2 15%, SUS304 14%, and B4C 1%, was melted in a

  5. Metering management at the plutonium research and development facilities

    International Nuclear Information System (INIS)

    Hirata, Masaru; Miyamoto, Fujio; Kurosawa, Makoto; Abe, Jiro; Sakai, Haruyuki; Suzuki, Tsuneo.

    1996-01-01

    Nuclear fuel research laboratory of the Oarai Research Laboratory of the Japan Atomic Energy Research Institute is an R and D facility to treat with plutonium and processes various and versatile type samples in chemical and physical form for use of various experimental researches even though on much small amount. Furthermore, wasted and plutonium samples are often transported to other KMP and MBA such as radioactive waste management facility, nuclear reactor facility and so forth. As this facility is a place to treat plutonium important on the safeguards, it is a facility necessary for detection and allowance actions and for detail managements on the metering management data to report to government and IAEA in each small amount sample and different configuration. In this paper, metering management of internationally regulated matters and metering management system using a work station newly produced in such small scale facility were introduced. (G.K.)

  6. DOE research and development and field facilities

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    This report describes the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Operations Centers, and other government-owned, contractor-operated facilities which are located in all regions of the United States. It gives brief descriptions of resources, activities, and capabilities of each field facility (sections III through V). These represent a cumulative capital investment of $12 billion and involve a work force of approximately 12,000 government (field) employees and approximately 100,000 contractor employees.

  7. Applicability of initial stress measurement methods to Horonobe Siliceous rocks and initial stress state around Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Sanada, Hiroyuki; Niunoya, Sumio; Matsui, Hiroya; Fujii, Yoshiaki

    2009-01-01

    Understanding initial stress condition in deep underground is important for such construction as rock cavern for geological disposal of HLW and underground power plant. Neogene sedimentary rock is widely distributed in Japan. There are only a few studies of initial stress measurement in Neogene sedimentary rock mass in Japan due to difficulty of measurement. Evaluation of initial stress condition around Horonobe Underground Research Laboratory Project was carried out in order to understand initial stress condition and applicability of AE, DSCA and hydraulic fracturing (HF) methods to Neogene sedimentary rock. Initial stress values obtained from AE method is smaller than overburden pressure due to time dependency of Kaizer effect. It would be difficult to use AE method as initial stress measurement method for Horonobe Siliceous rocks. Principal stress values by DSCA are similar to those by HF tests. Directions of maximum horizontal principal stresses are approximately in E-W and corresponded to HF results. In HF, rod type and wire-line type systems were compared. Workability of rod type was much better than wire-line type. However, re-opening pressure were not able to be precisely measured in case of rod type system due to the large compliance of the packers and rods. Horizontal maximum and minimum principal stresses increase linearly in HF results. Deviatoric stress is acting at shallow depth. Initial stress condition approaches hydrostatic condition with depth. Direction of maximum horizontal principal stress was in E-W direction which was similar to tectonic movement around Horonobe URL by triangular surveying. (author)

  8. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Strait, James [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); McCluskey, Elaine [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lundin, Tracy [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Willhite, Joshua [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Hamernik, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Papadimitriou, Vaia [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Marchionni, Alberto [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kim, Min Jeong [National Inst. of Nuclear Physics (INFN), Frascati (Italy). National Lab. of Frascati (INFN-LNF); Nessi, Marzio [Univ. of Geneva (Switzerland); Montanari, David [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Heavey, Anne [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  9. Experimental research data on stress state of salt rock mass around an underground excavation

    Science.gov (United States)

    Baryshnikov, VD; Baryshnikov, DV

    2018-03-01

    The paper presents the experimental stress state data obtained in surrounding salt rock mass around an excavation in Mir Mine, ALROSA. The deformation characteristics and the values of stresses in the adjacent rock mass are determined. Using the method of drilling a pair of parallel holes in a stressed area, the authors construct linear relationship for the radial displacements of the stress measurement hole boundaries under the short-term loading of the perturbing hole. The resultant elasticity moduli of rocks are comparable with the laboratory core test data. Pre-estimates of actual stresses point at the presence of a plasticity zone in the vicinity of the underground excavation. The stress state behavior at a distance from the excavation boundary disagrees with the Dinnik–Geim hypothesis.

  10. Recent Research Status on the Microbes in the Radioactive Waste Disposal and Identification of Aerobic Microbes in a Groundwater Sampled from the KAERI Underground Research Tunnel(KURT)

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Lee, Seung Yeop; Cho, Won Jin

    2006-11-01

    In this report, a comprehensive review on the research results and status for the various effects of microbes in the radioactive waste disposal including definition and classification of microbes, and researches related with the waste containers, engineered barriers, natural barriers, natural analogue studies, and radionuclide migration and retardation. Cultivation, isolation, and classification of aerobic microbes found in a groundwater sampled from the KAERI Underground Research Tunnel (KURT) located in the KAERI site have carried out and over 20 microbes were found to be present in the groundwater. Microbial identification by a 16S rDNA genetic analysis of the selected major 10 aerobic microbes was performed and the identified microbes were characterized

  11. Naval Research Laboratory Major Facilities 2008

    Science.gov (United States)

    2008-10-01

    consists of two equipment shelters, a chiller for cooling the transmitter, and a 175 kVA diesel generator for use at remote sites. A 40-ft-long... bioremediation , and biodeterioration. INSTRUMENTATION: • ESEM equipped with an energy-dispersive X-ray detector and an image acquisition and...a 125 kW uninterruptible power system with diesel backup. Magnetic sensitivity testing of precision Precision Clock Evaluation Facility CONTACT

  12. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Oh, Won Zin; Jung, Chong Hun; Choi, Wang Kyu; Won, Hui Jun; Kim, Gye Nam

    2004-02-01

    Technology development of surface decontamination in the uranium conversion facility before decommissioning, technology development of component decontamination in the uranium conversion facility after decommissioning, uranium sludge treatment technology development, radioactive waste soil decontamination technology development at the aim of the temporary storage soil of KAERI, Optimum fixation methodology derivation on the soil and uranium waste, and safety assessment methodology development of self disposal of the soil and uranium waste after decontamination have been performed in this study. The unique decontamination technology applicable to the component of the nuclear facility at room temperature was developed. Low concentration chemical decontamination technology which is very powerful so as to decrease the radioactivity of specimen surface under the self disposal level was developed. The component decontamination technology applicable to the nuclear facility after decommissioning by neutral salt electro-polishing was also developed. The volume of the sludge waste could be decreased over 80% by the sludge waste separation method by water. The electrosorption method on selective removal of U(VI) to 1 ppm of unrestricted release level using the uranium-containing lagoon sludge waste was tested and identified. Soil decontamination process and equipment which can reduce the soil volume over 90% were developed. A pilot size of soil decontamination equipment which will be used to development of real scale soil decontamination equipment was designed, fabricated and demonstrated. Optimized fixation methodology on soil and uranium sludge was derived from tests and evaluation of the results. Safety scenario and safety evaluation model were development on soil and uranium sludge aiming at self disposal after decontamination

  13. Measurement of the radon concentration in an underground public facility and dose assessment. Fukuoka Tenjin Shopping Center

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Tokonami, Shinji; Sanada, Tetsuya; Kanno, Nobuyuki; Yamada, Yuji

    2000-01-01

    Radon concentrations were measured with a passive radon detector from April 1998 through June 1999 in the Fukuoka Tenjin Underground Shopping Center to assess the dose affecting workers because of radon progeny inhalation. The radon concentration during the period was distributed from a range of 1.9 to 13.6 Bq/m 3 . The arithmetic average concentration was estimated to be 6.9±2.4 Bq/ 3 . The radon level was lower than that in dwellings in Japan and other countries. No spatial distribution of radon concentration was found in that area. From continuous measurement, the radon concentration was found to be high from midnight to noon and low in the afternoon. Little difference was noted between the daily average radon concentration and that during working hours. There was no seasonal variation. The equilibrium factor of 0.21±0.10 was obtained during working hours. The activity-weighted size distribution of radon progeny was evaluated by using the number distribution of ambient aerosols and the classical attachment theory. Consequently, the activity median diameter was 150 nm. The unattached fraction of radon progeny was estimated to be 0.025 with an empirical equation. The annual effective dose of workers at the Tenjin center was calculated with the dose conversion factor from the UNSCEAR 1993 report and estimated to be 0.024 mSv/y. (author)

  14. The diesel exhaust in miners study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    NARCIS (Netherlands)

    Vermeulen, R.; Coble, J.B.; Lubin, J.H.; Portengen, L.; Blair, A.; Attfield, M.D.; Silverman, D.T.; Stewart, P.A.

    2010-01-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no

  15. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  16. National facility for neutron beam research

    Indian Academy of Sciences (India)

    In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview ...

  17. A low-temperature research facility for space

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    The Jet Propulsion Laboratory is proposing to NASA a new initiative to construct a Low Temperature Research Facility for use in space. The facility is described, together with some details of timing and support. An advisory group has been formed which seeks to advise JPL and NASA of the capabilities required in this facility and to invite investigators to propose experiments which require the combination of low temperature and reduced gravity to be successful. (orig.)

  18. Speleomycological research in underground Osówka complex in Sowie Mountains (Lower Silesia, Poland

    Directory of Open Access Journals (Sweden)

    Wojciech Pusz

    2014-01-01

    Full Text Available Osówka (Germ. Säuferhöhen, is one of the elements of the unfinished Nazi military complex called “Riese”. The total length of corridors of Osówka complex is about 1,700 m and its capacity amounts to 30,000 m3. As described geologically, Osówka is situated within the Sowie Mts. Massif which consists mostly of various gneisses with different structural characteristics, but with a constant mineral composition. The rock-forming minerals are feldspar (oligoclase, quartz, biotite and light micas, accesory minerals are garnet, sillimanite and dysten. Fine-grained shallow-sea deposits were probably a protolith of these rocks. The study aimed at first mycological evaluation of the air and the rocks in Osówka adit. The air samples were taken from one location outside the adit and from four locations inside of it. Mycological evaluation of the rocks inside the adit was performed using three different methods. Fifteen taxa of filamentous fungi were isolated from the internal air sampled, and several taxa - from the outside of the adit, whereas only eleven species were isolated from the rocks. Cladosporium spp. were the fungi most frequently isolated from internal atmosphere of the underground Osówka complex, and from the external air. On the other hand, the fungi most frequently isolated from the rocks were Aspergillus niger group (when using swab sampling procedure and Mucor spp. (from debris and rinse sampling procedure.

  19. Accelerator based research facility as an inter university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1995-01-01

    15 UD pelletron has been operating as a user facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic Nuclear Physics, Materials Science, Atomic Physics, Radiobiology and Radiation Chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonator is being developed in Argonne National Laboratory as a joint collaborative effort. All other things such as cryostats, rf instrumentation, cryogenic distribution system, computer control etc are being done indigenously. Research facilities, augmentation plans and the research being conducted by the universities in various disciplines are described. (author)

  20. Radiation applications research and facilities in AECL Research Company

    International Nuclear Information System (INIS)

    Iverson, S.L.

    1988-01-01

    In the 60's and 70's Atomic Energy of Canada had a very active R and D program to discover and develop applications of ionizing radiation. Widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of the test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal absorbent beds to concentrate the components of gas or liquid waste streams requiring treatment is showing promise as a method of significantly reducing the cost of radiation treatment for some effluents. A number of other projects are described. (author)

  1. Profiles of facilities used for HTR research and testing

    International Nuclear Information System (INIS)

    1980-05-01

    This report contains a current description of facilities supporting HTR research and development submitted by countries participating in the IWGFR. It has the purpose of providing an overview of the facilities available for use and of the types of experiments that can be conducted therein

  2. Radiation applications research and facilities in AECL research company

    Science.gov (United States)

    Iverson, S. L.

    In the 60's and 70's Atomic Energy of Canada had a very active R&D program to discover and develop applications of ionizing radiation. Out of this grew the technology underlying the company's current product line of industrial irradiators. With the commercial success of that product line the company turned its R&D attention to other activities. Presently, widespread interest in the use of radiation for food processing and the possibility of developing reliable and competitive machine sources of radiation hold out the promise of a major increase in industrial use of radiation. While many of the applications being considered are straightforward applications of existing knowledge, others depend on more subtle effects including combined effects of two or more agents. Further research is required in these areas. In March 1985 a new branch, Radiation Applications Research, began operations with the objective of working closely with industry to develop and assist the introduction of new uses of ionizing radiation. The Branch is equipped with appropriate analytical equipment including HPLC (high performance liquid chromatograph) and GC/MS (gas chromatograph/mass spectrometer) as well as a Gammacell 220 and an I-10/1, one kilowatt 10 MeV electron accelerator. The accelerator is located in a specially designed facility equipped for experimental irradiation of test quantities of packaged products as well as solids, liquids and gases in various configurations. A conveyor system moves the packaged products from the receiving area, through a maze, past the electron beam at a controlled rate and finally to the shipping area. Other necessary capabilities, such as gamma and electron dosimetry and a microbiology laboratory, have also been developed. Initial projects in areas ranging from food through environmental and industrial applications have been assessed and the most promising have been selected for further work. As an example, the use of charcoal adsorbent beds to concentrate

  3. Residual strain, scale effects, and time-dependent behaviour at the 240-m level of the underground research laboratory

    International Nuclear Information System (INIS)

    Read, R.S.

    1990-01-01

    Two subhorizontal, orthogonal boreholes were monitored continuously during concentric overcoring at the 240-m level of the Underground Research Laboratory (URL). The magnitude and orientation of principal residual strain components in the near-field stress regime were determined assuming linear elastic behaviour of the rock mass and isotropic conditions. In terms of magnitude, results compared favourably with those from previous tests at the 240-m level. However, orientation results were inconclusive. The effects of scale and borehole orientation relative to the principal stress direction on the results from a modified CSIR triaxial cell overcore test were also investigated; no scale effects were apparent in the experiment, but borehole orientation did affect results. Finally, time-dependent behaviour was detected in the Lac du Bonnet granite, and was monitored between successive overcore tests in one of the boreholes. Results on residual strain, scale effects, and time-dependent behaviour are presented, along with limitations and possible modifications to the testing procedure

  4. Confirmation of the applicability of low alkaline cement-based material in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Niunoya, Sumio; Minamide, Masashi

    2016-01-01

    In Japan, high-level radioactive waste repository will be constructed in a stable host rock formation more than 300 m underground. Tunnel support is used for safety during the construction and operation, so, shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement, water and various additives. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed the low alkaline cement, named as HFSC (Highly fly-ash contained silicafume cement), containing over 60wt% of silicafume (SF) and Fly-ash (FA). JAEA is presently constructing the underground research laboratory (URL) at Horonobe for research and development in the geosciences and repository engineering technology. HFSC was used experimentally as the shotcrete material in construction of part of the 350 m deep gallery in the Horonobe URL in 2013. The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC in normal concrete. The total length of tunnel constructed using HFSC shotcrete is about 112 m at 350 m deep drift. The workability of HFSC shotcrete was confirmed by this experimental construction. In this report, we present detailed results of the in-situ construction test. (author)

  5. Evaluating the potential for large-scale fracturing at a disposal vault: an example using the underground research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C D; Chandler, N A; Brown, Anton

    1994-09-01

    The potential for large-scale fracturing (> 10 m{sup 2}) around a nuclear fuel waste disposal vault is investigated in this report. The disposal vault is assumed to be located at a depth of 500 m in the plutonic rocks of the Canadian Shield. The rock mass surrounding the disposal vault is considered to have similar mechanical properties and in situ stress conditions to that found at a depth of 420 m at the Underground Research Laboratory. Theoretical, experimental and field evidence shows that Mode I fractures propagate in a plane perpendicular to {sigma}{sub 3} and only if the tensile stress at the tip of the advancing crack is sufficient to overcome the tensile strength of the rock. Because the stress state at a depth of 500 m or more is compressive, and will very probably stay so during the 10,000 year life of the disposal vault, there does not appear to be any mechanism which could propagate large-scale Mode I fracturing in the rock mass surrounding the vault. In addition because {sigma}{sub 3} is near vertical any Mode I fracture propagation that might occur would be in a horizontal plane. The development of either Mode I or large-scale shear fractures would require a drastic change in the compressive in situ stress state at the depth of the disposal vault. The stresses developed as a result of both thermal and glacial loading do not appear sufficient to cause new fracturing. Glacial loading would reduce the shear stresses in the rock mass and hence improve the stability of the rock mass surrounding the vault. Thus, it is not feasible that large-scale fracturing would occur over the 10,000 year life of a disposal vault in the Canadian Shield, at depths of 500 m or greater, where the compressive stress state is similar to that found at the Underground Research Laboratory. 107 refs., 44 figs.

  6. Evaluating the potential for large-scale fracturing at a disposal vault: an example using the underground research laboratory

    International Nuclear Information System (INIS)

    Martin, C.D.; Chandler, N.A.; Brown, Anton.

    1994-09-01

    The potential for large-scale fracturing (> 10 m 2 ) around a nuclear fuel waste disposal vault is investigated in this report. The disposal vault is assumed to be located at a depth of 500 m in the plutonic rocks of the Canadian Shield. The rock mass surrounding the disposal vault is considered to have similar mechanical properties and in situ stress conditions to that found at a depth of 420 m at the Underground Research Laboratory. Theoretical, experimental and field evidence shows that Mode I fractures propagate in a plane perpendicular to σ 3 and only if the tensile stress at the tip of the advancing crack is sufficient to overcome the tensile strength of the rock. Because the stress state at a depth of 500 m or more is compressive, and will very probably stay so during the 10,000 year life of the disposal vault, there does not appear to be any mechanism which could propagate large-scale Mode I fracturing in the rock mass surrounding the vault. In addition because σ 3 is near vertical any Mode I fracture propagation that might occur would be in a horizontal plane. The development of either Mode I or large-scale shear fractures would require a drastic change in the compressive in situ stress state at the depth of the disposal vault. The stresses developed as a result of both thermal and glacial loading do not appear sufficient to cause new fracturing. Glacial loading would reduce the shear stresses in the rock mass and hence improve the stability of the rock mass surrounding the vault. Thus, it is not feasible that large-scale fracturing would occur over the 10,000 year life of a disposal vault in the Canadian Shield, at depths of 500 m or greater, where the compressive stress state is similar to that found at the Underground Research Laboratory. 107 refs., 44 figs

  7. Introduction of neutron research facilities in Indonesia Nuclear Agency

    International Nuclear Information System (INIS)

    Nishida, Masayuki; Muslih, M. Refai; Minakawa, Nobuaki

    2004-01-01

    In this report, some facilities for neutron diffraction installed in Indonesia nuclear Agency (BATAN) are introduced. Rough sketch of BATAN, and facility arrangement in the reactor hall and the guide hall are schematically shown. The four facilities (powder diffractometer, four-circle goniometer, three-axis goniometer and neutron radiography system) are installed in the reactor hall and the three (small angle neutron scattering (SANS), high resolution SANS and high resolution powder diffractometer) in the guide hall. Neutron wavelengths determined from four hk1 planes of standard Si powder by the BATAN's neutron diffraction facility are compared with those measured by the similar facility in Japan Atomic Energy Research Institute (JAERI). The neutron diffraction profile of W-fiber reinforced Cu composite is measured by the BATAN's facility. The experimental results show the strong 110 preferred orientation to the fiber direction. (author)

  8. Environment for Auditory Research Facility (EAR)

    Data.gov (United States)

    Federal Laboratory Consortium — EAR is an auditory perception and communication research center enabling state-of-the-art simulation of various indoor and outdoor acoustic environments. The heart...

  9. Underground laboratories in Japan and North America

    International Nuclear Information System (INIS)

    Sobel, Henry W

    2006-01-01

    There is a blossoming demand for deep underground laboratory space to satisfy the expanding interest in experiments that require significant cosmic-ray shielding. I'll briefly describe the existing deep facilities and their plans for expansion. I will also discuss the planning for a new major underground facility in the U.S

  10. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  11. Small Multi-Purpose Research Facility (SMiRF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Multi-Purpose Research Facility (SMiRF) evaluates the performance of the thermal protection systems required to provide long-term storage (up to 10 years)...

  12. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  13. A facility for using cluster research to study environmental problems

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report.

  14. A facility for using cluster research to study environmental problems

    International Nuclear Information System (INIS)

    1991-11-01

    This report begins by describing the general application of cluster based research to environmental chemistry and the development of a Cluster Structure and Dynamics Research Facility (CSDRF). Next, four important areas of cluster research are described in more detail, including how they can impact environmental problems. These are: surface-supported clusters, water and contaminant interactions, time-resolved dynamic studies in clusters, and cluster structures and reactions. These facilities and equipment required for each area of research are then presented. The appendices contain workshop agenda and a listing of the researchers who participated in the workshop discussions that led to this report

  15. The Meuse-Haute Marne underground research laboratory. A scientific research tool for the study of deep geologic disposal of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    The Meuse-Haute Marne underground research laboratory, is an essential scientific tool for the achievement of one of the ANDRA's mission defined in the framework of the law from December 30, 1991 about the long-term management of high-level and long-living radioactive wastes. This document presents this laboratory: site characterization, characteristics of the Callovo-Oxfordian clay, and laboratory creation, coordinated experiments carried out at the surface and in depth, and the results obtained (published in an exhaustive way in the 'Clay 2005' dossier). (J.S.)

  16. 3D imaging of geological structures by R-VSP utilizing vibrations caused by shaft excavations at the Mizunami Underground Research Laboratory in Japan

    Science.gov (United States)

    Matsuoka, T.; Hodotsuka, Y.; Ishigaki, K.; Lee, C.

    2009-12-01

    Japan Atomic Energy Agency is now conducting the Mizunami Underground Research Laboratory (MIU) project. The MIU consists of two shafts (main shaft: 6.5m, ventilation shaft: 4.5m diameter) and horizontal research galleries, in sedimentary and granitic rocks at Mizunami City, Central Japan. The MIU project is a broad scientific study of the deep geological environment providing the basis for research and development for geological disposal of high level radioactive waste. One of the main goals is to establish techniques for investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. As a part of the MIU project, we carried out the Reverse-Vertical Seismic Profile (R-VSP) using vibrations from the blasting for the shaft excavations and drilling of boreholes in the horizontal research galleries and examined the applicability of this method to imaging of geological structures around underground facilities, such as the unconformity between the sedimentary rocks and the basal granite, and faults and fracture zones in the granite. R-VSP method is a seismic method utilizing the receiver arrays on surface and seismic sources underground (e.g. in boreholes). This method is advantageous in that planning of 3-dimensional surveys is easy compared with reflection seismic surveying and conventional VSP because seismic source arrays that are major constraint for conducting surveys on surface are unnecessary. The receiver arrays consist of six radial lines on surface with a central focus on the main shaft. Seven blast rounds for the main shaft excavation from GL-52.8m to GL-250m and the borehole drilling in the GL-200m horizontal research gallery were observed. Three types of data processing, conventional VSP data processing (VSP-CDP transform and VSP migration), Reflection data processing utilizing Seismic interferometry method (“Seismic interferometry”) and Reflection mapping utilizing Image Point transform method (“IP transform

  17. Confinement Physics Research Facility/ZTH: A progress report

    International Nuclear Information System (INIS)

    Hammer, C.F.; Thullen, P.

    1989-01-01

    In October 1985 the Los Alamos National Laboratory's Controlled Thermonuclear Research (CTR) Division began the design and construction of the Confinement Physics Research Facility (CPRF) and the ZTH toroidal, reversed-field-pinch (RFP), plasma physics experiment. The CPRF is a facility which will provide the buildings, utilities, pulsed power system, control system and diagnostics needed to operate a magnetically confined fusion experiment, and ZTH will be the first experiment operated in the facility. The construction of CPRF/ZTH is scheduled for completion in the first quarter of 1993. 5 figs

  18. Public Facilities Management and Action Research for Sustainability

    DEFF Research Database (Denmark)

    Galamba, Kirsten Ramskov

    Current work is the main product of a PhD study with the initial working title ‘Sustainable Facilities Management’ at Centre for Facilities Management – Realdania Research, DTU Management 1. December 2008 – 30. November 2011. Here the notion of Public Sustainable Facilities Management (FM......) is analysed in the light of a change process in a Danish Municipal Department of Public Property. Three years of Action Research has given a unique insight in the reality in a Municipal Department of Public Property, and as to how a facilitated change process can lead to a more holistic and sustainable...

  19. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  20. Decontamination Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Choi, W. K.; Jung, C. H.; Oh, W. Z.

    2007-06-01

    The originative CO 2 pellet blasting equipment was developed by improving additional components such as feed screw, idle roller and air-lock feeder to clear up the problems of freezing and discontinuity of blasting and by adopting pneumatically operated vacuum suction head and vacuum cup to prevent recontamination by collecting contaminant particulates simultaneously with the decontamination. The optimum decontamination process was established according to the kind of materials such as metal, concrete and plastic and the type of contaminants such as particulate, fixed chemical compound and oil. An excellent decontamination performances were verified by means of the lab-scale hot test with radioactive specimen and the technology demonstration in IMEF hot cell. The PFC dry decontamination equipment applicable to the surface contaminated with high radioactive particulate was developed. This equipment consists of the unit processes such as spray, collection, filtration and dry distillation designed originatively applicable to inside of dry hot cell. Through the demonstration of PFC spray decontamination process in IMEF hot cell, we secured on-site applicability and the decontamination efficiency more than 90 %. We investigated the characteristics of dismantled metal waste melting and the radionuclide(Co, Cs, U) distribution into ingot and slag by melting decontamination experiments using electric arc melter. We obtained the decontamination factors greater than 100 for Cs and of 10∼100 for uranium. The pilot scale(200 kg/batch) demonstration for melting decontamination was carried out successfully using high temperature melting facility at KAERI. The volume reduction factor of 1/7 and the economical feasibility of the melting decontamination were verified.

  1. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Morneau, Rachel Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-09

    This report describes the US Stockpile Stewardship Program which is meant to sustain and evaluate nuclear weapon stockpile with no underground nuclear tests. This research will focus on DARHT, the Dual Axis Radiographic Hydrodynamic Test facility.

  2. ARM Climate Research Facility Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  3. Leak testing requirements at a research facility

    International Nuclear Information System (INIS)

    Conner, J.B.

    1979-01-01

    Since September, 1952, Lawrence Livermore Laboratory has conducted pioneering research in applied science. A vital part of this activity has been the development of a variety of high vacuum and ultrahigh vacuum systems. Leaks occur in everything, including vacuum systems. The mass spectrometer leak detection equipment is described

  4. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  5. Dispersion fuel for nuclear research facilities

    International Nuclear Information System (INIS)

    Kushtym, A.V.; Belash, M.M.; Zigunov, V.V.; Slabospitska, O.O.; Zuyok, V.A.

    2017-01-01

    Designs and process flow sheets for production of nuclear fuel rod elements and assemblies TVS-XD with dispersion composition UO_2+Al are presented. The results of fuel rod thermal calculation applied to Kharkiv subcritical assembly and Kyiv research reactor VVR-M, comparative characteristics of these fuel elements, the results of metallographic analyses and corrosion tests of fuel pellets are given in this paper

  6. Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France

    Science.gov (United States)

    Delay, Jacques; Rebours, Hervé; Vinsot, Agnès; Robin, Pierre

    Andra, the French National Radioactive Waste Management Agency, is constructing an underground test facility to study the feasibility of a radioactive waste disposal in the Jurassic-age Callovo-Oxfordian argillites. This paper describes the processes, the methods and results of a scientific characterization program carried out from the surface via deep boreholes with the aim to build a research facility for radioactive waste disposal. In particular this paper shows the evolution of the drilling programs and the borehole set up due to the refinement of the scientific objectives from 1994 to 2004. The pre-investigation phase on the Meuse/Haute-Marne site started in 1994. It consisted in drilling seven scientific boreholes. This phase, completed in 1996, led to the first regional geological cross-section showing the main geometrical characteristics of the host rock. Investigations on the laboratory site prior to the sinking of two shafts started in November 1999. The sinking of the shafts started in September 2000 with the auxiliary shaft completed in October 2004. The experimental gallery, at a depth of 445 m in the main shaft, was in operation by end 2004. During the construction of the laboratory, two major scientific programs were initiated to improve the existing knowledge of the regional hydrogeological characteristics and to accelerate the process of data acquisition on the shales. The aim of the 2003 hydrogeological drilling program was to determine, at regional scale, the properties of groundwater transport and to sample the water in the Oxfordian and Dogger limestones. The 2003-2004 programs consisted in drilling nine deep boreholes, four of which were slanted, to achieve an accurate definition of the structural features.

  7. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  8. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  9. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  10. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  11. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  12. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  13. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  14. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  15. Deeper underground

    Energy Technology Data Exchange (ETDEWEB)

    Brearley, D. [Pantek Ltd. (United Kingdom)

    2005-12-01

    The paper describes how efficient data gathering has led to production and uptime improvements in UK Coal's Daw Mill colliery in Warwickshire. Software called FactorySuite A{sup 2} from Wonderware is being used to control and monitor all underground production and conveying. 3 photos.

  16. The Safety and Tritium Applied Research (STAR) Facility: Status-2004

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Pawelko, R.J.; Sharpe, J.P.; Schuetz, S.T.; Petti, D.A.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) Facility, a US DOE National User Facility at the Idaho National Engineering and Environmental Laboratory (INEEL), comprises capabilities and infrastructure to support both tritium and non-tritium research activities important to the development of safe and environmentally friendly fusion energy. Research thrusts include (1) interactions of tritium and deuterium with plasma-facing-component (PFC) materials, (2) fusion safety issues [PFC material chemical reactivity and dust/debris generation, activation product mobilization, tritium behavior in fusion systems], and (3) molten salts and fusion liquids for tritium breeder and coolant applications. This paper updates the status of STAR and the capabilities for ongoing research activities, with an emphasis on the development, testing and integration of the infrastructure to support tritium research activities. Key elements of this infrastructure include a tritium storage and assay system, a tritium cleanup system to process glovebox and experiment tritiated effluent gases, and facility tritium monitoring systems

  17. Ultrasonic testing of a sealing construction made of salt concrete in an underground disposal facility for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Martin; Effner, Ute Antonie; Milmann, Boris; Voelker, Christoph; Wiggenhauser, Herbert [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany); Mauke, Ralf [The Federal Office for Radiation Protection, Salzgitter (Germany)

    2015-07-01

    For the closure of radioactive waste disposal facilities engineered barriers- so called ''drift seals'' are used. The purpose of these barriers is to constrain the possible infiltration of brine and to prevent the migration of radionuclides into the biosphere. In a rock salt mine a large scale in-situ experiment of a sealing construction made of salt concrete was set up to prove the technical feasibility and operability of such barriers. In order to investigate the integrity of this structure, non-destructive ultrasonic measurements were carried out. Therefore two different methods were applied at the front side of the test-barrier: 1 Reflection measurements from boreholes 2 Ultrasonic imaging by means of scanning ultrasonic echo methods This extended abstract is a short version of an article to be published in a special edition of ASCE Journal that will briefly describe the sealing construction, the application of the non-destructive ultrasonic measurement methods and their adaptation to the onsite conditions -as well as parts of the obtained results. From this a concept for the systematic investigation of possible contribution of ultrasonic methods for quality assurance of sealing structures may be deduced.

  18. The Deep Underground Science and Engineering Laboratory at Homestake

    Energy Technology Data Exchange (ETDEWEB)

    Lesko, Kevin T [Department of Physics, University of California Berkeley and the Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS50R5239, Berkeley, CA 94720-8146 (United States)], E-mail: KTLesko@lbl.gov

    2008-11-01

    The National Science Foundation and the international underground science community are well into establishing a world-class, multidisciplinary Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake mine in Lead South Dakota. The NSF's review committee, following the first two NSF solicitations, selected the Homestake Proposal and site as the prime location to be developed into an international research facility. Homestake DUSEL will provide much needed underground research space to help relieve the worldwide shortage, particularly at great depth, and will develop research campuses at several different depths to satisfy the research requirements for the coming decades. The State of South Dakota has demonstrated remarkable support for the project and has secured the site with the transfer from the Homestake Mining Corp. The State, through its Science and Technology Authority with state funds and those of a philanthropic donor has initiated rehabilitation of the surface and underground infrastructure including the Ross and Yates hoists accessing the 4850 Level (feet below ground, 4100 to 4200 mwe). The scientific case for DUSEL and the progress in establishing the preliminary design of the facility and the associated suite of experiments to be funded along with the facility by the NSF are presented.

  19. Horonobe Underground Research Laboratory project. Synthesis of phase II (construction phase) investigations to a depth of 350 m

    International Nuclear Information System (INIS)

    Sato, Toshinori; Sasamoto, Hiroshi; Ishii, Eiichi; Matsuoka, Toshiyuki; Hayano, Akira; Miyakawa, Kazuya; Fujita, Tomoo; Tanai, Kenji; Nakayama, Masashi; Takeda, Masaki; Yokota, Hideharu; Aoyagi, Kazuhei; Ohno, Hirokazu; Shigeta, Naotaka; Hanamuro, Takahiro; Ito, Hiroaki

    2017-03-01

    The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formations at Horonobe, northern Hokkaido. The project consists of two major research areas, 'Geoscientific Research' and 'R and D on Geological Disposal', and proceeds in three overlapping phases, 'Phase I: Surface-based investigation', 'Phase II: Construction' and 'Phase III: Operation', over a period of 20 years. This report summarizes the results of the Phase II investigations carried out from April 2005 to June 2014 to a depth of 350 m. Integration of work from different disciplines into a 'geosynthesis' ensures that the Phase II goals have been successfully achieved and identifies key issues that need to be addressed in the Phase II investigations. Efforts are made to summarize as many lessons learnt from the Phase II investigations and other technical achievements as possible to form a 'knowledge base' that will reinforce the technical basis for both implementation and the formulation of safety regulations. (author)

  20. Progress towards a new Canadian irradiation-research facility

    International Nuclear Information System (INIS)

    Lee, A.G.; Lidstone, R.F.

    1993-01-01

    As reported at the second meeting of the International Group on Research Reactors, Atomic Energy of Canada Limited (AECL) is evaluating its options for future irradiation facilities. During the past year significant progress has been made towards achieving consensus on the irradiation requirements for AECL's major research programs and interpreting those requirements in terms of desirable characteristics for experimental facilities in a research reactor. The next stage of the study involves identifying near-term and long-term options for irradiation-research facilities to meet the requirements. The near-term options include assessing the availability of the NRU reactor and the capabilities of existing research reactors. The long-term options include developing a new irradiation-research facility by adapting the technology base for the MAPLE-X10 reactor design. Because materials testing in support of CANDU power reactors dominates AECL's irradiation requirements, the new reactor concept is called the MAPLE Materials Testing Reactor (MAPLE-MTR). Parametric physics and engineering studies are in progress on alternative MAPLE-MTR configurations to assess the capabilities for the following types of test facilities: - fast-neutron sites, that accommodate materials-irradiation assemblies, - small-diameter vertical fuel test loops that accommodate multielement assemblies, - large-diameter vertical fuel test loops, each able to hold one or more CANDU fuel bundles, - horizontal test loops, each able to hold full-size CANDU fuel bundles or small-diameter multi-element assemblies, and - horizontal beam tubes

  1. Radiation monitoring in high energy research facility

    International Nuclear Information System (INIS)

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  2. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  3. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  4. Irradiation Facilities of the Takasaki Advanced Radiation Research Institute

    Directory of Open Access Journals (Sweden)

    Satoshi Kurashima

    2017-03-01

    Full Text Available The ion beam facility at the Takasaki Advanced Radiation Research Institute, the National Institutes for Quantum and Radiological Science and Technology, consists of a cyclotron and three electrostatic accelerators, and they are dedicated to studies of materials science and bio-technology. The paper reviews this unique accelerator complex in detail from the viewpoint of its configuration, accelerator specification, typical accelerator, or irradiation technologies and ion beam applications. The institute has also irradiation facilities for electron beams and 60Co gamma-rays and has been leading research and development of radiation chemistry for industrial applications in Japan with the facilities since its establishment. The configuration and utilization of those facilities are outlined as well.

  5. Fiscal 1981 Sunshine Project research report. Research on underground reinjection mechanism of hot water; 1981 nendo nessui no chika kangen mechanism no chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This report summarizes the fiscal 1981 research result on the behavior and flow mechanism of underground reinjected hot water, and the effect of reinjected hot water on the ground. In the tracer survey in Takinoue area, Iwate prefecture, the re-upwelling rate and mixing rate of reinjected hot water were lower than those in previous surveys, showing the smaller effect of hot water on productivity. In Nigori-Gawa area, Hokkaido, natural conditions prior to industrial production and reinjection were observed by tracer survey. In the simulation research, it was confirmed that the hydraulic structural model and analysis technique established by previous researches are effective for new production and reinjection systems different from previous ones enough. On observation of minute earthquakes, study was made on the effect of reinjected hot water on the ground in Takinoue area. In Nigori-Gawa area, the data were collected under natural conditions prior to industrial production and reinjection through minute earthquake observations. (NEDO)

  6. Radwaste requirements at a biomedical research facility

    International Nuclear Information System (INIS)

    Brannegan, D.P.; Wolter, W.; Merenda, J.M.; Figdor, S.K.

    1993-01-01

    The low-level radioactive waste (LLRW) federal legislation that was passed during the 1980s was intended to provide an orderly system of LLRW disposal as the country's three waste sites proceeded toward excluding out-of-state generators. The system was based on a regional interstate compact system. As originally envisioned, several contiguous states were to form an association (compact) with one state receiving radwaste from the compact. Everyone is aware of the difficulties that followed as attempts were made to implement these laws and to meet the prescribed milestones to avoid financial penalties. Although the states (compacts) have labored for over 12 yr along this rocky road, no compact has developed and licensed a new disposal site prior to the January 1, 1993 deadline. A recent report by the Center for the Study of American Business at Washington University in St. Louis states that open-quotes The current regional interstate compact system for disposal of low-level radioactive waste is fatally flawed on both technical and practical political grounds.close quotes Thus, the system has broken down and the three original LLRW sites closed their gates (with the possible exception of Barnwell) as planned on January 1, 1993. It would appear that the fate of LLRW will be the same as that of high-level waste (HLW); it will be stored at the site of the generator until a solution to the problem is found. For the nonutility generator, storage is an entirely new problem. It must be appreciated that almost all nonutility generators are in the business of research or medical treatment and not in the business of storing LLRW. Thus, storage represents a new turn of events and a new aspect of doing business. It also means the diversion of limited resources to a problem that should not exist. Lastly, on-site LLRW storage for the nonutility generator will also require additional regulatory approval for the handling, storage, and ongoing monitoring of this waste

  7. Remote operations in a Fusion Engineering Research Facility (FERF)

    International Nuclear Information System (INIS)

    Doggett, J.N.

    1975-01-01

    The proposed Fusion Engineering Research Facility (FERF) has been designed for the test and evaluation of materials that will be exposed to the hostile radiation environment created by fusion reactors. Because the FERF itself must create a very hostile radiation environment, extensive remote handling procedures will be required as part of its routine operations as well as for both scheduled and unscheduled maintenance. This report analyzes the remote-handling implications of a vertical- rather than horizontal-orientation of the FERF magnet, describes the specific remote-handling facilities of the proposed FERF installation and compares the FERF remote-handling system with several other existing and proposed facilities. (U.S.)

  8. A new facility for advanced rocket propulsion research

    Science.gov (United States)

    Zoeckler, Joseph G.; Green, James M.; Raitano, Paul

    1993-06-01

    A new test facility was constructed at the NASA Lewis Research Center Rocket Laboratory for the purpose of conducting rocket propulsion research at up to 8.9 kN (2000 lbf) thrust, using liquid oxygen and gaseous hydrogen propellants. A laser room adjacent to the test cell provides access to the rocket engine for advanced laser diagnostic systems. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods, with rapid turnover between programs. These capabilities make the new test facility an important asset for basic and applied rocket propulsion research.

  9. A safety decision analysis for Saudi Arabian nuclear research facility

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Abdul-Fattah, A.F.

    1985-01-01

    Establishment of a nuclear research facility should be the first step in planning for introducing the nuclear energy to Saudi Arabia. The fuzzy set decision theory is selected among different decision theories to be applied for this analysis. Four research reactors from USA are selected for the present study. The IFDA computer code, based on the fuzzy set theory is applied. Results reveal that the FNR reactor is the best alternative for the case of Saudi Arabian nuclear research facility, and MITR is the second best. 17 refs

  10. Seven layers of security to help protect biomedical research facilities.

    Science.gov (United States)

    Mortell, Norman

    2010-04-01

    In addition to risks such as theft and fire that can confront any type of business, the biomedical research community often faces additional concerns over animal rights extremists, infiltrations, data security and intellectual property rights. Given these concerns, it is not surprising that the industry gives a high priority to security. This article identifies security threats faced by biomedical research companies and shows how these threats are ranked in importance by industry stakeholders. The author then goes on to discuss seven key 'layers' of security, from the external environment to the research facility itself, and how these layers all contribute to the creation of a successfully secured facility.

  11. Rokibaar Underground = Rock bar Underground

    Index Scriptorium Estoniae

    2008-01-01

    Rokibaari Underground (Küütri 7, Tartu) sisekujundus, mis pälvis Eesti Sisearhitektide Liidu 2007. a. eripreemia. Sisearhitekt: Margus Mänd (Tammat OÜ). Margus Männist, tema tähtsamad tööd. Plaan, 5 värv. vaadet, foto M. Männist

  12. Facilities for Research and Development of Medical Radioisotopes

    International Nuclear Information System (INIS)

    Shin, Byung Chul; Choung, Won Myung; Park, Jin Ho

    2003-03-01

    This study is carried out by KAERI(Korea Atomic Energy Research Institute) to construct the basic facilities for development and production of medical radioisotope. For the characteristics of radiopharmaceuticals, the facilities should be complied with the radiation shield and GMP(Good Manufacturing Practice) guideline. The KAERI, which has carried out the research and development of the radiopharmaceuticals, made a design of these facilities and built them in the HANARO Center and opened the technique and facilities to the public to give a foundation for research and development of the radiopharmaceuticals. In the facilities, radiation shielding utilities and GMP instruments were set up and their operating manuals were documented. Every utilities and instruments were performed the test to confirm their efficiency and the approval for use of the facilities will be achieved from MOST(Ministry of Science and Technology). It is expected to be applied in development of therapeutic radioisotope such as Re-188 generator and Ho-166, as well as Tc-99m generator and Sr-89 chloride for medical use. And it also looks forward to the contribution to the related industry through the development of product in high demand and value

  13. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  14. Underground Politics

    DEFF Research Database (Denmark)

    Galis, Vasilis; Summerton, Jane

    Public spaces are often contested sites involving the political use of sociomaterial arrangements to check, control and filter the flow of people (see Virilio 1977, 1996). Such arrangements can include configurations of state-of-the-art policing technologies for delineating and demarcating borders...... status updates on identity checks at the metro stations in Stockholm and reports on locations and time of ticket controls for warning travelers. Thus the attempts by authorities to exert control over the (spatial) arena of the underground is circumvented by the effective developing of an alternative...... infrastructural "underground" consisting of assemblages of technologies, activists, immigrants without papers, texts and emails, homes, smart phones and computers. Investigating the embedded politics of contested spatial arrangements as characteristic of specific societies one can discover not only the uses...

  15. Underground space planning in Helsinki

    Directory of Open Access Journals (Sweden)

    Ilkka Vähäaho

    2014-10-01

    Full Text Available This paper gives insight into the use of underground space in Helsinki, Finland. The city has an underground master plan (UMP for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainable and aesthetically acceptable landscape, anticipated structural longevity and maintaining the opportunity for urban development by future generations. Underground planning enhances overall safety and economy efficiency. The need for underground space use in city areas has grown rapidly since the 21st century; at the same time, the necessity to control construction work has also increased. The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term. The plan also provides the framework for managing and controlling the city's underground construction work and allows suitable locations to be allocated for underground facilities. Tampere, the third most populated city in Finland and the biggest inland city in the Nordic countries, is also a good example of a city that is taking steps to utilise underground resources. Oulu, the capital city of northern Finland, has also started to ‘go underground’. An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed. A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.

  16. The use of HANDIDET reg-sign non-electric detonator assemblies to reduce blast-induced overpressure at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W.

    1996-01-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD reg-sign non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure

  17. The use of HANDIDET{reg_sign} non-electric detonator assemblies to reduce blast-induced overpressure at AECL`s Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W. [AECL, Pinawa, Manitoba (Canada). Underground Research Lab.; Proudfoot, D.F. [ICI Explosives Canada, North Delta, British Columbia (Canada)

    1996-12-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada`s nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD{reg_sign} non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure.

  18. Fundamental study on REV based on crack tensor at the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Tanno, Takeo; Sato, Toshinori; Sanada, Hiroyuki; Hikima, Ryoichi; Kumasaka, Hiroo; Tada, Hiroyuki

    2013-01-01

    The crack tensor model which is a kind of equivalent continuum model has been studied in rock mechanical investigation in the MIU. The fractured rock mass is modeled as the elastic continuum model with this crack tensor. In this study, this crack tensor based on the geological observation in the MIU project was calculated, and Representative Elementary Volume (REV) in the ventilation shaft and -300 m access/research gallery was studied based on the relative error of this crack tensor. As a result, the convergence of the relative error was faster in the -300 m access/research gallery than in the ventilation shaft. (author)

  19. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  20. FAIR - Facility, Research Program and Status of the Project

    International Nuclear Information System (INIS)

    Majka, Z.

    2011-01-01

    The international Facility for Antiproton and Ion Research (FAIR) in Europe will provide a worldwide science community with a unique and technically innovative accelerator system to perform forefront research in the sciences concerned with the basic structure of matter, and in intersections with other fields. The facility will deliver an extensive range of primary and secondary particle beams from protons and their antimatter partners, antiprotons, to ion beams of all chemical elements up to the heaviest, uranium, with in many respects unique properties and intensities. The paper will include overview of the new facility design and research programs to be carried out there. The current status of the FAIR project will be also presented. (author)

  1. Underground risk management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, S.; Inoue, M.; Sakai, T.

    2006-03-15

    JCOAL has conducted Joint Research on an Underground Communication and Risk Management Information System with CSIRO of Australia under a commissioned study project for the promotion of coal use starting in fiscal 2002. The goal of this research project is the establishment of a new Safety System focusing on the comprehensive risk management information system by the name of Nexsys. The main components of the system are the Ethernet type underground communication system that represents the data communication base, and the risk management information system that permits risk analysis in real-time and provides decision support based on the collected data. The Nexsys is an open system and is a core element of the underground monitoring system. Using a vast amount of underground data, it is capable of accommodating a wide range of functions that were not available in the past. Because of it, it is possible to construct an advanced underground safety system. 14 figs., 4 tabs.

  2. Earthquake research for the safer siting of critical facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cluff, J.L. (ed.)

    1980-01-01

    The task of providing the necessities for living, such as adequate electrical power, water, and fuel, is becoming more complicated with time. Some of the facilities that provide these necessities would present potential hazards to the population if serious damage were to occur to them during earthquakes. Other facilities must remain operable immediately after an earthquake to provide life-support services to people who have been affected. The purpose of this report is to recommend research that will improve the information available to those who must decide where to site these critical facilities, and thereby mitigate the effects of the earthquake hazard. The term critical facility is used in this report to describe facilities that could seriously affect the public well-being through loss of life, large financial loss, or degradation of the environment if they were to fail. The term critical facility also is used to refer to facilities that, although they pose a limited hazard to the public, are considered critical because they must continue to function in the event of a disaster so that they can provide vital services.

  3. In-pile experimental facility needs for LMFR safety research

    International Nuclear Information System (INIS)

    Kawata, Norio; Niwa, Hajime

    1994-01-01

    Although the achievement of the safety research during the past years has been significant, there still exists a strong need for future research, especially when there is prospect for future LMFR commercialization. In this paper, our current views are described on future research needs especially with a new in-pile experimental facility. The basic ideas and progress are outlined of a preliminary feasibility study. (author)

  4. Site-specific standard request for Underground Storage Tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility Buildings 9754-1 and 9720-15

    International Nuclear Information System (INIS)

    1994-08-01

    This document is a site-specific standard request for underground storage tanks located at the Rust Garage Facility. These standards are justified based on conclusion derived from the exposure assessment that indicates there is no current or forseeable future human health risk associated with petroleum contaminants on the site, that current and future ecological risks would be generally limited to subsurface species and plant life with roots extending into the area, and that most of the impacted area at the site is covered by asphalt or concrete. The vertical and horizontal extent of soil and ground water contamination are limited to immediate area of the Rust Garage Facility

  5. Factors controlling the population size of microbes in groundwater from AECL's Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stroes-Gascoyne, S.; Hamon, C. [Atomic Energy of Canada Limited, Whiteshell Labs., Pinawa, Manitoba (Canada); Mills, K. [University of Saskatoon, Saskatoon, SK (Canada); Rana, S.; Vaidyanathan, S. [Deep River Science Academy, Whiteshell Campus Summer 1997, Pinawa, Manitoba (Canada)

    2001-01-01

    Microbial populations in groundwaters from AECL's Underground Research Laboratory (URL) range from 10{sup 3} to 10{sup 5} cells/mL. Based on the total dissolved organic carbon (DOC), nitrate and phosphate content of these waters, populations of about 10{sup 5} to 10{sup 7} cells/mL should be possible. Upon storage of groundwater samples, total cell counts generally increase and viable cell counts always increase. A study was undertaken to determine what controls the in situ microbial population size in groundwater and what causes this population to grow upon sampling. Fresh URL groundwater was filter-sterilized, inoculated with small quantities of the unaltered water and incubated in the absence and presence of added nutrients (nitrate, phosphate and glucose). Unfiltered groundwater and R2A growth medium inoculated with unaltered groundwater, were also incubated. Microbial changes over time were followed by total and viable (on R2A medium) cell counts. Results showed that in the absence of any nutrient addition, populations grew to between 5 x 10{sup 5} to 4 x 10{sup 6} cells/mL, regardless of the initial size of the population ({approx}10{sup 1} to 10{sup 4} cells/mL), suggesting that nutrients for growth were available in the unamended groundwater. It was hypothesized that the original groundwater population was in 'equilibrium' with the underground environment, which likely included a large population of sessile cells in biofilms on fracture surfaces. Sampling of the groundwater removed the large demand on nutrient supplies by the sessile population which subsequently allowed the planktonic population to grow to a new 'equilibrium' with the available nutrients in the sample bottles. Addition of single nutrients (C, N or P) did not increase cell numbers, suggesting that more than one nutrient is limiting growth. Glucose was used very efficiently aerobically in the presence of both added N and P, but somewhat less under anaerobic

  6. New numerical modelling of the mechanical long-term behaviour of the GMR gallery in ANDRA's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Blanco Martin, L.; Hadj-Hassen, F.; Tijani, M.; Armand, G.

    2011-01-01

    This paper deals with a new macroscopic numerical modelling of the mechanical long-term behaviour of ANDRA's Underground Research Laboratory. The study focuses on the GMR gallery, oriented along the minor horizontal principal stress and located at the main level 490 m deep. The simulations are made using the finite element method (FEM).Convergence measurements in this gallery exhibit an important dis-symmetry between the vertical and horizontal directions, as well as a significant time effect in the vertical trend. In attempts to both understand the phenomena that lie beneath such dis-symmetry and reproduce the experimental data, a modification to Lemaitre's creep law has been proposed. The new viscoplastic law takes into account the following aspects: rock transverse isotropy, creep behaviour and rock expansion. The excavation history of the GMR gallery has also been considered in the numerical modelling. The numerical results are very satisfactory for the GMR drift. However, the mechanisms of anisotropic shear and expansion on which the new law is based do not lead to an accurate reproduction of the data measured in the galleries oriented in the perpendicular direction. Therefore, a thorough insight into the mechanical behaviour of the rock mass and into the proposed new law is needed before the latter can be applied to the Callovo-Oxfordian layer. (authors)

  7. Multinational underground nuclear parks

    Energy Technology Data Exchange (ETDEWEB)

    Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  8. New research facilities at the University of Missouri research reactor

    International Nuclear Information System (INIS)

    McKibben, J.C.; Rhyne, J.J.

    1992-01-01

    The University of Missouri-Columbia is investing its resources for a significant expansion of the research capabilities and utilization of MURR to provide it the opportunity to deliver on its obligation to become the nation's premier educational institution in nuclear-related fields and so that it can provide scientific personnel and a state-of-the-art research test bed to support the national need for highly trained graduates in nuclear science and engineering

  9. Bure's underground research laboratory: general framework, objectives, siting process and schedule of the URL project

    International Nuclear Information System (INIS)

    Gaussen, J.L.

    2001-01-01

    Bure URL project is one of the components of the French research program dedicated to the study of HLLLW (High Level Long Lived Radioactive Waste) disposal in geologic repository within the framework of the 1991 Radioactive Waste Act. Pursuant to the said act, the objective of the URL project is to participate in the ''evaluation of options for retrievable or non- retrievable disposal in deep geologic formations''. More precisely, the goal of this URL, which is situated 300 km East of Paris, is to gain a better knowledge of a site capable of hosting a geologic repository. (author)

  10. Decommissioning of small medical, industrial and research facilities

    International Nuclear Information System (INIS)

    2003-01-01

    Most of the technical literature on decommissioning addresses the regulatory, organizational, technical and other aspects for large facilities such as nuclear power plants, reprocessing plants and relatively large prototype, research and test reactors. There are, however, a much larger number of licensed users of radioactive material in the fields of medicine, research and industry. Most of these nuclear facilities are smaller in size and complexity and may present a lower radiological risk during their decommissioning. Such facilities are located at research establishments, biological and medical laboratories, universities, medical centres, and industrial and manufacturing premises. They are often operated by users who have not been trained or are unfamiliar with the decommissioning, waste management and associated safety aspects of these types of facility at the end of their operating lives. Also, for many small users of radioactive material such as radiation sources, nuclear applications are a small part of the overall business or process and, although the operating safety requirements may be adhered to, concern or responsibility may not go much beyond this. There is concern that even the minimum requirements of decommissioning may be disregarded, resulting in avoidable delays, risks and safety implications (e.g. a loss of radioactive material and a loss of all records). Incidents have occurred in which persons have been injured or put at risk. It is recognized that the strategies and specific requirements for small facilities may be much less onerous than for large ones such as nuclear power plants or fuel processing facilities, but many of the same principles apply. There has been considerable attention given to nuclear facilities and many IAEA publications are complementary to this report. This report, however, attempts to give specific guidance for small facilities. 'Small' in this report does not necessarily mean small in size but generally modest in terms

  11. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign}) Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.

  12. Safety Research Experiment Facility Project. Conceptual design report. Volume II. Building and facilities

    International Nuclear Information System (INIS)

    1975-12-01

    The conceptual design of Safety Research Experiment Facility (SAREF) site system includes a review and evaluation of previous geotechnical reports for the area where SAREF will be constructed and the conceptual design of access and in-plant roads, parking, experiment-transport-vehicle maneuvering areas, security fencing, drainage, borrow area development and restoration, and landscaping

  13. Management and Development of the RT Research Facilities and Infrastructures

    International Nuclear Information System (INIS)

    Kim, Won Ho; Nho, Young Chang; Kim, Jae Sung

    2009-01-01

    The purpose of this project are to operate the core facilities of the research for the Radiation Technology in stable and to assist the research activities efficiently in the industry, academic, and research laboratory. By developing the infrastructure of the national radio technology industry, we can activate the researching area of the RT and the related industry, and obtain the primary and original technology. The key point in the study of the RT and the assistance of the industry, academic, and research laboratory for the RT area smoothly, is managing the various of unique radiation facilities in our country. The gamma Phytotron and Gene Bank are essential in the agribiology because these facilities are used to preserve and utilize the genes and to provide an experimental field for the environment and biotechnology. The Radiation Fusion Technology research supporting facilities are the core support facilities, and are used to develop the high-tech fusion areas. In addition, the most advanced analytical instruments, whose costs are very high, should be managed in stable and be utilized in supporting works, and the experimental animal supporting laboratory and Gamma Cell have to be maintained in high level and managed in stable also. The ARTI have been developed the 30MeV cyclotron during 2005∼2006, aimed to produce radioisotopes and to research the beam applications as a result of the project, 'Establishment of the Infrastructure for the Atomic Energy Research Expansion', collaborated with the Korea Institute of Radiological and Medical Sciences. In addition, the ARTI is in the progress of establishing cyclotron integrated complex as a core research facility, using a proton beam to produce radioisotopes and to support a various research areas. The measurement and evaluation of the irradiation dose, and irradiation supporting technology of the Good Irradiation Practice(GIP) are essential in various researching areas. One thing to remember is that the publicity

  14. The International Facility for Antiproton and Ion Research FAIR

    International Nuclear Information System (INIS)

    Gutbrod, H. H.

    2008-01-01

    The proposed project FAIR (Facility for Antiproton and Ion Research) is an international accelerator facility of the next generation and will be built as a new company FAIR GmbH next to the site of GSI. About 15 countries have expressed their intention to become shareholders. FAIR builds on the experience and technological developments already made at the existing GSI facility, and at the FAIR partner institutes world wide and incorporates new technological concepts. At its heart is a double ring facility with a circumference of 1100 meters. A system of cooler-storage rings for effective beam cooling at high energies and various experimental halls will be connected to the facility. The existing GSI accelerators - together with the planned proton-linac - serve as injector for the new facility. The double-ring synchrotron will provide ion beams of unprecedented intensities as well as of considerably increased energy. Thereby intense beams of secondary beams - unstable nuclei or antiprotons - can be produced. The system of storage-cooler rings allows the quality of these secondary beams - their energy spread and emittance - to be drastically improved. Moreover, in connection with the double ring synchrotron, an efficient parallel operation of up to four scientific programs can be realized at a time. The project is based on many technological innovations, the most important of which are five beam properties: Highest Beam Intensities, Brilliant Beam Quality, Higher Beam Energies, Highest Beam Power, Parallel Operation

  15. Electronic battlespace facility for research, develoment and engineering

    NARCIS (Netherlands)

    Jense, Hans; Kuijpers, N.H.L.; Elias, R.J.D.

    1997-01-01

    In order to support its research, development and engineering activities in the area of distributed simulation for training and command & control, TNO Physics and Electronics Laboratory has developed (and continues to enhance) an Electronic Battlespace Facility (EBF). This paper presents an overview

  16. Researches on the Constitutive Models of Artificial Frozen Silt in Underground Engineering

    Directory of Open Access Journals (Sweden)

    Yugui Yang

    2014-01-01

    Full Text Available The researches on the mechanical characteristic and constitutive models of frozen soil have important meanings in structural design of deep frozen soil wall. In the present study, the triaxial compression and creep tests have been carried out, and the mechanical characteristic of frozen silt is obtained. The experiment results show that the deformation characteristic of frozen silt is related to confining pressure under conventional triaxial compression condition. The frozen silt presents strain softening in shear process; with increase of confining pressure, the strain softening characteristic gradually decreases. The creep curves of frozen silt present the decaying and the stable creep stages under low stress level; however, under high stress level, once the strain increases to a critical value, the creep strain velocity gradually increases and the specimen quickly happens to destroy. To reproduce the deformation behavior, the disturbed state elastoplastic and new creep constitutive models of frozen silt are developed. The comparisons between experimental results and calculated results from constitutive models show that the proposed constitutive models could describe the conventional triaxial compression and creep deformation behaviors of frozen silt.

  17. Underground disposal of vitrified high level radioactive waste: a review of research and development

    International Nuclear Information System (INIS)

    1982-11-01

    A review has been undertaken of the worldwide status of research and development related to the geological disposal of vitrified high level radioactive waste. The nature and quantities of vitrified high level waste that will arise from nuclear power generation in the UK have been estimated and considered. The safety case for establishing a geological repository would have to be based on predictive models, which could adequately represent the interactions and effects of a wide range of gradual processes and possible sudden events. No detailed repository design has yet been published, but the configuration currently favoured, in the UK and in most other countries, comprises a small number of vertical shafts, from which a network of horizontal tunnels would be excavated. Waste packages would be placed in holes drilled in the floors of the tunnels. The excavation of such a repository in hard crystalline rock, in a thick homogeneous formation of rock salt, or in the less plastic argillaceous formations, appears to be within the scope of present technology. Rock types available in the UK, which are likely to prove suitable for the accommodation of a repository, have been identified. The strategies and programmes for high level waste disposal in other countries have been reviewed. (U.K.)

  18. Underground storage

    Energy Technology Data Exchange (ETDEWEB)

    1965-06-10

    A procedure is described for making an underground storage cavity in a soluble formation. Two holes are drilled, and fluid is pumped into the first hole. This fluid is a non-solute for the formation material. Then pressure is applied to the fluid until the formation is fractured in the direction of the second hole. More non-solute fluid is injected to complete the fracture between the 2 holes. A solute fluid is then circulated between the 2 holes, which results in removal of that part of the formation next to the fracture and the forming of a chamber.

  19. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of 36 Cl and 129 I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  20. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of {sup 36}Cl and {sup 129}I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  1. Detailed description of an SSAC at the facility level for research laboratory facilities

    International Nuclear Information System (INIS)

    Jones, R.J.

    1985-08-01

    The purpose of this document is to provide a detailed description of a system for the accounting for and control of nuclear material in a research laboratory facility which can be used by a facility operator to establish his own system to comply with a national system for nuclear material accounting and control and to facilitate application of IAEA safeguards. The scope of this document is limited to descriptions of the following SSAC elements: (1) Nuclear Material Measurements; (2) Measurement Quality; (3) Records and Reports; (4) Physical Inventory Taking; (5) Material Balance Closing

  2. Research on decommissioning of nuclear facilities (Joint research)

    International Nuclear Information System (INIS)

    Shibahara, Yuji; Morishita, Yoshitsugu; Ishigami, Tsutomu; Yanagihara, Satoshi; Arita, Yuji

    2011-07-01

    To implement a decommissioning project reasonably, it is necessary and important to beforehand evaluate project management data as well as to select an optimum dismantling scenario among various scenarios postulated. Little study on the subject of selecting an optimum scenario has been carried out, and it is one of the most important subjects in terms of decision making. In FY 2009, Japan Atomic Energy Agency and University of Fukui launched the joint research of a decision making method which is important to determine a decommissioning plan. The purpose of the research is to construct a methodology for selecting an optimum dismantling scenario among various scenarios postulated based on calculated results of project management data for FUGEN. Project management data for several dismantling scenarios postulated at FUGEN were evaluated based on actual dismantling work for feed water heater at FUGEN, and an optimum scenario was discussed using the SMART, one of Multi-Criteria Decision Analysis Method. This report describes the results of the joint research in FY 2009. (author)

  3. ARM Climate Research Facility Monthly Instrument Report August 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-09-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ARM Climate Research Facility Instrumentation Status and Information October 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ARM Climate Research Facility Instrumentation Status and Information April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-05-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ARM Climate Research Facility Instrumentation Status and Information January 2010

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-02-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ARM Climate Research Facility Monthly Instrument Report September 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-10-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. ARM Climate Research Facility Instrumentation Status and Information March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-04-19

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  9. ARM Climate Research Facility Monthly Instrument Report May 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-06-21

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  10. ARM Climate Research Facility Instrumentation Status and Information February 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-03-25

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  11. ARM Climate Research Facility Monthly Instrument Report June 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-07-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  12. ARM Climate Research Facility Instrumentation Status and Information December 2009

    Energy Technology Data Exchange (ETDEWEB)

    JW Voyles

    2010-12-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  13. ARM Climate Research Facility Monthly Instrument Report July 2010

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, JW

    2010-08-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  14. Inventory of geochemical sensors available for monitoring an underground site of nuclear waste repository research pathways for new developments

    International Nuclear Information System (INIS)

    Ignatiadis, I.; Gaucher, E.; Buschaert, S.

    2010-01-01

    methodologies and tools for these parameters indicate that today there are not suitable geochemical sensors for monitoring nuclear waste storing systems. On the basis of this report, we are led to propose some realistic pathways of research and development to be initiated or continue to mitigate the lack of geochemical sensors dedicated to the underground storage of nuclear waste. For that purpose, R and D pathways will be (i) the development of geophysical-electrochemical sensors and (ii) the development and manufacture of geochemical sensors made of robust and unalterable material (gold, platinum, glassy carbon). They must possess active principles everlasting, or protected or restored easily. Moreover, solid-state sensors fabricated with a few component of the argillaceous formations (pyrite, raw or purified argillite K119) or silicon semiconductor technology (such as ion sensitive field effect transistors, ISFETs) for measuring pH and interdigitated structures (IDS) for measuring conductivity and redox potential can be designed for use. Response characteristics of these sensors must be tested in aqueous samples with compositions similar to those present inside an underground repository and results were compared with those obtained with commercial electrodes obtaining a good agreement between commercial and the sensors. Electrochemical methods will be in the base of the sensors assessments. These approaches will be consisted in the continuous or semi-continuous analysis of large surface electrodes (pyrite, argillite, ) immersed in solutions with or without oxidant (nitrate, selenate and selenite) or reducer (sulfide, Fe 2+ ). The electrochemical behavior of these electrodes was compared to those of known inert and unattackable electrodes (Pt, Au, glassy carbon) positioned in the same operating conditions. Measurements realized by voltammetry (at open circuit potential and cyclic voltammetry), by Tafel polarization analysis and by electrochemical impedance spectroscopy (EIS

  15. Aseismatic design and safety of nuclear power generation facilities. Research in Central Research Institute of Electric Power Industry

    International Nuclear Information System (INIS)

    1995-01-01

    In order to contribute to the aseismatic design of nuclear power generation facilities, this Research Institute has carried out the observation on the site of buildings in Matsushiro earthquake, the experiment on a large vibration table, the vibration experiment on actual buildings and so on, thus made clear the method of evaluating the dynamic model of buildings and foundation grounds. Also it cooperated in the determination of input earthquake motion which is important for aseismatic design by carrying out the evaluation of the activity of faults the observation of strong earthquakes, and the elucidation and evaluation of the characteristics of earthquake motion. It has made the standard for evaluating the fault activity and the stability in earthquakes of the foundation and surrounding grounds of power stations. The development of new underground location technology, the location on Quaternary grounds and the location on the sea, and the research on developing the aseismatic construction of FBRs are in progress. The survey and evaluation of fault activities, the evaluation of earthquake input, the limit state design of important outdoor structures, the new location technology for nuclear power stations, and the development of the buckling and base isolation design of FBRs are reported. (K.I.)

  16. Procedures for economic distribution of radionuclides in research facilities

    International Nuclear Information System (INIS)

    Perry, N.A.

    1979-01-01

    A radionuclide accountability system for use in a research facility is described. It can be operated manually or adapted for computer use. All radionuclides are ordered, received, distributed and paid for by the Radiological Control Office who keep complete records of date of order, receipt, calibration use, transfer and/or disposal. Wipe leak tests, specific activity and lot number are also recorded. The procedure provides centralized total accountability records, including financial records, of all radionuclide orders, and the economic advantages of combined purchasing. The use of this system in two medical facilities has resulted in considerable financial savings in the first year of operation. (author)

  17. Introducing COSS: A new and unique oil spill research facility

    International Nuclear Information System (INIS)

    Kitchen, R. B.; Bonner, J. S.; Autenrieth, R. L.; Donnelly, K. C.; Ernest, A. N. S.

    1997-01-01

    A new oil spill research facility in Corpus Christi, Texas began operation in April 1997 to address the appropriate use, application and effectiveness of chemical, physical and biological oil spill response agents. The Coastal Oil Spill Simulation (COSS) facility consists of nine meso scale wave tanks and will offer to science and industry a unique opportunity to spill oil in a controlled environment and to study fate, transport and remediation of oil releases in simulated coastal, intertidal, lagunal, channel and porous media. 1 ref

  18. Study on engineering technologies in the Mizunami Underground Research Laboratory (FY 2015). Development of design and construction planning and countermeasure technologies (Contract research)

    International Nuclear Information System (INIS)

    Toguri, Satohito; Kobayashi, Shinji; Tsuji, Masakuni; Yahagi, Ryoji; Yamada, Toshiko; Matsui, Hiroya; Mikake, Shinichiro; Aoyagi, Yoshiaki; Sato, Toshinori

    2017-03-01

    The study on engineering technology in the Mizunami Underground Research Laboratory (MIU) project roughly consists of (1)development of design and construction planning technologies, (2)development of construction technology, (3)development of countermeasure technology, (4)development of technology for security, and (5) development of technologies regarding restoration and mitigating of the excavation effect. So far, the verification of the initial design based on the data obtained during excavation was mainly conducted as a research in the Construction Phase, also the countermeasure technologies to control groundwater inflow were examined as a research in the Operation Phase. In FY2015, as a part of the important issues on the research program, “Development of countermeasure technologies for reducing groundwater inflow” in the Japan Atomic Energy Agency 3rd Midterm Plan, water-tight grouting method has been developed. Grouting methods utilized in the MIU were evaluated and the post-excavation grouting at the -500m Access/Research Gallery-South was planned based on these evaluation results. Also, technology development from the viewpoint of geological disposal was summarized, and information on the alternative method to the grouting method was collected and organized. (author)

  19. The SARAF Project - Soreq Applied Research Accelerator Facility

    International Nuclear Information System (INIS)

    Nagler, A.; Mardor, I.; Berkovits, D.; Piel, C.

    2004-01-01

    The relevance of particle accelerators to society, in the use of their primary and secondary beams for the analysis of physical, chemical and biological samples and for modification of properties of materials, is well recognized and documented. Nevertheless, apart of the construction of small accelerators for nuclear research in the 1960's and 70's, Israel has so far neglected this important and growing field. Furthermore, there is an urgent need in Israel for a state of the art research facility to attract and introduce students to current advanced physics techniques and technologies and to train the next generation of experimental scientists in various branches and disciplines. Therefore, Soreq NRC recently initiated the establishment of a new accelerator facility, named SARAF Soreq Applied Research Accelerator Facility. SARAF will be a continuous wave (CW), proton and deuteron RF superconducting linear accelerator with variable energy (5 - 40 MeV) and current (0.04 -2 mA). SARAF is designed to enable hands-on maintenance, which means that its beam loss will be below 10 -5 for the entire accelerator. These specifications will place SARAF in line with the next generation of accelerators world wide. Soreq expects that this fact will attract the Israeli and international research communities to use this facility extensively. Soreq NRC intends to use SARAF for basic, medical and biological research, and non-destructive testing (NDT). Another major activity will be the research and development of radio-isotopes production techniques. Given the availability of high current (up to 2 mA) protons and deuterons, a major activity will be research and development of high power density (up to 80 kW on a few cm 2 ) irradiation targets

  20. Research Facility for Mechanical Press Closed Gap Adjuster

    Directory of Open Access Journals (Sweden)

    A. A. Ancifirov

    2016-01-01

    Full Text Available The article describes an example of the research facility for closed gap adjustment mechanism based on the KD2128 closed-die forging press. Its rated force with a servo drive used is 630kN. The servo drive consists of a motor with nominal power of 1.57kW and a frequency converter with power of 7.5kW, which has functions of the programmable logic controller.The article notes that such a facility is expedient and useful for practical classes on forging-andstamping machines at the BMSTU Department of «Technology processing by pressure» to demonstrate the capabilities of existing technological facility, learn a design of forging-andstamping machine units, solve the problems of automatic control, monitoring, and diagnostics in blank manufacturing.The article presents a detailed facility diagram of the closed gap adjustment mechanism and its photograph, describes the mechanism and its basic parameters, gives characteristics of the synchronous motor to drive the mechanism, reviews practical works, which the research facility may provide.Based on the four experiments the article estimates an efficiency of the research facilityuse under consideration, especially when modeling a servo motor shaft under the maximum load. The relevant diagrams confirm experimental results, namely: control current, angle of motor shaft and its speed versus time. Thus, upon the diagram analysis it can be noted that the research facility design allows providing kinematics and dynamics of the press closed gap adjuster.This article describes how to determine the closed gap adjusting accuracy of the press. Eight experiments have been conducted to evaluate a working out control signal to the linear movement of the press punch when using the research facility. It is noted that the linear positioning accuracy of the press punch reaches the hundredth parts of a millimeter of the adjustment value that is sufficient to achieve the required precision when performing operations such as

  1. BALU: Largest autoclave research facility in the world

    Directory of Open Access Journals (Sweden)

    Hakan Ucan

    2016-03-01

    Full Text Available Among the large-scale facilities operated at the Center for Lightweight-Production-Technology of the German Aerospace Center in Stade BALU is the world's largest research autoclave. With a loading length of 20m and a loading diameter of 5.8 m the main objective of the facility is the optimization of the curing process operated by components made of carbon fiber on an industrial scale. For this reason, a novel dynamic autoclaving control has been developed that is characterized by peripheral devices to expend the performance of the facility for differential applications, by sensing systems to detect the component state throughout the curing process and by a feedback system, which is capable to intervene into the running autoclave process.

  2. Conceptual design for relocation of the underground monitoring systems to ground surface

    International Nuclear Information System (INIS)

    Toya, Naruhisa; Ogawa, Ken; Iwatsuki, Teruki; Ohnuki, Kenji

    2015-09-01

    One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on a recovery of the geological environment during and after the facility closure. Then it is necessary to plan the observation system which can be use of after the backfill of research tunnels. The main purpose of this report is contribution to the detailed design for relocation of the underground monitoring systems to ground surface. We discussed the restriction and requirement for the underground monitoring systems which can be use of after the backfill. Furthermore, we made the conceptual design for relocation of the current underground monitoring systems to ground surface. (author)

  3. NEW IRRADIATION RESEARCH FACILITIES AT THE ARMY NATICK LABORATORIES

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R. D.; Brynjolfsson, A.

    1963-03-15

    New facilities built by the U. S. Army for research on the preservation of food by ionizing radiation consist of a food processing and packaging facility and a radiation sources laboratory with two powerful low-energy radiation sources. One is a 1.3 million-curie Co/sup 60/ source consisting of 98 tubes each containing four doubly encapsulated Co/sup 60/ slugs. The second source is an electron linear accelerator with energy variable between 2 and 32 Mev. Research with the Co/sup 60/ source is concentrated on investigation of macroscopic and microscopic dose distribution in different materials irradiated with Co/sup 60/ gamma rays. Research with the linear accelerator is concentrated on dosimetry and photonuclear reactions. (A.G.W.)

  4. The reactor and cold neutron research facility at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Prask, H J; Rowe, J M [Reactor Radiation Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1992-07-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D{sub 2}O/H{sub 2}O ice cold source. (author)

  5. The reactor and cold neutron research facility at NIST

    International Nuclear Information System (INIS)

    Prask, H.J.; Rowe, J.M.

    1992-01-01

    The NIST Reactor (NBSR) is a 20 MW research reactor located at the Gaithersburg, MD site, and has been in operation since 1969. It services 26 thermal neutron facilities which are used for materials science, chemical analysis, nondestructive evaluation, neutron standards work, and irradiations. In 1987 the Department of Commerce and NIST began development of the CNRF - a $30M National Facility for cold neutron research -which will provide fifteen new experimental stations with capabilities currently unavailable in this country. As of May 1992, four of the planned seven guides and a cold port were installed, eight cold neutron experimental stations were operational, and the Call for Proposals for the second cycle of formally-reviewed guest-researcher experiments had been sent out. Some details of the performance of instrumentation are described, along with the proposed design of the new hydrogen cold source which will replace the present D 2 O/H 2 O ice cold source. (author)

  6. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  7. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  8. Study on engineering technologies in the Mizunami Underground Research Laboratory. FY 2014. Development of recovery and mitigation technology on excavation damage (Contract research)

    International Nuclear Information System (INIS)

    Fukaya, Masaaki; Hata, Koji; Akiyoshi, Kenji; Sato, Shin; Takeda, Nobufumi; Miura, Norihiko; Uyama, Masao; Kanata, Tsutomu; Ueda, Tadashi; Hara, Akira; Torisu, Seda; Ishida, Tomoko; Sato, Toshinori; Mikake, Shinichiro; Aoyagi, Yoshiaki

    2016-03-01

    The researches on engineering technology in the Mizunami Underground Research Laboratory (MIU) project consist of (1) development of design and construction planning technologies, (2) development of construction technology, (3) development of countermeasure technology, (4) development of technology for security and (5) development of technologies for restoration and/or reduction of the excavation damage. As a part of the second phase of the MIU project, research has been focused on the evaluation of engineering technologies including the initial design based on the data obtained during construction. In this research, examination of the plug applied to the future reflood test was conducted as a part of (5) development of technologies for restoration and/or reduction of the excavation damage relating to the engineering technology in the MIU (2014), specifically focused on (1) plug examination (e.g. functions, structure and material) and the quality control methods and (2) analytical evaluation of rock mass behavior around the plug through the reflood test. As a result, specifications of the plug were determined. These specifications should be able to meet requirements for the safety structure and surrounding rock mass against predicted maximum water pressure, temperature stress and seismic force, and for controlling the groundwater inflow, ensuring the access into the reflood gallery and the penetration performance of measurement cable. Also preliminary knowledge regarding the rock mass behavior around the plug after flooding the reflood gallery by installed plug was obtained. A CD-ROM is attached as an appendix. (J.P.N.)

  9. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  10. Criticality safety research on nuclear fuel cycle facility

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Yoshinori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2004-07-01

    This paper present d s current status and future program of the criticality safety research on nuclear fuel cycle made by Japan Atomic Energy Research Institute. Experimental research on solution fuel treated in reprocessing plant has been performed using two critical facilities, STACY and TRACY. Fundamental data of static and transient characteristics are accumulated for validation of criticality safety codes. Subcritical measurements are also made for developing a monitoring system for criticality safety. Criticality safety codes system for solution and power system, and evaluation method related to burnup credit are developed. (author)

  11. Excavation of shafts and research galleries at the Mizunami Underground Research Laboratory (MIU). Construction progress report, fiscal year 2006

    International Nuclear Information System (INIS)

    2012-12-01

    This progress report presents an outline compilation of construction activities, primary tasks performed, construction progress and problems reported in Fiscal Year 2006. The outline of construction activities is a summary based on the scope of work planned in 2006. The main activities are based on the Tono Geoscience Center weekly reports. The construction progress is based on the planned and actual schedules and the Tono Geoscience Center weekly reports. The problems reported are based on accident reports, natural disasters, nonconformance and defects recorded by the safety manager of the Geoscience Facility Construction Section. Construction plan of the MIU construction project No.2 (started on July 1, 2006) is described in this report. Regarding the plan and actual performance of MIU construction project No.1 (completed on June 30, 2006), it is described in “Construction Progress Report from Fiscal Year 2002 to Fiscal Year 2005(including a part of Fiscal Year 2006)”. The following appendices are attached: construction plan, risk assessment reports, the photos of construction activities and technical specifications of the construction project No.2. (author)

  12. Neutron beam facilities at the replacement research reactor

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: On September 3rd 1997 the Australian Federal Government announced their decision to replace the HIFAR research reactor by 2005. The proposed reactor will be a multipurpose reactor with improved capabilities for neutron beam research and for the production of radioisotopes for pharmaceutical, scientific and industrial use. The neutron beam facilities are intended to cater for Australian scientific needs well into the 21st century. In the first stage of planning the neutron Beam Facilities at the replacement reactor, a Consultative Group was formed (BFCG) to determine the scientific capabilities of the new facility. Members of the group were drawn from academia, industry and government research laboratories. The BFCG submitted their report in April 1998, outlining the scientific priorities to be addressed. Cold and hot neutron sources are to be included, and cold and thermal neutron guides will be used to position most of the instruments in a neutron guide hall outside the reactor confinement building. In 2005 it is planned to have eight instruments installed with a further three to be developed by 2010, and seven spare instrument positions for development of new instruments over the life of the reactor. A beam facilities technical group (BFTG) was then formed to prepare the engineering specifications for the tendering process. The group consisted of some members of the BFCG, several scientists and engineers from ANSTO, and scientists from leading neutron scattering centres in Europe, USA and Japan. The BFTG looked in detail at the key components of the facility such as the thermal, cold and hot neutron sources, neutron collimators, neutron beam guides and overall requirements for the neutron guide hall. The report of the BFTG, completed in August 1998, was incorporated into the draft specifications for the reactor project, which were distributed to potential reactor vendors. An assessment of the first stage of reactor vendor submissions was completed in

  13. Fiscal 1980 Sunshine Project research report. Research on underground reinjection mechanism of hot water; 1980 nendo nessui no chika kangen mechanism no chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report summarizes the fiscal 1980 research result on reinjection mechanism of hot water. In the research in Takinoue area, except one well with drop of nearly 2m, no change in underground water level was observed, and no change in water temperature except seasonal change, no change in river water and no leakage of reinjected hot water were also observed. Quantitative simulation was made on hot water supply from the outside strata to storage strata, features of hydraulic structure, pressure fluctuation and water balance, using tracer test data. In Nigori-Gawa area, no clear change in water level and water temperature was found. Various basic parameter data related to water flow in rocks composing storage strata were obtained by tracer test. In the research on the effect of reinjected hot water on the ground, in Takinoue area, fine earthquake was observed on fault planes, however, the spectral analysis result showed no change in ground condition. The precise survey result showed specific fluctuation during last year. In Nigori-Gawa area, fine earthquake was equivalent to that before development. Vertical and horizontal fluctuations were also observed by precise survey. (NEDO)

  14. Small-scale hot facility for reprocessing and alpha research

    International Nuclear Information System (INIS)

    Abdel-Rassoul, A.A.

    1976-01-01

    The experimental hot facility at Inchas is planned for research activities related to the decontamination of radioactive wastes, analytical chemistry of alpha emitters and chemical treatment of spent UO 2 -Mg fuel samples. The design concept permits safe handling of source materials with radioactivity levels up to 10000Ci. The laboratory includes a reception area, process hall, a number of research laboratories and other facilities for chemical and physical analysis, nuclear measurements and health physics control. The radioactive waste management plant allows for control and decontamination of intermediate- and low-level laboratory effluents. Fixation of radioactive residues will be carried out in the sludge immobilization plant. High-level fission-product waste liquors are subject to preconcentration and transformation to a glassy matrix before ultimate storage. (author)

  15. Recent activities at the ORNL multicharged ion research facility (MIRF)

    International Nuclear Information System (INIS)

    Meyer, F.W.; Bannister, M.E.; Hale, J.W.; Havener, C.C.; Krause, H.F.; Vane, C.R.; Deng, S.; Draganic, I.N.; Harris, P.R.

    2012-01-01

    Recent activities at the ORNL Multicharged Ion Research Facility (MIRF) are summarized. A brief summary of the MIRF high voltage (HV) platform and floating beam line upgrade is provided. An expansion of our research program to the use of molecular ion beams in heavy-particle and electron collisions, as well as in ion surface interactions is described, and a brief description is provided of the most recently added Ion Cooling and Characterization End-station (ICCE) trap. With the expansion to include molecular ion beams, the acronym MIRF for the facility, however, remains unchanged: 'M' can now refer to either 'Multicharged' or 'Molecular'. The paper is followed by the slides of the presentation. (authors)

  16. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  17. ARM Climate Research Facility Quarterly Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, Chitra

    2014-01-14

    The purpose of this report is to provide a concise status update for value-added products (VAP) implemented by the Atmospheric Radiation Measurement Climate Research Facility. The report is divided into the following sections: (1) new VAPs for which development has begun, (2) progress on existing VAPs, (3) future VAPs that have been recently approved, (4) other work that leads to a VAP, and (5) top requested VAPs from the archive.

  18. Basic Design of the Cold Neutron Research Facility in HANARO

    International Nuclear Information System (INIS)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K.

    2005-09-01

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments

  19. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  20. ARM Climate Research Facility Quarterly Ingest Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Koontz, A. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2016-10-01

    The purpose of this report is to provide a concise status update for ingests maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new ingests for which development has begun, (2) progress on existing ingests, (3) future ingests that have been recently approved, (4) other work that leads to an ingest, and (5) top requested ingests from the ARM Data Archive. New information is highlighted in blue text.