WorldWideScience

Sample records for underground pipes prevention

  1. Underground pipe inspection device and method

    Energy Technology Data Exchange (ETDEWEB)

    Germata, Daniel Thomas [Wadsworth, IL

    2009-02-24

    A method and apparatus for inspecting the walls of an underground pipe from inside the pipe in which an inspection apparatus having a circular planar platform having a plurality of lever arms having one end pivotably attached to one side of the platform, having a pipe inspection device connected to an opposite end, and having a system for pivoting the lever arms is inserted into the underground pipe, with the inspection apparatus oriented with the planar platform disposed perpendicular to the pipe axis. The plurality of lever arms are pivoted toward the inside wall of the pipe, contacting the inside wall with each inspection device as the apparatus is conveyed along a length of the underground pipe.

  2. Failure Analysis of Pitted Copper Pipes Used in Underground Water and Preventive Measures

    Science.gov (United States)

    Nam, Gi-ho; Lee, Jong-kwon; Kim, Kyung-ja

    2018-03-01

    This study performed an experiment on the causes of pitting corrosion in a copper tubing used for a sprinkler system. Corrosion products of a copper tubing that sustained pitting corrosion were collected and cultured in Culture medium [Luria-Bertani, Brain heart infusion, Tryptic soy broth (TSB), R2A]. Four types of bacteria were found through identification: Micrococcus luteus sp (species)., Staphylococcus sp., Sphingomonas sp., and Bacillus sp. The copper toxicity test was performed for each microorganism. Among the four microorganisms, Micrococcus luteus sp. showed good growth in the environment containing copper ions. On the immersion test, changes in pH and Optical density were measured; On the inductively coupled plasma optical emission spectrometry test, the copper concentration of each culture medium was measured. The surface of each copper sample was observed using a scanning electron microscope. The corrosion potential of a copper sample, after 48 h exposure of the TSB medium containing Micrococcus luteus sp., was measured using a potentiodynamic polarization experiment. The next experiment was conducted to prevent microbial corrosion by suppressing the growth of microorganisms. Six 30 ml TSB culture media with controlled pH value of 4, 5, 6, 7, 8, and 9 through HCl and NaOH were manufactured. Then the microorganisms were cultured in 37 °C 133 rpm, of which the growth status was checked every 24 h for 3 days. It was found that microorganisms did not grow on culture media with the pH value of 6 and lower. The same experiment conducted on culture media controlled with acetic acid, nitric acid, and sulfuric acid, also showed no growth of microorganisms on media with pH value of 6 and lower. Six 5 ml TSB culture media each containing 0.5, 0.25, 0.125, 0.0625, 0.0312%, and 0.0156% NaOCl and NaOBr as germicides were manufactured. 0.01 μl of microorganisms were inoculated on the media and cultured in 37 °C for 48 h. It was found that microorganisms did not

  3. Pipe locator for imaging underground pipelines (abstract)

    Science.gov (United States)

    Miyamoto, Y.; Wasa, Y.; Mori, K.; Kondo, Y.

    1988-11-01

    Recently, it becomes more important to locate the complex piping patterns such as tee, bend, riser, and the others with high accuracy for maintenance and protection of city gas pipelines. Hence, we have developed a new pipe locator system for imaging the complex underground pipelines using magnetic remote sensing techniques. The main framework of this development is the application of the pattern recognition of the magnetic field distribution to the location of buried pipelines in urban areas. The first step for imaging the complex pipelines is to measure the three-dimensional magnetic field distribution with high accuracy which is generated by the passage of the alternating signal current through buried pipeline. For this purpose a portable trolley unit which is capable of scanning the ground to collect data, the 10 three-axes coil sensors with a sensitivity of 1 μG which are aligned in the unit, and a filter system using a FFT signal processor which eliminates urban magnetic noise as high as 10 mG in some cases, were developed. The second step is to process the magnetic field distribution data, to extract the feature of the underground pipeline using the contour diagram and the three-dimensional drawing of the magnetic field, and to identify the complex piping patterns. Further, we recognized that a nonlinear least-square method algorithm for calculation of the pipeline's position was useful to improve the location accuracy.

  4. Life cycle guideline of petrochemical plant underground piping system

    Directory of Open Access Journals (Sweden)

    Shih Jeng-Ywan

    2017-01-01

    Full Text Available According to statistics of petrochemical plant disaster, the type of underground pipeline leakage is the highest proportion, for example, Kaohsiung gas explosion in 2014 is a typical case. Therefore, improvement strategy of petrochemical plant underground piping system from both engineering and management becomes an important issue. Through reviewing regulations as well as surveying questionnaire, including kinds of piping materials, 3D drawing files, operation procedures, information sharing, etc., the findings show lack contact of integrated management with engineering executive and insufficient technical requirements are major defects. Overviewing current problems of domestic petrochemical plant underground piping system management, and comparing to international criteria and specifications, this research focuses on the of piping design, construction, operations, maintenance, and inspection. Then management procedures and engineering technical feasibility strategies are suggested. In addition, the proposed life cycle guideline in order to reduce the disaster incidence of petrochemical plant underground pipelines.

  5. A Corrosion Risk Assessment Model for Underground Piping

    Science.gov (United States)

    Datta, Koushik; Fraser, Douglas R.

    2009-01-01

    The Pressure Systems Manager at NASA Ames Research Center (ARC) has embarked on a project to collect data and develop risk assessment models to support risk-informed decision making regarding future inspections of underground pipes at ARC. This paper shows progress in one area of this project - a corrosion risk assessment model for the underground high-pressure air distribution piping system at ARC. It consists of a Corrosion Model of pipe-segments, a Pipe Wrap Protection Model; and a Pipe Stress Model for a pipe segment. A Monte Carlo simulation of the combined models provides a distribution of the failure probabilities. Sensitivity study results show that the model uncertainty, or lack of knowledge, is the dominant contributor to the calculated unreliability of the underground piping system. As a result, the Pressure Systems Manager may consider investing resources specifically focused on reducing these uncertainties. Future work includes completing the data collection effort for the existing ground based pressure systems and applying the risk models to risk-based inspection strategies of the underground pipes at ARC.

  6. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, B.J.; Blake, R.G.

    1994-05-01

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  7. In-Pipe Wireless Communication for Underground Sampling and Testing

    NARCIS (Netherlands)

    Nguyen, Nhan D.T.; Le, Duc V.; Meratnia, Nirvana; Havinga, Paul J.M.

    2017-01-01

    In this paper, we present an effective and low- cost wireless communication system for extremely long and narrow pipes that can replay the extant wire system in underground sensor network applications such as soil sampling and testing with the Cone Penetration Test (CPT), the most widely used

  8. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    International Nuclear Information System (INIS)

    Mallon, B.J.; Blake, R.G.

    1994-03-01

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks

  9. Modeling and locating underground water pipe leak with microseismic data

    Science.gov (United States)

    Wang, Jing; Liu, Jiangping; Liu, Hao; Tian, Zhijian; Cheng, Fei

    2017-01-01

    Traditional pipeline leak locating methods require that geophones have to be placed on the pipe wall. While if the exact location of the pipeline is unknown, the leaks may not be identified accurately. To solve this problem, considering the characteristics of pipeline leak, a continuous random seismic source model is proposed and geological models are established. Based on the two dimensional (2D) viscoacoustic equations and the staggered grid finite-difference (FD) algorithm, the microseismic wave field generated by a leaking pipe is modeled. Cross-correlation analysis and the simulated annealing (SA) algorithm are employed to obtain the time difference and the leak location. Analysis and discussions of the effects of number of recorded traces, survey layout, and offset and trace interval on the accuracy of the estimated location are also conducted. Simulation and data field experiment results indicate that: (1) A continuous random source can realistically represent the leak microseismic wave field in a simulation using 2D viscoacoustic equations and staggered grid FD algorithm. (2) For the leak microseismic wave field, the cross-correlation method is effective for calculating time difference of the direct wave relative to the reference trace. However, outside the refraction blind zone, accuracy of the time difference is reduced by the effects of refracted wave. (3) The SA algorithm based upon time difference, helps to identify the leak location effectively, even in the presence of noise. Estimation of the horizontal distance is more accurate than that of the depth, and the locating errors increase with increasing number of traces and offset. Moreover, in the refraction blind zone, trace interval has almost no impact on the accuracy of the location estimate. And the symmetrical array provides a higher estimate accuracy than the asymmetrical array. (4) The acquisition method of time difference based on the microseismic theory and SA algorithm has a great potential

  10. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  11. Risk-based optimization of pipe inspections in large underground networks with imprecise information

    International Nuclear Information System (INIS)

    Mancuso, A.; Compare, M.; Salo, A.; Zio, E.; Laakso, T.

    2016-01-01

    In this paper, we present a novel risk-based methodology for optimizing the inspections of large underground infrastructure networks in the presence of incomplete information about the network features and parameters. The methodology employs Multi Attribute Value Theory to assess the risk of each pipe in the network, whereafter the optimal inspection campaign is built with Portfolio Decision Analysis (PDA). Specifically, Robust Portfolio Modeling (RPM) is employed to identify Pareto-optimal portfolios of pipe inspections. The proposed methodology is illustrated by reporting a real case study on the large-scale maintenance optimization of the sewerage network in Espoo, Finland. - Highlights: • Risk-based approach to optimize pipe inspections on large underground networks. • Reasonable computational effort to select efficient inspection portfolios. • Possibility to accommodate imprecise expert information. • Feasibility of the approach shown by Espoo water system case study.

  12. Evaluation of underground pipe-structure interface for surface impact load

    International Nuclear Information System (INIS)

    Wang, Shen

    2017-01-01

    Highlights: • A simple method is proposed for the evaluation of underground pipelines for surface impact load considering the effect of a nearby pipe-structure interface. • The proposed simple method can be used to evaluate the magnitude of damage within a short period of time after accidental drop occurs. • The proposed method is applied in a practical example and compared by using finite element analysis. - Abstract: Nuclear safety related buried pipelines need to be assessed for the effects of postulated surface impact loads. In published solutions, the buried pipe is often considered within an elastic half space without interference with other underground structures. In the case that a surface impact occurs in short distance from an underground pipe-structure interface, this boundary condition will further complicate the buried pipe evaluation. Neglecting such boundary effect in the assessment may lead to underestimating potential damage of buried pipeline, and jeopardizing safety of the nuclear power plant. Comprehensive analysis of such structure-pipe-soil system is often subjected to availability of state-of-art finite element tools, as well as costly and time consuming. Simple, but practical conservative techniques have not been established. In this study, a mechanics based solution is proposed in order to assess the magnitude of damage to a buried pipeline beneath a heavy surface impact considering the effect of a nearby pipe-structure interface. The proposed approach provides an easy to use tool in the early stage of evaluation before the decision of applying more costly technique can be made by owner of the nuclear facility.

  13. Detection of elastic waves for the leakage locating of underground water supply pipes

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin; Jeong, Jung Chae; Lee, Seung Seok

    2003-01-01

    Leaks in underground pipelines can cause social, environmental and economical problems. One of a good countermeasures of leaks is to find and repair of leak points of pipes. Leak noise is good source to identify the location of leak points of pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they were not so efficient tools. In this paper, two accelerometers are used to detect leak locations which could provide an easier and efficient method. The filtering signal processing and algorithm is described for the detection of leak location. A 120 m-long pipeline system for experiment is installed and the results with the system show that the algorithm with the two accelerometers gives very accurate pinpointing of leaks. Theoretical analysis of sound wave propagation speed in underground pipes is also described.

  14. Detection of elastic waves for the leakage locating of underground water supply pipes

    International Nuclear Information System (INIS)

    Lee, Young Sup; Yoon, Dong Jin; Jeong, Jung Chae; Lee, Seung Seok

    2003-01-01

    Leaks in underground pipelines can cause social, environmental and economical problems. One of a good countermeasures of leaks is to find and repair of leak points of pipes. Leak noise is a good source to identify the location of leak points of pipelines. Although there have been several methods to detect the leak location with leak noise, such as listening rods, hydrophones or ground microphones, they were not so efficient tools. In this paper, two accelerometers are used to detect leak locations which could provide an easier and efficient method. The filtering, signal processing and algorithm is described for the detection of leak location. A 120 m-long pipeline system for experiment is installed and the results with the system show that the algorithm with the two accelerometers gives very accurate pinpointing of leaks. Theoretical analysis of sound wave propagation speed in underground pipes is also described.

  15. Application experience of gas-thermal aluminum coatings to protect the pipes for underground construction and repair of heat networks

    Science.gov (United States)

    Kolpakov, A. S.

    2013-11-01

    Questions of sacrificial protection for pipes of underground heat networks with aluminum against the external corrosion are considered. The description of pilot production of pipes with a plasma aluminum coating and the deposition of a sacrificial gas-plasma aluminum coating on weld joints of pipelines and the zone of their thermal influence during assemblage is presented. Examples of repairing the segments of distribution heat networks by the pipes with the tread protection are presented.

  16. Stuck pipe: Causes, detection and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, L.; Jomnes, T. (Schlumberger Cambridge Research (UK)); Belaskie, J.; Orban, J.; Sheppard, M (Anadrill, Sugarland, TX (USA)); Houwen, O.; Jardine, S.; McCann, D. (Sedco Forex, Montrouge (France))

    1991-10-01

    Stuck pipe remains a major headache that demands and is getting industry-wide attention. It costs the oil industry between $200 and $500 million each year, occurs in 15% of wells, and in many cases is preventable. Several operators are making determined efforts to codify the warning signs and to improve communication for all on-site drilling and service company personnel, for which the data gathering ability of a computerized information system is a necessity. Meanwhile, better rig sensors and information systems are providing rig-floor smart'' alarms to help the driller recognize trouble before it gets out of hand. The causes of stuck pipe can be divided broadly among differential sticking, formation-related sticking and mechanical sticking. One of the results of the industry's current attention is a better understanding of the events leading up to stuck pipe and their interpretationn in terms of the causes of sticking. Knowing the causes is essential for taking remedial action. 15 figs., 19 refs.

  17. Evaluation method of radon preventing effect in underground construction

    International Nuclear Information System (INIS)

    Luo Shaodong; Deng Yuequan; Dong Faqin; Qu Ruixue; Xie Zhonglei

    2014-01-01

    Background: It's difficult to evaluate the radon prevention effect because of the short operating time of measuring instrument under the circumstances of high humidity in underground construction. Purpose: A new rapid method to evaluate the radon prevention efficiency of underground construction was introduced. Methods: The radon concentrations before and after shielding operation were determined, and according to the regularity of radon decay, the shielding rate can be calculated. Results: The results showed that radon shielding rate in underground construction remains generally stable with variation of time, and the actual relatively standard deviation was 3.95%. So the rapid determination and evaluation of radon preventing effect under special conditions in underground construction can be realized by taking shielding rate in a short time for the final shielding rate. Compared with those by the local static method in ground lab, the results were similar. Conclusion: This paper provided a prompt, accurate and practicable way for the evaluation of radon prevention in underground construction, having a certain reference value. (authors)

  18. 75 FR 41890 - In the Matter of Certain Underground Cable and Pipe Locators; Notice of Investigation

    Science.gov (United States)

    2010-07-19

    ...Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on June 10, 2010, under section 337 of the Tariff Act of 1930, as amended, 19 U.S.C. 1337, on behalf of Radiodetection, Ltd. of the United Kingdom. A letter supplementing the complaint was filed on June 29, 2010. The complaint alleges violations of section 337 based upon the importation into the United States, the sale for importation, and the sale within the United States after importation of certain underground cable and pipe locators by reason of infringement of certain claims of U.S. Patent No. 6,268,731. The complaint further alleges that an industry in the United States exists as required by subsection (a)(2) of section 337. The complainant requests that the Commission institute an investigation and, after the investigation, issue an exclusion order and cease and desist orders.

  19. Microseismic response characteristics modeling and locating of underground water supply pipe leak

    Science.gov (United States)

    Wang, J.; Liu, J.

    2015-12-01

    In traditional methods of pipeline leak location, geophones must be located on the pipe wall. If the exact location of the pipeline is unknown, the leaks cannot be identified accurately. To solve this problem, taking into account the characteristics of the pipeline leak, we propose a continuous random seismic source model and construct geological models to investigate the proposed method for locating underground pipeline leaks. Based on two dimensional (2D) viscoacoustic equations and the staggered grid finite-difference (FD) algorithm, the microseismic wave field generated by a leaking pipe is modeled. Cross-correlation analysis and the simulated annealing (SA) algorithm were utilized to obtain the time difference and the leak location. We also analyze and discuss the effect of the number of recorded traces, the survey layout, and the offset and interval of the traces on the accuracy of the estimated location. The preliminary results of the simulation and data field experiment indicate that (1) a continuous random source can realistically represent the leak microseismic wave field in a simulation using 2D visco-acoustic equations and a staggered grid FD algorithm. (2) The cross-correlation method is effective for calculating the time difference of the direct wave relative to the reference trace. However, outside the refraction blind zone, the accuracy of the time difference is reduced by the effects of the refracted wave. (3) The acquisition method of time difference based on the microseismic theory and SA algorithm has a great potential for locating leaks from underground pipelines from an array located on the ground surface. Keywords: Viscoacoustic finite-difference simulation; continuous random source; simulated annealing algorithm; pipeline leak location

  20. Design guideline to prevent the pipe rupture by radiolysis gases in BWR steam piping

    International Nuclear Information System (INIS)

    Inagaki, T.; Miyagawa, M.; Ota, T.; Sato, T.; Sakata, K.

    2009-01-01

    In late 2001, pipe rupture accidents due to fast combustion of radiolysis gas occurred in Japan and elsewhere's BWR power plants. TENPES began to set up the guideline as action to such a new problem to prevent accumulation and combustion of radiolysis gas in BWR steam piping. And then, the first edition of guideline was published in October 2005. Afterwards, the experimental study about combustion/detonation of radiolysis gas have been continued. And in March 2007, TENPES published a revised edition of the guideline. This is the report of the revised edition of that guideline. According to this guideline, it became possible to design BWR's steam piping to prevent accumulation of radiolysis gas. (author)

  1. A simple computational method for predicting magnetic field in the vicinity of a three-phase underground cable with a fluid-filled steel-pipe enclosure

    International Nuclear Information System (INIS)

    Xu, X.B.; Yang, X.M.

    1994-01-01

    This paper presents a simple computational method for predicting the magnetic field above ground, generated by an underground three-phase pipe-type cable. In the computation, an approximation is made to simplify the problem a Fourier series technique and an iterative procedure are employed to handle the nonlinear B-H characteristic of the steel pipe. To validate the computational method, measurements were made and the numerical results are compared with the measurement data. Also, data of magnetic fields generated by the pipe type cable are compared with those due to the cable in absence of the pipe. The advantages and disadvantages of this simple method are discussed

  2. A New Application of Photogrammetry in the Underground Pipe Network Survey

    Science.gov (United States)

    Li, Y.; Feng, Q.; Zhang, N.; Tian, H.; Yang, Y.; Jin, J.; Li, Y.; Zhang, L.

    2016-06-01

    This paper mainly introduces a device that can be used for underground pipeline survey task. Through the cameras installed on the device, we can obtain stereo synchronous shooting images, and then use the method of close range photogrammetry to investigate and measure underground objects. During working process, the staff put the camera into the well and to control camera shooting from the ground. Greatly improve work efficiency, at the same time to avoid the underground toxis gas damage to people. The main content of this paper includes three parts: hardware design, software development and test production.

  3. A New Application of Photogrammetry in the Underground Pipe Network Survey

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-06-01

    Full Text Available This paper mainly introduces a device that can be used for underground pipeline survey task. Through the cameras installed on the device, we can obtain stereo synchronous shooting images, and then use the method of close range photogrammetry to investigate and measure underground objects. During working process, the staff put the camera into the well and to control camera shooting from the ground. Greatly improve work efficiency, at the same time to avoid the underground toxis gas damage to people. The main content of this paper includes three parts: hardware design, software development and test production.

  4. Extreme value statistics for pitting corrosion of old underground cast iron pipes

    International Nuclear Information System (INIS)

    Asadi, Zohreh Soltani; Melchers, Robert E.

    2017-01-01

    Many major city water supply distribution networks consist of buried cast iron pipes. In many cases the pipes are internally cement-lined and the predominant corrosion is by external pitting. This may cause leakage and eventual structural failure. It is conventional to use the Gumbel extreme value distribution to represent the statistics of maximum pits depth and to use it to estimate the probability of pipe wall perforation. Herein data obtained for maximum pit depths for large-sized (1–2 m long) samples of 10 pipes exhumed from different, apparently randomly selected, locations after 34–129 years of service are examined for consistency with the Gumbel probability distribution. This was the case for the deepest pits, but the data for less deep pits show a consistent pattern of departure from the Gumbel distribution. Some extreme pit depth data, inconsistent with the rest are interpreted as possibly caused by material imperfections. - Highlights: • A single Gumbel distribution does not describe the complete probability distribution for pits on the old cast iron pipes. • A multi-component probability distribution is required to describe all data. • Some Gumbel plots also show a small number of much deeper pits inconsistent with the other data.

  5. The thermal insulating materials and its coatings for underground piping; Los aislamientos termicos y sus recubrimientos para tuberias subterraneos

    Energy Technology Data Exchange (ETDEWEB)

    Salcido Lopez, Salvador [Aislantes Minerales, S. A. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    Energy Saving through the adequate selection and application of the thermal insulating materials, as well as its coatings for underground piping conducting fluids, both at high and at low temperature. The benefits are outlined at economical level for the investor as well as at ecological level (of vital importance today) and are observed as practical examples in industrial and commercial processes. [Espanol] Ahorro de energeticos mediante la adecuada seleccion y aplicacion de los aislamientos termicos, asi como de sus recubrimientos para tuberias subterraneas que conducen fluidos tanto en alta como en baja temperatura. Los beneficios son destacados tanto a nivel economico para el inversionista, como a nivel ecologico (de vital importancia en la actualidad), y son observados con ejemplos practicos en procesos industriales y comerciales.

  6. Extensive optimisation analyses of the piping of two large underground gas storage ariel compressors

    NARCIS (Netherlands)

    Eijk, A.; Korst, H.J.C.; Ploumen, G.; Heyer, D.

    2007-01-01

    Two large identical 6-cylinder Ariel JGB/6 compressors of each 7.5 Mw, are used for the underground gas storage (UGS) plant of Essent in Epe, Germany. The compressors can be operated at a wide range of operating conditions, e.g. variable suction and discharge pressures, 2-stage mode during gas

  7. Hanford facility RCRA permit condition II.U.1 report: mapping of underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Hays, C.B.

    1996-09-27

    The purpose of this report is to fulfill Condition Il.U.1. of the Hanford Facility (HF) Resource Conservation and Recovery Act (RCRA) Permit. The HF RCRA Permit, Number WA7890008967, became effective on September 28, 1994 (Ecology 1994). Permit Conditions Il.U. (mapping) and II.V. (marking) of the HF RCRA Permit, Dangerous Waste (OW) Portion, require the mapping and marking of dangerous waste underground pipelines subject to the provisions of the Washington Administrative Code (WAC) Chapter 173-303. Permit Condition Il.U.I. requires the submittal of a report describing the methodology used to generate pipeline maps and to assure their quality. Though not required by the Permit, this report also documents the approach used for the field marking of dangerous waste underground pipelines.

  8. Finite elements analysis of an underground collector installed by pipe-jacking method

    Science.gov (United States)

    María Díaz-Díaz, Luis; Omer, Joshua; Arias, Daniel; Pando, Luis

    2016-04-01

    This study presents a useful analysis method for estimating simultaneously the stability, stress distribution and groundwater seepage as micro - tunnel is being advanced into the ground. The research is mainly concerned with the results of a case study conducted on a project to create a long industrial collector of effluent network in the east bank of the river Avilés (north coast of Spain). This coastal city has significant port and industrial installations in its environs. The geology of the location comprises Quaternary deposits on both flanks of the estuary and includes different highly variable geotechnical behavior. The industrial effluent network, constructed in the year 2010, has a length of 13.087 km and consists of 1.5 m diameter pipes, reaching a maximum depth of 5.8 m below the surface. Only the first 7.0 km of the collector (south area) were formed using pipe-jacking method whilst the rest were formed in open excavations or surface laid. Using the commercial software RS2, a 2D finite element program for soil and rock application, the ground response to pipe jacking in pipeline installation in Avilés was analyzed. Both axi-symmetric and plane strain analyses were carried out in RS2 to simulate in 3D the ground response to pipe advancement. The results demonstrate how much of deformation there is at ground surface in the immediate vicinity of the pipeline. The main objective is to show the possible patterns of ground subsidence and tunnel stresses to inform designers as to whether the tunnel will be stable and safe.

  9. Accident Prevention and Diagnostics of Underground Pipeline Systems

    Science.gov (United States)

    Trokhimchuk, M.; Bakhracheva, Y.

    2017-11-01

    Up to forty thousand accidents occur annually with underground pipelines due to corrosion. The comparison of the methods for assessing the quality of anti-corrosion coating is provided. It is proposed to use the device to be tied-in to existing pipeline which has a higher functionality in comparison with other types of the devices due to the possibility of tie-in to the pipelines with different diameters. The existing technologies and applied materials allow us to organize industrial production of the proposed device.

  10. Estimating diesel fuel exposure for a plumber repairing an underground pipe.

    Science.gov (United States)

    Finn, Mary; Stenzel, Mark; Ramachandran, Gurumurthy

    2017-04-01

    We estimated the diesel fuel exposure of a plumber repairing an underground water line leak at a truck stop. The repair work was performed over three days during which the plumber spent most of his time in a pit filled with a mixture of water and diesel fuel. Thus, the plumber was exposed via both the inhalation and dermal routes. While previously asymptomatic, he was diagnosed with acute renal failure 35 days after working at this site. No measurements were available for estimating either inhalation or dermal exposures or the cumulative dose and, therefore, two different approaches were used that were based on simple models of the exposure scenario. The first approach used the ideal gas law with the vapor pressure of the diesel fuel mixture to estimate a saturation vapor concentration, while the second one used a mass balance of the petroleum hydrocarbon component of diesel fuel in conjunction with the Henry's Law constant for this mixture. These inhalation exposure estimates were then adjusted to account for the limited ventilation in a confined space. The inhalation exposure concentrations predicted when handling the water layer alone is much lower than that expected from the organic layer. This case study illustrates the large differences in inhalation exposure associated with volatile organic layers and aqueous solution containing these chemicals. The estimate of dermal exposure was negligible compared to the inhalation exposure because the skin presents a much smaller surface area of exposure to the contaminant compared to the lungs. The methodology presented here is useful for situations where little information is available for more formal mathematical exposure modeling, but where adjustments to the worst-case exposures, estimated simply, can provide reasonable exposure estimates.

  11. Electrically heated pipe in pipe system for hydrate prevention on the Campos Basin

    Energy Technology Data Exchange (ETDEWEB)

    Euphemio, Mauro; Montesanti, Jose Ricardo; Braganca, Elton Jorge; Almeida, Murilo Mesquita de; Coelho, Eduardo; Maia, Alexandre Rodrigues; Peres, Marcelo Borges [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper will refer briefly to some key aspects considered for the design of an Electrically Heated Pipe-in-Pipe- EHPIP system integrated to an Electric Submersible Pump-ESP, to be located at 1800 m water depth in the Campos Basin. In this system, under normal operation the well will be producing through the ESP and in case of long well shut in and during well restart up, a percentage of the electrical power will be delivered to heat the PIP system. The electrical system will have a common sub sea power cable and an Electrical Switch Module, to switch power alternatively to the heating system or to the pump. The systems will not operate simultaneously. (author)

  12. Study of the technology of heat pipe on prevention wildfire of coal gangue hill

    Science.gov (United States)

    Deng, Jun; Li, Bei; Ding, Ximei; Ma, Li

    2017-04-01

    Self-ignitable coal gangue hill (CGH) is one kind of special combustion system, which has the characteristics of low self-ignite point, large heat storage, and easy reignition. The currently industrial fire extinguishing methods, such as inhibiting tendency of coal self-ignition, loessial overburden, and cement grouting, had unsatisfied effects for dispersing the heat out in time. Correspondingly, the CGH will lead reignition more frequently with the passage of time. The high underground temperature of CGH threatens the process of ecological and vegetation construction. Therefore, the elimination of high temperature is a vital issue to be solved urgently for habitat restoration. To achieve the ultimately ecological management goal of self-ignitable CGH - extinguishing the fire completely and never reignited, it is crucial to break the heat accumulation. Heat-pipe (HP) has a character of high efficient heat transfer capacity for eliminating the continuously high temperature in CGH. An experimental system was designed to test the heat transfer performance of HP for preventing and extinguishing the spontaneous combustion of coal gangue. Based on the heat transfer theory, the resistance network of the coal-HP heat removal system was analyzed for studying the cooling effect of HP. The experimental results show that the HP can accelerate the heat release in coal gangue pile. The coal temperature could be controlled at 59.6 ˚ C with HP in 7 h and the highest cooling value is 39.4 % with HP in 150 h, which can effectively cool the temperatures of high temperature zones. As a powerful heat transfer components, as soon as HPs were inserted into the CGH with a reasonable distance, it can completely play a vital role in inhibiting the coal self-ignition process.

  13. Study of the predominant defect development in rails of underground systems after preventive grinding and lubrication

    Directory of Open Access Journals (Sweden)

    Voronin Serhii

    2017-01-01

    Full Text Available In order to determine the method of contact surface treatment and to define the rational surface roughness in the wheel/rail contact for the minimal growth rate of contact fatigue defects the program of experiments in operational conditions was developed. On the basis of the results and calculations the coefficients of regression equations, which describe dependencies of the wear rate on the parameters of the contact surface treatment in real operational conditions were obtained. Besides, the diagrams of dependencies of the friction coefficient on the roughness of railhead contact surface of the high rails with and without lubrication, when laid in curves of underground systems, were built. The experiments conducted in operational conditions of Kharkiv Metro revealed the influence of roughness of the railhead side surface of the high rails in curves on the contact fatigue defect development after preventive grinding and lubrication. According to the results of the experiments it was established that the rail preventive grinding with simultaneous lubrication led to slower contact fatigue defect development in rails of underground systems. The rational roughness of the railhead side surface of the high rails in curves after preventive grinding, which led to the minimal rate of defect development, was defined.

  14. Development of intelligent pipe locator

    Science.gov (United States)

    Miyamoto, Y.; Wasa, Y.

    1986-08-01

    An inductive pipe locator was developed, so that the position and depth of an underground gas pipe can be accurately located by passing an ac current to the pipe and measuring the generated magnetic field. An ac current (several to 100 kHz) of several tens of mA is transmitted to the underground pipe, and a magnetic sensor above the ground catches the induced magnetic field to estimate the position and depth of the pipe.

  15. Pipe Penetrating Radar: a New Tool for the Assessment of Critical Infrastructure

    Science.gov (United States)

    Ekes, C.; Neducz, B.

    2012-04-01

    This paper describes the development of Pipe Penetrating Radar (PPR), the underground in-pipe application of GPR, a non-destructive testing method that can detect defects and cavities within and outside mainline diameter (>18 in / 450mm) non-metallic (concrete, PVC, HDPE, etc.) underground pipes. The method uses two or more high frequency GPR antennae carried by a robot into underground pipes. The radar data is transmitted to the surface via fibre optic cable and is recorded together with the output from CCTV (and optionally sonar and laser). Proprietary software analyzes the data and pinpoints defects or cavities within and outside the pipe. Thus the testing can identify existing pipe and pipe bedding symptoms that can be addressed to prevent catastrophic failure due to sinkhole development and can provide useful information about the remaining service life of the pipe. The key innovative aspect is the unique ability to map pipe wall thickness and deterioration including cracks and voids outside the pipe, enabling accurate predictability of needed intervention or the timing of replacement. This reliable non-destructive testing method significantly impacts subsurface infrastructure condition based asset management by supplying previously unattainable measurable conditions. Keywords: pipe penetrating radar (PPR), ground penetrating radar (GPR), pipe inspection, concrete deterioration, municipal engineering

  16. Economic feasibility of pipe storage and underground reservoir storage options for power-to-gas load balancing

    International Nuclear Information System (INIS)

    Budny, Christoph; Madlener, Reinhard; Hilgers, Christoph

    2015-01-01

    Highlights: • Study of cost effectiveness of power-to-gas and storage of H 2 and renewable methane. • NPV analysis and Monte Carlo simulation to address fuel and electricity price risks. • Gas sale is compared with power and gas market arbitrage and balancing market gains. • Power-to-gas for linking the balancing markets for power and gas is not profitable. • Pipe storage is the preferred option for temporal arbitrage and balancing energy. - Abstract: This paper investigates the economic feasibility of power-to-gas (P2G) systems and gas storage options for both hydrogen and renewable methane. The study is based on a techno-economic model in which the net present value (NPV) method and Monte Carlo simulation of risks and price forward curves for the electricity and the gas market are used. We study three investment cases: a Base Case where the gas is directly sold in the market, a Storage & Arbitrage Case where temporal arbitrage opportunities between the electricity and the gas market are exploited, and a Storage & Balancing Case where the balancing markets (secondary reserve market for electricity, external balancing market for natural gas) are addressed. The optimal type and size of different centralized and decentralized storage facilities are determined and compared with each other. In a detailed sensitivity and cost analysis, we identify the key factors which could potentially improve the economic viability of the technological concepts assessed. We find that the P2G system used for bridging the balancing markets for power and gas cannot be operated profitably. For both, temporal arbitrage and balancing energy, pipe storage is preferred. Relatively high feed-in tariffs (100 € MW −1 for hydrogen, 130 € MW −1 for methane) are required to render pipe storage for P2G economically viable

  17. Underground pipeline corrosion

    CERN Document Server

    Orazem, Mark

    2014-01-01

    Underground pipelines transporting liquid petroleum products and natural gas are critical components of civil infrastructure, making corrosion prevention an essential part of asset-protection strategy. Underground Pipeline Corrosion provides a basic understanding of the problems associated with corrosion detection and mitigation, and of the state of the art in corrosion prevention. The topics covered in part one include: basic principles for corrosion in underground pipelines, AC-induced corrosion of underground pipelines, significance of corrosion in onshore oil and gas pipelines, n

  18. Review of practices for the prevention, detection and control of underground fires in coal mines.

    CSIR Research Space (South Africa)

    Holding, W

    1994-09-01

    Full Text Available A statistical review is given of the frequency of fires and flammable gas ignitions in South African underground coal mines, both on a simple numerical basis and in relation to underground coal production, for the years 1970-1992.previously...

  19. Factors influencing the reliability of non-electric detonating circuit in underground uranium mines and preventive measures of misfiring

    International Nuclear Information System (INIS)

    Li Qin

    2010-01-01

    Characteristics of non-electric detonating circuit are introduced. The main factors influencing the reliability of non-electric detonating circuit are described. Taking an underground blasting of a uranium mine for example, the reliability of various kinds of detonating network system is calculated using the reliability theory and numerical analysis method. The reasons that cause the misfiring in non-electric detonating circuit system are analyzed, and preventive measures are put forward.(authors)

  20. Characteristics on the heat storage and recovery by the underground spiral heat exchange pipe; Chichu maisetsu spiral kan ni yoru chikunetsu shunetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, I. [Kure National College of Technology, Hiroshima (Japan); Taga, M. [Kinki University, Osaka (Japan)

    1996-10-27

    The consistency between the experimental value of a soil temperature and the calculation value of a soil temperature given by a non-steady heat conduction equation was confirmed. The experimental value is obtained by laying a spiral heat exchange pipe in the heat-insulated soil box and circulating hot water forcibly in the pipe. The temperature conductivity in soil significantly influences the heat transfer in soil. The storage performance is improved when the temperature conductivity increases because of the contained moisture. As the difference between the initial soil temperature and circulating water temperature becomes greater, the heat storage and recovery values increase. A thermal core heat transfer is done in the spiral pipe. Therefore, the diameter of the pipe little influences the heat storage performance, and the pitch influences largely. About 50 hours after heat is stored, the storage performance is almost the same as for a straight pipe that uses the spiral diameter as a pipe diameter. To obtain the same heat storage value, the spiral pipe is made of fewer materials than the straight pipe and low in price. The spiral pipe is more advantageous than the straight pipe in the necessary motive power and supply heat of a pump. 1 ref., 11 figs., 1 tab.

  1. Corrosion of circulating water pipings in thermal and nuclear power stations and corrosion prevention measures

    International Nuclear Information System (INIS)

    Hachiya, Minoru

    1982-01-01

    In the age of energy conservation at present, the power generation facilities have been examined from the viewpoint of performance, endurance and economy, and in particular, the prevention of the loss due to the corrosion of various facilities is one of most important problems. Since circulating water pipings are in contact with sea water and soil, the peculiar corrosion phenomena are brought about on their external and internal surfaces. Namely, the pitting corrosion due to the environment of soil quality difference, the defects of coating and the contact with reinforcing bars in concrete occurs on the external surface, and the overall corrosion due to the increase of flow velocity and the pitting corrosion due to the defects of coating, the contact with different kinds of metals and the gap in corrosion-resistant steel occur on the internal surface. As the measures for corrosion prevention, corrosion-preventive coating and electric corrosion prevention are applied. The principle, the potential and current density, the system, the design procedure and the examples of application of electric corrosion prevention are described. (Kako, I.)

  2. Prevention and treatment of the Farley-Tihange phenomenon of nuclear auxiliary pipes based on thermal fatigue

    International Nuclear Information System (INIS)

    Cao Feng; Wang Jianjun; Ding Youyuan

    2012-01-01

    Farley-Tihange Phenomenon due to thermal fatigue frequently appears on the downstream area filled with cool and heat water of the residual heat removal heat-exchange equipment and the base metal and welding joint of the RIS and RRA pipes connected with the primary coolant pipe directly in global Nuclear power plants in operation. Which brings unacceptable defects, even worse, LOCA. During the pre-service inspection, autonomic ultrasonic test and radiographic test were done to relative pipes and welds of Unit 3 of the Qinshan Nuclear Power Phase Ⅱ. This article summarizes the recurrent position and potential risks of the Farley-Tihange phenomenon, establishes the fault tree of its failure causes, analyses failure mechanism and models of heat fatigue, presents systematically prevention and treatment methods including in-operation supervision, shut-down inspections, emergent maintenance program and so on. (authors)

  3. Fabrication of Zircaloy-4 Fuel Cladding Pipe with Nanostructured Oxide Layer for Prevention of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y. J.; Park, J. W.; Kim, H. J.; Cho, S. O. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    There has been an attempt to protect zircaloy fuel cladding by coating SiC. Research on producing oxide layer that can block fuel cladding from water on the surface of zircaloy fuel cladding by means of anodizing to reduce the rate of oxidation of fuel cladding at Loss Of Coolant Accident (LOCA) is an significant ongoing study subject. Applying nanostructured oxide layer to the prevention of thermal deformation of oxide layer was already suggested in our research group, the reasons of which is nanoporous structure is better than nanotube structure in terms of corrosion-resistant structure because nanotube structure can be easily peeled off. In this study, methods which are able to control morphology between nanoporous and nanotube structure were conducted by changing the anodizing conditions. Hence, Using glycerol and ammonium fluoride, Zircaloy-4 was anodized by varying water contents and applied voltage. Zircaloy-4 pipe with nanostructured surface was fabricated by anodization technique. The produced nanostructure is quite even but the thickness of the oxide layer is not even. The nanostructured surface can increase the thermal characteristics of the zircaloy-4 fuel cladding.

  4. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT), supported by Hamilton Sundstrand, proposes to develop a heat pipe heat exchanger that is low mass and provides two levels...

  5. Coating of inner surface of cylindrical pipe for hydrogen entry prevention using plasma process

    Science.gov (United States)

    Kawasaki, Hiroharu; Nishiguchi, Hiroshi; Furutani, Takumi; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Shinohara, Masanori; Suda, Yoshiaki

    2018-01-01

    Aluminum alloy A6061, which is highly resistant to hydrogen entry, was prepared on a carbide steel cylindrical pipe using a magnetron sputtering deposition method. In this method, plasma was generated between the cylindrical pipe substrate and the cylindrical rod targets, and it moved toward the axial direction with the generation of a modulated magnetic field by a low-frequency alternating coil current. Uniform A6061 thin films were deposited inside the cylindrical pipe using the magnetron sputtering deposition method. The surface morphologies of the films were smooth, and the uniformity of the films was increased by the modulated magnetic field. Moreover, hydrogen content measurements revealed that the A6061 plasma coating is highly resistant to hydrogen entry in corrosive environments, suggesting that the coating was applicable to the elastic deformation region of the base material.

  6. Suggestions to leak prevention in Fortaleza's natural gas piping system; Sugestoes para a prevencao de vazamentos de gas natural canalizado na regiao metropolitana de Fortaleza

    Energy Technology Data Exchange (ETDEWEB)

    Teles, Marcus de Barros [Agencia Reguladora de Servicos Publicos Delegados do Estado do Ceara (ARCE), Fortaleza, CE (Brazil)

    2004-07-01

    Leaks are the bigger problem in health, safety and environmental when the subject is gas distribution piping systems. Specially in high density human regions, like in the majority districts of Fortaleza, safety have to be the higher priority to the gas company responsible for the gas distribution piping systems. Leaks are able to cause accidents or incidents, depending on the circumstances which they happen. In order to be control the situation and overcome the luck factor, leaks must be previously avoided by the application of some security requirements. This paper present some suggestions to natural gas leak prevention in the Fortaleza's metropolitan region pipeline systems. First, the piping systems are analysed, observing the risk regions. Then, safety actions and basic requirements to avoid pipe corrosion are presented in order to improve safety in the gas distribution piping systems of Fortaleza's metropolitan region. (author)

  7. Flexible ocean upwelling pipe

    Science.gov (United States)

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  8. Application of a Novel Liquid Nitrogen Control Technique for Heat Stress and Fire Prevention in Underground Mines.

    Science.gov (United States)

    Shi, Bobo; Ma, Lingjun; Dong, Wei; Zhou, Fubao

    2015-01-01

    With the continually increasing mining depths, heat stress and spontaneous combustion hazards in high-temperature mines are becoming increasingly severe. Mining production risks from natural hazards and exposures to hot and humid environments can cause occupational diseases and other work-related injuries. Liquid nitrogen injection, an engineering control developed to reduce heat stress and spontaneous combustion hazards in mines, was successfully utilized for environmental cooling and combustion prevention in an underground mining site named "Y120205 Working Face" (Y120205 mine) of Yangchangwan colliery. Both localized humidities and temperatures within the Y120205 mine decreased significantly with liquid nitrogen injection. The maximum percentage drop in temperature and humidity of the Y120205 mine were 21.9% and 10.8%, respectively. The liquid nitrogen injection system has the advantages of economical price, process simplicity, energy savings and emission reduction. The optimized heat exchanger used in the liquid nitrogen injection process achieved superior air-cooling results, resulting in considerable economic benefits.

  9. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  10. Going underground

    Energy Technology Data Exchange (ETDEWEB)

    Winqvist, T.; Mellgren, K.-E. (eds.)

    1988-01-01

    Contains over 100 short articles on underground structures and tunneling based largely on Swedish experience. Includes papers on underground workers - attitudes and prejudices, health investigations, the importance of daylight, claustrophobia; excavation, drilling and blasting; hydroelectric power plants; radioactive waste disposal; district heating; oil storage; and coal storage.

  11. Pipe Lines – External Corrosion

    Directory of Open Access Journals (Sweden)

    Dan Babor

    2008-01-01

    Full Text Available Two areas of corrosion occur in pipe lines: corrosion from the medium carried inside the pipes; corrosion attack upon the outside of the pipes (underground corrosion. Electrolytic processes are also involved in underground corrosion. Here the moisture content of the soil acts as an electrolyte, and the ions required to conduct the current are supplied by water-soluble salts (chlorides, sulfates, etc. present in the soil. The nature and amount of these soluble materials can vary within a wide range, which is seen from the varying electrical conductivity and pH (varies between 3 and 10. Therefore the characteristics of a soil will be an important factor in under-ground corrosion.

  12. Rokibaar Underground = Rock bar Underground

    Index Scriptorium Estoniae

    2008-01-01

    Rokibaari Underground (Küütri 7, Tartu) sisekujundus, mis pälvis Eesti Sisearhitektide Liidu 2007. a. eripreemia. Sisearhitekt: Margus Mänd (Tammat OÜ). Margus Männist, tema tähtsamad tööd. Plaan, 5 värv. vaadet, foto M. Männist

  13. Underground Politics

    DEFF Research Database (Denmark)

    Galis, Vasilis; Summerton, Jane

    of various kinds, as well as for identifying and displacing undesired individuals/groups/bodies. A case in point is a recently-established police project (REVA) in Sweden for strengthening the so-called internal border control. Specifically, several underground stations in Stockholm now have checkpoints......Public spaces are often contested sites involving the political use of sociomaterial arrangements to check, control and filter the flow of people (see Virilio 1977, 1996). Such arrangements can include configurations of state-of-the-art policing technologies for delineating and demarcating borders...... status updates on identity checks at the metro stations in Stockholm and reports on locations and time of ticket controls for warning travelers. Thus the attempts by authorities to exert control over the (spatial) arena of the underground is circumvented by the effective developing of an alternative...

  14. Assessment of condition of underground collector lines situated inside the technological complexes of underground storage facilities

    Directory of Open Access Journals (Sweden)

    Anton Misany

    2006-10-01

    Full Text Available The evaluation of status of underground gas pipeline systems operating for several decades becomes a decisive factor of the decision making for their further safe and reliable operation. The decision becomes crucial especially in cases when piping is installed within a facility without the cathodic protection. The evaluation and inspection of underground gas manifolds requires a specific approach tailored for the respective manifolds.In 2003 NAFTA, the company initiated an extensive plan of the underground gas manifolds diagnostics and evaluation. The results were presented within the Working Committee WOC2 at the 23rd World Gas Congress in Amsterdam.

  15. Fabrication of a multi-walled metal pipe

    International Nuclear Information System (INIS)

    Shimamune, Koji; Toda, Saburo; Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    In concentrically arranged metal pipes for simulated fuel elements in the form of a multi-walled pipe, their one end lengthens gradually in the axial direction from inner and outer pipes toward a central pipe for easy adjustment of deformation which occurs when the pipes are drawn. A plastic electrical insulator is disposed between adjacent pipes. Each end of the pipes is equipped with an annular flexible stopper which is allowed to travel in the axial direction so as to prevent the insulator from falling during drawing work. At the other end, all pipes are constricted and joined to each other to thereby form the desired multi-walled pipe. (Mikami, T.)

  16. Pipe failure predictions in drinking water systems using satellite observations

    NARCIS (Netherlands)

    Arsénio, André Marques; Dheenathayalan, Prabu; Hanssen, Ramon; Vreeburg, Jan; Rietveld, Luuk

    2015-01-01

    Soil deformation is believed to play a crucial role in the onset of failures in the underground infrastructure. This article describes a method to generate a replacement-prioritisation map for underground drinking water pipe networks using ground movement data. A segment of the distribution

  17. 30 CFR 57.13017 - Compressor discharge pipes.

    Science.gov (United States)

    2010-07-01

    ....13017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Compressed Air and Boilers § 57.13017 Compressor discharge pipes. Compressor discharge pipes where carbon build-up...

  18. Development of Intelligent pipe Locator

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yukinori

    1987-09-10

    As the cities gets denser, development of a pipe locator, which can easily detect the position of the complicatedly buried underground pipes with high accuracy, is greatly demanded. A newly developed intelligent pipe locator detects a magnetic field generated by flowing an alternating-current through a buried pipe by means of a sensor unit placed on the ground and by computing and displaying with a micro-computer the position, depth, and the reliability of the detected result in only 3 seconds. Results of a half year field test since Sept. 1986 shows that the error was improved twice up to 5% from 10% of the conventional pipe locator. Operation time was also reduced down to one-fifth of the former method. By the practical use of this locator on the spot, one can expect the security improvements, reduction of frilling cost, and more efficient operation. In Japan recently, the number of conventional pipe locator is more than 5000 units in about 15 types. (10 figs, 7 tabs)

  19. The Canfranc Underground Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Amare, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Beltran, B. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Carmona, J.M. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Cebrian, S. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Garcia, E. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Irastorza, I.G. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Gomez, H. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Luzon, G. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Martinez, M. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Morales, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Ortiz de Solorzano, A. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Pobes, C. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Puimedon, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Rodriguez, A. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Ruz, J. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Sarsa, M.L. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Torres, L. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain); Villar, J.A. [Laboratory of Nuclear and High Energy Physics, University of Zaragoza. 50009 Zaragoza (Spain)

    2005-06-15

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories.

  20. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  1. Pipe replacement in a water supply network: coordinated versus uncoordinated replacement and budget effects

    NARCIS (Netherlands)

    Dijk, van D.; Hendrix, E.M.T.

    2016-01-01

    Operators of underground water supply networks are challenged with pipe replacement
    decisions, because pipes are subject to increased failure rates as they age and financial resources
    are often limited.We study the optimal replacement time and optimal number of pipe replacements
    such

  2. Pipe inspection using the pipe crawler. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  3. Pipe inspection using the pipe crawler. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned

  4. Pipe grabber

    Energy Technology Data Exchange (ETDEWEB)

    Sharafutdinov, I.G.; Mubashirov, S.G.; Prokopov, O.I.

    1981-05-15

    A pipe grabber is suggested which contains a housing, clamping elements and centering mechanism with drive installed on the lower end of the housing. In order to improve the reliable operation of the pipe grabber, the centering mechanism is made in the form of a reinforced ringed flexible shaft, while the drive is made in the form of elastic rotating discs. In this case the direction of rotation of the discs and the flexible shaft is the opposite.

  5. 30 CFR 57.4461 - Gasoline use restrictions underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gasoline use restrictions underground. 57.4461... Prevention and Control Flammable and Combustible Liquids and Gases § 57.4461 Gasoline use restrictions underground. If gasoline is used underground to power internal combustion engines— (a) The mine shall be...

  6. 30 CFR 57.4360 - Underground alarm systems.

    Science.gov (United States)

    2010-07-01

    ... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4360 Underground alarm systems. (a) Fire alarm... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground alarm systems. 57.4360 Section 57...

  7. Underground Layout Configuration

    International Nuclear Information System (INIS)

    A. Linden

    2003-01-01

    The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings

  8. Underground laboratories in Europe

    International Nuclear Information System (INIS)

    Coccia, E

    2006-01-01

    The only clear evidence today for physics beyond the standard model comes from underground experiments and the future activity of underground laboratories appears challenging and rich. I review here the existing underground research facilities in Europe. I present briefly the main characteristics, scientific activity and perspectives of these Laboratories and discuss the present coordination actions in the framework of the European Union

  9. The stress and underground environment

    Science.gov (United States)

    Chama, A.

    2009-04-01

    Currently,the program of prevention in occupational health needs mainly to identify occupational hazards and strategy of their prevention.Among these risks,the stress represents an important psycho-social hazard in mental health,which unfortunately does not spare no occupation.My Paper attempts to highlight and to develop this hazard in its different aspects even its regulatory side in underground environment as occupational environment.In the interest of better prevention ,we consider "the information" about the impact of stress as the second prevention efficient and no expensive to speleologists,hygienists and workers in the underground areas. In this occasion of this event in Vienna,we also highlight the scientific works on the stress of the famous viennese physician and endocrinologist Doctor Hans Selye (1907-1982),nicknamed "the father of stress" and note on relation between biological rhythms in this underground area and psychological troubles (temporal isolation) (Jurgen Aschoff’s works and experiences out-of time).

  10. Underground laboratory in China

    Science.gov (United States)

    Chen, Heshengc

    2012-09-01

    The underground laboratories and underground experiments of particle physics in China are reviewed. The Jinping underground laboratory in the Jinping mountain of Sichuan, China is the deepest underground laboratory with horizontal access in the world. The rock overburden in the laboratory is more than 2400 m. The measured cosmic-ray flux and radioactivities of the local rock samples are very low. The high-purity germanium experiments are taking data for the direct dark-matter search. The liquid-xenon experiment is under construction. The proposal of the China National Deep Underground Laboratory with large volume at Jinping for multiple discipline research is discussed.

  11. 3D visualisation of underground pipelines : Best strategy for 3D scene creation

    NARCIS (Netherlands)

    Guerrero, J.M.; Zlatanova, S.; Meijers, B.M.

    2013-01-01

    Underground pipelines pose numerous challenges to 3D visualization. Pipes and cables are conceptually simple and narrow objects with clearly defined shapes, spanned over large geographical areas and made of multiple segments. Pipes are usually maintained as linear objects in the databases. However,

  12. Voids at the tunnel-soil interface for calculation of ground vibration from underground railways

    Science.gov (United States)

    Jones, Simon; Hunt, Hugh

    2011-01-01

    Voids at the tunnel-soil interface are not normally considered when predicting ground vibration from underground railways. The soil is generally assumed to be continuously bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of voids around underground railways motivated the study presented herein to quantify the level of uncertainty in ground vibration predictions associated with neglecting to include such voids at the tunnel-soil interface. A semi-analytical method is developed which derives discrete transfers for the coupled tunnel-soil model based on the continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate nodes at the interface to prevent force transfer between the systems. The results from this investigation show that relatively small voids ( 4 m×90∘) can significantly affect the rms velocity predictions in the near-field and moderately affect predictions in the far-field. Sensitivity of the predictions to void length and void sector angle are both deemed to be significant. The findings from this study suggest that the uncertainty associated with assuming a perfect bond at the tunnel-soil interface in an area with known voidage can reasonably reach ±5 dB and thus should be considered in the design process.

  13. Underground docking of shields for the first time under the sea by MSD method. Shield for a gas pipe line to Shin Nagoya thermal power station of Chubu Electric Power Co. Ltd.,; Kaiteika hatsu no MSD koho ni yoru shirudo chichu setsugo. Chubu Denryoku Shin Nagoya Karyoku Hatsudensho gas dokan shirudo koji

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y. [Shimizu Corp., Tokyo (Japan)

    1997-04-25

    MSD (mechanical shield docking) method is a method for mechanical docking two shields which have been extended simultaneously from both ends of one section of tunnel boring to shorten work term. One of the two shields has a piercing ring on its tip and another has a receiving ring. In the final stage of boring, the two ring are docked directly by piercing-receiving. The MSD method has been applied for the first time under sea to a boring work of an under sea tunnel on a route of a gas pipe line from Chita LNG base, Aichi prefecture to the title power station. This paper reports the outline of the shield machine and horizontal boring for confirming shield position that is a key to an underground docking as well as docking work. In the horizontal boring, after the shield machine on receiving side had reached the docking point predestined, the shield machine on piercing side conducted primary boring at 20 m front of the docking point and then secondary boring at 3 m front, whereby the boring hole was pierced into the shield machine on the receiving side. The accomplishment of this work made certain the reliability of MSD method even under sea. 1 ref., 13 figs., 3 tabs.

  14. MINING SECURITY PIPE© (TSM© WITH UNDERGROUND GPS GLOBAL© (RSPG© ESCAPE SECURITY DEVICE IN UNDERGROUND MINING

    Directory of Open Access Journals (Sweden)

    Rafael Barrionuevo GIMÉNEZ

    2016-04-01

    Full Text Available TSM is escape pipe in case of collapse of terrain. The TSM is a passive security tool placed underground to connect the work area with secure area (mining gallery mainly. TSM is light and hand able pipe made with aramid (Kevlar, carbon fibre, or other kind of new material. The TSM will be placed as a pipe line network with many in/out entrances/exits to rich and connect problem work areas with another parts in a safe mode. Different levels of instrumentation could be added inside such as micro-led escape way suggested, temperature, humidity, level of oxygen, etc.. The open hardware and software like Arduino will be the heart of control and automation system.

  15. Underground laboratories in Asia

    Science.gov (United States)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  16. Underground Storage Tank (working)

    Data.gov (United States)

    Vermont Center for Geographic Information — Database contains information on ownership and system construction for underground storage tank facilities statewide. Database was developed in early 1990's for...

  17. Underground laboratories in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shin Ted, E-mail: linst@mails.phys.sinica.edu.tw [College of Physical Science and Technology, Sichuan University, Chengdu 610064 China (China); Yue, Qian, E-mail: yueq@mail.tsinghua.edu.cn [Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 China (China)

    2015-08-17

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  18. Underground laboratories in Asia

    International Nuclear Information System (INIS)

    Lin, Shin Ted; Yue, Qian

    2015-01-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed

  19. Prophylactic magnesium sulphate in prevention of eclampsia in women with severe preeclampsia: randomised controlled trial (PIPES trial).

    Science.gov (United States)

    Keepanasseril, Anish; Maurya, Dilip Kumar; Manikandan, K; Suriya J, Yavana; Habeebullah, Syed; Raghavan, S Soundara

    2017-10-03

    Optimum dose, route and duration of use of prophylactic magnesium sulphate in women with severe pre-eclampsia is still controversial. We compared the efficacy and safety of 'low-dose Dhaka' regime with 'Loading dose only' regime for seizure prophylaxis in severe preeclampsia using a randomised controlled trial in 402 women. The incidence of eclampsia in the 'low-dose Dhaka' regime group was 1.49% and that in the 'Loading dose only regime' was 2.98% (p = .321). In the low-dose Dhaka regime, injection site abscess and respiratory depression occurred in one woman each. Neonatal outcomes such as Apgar score at 5 minutes (5.0% vs. 8.05% p = .251) and perinatal mortality (20.4% vs. 21.9%, p = .724) were similar in both groups. Loading dose only regime may be considered an effective alternative regime for the prevention of eclampsia in women with severe preeclampsia. Impact statement What is already known on this subject: Efficacy of therapeutic short regime magnesium sulphate in eclampsia has already been reported. Data regarding prophylactic short regime in women with preeclampsia is sparse. What the results of this study add: We have shown that short regime of magnesium sulphate using only the loading dose in the prevention of seizure in preeclampsia is an effective alternative to the low-dose Dhaka regime. What the implications are of these findings for clinical practice and/or further research: The short regime is less resource-intensive. Further larger studies are needed to confirm the efficacy of this short regime and to establish its cost-effectiveness.

  20. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  1. Seismic design evaluation guidelines for buried piping for the DOE HLW Facilities

    International Nuclear Information System (INIS)

    Lin, Chi-Wen; Antaki, G.; Bandyopadhyay, K.; Bush, S.H.; Costantino, C.; Kennedy, R.

    1995-01-01

    This paper presents the seismic design and evaluation guidelines for underground piping for the Department of Energy (DOE) High-Level-Waste (HLW) Facilities. The underground piping includes both single and double containment steel pipes and concrete pipes with steel lining, with particular emphasis on the double containment piping. The design and evaluation guidelines presented in this paper follow the generally accepted beam-on-elastic-foundation analysis principle and the inertial response calculation method, respectively, for piping directly in contact with the soil or contained in a jacket. A standard analysis procedure is described along with the discussion of factors deemed to be significant for the design of the underground piping. The following key considerations are addressed: the design feature and safety requirements for the inner (core) pipe and the outer pipe; the effect of soil strain and wave passage; assimilation of the necessary seismic and soil data; inertial response calculation for the inner pipe; determination of support anchor movement loads; combination of design loads; and code comparison. Specifications and justifications of the key parameters used, stress components to be calculated and the allowable stress and strain limits for code evaluation are presented

  2. Underground geotechnical and geological investigations at Ekati Mine-Koala North: case study

    Science.gov (United States)

    Jakubec, Jaroslav; Long, Larry; Nowicki, Tom; Dyck, Darren

    2004-09-01

    Since 1998, BHP Billiton has mined diamonds at the Ekati Diamond Mine™ near Lac de Gras in the Northwest Territories of Canada. Current operations are based on mining multiple pipes by the open-pit method, but as some pits deepen, converting to underground mining is being considered. As a test of underground mining methods and to provide access to the lower elevations of the Panda and Koala pipes, the Koala North pipe is being developed for underground mining. Initially, the top 40 m of the pipe were mined as an open pit to provide grade information and a prepared surface for the transition to underground mining. Currently, Koala North is being developed as an open-benching, mechanized, trackless operation. Although the method was successfully used at several De Beers diamond operations in South Africa, it has never been tested in an Arctic environment. This case study describes basic geology, mining method layout and ongoing geological and geotechnical investigation. From the beginning of underground development, geotechnical daily routines have been fully integrated within the technical services department, which supports the operation. Geotechnical, geological and structural information obtained from underground mapping and core logging is compiled, processed, reviewed and analyzed on site by the geotechnical staff. Conclusions and recommendations are implemented as part of the operations in a timely manner. This ongoing ;live; process enables the operators to make the most efficient use of resources both for ground support and excavations as well as to address safety issues, which are the top priority.

  3. Synergistic efficiency of the desilication of brackish underground water in Saudi Arabia by coupling γ-radiation and Fenton process: Membrane scaling prevention in reverse osmosis process

    Science.gov (United States)

    Aljohani, Mohammed S.

    2017-12-01

    One of the main water resources in arid Saudi Arabia is underground water. However, this brackish water has high silica content which can cause a recalcitrant deposit on the membrane in the reverse osmosis units during its desalination. In this study, we examined the synergistic efficiency of the removal of silica from the Buwaib water sample, when combining two advanced oxidation processes, γ-irradiation and the Fenton process, using hydrogen peroxide and zero valent metal iron as source of Fe3+. This latter adsorbs effectively on silica and co-precipitate. The influence of absorbed dose, iron dosage and pH effect were investigated. This preliminary study showed that these attractive and effective hybrid processes are very efficient in removing silica.

  4. Monitoring underground water leakage pattern by ground penetrating radar (GPR) using 800 MHz antenna frequency

    Science.gov (United States)

    Amran, T. S. T.; Ismail, M. P.; Ahmad, M. R.; Amin, M. S. M.; Ismail, M. A.; Sani, S.; Masenwat, N. A.; Basri, N. S. M.

    2018-01-01

    Water is the most treasure natural resources, however, a huge amount of water are lost during its distribution that leads to water leakage problem. The leaks meant the waste of money and created more economic loss to treat and fix the damaged pipe. Researchers and engineers have put tremendous attempts and effort, to solve the water leakage problem especially in water leakage of buried pipeline. An advanced technology of ground penetrating radar (GPR) has been established as one of the non-destructive testing (NDT) method to detect the underground water pipe leaking. This paper focuses on the ability of GPR in water utility field especially on detection of water leaks in the underground pipeline distribution. A series of laboratory experiments were carried out using 800-MHz antenna, where the performance of GPR on detecting underground pipeline and locating water leakage was investigated and validated. A prototype to recreate water-leaking system was constructed using a 4-inch PVC pipe. Different diameter of holes, i.e. ¼ inch, ½ inch, and ¾ inch, were drilled into the pipe to simulate the water leaking. The PVC pipe was buried at the depth of 60 cm into the test bed that was filled with dry sand. 15 litres of water was injected into the PVC pipe. The water leakage patterns in term of radargram data were gathered. The effectiveness of the GPR in locating the underground water leakage was ascertained, after the results were collected and verified.

  5. Safety distance between underground natural gas and water pipeline facilities

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Yusof, M.Z.

    2014-01-01

    A leaking water pipe bursting high pressure water jet in the soil will create slurry erosion which will eventually erode the adjacent natural gas pipe, thus causing its failure. The standard 300 mm safety distance used to place natural gas pipe away from water pipeline facilities needs to be reviewed to consider accidental damage and provide safety cushion to the natural gas pipe. This paper presents a study on underground natural gas pipeline safety distance via experimental and numerical approaches. The pressure–distance characteristic curve obtained from this experimental study showed that the pressure was inversely proportional to the square of the separation distance. Experimental testing using water-to-water pipeline system environment was used to represent the worst case environment, and could be used as a guide to estimate appropriate safety distance. Dynamic pressures obtained from the experimental measurement and simulation prediction mutually agreed along the high-pressure water jetting path. From the experimental and simulation exercises, zero effect distance for water-to-water medium was obtained at an estimated horizontal distance at a minimum of 1500 mm, while for the water-to-sand medium, the distance was estimated at a minimum of 1200 mm. - Highlights: • Safe separation distance of underground natural gas pipes was determined. • Pressure curve is inversely proportional to separation distance. • Water-to-water system represents the worst case environment. • Measured dynamic pressures mutually agreed with simulation results. • Safe separation distance of more than 1200 mm should be applied

  6. Shield For Flexible Pipe

    Science.gov (United States)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  7. 30 CFR 57.4361 - Underground evacuation drills.

    Science.gov (United States)

    2010-07-01

    ...) Involve activation of the fire alarm system; and (3) Include evacuation of all persons from their work... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Procedures/alarms/drills § 57.4361 Underground evacuation drills. (a) At...

  8. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  9. The underground macroeconomics

    Directory of Open Access Journals (Sweden)

    Marin Dinu

    2013-01-01

    Full Text Available Like Physics, which cannot yet explain 96% of the substance in the Universe, so is Economics, unprepared to understand and to offer a rational explicative model to the underground economy.

  10. Leak test of the pipe line for radioactive liquid waste

    International Nuclear Information System (INIS)

    Machida, Chuji; Mori, Shoji.

    1976-01-01

    In the Tokai Research Establishment, most of the radioactive liquid waste is transferred to a wastes treatment facility through pipe lines. As part of the pipe lines a cast iron pipe for town gas is used. Leak test has been performed on all joints of the lines. For the joints buried underground, the test was made by radioactivity measurement of the soil; and for the joints in drainage ditch by the pressure and bubble methods. There were no leakage at all, indicating integrity of all the joints. On the other hand, it is also known by the other test that the corrosion of inner surface of the piping due to liquid waste is only slight. The pipe lines for transferring radioactive liquid waste are thus still usable. (auth.)

  11. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  12. Orpheus in the Underground

    Directory of Open Access Journals (Sweden)

    Puskás Dániel

    2015-12-01

    Full Text Available In my study I deal with descents to the underworld and hell in literature in the 20th century and in contemporary literature. I will focus on modem literary reinterpretations of the myth of Orpheus, starting with Rilke’s Orpheus. Eurydice. Hermes. In Seamus Heaney’s The Underground. in the Hungarian Istvan Baka’s Descending to the Underground of Moscow and in Czesław Miłosz’s Orpheus and Eurydice underworld appears as underground, similarly to the contemporary Hungarian János Térey’s play entitled Jeramiah. where underground will also be a metaphorical underworld which is populated with the ghosts of the famous deceased people of Debrecen, and finally, in Péter Kárpáti’s Everywoman the grave of the final scene of the medieval Everyman will be replaced with a contemporary underground station. I analyse how an underground station could be parallel with the underworld and I deal with the role of musicality and sounds in the literary works based on the myth of Orpheus.

  13. Study of a pipe-scanning robot for use in post-construction evaluation during horizontal directional drilling.

    Science.gov (United States)

    2015-06-01

    Trenchless Technology has become an increasingly popular underground utility construction method, beginning in : the early 1900s with pipe jacking beneath railroad lines. One method, horizontal directional drilling (HDD), became : more common in the ...

  14. Water quality implications of culvert repair options : vinyl ester based and ultraviolet cured-in-place pipe liners.

    Science.gov (United States)

    2012-11-01

    Specifications of the Virginia Department of Transportation (VDOT) allow for the use of several trenchless pipe or : culvert repair technologies whereby existing underground culverts are repaired in place rather than by the use of the conventio...

  15. Urban underground infrastructure mapping and assessment

    Science.gov (United States)

    Huston, Dryver; Xia, Tian; Zhang, Yu; Fan, Taian; Orfeo, Dan; Razinger, Jonathan

    2017-04-01

    This paper outlines and discusses a few associated details of a smart cities approach to the mapping and condition assessment of urban underground infrastructure. Underground utilities are critical infrastructure for all modern cities. They carry drinking water, storm water, sewage, natural gas, electric power, telecommunications, steam, etc. In most cities, the underground infrastructure reflects the growth and history of the city. Many components are aging, in unknown locations with congested configurations, and in unknown condition. The technique uses sensing and information technology to determine the state of infrastructure and provide it in an appropriate, timely and secure format for managers, planners and users. The sensors include ground penetrating radar and buried sensors for persistent sensing of localized conditions. Signal processing and pattern recognition techniques convert the data in information-laden databases for use in analytics, graphical presentations, metering and planning. The presented data are from construction of the St. Paul St. CCTA Bus Station Project in Burlington, VT; utility replacement sites in Winooski, VT; and laboratory tests of smart phone position registration and magnetic signaling. The soil conditions encountered are favorable for GPR sensing and make it possible to locate buried pipes and soil layers. The present state of the art is that the data collection and processing procedures are manual and somewhat tedious, but that solutions for automating these procedures appear to be viable. Magnetic signaling with moving permanent magnets has the potential for sending lowfrequency telemetry signals through soils that are largely impenetrable by other electromagnetic waves.

  16. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  17. Piping Stress Analysis

    International Nuclear Information System (INIS)

    Setjo, Renaningsih

    2000-01-01

    Piping stress analysis on Primary Sampling System, Reactor Cooling System, and Feedwater System for AP600 have been performed. Piping stress analysis is one of the requirements in the design of piping system. Piping stress is occurred due to static and dynamic loads during service. Analysis was carried out. Using PS+CAEPIPE software based on the individual and combination loads with assumption that failure could be happened during normal, upset, emergency and faulted condition as describe in ASME III/ANSI B31.1. With performing the piping stress analysis, the layout (proper pipe routing) of the piping system can be design with the requirements of piping stress and pipe supports in mind I.e sufficient flexibility for thermal expansion, etc to commensurate with the i tended service such as temperatures, pressure, seismic and anticipated loading

  18. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A; Parisher

    2000-01-01

    Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe

  19. Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands

    International Nuclear Information System (INIS)

    Vijgen, L.; Nitert, M.; Buijtendijk, B.; Van Dalen, A.

    2009-10-01

    The DCMR Environmental Protection Agency Rijnmond in the Netherlands conducted an Integral Safety Assessment of Underground Storage of CO2 in Barendrecht, the Netherlands, in cooperation with the involved safety and supervision authorities. The following aspects of the entire storage project and its safety issues have been examined: the compressor station in Pernis; the underground pipes between the compressor station and the injection locations; and the injection locations Barendrecht-Ziedewij and Barendrecht. [nl

  20. Closures for underground nuclear power plants

    International Nuclear Information System (INIS)

    1981-10-01

    This study demonstrates that, with the appropriate selection of an access concept on the underground nuclear power plant, it is possible to design a gate complying with the increased requirements of the construction of an underground nuclear power plant. The investigations revealed that a comparison leakage of 42 mm in diameter for the failure of seals is too conservative. When selecting suitable seals a leakage being more extensive than the above mentioned one can be prevented even in case of disturbance lasting several months. The closure structures of the personnel and material accesses do not represent any weak point within the concept of the construction method for underground nuclear power plants. (orig./HP)

  1. Decommissioning of underground structures, systems and components

    International Nuclear Information System (INIS)

    2006-01-01

    A large number of operational and shut down nuclear installations have underground systems, structures and components such as pipes, tanks or vaults. This practice of incorporating such features into the design of nuclear facilities has been in use for an extended period of time during which decommissioning was not perceived as a serious issue and was rarely considered in plant design and construction. Underground features can present formidable decontamination and/or dismantling issues, and these are addressed in this report. Decommissioning issues include, among others, difficulty of access, the possible need for remotely operated technologies, leakage of the contents and the resulting contamination of foundations and soil, as well as issues such as problematic radiological characterization. Although to date there have been more than 40 IAEA publications on decommissioning, none of them has ever addressed this subject. Although cases of decommissioning of such facilities have been described in the technical literature, no systematic treatment of relevant decommissioning strategies and technologies is currently available. It was perhaps assumed that generic decontamination and dismantling approaches would also be adequate for these 'difficult' facilities. This may be only partly true due to a number of unique physical, layout and radiological characteristics. With growing experience in the decommissioning field, it is timely to address this subject in a systematic and comprehensive fashion. Practical guidance is given in this report on relevant decommissioning strategies and technologies for underground features of facilities. Also described are alternative design and construction approaches that could facilitate a smoother path forward through the decommissioning process. The objective of this report is to highlight important points in the decommissioning of underground systems, structures or components for policy makers, operators, waste managers and other

  2. Dynamic Underground Stripping Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92

  3. Pipe-to-pipe impact program

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Bampton, M.C.C.; Friley, J.R.; Simonen, F.A.

    1984-06-01

    This report documents the tests and analyses performed as part of the Pipe-to-Pipe Impact (PTPI) Program at the Pacific Northwest Laboratory. This work was performed to assist the NRC in making licensing decisions regarding pipe-to-pipe impact events following postulated breaks in high energy fluid system piping. The report scope encompasses work conducted from the program's start through the completion of the initial hot oil tests. The test equipment, procedures, and results are described, as are analytic studies of failure potential and data correlation. Because the PTPI Program is only partially completed, the total significance of the current test results cannot yet be accurately assessed. Therefore, although trends in the data are discussed, final conclusions and recommendations will be possible only after the completion of the program, which is scheduled to end in FY 1984

  4. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  5. Subsidence Induced by Underground Extraction

    Science.gov (United States)

    Galloway, Devin L.

    2016-01-01

    Subsidence induced by underground extraction is a class of human-induced (anthropogenic) land subsidence that principally is caused by the withdrawal of subsurface fluids (groundwater, oil, and gas) or by the underground mining of coal and other minerals.

  6. Development of a simplified piping support system

    International Nuclear Information System (INIS)

    Leung, J.; Anderson, P.H.; Tang, Y.K.; Kassawara, R.P.; Tang, H.T.

    1987-01-01

    This paper presents the results of experimental and analytical studies for developing a simplified piping support system (SPSS) for nuclear power piping in place of snubbers. The basic concept of the SPSS is a passive seismic support system consisting of limit stops. Large gaps are provided to allow for free thermal expansion during normal plant operation while preventing excessive displacement during a seismic event. The results are part of a research and development program sponsored by EPRI. (orig./HP)

  7. Development of a simplified piping support system

    International Nuclear Information System (INIS)

    Leung, J.; Anderson, P.H.; Tang, Y.K.; Kassawara, R.P.; Tang, H.T.

    1987-01-01

    This paper presents the results of experimental and analytical studies for developing a simplified piping support system (SPSS) for nuclear power piping in place of snubbers. The basic concept of the SPSS is a passive seismic support system consisting of limit stops. Large gaps are provided to allow for free thermal expansion during normal plant operation while preventing excessive displacement during a seismic event. The results are part of a research and development program sponsored by the Electric Power Research Institute

  8. 75 FR 70241 - Compatibility of Underground Storage Tank Systems With Biofuel Blends

    Science.gov (United States)

    2010-11-17

    ...; Line leak detectors; Flexible connectors; Fill pipe; Spill and overfill prevention equipment... compatible: Tank or internal tank lining; Piping; Pipe adhesives and glues; Line leak detectors; Flexible... To protect groundwater, a source of drinking water for nearly half of all Americans, the U.S...

  9. Underground Coal Mining

    Science.gov (United States)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  10. Underground mining operation supports

    Energy Technology Data Exchange (ETDEWEB)

    Khusid, M.B.; Kozel, A.M.

    1980-12-10

    Underground mining operation supports include the supporting layer surrounded by a cylindrical jacket of cemented rock. To decrease the loss of support material due to the decreasing rock pressure on the supporting layer, the cylindrical jacket of cemented rock has an uncemented layer inside, dividing it into 2 concentric cylindrical parts.

  11. THE IMPACT OF WALL ROUGHNESS OF THE UNDERGROUND AIRWAYS ON THE VALUE OF HYDRAULIC FRICTION FACTOR

    Directory of Open Access Journals (Sweden)

    Vladimir Rendulić

    1991-12-01

    Full Text Available The studies of turbulent flows in round pipes resulted in many hydraulic formulas up to these days, which can also serve in projecting to calculate the resistance to the air flow in underground openings. The report discusses the way of establishing the hydraulic friction factor of untimbered underground workings when the value of equivalent roughness is obtained by measuring the ventilation parameters in a similar working of some other mine. A double reticular nomogram has been constructed for the fast determination of friction coefficient from the known roughness of an underground working (the paper is published in Croatian.

  12. Reliability-based assessment of polyethylene pipe creep lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Khelif, Rabia [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere Cedex (France); LR3MI, Departement de Genie Mecanique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)], E-mail: rabia.khelif@ifma.fr; Chateauneuf, Alaa [LGC-University Blaise Pascal, Campus des Cezeaux, BP 206, 63174 Aubiere Cedex (France)], E-mail: alaa.chateauneuf@polytech.univ-bpclermont.fr; Chaoui, Kamel [LR3MI, Departement de Genie Mecanique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)], E-mail: chaoui@univ-annaba.org

    2007-12-15

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. The use of high-density polyethylene tubes subjected to internal pressure, external loading and environmental variations requires a reliability study in order to define the service limits and the optimal operating conditions. In service, the time-dependent phenomena, especially creep, take place during the pipe lifetime, leading to significant strength reduction. In this work, the reliability-based assessment of pipe lifetime models is carried out, in order to propose a probabilistic methodology for lifetime model selection and to determine the pipe safety levels as well as the most important parameters for pipeline reliability. This study is enhanced by parametric analysis on pipe configuration, gas pressure and operating temperature.

  13. Reliability-based assessment of polyethylene pipe creep lifetime

    International Nuclear Information System (INIS)

    Khelif, Rabia; Chateauneuf, Alaa; Chaoui, Kamel

    2007-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. The use of high-density polyethylene tubes subjected to internal pressure, external loading and environmental variations requires a reliability study in order to define the service limits and the optimal operating conditions. In service, the time-dependent phenomena, especially creep, take place during the pipe lifetime, leading to significant strength reduction. In this work, the reliability-based assessment of pipe lifetime models is carried out, in order to propose a probabilistic methodology for lifetime model selection and to determine the pipe safety levels as well as the most important parameters for pipeline reliability. This study is enhanced by parametric analysis on pipe configuration, gas pressure and operating temperature

  14. Nuclear plant undergrounding

    International Nuclear Information System (INIS)

    Brown, R.C.; Bastidas, C.P.

    1978-01-01

    Under Section 25524.3 of the Public Resources Code, the California Energy Resources Conservation and Development Commission (CERCDC) was directed to study ''the necessity for '' and the effectiveness and economic feasibility of undergrounding and berm containment of nuclear reactors. The author discusses the basis for the study, the Sargent and Lundy (S and L) involvement in the study, and the final conclusions reached by S and L

  15. Monitoring underground movements

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 16 September 2015 at 22:54:33 (UTC), an 8.3-magnitude earthquake struck off the coast of Chile. 11,650 km away, at CERN, a new-generation instrument – the Precision Laser Inclinometer (PLI) – recorded the extreme event. The PLI is being tested by a JINR/CERN/ATLAS team to measure the movements of underground structures and detectors.   The Precision Laser Inclinometer during assembly. The instrument has proven very accurate when taking measurements of the movements of underground structures at CERN.    The Precision Laser Inclinometer is an extremely sensitive device capable of monitoring ground angular oscillations in a frequency range of 0.001-1 Hz with a precision of 10-10 rad/Hz1/2. The instrument is currently installed in one of the old ISR transfer tunnels (TT1) built in 1970. However, its final destination could be the ATLAS cavern, where it would measure and monitor the fine movements of the underground structures, which can affect the precise posi...

  16. 46 CFR 56.30-40 - Flexible pipe couplings of the compression or slip-on type.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Flexible pipe couplings of the compression or slip-on... Flexible pipe couplings of the compression or slip-on type. (a) Flexible pipe couplings of the compression... installation. (b) Positive means must also be provided to prevent the coupling from “creeping” on the pipe and...

  17. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  18. Piping engineering and operation

    International Nuclear Information System (INIS)

    1993-01-01

    The conference 'Piping Engineering and Operation' was organized by the Institution of Mechanical Engineers in November/December 1993 to follow on from similar successful events of 1985 and 1989, which were attended by representatives from all sectors of the piping industry. Development of engineering and operation of piping systems in all aspects, including non-metallic materials, are highlighted. The range of issues covered represents a balance between current practices and implementation of future international standards. Twenty papers are printed. Two, which are concerned with pressurized pipes or steam lines in the nuclear industry, are indexed separately. (Author)

  19. Environment Of Underground Water And Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Sang

    1998-02-15

    This book deals with environment of underground water and pollution, which introduces the role of underground water in hydrology, definition of related study of under water, the history of hydro-geology, basic conception of underground water such as origin of water, and hydrogeologic characteristic of aquifers, movement of underground water, hydrography of underground water and aquifer test analysis, change of an underground water level, and water balance analysis and development of underground water.

  20. Casing free district heating pipes; Mantelfria fjaerrvaermeroer

    Energy Technology Data Exchange (ETDEWEB)

    Saellberg, Sven-Erik; Nilsson, Stefan [Swedish National Testing and Research Inst., Goeteborg (Sweden)

    2005-07-01

    Previous studies have shown that polyurethane insulation (PUR foam) on district heating pipes acts as protection against water if it is of good quality, i.e. free from cracks, cavities and other defects. On the other hand water vapour easily diffuses through PUR foam. However this is not a problem as long as the steel pipe is warmer than the surface layer, since the high temperature will prevent the vapour from condensating. What will happen with the insulation of a casing free district heating pipe where the ground water level occasionally reaches above the pipe has not been studied in detail. The current project has studied to what extent moisture enters the PUR foam insulation of two approximately one meter long district heating pipes without casing which have been in the ground for four years. Occasionally, the ground-water has entirely covered the pipes. In addition, the foam has been studied with respect to damage from the surrounding backfill material. Test specimens were taken out of the casing free pipes and were analysed with respect to moisture content. Additional measurements were done with a moisture indicator, and the electric resistance between the steel pipes and the four surveillance wires in each pipe was measured. The results from the various measurement techniques were the compared. The results show that the PUR foam remains dry as long as the service pipe is hot if no defects, such as crack and cavities, are present. Close to the service pipe, the foam actually dries out over time. The moisture content of the middle layer remains more or less constant. Only the colder parts on the outside exhibit an increase in moisture content. It was also seen that defects may lead to water ingress with subsequent humidification of the foam. However, the damaged foam area is limited. This is not the case for a regular pipe with a vapour tight casing, where experience show that moisture tend to spread along the pipe. The pipes were buried in sand and no

  1. Underground radioactive materials in 100-H and F plants

    Energy Technology Data Exchange (ETDEWEB)

    Herman, G. Jr.

    1965-10-29

    At 100-H Area there are 13 locations and at 100-F Area 16 locations where radioactive material was deposited underground. Five of these locations, 2 at 100-H and 3 at 100-F, have been permanently terminated as burial sites in compliance with Radiation Control Standards. They contain solid waste with significant quantities of long-life radionuclides. Burial locations within the 105 Building exclusion fences were not marked with permanent posts as the exclusion fences are sufficient marking for such sites. Other locations not permanently marked were the components of the effluent systems, including the 107 retention basins, 1904 outfall structures and associated piping. Control objectives for these locations were to prevent contamination spreads and limit personnel access for several years. Similar objectives applied to locations where small quantities of liquid waste were released to ground, or small amounts of surface-contaminated materials were buried. At these locations, existing fences and radiation zone signs were left in place. The permanently posted burial grounds contain two general types of radioactive waste: neutron-activated reactor components, and surface-contaminated material and equipment. The activated components consist almost entirely of steel and aluminum. The most significant radionuclide contained in these materials is 5-year /sup 60/Co. The surface contaminants are primarily corrosion and activation products of the reactor cooling water effluent, of which the long-life emitter is the 245-day /sup 65/Zn. The activity at the radiation zoned sites should be measured at the end of 5 years, or before all control is relinquished, to ascertain if the locations are releasable.

  2. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  3. Underground water stress release models

    Science.gov (United States)

    Li, Yong; Dang, Shenjun; Lü, Shaochuan

    2011-08-01

    The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.

  4. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  5. Transients in pipes

    International Nuclear Information System (INIS)

    Marchesin, D.; Paes-Leme, P.J.S.; Sampaio, R.

    1981-01-01

    The motion of a fluid in a pipe is commonly modeled utilizing the one space dimension conservation laws of mass and momentum. The development of shocks and spikes utilizing the uniform sampling method is studied. The effects of temperature variations and friction are compared for gas pipes. (Author) [pt

  6. Going Underground in Singapore

    CERN Multimedia

    John Osborne (GS/SEM)

    2010-01-01

    Singapore has plans to build a massive Underground Science City (USC) housing R&D laboratories and IT data centres. A delegation involved in the planning to build the subterranean complex visited CERN on 18 October 2010 to learn from civil engineers and safety experts about how CERN plans and constructs its underground facilities.   The delegation from Singapore. The various bodies and corporations working on the USC project are currently studying the feasibility of constructing up to 40 caverns (60 m below ground) similar in size to an LHC experiment hall, in a similar type of rock. Civil engineering and geotechnical experts are calculating the maximum size of the cavern complex that can be safely built. The complex could one day accommodate between 3000 and 5000 workers on a daily basis, so typical issues of size and number of access shafts need to be carefully studied. At first glance, you might not think the LHC has much in common with the USC project; as Rolf Heuer pointed out: &ldq...

  7. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  8. RP delves underground

    CERN Document Server

    Anaïs Schaeffer

    2011-01-01

    The LHC’s winter technical stop is rapidly approaching. As in past years, technical staff in their thousands will be flocking to the underground areas of the LHC and the Linac2, Booster, PS and SPS injectors. To make sure they are protected from ionising radiation, members of the Radiation Protection Group will perform an assessment of the levels of radioactivity in the tunnels as soon as the beams have stopped.   Members of the Radiation Protection Group with their precision instruments that measure radioactivity. At 7-00 a.m. on 8 December the LHC and all of the upstream accelerators will begin their technical stop. At 7-30 a.m., members of the Radiation Protection Group will enter the tunnel to perform a radiation mapping, necessary so that the numerous teams can do their work in complete safety. “Before we proceed underground, we always check first to make sure that the readings from the induced radioactivity monitors installed in the tunnels are all normal,&rdqu...

  9. Underground super highway

    International Nuclear Information System (INIS)

    Latimer, Cole

    2010-01-01

    Clear communication is key. And quality communications and information equipment is now, more than ever before, integral in mine development as the industry moves towards greater remote control and automation of machinery and mining processes. In an underground mine, access to communications and information equipment has often been limited due to thermal extremes, physical hazards and dangerous chemicals. On top of this, copper conductors that are often used for communication equipment do not operate as efficiently because of the excessive noise generated by mining equipment, and may also puse a safety hazard. However, the design of extremely rugged fibre optic cables is now enabling ten gigabit transmission links in places that were never before thought possible in mining. One place though, has still proved a challenge for the expansion of fibre optic net-works, and that is in an underground coal mine. Until now. Optical Cable Corporation (OCC) has developed the rugged tight buffered breakout fibre optic cables for transmission links in harsh mining environments. Working at depths of over 300 metres below ground, and having seen roof falls actually bury the cable between rocks and still, the cables are able to operate in a myriad of conditions

  10. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  11. Underground layout tradeoff study

    International Nuclear Information System (INIS)

    1988-01-01

    This report presents the results of a technical and economic comparative study of four alternative underground layouts for a nuclear waste geologic repository in salt. The four alternatives considered in this study are (1) separate areas for spent fuel (SF) and commercial high-level waste (CHLW); (2) panel alternation, in which SF and CHLW are emplaced in adjacent panels of rooms; (3) room alternation, in which SF and CHLW are emplaced in adjacent rooms within each panel; and (4) intimate mixture, in which SF and CHLW are emplaced in random order within each storage room. The study concludes that (1) cost is not an important factor; (2) the separate-areas and intimate-mixture alternatives appear, technically, to be more desirable than the other alternatives; and (3) the selection between the separate-areas and intimate mixture alternatives depends upon future resolution of site-specific and reprocessing questions. 5 refs., 6 figs., 12 tabs

  12. Underground space planning in Helsinki

    Directory of Open Access Journals (Sweden)

    Ilkka Vähäaho

    2014-10-01

    Full Text Available This paper gives insight into the use of underground space in Helsinki, Finland. The city has an underground master plan (UMP for its whole municipal area, not only for certain parts of the city. Further, the decision-making history of the UMP is described step-by-step. Some examples of underground space use in other cities are also given. The focus of this paper is on the sustainability issues related to urban underground space use, including its contribution to an environmentally sustainable and aesthetically acceptable landscape, anticipated structural longevity and maintaining the opportunity for urban development by future generations. Underground planning enhances overall safety and economy efficiency. The need for underground space use in city areas has grown rapidly since the 21st century; at the same time, the necessity to control construction work has also increased. The UMP of Helsinki reserves designated space for public and private utilities in various underground areas of bedrock over the long term. The plan also provides the framework for managing and controlling the city's underground construction work and allows suitable locations to be allocated for underground facilities. Tampere, the third most populated city in Finland and the biggest inland city in the Nordic countries, is also a good example of a city that is taking steps to utilise underground resources. Oulu, the capital city of northern Finland, has also started to ‘go underground’. An example of the possibility to combine two cities by an 80-km subsea tunnel is also discussed. A new fixed link would generate huge potential for the capital areas of Finland and Estonia to become a real Helsinki-Tallinn twin city.

  13. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    OpenAIRE

    Yiming Zhao; Nong Zhang; Guangyao Si

    2016-01-01

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring...

  14. Particle Shape Effect on Macroscopic Behaviour of Underground Structures: Numerical and Experimental Study

    Directory of Open Access Journals (Sweden)

    Szarf Krzysztof

    2015-02-01

    Full Text Available The mechanical performance of underground flexible structures such as buried pipes or culverts made of plastics depend not only on the properties of the structure, but also on the material surrounding it. Flexible drains can deflect by 30% with the joints staying tight, or even invert. Large deformations of the structure are difficult to model in the framework of Finite Element Method, but straightforward in Discrete Element Methods. Moreover, Discrete Element approach is able to provide information about the grain-grain and grain-structure interactions at the microscale. This paper presents numerical and experimental investigations of flexible buried pipe behaviour with focus placed on load transfer above the buried structure. Numerical modeling was able to reproduce the experimental results. Load repartition was observed, being affected by a number of factors such as particle shape, pipe friction and pipe stiffness.

  15. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A

    2011-01-01

    Pipe Drafting and Design, Third Edition provides step-by-step instructions to walk pipe designers, drafters, and students through the creation of piping arrangement and isometric drawings. It includes instructions for the proper drawing of symbols for fittings, flanges, valves, and mechanical equipment. More than 350 illustrations and photographs provide examples and visual instructions. A unique feature is the systematic arrangement of drawings that begins with the layout of the structural foundations of a facility and continues through to the development of a 3-D model. Advanced chapters

  16. Flexible ultrasonic pipe inspection apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  17. Improved Thin, Flexible Heat Pipes

    Science.gov (United States)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  18. The pipes of pan.

    Science.gov (United States)

    Chalif, David J

    2004-12-01

    The pipes of pan is the crowning achievement of Pablo Picasso's neoclassical period of the 1920s. This monumental canvas depicts a mythological Mediterranean scene in which two sculpted classical giants stare out, seemingly across the centuries, toward a distant and lost Arcadia. Picasso was influenced by Greco-Roman art during his travels in Italy, and his neoclassical works typically portray massive, immobile, and pensive figures. Pan and his pipes are taken directly from Greek mythological lore by Picasso and placed directly into 20th century art. He frequently turned to various mythological figures throughout his metamorphosing periods. The Pipes of Pan was also influenced by the painter's infatuation with the beautiful American expatriate Sara Murphy, and the finished masterpiece represents a revision of a previously conceived neoclassical work. The Pipes of Pan now hangs in the Musee Picasso in Paris.

  19. Heat Pipe Systems

    Science.gov (United States)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  20. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed

    2016-03-10

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  1. KAERI underground research tunnel (KURT)

    International Nuclear Information System (INIS)

    Cho, Won Jin; Kwon, Sang Ki; Park, Jeong Hwa; Choi, Jong Won

    2007-01-01

    An underground research tunnel is essential to validate the integrity of a high-level waste disposal system, and the safety of geological disposal. In this study, KAERI underground research tunnel (KURT) was constructed in the site of Korea Atomic Energy Research Institute(KAERI). The results of the site investigation and the design of underground tunnel were presented. The procedure for the construction permits and the construction of KURT were described briefly. The in-situ experiments being carried out at KURT were also introduced

  2. Piping in need of a facelift

    CERN Document Server

    HSE Unit

    2013-01-01

    The LS1 offers a good opportunity to renovate/consolidate the CERN piping system. This is actually one of this year’s objectives set by CERN's Director-General as the state of several pressurised pipe networks has become a matter of significant concern. The ageing infrastructure makes it essential to perform in-depth inspections and repairs on several networks, which are easier to perform when most systems are down.   We are advising each Department/Group concerned to take a series of actions to ensure that their pipelines comply with personal, environmental and operational safety requirements: an inventory of ageing installations to allow a long-term replacement plan to be drawn up; immediate repair in the event of major signs of deterioration; investigation and repair/mitigation measures to prevent leaks; marking and, if necessary, mechanical protection of pipes located in thoroughfares and exposed to vehicles or people. Help needed, questions? Do not hesitate to contact us ...

  3. Prediction of Underground Cavity Roof Collapse using the Hoek–Brown Failure Criterion

    DEFF Research Database (Denmark)

    Suchowerska, A. M.; Merifield, R. S.; Carter, J. P.

    2012-01-01

    Preventing roof collapse in underground cavities is a challenge to geotechnical engineering. In this study, three independent methods have been used to evaluate the roof collapse of underground rectangular cavities for a range of geometries and rock properties. The rock mass strength has been des...... and when estimating surface subsidence....

  4. Underground Facilities, Technological Challenges

    CERN Document Server

    Spooner, N

    2010-01-01

    This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

  5. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  6. An embedded underground navigation system

    CSIR Research Space (South Africa)

    Hlophe, K

    2011-11-01

    Full Text Available Platform pose (localization and orientation) information is a key requirement for autonomous mobile systems. The severe natural conditions and complex terrain of underground mines diminish the capability of most pose estimation systems, especially...

  7. 30 CFR 57.4505 - Fuel lines to underground areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fuel lines to underground areas. 57.4505 Section 57.4505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... working pressures and stresses; (2) Located to prevent damage; and (3) Located in areas free of...

  8. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  9. Proximity detection system underground

    Energy Technology Data Exchange (ETDEWEB)

    Denis Kent [Mine Site Technologies (Australia)

    2008-04-15

    Mine Site Technologies (MST) with the support ACARP and Xstrata Coal NSW, as well as assistance from Centennial Coal, has developed a Proximity Detection System to proof of concept stage as per plan. The basic aim of the project was to develop a system to reduce the risk of the people coming into contact with vehicles in an uncontrolled manner (i.e. being 'run over'). The potential to extend the developed technology into other areas, such as controls for vehicle-vehicle collisions and restricting access of vehicle or people into certain zones (e.g. non FLP vehicles into Hazardous Zones/ERZ) was also assessed. The project leveraged off MST's existing Intellectual Property and experience gained with our ImPact TRACKER tagging technology, allowing the development to be fast tracked. The basic concept developed uses active RFID Tags worn by miners underground to be detected by vehicle mounted Readers. These Readers in turn provide outputs that can be used to alert a driver (e.g. by light and/or audible alarm) that a person (Tag) approaching within their vicinity. The prototype/test kit developed proved the concept and technology, the four main components being: Active RFID Tags to send out signals for detection by vehicle mounted receivers; Receiver electronics to detect RFID Tags approaching within the vicinity of the unit to create a long range detection system (60 m to 120 m); A transmitting/exciter device to enable inner detection zone (within 5 m to 20 m); and A software/hardware device to process & log incoming Tags reads and create certain outputs. Tests undertaken in the laboratory and at a number of mine sites, confirmed the technology path taken could form the basis of a reliable Proximity Detection/Alert System.

  10. Pipe whip and impact

    International Nuclear Information System (INIS)

    Attwood, G.J.

    1987-01-01

    Over the past few years changes in economic and safety considerations in nuclear power plants have resulted in a need to examine the problem of pipe whip in greater detail. Consequently, experimental programmes were set up in France, North America and Britain. Results from these tests combined with analytical work indicate that pipe whip followed by impact with surrounding pipework and structures may not be as serious as had been believed. Impact loads have been found to be much less (at least five times) than those predicted to the appropriate design regulations. Hence, the use of pipe whip restraints may have been overconservative. The use of fewer, better designed restraints, would result in greater accessibility of pipework, a reduced need for inspection of restraints, and a considerable financial saving. (author)

  11. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  12. Application of subset simulation in reliability estimation of underground pipelines

    International Nuclear Information System (INIS)

    Tee, Kong Fah; Khan, Lutfor Rahman; Li, Hongshuang

    2014-01-01

    This paper presents a computational framework for implementing an advanced Monte Carlo simulation method, called Subset Simulation (SS) for time-dependent reliability prediction of underground flexible pipelines. The SS can provide better resolution for low failure probability level of rare failure events which are commonly encountered in pipeline engineering applications. Random samples of statistical variables are generated efficiently and used for computing probabilistic reliability model. It gains its efficiency by expressing a small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment and compared with direct Monte Carlo simulation (MCS) method. Reliability of a buried flexible steel pipe with time-dependent failure modes, namely, corrosion induced deflection, buckling, wall thrust and bending stress has been assessed in this study. The analysis indicates that corrosion induced excessive deflection is the most critical failure event whereas buckling is the least susceptible during the whole service life of the pipe. The study also shows that SS is robust method to estimate the reliability of buried pipelines and it is more efficient than MCS, especially in small failure probability prediction

  13. PE 100 pipe systems

    CERN Document Server

    Brömstrup, Heiner

    2012-01-01

    English translation of the 3rd edition ""Rohrsysteme aus PE 100"". Because of the considerably increased performance, pipe and pipe systems made from 100 enlarge the range of applications in the sectors of gas and water supply, sewage disposal, industrial pipeline construction and in the reconstruction and redevelopment of defective pipelines (relining). This book applies in particular to engineers, technicians and foremen working in the fields of supply, disposal and industry. Subject matters of the book are all practice-relevant questions regarding the construction, operation and maintenance

  14. Performance of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters : characterizing the soil structure interaction developed in a buried pipe installation located under : roads/highways. The drainage pipes or culverts instal...

  15. A Simple and Robust Method for Simultaneous Consideration of Overland and Underground Space in Urban Flood Modeling

    Directory of Open Access Journals (Sweden)

    Ah-Long Son

    2016-11-01

    Full Text Available This study proposed two methods, boundary-type and pond-type, to link overland and underground space in urban flood modeling. The boundary-type treats the exit of underground space as an interface for inflow of floodwater by imposing open boundary condition and pond-type considers underground space as an underground pond by configuring pond terrain. The effect of underground space in urban flood inundation was examined by coupling one-dimensional (1D stormwater management model (SWMM and two-dimensional (2D overland flood model. The models were applied to the Hyoja drainage basin, Seoul, Korea where urban flood occurred due to heavy rainfall in 21 September 2010. The conduit roughness coefficient of SWMM was calibrated to minimize the difference between observed and predicted water depth of pipe. In addition, the surface roughness coefficient of 2D model was calibrated by comparing observed and predicted flood extent. Then, urban flood analysis was performed on three different scenarios involving a case not considering underground (Case 1 and cases considering underground, boundary-type (Case 2 and pond-type (Case 3. The simulation results have shown that the boundary-type is simple but robust method with high computational efficiency to link overland and underground space in urban flood modeling.

  16. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  17. Impact test on a pipe

    International Nuclear Information System (INIS)

    Noronha, R.F.; Shimura, S.H.

    1995-01-01

    A carbon steel pipe was submitted to a series of progressive impact loadings on a drop table. Strain and acceleration were measured in relevant places of the pipe and recorded in time and frequency domain. The pipe withstood impact loads up to 560 G without any visual deformation being noticed. Strains 50% over the yield point strain were measured. A high level of damping coming from the supports may have attenuated the response of the pipe. (author). 4 refs., 1 fig., 1 tab

  18. The epidemiology of suicide on the London Underground.

    Science.gov (United States)

    O'Donnell, I; Farmer, R D

    1994-02-01

    A database containing details of every incident of suicidal behaviour on the London Underground railway system between 1940 and 1990 was assembled from the records of London Underground Ltd and the British Transport Police. The total number of cases was 3240. The mean annual number of suicidal acts on the London Underground system increased from 36.1 (1940-1949) to 94.1 (1980-1989). There were significantly fewer incidents on Sundays than on the other days of the week and the daily rate was highest in the spring. 64% of incidents involved males and the peak age group for both sexes was 25-34 yr. Suicide verdicts were returned for a greater proportion of women than men. Overall case fatality was 55%. However, case fatality rates differed between stations, environmental factors appearing to influence survival. Possible strategies to prevent railway suicides and reduce the lethality of this method are discussed.

  19. Optimization of Pipe Networks

    DEFF Research Database (Denmark)

    Hansen, C. T.; Madsen, Kaj; Nielsen, Hans Bruun

    1991-01-01

    algorithm using successive linear programming is presented. The performance of the algorithm is illustrated by optimizing a network with 201 pipes and 172 nodes. It is concluded that the new algorithm seems to be very efficient and stable, and that it always finds a solution with a cost near the best...

  20. Flexible Heat Pipe

    Science.gov (United States)

    Bienert, W. B.; Wolf, D. A.

    1985-01-01

    Narrow Tube carries 10 watts or more to moving parts. Heat pipe 12 inches long and diameter of 0.312 inch (7.92mm). Bent to minimum radius of 2.5 blocks. Flexible section made of 321 stainless steel tubing (Cajon Flexible Tubing or equivalent). Evaporator and condenser made of oxygen free copper. Working fluid methanol.

  1. HPFRCC - Extruded Pipes

    DEFF Research Database (Denmark)

    Stang, Henrik; Pedersen, Carsten

    1996-01-01

    The present paper gives an overview of the research onHigh Performance Fiber Reinforced Cementitious Composite -- HPFRCC --pipes recently carried out at Department of Structural Engineering, Technical University of Denmark. The project combines material development, processing technique developme...... of the newly extruded material....

  2. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  3. Underground Nuclear Astrophysics in China

    Science.gov (United States)

    Liu, Weiping

    2016-10-01

    Underground Nuclear Astrophysics in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. High current accelerator with an ECR source and detectors will be set up. We plan to study directly a number of nuclear reactions important to hydrostatic stellar evolution at their relevant stellar energies, such as 25Mg(p,γ)26Al, 19F(p,α)16O, 13C(α,n)16O and 12C(α,γ)16O.

  4. Dynamic Underground Stripping Demonstration Project

    International Nuclear Information System (INIS)

    Aines, R.; Newmark, R.; McConachie, W.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; udel, K.

    1992-03-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ''Dynamic Stripping'' to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving to the contaminated site in FY 92

  5. Logistics background study: underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  6. POSSIBILITIES OF THE USE OF GRP PIPING IN THE CONSTRUCTION AND RECONSTRUCTION OF ENGINEERING NETWORKS

    Directory of Open Access Journals (Sweden)

    ikitina Irina Nikolaevna

    2015-12-01

    Full Text Available Today in modern construction new technologies and materials are used for the manufacture of pipelines for water supply and sanitation. They are supposed to operate for at least 50 years. Unlike plastic pipes, fiberglass ones may be made of larger sizes — up to 3700 mm in diameter. They are produced using the technology of optical fiber winding, which is carried out according to modern international standards of quality. The basic raw materials — fiberglass and resin — are produced in Russia, but their production is limited, so they are purchased abroad, which increases the cost of manufacture of this type of piping. However, due to the necessity of laying pipelines of large diameter, which cannot be made with plastic pipes, the manufacture of GRP pipes will increase. The experience of laying and constructing this type of pipelines, for example, in the areas of hot water supply allows concluding that they are able to withstand the temperatures of up to 150 °C, while their weight is four times less than the weight of steel pipes (they are easily installed with the help of small lifting equipment and by a team of six people. It should be noted that the use of fiberglass pipes helps to reduce the costs of system operation, because this type of piping is not subject to corrosion and encrustation of the inner surface, since it has a low level of roughness, which, for example, is 0.013 for a steel pipe, and 0.01 for fiberglass pipe. Thus, it is not necessary to put protective corrosion-resistant coatings and to provide an expensive protection against electrochemical corrosion. Piping made of fiberglass pipes can be designed as underground, above-ground with stacking or raised on poles. It is possible to combine these options.

  7. Tools for Inspecting and Sampling Waste in Underground Radioactive Storage Tanks with Small Access Riser Openings

    International Nuclear Information System (INIS)

    Nance, T.A.

    1998-01-01

    Underground storage tanks with 2 inches to 3 inches diameter access ports at the Department of Energy's Savannah River Site have been used to store radioactive solvents and sludge. In order to close these tanks, the contents of the tanks need to first be quantified in terms of volume and chemical and radioactive characteristics. To provide information on the volume of waste contained within the tanks, a small remote inspection system was needed. This inspection system was designed to provide lighting and provide pan and tilt capabilities in an inexpensive package with zoom abilities and color video. This system also needed to be utilized inside of a plastic tent built over the access port to contain any contamination exiting from the port. This system had to be build to travel into the small port opening, through the riser pipe, into the tank evacuated space, and out of the riser pipe and access port with no possibility of being caught and blocking the access riser. Long thin plates were found in many access riser pipes that blocked the inspection system from penetrating into the tank interiors. Retrieval tools to clear the plates from the tanks using developed sampling devices while providing safe containment for the samples. This paper will discuss the inspection systems, tools for clearing access pipes, and solvent sampling tools developed to evaluate the tank contents of the underground solvent storage tanks

  8. Numerical Modeling for Impact-resistant Pipes Buried at Shallow Depth

    Science.gov (United States)

    Wang, Ching-Jong; Hsu, Jung-Fu

    2010-05-01

    The plastic pipes buried at shallow depth are popular for underground telecommunication lines. To assess their impact-worthiness under loads from heavy traffics, the study establishes a numerical model to correlate with field data. Field impact tests were carried out where a 50-kg mass free-falling at 2.2 m height was dropped onto the soil backfill directly above a buried pipe. A contact-impact model incorporating finite elements of disjoined material regions is developed to simulate the phenomena of mass-soil-pipe interaction and soil dent. Plastic soil deformations are accounted for. Also implemented is a new erosion scheme for dealing with numerical instability caused by crumpled elements during heavy impact. Reasonable agreements can be observed between the analyzed and measured soil dent. This model is versatile in making design evaluations for buried pipes to withstand impact loads. It has potential applications to cemented soil fills and blast loads.

  9. Noncondensable gas accumulation phenomena in nuclear power plant piping

    International Nuclear Information System (INIS)

    Yamamoto, Yasushi; Aoki, Kazuyoshi; Sato, Teruaki; Shida, Akira; Ichikawa, Nagayoshi; Nishikawa, Akira; Inagaki, Tetsuhiko

    2011-01-01

    In the case of the boiling water reactor, hydrogen and oxygen slightly exist in the main steam, because these noncondensable gases are generated by the radiolytic decomposition of the reactor water. BWR plants have taken measures to prevent noncondensable gas accumulation. However, in 2001, the detonation of noncondensable gases occurred at Hamaoka-1 and Brunsbuttel, resulting in ruptured piping. The accumulation phenomena of noncondensable gases in BWR closed piping must be investigated and understood in order to prevent similar events from occurring in the future. Therefore, an experimental study on noncondensable gas accumulation was carried out. The piping geometries for testing were classified and modeled after the piping of actual BWR plants. The test results showed that 1) noncondensable gases accumulate in vertical piping, 2) it is hard for noncondensable gases to accumulate in horizontal piping, and 3) noncondensable gases accumulate under low-pressure conditions. A simple accumulation analysis method was proposed. To evaluate noncondensable gas accumulation phenomena, the three component gases were treated as a mixture. It was assumed that the condensation amount of the vapor is small, because the piping is certainly wrapped with heat insulation material. Moreover, local thermal equilibrium was assumed. This analysis method was verified using the noncondensable gas accumulation test data on branch piping with a closed top. Moreover, an experimental study on drain trap piping was carried out. The test results showed that the noncondensable gases dissolved in the drain water were discharged from the drain trap, and Henry's law could be applied to evaluate the amount of dissolved noncondensable gases in the drain water. (author)

  10. PPOOLEX experiments with a modified blowdown pipe outlet

    International Nuclear Information System (INIS)

    Laine, J.; Puustinen, M.; Raesaenen, A.

    2009-08-01

    water hammers and pressure loads inside the blowdown pipe.However, warm water seems not to prevent pressure loads in the condensation pool. Even an order of magnitude higher loads were measured with the collar than without it at the blowdown pipe outlet (measurement P5). At least in the 50-55 deg. C temperature range, the collar doesn't seem to work as planned. Instead, it looks like it can even magnify pressure loads in the condensation pool. (au)

  11. Flexible Cryogenic Heat Pipe Development Program

    Science.gov (United States)

    1976-01-01

    A heat pipe was designed for operation in the 100 - 200 K temperature range with maximum heat transport as a primary design goal; another designed for operation in the 15 - 100 K temperature range with maximum flexibility as a design goal. Optimum geometry and materials for the container and wicking systems were determined. The high power (100 - 200 K) heat pipe was tested with methane at 100 - 140 K, and test data indicated only partial priming with a performance limit of less than 50 percent of theoretical. A series of tests were conducted with ammonia at approximately 280 K to determine the performance under varying fluid charge and test conditions. The low temperature heat pipe was tested with oxygen at 85 - 95 K and with methanol at 295 - 315 K. Performance of the low temperature heat pipe was below theoretical predictions. Results of the completed testing are presented and possible performance limitation mechanisms are discussed. The lower-than-expected performance was felt to be due to small traces of non-condensible gases which prevented the composite wick from priming.

  12. Heat pipe applications workshop report

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1978-04-01

    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  13. GASCOPACT: A new approach to pipe and cable location

    Science.gov (United States)

    Blears, A. S.; Daniels, D. J.

    1983-11-01

    A robust, hand-held instrument for locating underground pipes and cables before excavations by public utility workers was developed. It has direct indiction, no controls to adjust, good resolution, a weatherproof case, a hum detector for power lines, automatic built-in self calibration, back-up diagnostic equipment, and is insensitive to carrying angle. Performance is maintained in the temperature range minus 10 to + 40 C. Batteries are sufficient for 10 hr continuous use. It functions normally after immersion in 0.3 m water for 5 min. Mean time between failures is 1 yr.

  14. Prevention

    Science.gov (United States)

    ... Contact Aging & Health A to Z Find a Geriatrics Healthcare Professional Medications & Older Adults Making Your Wishes ... Prevention Hearing Loss Heart Attack High Blood Pressure Nutrition Osteoporosis Shingles Skin Cancer Related News Quitting Smoking, ...

  15. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Stephenson, D.E.; Zandt, G.; Bouchon, M.; Hustrulid, W.A.

    1980-01-01

    In order to assess the seismic risk for an underground facility, a data base was established and analyzed to evaluate the potential for seismic disturbance. Substantial damage to underground facilities is usually the result of displacements primarily along pre-existing faults and fractures, or at the surface entrance to these facilities. Evidence of this comes from both earthquakes and large explosions. Therefore, the displacement due to earthquakes as a function of depth is important in the evaluation of the hazard to underground facilities. To evaluate potential displacements due to seismic effects of block motions along pre-existing or induced fractures, the displacement fields surrounding two types of faults were investigated. Analytical models were used to determine relative displacements of shafts and near-surface displacement of large rock masses. Numerical methods were used to determine the displacement fields associated with pure strike-slip and vertical normal faults. Results are presented as displacements for various fault lengths as a function of depth and distance. This provides input to determine potential displacements in terms of depth and distance for underground facilities, important for assessing potential sites and design parameters

  16. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  17. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  18. Uranium extraction from underground deposits

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1982-01-01

    Uranium is extracted from underground deposits by passing an aqueous oxidizing solution of carbon dioxide over the ore in the presence of calcium ions. Complex uranium carbonate or bicarbonate ions are formed which enter the solution. The solution is forced to the surface and the uranium removed from it

  19. Nuclear piping and pipe support design and operability relating to loadings and small bore piping

    International Nuclear Information System (INIS)

    Stout, D.H.; Tubbs, J.M.; Callaway, W.O.; Tang, H.T.; Van Duyne, D.A.

    1994-01-01

    The present nuclear piping system design practices for loadings, multiple support design and small bore piping evaluation are overly conservative. The paper discusses the results developed for realistic definitions of loadings and loading combinations with methodology for combining loads under various conditions for supports and multiple support design. The paper also discusses a simplified method developed for performing deadweight and thermal evaluations of small bore piping systems. Although the simplified method is oriented towards the qualification of piping in older plants, this approach is applicable to plants designed to any edition of the ASME Section III or B31.1 piping codes

  20. Stress state in the neighborhood of subways and pipe lines under the action of dynamic loads

    International Nuclear Information System (INIS)

    Alexeyeva, L.A.; Eskalieva, A.Z.; Shershnev, V.V.

    2001-01-01

    We consider the long underground constructions of deep and shallow types such as transport subways, mines, underground pipes etc. by the action of dynamic lads. Situated in areas of seismic activity, they are subjected to the influence of seismic waves during earthquakes and can be destroyed. Running loads inside constructions (transport for instance) affect upon toughness and stability of both subways and surrounding medium. If underground construction dispose near a day's surface, it acts also on nearby buildings. Evaluations of behavior of underground and pipes under dynamic influences in real conditions of usage are determined of stress state of constructions in the interaction with environment medium. Here underground constructions are simulated by infinitely long cylindrical cavities in utter ambience. As utter ambience the isotropic elastic medium and two-component medium of Biot are researched. Last one allows simulating saturated water oils. The elastic cylindrical shell simulates supporting of a tunnel (or pipeline). Both a tress state of construction and surrounding medium were investigated for a different contact conditions between support of tunnel and environment (rigid, slippery and viscous contacts). (author)

  1. Quality control of stainless steel pipings for nuclear power generation

    International Nuclear Information System (INIS)

    Miki, Minoru; Kitamura, Ichiro; Ito, Hisao; Sasaki, Ryoichi

    1979-01-01

    The proportion of nuclear power in total power generation is increasing recently in order to avoid the concentrated dependence on petroleum resources, consequently the reliability of operation of nuclear power plants has become important. In order to improve the reliability of plants, the reliability of each machine or equipment must be improved, and for the purpose, the quality control at the time of manufacture is the important factor. The piping systems for BWRs are mostly made of carbon steel, and stainless steel pipings are used for the recirculation system cooling reactors and instrumentation system. Recently, grain boundary type stress corrosion cracking has occurred in the heat-affected zones of welded stainless steel pipings in some BWR plants. In this paper, the quality control of stainless steel pipings is described from the standpoint of preventing stress corrosion cracking in BWR plants. The pipings for nuclear power plants must have sufficient toughness so that the sudden rupture never occurs, and also sufficient corrosion resistance so that corrosion products do not raise the radioactivity level in reactors. The stress corrosion cracking occurred in SUS 304 pipings, the factors affecting the quality of stainless steel pipings, the working method which improves the corrosion resistance and welding control are explained. (Kako, I.)

  2. Effects of Climate Change on Drinking Water Distribution Network Integrity : Predicting Pipe Failure Resulting from Differential Soil Settlement

    NARCIS (Netherlands)

    Wols, B.A.; Van Daal, K.; Van Thienen, P.

    2014-01-01

    Climate change may result in lowering of ground water levels and consolidation of the soil. The resulting (differential) settlements, associated with soil property transitions, may damage underground pipe infrastructure, such as drinking water distribution sys- tems. The work presented here offers

  3. 29 CFR 1926.800 - Underground construction.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Underground Construction, Caissons, Cofferdams and..., floor or walls in any underground work area for more than a 24-hour period; or (ii) The history of the... inches (304.8 mm) ±0.25 inch (6.35 mm) from the roof, face, floor or walls in any underground work area...

  4. Drill pipe protector development

    Energy Technology Data Exchange (ETDEWEB)

    Thomerson, C.; Kenne, R. [Regal International Corp., Corsicanna, TX (United States); Wemple, R.P. [Sandia National Lab., Albuquerque, NM (United States)] [ed.] [and others

    1996-03-01

    The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

  5. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  6. LHCb: Beam Pipe portrait

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector: it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  7. LHCb: Beam Pipe

    CERN Multimedia

    LHCb, Collaboration

    2005-01-01

    The proton beams circulate in the accelerator in Ultra High Vacuum to make them interact only with each other when colliding at the interaction point. A special beam pipe "holds" the vacuum where they pass through the LHCb detector:it has to be mechanically very strong to stand the difference in pressure between the vacuum inside it and the air in the cavern but also be as transparent as possible for the particles originating in the proton−proton collisions.

  8. Pipe clamp effects on thin-walled pipe design

    International Nuclear Information System (INIS)

    Lindquist, M.R.

    1980-01-01

    Clamp induced stresses in FFTF piping are sufficiently large to require structural assessment. The basic principles and procedures used in analyzing FFTF piping at clamp support locations for compliance with ASME Code rules are given. Typical results from a three-dimensional shell finite element pipe model with clamp loads applied over the clamp/pipe contact area are shown. Analyses performed to categorize clamp induced piping loads as primary or secondary in nature are described. The ELCLAMP Computer Code, which performs analyses at clamp locations combining clamp induced stresses with stresses from overall piping system loads, is discussed. Grouping and enveloping methods to reduce the number of individual clamp locations requiring analysis are described

  9. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  10. Corrosion and deposit evaluation in large diameter pipes using radiography

    International Nuclear Information System (INIS)

    Boateng, A.

    2012-01-01

    The reliability and safety of industrial equipment in the factories and processing industries are substantially influenced by degradation processes such as corrosion, erosion, deposits and blocking of pipes. These might lead to low production, unpredictable and costly shutdowns due to repair and replacement and sometimes combined environmental pollution and risk of personnel injuries. Only periodic inspection for the integrity of pipes and equipment can reduce the risk in connection with other maintenance activities. The research explored two methods of radiographic inspection techniques, the double wall technique and the tangential radiographic technique using Ir-192 for evaluating deposits and corrosion attacks across the inner and outer walls of steel pipes with diameter greater than 150 mm with or without insulation. The application of both techniques was conducted depending on pipe diameter, wall thickness, radiation source (Ir-92) and film combination. The iridium source was positioned perpendicular with respect to the pipe axis projecting the double wall of the pipe on the plated radiographic film. With the tangential radiographic technique, the source was placed tangential to the pipe wall and because of its large diameter, the source was collimated to prevent backscatter and also to focus the beam at the target area of interest. All measurements were performed on special designed test pieces to simulate corrosion attack and deposits on industrial pipes. Pitting corrosion measurements based on Tangential Radiographic Technique were more sophisticated, and therefore magnification factor and correction were used to establish the estimated pit depth on the film. The insulating material used to conserve the thermodynamic properties of the transported media had relatively negligible attenuation coefficient compared to the concrete deposit. The two explored techniques were successful in evaluating corrosion attack and deposit on the walls of the pipe and the risk

  11. DEALING WITH TOPOLOGICAL RELATIONS IN UNDERGROUND NETWORKS

    Directory of Open Access Journals (Sweden)

    M. Lacroix

    2015-01-01

    Full Text Available Ten years ago, 25 people died and more than 150 were seriously injured in Ghislenghien (Belgium because of construction damage to a high pressure gas pipeline. Urban networks are invisible because usually buried between 1 and 1.5 meter underground. They should be identified to prevent such accidents which involve workers and public as well. Rural and urban districts, networks concessionary and contractors; everyone could benefit from their networks becoming safer. To develop software which evaluates the risks in managing both uncertainties and topology is the focus of attention. That’s the reason why we firstly propose to determine the topological relationships between networks; secondly we propose to compute the risks taking into account the various uncertainties such as the security radius or the coordinates accuracy, before giving the different required standards for an artificial intelligence tool in order to obtain high security level.

  12. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...... that the variations of these types of insulation systems work for pipes with temperature above 0C and for ambient conditions within common ranges for industrial applications....

  13. Underground Coal Preparation System and Applications

    Science.gov (United States)

    Wei, Cao; DeYong, Shang; BaoNing, Zhang

    2018-03-01

    The underground coal preparation is a cutting-edge technology of the coal industry worldwide. This paper introduced the meaning of implementing the underground coal preparation, and the practical applications of underground mechanical moving screen jig, underground heavy medium shallow slot and underground air jigger. Through analyzing the main separation equipment and the advantages and disadvantages of three primary processes from aspects of process complexity, slime water treatment, raw coal preparation, etc., the difference among technology investment, construction scale, production cost and economic benefit is concluded.

  14. A research on the excavation, support, and environment control of large scale underground space

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Pil Chong; Kwon, Kwang Soo; Jeong, So Keul [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    With the growing necessity of the underground space due to the deficiency of above-ground space, the size and shape of underground structures tend to be complex and diverse. This complexity and variety force the development of new techniques for rock mass classification, excavation and supporting of underground space, monitoring and control of underground environment. All these techniques should be applied together to make the underground space comfortable. To achieve this, efforts have been made on 5 different areas; research on the underground space design and stability analysis, research on the techniques for excavation of rock by controlled blasting, research on the development of monitoring system to forecast the rock behaviour of underground space, research on the environment inspection system in closed space, and research on dynamic analysis of the airflow and environmental control in the large geos-spaces. The 5 main achievements are improvement of the existing structure analysis program(EXCRACK) to consider the deformation and failure characteristics of rock joints, development of new blasting design (SK-cut), prediction of ground vibration through the newly proposed wave propagation equation, development and In-Situ application of rock mass deformation monitoring system and data acquisition software, and trial manufacture of the environment inspection system in closed space. Should these techniques be applied to the development of underground space, prevention of industrial disaster, cut down of construction cost, domestication of monitoring system, improvement of tunnel stability, curtailment of royalty, upgrade of domestic technologies will be brought forth. (Abstract Truncated)

  15. Pipe support program at Pickering

    International Nuclear Information System (INIS)

    Sahazizian, L.A.; Jazic, Z.

    1997-01-01

    This paper describes the pipe support program at Pickering. The program addresses the highest priority in operating nuclear generating stations, safety. We present the need: safety, the process: managed and strategic, and the result: assurance of critical piping integrity. In the past, surveillance programs periodically inspected some systems, equipment, and individual components. This comprehensive program is based on a managed process that assesses risk to identify critical piping systems and supports and to develop a strategy for surveillance and maintenance. The strategy addresses all critical piping supports. Successful implementation of the program has provided assurance of critical piping and support integrity and has contributed to decreasing probability of pipe failure, reducing risk to worker and public safety, improving configuration management, and reducing probability of production losses. (author)

  16. Underground spaces/cybernetic spaces

    Directory of Open Access Journals (Sweden)

    Tomaž Novljan

    2000-01-01

    Full Text Available A modern city space is a space where in the vertical and horizontal direction dynamic, non-linear processes exist, similar as in nature. Alongside the “common” city surface, cities have underground spaces as well that are increasingly affecting the functioning of the former. It is the space of material and cybernetic communication/transport. The psychophysical specifics of using underground places have an important role in their conceptualisation. The most evident facts being their limited volume and often limited connections to the surface and increased level of potential dangers of all kinds. An efficient mode for alleviating the effects of these specific features are artistic interventions, such as: shape, colour, lighting, all applications of the basic principles of fractal theory.

  17. Water hammer in elastic pipes

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2002-01-01

    One dimensional two-fluid six-equation model of two-phase flow, that can be found in computer codes like RELAP5, TRAC, and CATHARE, was upgraded with additional terms, which enable modelling of the pressure waves in elastic pipes. It is known that pipe elasticity reduces the propagation velocity of the shock and other pressure waves in the piping systems. Equations that include the pipe elasticty terms are used in WAHA code, which is being developed within the WAHALoads project of 5't'h EU research program.(author)

  18. Treatment of an underground formation

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, P.E.; Braden, W.B. Jr.

    1974-03-12

    A method is described for treating underground formations, especially those containing clays or clay-like materials which are sensitive to fresh water. The treatment densensitizes the clays so they will not swell or disperse on contact with fresh water. The procedure consists of contacting the clay-containing formation with solutions which accomplish the electroless deposition of metal on the clay particles. Optionally, the formation can be resin coated prior to electroless plating. (9 claims)

  19. The Underground Economy in Romania

    Directory of Open Access Journals (Sweden)

    Cleopatra Sendroiu

    2006-07-01

    Full Text Available Underground economic activities exist in most countries around the world, and they usually have the same causes: inadequate tax systems, excessive state interference in the economy and the lack of coordination in establishing economic policies. Through this paper, we aim to offer certain recommendations, which, in our opinion, would lead to solving the issue of inadequate allocation of resources and would also contribute to restoration of the worldwide economy.

  20. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  1. Radionuclides in an underground environment

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1996-01-01

    In the 100 years since Becquerel recognized radioactivity, mankind has been very successful in producing large amounts of radioactive materials. We have been less successful in reaching a consensus on how to dispose of the billions of curies of fission products and transuranics resulting from nuclear weapons testing, electrical power generation, medical research, and a variety of other human endeavors. Many countries, including the United States, favor underground burial as a means of disposing of radioactive wastes. There are, however, serious questions about how such buried wastes may behave in the underground environment and particularly how they might eventually contaminate water, air and soil resources on which we are dependent. This paper describes research done in the United States in the state of Nevada on the behavior of radioactive materials placed underground. During the last thirty years, a series of ''experiments'' conducted for other purposes (testing of nuclear weapons) have resulted in a wide variety of fission products and actinides being injected in rock strata both above and below the water table. Variables which seem to control the movement of these radionuclides include the physical form (occlusion versus surface deposition), the chemical oxidation state, sorption by mineral phases of the host rock, and the hydrologic properties of the medium. The information gained from these studies should be relevant to planning for remediation of nuclear facilities elsewhere in the world and for long-term storage of nuclear wastes

  2. Design and Development of Vision Based Blockage Clearance Robot for Sewer Pipes

    Directory of Open Access Journals (Sweden)

    Krishna Prasad Nesaian

    2012-03-01

    Full Text Available Robotic technology is one of the advanced technologies, which is capable of completing tasks at situations where humans are unable to reach, see or survive. The underground sewer pipelines are the major tools for the transportation of effluent water. A lot of troubles caused by blockage in sewer pipe will lead to overflow of effluent water, sanitation problems. So robotic vehicle that is capable of traveling at underneath effluent water determining blockage using ultrasonic sensors and clearing by means of drilling mechanism is done. In addition to that wireless camera is fixed which acts as a robot vision by which we can monitor video and capture images using MATLAB tool. Thus in this project a prototype model of underground sewer pipe blockage clearance robot with drilling type will be developed

  3. Management of mining-related damages in abandoned underground coal mine areas using GIS

    International Nuclear Information System (INIS)

    Lee, U.J.; Kim, J.A.; Kim, S.S.; Kim, W.K.; Yoon, S.H.; Choi, J.K.

    2005-01-01

    The mining-related damages such as ground subsidence, acid mine drainage (AMD), and deforestation in the abandoned underground coal mine areas become an object of public concern. Therefore, the system to manage the mining-related damages is needed for the effective drive of rehabilitation activities. The management system for Abandoned Underground Coal Mine using GIS includes the database about mining record and information associated with the mining-related damages and application programs to support mine damage prevention business. Also, this system would support decision-making policy for rehabilitation and provide basic geological data for regional construction works in abandoned underground coal mine areas. (authors)

  4. Commercialization of a system to prevent the insect damage by termite. Kansai Electric Power Co.; Shiroari shokugai boshi system no jitsuyoka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, T. [Kansai Electric Power Co. Inc., Osaka (Japan)

    2000-01-10

    The paper studied measures to prevent the underground power cable from insect damage by termite. To search for the termite entering the cable, fiber inspection is good, but the length which fiber reaches and the margin of cable diameter are limited. Moreover, the termite prevention use PFP pipe has been developed, but termite invades inside from the joint in PFP pipe. In AP pipe, termite invades from the place where concrete placing is poor and from cracks. As to the method to search for termite, sounds which termite emit to threaten foreign enemies were gathered by microphone, and the frequency was analyzed. As a result, it was verified that it is possible to judge if there is termite or not by checking levels in the 50-1300Hz zone (the method to let termite emit the threatening sound has been unknown). Since the path of invasion of termite is limited to the joint of cable, a thing in which chemical is put on rubber band of cable joint was developed. The chemical which was a little put on the rubber band is a domestic use insecticide generally commercially available, and adopted pyrethroids base chemical the safety of which was estimated. There is no need for spray of termite prevention agent, and the chemical is lower-priced than a change to the termite prevention cable. (NEDO)

  5. Parameters of Solidifying Mixtures Transporting at Underground Ore Mining

    Directory of Open Access Journals (Sweden)

    Golik Vladimir

    2017-01-01

    Full Text Available The article is devoted to the problem of providing mining enterprises with solidifying filling mixtures at underground mining. The results of analytical studies using the data of foreign and domestic practice of solidifying mixtures delivery to stopes are given. On the basis of experimental practice the parameters of transportation of solidifying filling mixtures are given with an increase in their quality due to the effect of vibration in the pipeline. The mechanism of the delivery process and the procedure for determining the parameters of the forced oscillations of the pipeline, the characteristics of the transporting processes, the rigidity of the elastic elements of pipeline section supports and the magnitude of vibrator’ driving force are detailed. It is determined that the quality of solidifying filling mixtures can be increased due to the rational use of technical resources during the transportation of mixtures, and as a result the mixtures are characterized by a more even distribution of the aggregate. The algorithm for calculating the parameters of the pipe vibro-transport of solidifying filling mixtures can be in demand in the design of mineral deposits underground mining technology.

  6. Valve for the mechanical isolation of a pipe to take up a test probe

    International Nuclear Information System (INIS)

    Uecker, D.F.

    1976-01-01

    A valve is introduced for application in a pipe in which a test probe is arranged. The valve serves to isolate the pipe in a gas-tight way, thus preventing the escape of radioactive gas or dust during operation in a nuclear reactor. (TK) [de

  7. Large-bore pipe decontamination

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system

  8. Heat pipe and method of production of a heat pipe

    International Nuclear Information System (INIS)

    Kemp, R.S.

    1975-01-01

    The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de

  9. Leak-thight seals got high pressure testing of pipes, tanks, valves

    International Nuclear Information System (INIS)

    Estrade, J.

    1985-01-01

    Leak-tight seals ensure quick, safe and efficient testing of pipes with plain-ended or flanged openings, valves with flanged or welded edges, manifields, recipients, etc. They are inserted into the pipe end manually then simply a slight turn of the seal treated wheel commences the pressure test. Hydraulic pressure is supplied by a pump through the inlet seal and air is purged through the outlet seal which then closes. The higher the pressure, the greater the sealing strength of the seal which prevents accidental unplugging. There are different types of seals: for interior plain-ended openings, for pipes with plain-ended opening, for flanged pipes. (author)

  10. Electrically heated pipe in pipe combined with electrical submersible pumps for deepwater development

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sidnei Guerreiro da; Euphemio, Mauro Luiz Lopes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The general trend of deep water and ultra deep water field development is the requirement of highly insulated flow lines, as flow assurance has become one of the major considerations in designing and operating the sub sea system. If not adequately considered in the design phase, it can have significant and unexpected effects to the operational costs, increasing production lost time, decreasing efficiency. In this scenario, the use of pipe in pipe flow lines, with high passive insulation and/ or active heating (called the Electrically Heated Pipe in Pipe - EHPIP), emerges as an attractive method to prevent deposition, especially of waxes and hydrates, by actively maintaining or leading the temperature of the flow line above a critical limit. Besides, the recent heavy oil discoveries in Brazil have encouraged PETROBRAS to move a step forward in the artificial lift design and operation, by the use of Electrical Submersible Pumps (ESP) installed in deep water wells. The combination of EHPIP and ESP are particularly suitable for deep water, high viscosity and long tie back systems, but also can improve oil recovery and production efficiency by allowing the operator to drop down production losses associated Flow Assurance problems. (author)

  11. Mechanical Behaviour of Lined Pipe

    NARCIS (Netherlands)

    Hilberink, A.

    2011-01-01

    Installing lined pipe by means of the reeling installation method seems to be an attractive combination, because it provides the opportunity of eliminating the demanding welds from the critical time offshore and instead preparing them onshore. However, reeling of lined pipe is not yet proven

  12. Processing of hazardous material, or damage treatment method for shallow layer underground storage structure

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sakaguchi, Takehiko; Nishioka, Yoshihiro.

    1997-01-01

    In radioactive waste processing facilities and shallow layer underground structures for processing hazardous materials, sheet piles having freezing pipes at the joint portions are spiked into soils at the periphery of a damaged portion of the shallow layer underground structure for processing or storing hazardous materials. Liquid nitrogen is injected to the freezing pipes to freeze the joint portions of adjacent sheet piles. With such procedures, continuous waterproof walls are formed surrounding the soils at the peripheries of the damaged portion. Further, freezing pipes are disposed in the surrounding soils, and liquid nitrogen is injected to freeze the soils. The frozen soils are removed, and artificial foundation materials are filled in the space except for the peripheries of the damaged portion after the removal thereof, and liquid suspension is filled in the peripheries of the damaged portion, and restoration steps for closing the damaged portion are applied. Then, the peripheries of the damaged portion are buried again. With such procedures, series of treatments for removing contaminated soils and repairing a damaged portion can be conducted efficiently at a low cost. (T.M.)

  13. Corroded scale analysis from water distribution pipes

    Directory of Open Access Journals (Sweden)

    Rajaković-Ognjanović Vladana N.

    2011-01-01

    Full Text Available The subject of this study was the steel pipes that are part of Belgrade's drinking water supply network. In order to investigate the mutual effects of corrosion and water quality, the corrosion scales on the pipes were analyzed. The idea was to improve control of corrosion processes and prevent impact of corrosion on water quality degradation. The instrumental methods for corrosion scales characterization used were: scanning electron microscopy (SEM, for the investigation of corrosion scales of the analyzed samples surfaces, X-ray diffraction (XRD, for the analysis of the presence of solid forms inside scales, scanning electron microscopy (SEM, for the microstructural analysis of the corroded scales, and BET adsorption isotherm for the surface area determination. Depending on the composition of water next to the pipe surface, corrosion of iron results in the formation of different compounds and solid phases. The composition and structure of the iron scales in the drinking water distribution pipes depends on the type of the metal and the composition of the aqueous phase. Their formation is probably governed by several factors that include water quality parameters such as pH, alkalinity, buffer intensity, natural organic matter (NOM concentration, and dissolved oxygen (DO concentration. Factors such as water flow patterns, seasonal fluctuations in temperature, and microbiological activity as well as water treatment practices such as application of corrosion inhibitors can also influence corrosion scale formation and growth. Therefore, the corrosion scales found in iron and steel pipes are expected to have unique features for each site. Compounds that are found in iron corrosion scales often include goethite, lepidocrocite, magnetite, hematite, ferrous oxide, siderite, ferrous hydroxide, ferric hydroxide, ferrihydrite, calcium carbonate and green rusts. Iron scales have characteristic features that include: corroded floor, porous core that contains

  14. Research on Performance and Microstructure of Sewage Pipe Mortar Strengthened with Different Anti-Corrosion Technologies

    Science.gov (United States)

    Mu, Song; Zhou, Huaxin; Shi, Liang; Liu, Jianzhong; Cai, Jingshun; Wang, Feng

    2017-10-01

    Mostly urban underground sewage is the acidic corrosion environment with a high concentration of aggressive ions and microbe, which resulted in performance deterioration and service-life decrease of sewage concrete pipe. In order to effectively protect durability of the concrete pipe, the present paper briefly analysed the main degradation mechanism of concrete pipe attacked by urban underground sewage, and proposed that using penetrating and strengthening surface sealer based on inorganic chemistry. In addition, using index of compressive strength, weight loss and appearance level to investigate the influence of the sealer on corrosion resistance of mortar samples after different dry-wet cycles. Besides, comparative research on effect of the sealer, aluminate cement and admixture of corrosion resistance was also addressed. At last, the SEM technology was used to reveal the improvement mechanism of different technologies of corrosion resistance. The results indicated that the sealer and aluminate cement can significantly improve corrosion resistance of mortar. Besides, the improvement effect can be described as the descending order: the penetrating and strengthening surface sealer > aluminate cement > admixture of corrosion resistance. The mortar sample treated with the sealer displayed the condensed and sound microstructure which proved that the sealer can improve the corrosion resistance to urban underground sewage.

  15. Optimization of weld overlay dimensions for butt-welded pipes

    Energy Technology Data Exchange (ETDEWEB)

    Chintapalli, A.; Ku, F.H.; Miessi, G.A., E-mail: achintapalli@structint.com, E-mail: fku@structint.com, E-mail: amiessi@structint.com [Structural Integrity Associates, Inc., San Jose, California (United States); Yee, R.K., E-mail: Raymond.Yee@sjsu.edu [San Jose State Univ., San Jose, California (United States)

    2008-07-01

    Weld overlay technique can be used on a welded pipe with a flaw in the butt weld to prevent it from cracking further. Due to the application of weld overlay on top of the weld, compressive stresses are developed in the pipe wall and the weld. These stresses counteract the effect of the residual stresses from the butt weld and tensile stresses produced in the pipe during normal operation. Existing guidelines in the nuclear industry specify minimum dimensions (length and thickness) of the weld overlay. However, there is no guideline regarding the optimum repair dimensions that should be used to obtain minimum residual stresses induced by the weld overlay technique. The optimum dimensions in this study refer to the minimum material that can be used for the weld overlay. This results in reduced cost, time and exposure to radiation. Hence a size sensitivity study is performed by varying three parameters, the width and thickness of the weld overlay, and the size of the pipe being repaired. The repaired pipe is assumed to be subjected to typical pressurizer water reactor (PWR) operating conditions. The weld overlay process is simulated using an axisymmetric finite element model. The axial and hoop stresses in the region of the butt weld after the weld overlay are compared. The results from this study will be analyzed to establish optimum dimensions of the weld overlay for various pipe sizes to mitigate axial and circumferential crack initiation at the butt weld. (author)

  16. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  17. Flexible ultrasonic pipe inspection apparatus

    Science.gov (United States)

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  18. Underground siting is a nuclear option

    International Nuclear Information System (INIS)

    Dodds, R.K.; Gilbert, P.H.

    1976-01-01

    Underground siting of nuclear power plants is a concept that can be both technologically feasible and economically attractive. To meet both these criteria, however, each underground nuclear plant must be adapted to take full advantage of its location. It cannot be a unit that was designed for the surface and is then buried. Seeking to develop potential commercial programs, Underground Design Consultants (UDC)--a joint venture of Parsons, Brinckerhoff, Quade and Douglas, New York City, Vattenbyggnadsbyran (VBB), Stockholm, Sweden, and Foundation Sciences, Inc., Portland, Oregon--has been studying the siting of nuclear plants underground. UDC has made a presentation to EPRI on the potential for underground siting in the U.S. The summary presented here is based on the experiences of underground nuclear power plants in Halden, Norway; Agesta, Sweden; Chooz, France; and Lucens, Switzerland. Data from another plant in the design phase in Sweden and UDC's own considered judgment were also used

  19. Radon in Brazilian underground mines.

    Science.gov (United States)

    Ayres da Silva, Anna Luiza Marques; Eston, Sérgio Médici; Iramina, Wilson Siguemasa; Francisca, Diego Diegues

    2018-02-14

    Radon is a chemically inert noble radioactive gas found in several radioactive decay chains. In underground mines, especially those that contain or have contained ores associated with uranium-bearing minerals, workers might be exposed to high levels of radon and its decay products (RDP). This work aimed to investigate whether the exposure of workers to radon gas and its progeny has been evaluated in Brazilian non-uranium and non-thorium underground mines. If so, the results and control measures undertaken or recommended to maintain the concentrations under Brazilian occupational exposure limits (OELs) were documented. The adopted methodology consisted of three main phases. The first was an extensive bibliographical survey of the concentration levels of radon and RDP, and the radiation dose estimates, considering measurements made heretofore by various Brazilian researchers and exhibiting original measurement work undertaken by the one of the authors (mine O). In the second phase, the values obtained were compared with OELs. In the third phase, it was verified whether any control measures were undertaken in the mines with high exposure of workers to radon and its progeny, and if so, the adopted controls were determined. Data of radon concentration obtained from 52 campaigns in 40 underground mines were analyzed. The results showed that the assessment of the exposure of workers to radon and its progeny was undertaken in many mines at least once, and that in 62.5% of the mines, when visited for the first time, the radon levels throughout them were below the Brazilian OELs. As expected, the main control measure adopted or recommended was the improvement of the ventilation system. © 2018 IOP Publishing Ltd.

  20. Design of deepwater HP/HT pipe-in-pipe flowlines crossing mega-furrows in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tianxi Andy; Chacko, Jacob; Zhou, Mengjuan Jane; Omonoji, Gabriel O. [TECHNIP USA, Houston, TX (United States); Eigbe, Uwa [INTECSEA, Houston, TX (United States)

    2009-07-01

    Two 12-mile long pipe-in-pipe (PIP) with HT/HP flow lines were recently designed for the Chinook offshore oil field in the Gulf of Mexico. The routes of the flow line of the Chinook crosses continuous mega-furrows at the water depth ranging from 8200 ft to 8800 ft. The design of the temperature and pressure of the flow lines were 250 deg F and 12,684 psi, respectively. The detailed finite element analysis was performed to predict flow line in-place behavior. The strain-based criterion of API RP 1111 was used where stresses were greater than allowable limits of the ASME B31.8 and found to be satisfactory. The fatigue analysis of the spans pipe subjected to Vortex Induced Vibration (VIV) showed the need for VIV mitigation measures. It was decided that the entire length of the flow lines crossing the mega-furrows should be stake. The analysis of the stake fatigue life of the flow lines resulted greater than the required 25 years service life. Further analysis was performed on the PIP system to optimize the centralizer spacing to sufficiently limit the buckling of inner pipe under operation conditions and prevent crushing of the insulation in the annulus. J-lay analysis of the installation determining the amount of the inner pipe pre-tensioning that was required to eliminate locked-in stresses in the inner and outer pipes. (author)

  1. Third symposium on underground mining

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Symposium on Underground Mining was held at the Kentucky Fair and Exposition Center, Louisville, KY, October 18--20, 1977. Thirty-one papers have been entered individually into EDB and ERA. The topics covered include mining system (longwall, shortwall, room and pillar, etc.), mining equipment (continuous miners, longwall equipment, supports, roof bolters, shaft excavation equipment, monitoring and control systems. Maintenance and rebuilding facilities, lighting systems, etc.), ventilation, noise abatement, economics, accidents (cost), dust control and on-line computer systems. (LTN)

  2. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  3. Application of Non-pressure Reinforced Concrete Pipes in Modern Construction and Reconstruction of Highways

    Science.gov (United States)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    Modern highway construction technologies provide for the quality water discharge systems to increase facilities’ service life. Pipeline operating conditions require the use of durable and reliable materials and structures. The experience in using reinforced concrete pipes for these purposes shows their utilization efficiency. The present paper considers the experience in the use of non-pressure reinforced concrete pipes manufactured by the German company SCHLOSSER-PFEIFFER under the Ural region geological and climatic conditions. The authors analyzed the actual operation of underground pipelines and effective loads upon them. A detailed study of the mechanical properties of reinforced concrete pipes is necessary to improve their production technology and to enhance their serviceability. The use of software-based methods helped to develop a mathematical model and to estimate the strength and crack resistance of reinforced concrete pipes at different laying depths. The authors carried out their complex research of the strain-stress behaviour of reinforced concrete pipes and identified the most hazardous sections in the structure. The calculations performed were confirmed by the results of laboratory tests completed in the construction materials, goods, and structures test center. Based on the completed research, the authors formulated their recommendations to improve the design and technology of non-pressure reinforced concrete pipes.

  4. IEEE recommended practice for the design and installation of electric pipe heating systems for nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The realization that electric pipe heating systems play an important role in the normal operation of both nuclear and non-nuclear processes in nuclear power generating stations is now coming of age. This is apparent by the increased amount of space being devoted to electric pipe heating in station technical specifications, system descriptions, and operating criteria. Such electric pipe heating systems are applied on borated water systems and on water treatment systems such as caustic. Since boric acid and caustics in water will crystalize or precipitate out of the solution, depending on their concentrations at temperatures above ambient, and since such crystallization can make the piping system inoperable for normal operation, electric pipe heating systems are required to keep the solutions and piping systems in a state to perform their intended functions. Electric pipe heating systems may also be applied on piping located outdoors at nuclear generating stations for the purpose of preventing the piping systems from freezing. It should be noted that each and all of these piping systems can include valves, pumps, strainers, tanks, and instrumentation components that can be rendered inoperable due to solutions crystalizing or freezing. Therefore, a definite need exists within the nuclear power industry for recommendations that provide a uniform method for the design and installation of electric pipe heating systems that meet the requirements for rendering reliable operation of the piping system. Without such recommendations, station reliability may be jeopardized

  5. Waste pipe calculus extensions

    International Nuclear Information System (INIS)

    O'Connell, W.J.

    1979-01-01

    The waste pipe calculus provides a rapid method, using Laplace transforms, to calculate the transport of a pollutant such as nuclear waste, by a network of one-dimensional flow paths. The present note extends previous work as follows: (1) It provides an alternate approximation to the time-domain function (inverse Laplace transform) for the resulting transport. This algebraic approximation may be viewed as a simpler and more approximate model of the transport process. (2) It identifies two scalar quantities which may be used as summary consequence measures of the waste transport (or inversely, waste retention) system, and provides algebraic expressions for them. (3) It includes the effects of radioactive decay on the scalar quantity results, and further provides simplifying approximations for the cases of medium and long half-lives. This algebraic method can be used for quick approximate analyses of expected results, uncertainty and sensitivity, in evaluating selection and design choices for nuclear waste disposal systems

  6. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-08-01

    The performance of a solar chemical heat pipe was studied using CO 2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  7. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  8. Underground storage tank management plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  9. Earthquake damage to underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, H.R.; Hustrulid, W.A. Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository.

  10. Earthquake damage to underground facilities

    International Nuclear Information System (INIS)

    Pratt, H.R.; Hustrulid, W.A.; Stephenson, D.E.

    1978-11-01

    The potential seismic risk for an underground nuclear waste repository will be one of the considerations in evaluating its ultimate location. However, the risk to subsurface facilities cannot be judged by applying intensity ratings derived from the surface effects of an earthquake. A literature review and analysis were performed to document the damage and non-damage due to earthquakes to underground facilities. Damage from earthquakes to tunnels, s, and wells and damage (rock bursts) from mining operations were investigated. Damage from documented nuclear events was also included in the study where applicable. There are very few data on damage in the subsurface due to earthquakes. This fact itself attests to the lessened effect of earthquakes in the subsurface because mines exist in areas where strong earthquakes have done extensive surface damage. More damage is reported in shallow tunnels near the surface than in deep mines. In mines and tunnels, large displacements occur primarily along pre-existing faults and fractures or at the surface entrance to these facilities.Data indicate vertical structures such as wells and shafts are less susceptible to damage than surface facilities. More analysis is required before seismic criteria can be formulated for the siting of a nuclear waste repository

  11. Nuclear piping design, pipe support design and engineering during installation

    International Nuclear Information System (INIS)

    Podczerwinski, C.A.

    1983-01-01

    This paper discusses the computer-aided design of the piping and pipe supports of nuclear power plants. Hardware improvements have been made in the areas of man-machine communication, processing speed, and memory density. Topics considered include evolving design systems, application to current needs, safety-related small-bore piping and support design, as-built drawing review and reconciliation, large-bore pipe support design, snubber population reduction, and operating plant modifications. The improvements in man-machine communication hardware permit the designer to communicate with the computer in terms of pictures of elements of the design. The processing speed and memory density improvements enables the assembly of the design on the machine

  12. Construction of high-rise building with underground parking in Moscow

    Science.gov (United States)

    Ilyichev, Vyacheslav; Nikiforova, Nadezhda; Konnov, Artem

    2018-03-01

    Paper presents results of scientific support to construction of unique residential building 108 m high with one storey underground part under high-rise section and 3-storey underground parking connected by underground passage. On-site soils included anthropogenic soil, clayey soils soft-stiff, saturated sands of varied grain coarseness. Design of retaining structure and support system for high-rise part excavation was developed. It suggested installation of steel pipes and struts. Construction of adjacent 3-storey underground parking by "Moscow method" is described in the paper. This method involves implementation of retaining wall consisted of prefabricated panels, truss structures (used as struts) and reinforced concrete slabs. Also design and construction technology is provided for foundations consisted of bored piles 800 MM in diameter joined by slab with base widening diameter of 1500 MM. Experiment results of static and dynamic load testing (ELDY method) are considered. Geotechnical monitoring data of adjacent building and utility systems settlement caused by construction of presented high-rise building were compared to numerical modelling results, predicted and permissible values.

  13. Construction of high-rise building with underground parking in Moscow

    Directory of Open Access Journals (Sweden)

    Ilyichev Vyacheslav

    2018-01-01

    Full Text Available Paper presents results of scientific support to construction of unique residential building 108 m high with one storey underground part under high-rise section and 3-storey underground parking connected by underground passage. On-site soils included anthropogenic soil, clayey soils soft-stiff, saturated sands of varied grain coarseness. Design of retaining structure and support system for high-rise part excavation was developed. It suggested installation of steel pipes and struts. Construction of adjacent 3-storey underground parking by “Moscow method” is described in the paper. This method involves implementation of retaining wall consisted of prefabricated panels, truss structures (used as struts and reinforced concrete slabs. Also design and construction technology is provided for foundations consisted of bored piles 800 MM in diameter joined by slab with base widening diameter of 1500 MM. Experiment results of static and dynamic load testing (ELDY method are considered. Geotechnical monitoring data of adjacent building and utility systems settlement caused by construction of presented high-rise building were compared to numerical modelling results, predicted and permissible values.

  14. 49 CFR 192.55 - Steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Steel pipe. 192.55 Section 192.55 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.55 Steel pipe. (a) New steel pipe is... in accordance with paragraph (c) or (d) of this section. (b) Used steel pipe is qualified for use...

  15. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  16. 49 CFR 192.281 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint or...

  17. Determination of the pipe stemming load

    International Nuclear Information System (INIS)

    Cowin, S.C.

    1979-01-01

    A mechanical model for the emplacement pipe system is developed. The model is then employed to determine the force applied to the surface collar of the emplacement pipe, the pipe-stemming load, and the stress along the emplacement pipe as a function of stemming height. These results are presented as integrals and a method for their numerical integration is given

  18. Evaluation of fracture toughness of nuclear piping using real pipe and tensile compact pipe specimens

    International Nuclear Information System (INIS)

    Koo, J.M.; Park, S.; Seok, C.S.

    2013-01-01

    Highlights: • The tensile compact pipe (CP) specimen was proposed. • J-integral for the specimen was obtained by the plastic limit load analysis and FEA. • Fracture toughness tests by several types of specimens were performed and compared. • The constraint effects were considered by comparing Q-stresses for them. -- Abstract: The leak-before-break (LBB) concept is generally used to design the primary heat transport piping for a nuclear power plant. The LBB concept is based on the fracture resistance curve, which is obtained by J–R tests on various types of specimens. Fracture toughness data differ according to the various types of specimens. It has also been known that there is a difference in the constraint effect between real pipes and standard specimens, and LBB design using standard specimens is conservative. We propose a new type of specimen for J–R tests, a tensile compact pipe (CP) specimen, and perform fracture toughness tests on various types of specimens. We also perform constraint effect analysis on such specimens. The Q-stresses of the tensile CP specimens are lower than those of real pipes under 4-point bending, and are higher than those of elbow pipes. If the lever length of a tensile CP specimen is controlled, the specimen can simulate various stress conditions, and it is thought that the LBB design of piping in service can be performed using this specimen

  19. Evaluation of fracture toughness of nuclear piping using real pipe and tensile compact pipe specimens

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.M.; Park, S.; Seok, C.S., E-mail: seok@skku.edu

    2013-06-15

    Highlights: • The tensile compact pipe (CP) specimen was proposed. • J-integral for the specimen was obtained by the plastic limit load analysis and FEA. • Fracture toughness tests by several types of specimens were performed and compared. • The constraint effects were considered by comparing Q-stresses for them. -- Abstract: The leak-before-break (LBB) concept is generally used to design the primary heat transport piping for a nuclear power plant. The LBB concept is based on the fracture resistance curve, which is obtained by J–R tests on various types of specimens. Fracture toughness data differ according to the various types of specimens. It has also been known that there is a difference in the constraint effect between real pipes and standard specimens, and LBB design using standard specimens is conservative. We propose a new type of specimen for J–R tests, a tensile compact pipe (CP) specimen, and perform fracture toughness tests on various types of specimens. We also perform constraint effect analysis on such specimens. The Q-stresses of the tensile CP specimens are lower than those of real pipes under 4-point bending, and are higher than those of elbow pipes. If the lever length of a tensile CP specimen is controlled, the specimen can simulate various stress conditions, and it is thought that the LBB design of piping in service can be performed using this specimen.

  20. Capital Subsidies and the Underground Economy

    DEFF Research Database (Denmark)

    Busato, Francesco; Chiarini, Bruno; Angelis, Pasquale de

    In this paper we investigate the effects of different fiscal policies on the firm choice to produce underground. We consider a tax evading firm operating simultaneously both in the regular and in the underground economy. We suggest that such a kind of firm, referred to as moonlighting firm, is ab...

  1. A review of international underground laboratory developments

    International Nuclear Information System (INIS)

    Cheng Jianping; Yue Qian; Wu Shiyong; Shen Manbin

    2011-01-01

    Underground laboratories are essential for various important physics areas such as the search for dark matter, double beta decay, neutrino oscillation, and proton decay. At the same time, they are also a very important location for studying rock mechanics, earth structure evolution,and ecology. It is essential for a nation's basic research capability to construct and develop underground laboratories. In the past, China had no high-quality underground laboratory,in particular no deep underground laboratory,so her scientists could not work independently in major fields such as the search for dark matter,but had to collaborate with foreign scientists and share the space of foreign underground laboratories. In 2009, Tsinghua university collaborated with the Ertan Hydropower Development Company to construct an extremely deep underground laboratory, the first in China and currently the deepest in the world, in the Jinping traffic tunnel which was built to develop hydropower from the Yalong River in Sichuan province. This laboratory is named the China Jinping Underground Laboratory (CJPL) and formally opened on December 12, 2010. It is now a major independent platform in China and can host various leading basic research projects. We present a brief review of the development of various international underground laboratories,and especially describe CJPL in detail. (authors)

  2. Underground laboratories in Japan and North America

    International Nuclear Information System (INIS)

    Sobel, Henry W

    2006-01-01

    There is a blossoming demand for deep underground laboratory space to satisfy the expanding interest in experiments that require significant cosmic-ray shielding. I'll briefly describe the existing deep facilities and their plans for expansion. I will also discuss the planning for a new major underground facility in the U.S

  3. Dewatering pump control in underground coal mines

    International Nuclear Information System (INIS)

    Anthony, Kim M.

    2012-01-01

    An underground coal mine roadway dewatering network is a highly variable, constantly changing system. Pumps used in this environment need to achieve a wide range of duties that may change regularly. This article discusses the use of and preferred methods in the context of an Australian underground coal mine with conditions particular to this industry.

  4. UNDERGROUND ECONOMY, INFLUENCES ON NATIONAL ECONOMIES

    Directory of Open Access Journals (Sweden)

    CEAUȘESCU IONUT

    2015-04-01

    Full Text Available The purpose of research is to improve the understanding of nature underground economy by rational justification of the right to be enshrined a reality that, at least statistically, can no longer be neglected. So, we propose to find the answer to the question: has underground economy to stand-alone?

  5. Selection of pipe repair methods.

    Science.gov (United States)

    2013-06-01

    The objective of this research is to provide pipeline operators with testing procedures and : results of the performance of composite pipe repair methods and ultimately, improve their : selection and installation, and reduce the risks associated with...

  6. Light pipes for LED measurements

    Science.gov (United States)

    Floyd, S. R.; Thomas, E. F., Jr.

    1976-01-01

    Light pipe directly couples LED optical output to single detector. Small area detector measures total optical output of diode. Technique eliminates thermal measurement problems and channels optical output to remote detector.

  7. Pulsating Heat Pipes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Large radiator panels, based upon state of the art conventional heat pipes with attached fins for thermal load distribution and dissipation is the current baseline...

  8. Automatic seismic support design of piping system by an object oriented expert system

    International Nuclear Information System (INIS)

    Nakatogawa, T.; Takayama, Y.; Hayashi, Y.; Fukuda, T.; Yamamoto, Y.; Haruna, T.

    1990-01-01

    The seismic support design of piping systems of nuclear power plants requires many experienced engineers and plenty of man-hours, because the seismic design conditions are very severe, the bulk volume of the piping systems is hyge and the design procedures are very complicated. Therefore we have developed a piping seismic design expert system, which utilizes the piping design data base of a 3 dimensional CAD system and automatically determines the piping support locations and support styles. The data base of this system contains the maximum allowable seismic support span lengths for straight piping and the span length reduction factors for bends, branches, concentrated masses in the piping, and so forth. The system automatically produces the support design according to the design knowledge extracted and collected from expert design engineers, and using design information such as piping specifications which give diameters and thickness and piping geometric configurations. The automatic seismic support design provided by this expert system achieves in the reduction of design man-hours, improvement of design quality, verification of design result, optimization of support locations and prevention of input duplication. In the development of this system, we had to derive the design logic from expert design engineers and this could not be simply expressed descriptively. Also we had to make programs for different kinds of design knowledge. For these reasons we adopted the object oriented programming paradigm (Smalltalk-80) which is suitable for combining programs and carrying out the design work

  9. Radionuclide behavior at underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Chun, Kwan Sik; Park, Hyun Soo

    2000-03-01

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal.

  10. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  11. Swedish mines. Underground exploitation methods

    International Nuclear Information System (INIS)

    Paucard, A.

    1960-01-01

    Between 1949 and 1957, 10 engineers of the Mining research and exploitation department of the CEA visited 17 Swedish mines during 5 field trips. This paper presents a compilation of the information gathered during these field trips concerning the different underground mining techniques used in Swedish iron mines: mining with backfilling (Central Sweden and Boliden mines); mining without backfilling (mines of the polar circle area). The following techniques are described successively: pillar drawing and backfilled slices (Ammeberg, Falun, Garpenberg, Boliden group), sub-level pillar drawing (Grangesberg, Bloettberget, Haeksberg), empty room and sub-level pillar drawing (Bodas, Haksberg, Stripa, Bastkarn), storage chamber pillar drawing (Bodas, Haeksberg, Bastkarn), and pillar drawing by block caving (ldkerberget). Reprint of a paper published in Revue de l'Industrie Minerale, vol. 41, no. 12, 1959 [fr

  12. Toxic hazards of underground excavation

    International Nuclear Information System (INIS)

    Smith, R.; Chitnis, V.; Damasian, M.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards

  13. Radioactive wastes: underground laboratories implantation

    International Nuclear Information System (INIS)

    Bataille, Ch.

    1997-01-01

    This article studies the situation of radioactive waste management, more especially the possible storage in deep laboratories. In front of the reaction of public opinion relative to the nuclear waste question, it was essential to begin by a study on the notions of liability, transparence and democracy. At the beginning, it was a matter of underground researches with a view to doing an eventual storage of high level radioactive wastes. The Parliament had to define, through the law, a behaviour able to come to the fore for anybody. A behaviour which won recognition from authorities, from scientists, from industrial people, which guarantees the rights of populations confronted to a problem whom they were not informed, on which they received only few explanations. (N.C.)

  14. Seismic verification of underground explosions

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1985-06-01

    The first nuclear test agreement, the test moratorium, was made in 1958 and lasted until the Soviet Union unilaterally resumed testing in the atmosphere in 1961. It was followed by the Limited Test Ban Treaty of 1963, which prohibited nuclear tests in the atmosphere, in outer space, and underwater. In 1974 the Threshold Test Ban Treaty (TTBT) was signed, limiting underground tests after March 1976 to a maximum yield of 250 kt. The TTBT was followed by a treaty limiting peaceful nuclear explosions and both the United States and the Soviet Union claim to be abiding by the 150-kt yield limit. A comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, has also been discussed. However, a verifiable CTBT is a contradiction in terms. No monitoring technology can offer absolute assurance that very-low-yield illicit explosions have not occurred. The verification process, evasion opportunities, and cavity decoupling are discussed in this paper

  15. Toxic hazards of underground excavation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  16. Locomotive track detection for underground

    Science.gov (United States)

    Ma, Zhonglei; Lang, Wenhui; Li, Xiaoming; Wei, Xing

    2017-08-01

    In order to improve the PC-based track detection system, this paper proposes a method to detect linear track for underground locomotive based on DSP + FPGA. Firstly, the analog signal outputted from the camera is sampled by A / D chip. Then the collected digital signal is preprocessed by FPGA. Secondly, the output signal of FPGA is transmitted to DSP via EMIF port. Subsequently, the adaptive threshold edge detection, polar angle and radius constrain based Hough transform are implemented by DSP. Lastly, the detected track information is transmitted to host computer through Ethernet interface. The experimental results show that the system can not only meet the requirements of real-time detection, but also has good robustness.

  17. Underground coal mining section data

    Science.gov (United States)

    Gabrill, C. P.; Urie, J. T.

    1981-01-01

    A set of tables which display the allocation of time for ten personnel and eight pieces of underground coal mining equipment to ten function categories is provided. Data from 125 full shift time studies contained in the KETRON database was utilized as the primary source data. The KETRON activity and delay codes were mapped onto JPL equipment, personnel and function categories. Computer processing was then performed to aggregate the shift level data and generate the matrices. Additional, documented time study data were analyzed and used to supplement the KETRON databased. The source data including the number of shifts are described. Specific parameters of the mines from which there data were extracted are presented. The result of the data processing including the required JPL matrices is presented. A brief comparison with a time study analysis of continuous mining systems is presented. The procedures used for processing the source data are described.

  18. Characterization of Accelerating Pipe Flow.

    Science.gov (United States)

    1988-03-01

    Journal of Chemical Engineering of Japan , vol...92, January 1970. 17. K. Kataoka, T. Kawabata, and K. Miki, "The Start-Up Response of Pipe Flow to a Step Change in Flow Rate," Journal of Chemical Engineering of Japan , vol...Pipe Flows," Journal of Chemical Engineering of Japan , vol. 9, no. 6, pp. 431-439, 1975. 19. E. van de Sande, A.P. Belde, B.J.G. Hamer, and W.

  19. Pipe inspection using the BTX-II. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned.

  20. Pipe inspection using the BTX-II. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The US Department of Energy (DOE) continually seeks safer and more cost-effective remediation technologies for use in the decontamination and decommissioning (D and D) of nuclear facilities. In several of the buildings at the Fernald Site, there is piping that was used to transport process materials. As the demolition of these buildings occur, disposal of this piping has become a costly issue. Currently, all process piping is cut into ten-foot or less sections, the ends of the piping are wrapped and taped to prevent the release of any potential contaminants into the air, and the piping is placed in roll off boxes for eventual repackaging and shipment to the Nevada Test Site (NTS) for disposal. Alternatives that allow for the onsite disposal of process piping are greatly desired due to the potential for dramatic savings in current offsite disposal costs. No means is currently employed to allow for the adequate inspection of the interior of piping, and consequently, process piping has been assumed to be internally contaminated and thus routinely disposed of at NTS. The BTX-II system incorporates a high-resolution micro color camera with lightheads, cabling, a monitor, and a video recorder. The complete probe is capable of inspecting pipes with an internal diameter (ID) as small as 1.4 inches. By using readily interchangeable lightheads, the same system is capable of inspecting piping up to 24 inches in ID. The original development of the BTX system was for inspection of boiler tubes and small diameter pipes for build-up, pitting, and corrosion. However, the system is well suited for inspecting the interior of most types of piping and other small, confined areas. The report describes the technology, its performance, uses, cost, regulatory and policy issues, and lessons learned

  1. Underground repository for radioactive wastes

    International Nuclear Information System (INIS)

    Cassibba, R.O.

    1989-01-01

    In the feasibility study for an underground repository in Argentina, the conceptual basis for the final disposal of high activity nuclear waste was set, as well as the biosphere isolation, according to the multiple barrier concept or to the engineering barrier system. As design limit, the container shall act as an engineering barrier, granting the isolation of the radionuclides for approximately 1000 years. The container for reprocessed and vitrified wastes shall have three metallic layers: a stainless steel inner layer, an external one of a metal to be selected and a thick intermediate lead layer preselected due to its good radiological protection and corrosion resistance. Therefore, the study of the lead corrosion behaviour in simulated media of an underground repository becomes necessary. Relevant parameters of the repository system such as temperature, pressure, water flux, variation in salt concentrations and oxidants supply shall be considered. At the same time, a study is necessary on the galvanic effect of lead coupled with different candidate metals for external layer of the container in the same experimental conditions. Also temporal evaluation about the engineering barrier system efficiency is presented in this thesis. It was considered the extrapolated results of corrosion rates and literature data about the other engineering barriers. Taking into account that corrosion is of a generalized type, the integrity of the lead shall be maintained for more than 1000 years and according to temporal evaluation, the multiple barrier concept shall retard the radionuclide dispersion to the biosphere for a period of time between 10 4 and 10 6 years. (Author) [es

  2. Seismic effects on underground openings

    International Nuclear Information System (INIS)

    Marine, I.W.; Pratt, H.R.; Wahi, K.K.; Science Applications, Inc., La Jolla, CA; Science Applications, Inc., Albuquerque, NM)

    1982-01-01

    Numerical modeling techniques were used to determine the conditions required for seismic waves generated by an earthquake to cause instability to an underground opening or create fracturing and joint movement that would lead to an increase in the permeability of the rock mass. Three different rock types (salt, granite, and shale) were considered as host media for the repository located at a depth of 600 m. Special material models were developed to account for the nonlinear material behavior of each rock type. The sensitivity analysis included variations in the in situ stress ratio, joint geometry, and pore pressures, and the presence or absence of large fractures. Three different sets of earthquake motions were used to excite the rock mass. The methodology applied was found to be suitable for studying the effects of earthquakes on underground openings. In general, the study showed that moderate earthquakes (up to 0.41 g) did not cause instability of the tunnel or major fracturing of the rock mass; however, a tremor with accelerations up to 0.95 g was amplified around the tunnel, and fracturing occurred as a result of the seismic loading in salt and granite. In situ stress is a critical parameter in determining the subsurface effects of earthquakes but is nonexistent in evaluating the cause for surface damage. In shale with the properties assumed, even the moderate seismic load resulted in tunnel instability. These studies are all generic in nature and do not abrogate the need for site and design studies for specific facilities. 30 references, 14 figures, 8 tables

  3. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  4. The Wick-Concept for Thermal Insulation of Cold Piping

    DEFF Research Database (Denmark)

    Koverdynsky, Vit; Korsgaard, Vagn; Rode, Carsten

    2006-01-01

    the wick-concept in either of two variations: the self-drying or the self-sealing system. Experiments have been carried out using different variations of the two systems to investigate the conditions for exploiting the drying capabilities of the systems, and the results are presented. The results show......The wick-concept for thermal insulation of cold piping is based on capillary suction of a fiber fabric to remove excess water from the pipe surface by transporting it to the outer surface of the insulation. From the surface of the insulation jacket, the water will evaporate to the ambient air....... This will prevent long-term accumulation of moisture in the insulation material. The wick keeps the hydrophobic insulation dry, allowing it to maintain its thermal performance. The liquid moisture is kept only in the wick fabric. This article presents the principle of operation of cold pipe insulation using...

  5. Leaks in pipe networks

    Science.gov (United States)

    Pudar, Ranko S.; Liggett, James A.

    1992-01-01

    Leak detection in water-distribution systems can be accomplished by solving an inverse problem using measurements of pressure and/or flow. The problem is formulated with equivalent orifice areas of possible leaks as the unknowns. Minimization of the difference between measured and calculated heads produces a solution for the areas. The quality of the result depends on number and location of the measurements. A sensitivity matrix is key to deciding where to make measurements. Both location and magnitude of leaks are sensitive to the quantity and quality of pressure measurements and to how well the pipe friction parameters are known. The overdetermined problem (more measurements than suspected leaks) gives the best results, but some information can be derived from the underdetermined problem. The variance of leak areas, based on the quality of system characteristics and pressure data, indicates the likely accuracy of the results. The method will not substitute for more traditional leak surveys but can serve as a guide and supplement.

  6. Piping inspection round robin

    International Nuclear Information System (INIS)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths

  7. Failure rates in piping manufactured to different standards

    International Nuclear Information System (INIS)

    Barnes, R.W.; Cooper, G.D.

    1995-11-01

    Most non-nuclear process piping systems in Canada and the United States are constructed to the requirements of the piping codes of the American Society of Mechanical Engineers (ASME B31.1 and B31.3). Section III of the ASME Boiler and Pressure Vessel Code, has additional requirements for piping that are expected to provide further assurance of pressure boundary integrity. This project attempted to determine if the additional requirements of Section III were beneficial in preventing failure of the pressure boundary. The approach taken in the study was to determine the causes of failure of non-nuclear piping subjected to service similar to that experienced by piping in CANDU nuclear power plants. The study examined information on carbon steel piping systems filled with water/steam which operate up to a maximum temperature of 600 F and a maximum pressure of 1600 psi. The failure mechanisms were identified and analysed to determine whether application of the requirements of Section III would have prevented the failure. Through a process of interviews and literature search, 186 failures were identified and assembled into a reference database. Many of the records were incomplete; therefore, the reference database was trimmed to include a subset of 65 failure points supported by complete data. This subset formed the basis for this study. The results from the study of other databases assembled for similar purposes were reviewed and compared to the conclusions reached in this study. These reviews confirmed the conclusions reached in this study. (author). 48 refs., 20 tabs

  8. Tritium in the underground waters of the Karazheera coal deposit

    International Nuclear Information System (INIS)

    Panin, M.S.; Artamonova, H.N.

    2001-01-01

    . Established concentrations of 3 H in underground waters of the Karazheera deposit proves the influence of thermo-nuclear explosions and further nuclear tests on underground waters of the deposit ground. Low concentration of 3 H in underground hydrosphere of the deposit is explained by depth of explosions' epicenter (300-500 m), while the waters researched are deposited on the depth of 200 m. But under the lasting deposit pumping, the deep waters polluted under nuclear tests can pull to the deposit. It can cause the pollution of other components of surrounding by radio-active isotopes. Consequently the further research of the Karazheera deposit's underground waters is necessary. Taking into account the unique geo-ecological situation and perspectives of economic developing of SNP, the research has a great scientific and practical importance from the point of working out the ways and preventing measures for negative influence of nuclear tests on objects of environment

  9. Polymers for subterranean containment barriers for underground storage tanks (USTs)

    International Nuclear Information System (INIS)

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks

  10. Nuclear Astrophysics in underground laboratories: the LUNA experiment

    Science.gov (United States)

    2017-11-01

    One of the main ingredients of nuclear astrophysics is the knowledge of the thermonuclear reactions responsible for powering the stellar engine and for the synthesis of the chemical elements. At astrophysical energies the cross section of nuclear processes is extremely reduced by the effect of the Coulomb barrier. The low value of cross sections prevents their measurement at stellar energies on Earth surface and often extrapolations are needed. The Laboratory for Underground Nuclear Astrophysics (LUNA) is placed under the Gran Sasso mountain and thanks to the cosmic-ray background reduction provided by its position can investigate cross sections at energies close to the Gamow peak in stellar scenarios. Many crucial reactions involved in hydrogen burning has been measured directly at astrophysical energies with both the LUNA-50kV and the LUNA-400kV accelerators, and this intense work will continue with the installation of a MV machine able to explore helium and carbon burnings. Based on this progress, currently there are efforts in several countries to construct new underground accelerators. In this talk, the typical techniques adopted in underground nuclear astrophysics will be described and the most relevant results achieved by LUNA will be reviewed. The exciting science that can be probed with the new facilities will be highlighted.

  11. Steam jacket dynamics in underground coal gasification

    Science.gov (United States)

    Otto, Christopher; Kempka, Thomas

    2017-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.

  12. NEP heat pipe radiators. [Nuclear Electric Propulsion

    Science.gov (United States)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  13. An acoustic technique for tracing plastic pipe

    Energy Technology Data Exchange (ETDEWEB)

    Huebler, J.E.; Campbell, B.K. (Inst. of Gas Technology, Chicago, IL (United States)); Ching, G.K. (Southern California Gas Co., Los Angeles, CA (United States). Research Dept.)

    1993-08-01

    Many operation and maintenance activities performed by a gas distribution company require precise knowledge of the location of the gas main and/or service. These activities range from pipe location for the repair of a leak to the marking of pipe location as part of a one call system. Records provide one method of knowing the location of piping; however, these records are not always sufficiently accurate for field work. Thus, techniques for pipe location have always been an important need of the industry, and electromagnetic pipe locators have filled this need for years. Electromagnetic pipe locators, however, cannot find plastic pipe unless a tracer wire is buried next to or above the pipe. With the increased use of plastic pipe, a new technique for finding buried pipe is required. A successful acoustic plastic pipe locator could eliminate the use of tracer wire in new polyethylene pipe installations, thereby reducing pipe installation costs. Under sponsorship of the Southern California Gas Company, the Institute of Gas Technology (IGT) successfully demonstrated the proof-of-concept of an active acoustic plastic pipe location technique and is developing the technique into a practical field instrument.

  14. Underground cavity detection using statistical variance of subsurface radar signal. Chichu radar jushin shingo no tokeiteki bunsan hyoka wo mochiita chika kudo no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Taketomi, K. (Gifu National College of Technology, Gifu (Japan)); Miyazaki, Y. (Toyohahsi Univ. of Technology, Aichi (Japan). Faculty of Engineering)

    1993-06-30

    Aiming at detecting nondestructively underground cavities, metal pipes or constructions that are buried underground deeper than meters, several kinds of subsurface radar are developed. But, as to targets with electric characteristics similar to surrounding materials, it is impossible to detect them simply by only using the method that compares the sizes of the amplitudes of the reflection waves so as to detect such materials as metal pipes. In the present paper, based on introducing statistical variance, it is clarified that such targets with electric characteristics similar to surrounding materials as underground cavity may be detected by the subsurface radar. The statistical variance is calculated by cell of the Log/CFAR processing, the size of the cells in question at that time may be selected according to times of length of the cells in depth direction and the number of the data in scan direction has no effects on it. The relation between the variance of the sample experiment data and the underground structures present is investigated and the connection to the underground structures is explained, based on the results of field experiments. 8 refs., 8 figs., 3 tabs.

  15. Underground science initiatives at Los Alamos

    International Nuclear Information System (INIS)

    Simmons, L.M. Jr.

    1985-01-01

    Recently, the Los Alamos National Laboratory has proposed two major new initiatives in underground science. Following the dissolution of the original gallium solar neutrino collaboration, Los Alamos has formed a new North American collaboration. We briefly review the rationale for solar neutrino research, outline the proposal and new Monte Carlo simulations, and describe the candidate locations for the experiment. Because there is no dedicated deep underground site in North America suitable for a wide range of experiments, Los Alamos has conducted a survey of possible sites and developed a proposal to create a new National Underground Science Facility. This paper also reviews that proposal

  16. Review of technical features in underground laboratories

    Science.gov (United States)

    Ianni, Aldo

    2017-10-01

    Deep underground laboratories are multidisciplinary research infrastructures. The main feature of these laboratories is the reduced cosmic ray muons flux. This characteristic allows searching for rare events such as proton decay, dark matter particles or neutrino interactions. However, biology in extreme environments and geophysics are also studied underground. A number of ancillary facilities are critical to properly operate low background experiments in these laboratories. In this work we review the main characteristics of deep underground laboratories and discuss a few of the low background facilities.

  17. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fuid mass to the structure. This may lead to serious errors.- Inertial effects from the fluid are not correctly evaluated especially in the case of bended or of non-uniform section pipes. Fluid boundary conditions are simply ignored. - In many practical problems fluid compressibility cannot be negelcted, even in the low frequencies domain which corresponds to efficient excitation by turbulent sources of the flow. This paper presents a method to take into account these efects, by solving a coupled mechanical acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. (Auth.)

  18. Microcomputer generated pipe support calculations

    International Nuclear Information System (INIS)

    Hankinson, R.F.; Czarnowski, P.; Roemer, R.E.

    1991-01-01

    The cost and complexity of pipe support design has been a continuing challenge to the construction and modification of commercial nuclear facilities. Typically, pipe support design or qualification projects have required large numbers of engineers centrally located with access to mainframe computer facilities. Much engineering time has been spent repetitively performing a sequence of tasks to address complex design criteria and consolidating the results of calculations into documentation packages in accordance with strict quality requirements. The continuing challenges of cost and quality, the need for support engineering services at operating plant sites, and the substantial recent advances in microcomputer systems suggested that a stand-alone microcomputer pipe support calculation generator was feasible and had become a necessity for providing cost-effective and high quality pipe support engineering services to the industry. This paper outlines the preparation for, and the development of, an integrated pipe support design/evaluation software system which maintains all computer programs in the same environment, minimizes manual performance of standard or repetitive tasks, and generates a high quality calculation which is consistent and easily followed

  19. Flexible ultrasonic pipe inspection apparatus

    Science.gov (United States)

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  20. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    This paper presents a method to take into account the inertial effects and the fluid compressibility by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-element method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources (acoustical sources or forces exciting directly the structure). Equations have been written in the hypothesis that acoustical wave lengths remain large compared to the diameter of the pipe. Indeed this is largely verified in almost practical cases. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consist of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provide an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted [fr

  1. Dynamic underground stripping demonstration project

    International Nuclear Information System (INIS)

    Newmark, R.L.

    1992-04-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation techniques for rapid cleanup of localized underground spills. Called dynamic stripping to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first eight months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques. Tests then began on the contaminated site in FY 1992. This report describes the work at the Clean Site, including design and performance criteria, test results, interpretations, and conclusions. We fielded 'a wide range of new designs and techniques, some successful and some not. In this document, we focus on results and performance, lessons learned, and design and operational changes recommended for work at the contaminated site. Each section focuses on a different aspect of the work and can be considered a self-contained contribution

  2. Radionuclide behavior at underground environment

    International Nuclear Information System (INIS)

    Hahn, Phil Soo; Park, Chung Kyun; Keum, Dong Kwon; Cho, Young Hwan; Kang, Moon Ja; Baik, Min Hoon; Hahn, Kyung Won; Park, Hyun Soo

    2003-04-01

    This study of radionuclide behavior at underground environment has been carried out as a part of the study of high-level waste disposal technology development. Therefore, the main objectives of this project are constructing a data-base and producing data for the safety assessment of a high-level radioactive waste, and verification of the objectivity of the assessment through characterization of the geochemical processes and experimental validation of the radionuclide migration. This project is composed of 6 subjects such as data production required for safety assessments, sorption properties and mechanisms, nuclide migration in the fractured rock, colloid formation and migration, nuclide speciation in deep geological environments, and total evaluation of geochemical behaviors considering multi-factors. The various results from the this project can be applicable to the preliminary safety and performance assessments of the established disposal concept for a future high-level radioactive waste repository. Providing required data and technical basis for assessment methodologies could be a direct application of the results. In a long-term view, the results can also be utilized as a technical background for the establishment of government policy for high-level radioactive waste disposal

  3. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  4. State Certification of Underground Storage Tanks

    National Research Council Canada - National Science Library

    Granetto, Paul

    1998-01-01

    .... The audit was performed in response to a Senate Armed Services Committee inquiry about whether state environmental regulatory agencies would be able to certify that DoD underground storage tanks...

  5. EXPERIENCE IN RISK ASSESSMENT OF UNDERGROUND CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    L. L. Kaufman

    2010-03-01

    Full Text Available The article gives examples of underground construction of hydropower station inNepaland sewer tunnel in the USA. These projects pay attention to influence of geotechnical risks and their consequences.

  6. Establishing sustainable strategies in urban underground engineering.

    Science.gov (United States)

    Curiel-Esparza, Jorge; Canto-Perello, Julian; Calvo, Maria A

    2004-07-01

    Growth of urban areas, the corresponding increased demand for utility services and the possibility of new types of utility systems are overcrowding near surface underground space with urban utilities. Available subsurface space will continue to diminish to the point where utilidors (utility tunnels) may become inevitable. Establishing future sustainable strategies in urban underground engineering consists of the ability to lessen the use of traditional trenching. There is an increasing interest in utility tunnels for urban areas as a sustainable technique to avoid congestion of the subsurface. One of the principal advantages of utility tunnels is the substantially lower environmental impact compared with common trenches. Implementing these underground facilities is retarded most by the initial cost and management procedures. The habitual procedure is to meet problems as they arise in current practice. The moral imperative of sustainable strategies fails to confront the economic and political conflicts of interest. Municipal engineers should act as a key enabler in urban underground sustainable development.

  7. Leaking Underground Storage Tank Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  8. 30 CFR 57.8519 - Underground main fan controls.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground main fan controls. 57.8519 Section... Ventilation Surface and Underground § 57.8519 Underground main fan controls. All underground main fans shall have controls placed at a suitable protected location remote from the fan and preferably on the surface...

  9. Underground muons from Cygnus X-3

    International Nuclear Information System (INIS)

    Price, L.E.

    1985-01-01

    Underground detectors, intended for searches for nucleon decay and other rare processes, have recently begun searching for evidence of astrophysical sources, particularly Cygnus X-3, in the cosmic ray muons they record. Some evidence for signals from Cygnus X-3 has been reported. The underground observations are reported here in the context of previous (surface) observations of the source at high energies. 25 refs., 8 figs

  10. Heat Recovery Potential from Urban Underground Infrastructures

    OpenAIRE

    Davies, G; Boot-Handford, N; Grice, J; Dennis, W; Ajileye, A; Revesz, A; Maidment, GG

    2018-01-01

    This paper describes the results from a collaborative research project in the UK, focussing on the recovery of waste heat from underground railway tunnels, using London as a case study. The aim of the project was to investigate the feasibility of combining cooling of London’s underground railway tunnels with a waste heat recovery system. The recovered heat will then be transferred to a heat pump to upgrade its temperature, before delivery to a district heating network for reuse. The paper des...

  11. Performance evaluation of formed-in-place pipe lining for service water systems

    International Nuclear Information System (INIS)

    Martin, R.L.; Stein, A.A.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping is forcing utilities to investigate methods to arrest the degradation and restore the system to design conditions. Current options range from repair of damaged areas to outright replacement of piping sections. These options are costly. Installation of a formed-in-place lining is an economic alternative to system restoration/protection of service water systems when the piping remains structurally sound. This paper presents an evaluation of the formed-in-place lining exposed to a freshwater environment under service water system operating conditions. Both coupons and lined pipe spools were tested for 4 years. The results indicate the most critical areas for corrosion exist at the transition between lined pipe and unlined penetrations, such as instrument connections, and at flange connections. Weak bonding of the lining to the pipe wall at these locations can result in moisture penetration to the lining/pipe wall interface. These areas are susceptible to corrosion. Pipe connections and lining end-seals require special attention during lining installation to prevent this degradation

  12. Underground utilization at great depth and its subjects for a future study. Daishindo chika kukan no riyo to sono gijutsuteki kadai

    Energy Technology Data Exchange (ETDEWEB)

    Ezaki, Tetsuro (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1989-12-25

    This paper outlined the overall underground utilization such as features of underground and progress of its utilization, then discussed the underground utilization of great depth in any large city sphere especially paid attention recently and reviewed the present situation from the environmental and ground engineering standpoints. Further, technological problems were described to realize these subjects. The underground has topological features by which three dimensional space can be generated in the broad ground ranging to the 1,000m or deeper space from the surface. But following conditions are essential to utilize the underground in the future: high density space is ensured to eliminate the overpopulation in the capital surface region.; environmental conditions such as ground and underground water are not disturbed or comfortable environment is created; the safety to prevent diseraters is ensured by generating the space where flowing similar to the surface is possible. 25 refs., 3 figs., 4 tabs.

  13. Nuclear piping design - An overview

    International Nuclear Information System (INIS)

    Pattabiraman, J.; Neelwarne, A.

    1993-01-01

    Nuclear piping design is a continuously evolving process. Advances in analytical tools and the experience gained from the behaviour of structural systems under normal operating and extreme events like earthquake provide necessary inputs for refinement of design procedures/practices to achieve more economical and safe designs. Although, during last two decades considerable improvements in analytical tools were achieved, an overemphasis on providing conservatism in seismic design resulting in non optimal designs still remains. Present paper discusses aspects such as reliability and maintainability in the context of existing codal requirements of nuclear piping. The uncertainty associated with magnitude of seismic events, their damage potential in combination with other operational piping loads and lack of reliable data during 1970's were contributing factors for building conservatism in the seismic design rules/procedures. However, present status of research and experience on performance of above ground piping systems indicate that the damage potential of seismic event has been considerably overestimated and that overstiff designs have been adopted which have drawbacks in satisfying flexibility criteria for normal operations. The optimal design in the context of nuclear piping, therefore, should imply safe and trouble free operation throughout the life of plant with adequate margins provided for sustaining postulated seismic events. Though conformity with ASME code provides basic protection against piping failure, the issues related with reliability and maintainability, crucial for continued safe operation, can be best addressed through a rational design strategy. Such a design strategy should be based on careful evaluation of various loads related to their damage potential and impact on overall safety margins

  14. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    Science.gov (United States)

    Zhao, Yiming; Zhang, Nong; Si, Guangyao

    2016-01-01

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG) material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine. PMID:27775657

  15. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    Directory of Open Access Journals (Sweden)

    Yiming Zhao

    2016-10-01

    Full Text Available Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine.

  16. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining.

    Science.gov (United States)

    Zhao, Yiming; Zhang, Nong; Si, Guangyao

    2016-10-21

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG) material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine.

  17. Underground ventilation remote monitoring and control system

    International Nuclear Information System (INIS)

    Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

    1995-01-01

    This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system

  18. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  19. High performance flexible heat pipes

    Science.gov (United States)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  20. Piping Inelastic Fracture Mechanics Analysis.

    Science.gov (United States)

    1980-06-30

    120 160 200 2410 280 320 2 (DEGREES) Fig. 16-Comparison on limit moment predictions with experimental rcsults- AISI 304 piping property data. For...1975, cracks were discovered on many 4 in. diameter 304 s.s. pipes for recirculation loop valve bypass, and on 10 in. diameter 304 s.s. reactor core...LOCATIONd THERM4AL SLEEVE REPAIR WELD TYPE 310 STAINLESS TEL C FVICt AREA SPO PCE Fig. 3.1-Duane Arnold recirculation-inlet-nozzle safe end configuration

  1. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  2. Comparison of cigarette and water-pipe smoking by Arab and non-Arab-American youth.

    Science.gov (United States)

    Weglicki, Linda S; Templin, Thomas N; Rice, Virginia Hill; Jamil, Hikmet; Hammad, Adnan

    2008-10-01

    Water-pipe smoking is a rapidly growing form of tobacco use worldwide. Building on an earlier report of experimentation with cigarette and water-pipe smoking in a U.S. community sample of Arab-American youth aged 14-18 years, this article examines water-pipe smoking in more detail (e.g., smoking history, belief in harmfulness compared to cigarettes, family members in home who smoke water pipes) and compares the water-pipe-smoking behaviors of Arab-American youth with non-Arab-American youth in the same community. A convenience sample of 1872 Arab-American and non-Arab-American high school students from the Midwest completed a 24-item tobacco survey. Data were collected in 2004-2005 and analyzed in 2007-2008. Arab-American youth reported lower percentages of ever cigarette smoking (20% vs 39%); current cigarette smoking (7% vs 22%); and regular cigarette smoking (3% vs 15%) than non-Arab-American youth. In contrast, Arab-American youth reported significantly higher percentages of ever water-pipe smoking (38% vs 21%) and current water-pipe smoking (17% vs 11%) than non-Arab-American youth. Seventy-seven percent perceived water-pipe smoking to be as harmful as or more harmful than cigarette smoking. Logistic regression showed that youth were 11.0 times more likely to be currently smoking cigarettes if they currently smoked water pipes. Youth were also 11.0 times more likely to be current water-pipe smokers if they currently smoked cigarettes. If one or more family members smoked water pipes in the home, youth were 6.3 times more likely to be current water-pipe smokers. The effects of ethnicity were reduced as a result of the explanatory value of family smoking. Further research is needed to determine the percentages, patterns, and health risks of water-pipe smoking and its relationship to cigarette smoking among all youth. Additionally, youth tobacco prevention/cessation programs need to focus attention on water-pipe smoking in order to further dispel the myth that

  3. Laboratory exercises on oscillation modes of pipes

    Science.gov (United States)

    Haeberli, Willy

    2009-03-01

    This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.

  4. Corrosion of Spiral Rib Aluminized Pipe

    Science.gov (United States)

    2012-08-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  5. Corrosion of Spiral Rib Aluminized Pipe : [Summary

    Science.gov (United States)

    2012-01-01

    Large diameter, corrugated steel pipes are a common sight in the culverts that run alongside many Florida roads. Spiral-ribbed aluminized pipe (SRAP) has been widely specified by the Florida Department of Transportation (FDOT) for runoff drainage. Th...

  6. Review of nuclear piping seismic design requirements

    International Nuclear Information System (INIS)

    Slagis, G.C.; Moore, S.E.

    1994-01-01

    Modern-day nuclear plant piping systems are designed with a large number of seismic supports and snubbers that may be detrimental to plant reliability. Experimental tests have demonstrated the inherent ruggedness of ductile steel piping for seismic loading. Present methods to predict seismic loads on piping are based on linear-elastic analysis methods with low damping. These methods overpredict the seismic response of ductile steel pipe. Section III of the ASME Boiler and Pressure Vessel Code stresses limits for piping systems that are based on considerations of static loads and hence are overly conservative. Appropriate stress limits for seismic loads on piping should be incorporated into the code to allow more flexible piping designs. The existing requirements and methods for seismic design of piping systems, including inherent conservations, are explained to provide a technical foundation for modifications to those requirements. 30 refs., 5 figs., 3 tabs

  7. Failure Analysis Of Industrial Boiler Pipe

    International Nuclear Information System (INIS)

    Natsir, Muhammad; Soedardjo, B.; Arhatari, Dewi; Andryansyah; Haryanto, Mudi; Triyadi, Ari

    2000-01-01

    Failure analysis of industrial boiler pipe has been done. The tested pipe material is carbon steel SA 178 Grade A refer to specification data which taken from Fertilizer Company. Steps in analysis were ; collection of background operation and material specification, visual inspection, dye penetrant test, radiography test, chemical composition test, hardness test, metallography test. From the test and analysis result, it is shown that the pipe failure caused by erosion and welding was shown porosity and incomplete penetration. The main cause of failure pipe is erosion due to cavitation, which decreases the pipe thickness. Break in pipe thickness can be done due to decreasing in pipe thickness. To anticipate this problem, the ppe will be replaced with new pipe

  8. Performance evaluation of buried pipe installation.

    Science.gov (United States)

    2010-05-01

    The purpose of this study is to determine the effects of geometric and mechanical parameters characterizing the soil structure interaction developed in a buried pipe installation located under roads/highways. The drainage pipes or culverts installed ...

  9. Modeling of residual stress mitigation in austenitic stainless steel pipe girth weldment

    International Nuclear Information System (INIS)

    Li, M.; Atteridge, D.G.; Anderson, W.E.; West, S.L.

    1994-01-01

    This study provides numerical procedures to model 40-cm-diameter, schedule 40, Type 304L stainless steel pipe girth welding and a newly proposed post-weld treatment. The treatment can be used to accomplish the goal of imparting compressive residual stresses at the inner surface of a pipe girth weldment to prevent/retard the intergranular stress corrosion cracking (IGSCC) of the piping system in nuclear reactors. This new post-weld treatment for mitigating residual stresses is cooling stress improvement (CSI). The concept of CSI is to establish and maintain a certain temperature gradient across the pipe wall thickness to change the final stress state. Thus, this process involves sub-zero low temperature cooling of the inner pipe surface of a completed girth weldment, while simultaneously keeping the outer pipe surface at a slightly elevated temperature with the help of a certain heating method. Analyses to obtain quantitative results on pipe girth welding and CSI by using a thermo-elastic-plastic finite element model are described in this paper. Results demonstrate the potential effectiveness of CSI for introducing compressive residual stresses to prevent/retard IGSCC. Because of the symmetric nature of CSI, it shows great potential for industrial application

  10. On the cleaning of sewage pipes with the help of convected spheres (5th series of experiments)

    Science.gov (United States)

    Dinkelacker, A.

    1981-07-01

    Cleaning municipal sewage pipes with the help of spheres which are moved through the pipes by the flow of sewage was undertaken. In order to investigate the applicability of the method, several series of experiments were performed in the sewage pipe system of the city of Hanover. The fifth series of these experiments is concerned with checking whether or not it is possible to prevent mud sedimentation in a newly cleaned sewage pipe with the help of daily throughput of spheres. The experiments were performed with spheres 0.56 m in diameter in a sewage pipe 1.4 m in diameter under normal conditions of sewage flow. Over a period of nine weeks, three runs per working day were made with a sphere. Measurements of mud sedimentation in the pipe show that practically no sedimentation occurred during the cleaning runs and that considerable sedimentation occurred in a comparison period without runs.

  11. Analysis of Municipal Pipe Network Franchise Institution

    Science.gov (United States)

    Yong, Sun; Haichuan, Tian; Feng, Xu; Huixia, Zhou

    Franchise institution of municipal pipe network has some particularity due to the characteristic of itself. According to the exposition of Chinese municipal pipe network industry franchise institution, the article investigates the necessity of implementing municipal pipe network franchise institution in China, the role of government in the process and so on. And this offers support for the successful implementation of municipal pipe network franchise institution in China.

  12. 46 CFR 45.133 - Air pipes.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Air pipes. 45.133 Section 45.133 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.133 Air pipes. (a) Where an air pipe to any tank extends above the freeboard or superstructure deck— (1) The exposed part of the air pipe must...

  13. Seismic analysis of nuclear piping system

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Pillai, K.R.V.; Nandakumar, S.

    1975-01-01

    To illustrate seismic analysis of nuclear power plant piping, a simple piping system running between two floors of the reactor building is assumed. Reactor building floor response is derived from time-history method. El Centre earthquake (1940) accelerogram is used for time-history analysis. The piping system is analysed as multimass lumped system. Behaviour of the pipe during the said earthquake is discussed. (author)

  14. PIPE STRESS and VERPIP codes for stress analysis and verifications of PEC reactor piping

    International Nuclear Information System (INIS)

    Cesari, F.; Ferranti, P.; Gasparrini, M.; Labanti, L.

    1975-01-01

    To design LMFBR piping systems following ASME Sct. III requirements unusual flexibility computer codes are to be adopted to consider piping and its guard-tube. For this purpose PIPE STRESS code previously prepared by Southern-Service, has been modified. Some subroutine for detailed stress analysis and principal stress calculations on all the sections of piping have been written and fitted in the code. Plotter can also be used. VERPIP code for automatic verifications of piping as class 1 Sct. III prescriptions has been also prepared. The results of PIPE STRESS and VERPIP codes application to PEC piping are in section III of this report

  15. Nuclear class 1 piping stress analysis

    International Nuclear Information System (INIS)

    Lucas, J.C.R.; Maneschy, J.E.; Mariano, L.A.; Tamura, M.

    1981-01-01

    A nuclear class 1 piping stress analysis, according to the ASME code, is presented. The TRHEAT computer code has been used to determine the piping wall thermal gradient. The Nupipe computer code was employed for the piping stress analysis. Computer results were compared with the allowable criteria from the ASME code. (Author) [pt

  16. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation...

  17. 46 CFR 197.336 - Pressure piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure piping. 197.336 Section 197.336 Shipping COAST... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.336 Pressure piping. Piping systems that... the pressure boundaries as set forth in § 197.462. ...

  18. Smoking water pipe is injurious to lungs

    DEFF Research Database (Denmark)

    Sivapalan, Pradeesh; Ringbæk, Thomas; Lange, Peter

    2014-01-01

    This review describes the pulmonary consequences of water pipe smoking. Smoking water pipe affects the lung function negatively, is significantly associated with chronic obstructive pulmonary disease and increases the risk of lung infections. Case reports suggest that regular smokers of water pipe...

  19. The locating ways of laying pipe manipulator

    Science.gov (United States)

    Wang, Dan; Li, Bin; Lei, DongLiang

    2010-01-01

    The laying pipe manipulator is a new equipment to lay concrete pipe. This kind of manipulator makes the work of laying pipes mechanized and automated. We report here a new laying pipe manipulator. The manipulator has 5 free degrees, and is driven by the hydraulic system. In the paper, one critical question of manipulator is studied: the locating ways of the manipulator to lay concrete pipe. During the process of laying concrete pipe, how to locate the manipulator is realized by the locating system of manipulator. The locating system consists of photoelectric target, laser producer, and computer. According to different construction condition, one or two or three photoelectric targets can be used. During the process of laying concrete pipe, if the interface of pipes are jointed together, and the other segment of pipe deviates from the pipe way, one target can be used, if the angle that the manipulator rotates around the holding pipe's axes is 0°, two targets can be used, three targets can be used at any site. In the paper, according to each locating way, the theory analysis is done. And the mathematical models of the manipulator moving from original position to goal position are obtained by different locating way. And the locating experiment was done. According to the experiment result, the work principle and mathematical models of different locating way was turned out to be well adopted for requirement, the mathematical model of different locating way supplies the basic control theory for the manipulator to lay and joint concrete pipe automatically.

  20. The effects of spatial variability of the aggressiveness of soil on system reliability of corroding underground pipelines

    International Nuclear Information System (INIS)

    Sahraoui, Yacine; Chateauneuf, Alaa

    2016-01-01

    In this paper, a probabilistic methodology is presented for assessing the time-variant reliability of corroded underground pipelines subjected to space-variant soil aggressiveness. The Karhunen-Loève expansion is used to model the spatial variability of soil as a correlated stochastic field. The pipeline is considered as a series system for which the component and system failure probabilities are computed by Monte Carlo simulations. The probabilistic model provides a realistic time and space modelling of stochastic variations, leading to appropriate estimation of the lifetime distribution. The numerical analyses allow us to investigate the impact of various parameters on the reliability of underground pipelines, such as the soil aggressiveness, the pipe design variables, the soil correlation length and the pipeline length. The results show that neglecting the effect of spatial variability leads to pessimistic estimation of the residual lifetime and can lead to condemn prematurely the structure. - Highlights: • The role of soil heterogeneity in pipeline reliability assessment has been shown. • The impact of pipe length and soil correlation length has been examined. • The effect of the uncertainties related to design variables has been observed. • Pipe thickness design for homogeneous reliability has been proposed.

  1. Liquid leakage from the sea release pipe of the Tokai reprocessing plant. Restoration of the leak point at the see release pipe

    International Nuclear Information System (INIS)

    Aoki, Kenji; Shimizu, Kazuyuki; Yamamoto, Masahiko; Takeuchi, Kenji; Hiyama, Hisao; Iwasaki, Shogo

    2011-01-01

    A leakage was found on the sea release pipe of the Tokai reprocessing plant. The leak point was discovered in a part buried in the sea floor. The damaged part was cut and was collected, and investigation into the cause was subsequently carried out. As a result, external force and hydrogen embrittlement were estimated to be the cause that produced a crack on the pipe. As a restoration of the leak part, a construction method using a coupling technique was proposed considering steady sealability on the restored part as well as constraints on the construction in the sea. The electrolytic protection system was improved to prevent hydrogen generation. This paper describes the connection method using a coupling technique for the existing pipe and replaced one, and the new protection method. In addition, it was found that there were no problems on the sea release piping after checking the influence caused by the Tohoku district-off the Pacific Ocean Earthquake. (author)

  2. Thermal image study of detecting near-underground structures by means of infrared radiometer

    Science.gov (United States)

    Okamoto, Yoshizo; Fan, Zuofen; Liu, Chanliang; Inagaki, Terumi

    1995-03-01

    An infrared radiometer is used to detect several flaws of industrial structural elements, as one remote sensing device. The thermal image method (TIM) was carried out to analyze location and dimension of the internal flaws of mechanical components, like piping, vessel, slab and pile. Internal flaws were detected by visualizing abnormal behavior of radiation temperature distribution of the tested surface by solar and artificial heat injection. The induced nonuniform temperature shows the existence of the internal flaws imaged on the CRT display of the infrared radiometer. As one application subject, the TIM method was extensively applied to near-underground buried materials of ancient remains; such as corner stone, stone settlement, shell mound, and tomb. The paper represents basic experimental and analytical results of preliminary and demonstration model tests of the buried materials in the soil and rock by solar, direct, and indirect combustion heaters. After continuous irradiation heating, we measured and recorded transient radiation temperature distribution of the tested ground surface which inserts the model near-underground tests plates of stylene, concrete, stone and gravel, changing width and depth of the test plates. Nonuniform and discontinuous temperature distribution of the tested surface above the inserted plates shows the existence of near- underground buried materials. Furthermore, transient temperature and heat flow behavior was numerically analyzed by solving a transient two-dimensional heat-balance equation. Calculation results were quite useful to analyze the experimental heat flow behavior around the buried object.

  3. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  4. PPOOLEX experiments with two parallel blowdown pipes

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the experiments with two transparent blowdown pipes carried out with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through either one or two vertical transparent blowdown pipes to the condensation pool. Five experiments with one pipe and six with two parallel pipes were carried out. The main purpose of the experiments was to study loads caused by chugging (rapid condensation) while steam is discharged into the condensation pool filled with sub-cooled water. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. In the experiments the initial temperature of the condensation pool water varied from 12 deg. C to 55 deg. C, the steam flow rate from 40 g/s to 1 300 g/s and the temperature of incoming steam from 120 deg. C to 185 deg. C. In the experiments with only one transparent blowdown pipe chugging phenomenon didn't occur as intensified as in the preceding experiments carried out with a DN200 stainless steel pipe. With the steel blowdown pipe even 10 times higher pressure pulses were registered inside the pipe. Meanwhile, loads registered in the pool didn't indicate significant differences between the steel and polycarbonate pipe experiments. In the experiments with two transparent blowdown pipes, the steamwater interface moved almost synchronously up and down inside both pipes. Chugging was stronger than in the one pipe experiments and even two times higher loads were measured inside the pipes. The loads at the blowdown pipe outlet were approximately the same as in the one pipe cases. Other registered loads around the pool were about 50-100 % higher than with one pipe. The experiments with two parallel blowdown pipes gave contradictory results compared to the earlier studies dealing with chugging loads in case of multiple pipes. Contributing

  5. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  6. The Collection of Ice in Jet A-1 Fuel Pipes

    Science.gov (United States)

    Maloney, Thomas C.

    ® and there was a lack of a preferential accumulation region downstream of a pipe bend. A greater heat transfer from the pipe increased ice accumulation for aluminum that was made rough with 80 grit sand paper, and for Teflon®. Water was shown to collect in the pipe system as the number of tests increased and the freeze temperature of either the hard or soft ice was about 0 °C. Finally, results of "stage I" tests showed that stainless steel pipe welds were a preferred sight for ice to accumulate. Repeatability was done first in stage II and the normalized pressure increase for two 3/42 un-insulated pipe tests were within 7%. Normalized pressure increase across a pipe was shown to increase as Reynolds number decreased. A 50% increase in Reynolds number led to a 40% decrease in characteristic normalized pressure increase (CNPI). Tests were done at three temperatures and ice accumulated the most at -11 °C. The CNPI at -11 °C was about three times greater than the CNPI at -7.4 °C and about sixty times greater than the CNPI at -19.4 C. A greater heat transfer from the fuel pipe increased ice accumulation. For the amount of time that the tests ran, the total normalized pressure increase was about .9 greater for an un-insulated pipe than for an insulated pipe. Contamination in the fuel increased the amount of soft ice that collected in the system. The CNPI for the more contaminated fuel was more than double the case with less contaminated fuel. Possible solutions for the prevention or decrease of ice accumulation in aircraft fuel systems based on the results of this study are insulated pipes, a change in the type of pipe material, a higher fuel flow rate and cleaner fuel. The fuel temperature could also be altered to avoid temperatures where the most ice accumulates.

  7. Pipe Leak Detection Technology Development

    Science.gov (United States)

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  8. Integrity conception for pipe systems

    International Nuclear Information System (INIS)

    Bartonicek, J.; Zaiss, W.; Schoeckle, F.

    2004-01-01

    There are safety-relevant mechanical components or pipe systems in which fracture must be excluded. The procedural specifications for ensuring this were developed in the early eighties at MPA-Stuttgart and updated in the mid-nineties to include ageing phenomena. The regulations are contained in KTA 3201.1 through KTA 3201.4 (orig.) [de

  9. Automatic welding machine for piping

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Koyama, Takaichi; Iizuka, Tomio; Ito, Yoshitoshi; Takami, Katsumi.

    1978-01-01

    A remotely controlled automatic special welding machine for piping was developed. This machine is utilized for long distance pipe lines, chemical plants, thermal power generating plants and nuclear power plants effectively from the viewpoint of good quality control, reduction of labor and good controllability. The function of this welding machine is to inspect the shape and dimensions of edge preparation before welding work by the sense of touch, to detect the temperature of melt pool, inspect the bead form by the sense of touch, and check the welding state by ITV during welding work, and to grind the bead surface and inspect the weld metal by ultrasonic test automatically after welding work. The construction of this welding system, the main specification of the apparatus, the welding procedure in detail, the electrical source of this welding machine, the cooling system, the structure and handling of guide ring, the central control system and the operating characteristics are explained. The working procedure and the effect by using this welding machine, and the application to nuclear power plants and the other industrial field are outlined. The HIDIC 08 is used as the controlling computer. This welding machine is useful for welding SUS piping as well as carbon steel piping. (Nakai, Y.)

  10. Residual stress in polyethylene pipes

    Czech Academy of Sciences Publication Activity Database

    Poduška, Jan; Hutař, Pavel; Kučera, J.; Frank, A.; Sadílek, J.; Pinter, G.; Náhlík, Luboš

    2016-01-01

    Roč. 54, SEP (2016), s. 288-295 ISSN 0142-9418 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : polyethylene pipe * residual stress * ring slitting method * lifetime estimation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.464, year: 2016

  11. Spinning pipe gas lens revisited

    CSIR Research Space (South Africa)

    Mafusire, C

    2008-01-01

    Full Text Available , there is little information on optical phase aberrations and no study to date on the propagation parameters of the laser beam, but has rather remained rooted in the domain of ray optics. Researchers revisit the spinning pipe gas lens in this paper with new...

  12. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  13. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  14. Novel Robotic Tools for Piping Inspection and Repair, Phase 1

    Science.gov (United States)

    2014-02-13

    20 psi (Figure 10). Figure 10 - Gripping force test Page 11 of 47 Forward motion modification Skids were added to the robot’s...to constrain bladder inflation and provide bearing surfaces during motion and help center the module in the pipe. The ‘X’ shaped skid allows the...43. Figure 43 - Gripper silicone failure To prevent rubbing, a small piece of abrasion resistant nylon sleeve was placed below the stainless

  15. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    International Nuclear Information System (INIS)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  16. Underground coal gasification: An overview of groundwater contamination hazards and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Camp, David W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-13

    Underground coal gasification is the in situ conversion of coal into an energy-rich product gas. It takes place deep underground, using chemical reactions to consume the coal and grow a cavity. Gas wells, drilled into the coal seam, inject reactant air, oxygen, and/or steam to sustain the reactions. Production wells then extract the product gas. Careful analysis and understanding of likely failure modes will help prevent and minimize impacts. This document provides a general description of the relevant processes, potential failure modes, and practical mitigation strategies. It can guide critical review of project design and operations.

  17. Piping engineering for nuclear power plant

    International Nuclear Information System (INIS)

    Curto, N.; Schmidt, H.; Muller, R.

    1988-01-01

    In order to develop piping engineering, an adequate dimensioning and correct selection of materials must be secured. A correct selection of materials together with calculations and stress analysis must be carried out with a view to minimizing or avoiding possible failures or damages in piping assembling, which could be caused by internal pressure, weight, temperature, oscillation, etc. The piping project for a nuclear power plant is divided into the following three phases. Phase I: Basic piping design. Phase II: Final piping design. Phase III: Detail engineering. (Author)

  18. 76 FR 39095 - Compatibility of Underground Storage Tank Systems With Biofuel Blends

    Science.gov (United States)

    2011-07-05

    ... lining Piping Line leak detector Flexible connectors Drop tube Spill and overfill prevention equipment... drinking water for nearly half of all Americans, the U.S. Environmental Protection Agency (EPA) regulates... components of the UST system, such as leak detection devices, sealants, and containment sumps, may not be...

  19. Comparison of Cigarette and Water-Pipe Smoking By Arab and Non–Arab-American Youth

    Science.gov (United States)

    Weglicki, Linda S.; Templin, Thomas N.; Rice, Virginia Hill; Jamil, Hikmet; Hammad, Adnan

    2008-01-01

    Background Water-pipe smoking is a rapidly growing form of tobacco use worldwide. Building on an earlier report of experimentation with cigarette and water-pipe smoking in a U.S. community sample of Arab-American youth aged 14–18 years, this article examines water-pipe smoking in more detail (e.g., smoking history, belief in harmfulness compared to cigarettes, family members in home who smoke water pipes) and compares the water-pipe–smoking behaviors of Arab-American youth with non–Arab-American youth in the same community. Methods A convenience sample of 1872 Arab-American and non–Arab-American high school students from the Midwest completed a 24-item tobacco survey. Data were collected in 2004–2005 and analyzed in 2007–2008. Results Arab-American youth reported lower percentages of ever cigarette smoking (20% vs 39%); current cigarette smoking (7% vs 22%); and regular cigarette smoking (3% vs 15%) than non–Arab-American youth. In contrast, Arab-American youth reported significantly higher percentages of ever water-pipe smoking (38% vs 21%) and current water-pipe smoking (17% vs 11%) than non–Arab-American youth. Seventy-seven percent perceived water-pipe smoking to be as harmful as or more harmful than cigarette smoking. Logistic regression showed that youth were 11.0 times more likely to be currently smoking cigarettes if they currently smoked water pipes. Youth were also 11.0 times more likely to be current water-pipe smokers if they currently smoked cigarettes. If one or more family members smoked water pipes in the home, youth were 6.3 times more likely to be current water-pipe smokers. The effects of ethnicity were reduced as a result of the explanatory value of family smoking. Conclusions Further research is needed to determine the percentages, patterns, and health risks of water-pipe smoking and its relationship to cigarette smoking among all youth. Additionally, youth tobacco prevention/cessation programs need to focus attention on water-pipe

  20. Particulate matter in the underground of Stockholm

    Science.gov (United States)

    Johansson, Christer; Johansson, Per-Åke

    The concentrations of PM 10 and PM 2.5 were measured during 2 weeks at an underground station in central Stockholm. The instrument, an automatic TEOM monitor (Tapered Element Oscillating Microbalance), was placed on the platform in the centre of the station. During weekdays between 7 a.m. and 7 p.m. the average PM 10 and PM 2.5 concentrations were 470 and 260 μg/ m3, respectively. These levels are a factor 5 and 10 times higher than the corresponding values measured in one of the busiest streets in central Stockholm. The concentrations in the underground followed closely the train traffic intensity. The levels were very similar from one day to the next. During Saturdays and Sundays the levels decreased slightly due to less frequent train passages. Additional measurements were performed right after the tunnel had been washed. Tunnel walls and railway tracks between the platforms of the underground system were washed using water. Only a slight reduction of the PM 10 levels (approximately 13%) could be observed during a few days after the water treatment. For PM 2.5 the reduction was even less, about 10% lower levels could be seen. This might indicate that particles from tunnel walls and tracks make only a minor contribution to the observed levels. These results confirm earlier unpublished measurements showing high levels of PM in the underground of Stockholm. Substantially, elevated particle exposure levels have also been reported in several earlier studies in the underground of London, UK.

  1. LHC Report: A spring clean for the beam pipe

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    After a successful calibration run at 1.38TeV, the LHC went into a four-day technical stop on Monday 28 March. Work conducted during the technical stop included wrapping solenoids around vacuum pipes to help counteract electron-cloud effects. X-rays of the cryogenic piping line in Sector 4-5 were also taken, and a cryogeniccompressor was replaced at Point 4.   The recently installed solenoids suppress the electron cloud effect by creating a longitudinal magnetic field that bends back the emitted electrons avoiding their escape from the beam pipe surface and thus preventing their participation in the avalanche process in the beam pipe. After coming out of the technical stop on 1 April, a series of rigorous tests with low-intensity beams was performed to make sure that everything was working as it should. This is standard procedure, as a number of hardware (and software) changes are made during a technical stop and it is imperative that we make sure that none of these have impacted machine protectio...

  2. Monitoring and localization of buried plastic natural gas pipes using passive RF tags

    Science.gov (United States)

    Mondal, Saikat; Kumar, Deepak; Ghazali, Mohd. Ifwat; Chahal, Prem; Udpa, Lalita; Deng, Yiming

    2018-04-01

    A passive harmonic radio frequency (RF) tag on the pipe with added sensing capabilities is proposed in this paper. Radio frequency identification (RFID) based tagging has already emerged as a potential solution for chemical sensing, location detection, animal tagging, etc. Harmonic transponders are already quite popular compared to conventional RFIDs due to their improved signal to noise ratio (SNR). However, the operating frequency, transmitted power and tag efficiency become critical issues for underground RFIDs. In this paper, a comprehensive on-tag sensing, power budget and frequency analyses is performed for buried harmonic tag design. Accurate tracking of infrastructure burial depth is proposed to reduce the probability of failure of underground pipelines. Burial depth is estimated using phase information of received signals at different frequencies calculated using genetic algorithm (GA) based optimization for post processing. Suitable frequency range is determined for a variety of soil with different moisture content for small tag-antenna size. Different types of harmonic tags such as 1) Schottky diode, 2) Non-linear Transmission Line (NLTL) were compared for underground applications. In this study, the power, frequency and tag design have been optimized to achieve small antenna size, minimum signal loss and simple reader circuit for underground detection at up to 5 feet depth in different soil medium and moisture contents.

  3. Piping failure analysis for the Korean nuclear piping including the effect of in-service inspection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.Y. [Korea Atomic Energy Research Inst.(KAERI), Daejeon (Korea); Choi, Y.H. [Korea Inst. of Nuclear Safety(KINS), Daejeon (Korea)

    2004-07-01

    The purposes of this paper are to perform piping failure analysis for the failed safety class piping in Korean nuclear power plants(NPPs) and evaluate the effect of an in-service inspection(ISI) on the piping failure probability. For data collection, a database for piping failure events was constructed with 135 data fields including population data, event data, and service history data. A total of 6 kinds of events with 25 failure cases up to June 30, 2003 were identified from Korean NPPs. The failed systems were main feedwater system, CVCS, primary sampling system, essential service water system, and CANDU purification system. Piping failure analyses such as evaluation of the impact on nuclear safety and piping integrity and the root cause analysis were performed and the piping failure frequencies for the failed piping were calculated by using population data. The result showed that although the integrity was not maintained in the failed piping, the safety of the plants was maintained for all the events. And the root causes of the events were analyzed as FAC, vibration, thermal fatigue, corrosion, and/or an improper weld joint. The piping failure frequencies ranged from 6.08E-5/Cr-Yr to 1.15E-3/Cr-Yr for the events. According to the ASME Code sec. XI requirements, the small bore piping less than the nominal diameter of 4 inch is exempt from ISI. There, however, were many piping failures reported in the small bore piping. The effect of ISI considering the pipe size on the piping failure probability was investigated by using the Win-PRAISE program based on probabilistic fracture mechanics. The results showed that there is no significant difference between the small and large bore piping from the viewpoint of the ISI effect on the piping failure probability. It means that ISI for a small bore piping is recommended as well as the large bore piping. (orig.)

  4. [Effect of underground work on cardiovascular system 
in coal miners].

    Science.gov (United States)

    Lai, Zhiwei; Wang, Xiaoye; Tan, Hongzhuan; Huang, Yaoyu; Lu, Changcheng

    2015-10-01

    To study the effect of underground work on cardiovascular system health in coal miners.
 Male coal miners, who received electrocardiographic examinations between June, 2013 and August, 2014 in Hunan Prevention and Treatment Institute for Occupational Diseases to exclude pneumoconiosis, were enrolled for this study (n=3 134). Miners with 2 years or more underground work experience were selected as the exposed group (n=2 370), while miners without underground work experience were selected as the control group (n=764). The prevalence of electrocardiographic abnormalities and the influential factors were compared between the 2 groups.
 The prevalences of electrocardiographic abnormalities, hypertension, heart rate abnormalities and cardiovascular system abnormalities in the exposed group vs the control group were 37.6% vs 25.4%, 20.5% vs 13.4%, 5.7% vs 6.0%, 49.8% vs 35.2%, respectively. The cardiovascular system abnormalities were correlated with the underground work (OR=3.128, 95% CI: 1.969-4.970), the underground work experience (OR=1.205, 95% CI: 1.070-1.358) and the type of works (mining worker OR=1.820, 95% CI: 1.527-2.169; auxiliary worker OR=1.937, 95% CI: 1.511-2.482; other worker OR=3.291, 95%CI: 2.120-5.109).
 Underground work may increase the prevalence of cardiovascular system abnormalities for coal miners. The longer the coal miners work in underground, the higher the risk of the cardiovascular system abnormalities they are.

  5. Practical aspects of acoustic plastic pipe location

    Energy Technology Data Exchange (ETDEWEB)

    Huebler, J.E.; Campbell, B.K. [Institute of Gas Technology, Chicago, IL (United States); Ching, G.K. [Southern California Gas Co. (United States)

    1993-12-31

    Many gas distribution company operation and maintenance activities require precise knowledge of the location of buried plastic piping. Plastic pipe cannot be located if the tracer wire is gone or was never installed. Under sponsorship of the Southern California Gas Company, IGT successfully demonstrated an acoustic plastic pipe location technique and is developing the technique into a practical field instrument an acoustic signal is injected directly into the gas at a service. The acoustic signal travels in the gas in the pipes, not in the pipe wall. As the acoustic wave travels along the pipe, some of the sound radiates from the pipe through the soil to the surface of the ground. An array of sensors on the surface of the ground perpendicular to the pipe detects the acoustic signal, thereby locating the Pipe. Two different acoustic measurements are used. The first measurement locates the pipe to within {plus_minus} 3-ft. Then the second technique determines the location of the pipe to within {plus_minus} 6-in.

  6. Applying hierarchical loglinear models to nonfatal underground coal mine accidents for safety management.

    Science.gov (United States)

    Onder, Mustafa; Onder, Seyhan; Adiguzel, Erhan

    2014-01-01

    Underground mining is considered to be one of the most dangerous industries and mining remains the most hazardous occupation. Categorical analysis of accident records may present valuable information for preventing accidents. In this study, hierarchical loglinear analysis was applied to occupational injuries that occurred in an underground coal mine. The main factors affecting the accidents were defined as occupation, area, reason, accident time and part of body affected. By considering subfactors of the main factors, multiway contingency tables were prepared and, thus, the probabilities that might affect nonfatal injuries were investigated. At the end of the study, important accident risk factors and job groups with a high probability of being exposed to those risk factors were determined. This article presents important information on decreasing the number accidents in underground coal mines.

  7. Inelastic pipe elements for analysis of pipe whip

    International Nuclear Information System (INIS)

    Powell, H.

    1977-01-01

    Two alternative assumptions for the effects of moment interaction following yielding of a pipe are compared. The piping system must usually be divided into short finite elements, in order to account for wave propagation through the piping. Where short elements are used, it is accurate and convenient to use a lumped plasticity finite element model, the pipe being represented by three-dimensional beam-column elements in which yielding is assumed to be concentrated in generalized plastic hinges at the element ends. It is also convenient to assume that the generalized moment-rotation relationship at a hinge is elastic-perfectly-plastic, and to account for strain hardening using the well-known parallel element procedure. With this assumption, the task of monitoring hinge behavior is simplified, yet completely arbitrary moment-rotation relationships can be constructed. The interaction relationship defining the combinations of bending and torsional moments which produce yield at a plastic hinge can easily be determined. Classical plasticity theory adopts the normality criterion, in which post-yield deformations are divided into components normal and tangential to the yield surface. The normal components are then assumed to be plastic, producing no change in moment, and the tangential rotations to be elastic, producing moment change in accordance with the element elastic stiffness. An alternative, simpler assumption is that post-yield rotations are entirely plastic. With this assumption, the moments at the hinge remain unchanged, as in a 'rusty' hinge. The elasto-plastic element stiffness for this model does not change continuously during the response analysis, so that the computation is simpler, more economical, but less accurate

  8. Bioremediation of Benzene-contaminated Underground Aquifers

    Science.gov (United States)

    Watanabe, Kazuya; Takahata, Yoh

    Contamination of underground aquifers with gasoline occurs frequently. Among the gasoline constituents, benzene is of great environmental concern, since it is carcinogenic, water-soluble and persistent under anaerobic conditions. We have analyzed a gasoline-contaminated underground aquifer undergoing natural attenuation, where benzene was degraded, albeit slowly, under anaerobic conditions. RNA-based stable-isotope probing identified that bacteria affiliated with the genus AZOARCUS was responsible for benzene degradation under nitrate-reducing conditions. This result was confirmed by isolating an anaerobic benzene-degrading bacterium AZOARCUS sp. strain DN11. This strain degraded benzene at relatively low concentrations (as low as 10 ppb). It could also degrade toluene and xylenes. In laboratory bioaugmentation experiments using benzene-contaminated groundwater, it was demonstrated that supplementation with DN11 significantly accelerated benzene degradation under a nitrate-reducing condition. These results indicate that DN11 is potentially useful for degrading benzene that contaminates underground aquifers at relatively low concentrations.

  9. Underground nuclear astrophysics at the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel; Ilgner, Christoph; Junghans, Arnd R.; Mueller, Stefan; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Grieger, Marcel; Reinicke, Stefan; Roeder, Marko; Schmidt, Konrad; Stoeckel, Klaus; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    Favored by the low background underground, accelerator-based experiments are an important tool to study nuclear astrophysics reactions involving stable charged particles. This technique has been used with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies, as well as the continuation of solar fusion studies. As a result, NuPECC strongly recommended the installation of one or more higher-energy underground accelerators. Such a project is underway in Dresden. A 5 MV Pelletron accelerator is currently being refurbished by installing an ion source on the high voltage terminal, enabling intensive helium beams. The preparation of the underground site is funded, and the civil engineering project is being updated. The science case, operational strategy and project status are reported.

  10. Intense rockburst impacts in deep underground construction and their prevention

    Czech Academy of Sciences Publication Activity Database

    Mazaira, Alejandro; Koníček, Petr

    2015-01-01

    Roč. 52, č. 10 (2015), s. 1426-1439 ISSN 0008-3674. [International Colloquium on Geomechanics and Geophysics /5./. Karolinka, 25.06.2014-27.06.2014] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : rockburst * in situ stress * induced stress * destress blasting * yielding support Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 1.877, year: 2015 http://www.nrcresearchpress.com/doi/full/10.1139/cgj-2014-0359#.VgqBTZc70ms

  11. Intense rockburst impacts in deep underground construction and their prevention

    Czech Academy of Sciences Publication Activity Database

    Mazaira, Alejandro; Koníček, Petr

    2015-01-01

    Roč. 52, č. 10 (2015), s. 1426-1439 ISSN 0008-3674. [International Colloquium on Geomechanics and Geophysics /5./. Karolinka, 25.06.2014-27.06.2014] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support : RVO:68145535 Keywords : rockburst * in situ stress * induced stress * destress blasting * yielding support Subject RIV: DH - Mining , incl. Coal Mining Impact factor: 1.877, year: 2015 http://www.nrcresearchpress.com/doi/full/10.1139/cgj-2014-0359#.VgqBTZc70ms

  12. Safety risk management of underground engineering in China: Progress, challenges and strategies

    Directory of Open Access Journals (Sweden)

    Qihu Qian

    2016-08-01

    Full Text Available Underground construction in China is featured by large scale, high speed, long construction period, complex operation and frustrating situations regarding project safety. Various accidents have been reported from time to time, resulting in serious social impact and huge economic loss. This paper presents the main progress in the safety risk management of underground engineering in China over the last decade, i.e. (1 establishment of laws and regulations for safety risk management of underground engineering, (2 implementation of the safety risk management plan, (3 establishment of decision support system for risk management and early-warning based on information technology, and (4 strengthening the study on safety risk management, prediction and prevention. Based on the analysis of the typical accidents in China in the last decade, the new challenges in the safety risk management for underground engineering are identified as follows: (1 control of unsafe human behaviors; (2 technological innovation in safety risk management; and (3 design of safety risk management regulations. Finally, the strategies for safety risk management of underground engineering in China are proposed in six aspects, i.e. the safety risk management system and policy, law, administration, economy, education and technology.

  13. Master plan of Mizunami underground research laboratory

    International Nuclear Information System (INIS)

    1999-04-01

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  14. Underground Nuclear Astrophysics Experiment JUNA in China

    Science.gov (United States)

    Liu, W. P.

    Underground Nuclear Astrophysics Experiment in China (JUNA) will take the advantage of the ultra-low background in Jinping underground lab. A 400 kV high current accelerator with an ECR source and γ , neutron and charged particle detectors will be set up. We plan to study directly a number of nuclear reactions important to hydrostatic stellar evolution near their Gamow window energies such as 25Mg(p, γ )26Al, 19F(p, α )16O, 13C(α , n)16O, and 12C(α , γ )16O, by the end of 2019.

  15. Analysis and design of SSC underground structures

    International Nuclear Information System (INIS)

    Clark, G.T.

    1993-01-01

    This paper describes the analysis and design of underground structures for the Superconducting Super Collider (SSC) Project. A brief overview of the SSC Project and the types of underground structures are presented. Engineering properties and non-linear behavior of the geologic materials are reviewed. The three-dimensional sequential finite element rock-structure interaction analysis techniques developed by the author are presented and discussed. Several examples of how the method works, specific advantages, and constraints are presented. Finally, the structural designs that resulted from the sequential interaction analysis are presented

  16. Long Duration Exposure Facility (LDEF) low-temperature Heat Pipe Experiment Package (HEPP) flight results

    Science.gov (United States)

    Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.

    1992-01-01

    The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a n-Heptane Phase Change Material (PCM) canister. A total of 388 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe of axially grooved stainless steel heat pipe diode was demonstrated before the EDS batteries lost power. The inability of the HEPP's radiator to cool below 190 K in flight prevented freezing of the PCM and the opportunity to conduct transport tests with the heat pipes. Post flight tests showed that the heat pipes and the PCM are still functioning. This paper presents a summary of the flight data analysis for the HEPP and its related support systems. Pre and post-flight thermal vacuum tests results are presented for the HEPP thermal control system along with individual heat pipe performance and PCM behavior. Appropriate SIG related systems data will also be included along with a 'lessons learned' summary.

  17. Radioactive recontamination on mechanically polished piping at Shimane-1 Nuclear Power Plant

    International Nuclear Information System (INIS)

    Umeda, K.; Komoto, I.; Imamura, K.; Kataoka, I.; Uchida, S.

    1998-01-01

    In a series of preventive maintenance tasks for an aging plant, recirculation pipes of Shimane-1 NPP have been replaced by newly fabricated type 316 NG stainless steel pipes. Suppression of shutdown dose rate caused by 60 Co recontamination on the newly replaced piping was one of the major concerns in the recirculation pipe replacement. In order to suppress the shutdown dose rate, control of the 60 Co deposition rate coefficient as well as 60 Co radioactivity in the reactor water are essential. The deposition rate coefficient depends on surface roughness. The coefficient is suppressed by reduction of the effective surface area of pipes through mechanical polishing. Then the inner surface of the pipes was polished mechanically to reduce roughness prior to application in the plant. After measuring and evaluating radioactive recontamination, it was estimated that deposited amounts of radioactive corrosion products on the pipe inner surface would reach the saturated value in a few years, and would not exceed the level before replacement unless water chemistry is degraded. (author)

  18. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    Science.gov (United States)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  19. The Archaeology of Smuggling and the Falmouth King's Pipe

    Science.gov (United States)

    Willis, Sam

    2009-06-01

    This article demonstrates the potential of an historical archaeology of smuggling and the value of an interdisciplinary approach to the study of smuggling and its prevention. By exploring the previously unstudied history of the King’s Pipe in Falmouth, a large chimney used for the destruction of tobacco, a rare survivor of many that once existed in England’s port cities, it demonstrates that archaeology could transform our understanding of smuggling and its prevention, and more broadly the history of crime and punishment in eighteenth century England.

  20. Experiments in turbulent pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Torbergsen, Lars Even

    1998-12-31

    This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.

  1. Innovative technology summary report: Pipe Explorertrademark system

    International Nuclear Information System (INIS)

    1996-01-01

    The Pipe Explorertrademark system, developed by Science and Engineering Associates, Inc. (SEA), under contract with the US Department of Energy (DOE) Morgantown Energy Technology Center, has been used to transport various characterizing sensors into piping systems that have been radiologically contaminated. DOE's nuclear facility decommissioning program must characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand-held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Various measuring difficulties, and in some cases, the inability to measure threshold surface contamination values and worker exposure, and physical access constraints have limited the effectiveness of traditional survey approaches. The Pipe Explorertrademark system provides a viable alternative. The heart of the system is an air-tight membrane, which is initially spooled inside a canister. The end of the membrane protrudes out of the canister and attaches to the pipe being inspected. The other end of the tubular membrane is attached to the tether and characterization tools. When the canister is pressurized, the membrane inverts and deploys inside the pipe. The characterization detector and its cabling is attached to the tethered end of the membrane. As the membrane is deployed into the pipe, the detector and its cabling is towed into the pipe inside the protective membrane; measurements are taken from within the protective membrane. Once the survey measurements are completed, the process is reversed to retrieve the characterization tools

  2. Hot Leg Piping Materials Issues

    International Nuclear Information System (INIS)

    V. Munne

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)

  3. Safety management of an underground-based gravitational wave telescope: KAGRA

    Science.gov (United States)

    Ohishi, Naoko; Miyoki, Shinji; Uchiyama, Takashi; Miyakawa, Osamu; Ohashi, Masatake

    2014-08-01

    KAGRA is a unique gravitational wave telescope with its location underground and use of cryogenic mirrors. Safety management plays an important role for secure development and operation of such a unique and large facility. Based on relevant law in Japan, Labor Standard Act and Industrial Safety and Health Law, various countermeasures are mandated to avoid foreseeable accidents and diseases. In addition to the usual safety management of hazardous materials, such as cranes, organic solvents, lasers, there are specific safety issues in the tunnel. Prevention of collapse, flood, and fire accidents are the most critical issues for the underground facility. Ventilation is also important for prevention of air pollution by carbon monoxide, carbon dioxide, organic solvents and radon. Oxygen deficiency should also be prevented.

  4. Fokker-Planck modeling of pitting corrosion in underground pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Eliana Nogueira [Risco Ambiental Engenharia, Rio de Janeiro, RJ (Brazil); Melo, Paulo F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Saldanha, Pedro Luiz C. [Comissao Nacional de Energia Nuclear (CGRC/CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Reatores e Ciclo do Combustivel; Silva, Edson de Pinho da [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. of Physics

    2011-07-01

    Full text: The stochastic nature of pitting corrosion has been recognized since the 1930s. It has been learned that this damage retains no memory of its past. Instead, the future state is determined only by the knowledge of its present state. This Markovian property that underlies the stochastic process governing pitting corrosion has been explored as a discrete Markovian process by many authors since the beginning of the 1990s for underground pipelines of the oil and gas industries and nuclear power plants. Corrosion is a genuine continuous time and space state Markovian process, so to model it as a discrete time and/or state space is an approximation to the problem. Markovian chains approaches, with an increasing number of states, could involve a large number of parameters, the transition rates between states, to be experimentally determined. Besides, such an increase in the number of states produces matrices with huge dimensions leading to time-consuming computational solutions. Recent approaches involving Markovian discrete process have overcome those difficulties but, on the other hand, a large number of soil and pipe stochastic variables have to be known. In this work we propose a continuous time and space state approach to the evolution of pit corrosion depths in underground pipelines. In order to illustrate the application of the model for defect depth growth a combination of real life data and Monte Carlo simulation was used. The process is described by a Fokker-Planck equation. The Fokker-Planck equation is completely determined by the knowledge of two functions known as the drift and diffusion coefficients. In this work we also show that those functions can be estimated from corrosion depth data from in-line inspections. Some particular forms of drift and diffusion coefficients lead to particular Fokker-Planck equations for which analytical solutions are known, as is the case for the Wiener process, the Ornstein-Uhlenbeck process and the Brownian motion

  5. Evolution of thermal fatigue management of piping in US LWRs

    International Nuclear Information System (INIS)

    McDewitt, M.; Wolfe, K.; McGill, R.

    2015-01-01

    Fatigue usage caused by cyclic changes of thermally stratified reactor coolant in Light Water Reactor (LWR) pressure boundary piping was not an original consideration in US Nuclear Power Plant (NPP) designs. During the mid 1980's, several events involving cracking and leakage due to thermal cycling occurred in reactor coolant system branch piping at both US and International NPPs. In 1988, the US Nuclear Regulatory Commission (US NRC) issued Bulletin 88-08 to alert LWR licensees of the potential for piping failures due to stratified thermal cycling. In response to these events, the US nuclear industry developed initiatives to identify susceptible components and established measures to monitor and prevent future failures. These initiatives have been effective in preventing leakage events, but have also identified fewer defects than expected based on screening model predictions. Improved analytical techniques are being investigated to maintain program effectiveness while minimizing unnecessary non-destructive examinations. This paper discusses the evolution of the US thermal fatigue initiatives, and analytical concepts being evaluated to improve program efficiency. (authors)

  6. Physics at the proposed National Underground Science Facility

    International Nuclear Information System (INIS)

    Nieto, M.M.

    1983-01-01

    The scientific, technical, and financial reasons for building a National Underground Science Facility are discussed. After reviewing examples of other underground facilities, we focus on the Los Alamos proposal and the national for its choice of site

  7. Energy Policy Act of 2005 and Underground Storage Tanks (USTs)

    Science.gov (United States)

    The Energy Policy Act of 2005 significantly affected federal and state underground storage tank programs, required major changes to the programs, and is aimed at reducing underground storage tank releases to our environment.

  8. Underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Pinto, S.; Telleschi, P.

    1978-10-01

    Two of the main underground siting alternatives, the rock cavity plant and the pit siting, have been investigated in detail and two layouts, developed for specific sites, have been proposed. The influence of this type of siting on normal operating conditions and during abnormal occurences have been investigated. (Auth.)

  9. Zen Communist: Breyten Breytenbach's view from underground ...

    African Journals Online (AJOL)

    In an interview after his release from prison, Breyten Breytenbach describes himself, at the time he became involved in underground politics, as a Zen Communist. He returns occasionally to this interaction of Marxist ideas of social revolution and Buddhist ideas of non-attachment, but never attempts to explain the resulting ...

  10. Animals Underground. Young Discovery Library Series.

    Science.gov (United States)

    Ruffault, Charlotte

    This book is written for children ages 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume explores the natural history of animals that live underground. Animals included are porcupine, insects, earthworm, mole, badger, rabbit, prairie dog, and beach animals. (YP)

  11. Nõukogudemaa underground bootleg'id / Margus Paju

    Index Scriptorium Estoniae

    Paju, Margus

    2008-01-01

    DVDst "Päratrusti pärand" - ENSV Riikliku Kultuurijäätmete Töötlemise Artelli "Päratrust" kultusfilmide kogumikust. Mustvalged underground-lühimängufilmid "Tsarli läheb Tallinna", "Tsaar Muhha", "Neurootiline pärastlõuna", "Kalkar", "Päratee" jt. aastatest 1980 -1983, filmid on taashelindatud 2007. aastal

  12. Underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Bender, F.

    1982-01-01

    The symposium gave the opportunity for an international exchange of views on the concepts of underground nuclear power plants, which are presently world wide under consideration. The results of investigations into the advantages and disadvantages with regard to the technical safety aspects of the underground plants in comparison to plants on the surface led to open and sometimes controversal discussions. As a result of the symposium (32 contributions) a general agreement can be stated on the judgement concerning the advantages and the disadvantages of underground nuclear power plants (nnp). The advantages are: increased protection against external events; delayed release of fission products in accident situations, if the closures operate properly. The disadvantages are: increased costs of the construction of underground and restrictions to such sites where either large caverns or deep pits can be constructed, which also requires that certain technical problems must be solved beforehand. Also, additional safety certificates related to the site will be required within the licensing procedures. The importance of these advantages and disadvantages was in some cases assessed very differently. The discussions also showed, that there are a number of topics where some questions have not been finally answered yet. (orig./HP) [de

  13. Underground application of magnetic resonance soundings

    CSIR Research Space (South Africa)

    Greben, JM

    2011-10-01

    Full Text Available that characterize the orientation of the mine wall. There is a geometric enhancement of the MRS signal under typical mining conditions for the locations studied. However, the loop size is severely restricted in underground conditions, limiting the feasible target...

  14. Underground mining robot: a CSIR project

    CSIR Research Space (South Africa)

    Green, JJ

    2012-11-01

    Full Text Available ) is the project lead unit and is developing the sensors needed for underground data acquisition related to the safety application. The body of the robot is being developed by the Mechatronics and Micro-Manufacturing (MMM) group. The software component is being...

  15. Modeling of long High Voltage AC Underground

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella; Bak, Claus Leth; Wiechowski, W. T.

    2010-01-01

    This paper presents the work and findings of a PhD project focused on accurate high frequency modelling of long High Voltage AC Underground cables. The project is cooperation between Aalborg University and Energinet.dk. The objective of the project is to investigate the accuracy of most up to dat...

  16. EAS selection in the EMMA underground array

    DEFF Research Database (Denmark)

    Sarkamo, J.; Bezrukov, L.; Enqvist, T.

    2013-01-01

    The first measurements of the Experiment with MultiMuon Array (EMMA) have been analyzed for the selection of the Extensive Air Showers (EAS). Test data were recorded with an underground muon tracking station and a satellite station separated laterally by 10 metres. Events with tracks distributed...

  17. Bioclimatic underground architecture: Development and principles

    OpenAIRE

    Stojić Jasmina; Stanković Danica

    2009-01-01

    The principal idea of paper lies in analyzing contemporary architectural challenges, concerning climate changes, global warming, renewable energy deficiency and population growth. The relevant examples and principles of sustainable and selfsustainable architecture development throughout history are presented. Underground structures as passive solar systems, vegetation used as insulation, ventilation and isolation are given as one of possible solutions for this global phenomenon. By studying t...

  18. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC

    2003-01-28

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  19. Piping inspection carriage having axially displaceable sensor

    Science.gov (United States)

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  20. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  1. Defect rates in butt welded steel pipes

    International Nuclear Information System (INIS)

    Guille-Stevens, D.; Silcock, P.

    1980-01-01

    As the primary circuit of CANDU reactors consists largely of pipe, the reliability of pipe welds is of interest to reactor designers. A project involving 64 000 manual and semi-automatic pipe welds was inspected to the requirements of ANSI B31.3. Records of 6 000 carbon steel and 1 900 alloy steel butt welds ranging from 50 to 400 mm were inspected by radiography and ultrasonics, and analysed. No correlation between defects and number of weld passes was observed. However, small pipes exhibited a higher defect rate, per weld length and per weld volume, than did large pipes. Porosity was the major cause of defects (60 per cent) followed by root defects (27 per cent); only one crack was recorded. The results show that small (50 mm) pipe welds have the highest defect rate; however, the low overall rate shows that high standards can be maintained over many thousand welds [af

  2. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  3. Hot clamp design for LMFBR piping systems

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tateishi, M.

    1990-01-01

    Thin wall large diameter piping for liquid metal fast breeder reactor plants can be subjected to significant thermal transients during reactor scrams. To reduce local thermal stresses, an insulted cold clamp was designed for the Fast Flux Test Facility and was also applied to some following prototype reactors. However, the cost minimization of LMFBR requires much simpler designs. This paper presents a hot clamp design concept, which uses standard clamp halves directly attached to the pipe surface with an initial gap. Combinations of flexible pipe and rigid clamp achieved a self-control effect on clamp induced pipe stresses due to the initial gap. A 3-D contact and inelastic history analysis were performed to verify the hot clamp concept. Considerations to reduce the initial stress at installation, to mitigate the clamp restraint on the pipe expansion during thermal shocks, and to maintain the pipe-clamp stiffness desired during a seismic event are discussed

  4. Hot clamp design for LMFBR piping systems

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tateishi, M.

    1993-01-01

    Thin-wall, large-diameter piping for liquid metal fast breeder reactor (LMFBR) plants can be subjected to significant thermal transients during reactor scrams. To reduce local thermal stresses, an insulated cold clamp was designed for the fast flux test facility and was also applied to some prototype reactors thereafter. However, the cost minimization of LMFBR requires much simpler designs. This paper presents a hot clamp design concept, which uses standard clamp halves directly attached to the pipe surface leaving an initial gap. Combinations of flexible pipe and rigid clamp achieved a self-control effect on clamp-induced pipe stresses due to the initial gap. A 3-D contact and inelastic history analysis were performed to verify the hot clamp concept. Considerations to reduce the initial stress at installation, to mitigate the clamp restraint on the pipe expansion during thermal shocks, and to maintain the pipe-clamp stiffness desired during a seismic event were discussed

  5. Pipe support optimization in nuclear power plants

    International Nuclear Information System (INIS)

    Cleveland, A.B.; Kalyanam, N.

    1984-01-01

    A typical 1000 MWe nuclear power plant consists of 80,000 to 100,000 feet of piping which must be designed to withstand earthquake shock. For the required ground motion, seismic response spectra are developed for safety-related structures. These curves are used in the dynamic analysis of piping systems with pipe-stress analysis computer codes. To satisfy applicable Code requirements, the piping systems also require analysis for weight, thermal and possibly other lasting conditions. Bechtel Power Corporation has developed a design program called SLAM (Support Location Algorithm) for optimizing pipe support locations and types (rigid, spring, snubber, axial, lateral, etc.) while satisfying userspecified parameters such as locations, load combinations, stress and load allowables, pipe displacement and cost. This paper describes SLAM, its features, applications and benefits

  6. 46 CFR 119.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... an exhaust pipe. (b) Exhaust gas must not leak from the piping or any connections. The piping must be... stresses resulting from the expansion of the exhaust piping. (g) A dry exhaust pipe must: (1) If it passes... discharge terminating in a transom must be located as far outboard as practicable so that exhaust gases...

  7. Pipe stress analysis on the instrument air in nuclear facilities pipe work

    International Nuclear Information System (INIS)

    Budi Santoso

    2009-01-01

    Piping stress analysis on Instrument Air System have been performed. Analysis carried out to estimate the provision of sufficient flexibility in the piping system to ensure that the heat expansion and contraction of the pipe is still in the allowable stress range. The stress analysis can be used to determine the location and type of support that will be installed. The stress calculation was carried out utilizing the CAESAR on the static load of dead weight, operating and therma. With performing the piping stress analysis, the layout (proper pipe routing) of the piping system can be design with the requirements of piping stress and pipe supports in mind the sufficient flexibility for thermal expansion, etc to commensurate with the intended service such as temperatures, pressure, and anticipated loading. (author)

  8. Intermediate Temperature Fluids for Heat Pipes and Loop Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop heat pipe and loop heat pipe (LHP) working fluids for what is known as the intermediate...

  9. Organ nic pollutants in underground water

    International Nuclear Information System (INIS)

    Hussein, H. H.

    1998-01-01

    Many organic compounds have been diagnosed in underground and surface waters, and there are many theories that explain the source of the dangerous materials on Punic health. The source of pollution could be the underground stored fuel or the polluted water in farms saturated with agricultural insecticides and chemical fertilizers, or there could be leaks in sewage water wastes. The source of pollution could also be the water surfaces in the areas of garbage disposal or industrial and home waste discharge. Due to the fact that the underground water is separated from oxygen in the air, its ability on self-purification is very low, in that the micro-organism that will do the dismantling and decomposition of the organic materials that pollute the water are in need for oxygen. In the event that underground water is subject to pollution m there are many methods for t resting the polluted water including the chemical decomposition method by injecting the polluted areas with neutralizing or oxidizing chemicals, such as Ozone, Chlorine or Hydrogen Peroxide. The mechanical methods could be used for getting rid of the volatile organic materials. As to biological decomposition, it is done with the use of bacteria in dismantling the poisonous materials into un poisonous materials. The preliminary analysis of water samples in one of the water wells in Sar ir and Tazarbo in Great Jamahirieh indicated that the concentration of total organic compounds (TOC) exceeded the internationally allowed limits. This indicates a deterioration of quality of some of underground water resources. It is well known that some of the organic pollutants have a great role in causing dangerous diseases, such as the polynuclear aromatic hydrocarbons and some halogenated compounds that cause cancer. Therefore, much research is required in this field for diagnosing the polluting organic compounds and determining the suitability of this water for drinking or for human consumption. (author). 21 refs., 6 figs

  10. Evaluation of the feasibility, economic impact, and effectiveness of underground nuclear power plants. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues.

  11. Evaluation of the feasibility, economic impact, and effectiveness of underground nuclear power plants. Final technical report

    International Nuclear Information System (INIS)

    1978-05-01

    Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues

  12. Beam screens for the LHC beam pipes

    CERN Multimedia

    Patrice Loïez

    1997-01-01

    Cross-section of LHC prototype beam pipes showing the beam screens. Slits in the screens allow residual gas molecules to be pumped out and become frozen to the walls of the ultra-cold beam pipe. Beam screens like these have been designed to line the beam pipes, absorbing radiation before it can hit the magnets and warm them up, an effect that would greatly reduce the magnetic field and cause serious damage.

  13. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...... contact with outside envelope of heat pipes and collectors are in contact with liquid metal secondary cooling system that transfers waste heat to radiator....

  14. Leak before break piping evaluation diagram

    International Nuclear Information System (INIS)

    Fabi, R.J.; Peck, D.A.

    1994-01-01

    Traditionally Leak Before Break (LBB) has been applied to the evaluation of piping in existing nuclear plants. This paper presents a simple method for evaluating piping systems for LBB during the design process. This method produces a piping evaluation diagram (PED) which defines the LBB requirements to the piping designer for use during the design process. Several sets of LBB analyses are performed for each different pipe size and material considered in the LBB application. The results of this method are independent of the actual pipe routing. Two complete LBB evaluations are performed to determine the maximum allowable stability load, one evaluation for a low normal operating load, and the other evaluation for a high normal operating load. These normal operating loads span the typical loads for the particular system being evaluated. In developing the allowable loads, the appropriate LBB margins are included in the PED preparation. The resulting LBB solutions are plotted as a set of allowable curves for the maximum design basis load, such is the seismic load versus the normal operating load. Since the required margins are already accounted for in the LBB PED, the piping designer can use the diagram directly with the results of the piping analysis and determine immediately if the current piping arrangement passes LBB. Since the LBB PED is independent of pipe routing, changes to the piping system can be evaluated using the existing PED. For a particular application, all that remains is to confirm that the actual materials and pipe sizes assumed in creating the particular design are built into the plant

  15. Bending loss of terahertz pipe waveguides.

    Science.gov (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  16. Experimental analytical study on heat pipes

    International Nuclear Information System (INIS)

    Ismail, K.A.R.; Liu, C.Y.; Murcia, N.

    1981-01-01

    An analytical model is developed for optimizing the thickness distribution of the porous material in heat pipes. The method was used to calculate, design and construct heat pipes with internal geometrical changes. Ordinary pipes are also constructed and tested together with the modified ones. The results showed that modified tubes are superior in performance and that the analytical model can predict their performance to within 1.5% precision. (Author) [pt

  17. OVERVIEW OF INDUSTRIAL PIPING STRUCTURAL DESIGN

    OpenAIRE

    Sagar N. Sakharkar*1, Prathamesh Khake 2, Vasant Kolambakar3

    2018-01-01

    Piping network design system has significant role in industrial sector to minimizing losses through designing effective and simplest network. Piping system is time consuming, complex and expensive effort process for construction and chemical plants. The objective of paper is to explore overview of piping network system design, its requirements. ASME B31.3 design grade has elaborated with application. Concept of flexibility such as flexibility factor, stress intensification factor has discusse...

  18. Ice plugging of pipes using liquid nitrogen

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1987-03-01

    This report presents a study on the ice plugging of pipe using liquid nitrogen, and is based on a literature review and on discussions with individuals who use the technique. Emphasis is placed on ferritic alloys, primarily carbon steels, in pipe sized up to 60 cm in diameter and on austenitic stainless steels in pipe sizes up to 30 cm in diameter. This technique is frequently used for leak testing in nuclear facilities

  19. Underground gasification and combustion brown with the use of groundwater

    Directory of Open Access Journals (Sweden)

    Zholudyev S.V.

    2011-11-01

    Full Text Available The problems of coal excavation and environement protection are priority for Ukraine. Underground coal gasification (UCG and underground coal incineration (UCI are combining excavation with simultaneous underground processing in entire technological process, capable to solve this problem. Using an intermediate heat carrier - ground water may optimisating of these processes.

  20. Entrepreneurial Opportunity in Denmark’s Underground Economy

    DEFF Research Database (Denmark)

    Rezaei, Shahamak; Dana, L-P; Vang, Jan

    Based on interviews with immigrants to Denmark, meetings with stakeholders and with experts in the field, this article addresses issues regarding the underground economy in Denmark. What circumstances and factors characterise specific sectors or breaches to the ones in which undocumented immigrants...... participate in underground economic activities? Is the underground economy a pull factor for irregular/undocumented migration?...

  1. Underground Physics in Spain; La Fisica subterranea en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Puimedon Santolaria, J.

    2005-07-01

    Underground laboratories provide the low background environment necessary to the search for extremely rare phenomena like neutrino oscillations, double deta decay or dark matter. There are only four underground infrastructures available in the Europe Union, one of them is in Spain: the Canfranc Underground Laboratory. (Author)

  2. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-08-08

    ... Administration 30 CFR Parts 7 and 75 Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal... Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Limited reopening of the... for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of Appeals...

  3. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-12-06

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension...), MSHA published a Request for Information on Refuge Alternatives for Underground Coal Mines. The RFI...

  4. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-09-23

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension... Alternatives for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013...

  5. Effect of Glass Reinforced Epoxy (GRE) pipe filled with Geopolymer Materials for Piping Application: Compression Properties

    OpenAIRE

    Abu Hashim Mohammad Firdaus; Abdullah Mohd Mustafa Al Bakri; Ghazali Che Mohd Ruzaidi; Hussin Kamarudin; Binhussain Mohammed; Omar Mohd Firdaus

    2016-01-01

    The aim of this paper is to achieve the highest compressive strength of glass reinforced epoxy pipe with the geopolymer filler content of weight percentage that were used in glass reinforced epoxy pipe. The samples were prepared by using the filament winding method. The effect of weight percentage of geopolymer materials in epoxy hardener was studied under mechanical testing, which is using the compression test. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled wi...

  6. Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building

    Science.gov (United States)

    Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.

    2017-11-01

    The article contains the results of the full-scale tests performed for special road products – large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.

  7. Development of bore tools for pipe inspection

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Nakahira, Masataka; Taguchi, Kou; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    In the International Thermonuclear Reactor (ITER), replacement and maintenance on in-vessel components requires that all cooling pipes connected be cut and removed, that a new component be installed, and that all cooling pipes be rewelded. After welding is completed, welded area must be inspected for soundness. These tasks require a new work concept for securing shielded area and access from narrow ports. Tools had to be developed for nondestructive inspection and leak testing to evaluate pipe welding soundness by accessing areas from inside pipes using autonomous locomotion welding and cutting tools. A system was proposed for nondestructive inspection of branch pipes and the main pipe after passing through pipe curves, the same as for welding and cutting tool development. Nondestructive inspection and leak testing sensors were developed and the basic parameters were obtained. In addition, the inspection systems which can move inside pipes and conduct the nondestructive inspection and the leak testing were developed. In this paper, an introduction will be given to the current situation concerning the development of nondestructive inspection and leak testing machines for the branch pipes. (author)

  8. Boomwhackers and End-Pipe Corrections

    Science.gov (United States)

    Ruiz, Michael J.

    2014-02-01

    End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meterstick. This article describes a lab activity in which students model data from plastic tubes to arrive at the end-correction formula for an open pipe. Students also learn the basic mathematics behind the musical scale, and come to appreciate the importance of end-pipe physics in the engineering design of toy musical tubes.

  9. Piping reliability improvement through passive seismic supports

    International Nuclear Information System (INIS)

    Baltus, R.; Rubbers, A.

    1999-01-01

    The nuclear plants designed in the 1970's were equipped with large quantities of snubbers in auxiliary piping systems. The experience revealed a poor performance of snubbers during periodic inspection, while non-nuclear facility piping survived through strong earthquakes. Consequently, seismic design rules evolved towards more realistic criteria and passive dynamic supports were developed to reduce snubber quantities. These solutions improve the pipe reliability during normal operation while reducing the radiation exposure in a sample line is presented with the impact on pipe stresses compared to the results obtained with passive supports named Limit Stops. (author)

  10. MONITORING AND CONTROLLING ON SURFACE SETTLEMENT IN SAND AND GRAVEL STRATA CAUSED BY SUBWAY STATION CONSTRUCTION APPLYING PIPE-ROOF PRE-CONSTRUCTION METHOD (PPM

    Directory of Open Access Journals (Sweden)

    Xian Yang

    2017-07-01

    Full Text Available Pipe-roof Pre-construction Method (PPM is regarded as a safer method to construct underground space, especially suitable for the construction sites with dense surface buildings, underground pipelines and complicated geological conditions. Xinleyizhi Station of Shenyang Metro constructed by PPM. In order to ensure safety in construction, the whole construction process was closely monitored. In this paper, monitoring results of surface settlement in PPM is analyzed. According to the monitoring results, the most serious settlement occurred in pipes jacking, which was the first and the most crucial step in PPM. The settlement reasons in each step are discussed, and controlling methods of surface settlement in each step are elaborated. Through close monitoring and timely control, the construction of Xinleyizhi Station completed smoothly. Because of the obvious advantages of PPM, the method will be used more widely in construction of shallow buried excavation under complicated surrounding and geological conditions.

  11. Spectacular test of the fire extinguishing system in the underground cavern of the CMS experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The enormous rumbling heard 100 m under the earth on Friday, 12 May, was not the start of a foam party at CMS. The Safety Team looked on from the second tier of the CMS underground cavern as it reechoed to the sound of water rushing through the two huge pipes overhead and the air was filled with a mixture of water and foam. A minute later it was a winter wonderland, as fluffy puffs of foam came shooting out of the twelve foam blowers lining the upper cavern walls on both sides. In less than two minutes 7 m3 of water mixed with a small percentage of foaming liquid, was transformed into 5600 m3 of foam and discharged into the cavern.

  12. Characterization of a carbon fiber reinforced polymer repair system for structurally deficient steel piping

    Science.gov (United States)

    Wilson, Jeffrey M.

    This Dissertation investigates a carbon fiber reinforced polymer repair system for structurally deficient steel piping. Numerous techniques exist for the repair of high-pressure steel piping. One repair technology that is widely gaining acceptance is composite over-wraps. Thermal analytical evaluations of the epoxy matrix material produced glass transition temperature results, a cure kinetic model, and a workability chart. These results indicate a maximum glass transition temperature of 80°C (176°F) when cured in ambient conditions. Post-curing the epoxy, however, resulted in higher glass-transition temperatures. The accuracy of cure kinetic model presented is temperature dependent; its accuracy improves with increased cure temperatures. Cathodic disbondment evaluations of the composite over-wrap show the epoxy does not breakdown when subjected to a constant voltage of -1.5V and the epoxy does not allow corrosion to form under the wrap from permeation. Combustion analysis of the composite over-wrap system revealed the epoxy is flammable when in direct contact with fire. To prevent combustion, an intumescent coating was developed to be applied on the composite over-wrap. Results indicate that damaged pipes repaired with the carbon fiber composite over-wrap withstand substantially higher static pressures and exhibit better fatigue characteristics than pipes lacking repair. For loss up to 80 percent of the original pipe wall thickness, the composite over-wrap achieved failure pressures above the pipe's specified minimum yield stress during monotonic evaluations and reached the pipe's practical fatigue limit during cyclical pressure testing. Numerous repairs were made to circular, thru-wall defects and monotonic pressure tests revealed containment up to the pipe's specified minimum yield strength for small diameter defects. The energy release rate of the composite over-wrap/steel interface was obtained from these full-scale, leaking pipe evaluations and results

  13. Heat Pipe with Axial Wick

    Science.gov (United States)

    Ambrose, Jay H. (Inventor); Holmes, Rolland (Inventor)

    2016-01-01

    A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.

  14. Best practices for quality management of stormwater pipe construction.

    Science.gov (United States)

    2014-02-01

    Stormwater pipe systems are integral features of transportation construction projects. Pipe culverts : direct stormwater away from roadway structures and towards designated discharge areas. The improper : installation of a pipe culvert can result in ...

  15. 46 CFR 153.294 - Marking of piping systems.

    Science.gov (United States)

    2010-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.294 Marking of piping systems. (a) Each cargo piping system...

  16. 46 CFR 153.281 - Piping to independent tanks.

    Science.gov (United States)

    2010-10-01

    ... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.281 Piping to independent tanks. Piping for an independent...

  17. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  18. CONTECH(R) A-2000 polyvinyl chloride (PVC) plastic pipe.

    Science.gov (United States)

    2015-03-01

    Determine the effectiveness and long-term durability of the Contech A-2000 PVC pipe : in an irrigation application. This type of pipe may prove to be a viable alternative to : reinforced concrete pipe (RCP).

  19. Measurement of age of underground water, using tritium

    International Nuclear Information System (INIS)

    Chatani, Kunio; Kagami, Tadaaki; Tomita, Ban-ichi; Onuma, Akiko; Shoka, Yasushi

    1978-01-01

    Age of four kinds of underground water in Aichi prefecture was estimated by measuring a concentration of tritium. The tritium concentration was measured by the usual method. The first water-bearing zone of the shallow part, about 50m in depth, of Nobi plain is a new underground water cultivated within 20 years, whereas second water-bearing zone is an old underground water of 20 years old or more. No relationship of water flow between the first and the second water-bearing zone was observed. A very deep underground about 100m or more in depth, of the Nobi plain is confirmed to be infinite years old fossil water by measuring of tritium. The underground water in Atsumi peninsula is mostly a new underground water within 20 years. Only one out of eight showed the existence of old underground water before 20 years or more. The underground water of the granite area at Mikawa district is confirmed to be old underground water before 20 years or more. Alkaline underground water in the granite zone is considered to be very old in view of composition of water. The origin of underground water can be learned by tritium concentration, which shows whether the water is new water in the neighborhood of earth's surface or very old cultivated water. (Iwakiri, K.)

  20. Development of Pipe Holding Mechanism for Pipe Inspection Robot Using Flexible Pneumatic Cylinder

    Directory of Open Access Journals (Sweden)

    Choi Kyujun

    2016-01-01

    Full Text Available A pipe inspection robot is useful to reduce the inspection cost. In the previous study, a novel pipe inspection robot using a flexible pneumatic cylinder that can move forward along to the pipe by changing the robot’s body naturally was proposed and tested. In this paper, to improve its mobility for a corner of a pipe, the thin pipe holding mechanism using pneumatic bellows was proposed and tested. As a result of its driving test, the holding performance of the mechanism was confirmed.

  1. Leak detection for underground storage tanks

    International Nuclear Information System (INIS)

    Durgin, P.B.; Young, T.M.

    1993-01-01

    This symposium was held in New Orleans, Louisiana on January 29, 1992. The purpose of this conference was to provide a forum for exchange of state-of-the-art information on leak detection for underground storage tanks that leaked fuel. A widespread concern was protection of groundwater supplies from these leaking tanks. In some cases, the papers report on research that was conducted two or three years ago but has never been adequately directed to the underground storage tank leak-detection audience. In other cases, the papers report on the latest leak-detection research. The symposium was divided into four sessions that were entitled: Internal Monitoring; External Monitoring; Regulations and Standards; and Site and Risk Evaluation. Individual papers have been cataloged separately for inclusion in the appropriate data bases

  2. ANDES: An Underground Laboratory in South America

    Science.gov (United States)

    Dib, Claudio O.

    ANDES (Agua Negra Deep Experiment Site) is an underground laboratory, proposed to be built inside the Agua Negra road tunnel that will connect Chile (IV Region) with Argentina (San Juan Province) under the Andes Mountains. The Laboratory will be 1750 meters under the rock, becoming the 3rd deepest underground laboratory of this kind in the world, and the first in the Southern Hemisphere. ANDES will be an international Laboratory, managed by a Latin American consortium. The laboratory will host experiments in Particle and Astroparticle Physics, such as Neutrino and Dark Matter searches, Seismology, Geology, Geophysics and Biology. It will also be used for the development of low background instrumentation and related services. Here we present the general features of the proposed laboratory, the current status of the proposal and some of its opportunities for science.

  3. Neutron albedo effects of underground nuclear explosion

    International Nuclear Information System (INIS)

    Yang Bo; Ying Yangjun; Li Jinhong; Bai Yun

    2013-01-01

    The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device.The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device. (authors)

  4. Dynamic underground stripping. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993

  5. Underground Engineering: Opportunities, Challenges and Innovation

    OpenAIRE

    Mazzalai, Paolo

    2017-01-01

    UNDERGROUND ENGINEERING: Opportunities, Challenges and Innovation. Complexity, sustainability, safety, security, versatility, creativity, and innovation are essential themes driving engineering science today. The world is changing rapidly and although the content and methods of engineering are evolving with it, an engineer's professional mission remains the same: to solve problems and make decisions. The application of new software such as BIM, Digital Project and Advanced TBM is shaping the...

  6. Underground navigation and localisation using RFID tags

    CSIR Research Space (South Africa)

    James, S

    2012-10-01

    Full Text Available their locations. The paper will build on previous work done by Forster[8] and Vorst et al.[9] by implementing the proposed hybrid SLAM method on the mining safety platform, which will eventually be used in an underground environment. II. NAVIGATION... AND LOCALISATION SCHEME A. Exploration and clustering The algorithm used for exploring the RFID environment is shown in Figure 1. Figure 1: Algorithm used for exploring RFID environment Given sufficient (more than 500 steps per 25 square metres) simulation...

  7. Engineering effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Boardman, Charles R.

    1970-01-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  8. Sixth underground coal-conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The sixth annual underground coal conversion symposium was held at Shangri-la near Afton, Oklahoma, July 13 to 17, 1980. Sessions were developed to: Doe Field Programs, Major Industry Activity, Mathematical Modeling, Laboratory Studies, Environmental Studies, Economics, Instruments and Controls, and General Topics. Fifty-two papers from the proceedings have been entered individually into EDB and ERA. Thirteen papers had been entered previously from other sources. (LTN)

  9. Acoustic Impedance Measurement for Underground Surfaces.

    Science.gov (United States)

    Cockcroft, Paul William

    Available from UMI in association with The British Library. Requires signed TDF. This thesis investigates the measurement of acoustic impedance for surfaces likely to be found in underground coal mines. By introducing the concepts of industrial noise, the effects of noise on the ear and relevant legislation the need for the protection of workers can be appreciated. Representative acoustic impedance values are vital as input for existing computer models that predict sound levels in various underground environments. These enable the mining engineer to predict the noise level at any point within a mine in the vicinity of noisy machinery. The concepts of acoustic intensity and acoustic impedance are investigated and different acoustic impedance measurement techniques are detailed. The possible use of either an impedance tube or an intensity meter for these kinds of measurements are suggested. The problems with acoustic intensity and acoustic impedance measurements are discussed with reference to the restraints that an underground environment imposes on any measurement technique. The impedance tube method for work in an acoustics laboratory is shown and the theory explained, accompanied by a few representative results. The use of a Metravib intensity meter in a soundproof chamber to gain impedance values is explained in detail. The accompanying software for the analysis of the two measured pressure signals is shown as well as the actual results for a variety of test surfaces. The use of a Nagra IV-SJ tape recorder is investigated to determine the effect of recording on the measurement and subsequent analysis of the input signals, particularly with reference to the phase difference introduced between the two simultaneous pressure signals. The subsequent use of a Norwegian Electronic intensity meter, including a proposal for underground work, is shown along with results for tests completed with this piece of equipment. Finally, recommendations are made on how to link up

  10. Vibrations of a pipe on elastic foundations

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This new term is opposed to the centrifugal term U2w,xx and has a strong effect on the stability. Lilkova-Markova & Lolov (2003) investigated the influence of the transverse force at the free end of the dynamic stability of a cantilevered pipe placed on a Winkler elastic foundation. In this paper, two cases of cantilevered pipes ...

  11. Backward erosion piping : Initiation and progression

    NARCIS (Netherlands)

    Van Beek, V.M.

    2015-01-01

    Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes

  12. 46 CFR 108.449 - Piping tests.

    Science.gov (United States)

    2010-10-01

    ... piping installation. (b) When tested with CO2 or other inert gas under a pressure of 70 kilograms per square centimeter (1000 pounds per square inch), with no additional gas introduced into the system, the leakage in the piping from the cylinders to the stop valves in the manifold must not allow a pressure drop...

  13. 46 CFR 95.15-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ...) Installation test requirements are: (1) Upon completion of the piping installation, and before the cylinders... other inert gas shall be used for this test. (2) The piping from the cylinders to the stop valves in the manifold shall be subjected to a pressure of 1,000 pounds per square inch. With no additional gas being...

  14. 46 CFR 193.15-15 - Piping.

    Science.gov (United States)

    2010-10-01

    ...) Installation test requirements are: (1) Upon completion of the piping installation, and before the cylinders... other inert gas shall be used for this test. (2) The piping from the cylinders to the stop valves in the manifold shall be subjected to a pressure of 1,000 pounds per square inch. With no additional gas being...

  15. Pipe failure probability - the Thomas paper revisited

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    2000-01-01

    Almost twenty years ago, in Volume 2 of Reliability Engineering (the predecessor of Reliability Engineering and System Safety), a paper by H. M. Thomas of Rolls Royce and Associates Ltd. presented a generalized approach to the estimation of piping and vessel failure probability. The 'Thomas-approach' used insights from actual failure statistics to calculate the probability of leakage and conditional probability of rupture given leakage. It was intended for practitioners without access to data on the service experience with piping and piping system components. This article revisits the Thomas paper by drawing on insights from development of a new database on piping failures in commercial nuclear power plants worldwide (SKI-PIPE). Partially sponsored by the Swedish Nuclear Power Inspectorate (SKI), the R and D leading up to this note was performed during 1994-1999. Motivated by data requirements of reliability analysis and probabilistic safety assessment (PSA), the new database supports statistical analysis of piping failure data. Against the background of this database development program, the article reviews the applicability of the 'Thomas approach' in applied risk and reliability analysis. It addresses the question whether a new and expanded database on the service experience with piping systems would alter the original piping reliability correlation as suggested by H. M. Thomas

  16. 46 CFR 154.660 - Pipe welding.

    Science.gov (United States)

    2010-10-01

    ... butt welds must meet the following: (1) Butt welds of pipes made from carbon, carbon manganese, or low alloy steels must meet § 56.50-105 of this chapter, including the requirements for post-weld heat treatment. (2) Except for piping inside an independent cargo tank type A, B, or C, butt welds must be 100...

  17. 46 CFR 64.95 - Piping.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Cargo Handling System § 64.95 Piping. (a) Piping, valves, flanges, and fittings used in the... with the procedures in § 50.25-10 of this chapter. (e) A non-return valve must be in the pump discharge...

  18. Gas lensing in a heated spinning pipe

    CSIR Research Space (South Africa)

    Mafusire, C

    2006-07-01

    Full Text Available When a heated pipe is rotated, the dynamics of the gas inside exhibit properties reminiscent of a solid-state positive lens. The properties are a result of a parabolic distribution of refractive index in the pipe which is caused by mixing of hot...

  19. Geothermal drill pipe corrosion test plan

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.; Copass, K.S.

    1980-12-01

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  20. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  1. Development of a pipe location system

    Science.gov (United States)

    Hildebrand, B. P.

    1981-06-01

    A portable system capable of making an image of buried structures, such as pipe, and displaying it in real time in an isometric format was investigated. Linear impulse holography was developed to convert either acoustic or radar time-of-flight data into such an image containing all information required to accurately locate the pipe.

  2. 75 FR 877 - Drill Pipe From China

    Science.gov (United States)

    2010-01-06

    ... COMMISSION Drill Pipe From China AGENCY: International Trade Commission. ACTION: Institution of antidumping... States is materially retarded, by reason of imports from China of drill pipe, provided for in subheadings... Government of China. Unless the Department of Commerce extends the time for initiation pursuant to sections...

  3. Ultrasonic measurements on residual stress in autofrettged thick walled petroleum pipes

    International Nuclear Information System (INIS)

    Woias, G.; Mizera, J.

    2008-01-01

    The residual stresses in a component or structure are caused by incompatible permanent deformation and related gradient of plastic/elastic strains. They may be generated or modified at every stage in the components life cycle, from original material production to final disposal. Residual stresses can be measured by non-destructive techniques, including X-ray and neutron diffraction, magnetic and ultrasonic methods. The selection of the optimum measurement technique should take account volumetric resolution, material, geometry and access to the component. For large metallic components neutron diffraction is of prime importance as it provides quantitative information on stresses in relatively large volume of methods disregarding its shape complexity. Residual stresses can play a significant role in explaining or preventing failure of components of industrial installations. One example of residual stresses preventing failure are the ones generated by shot peening, inducing surface compressive stresses that improve the fatigue life. Petroleum refinery piping is generally characterized by large-diameters, operated at elevated temperature and under high pressure. Pipelines of a polyethylene plant working in one of the Polish refineries are subjected to pressures exceeding 300 MPa at temperatures above 200 o C. The pipes considered here were pressurized with pressure of 600 MPa. The wall thickness of the pipes is 27 mm and pipe dimensions are 46 x 100 mm. The material is steel with Re=580 MPa. Due to pressurizing, the components retain compressive stresses at the internal surface. These stresses increase resistance to cracking of the pipes. Over the period of exploitation these stresses diminish due to temperature activated relaxation or creep. The purpose of the project is to verify kinetics of such a relaxation process and calibrate alternative methods of their measurements. To avoid stress relaxation, numerical analysis from Finite Element Modelling (FEM)gave an

  4. Underground dams for irrigation supplies in coastal limestone aquifer, Okinawa, Japan

    Science.gov (United States)

    Yasumoto, J.; Nakano, T.; Nawa, N.

    2011-12-01

    The use of underground dams to store water in regions with arid or tropical climates is a method that has received considerable attention in the last few decades. And now, for the tropical and subtropical islands that are highly vulnerable to climate change underground dams have been attracting attention again as a method of groundwater management. Okinawa Prefecture is Japan's southernmost prefecture, which consists of hundreds of islands in a chain over 1,000 km long, called the Ryukyu Islands which extend southwest from Kyushu to Taiwan. The national irrigation project of the Ryukyu Islands has been carried out, and several underground dams have been constructed. The Komesu and Giiza underground dams are first full scale underground dam facilities constructed for irrigation in Japan. The Komesu underground dam is a salt-water proof type. It prevents salt-water intrusion and provides storage fresh-water for irrigation in coastal limestone aquifer. Giiza underground dam is a dam up type for storage of fresh-water. These groundwater reservoirs are located in the coastal region of southern part of Okinawa (main island), where Ryukyu limestone is extensively distributed. We studied the behaviour of groundwater flow, saltwater intrusion and nitrate nitrogen (NO3-N) in groundwater in this region by using observation data of groundwater and springs through long term (from 1993 to 2010) monitoring. And, a groundwater flow and salt-water intrusion analysis have been conducted with three dimensional numerical model applied to these dam reservoir areas. The MODFLOW-NWT with SWI code and PEST was used to simulate the complex groundwater flow patterns. Through the comparison with simulation and observed data, it was concluded that the cut off wall of underground dams effectively stores the groundwater and prevents the salt-water intrusion in the reservoir areas. The observed groundwater levels at the reservoir areas were almost reproduced by the numerical model, but there

  5. Evaluation of the fracture toughness for nuclear piping using the compact pipe specimen

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo; Choi, Jung Hoon; Huh, Yong; Koo, Jae Mean; Seok, Chang Sung [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2009-07-01

    For estimating the crack of real pipes on the basis of elastic-plastic fracture mechanics, we must first measure the correct fracture toughness from such pipes. However, a fracture resistance test that uses real pipes entails much time and expense. Also, the test is very difficult. For these reasons, many researchers have been performing fracture resistance tests by using standard specimens instead of real pipes since standard specimens are easy to test. However, the estimates of fracture toughness from standard specimens are conservative when compared to the fracture toughness of real pipes owing to the difference in the constraint effect between real pipes and standard specimens. Therefore, for correctly evaluating cracks, we need a new specimen that can express the constraint effect of real pipes. Therefore, this study proposes a new specimen(CP) and test method for conducting fracture resistance tests with new specimens. Also verifies the proposed method of testing.

  6. Improvement of Regulatory Requirements for Ensuring the Quality of Underground Gas Pipelines in Conditions of Corrosion Fatigue

    Directory of Open Access Journals (Sweden)

    Larysa Yuzevych

    2017-09-01

    Full Text Available The article develops recommendations for improvement of normative documents concerning the quality of underground metal pipelines (gas pipelines under conditions of fatigue and the impact of an aggressive environment, taking into account cathodic (electrochemical protection. It is established that the basis of information provision of normative documents is the method which includes the following main criteria: the value of the minimum current density of cathode protection; minimum security potential; maximum protective potential, minimal displacement of protective potential; strength criteria of pipe material; criteria of strength of phase layer between the metal and the coating; the strength of the metal in the defect of the insulation coating. It has been found out that the system "metal pipe - insulating dielectric coating" is characterized by such basic procedures as: identification of hazards; various variants of load asymmetry; evaluation of the boundary and optimal values of potentials and currents for the system of cathodic protection of the pipeline. The prospect of further research in this area is determination of the complex indicator of quality and reliability of the linear part of underground main gas pipelines on the basis of research results (submitted information support.

  7. Techniques associated with thermal-vacuum testing of the OAO-C heat pipes

    Science.gov (United States)

    Marshburn, J. P.

    1972-01-01

    The mechanical problems associated with testing the two high-heat load pipes are discussed. One of these pipes was tested three times before being accepted. The first test resulted in the discovery of non-condensable hydrogen gas, which prevented the pipe from functioning properly. The second test was a repeat of the first, to see if all the gas had been removed. The third test was to see if any changes had occurred to the pipe as a result of saddle modifications. Saddle modifications were necessary because the epoxy binding agent between the saddles and the pipe had decomposed during the testing. The test problems discussed deal with the specially designed heat-removal devices, the mobile tilt table, the table position indicator, and the heat input mechanisms, all of which were necessary to conduct a high-heat load, thermal-vacuum test. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  8. Integrated CAE system for nuclear power plants. Development of piping design check system

    International Nuclear Information System (INIS)

    Narikawa, Noboru; Sato, Teruaki

    1994-01-01

    Toshiba Corporation has developed and operated the integrated CAE system for nuclear power plants, the core of which is the engineering data base to manage accurately and efficiently enormous amount of data on machinery, equipment and piping. As the first step of putting knowledge base system to practical use, piping design check system has been developed. By automatically checking up piping design, this system aims at the prevention of overlooking mistakes, efficient design works and the overall quality improvement of design. This system is based on the thought that it supports designers, and final decision is made by designers. This system is composed of the integrated data base, a two-dimensional CAD system and three-dimensional CAD system. The piping design check system is one of the application systems of the integrated CAE system. Object-oriented programming is the base of the piping design check system, and design knowledge and CAD data are necessary. As to the method of realizing the check system, the flow of piping design, the checkup functions, the checkup of interference and attribute base, and the integration of the system are explained. (K.I)

  9. A risk-based approach to sanitary sewer pipe asset management.

    Science.gov (United States)

    Baah, Kelly; Dubey, Brajesh; Harvey, Richard; McBean, Edward

    2015-02-01

    Wastewater collection systems are an important component of proper management of wastewater to prevent environmental and human health implications from mismanagement of anthropogenic waste. Due to aging and inadequate asset management practices, the wastewater collection assets of many cities around the globe are in a state of rapid decline and in need of urgent attention. Risk management is a tool which can help prioritize resources to better manage and rehabilitate wastewater collection systems. In this study, a risk matrix and a weighted sum multi-criteria decision-matrix are used to assess the consequence and risk of sewer pipe failure for a mid-sized city, using ArcGIS. The methodology shows that six percent of the uninspected sewer pipe assets of the case study have a high consequence of failure while four percent of the assets have a high risk of failure and hence provide priorities for inspection. A map incorporating risk of sewer pipe failure and consequence is developed to facilitate future planning, rehabilitation and maintenance programs. The consequence of failure assessment also includes a novel failure impact factor which captures the effect of structurally defective stormwater pipes on the failure assessment. The methodology recommended in this study can serve as a basis for future planning and decision making and has the potential to be universally applied by municipal sewer pipe asset managers globally to effectively manage the sanitary sewer pipe infrastructure within their jurisdiction. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Analysis of a postulated pipe rupture and subsequent check valve slam of a PWR feedwater line

    International Nuclear Information System (INIS)

    Chang, K.C.; Adams, T.M.

    1983-01-01

    System designs criteria employed in the design of pressurized water reactors (PWR) requires that, for a postulated instantaneous guillotine rupture anywhere in the steam generator feedwater system, no more than one steam generator can be allowed to blowdown. Feedwater systems in many PWR's consist of pipe lines running from the feedwater pumps into a common feedwater header then branching into each steam generator from the header. The feedwater piping to each steam generator contains swing check valves to prevent reverse flow from the steam generator. This activation of some or all of these check valves significantly complicates the system structural analysis in that not only the blowdown forces resulting from the postulated pipe rupture, but also the water hammer loads resulting from closure of the check valve at high reverse flow velocities must be considered. The loads resulting from system blowdown and check valve closure are axial in nature. Peak loads ranging from 130000 lbs. to 180000 lbs. are not uncommon and are layout dependent. The analysis and design to withstand this transient loading deviates from the usual feedwater line design in that supports are required along the piping axis in the direction normal to the usual seismic supports. A brief and general discussion of the methods employed in the generation of the thermal-hydraulic loadings is presented. However, the discussion emphasizes the piping and piping support structural design and analysis method and approaches used in evaluating a selected portion of such a feedwater system. (orig./RW)

  11. Geotechnical design of underground slate mines

    International Nuclear Information System (INIS)

    Iglesias Comesaña, C.; Taboada Castro, J.; Arzúa Touriño, J.; Giráldez Pérez, E.; Martín Suárez, J.M.

    2017-01-01

    Slate is one of the most important natural materials in Spain, with a potent extractive and processing industry concentrated in the autonomous communities of Galicia, Castile and León. Thanks to its resistance to external agents, its impermeability and its excellent cleavability, slate is used as for roofing and tiling. Almost all the active exploitations in our country where this resource is extracted are open pit mines, where the exploitation ratios have nearly reached their economic limit, making it necessary to look for alternatives that will allow the mining works to be continued. Underground mining is a solution that offers low exploitation ratios, with low spoil generation. The room-and-pillar method with barrier pillars is usually applied for the exploitation of slate deposits. There are several factors to be taken into account when designing a mine (economic, logistical, geotechnical, technical, environmental…), especially for an underground mine. This study focuses on the geotechnical design process of a room-and-pillar underground mine, based on the tributary area theory, the analysis of the tensions in the ground with numerical methods and the choice of an appropriate reinforcement in view of the expected instabilities. This explanation is completed with an example of a design that includes the estimate exploitation rates and production. [es

  12. Assessment of the underground disposal of tailings

    International Nuclear Information System (INIS)

    Hutt, N.M.; Morin, K.A.

    1995-06-01

    The Atomic Energy Control Board (AECB) of Canada is facing the issue of long-term disposal of uranium tailings. One option that has not been examined in sufficient detail for the AECB is the retrieval of tailings from surface impoundments and subsequent placement of those tailings in underground workings of mines. This report is structured like a catalogue of facts and information, with each paragraph presenting some concept, concern, theory, or case study involving the retrieval or placement of tailings. All relevant information, findings, interpretations, conclusions, and recommendations gathered during the course of this study are included. The Table of Contents illustrates the striking number of relevant topics and acts like a flowchart or checklist to ensure that an underground-disposal submission by a mining company has addressed relevant topics. This report explains in detail the implications of disturbing surface-impounded tailings for the purpose of placing only some of the volume underground. The cumulative environmental, safety, and monetary liabilities of such a partial scheme can be discouraging in some cases. (author). 244 refs., 47 tabs., 17 figs

  13. SuperCDMS Underground Detector Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.; Orrell, John L.

    2018-03-01

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discovery of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.

  14. Inspection technology for high pressure pipes

    International Nuclear Information System (INIS)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H.

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  15. IPIRG programs - advances in pipe fracture technology

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  16. Ultrasonic guided waves in eccentric annular pipes

    International Nuclear Information System (INIS)

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-01-01

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection

  17. Design study of the underground facilities, the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on the deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at the Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU consisted of surface and underground facilities excavated to a depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program, includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed in 1998, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  18. RESEARCH INTO EVALUATIONS OF UNDERGROUND SPACE ACCORDING TO QOL - CENTERING ON THE NAGOYA UNDERGROUND METRO -

    Science.gov (United States)

    Yoshimoto, Naomi; Wake, Tenji; Mita, Takeshi; Wake, Hiromi

    The present research investigates issues concerning space underground and concerns itself with psychological evaluations of comfort in underground railway premises from the perspective of the users of such premises. The actual psychological evaluation was done on the premises of nine Nagoya City underground stations. Four factors were extracted from the results obtained. The first factor is transmission information, the second factor is the comfort of the environment, the third is sense of insecurity, and the fourth, convenience. A covariance structure analysis was carried out to see if there was any relationship between these factors and the research participants' age and frequency of underground usage. It was found from this that the first element is related to the frequency with which the participants in the research use the underground trains. When the frequency of use is high, transmission of information is high. A relationship was also found between aging and factors one and four. The older the person the worse information transmission is and the more dependent they are on convenience, such as, for example, in terms of elevators and escalators.

  19. Inferring the most probable maps of underground utilities using Bayesian mapping model

    Science.gov (United States)

    Bilal, Muhammad; Khan, Wasiq; Muggleton, Jennifer; Rustighi, Emiliano; Jenks, Hugo; Pennock, Steve R.; Atkins, Phil R.; Cohn, Anthony

    2018-03-01

    Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps.

  20. Development of the method to measure vibrational stress of small-bore piping with contactless displacement sensor. Accuracy confirmation by vibrational experiment using branch pipe

    International Nuclear Information System (INIS)

    Tsuji, Takashi; Maekawa, Akira; Takahashi, Tsuneo

    2013-01-01

    In nuclear power plants, vibrational stress of piping is measured to prevent its fatigue failures. Easier handling and more efficient performance is desirable for the measurement of vibrational stress. The authors have proposed a method to measure vibrational stress using optical contactless displacement sensors, and have developed a device based on the method. In addition, they downsized the device and improved the method to allow its use for measurements even in narrow spaces in the plants. In this study, vibrational experiment using branch pipes and the device was conducted to confirm the measurement accuracy of the improved method. It was found that the improved method have sufficient accuracy for screening to evaluate the vibrational stress. It was also found that this measurement method was thought to be susceptible to the vibration of main pipe. So a technique was proposed to improve the accuracy of the measurement in this paper. (author)

  1. Preliminary Study for Development of Welds Integrity Verification Equipment for the Small Bore Piping

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geun Suk; Lee, Jong Eun; Ryu, Jung Hoon; Cho, Kyoung Youn; Sohn, Myoung Sung [KEA, Seoul (Korea, Republic of); Lee, Sanghoon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Sung, Gi Ho [SUNG IL(SIM)Co., Busan (Korea, Republic of); Cho, Hong Seok [KEPCO KPS, Naju (Korea, Republic of)

    2016-10-15

    It has been reported leakage accident of small-bore piping in Korea. Leakage accident of small-bore pipes are those that will increase due to the aging of the nuclear power plant. And if leakage of the pipe is repaired by using the clamping device when it occur accident, it is economically benefits. The clamping device is a fastening device used to hold or secure objects tightly together to prevent movement or separation through the application of inward pressure. However, when the accident occurs, it can't immediately respond because maintenance and repairing technology are not institutionalized in KEPIC. Thus it appears an economic loss. The technology for corresponding thereto is necessary for the safety of the operation of nuclear power plants. The purpose of this research is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe in the nuclear power plant. Specifically, detailed studies are as follows : • Development of weld overlay method of safety class socket welded connections • Development of Mechanical Clamping Devices for Safety Class 2, 3 small-bore pipe. The purpose of this study is to develop an online repairing technology of socket welded pipe and vibration monitoring system of small-bore pipe, resulting in degraded plant systems. And it is necessary to institutionalize the technology. The fatigue crack testing of socket welded overlay will be performed and fatigue life evaluation method will be developed in second year. Also prototype fabrication of mechanical clamping device will be completed. Base on final goal, the intent is to propose practical evaluation tools, design and fabrication methods for socket welded connection integrity. And result of this study is to development of KEPIC code case approved technology for on-line repairing system of socket welded connection and fabrication of mechanical clamping device.

  2. Self-adjusting vehicle in pipe

    International Nuclear Information System (INIS)

    Okada, Tokuji

    1985-01-01

    Self-Adjusting Vehicle In Pipe(abbreviated as SAVIP) is newly proposed. The SAVIP in this paper has three wheels and can locomote with ability of self-adjusting to different pipes in shape and size. The frame of the SAVIP is like scissors since two arms moving about one axis are used, thus we call the frame scissors structure. The SAVIP can move in two types of locomotion. One is tractive and the other is non-tractive. The tractive SAVIP has a driving wheel at the fulcrum of the scissors and two sphere bearings at the ends of the scissors. The driving wheel rotates about the axis perpendicular to the plane in which the two arms move. The wheel can move sideways freely. Since stretch force of the arm to the wall of the pipe is generated mechanically by using pulleys and a spring, the SAVIP stands in the pipe by pressing the two arms in opposite directions where the pipe swells in the most. The three wheels of the non-tractive SAVIP are sphere bearings. We analyzed the geometry of the shape of the pipe to obtain the conditions in which the SAVIP can move stably. To clarify the conditions of the SAVIP for standing, we took frictional and gravitational forces exerting on the SAVIP into consideration. The results of the simulation of locomotion of the SAVIP in the plane in which the pipe swells in the most showed the self-adjustability of the SAVIP to the shape and size of the pipe. To prove this ability, we fabricated simplified tractive and non-tractive SAVIPs. Experimental results confirmed that the SAVIPs can move in an inclined or twisted pipe with a deep angle with the self-adjustability. The SAVIP will be utilized in atomic or chemical plants to carry apparatus such as a camera or a probe for monitoring and testing inside of pipes. (author)

  3. Challenges associated with the design of underground grinding plant at McArthur River project

    International Nuclear Information System (INIS)

    Jamrozek, J.S.

    2000-01-01

    McArthur River is an unique high grade uranium underground mine. Ore grinding and thickening are part of the underground operation. The grinding circuit is designed to operate in conditions different from conventional plant environments. Design of the grinding plant was a collective effort of a multi-disciplinary engineering team closely cooperating with project operating personnel. The equipment had to be selected to reflect widely varying ore properties. A user-friendly plant layout provides access to equipment inspections, services, and the delivery of necessary components. The size of the grinding chamber was limited in order to keep the rock stress levels within allowable values. All underground equipment brought to the construction site was restricted in size and weight. Plant construction faced limited storage space underground, tight erection sequencing, and schedule. Plant ventilation is a critical design feature. It efficiently removes radioactive dust from work areas, eliminates stagnant air pockets, and separates clean air from contaminated air areas. Radiation shielding on the equipment is designed to correspond with operational and maintenance functions. Plant operation is remotely controlled and requires little attendance. Video cameras are used on critical equipment and in controlled access areas. An extensive program of preventive and predictive maintenance allows highly reliable plant operation. (author)

  4. A new HYSYS model for underground gasification of hydrocarbons under hydrothermal conditions

    KAUST Repository

    Alshammari, Y.M.

    2014-08-01

    A new subsurface process model was developed using the ASPEN HYSYS simulation environment to analyse the process energy and gasification efficiency at steady-state equilibrium conditions. Injection and production wells were simulated using the HYSYS pipe flow utilities which makes use of the Beggs and Brill flow correlation applicable for vertical pipes. The downhole reservoir hydrothermal reactions were assumed to be in equilibrium, and hence, the Gibbs reactor was used. It was found that high W/C ratios and low O/C ratios are required to maximise gasification efficiency at a constant hydrocarbon feed flowrate, while the opposite is true for the energy efficiency. This occurs due to the dependence of process energy efficiency on the gas pressure and temperature at surface, while the gasification efficiency depends on the gas composition which is determined by the reservoir reaction conditions which affects production distribution. Another effect of paramount importance is the increase in reservoir production rate which was found to directly enhance both energy and gasification efficiency showing conditions where the both efficiencies are theoretically maximised. Results open new routes for techno-economic assessment of commercial implementation of underground gasification of hydrocarbons. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  5. Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey

    International Nuclear Information System (INIS)

    Shon, Ho Woong; Lee, Seung Hee; Lee, Kang Won

    2002-01-01

    To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges 2kHz∼4MHz and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys

  6. Risk evaluation of embedded, single-walled liquid low-level waste piping at Oak Ridge National Laboratory. ESD Publication 4315

    International Nuclear Information System (INIS)

    1994-10-01

    Four categories of liquid low-level radioactive waste (LLLW) systems are defined in the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). Categories A and B are new and fully compliant existing systems, respectively: Category C is singly contained and must be removed from service, and Category D is inactive. The FFA requires that secondary containment and leak detection be provided for all Category A and B piping in the LLLW System at Oak Ridge National Laboratory (ORNL); however, as noted in the D2 revision of the secondary containment design demonstration report (DOE 1994), some sections of single-walled embedded piping in Category B underground vaults at three ORNL facilities do not meet this requirement. A risk evaluation was performed in order compare the potential radiation dose to a member of the public that could result from a postulated leak in the single-walled pipes with projected radiation exposure to the workers who would modify the piping to meet FFA requirements. The risk to human health from replacing segments of embedded, single-walled piping in the LLW system is higher than the risk of leaving the piping as it is

  7. Delineation of pipeline river crossing using cable and pipe locator with real-time differential GPS

    Energy Technology Data Exchange (ETDEWEB)

    Waddington, B.S.; Maxwell, M. [Golder Associates Ltd., Burnaby (Canada)

    1996-11-01

    The location and depth of cover over pipeline river crossings must be checked periodically to ascertain that the pipeline remains undisturbed and adequately covered. We have developed a technique to determine pipeline plan location and depth of cover utilizing a combination of electromagnetic detection and echosounding with real-time navigation, in this case differential GPS. The technique offers an alternative to acoustic location methods where small pipe size or the presence of acoustically opaque sediments prevent pipe detection. In addition, the technique can be used in fast-flowing rivers or in heavy marine traffic where anchoring is an unlikely option. We have successfully applied the method to locate and profile a 168 mm steel pipeline crossing under the Fraser River, near Vancouver, Canada. Site conditions consisted of a 250 m wide river with 3-5 knot current. The 168 mm steel pipeline was buried in silts from 2-6 m thick below water up to 9 m deep. In addition, approximately 80 m of the river surface was permanently covered by log booms and hence inaccessible by boat. Initial attempts to locate the pipe using an acoustic sub-bottom profiler were unsuccessful. The 3.5 kHz system used did not provide sufficient penetration to delineate the pipe, probably due to the presence of biogenic gas in the river-bottom sediments. A Radiodetection{reg_sign} cable and pipe locator system was used to establish shoreline and shallow water locations. Unfortunately river currents and marine traffic prevented accurate location and depth determination using standard location techniques. The development of digital pipe locators with RS-232 interfacing permitted us to develop a technique utilizing simultaneous recording of digital magnetic field strength and real-time differential GPS location data. The Radiodetection{reg_sign} transmitter was connected to a riverside pipe valve.

  8. Legal considerations for urban underground space development in Malaysia

    Directory of Open Access Journals (Sweden)

    F. Zaini

    2017-12-01

    Full Text Available In 2008, the Malaysia land code, named the National Land Code 1965 (NLC 1965, was amended to add Part Five (A to deal with the disposal of underground space. In addition, the Circular of the Director General of Lands and Mines No. 1/2008 was issued to assist the application of Part Five (A of the NLC 1965. However, the legislation is still questionable and has instigated many arguments among numerous actors. Therefore, this research was undertaken to examine legal considerations for the development of underground space. The focus is on four legal considerations, namely underground space ownership, the bundle of rights, depth, and underground space utilization. Rooted in qualitative methods, interviews were conducted with respondents involved in the development of underground space in Malaysia. The obtained data were then analyzed descriptively. The findings differentiated the rights of landowners for surface land and underground space, and their liability for damages and the depth. It was indicated that the current legislation in Malaysia, namely Part Five (A of the NLC 1965 and the Circular of the Director General of Lands and Mines No. 1/2008, is adequate to facilitate the development of underground space in terms of legal considerations. However, to further facilitate the development of underground land in the future, based on the research, four enhancements are recommended for legal considerations pertaining to the development of underground space in Malaysia. Keywords: Underground space, Legal consideration, Land right, Urban development

  9. hree-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Yousif Fattah

    2016-05-01

    Full Text Available Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures. This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results of vertical crown deflection for the model without geogrid obtained from PLAXIS-3D are higher than those obtained by two-dimensional plane strain by about 21.4% while this percent becomes 12.1 for the model with geogrid, but in general, both have the same trend. The two dimensional finite elements analysis predictions of pipe-soil system behavior indicate an almost linear displacement of pipe deflection with applied pressure while 3-D analysis exhibited non-linear behavior especially at higher loads.

  10. Specialized video systems for use in underground storage tanks

    International Nuclear Information System (INIS)

    Heckendom, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1994-01-01

    The Robotics Development Groups at the Savannah River Site and the Hanford site have developed remote video and photography systems for deployment in underground radioactive waste storage tanks at Department of Energy (DOE) sites as a part of the Office of Technology Development (OTD) program within DOE. Figure 1 shows the remote video/photography systems in a typical underground storage tank environment. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and from the tank, and all viewing functions are remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Overview video systems, both monaural and stereo versions, include a camera, zoom lens, camera positioner, vertical deployment system, and positional feedback. Each independent video package can be inserted through a 100 mm (4 in.) diameter opening. A special attribute of these packages is their design to never get larger than the entry hole during operation and to be fully retrievable. The End Effector systems will be deployed on the large robotic Light Duty Utility Arm (LDUA) being developed by other portions of the OTD-DOE programs. The systems implement a multi-functional ''over the coax'' design that uses a single coaxial cable for all data and control signals over the more than 900 foot cable (or fiber optic) link

  11. Modelling of fiberglass pipe destruction process

    Directory of Open Access Journals (Sweden)

    А. К. Николаев

    2017-03-01

    Full Text Available The article deals with important current issue of oil and gas industry of using tubes made of high-strength composite corrosion resistant materials. In order to improve operational safety of industrial pipes it is feasible to use composite fiberglass tubes. More than half of the accidents at oil and gas sites happen at oil gathering systems due to high corrosiveness of pumped fluid. To reduce number of accidents and improve environmental protection we need to solve the issue of industrial pipes durability. This problem could be solved by using composite materials from fiberglass, which have required physical and mechanical properties for oil pipes. The durability and strength can be monitored by a fiberglass winding method, number of layers in composite material and high corrosion-resistance properties of fiberglass. Usage of high-strength composite materials in oil production is economically feasible; fiberglass pipes production is cheaper than steel pipes. Fiberglass has small volume weight, which simplifies pipe transportation and installation. In order to identify the efficiency of using high-strength composite materials at oil production sites we conducted a research of their physical-mechanical properties and modelled fiber pipe destruction process.

  12. Contribution to the study of heat pipes

    International Nuclear Information System (INIS)

    Schmidt, Eberhard

    1968-01-01

    This research thesis reports the study of heat pipes. A heat pipe is a vacuum tube closed at its both ends and containing few grams of a liquid. The evaporation of the liquid at one end and its condensation at the other end perform the heat transfer without significant drop of temperature. In this research, the author studied the thermal-hydrodynamic behaviour of heat pipes built in stainless steel and containing highly pure sodium as heat transfer metal. He more particularly studied the operation of heat pipes, including their start up, and the influence of the geometry of the capillary network on the thermal power limiting the heat pipe operation. He first proposes an analytical model to compute the threshold heat power with respect to physical properties of the heat transfer metal and to the heat pipe and capillary network geometries. He also presents an experimental device, reports experimental results and their interpretation. Analytical and experimental results are then compared, and some noticed divergences are discussed. Remaining problems for a better understanding of heat pipe operation are finally indicated [fr

  13. Vacuum pipe for e+e- interactions

    International Nuclear Information System (INIS)

    Hoard, C.T.

    1982-10-01

    The design, fabrication and testing of the beryllium vacuum chamber within the Mark II detector at SLAC is described. The Be chamber encloses one interaction point of the PEP circulating ring and is a part of its beam pipe. The Be chamber is captured within the Secondary Vertex Detector (SVD), a drift chamber, which is in turn centered in the Mark II drift chamber. Both ends of the beryllium pipe are brazed to aluminum/stainless transitions for connection to stainless steel bellows. A concentric radiation-screen liner of titanium foil runs the full length of the beryllium pipe

  14. Fluid/structure interaction in piping systems

    International Nuclear Information System (INIS)

    Kellner, A.; Schoenfelder, C.

    1982-01-01

    The global movement of piping systems caused by pressure pulses as well as the associated loads on bends, nozzles and piping support structures are usually computed by using the pressures given by a hydrodynamic calculation as driving functions in a consecutive dynamic structure analysis without taking into account the secondary pressure pulses induced by the piping movement in the fluid. It is shown how including this feed-back of the structure dynamics on the fluid can lead to a drastic reduction of the computed loads

  15. Heat pipes theory, design and applications

    CERN Document Server

    Reay, David; Kew, Peter

    2013-01-01

    Heat Pipes, 6th Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students. This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. Contains all informat

  16. Fatigue analysis of aluminum drill pipes

    Directory of Open Access Journals (Sweden)

    João Carlos Ribeiro Plácido

    2005-12-01

    Full Text Available An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.

  17. Pipe crawlers: Versatile adaptations for real applications

    Energy Technology Data Exchange (ETDEWEB)

    Hapstack, M.; Talarek, T.R.

    1990-01-01

    A problem at the Savannah River Site requires the unique application of a pipe crawler. A number of stainless steel pipes buried in concrete require ultrasonic inspection of the heat affected zones of the welds for detection of flaws or cracks. The paper describes the utilization of an inch-worm motion pipe crawler which negotiates a 90 degree reducing elbow with significant changes in diameter and vertical sections before entering the area of concern. After a discussion of general considerations and problem description, special requirements to meet the objectives and the design approach regarding the tractor, control system, instrument carriage, and radiation protection are discussed. 2 refs., 11 figs. (MB)

  18. Natural radionuclides in Brazilian underground mines

    International Nuclear Information System (INIS)

    Santos, Talita de Oliveira

    2015-01-01

    Rock, soil and water contain 238 U and 232 Th and their decay products. The distribution of these radionuclides differs in terms of activity concentration depending on the mineral type and origin. All ore processing releases long and short half-life radionuclides, mainly radon and its progeny. It is important to monitor this gas and its decay products in underground mines in order to assess the radiological hazards of the exposed workers. On this concern, the present work outlines the characterization of brazilian underground mines with relation to natural radionuclides, specially radon and its progeny. The radon concentration was measured by using E-PERM Electrets Ion Chamber (Radelec), AlphaGUARD (Saphymo GmbH) and CR-39 (Landauer) track etch detectors. The radon progeny was determined by using DOSEman detector. The equilibrium state between radon and its progeny was calculated. Based on these data, the total effective dose for miners was estimated. Moreover, the contribution from the main sources to the radon level inside mines was evaluated. For this, the following detectors were used: measurements of radon concentrations in soil gas were carried out by using AlphaGUARD detector; 226 Ra ( 214 Bi), 232 Th e 40 K specific activity in ore and soil samples were determined by using gamma-ray spectrometry HPGe detector (Canberra); and radon concentration in groundwater samples was performed by using RAD7 (Durridge Inc.). The radon concentration ranged from 113 to 8171 Bq.m -3 and the Equilibrium Equivalent Concentration varied from 76 to 1174 Bq.m -3 . The equilibrium factor mean value was 0.4 (0.2 -0.7). The workers estimated total effective dose ranged from 1 to 22 mSv.a -1 (mean 10 mSv.a -1 ). Therefore, results show the importance to assess continually and permanently the radon and its progeny behavior and the need to adopt safety measurements against natural radiation in underground mines environment. (author)

  19. Reflection Phenomena in Underground Pumped Storage Reservoirs

    Directory of Open Access Journals (Sweden)

    Elena Pummer

    2018-04-01

    Full Text Available Energy storage through hydropower leads to free surface water waves in the connected reservoirs. The reason for this is the movement of water between reservoirs at different elevations, which is necessary for electrical energy storage. Currently, the expansion of renewable energies requires the development of fast and flexible energy storage systems, of which classical pumped storage plants are the only technically proven and cost-effective technology and are the most used. Instead of classical pumped storage plants, where reservoirs are located on the surface, underground pumped storage plants with subsurface reservoirs could be an alternative. They are independent of topography and have a low surface area requirement. This can be a great advantage for energy storage expansion in case of environmental issues, residents’ concerns and an unusable terrain surface. However, the reservoirs of underground pumped storage plants differ in design from classical ones for stability and space reasons. The hydraulic design is essential to ensure their satisfactory hydraulic performance. The paper presents a hybrid model study, which is defined here as a combination of physical and numerical modelling to use the advantages and to compensate for the disadvantages of the respective methods. It shows the analysis of waves in ventilated underground reservoir systems with a great length to height ratio, considering new operational aspects from energy supply systems with a great percentage of renewable energies. The multifaceted and narrow design of the reservoirs leads to complex free surface flows; for example, undular and breaking bores arise. The results show excessive wave heights through wave reflections, caused by the impermeable reservoir boundaries. Hence, their knowledge is essential for a successful operational and constructive design of the reservoirs.

  20. Personal Dosimetry Enhancement for Underground Workplaces

    Directory of Open Access Journals (Sweden)

    L. Thinová

    2005-01-01

    Full Text Available Personal dosimetry for underground workers mainly concerns measurement of the concentration of radon (and its daughters and the correct application of the data in dose calculation, using a biokinetic model for lung dosimetry. A conservative approach for estimating the potential dose in caves (or underground is based on solid state alpha track detector measurements. The obtained dataset is converted into an annual effective dose in agreement with the ICRP recommendations using the “cave factor”, the value of which depends on the spectrum of aerosol particles, or on the proportional representation of the unattached and the attached fraction and on the equilibrium factor. The main difference between apartments and caves is the absence of aerosol sources, high humidity, low ventilation rate and the uneven surface in caves. A more precisely determined dose value would have a significant impact on radon remedies or on restricting the time workers stay underground. In order to determine  how the effective dose is calculated, it is necessary to divide these areas into distinct categories by the following measuring procedures: continual radon measurement (to capture the differences in EERC between working hours and night-time, and also between daily and seasonal radon concentration variations; regular measurements of radon and its daughters to estimate the equilibrium factor and the presence of 218Po; regular indoor air flow measurements to study the location of the radon supply and its transfer among individual areas of the cave; natural radioactive element content evaluation in subsoils and in water inside/outside, a study of the radon sources in the cave; aerosol particle-size spectrum measurements to determine the free fraction; monitoring the behaviour of guides and workers to record the actual time spent in the cave, in relation to the continuously monitored levels of Rn concentration. 

  1. 49 CFR 192.275 - Cast iron pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Cast iron pipe. 192.275 Section 192.275... Cast iron pipe. (a) Each caulked bell and spigot joint in cast iron pipe must be sealed with mechanical leak clamps. (b) Each mechanical joint in cast iron pipe must have a gasket made of a resilient...

  2. Modelling and performance of heat pipes with long evaporator sections

    NARCIS (Netherlands)

    Wits, Wessel W.; te Riele, Gert Jan

    2017-01-01

    This paper presents a planar cooling strategy for advanced electronic applications using heat pipe technology. The principle idea is to use an array of relatively long heat pipes, whereby heat is disposed to a long section of the pipes. The proposed design uses 1 m long heat pipes and top cooling

  3. 46 CFR 153.280 - Piping system design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must meet...

  4. 49 CFR Appendix B to Part 192 - Qualification of Pipe

    Science.gov (United States)

    2010-10-01

    ... impair the strength or tightness of the pipe. D. Tensile Properties. If the tensile properties of the... yield and tensile strength, elongation, and yield to tensile ratio, and testing requirements to verify... Pipe I. Listed Pipe Specifications API 5L—Steel pipe, “API Specification for Line Pipe” (incorporated...

  5. 49 CFR 192.121 - Design of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of plastic pipe. 192.121 Section 192.121... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.121 Design of plastic pipe. Subject to the limitations of § 192.123, the design pressure for plastic pipe is determined by either of the...

  6. 49 CFR 192.321 - Installation of plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Installation of plastic pipe. 192.321 Section 192... Transmission Lines and Mains § 192.321 Installation of plastic pipe. (a) Plastic pipe must be installed below ground level except as provided by paragraphs (g) and (h) of this section. (b) Plastic pipe that is...

  7. 46 CFR 56.15-1 - Pipe joining fittings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pipe joining fittings. 56.15-1 Section 56.15-1 Shipping... APPURTENANCES Fittings § 56.15-1 Pipe joining fittings. (a) Pipe joining fittings certified in accordance with...-welding, buttwelding, and socket-brazing pipe joining fittings, made in accordance with the applicable...

  8. Grounding Effect on Common Mode Interference of Underground Inverter

    OpenAIRE

    CHENG Qiang; CHENG Ning; LI Zhen-shuang

    2013-01-01

    For the neutral point not grounded characteristics of underground power supply system in coal mine, this paper studied common mode equivalent circuit of underground PWM inverter, and extracted parasitic parameters of interference propagation path. The author established a common mode and differential mode model of underground inverter. Taking into account the rise time of PWM, the simulation results of conducted interference by Matlab software is compared with measurement spectrum on the AC s...

  9. EFFORT OF STEEL PIPE JACKING IN TERMS OF IMPERFECTION PIPES AND HETEROGENEITY OF GROUND

    Directory of Open Access Journals (Sweden)

    K. Górski

    2016-06-01

    Full Text Available Purpose. The article presents problem of the influence of local inhomogeneities of ground on the internal forces in the steel pipe. Methodology. The authors presented the differences in the distributions of earth pressures for the pipes. One of the most common methods is the microtunneling technology. The examples of numerical analysis by finite element method (FEM have been calculated. Findings. The results of numerical analysis are presented for selected ground conditions and the distribution of internal forces in the flexible section of the steel pipe is also shown. Originality and Practical value. The obtained results clearly show the influence of flexural rigidity of the pipe on the internal forces, the influence of flexural rigidity and the soil stiffness on the size of the bending moments in the steel of pipe jacking. They depend on the interaction of soil – steel pipe.

  10. Reliability of piping system components. Volume 4: The pipe failure event database

    International Nuclear Information System (INIS)

    Nyman, R.; Erixon, S.; Tomic, B.; Lydell, B.

    1996-07-01

    Available public and proprietary databases on piping system failures were searched for relevant information. Using a relational database to identify groupings of piping failure modes and failure mechanisms, together with insights from published PSAs, the project team determined why, how and where piping systems fail. This report represents a compendium of technical issues important to the analysis of pipe failure events, and statistical estimation of failure rates. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A 'data driven and systems oriented' analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failure. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today's PSAs to allow for aging analysis and effective, on-line risk management. 42 refs, 25 figs

  11. Subprogram Calculating The Distance Between Pipe And Plane For Automatic Piping System Design

    International Nuclear Information System (INIS)

    Satmoko, Ari

    2001-01-01

    DISTLNPL subprogram was created using Auto LISP software. This subprogram is planned to complete CAPD (Computer Aided Piping Design) software being developed. The CAPD works under the following method: suggesting piping system line and evaluating whether any obstacle allows the proposed line to be constructed. DISTLNPL is able to compute the distance between pipe and any equipment having plane dimension such as wall, platform, floors, and so on. The pipe is modeled by using a line representing its axis, and the equipment is modeled using a plane limited by some lines. The obtained distance between line and plane gives information whether the pipe crosses the equipment. In the case of crashing, the subprogram will suggest an alternative point to be passed by piping system. So far, DISTLNPL has not been able to be accessed by CAPD yet. However, this subprogram promises good prospect in modeling wall, platform, and floors

  12. 100-N Area underground storage tank closures

    Energy Technology Data Exchange (ETDEWEB)

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  13. The Underground "Fortress" of Bang Tsho Ruler

    OpenAIRE

    Pelgen, Ugyen; Gyeltshen, Tshering

    2004-01-01

    The Bang Tsho village was part of the Kurtoed Province in North Eastern Bhutan. The authors deals with the underground architecture of this village. The article is based on a field visit carried out in November 2002. While the main focus of field work was on discerning the migration routes of the sKur smad speaking population of Lhun rtse rDzong khag to other rDzong khags in particular bKra shsi gang and bKra shis yang rtse the authors visited also the Bang tsho village and examined the ruins...

  14. Passenger noise exposure in London underground

    OpenAIRE

    Garbala, M; Gomez-Agustina, L

    2015-01-01

    The London Underground network carries almost half of London's commuters, and is the most heavily used mode of public transport in London. Its routes are 402 km long in total and it is used by over 1.2 billion passengers annually1. Though very efficient and convenient, travelling by Tube can be a noisy experience which could have potential impact on commuters’ hearing health. There is a wealth of research and information on impacts of occupational noise on hearing health. However, there is ve...

  15. 100-N Area underground storage tank closures

    International Nuclear Information System (INIS)

    Rowley, C.A.

    1993-01-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D

  16. Underground storage of natural gas and LPG

    International Nuclear Information System (INIS)

    1990-01-01

    The Symposium attended by over 200 participants from 23 member countries of the Economic Commission for Europe (ECE), representatives from Australia, Iraq, Israel, Kuwait as well as from 5 international organizations, provided an opportunity for existing and prospective gas markets in the ECE region to exchange experience and information on current trends and developments in natural gas and liquefied petroleum gas underground storage, especially in technical and regulatory matters, including economic, market and social considerations, that influence the planning, development and operations of gas storage facilities. Environmental and safety factors associated with such operations were also examined. A separate abstract was prepared for each of the presented papers. Refs, figs and tabs

  17. Water pollution control for underground coal gasification

    International Nuclear Information System (INIS)

    Humenick, M.J.

    1984-01-01

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes

  18. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: andreas.best@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-03-11

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  19. Evaluation of clamp effects on LMFBR piping systems

    International Nuclear Information System (INIS)

    Jones, G.L.

    1980-01-01

    Loop-type liquid metal breeder reactor plants utilize thin-wall piping to mitigate through-wall thermal gradients due to rapid thermal transients. These piping loops require a support system to carry the combined weight of the pipe, coolant and insulation and to provide attachments for seismic restraints. The support system examined here utilizes an insulated pipe clamp designed to minimize the stresses induced in the piping. To determine the effect of these clamps on the pipe wall a non-linear, two-dimensional, finite element model of the clamp, insulation and pipe wall was used to determine the clamp/pipe interface load distributions which were then applied to a three-dimensional, finite element model of the pipe. The two-dimensional interaction model was also utilized to estimate the combined clamp/pipe stiffness

  20. 78 FR 62614 - Guttman Energy, Inc., PBF Holding Company LLC v. Buckeye Pipe Line Company, L.P., Laurel Pipe...

    Science.gov (United States)

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR14-4-000] Guttman Energy, Inc., PBF Holding Company LLC v. Buckeye Pipe Line Company, L.P., Laurel Pipe Line Company, L.P... complaint against Buckeye Pipe Line Company L.P. and Laurel Pipe Line Company L.P. (Respondents) challenging...