WorldWideScience

Sample records for underground nuclear plants

  1. Underground nuclear power plant

    International Nuclear Information System (INIS)

    Takahashi, Hideo.

    1997-01-01

    In an underground-type nuclear power plant, groups of containing cavities comprising a plurality of containing cavities connected in series laterally by way of partition walls are disposed in parallel underground. Controlled communication tunnels for communicating the containing cavities belonging to a control region to each other, and non-controlled communication tunnels for communicating containing cavities belonging to a non-controlled area to each other are disposed underground. A controlled corridor tunnel and a non-controlled corridor tunnel extended so as to surround the containing cavity groups are disposed underground, and the containing cavities belonging to the controlled area are connected to the controlled corridor tunnel respectively, and the containing cavities belonging to the non-controlled area are connected to the non-controlled corridor tunnel respectively. The excavating amount of earth and sand upon construction can be reduced by disposing the containing cavity groups comprising a plurality of containing cavities connected in series laterally. The time and the cost for the construction can be reduced, and various excellent effects can be provided. (N.H.)

  2. Nuclear plant undergrounding

    International Nuclear Information System (INIS)

    Brown, R.C.; Bastidas, C.P.

    1978-01-01

    Under Section 25524.3 of the Public Resources Code, the California Energy Resources Conservation and Development Commission (CERCDC) was directed to study ''the necessity for '' and the effectiveness and economic feasibility of undergrounding and berm containment of nuclear reactors. The author discusses the basis for the study, the Sargent and Lundy (S and L) involvement in the study, and the final conclusions reached by S and L

  3. Concept of underground nuclear power plant

    International Nuclear Information System (INIS)

    Onishi, Sotoaki

    1976-01-01

    The concept of constructing nuclear power plants on the sea or underground as the future sitting is based on moving the present power plants on the ground with actual results to the sea or underground without changing the design. The underground nuclear power plants have many similar points to underground hydro-electric power stations with many achievements in the construction viewpoint, though they have their proper difficult problems. Of course, it requires to excavate larger underground caves than the case of underground hydro-electric power plants. The maximum dimensions of the caves have been determined through experience in practice. Therefore the developments of design theory and construction technique are desirable in this field. In discussing underground construction, two evaluating methods are considered for the shielding effect of base rocks. The minimum vertical distance up to ground surface from the center of the cave differs depending upon the in-cave pressure, and the conditions of base rock, soil and underground water in case of the accident assumed in the design, and is approximately 60m, if the cave is assumed to be an indefinite cylindrical shape, by the safer side calculation in the above two evaluations. (Wakatsuki, Y.)

  4. Closures for underground nuclear power plants

    International Nuclear Information System (INIS)

    1981-10-01

    This study demonstrates that, with the appropriate selection of an access concept on the underground nuclear power plant, it is possible to design a gate complying with the increased requirements of the construction of an underground nuclear power plant. The investigations revealed that a comparison leakage of 42 mm in diameter for the failure of seals is too conservative. When selecting suitable seals a leakage being more extensive than the above mentioned one can be prevented even in case of disturbance lasting several months. The closure structures of the personnel and material accesses do not represent any weak point within the concept of the construction method for underground nuclear power plants. (orig./HP)

  5. Underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Bender, F.

    1982-01-01

    The symposium gave the opportunity for an international exchange of views on the concepts of underground nuclear power plants, which are presently world wide under consideration. The results of investigations into the advantages and disadvantages with regard to the technical safety aspects of the underground plants in comparison to plants on the surface led to open and sometimes controversal discussions. As a result of the symposium (32 contributions) a general agreement can be stated on the judgement concerning the advantages and the disadvantages of underground nuclear power plants (nnp). The advantages are: increased protection against external events; delayed release of fission products in accident situations, if the closures operate properly. The disadvantages are: increased costs of the construction of underground and restrictions to such sites where either large caverns or deep pits can be constructed, which also requires that certain technical problems must be solved beforehand. Also, additional safety certificates related to the site will be required within the licensing procedures. The importance of these advantages and disadvantages was in some cases assessed very differently. The discussions also showed, that there are a number of topics where some questions have not been finally answered yet. (orig./HP) [de

  6. Evaluation of the feasibility, economic impact, and effectiveness of underground nuclear power plants. Final technical report

    International Nuclear Information System (INIS)

    1978-05-01

    Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues

  7. Underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Pinto, S.; Telleschi, P.

    1978-10-01

    Two of the main underground siting alternatives, the rock cavity plant and the pit siting, have been investigated in detail and two layouts, developed for specific sites, have been proposed. The influence of this type of siting on normal operating conditions and during abnormal occurences have been investigated. (Auth.)

  8. Underground siting of nuclear power plants: potential benefits and penalties

    International Nuclear Information System (INIS)

    Allensworth, J.A.; Finger, J.T.; Milloy, J.A.; Murfin, W.B.; Rodeman, R.; Vandevender, S.G.

    1977-08-01

    The potential for improving nuclear power safety is analyzed by siting plants underground in mined cavities or by covering plants with fill earth after construction in an excavated cut. Potential benefits and penalties of underground plants are referenced to analogous plants located on the surface. Three representative regional sites having requisite underground geology were used to evaluate underground siting. The major factors which were evaluated for all three sites were: (1) containment of radioactive materials, (2) transport of groundwater contamination, and (3) seismic vulnerability. External protection, plant security, feasibility, operational considerations, and cost were evaluated on a generic basis. Additionally, the national availability of sites having the requisite geology for both underground siting concepts was determined

  9. Review of underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    1974-01-01

    A review of the potential for the underground siting of nuclear power generating plants has been undertaken. The review comprised a survey and assessment of relevant published documents currently available, together with discussions with Government sponsored agencies and other bodies, to evaluate the current status of technology related to the design and construction of underground nuclear power plants. It includes a review of previous work related to the underground siting of power plants and other facilities; a preliminary evaluation of the relative merits of the various concepts of undergrounding which have been proposed or constructed; a review of current technology as it relates to the requirements for the design, construction and operation of underground nuclear power plants; an examination of the safety and environmental aspects; and the identification of areas of further study which will be required if the underground is to be established as a fully viable alternative to surface siting. No attempt has been made to draw final conclusions at this stage. Nothing has been found to suggest that the underground siting concept could not provide a viable alternative to the surface concept. It is also apparent that no major technological developments are required. It is not clear, however, whether the improvements in safety and containment postulated for the underground can be realized at an economic cost; or even whether any additional cost is in fact involved. The problem is essentially site dependent and requires further study for which recommendations are made. (auth)

  10. War protected underground siting of nuclear power plants -a summary

    International Nuclear Information System (INIS)

    1974-06-01

    In connection with studies concerning the need of war protected nuclear power production the technical and economical conditions with war protection of nuclear power plants have been studied within CDL. Comprehensively one have shown that no technical construction obstacles for siting a nuclear power plant underground exist that the additional costs for underground siting with price level mid 1973 are some 175-250 MSwCr (In today's price level 250 MSwCr will probably correspond to some 300 MSwCr per unit) and that the construction time is some one year longer than for an above ground plant. A study ought to examine more closely the consequences of underground siting from a radiological point of view and what demands on that occasion ought to be put on the technical design. (author)

  11. A survey of the underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    Pinto, S.

    1979-12-01

    The idea of locating nuclear power plants underground is not new, since in the period of time between the late fifties and the early sixties, four small nuclear plants have been built in Europe in rock cavities. Safety has been, in general, the main motivation for such a siting solution. In the last years several factors such as increasing power transmission costs, decreasing number of suitable sites above ground, increased difficulties in obtaining site approval by the licensing authorities, increasing opposition to nuclear power, increasing concern for extreme - but highly improbable - accidents, together with the possibility of utilizing the waste heat and the urban siting concept have renewed the interest for the underground siting as an alternative to surface siting. The author presents a survey of the main studies carried out on the subject of underground siting. (Auth.)

  12. Case study of siting technology for underground nuclear power plant

    International Nuclear Information System (INIS)

    Hibino, Satoshi; Komada, Hiroya; Honsho, Shizumitsu; Fujiwara, Yoshikazu; Motojima, Mutsumi; Nakagawa, Kameichiro; Nosaki, Takashi

    1991-01-01

    Underground siting method is one of new feasible siting methods for nuclear power plants. This report presents the results on case studies on underground siting. Two sites of a steeply inclined and plateau like configurations were selected. 'Tunnel type cavern; all underground siting' method was applied for the steeply inclined configuration, and 'shaft type semi-cavern; partial underground siting' method was applied for the plateau like configuration. The following designs were carried out for these two sites as case studies; (1) conceptual designs, (2) geological surveys and rock mechanics tests, (3) stability analysis during cavern excavations, (4) seismic stability analysis of caverns during earthquake, (5) reinforcement designs for caverns, (6) drainage designs. The case studies showed that these two cases were fully feasible, and comparison between two cases revealed that the 'shaft type semi-cavern; partial underground siting' method was more suitable for Japanese islands. As a first step of underground siting, therefore, the authors recommend to construct a nuclear power plant by this method. (author)

  13. Safety consideration and economic advantage of a new underground nuclear power plant design

    International Nuclear Information System (INIS)

    Lyczkowski, R.W.; Ching, J.T.

    1979-01-01

    A conceptual design of an underground nuclear power plant is proposed to make undergrounding of nuclear reactors not only environmentally desirable but also economically feasible. Expedient to the underground environment, this design capitalizes on the pressure-containing and radiation filtering characteristics of the new underground boundary conditions. Design emphasis is on the containment of a catastrophic accident - that of a reactor vessel rupture caused by external means. The High Capacity Rapid Energy Dissipation Underground Containment (HiC-REDUCE) system which efficiently contains loss-of-coolant accidents (LOCAs) and small break conditions is described. The end product is a radiation-release-proof plant which, in effect, divorces the public from the safety of the reactor. (Auth.)

  14. Pro and con decision criteria to underground nuclear power plants

    International Nuclear Information System (INIS)

    Buchhardt, F.

    1981-01-01

    In general, basic design criteria for underground siting define increased safety margins which are mostly step-wise augmentated. The larger those postulated additional impacts become, the more the general concept might already be previously determined. Depending on site availability in general two ways may be practised - the berm-contained concept as well as mined rock caverns. According to the present technical feasibility the cut-and-cover burial seems to be favoured more. If increased external (artificial) impacts are postulated underground facilities have considerable advantages since the earth coverage provides an excellent stopping medium. In case of internal influences the features suggested mostly are additional pressure relief systems which cannot be considered typical for undergrounding. The problem of the access-way sealing is a key-point of a 'real' supplemental underground containment. With a very high safety degree a reliable closure of the penetrations must be guaranteed in case extreme external as well as internal events occur. To come to a final conclusion wheter the benefits or penalties predominate, valuation criteria and matrices are elaborated from the view of different initial points. At this time period it still seems too early to give a definite judgement of pro or con for the underground concept. (orig./HP)

  15. Evaluation of earthquake resistance design for underground structures of nuclear power plant, (1)

    International Nuclear Information System (INIS)

    Tohma, Junichi; Kokusho, Kenji; Iwatate, Takahiro; Ohtomo, Keizo

    1986-01-01

    As to earthquake resistant design of underground civil engineering structures related with emergency cooling water system of nuclear power plant, it is required these structures must maintain the function of great important their own facilities during earthquakes, especially for design earthquake motion. In this study, shaft pipline, pit and duct for cooling sea water facilities were chosen as typical underground structures, and the authors deal with the seismic design method for calculation of the principal sectional force in these structures generated by design earthquake motion. Especially, comparative investigations concerned with response displacement method versus dynamic analysis methods (lumped mass analysis and finite element analysis) are discussed. (author)

  16. A study of feasibility, design and cost of excavations for underground siting of nuclear power plants

    International Nuclear Information System (INIS)

    1976-02-01

    A study conducted for the State Power Board on underground siting of nuclear power plants is presented. The report is divided into two chapters, both concerning the technical aspects of large underground openings. The first chapter gives a brief general survey of the problems involved, and the second outlines the technical aspects of a PWR project at a specific site. Details are given in 8 appendices and arrangement drawings. The project differs from conventional hydroelectric excavation schemes mainly in the fact that the spherical reactor containment requires a vault of 60m free span, and the turbine hall a cylindrical vault of 45m span, both of which exceed any span hitherto built for similar purposes. This requires a comparatively wide extrapolation of tested and available experience in underground excavations for permanent civil use. To what extent and under what circumstances such extrapolation is tenable must be tested in practice, preferably in a specially controlled prototype test. However the study indicates that conventional nuclear power plants can be sited underground when the topography and rock conditions are suitable. A 1000-2000 MW conventional plant adapted for underground siting will require large span caverns, tunnels and shafts, totalling about 1.0 mill. cubic metres of underground excavation. In addition access and cooling water tunnels, depending on the location, will require 0.2-0.5 mill. cubic metres of tunnel excavations. The excavations and support work can be completed within a construction time of about 2 1/2 years at an estimated total cost of 215 mill. Norwegian kroner (1975 value). (JIW)

  17. Multidimensional flow of radioactive gases through the soil surrounding an underground nuclear power plant

    International Nuclear Information System (INIS)

    Dinkelacker, A.

    1980-01-01

    In connection with the underground siting of nuclear power plants the spreading of radioactive gases that are released into the soil coverage after a hypothetical accident is investigated. A physical model is presented that includes the isothermal one- and two-component flow of ideal gases through an inhomogeneous porous medium on the basis of Darcy's law. Based on this model a computer code has been developed that permits the calculation of transient pressure and concentration distributions in inhomogeneous porous media in one to three dimensions, as well as the determination of retention times. (orig.) [de

  18. Estimation of thawing cryolithic area with numerical modeling in 3D geometry while exploiting underground small nuclear power plant

    Directory of Open Access Journals (Sweden)

    Melnikov N. N.

    2016-03-01

    Full Text Available The paper presents results on 3D numerical calculation of a thermal task related to assessing a thawing area when placing modules with reactor and steam-turbine facility of a small nuclear power plant in thickness of permafrost rocks. The paper discusses influence of the coefficient of thermal conductivity for large-scaled underground excavations lining and cryolithic area porosity on thawing depth and front movement velocity under different spatial directions

  19. Multinational underground nuclear parks

    Energy Technology Data Exchange (ETDEWEB)

    Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

    2013-07-01

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  20. Analysis of world experience in constructing underground small nuclear power plants and assessment of its potential use in the Russian Arctic regions

    Directory of Open Access Journals (Sweden)

    Smirnov Yu. G.

    2016-03-01

    Full Text Available The paper considers the common ideology and main idea of locating underground nuclear plants. Specific examples in domestic and foreign experience have been analyzed. It has been established that underground small nuclear power plants can be used as an alternative source of electric and thermal energy for solving defense-strategic and social-economic tasks particularly when developing mineral raw material resources in the Russian Arctic regions

  1. Enhanced-safety underground nuclear power plants based on the use of proven ship-building equipment and technology

    International Nuclear Information System (INIS)

    Pashin, V.M.; Petrov, E.L.; Khazov, B.S.

    1995-01-01

    Investigations performed in the last few years by the State Science Center of the Russian Federation - Academician A. N. Krylov Central Scientific-Research Institute, together with specialized enterprises of the Ministry of Atomic Energy of the Russian Federation, Sudprom, and other agencies of Russia, have shown the promise of marine nuclear power plants for producing underground nuclear power plants with a higher degree of protection from external and internal actions of different intensity. The concept was developed on the basis of an analysis of the energy supply in different regions of Russia and the near-abroad using fossil fuels (lignite, oil, natural gas). The change in the international environment, which makes it possible to convert the military technology, frees the industrial potential and skilled workers in Russia for development of products for the national economy. Stricter international standards and rules for increased safety and protection of nuclear power plants made it necessary to develop a new generation of reactors for ground-based power plants, which under the modern economic conditions cannot be implemented within the time periods acceptable for economics for most of the countries surrounding Russia. In the development of a new generation of ground-based nuclear power plants, the intense improvement of the aviation and space technology must be taken into account. This is connected with the increase in the catastrophes and the threat they present to the safety of unprotected power plants. This article is an abstract of the entire report

  2. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

    2008-01-01

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  3. CASPAR - Nuclear Astrophysics Underground

    Science.gov (United States)

    Senarath, Chamaka; Caspar Collaboration

    2017-09-01

    The CASPAR mainly focuses on Stellar Nucleosynthesis, its impact on the production of heavy elements and study the strength of stellar neutron sources that propels the s-process, 13C(α,n)16O and 22Ne(α,n)25Mg. Currently, implementation of a 1MV fully refurbished Van de Graaff accelerator that can provide a high intensity Î+/- beam, is being done at the Sanford Underground Research Facility (SURF). The accelerator is built among a collaboration of South Dakota School of Mines and Technology, University of Notre Dame and Colorado School of Mines. It is understood that cosmic ray neutron background radiation hampers experimental Nucleosynthesis studies, hence the need to go underground in search for a neutron free environment, to study these reactions at low energies is evident. The first beam was produced in the middle of summer 2017. The entire accelerator will be run before the end of this year. A detailed overview of goals of CASPAR will be presented. NFS Grant-1615197.

  4. Underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  5. Underground nuclear explosions

    International Nuclear Information System (INIS)

    Higgins, Gary H.

    1970-01-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  6. Underground storage of nuclear waste

    International Nuclear Information System (INIS)

    Russell, J.E.

    1977-06-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commerical radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects. 7 refs., 5 figs

  7. Underground storage of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J E

    1977-12-01

    The objective of the National Waste Terminal Storage (NWTS) Program is to provide facilities in various deep geologic formations at multiple locations in the United States which will safely dispose of commercial radioactive waste. The NWTS Program is being administered for the Energy Research and Development Administration (ERDA) by the Office of Waste Isolation (OWI), Union Carbide Corporation, Nuclear Division. OWI manages projects that will lead to the location, construction, and operation of repositories, including all surface and underground engineering and facility design projects and technical support projects.

  8. Tunnel Boring Machine Cutter Maintenance for Constructing Underground Cable Lines from Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jae Wang; Yee, Eric

    2014-01-01

    The tunnel boring machine (TBM) can construct an underground tunnel efficiently and without construction noise vibration related problems. Many civil projects, such as NPP construction, set importance on the economics of construction. Thus, advance rate, which is the speed at which the TBM is able to progress along its intended route, is one of the key factors affecting construction period and construction expenses. As the saying goes, time is money. Right Double Quotation Mark In addition, it is important to manage construction permits and civil complaints, even when construction expenses and construction periods are excluded. So, accurate prediction for advance rate is important when designing tunnel project. Several designers and project owners have tried to improve construction efficiency and tunneling advance rate.. There have been several studies on managing the rate of wear, designing an optimum tunnel face, and finding the optimum cutter spacing. Cutter replacements due to cutter wear and tear are very important because the wear and tear of cutters attached to the cutter head profoundly affect the advance rate. To manage cutter wear and tear is to control parameters related to cutter shape and cutter wear rate. There have been studies on the relationship between rock properties or TBM characteristics, and cutter wear or replacement. However, many of these studies relied on computer simulations or other small scale experiments. Therefore, this paper attempts to present a correlation between cutter replacement or cutter wear, against various parameters using practical data such as rock quality and TBM shield specifications, from an actual construction site. This study was conducted to suggest directions in the improvement of TBM cutters by analyzing relationships between rock conditions and cutter maintenance as well as TBM advance rates. Actual field data was collected and compared to actual design values in evaluating the effectiveness of traditional

  9. Tunnel Boring Machine Cutter Maintenance for Constructing Underground Cable Lines from Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Wang; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    The tunnel boring machine (TBM) can construct an underground tunnel efficiently and without construction noise vibration related problems. Many civil projects, such as NPP construction, set importance on the economics of construction. Thus, advance rate, which is the speed at which the TBM is able to progress along its intended route, is one of the key factors affecting construction period and construction expenses. As the saying goes, time is money. Right Double Quotation Mark In addition, it is important to manage construction permits and civil complaints, even when construction expenses and construction periods are excluded. So, accurate prediction for advance rate is important when designing tunnel project. Several designers and project owners have tried to improve construction efficiency and tunneling advance rate.. There have been several studies on managing the rate of wear, designing an optimum tunnel face, and finding the optimum cutter spacing. Cutter replacements due to cutter wear and tear are very important because the wear and tear of cutters attached to the cutter head profoundly affect the advance rate. To manage cutter wear and tear is to control parameters related to cutter shape and cutter wear rate. There have been studies on the relationship between rock properties or TBM characteristics, and cutter wear or replacement. However, many of these studies relied on computer simulations or other small scale experiments. Therefore, this paper attempts to present a correlation between cutter replacement or cutter wear, against various parameters using practical data such as rock quality and TBM shield specifications, from an actual construction site. This study was conducted to suggest directions in the improvement of TBM cutters by analyzing relationships between rock conditions and cutter maintenance as well as TBM advance rates. Actual field data was collected and compared to actual design values in evaluating the effectiveness of traditional

  10. Structural design and dynamic analysis of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.; Heale, D.G.

    1975-01-01

    Present actual experience in the structural design of undeground containments is limited to only four rather small reactors all located in Europe. Thus proposals for future underground reactors depend on the transposition of applicable design specifications, constraints and criteria from existing surface nuclear power plants to underground, and the use of many years of experience in the structural design of large underground cavities and cavity complexes for other purposes such as mining, hydropower stations etc. An application of such considerations in a recent input for the Underground Containment sub-section of the Seismic Task Group Report to the ASCE Committee for Nuclear Structures and Materials is presented as follows: underground concept considerations, siting criteria and structural selection, structural types, analytical and semi-analytical approaches, design and other miscellaneous considerations

  11. Underground nuclear explosions at Astrakhan, USSR

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1982-01-01

    The three underground nuclear explosions recorded in 1980 and 1981 by Hagfors Observatory in Sweden are in the vicinity of Astrakhan on the Caspian Sea. They are believed to be associated with the development of a gas condensate field discovered in 1973. The gas producing horizons are in limestones at 4000 m depth. They are overlain by bedded, Kungarian salts. Salt domes are recognized in the area. Plans to develop the field are contained in the 11th Five Year Plan (1981-82). The USSR has solicited bids from western contractors to build gas separation and gas processing plant with an annual capacity of 6 billion m 3 . Ultimate expansion plans call for three plants with the total capacity of 18 billion m 3 . By analogy with similar peaceful nuclear explosions described in 1975 by the Soviets at another gas condensate field, the underground cavities are probably designed for storage of unstable, sour condensate after initial separation from the gaseous phases in the field. Assuming that the medium surrounding the explosions is salt, the volume of each cavity is on the order of 50,000 m 3

  12. The concept of underground nuclear heat and power plants (UNHPP) of upgraded safety, developed on the basis of ship-building technologies

    International Nuclear Information System (INIS)

    Pashin, V.M.; Petrov, Eh.L.; Shalik, G.P.; Khazov, B.S.; Malyshev, S.P.

    1996-01-01

    A concept of underground nuclear heat and power plants (UNHPP) of upgraded safety on the basis of ship-building technologies is considered, in which the priority is set to population security and environmental protection. Ways of realization of ziro radiation risk for the population residing in a close vicinity of UNHPP are substantiated. basic principles of the concept are formulated which envisage the use of ship propulsion reactor facilities that have been multiply tested in operation. The sources of economic competitiveness of UNHPPs, as compared with the existing NPPs, are shown

  13. Underground nuclear energy complexes - technical and economic advantages

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

    2010-01-01

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  14. Potential Advantages of Underground Nuclear Parks

    International Nuclear Information System (INIS)

    Myers, Carl W.; Elkins, Ned Z.; Kunze, Jay F.; Mahar, James M.

    2006-01-01

    In this paper we argue that an underground nuclear park (UNP) could potentially lead to lower capital and operating cost for the reactors installed in the UNP compared to the traditional approach, which would be to site the reactors at the earth's surface at distributed locations. The UNP approach could also lead to lower waste management cost. A secondary benefit would be the increased margins of safety and security that would be realized simply as a consequence of siting the reactors underground. Lowered capital and operating cost for a UNP relative to traditional reactor siting is possible through the aggregate effect of the elimination of containment structures, in-place decommissioning, reduced physical security costs, reduced weather-related costs, reduced cost of liability insurance and reduced unit-cost for the nth reactor made possible through the continuous construction of multiple reactors at the same underground location. Other cost reductions might be possible through the transfer of the capital cost for part of the underground construction from the reactor owners to the owners of the UNP. Lower waste management cost is possible by siting the UNP at a location where there are geological and hydrological conditions suitable for hosting both the reactors and the repository for the waste from those reactors. After adequate storage and cooling, and assuming direct disposal, this would enable the spent fuel from the reactors to be transported directly to the repository and remain entirely underground during the transport process. Community concerns and transportation costs would be significantly reduced relative to current situations where the reactors are separated from the repository by long distances and populated areas. The concept for a UNP in bedded salt is used to develop a rough order of magnitude cost estimate for excavation of the reactor array portion of a UNP. Excavation costs appear to be only a small fraction of the overall power plant costs

  15. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  16. Simulation of the three-dimensional dispersion of radioactive gases through layers of ground in connection with underground design of nuclear power plants

    International Nuclear Information System (INIS)

    Dinkelacker, A.

    1979-01-01

    In connection with underground design of nuclear power plants there is studied the dispersion of radioactive gases released from the underground plant into the ground covering, following a hypothetical accident. For this purpose there was developed a model of dispersion describing the one-and two-component flow of ideal gases in an inhomogeneous porous medium. The description of the gas flow is based on Darcy's Law. The flow process is assumed to be isothermal. The model is completed by simulation of radioactive tracer particles for determining retention times. Based on the mathematical dispersion model the computer code FLOG3D was developed. It permits to calculate the unsteady distributions of pressure and concentration in an inhomogeneous porous medium in cartesian coordinates as well as the location of radioactive tracer particles. According to the choice of boundary conditions the calculation can be performed in up to three dimensions. For numerical solution of the model equations a special wide-mesh method was used. This method applies polymonial set-ups for the behavior of the solution in the individual meshes. For verification of the code FLOG3D there were performed comparative and test computations. One- and multidimensional calculating examples demonstrate the overall applicability for this code. (orig.) [de

  17. From two reports; authorization of 17 nuclear power plants in '81 and '82: by the year 2000, underground and offshore siting should be possible

    International Nuclear Information System (INIS)

    1981-01-01

    The Ministry of International Trade and Industry has published ''Electric power facility plan, 1981'', and set the target of the installed capacity of nuclear power in 1990 at 51,000 MW. In order to reach this target, the Ministry must submit the electrical power facility plan involving 20,000 MW to the Electric Power Resource Development Coordination Council for the required authorization. Meanwhile, the Central Research Institute for Electric Power Industry has engaged in the assessment of long term electric power needs for three years, and completed the report ''Prospects of electric power supply and demand until the year 2000, long term energy strategy''. The conclusions are that nuclear energy must be actively promoted, and that the limitation of land space and the geological conditions in Japan must be overcome, and for the purpose, the technologies of locating nuclear power stations underground and offshore should be developed. The summaries of these two reports are given. 17 units are planned to be submitted to the ERDCC for the approval in the years 1981 and 1982. But the actual situation is severe because it takes long years from the application for construction to the start of operation of nuclear power plants. (Kako, I.)

  18. Underground nuclear astrophysics at the Dresden Felsenkeller

    Energy Technology Data Exchange (ETDEWEB)

    Bemmerer, Daniel; Ilgner, Christoph; Junghans, Arnd R.; Mueller, Stefan; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Cowan, Thomas E.; Gohl, Stefan; Grieger, Marcel; Reinicke, Stefan; Roeder, Marko; Schmidt, Konrad; Stoeckel, Klaus; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2015-07-01

    Favored by the low background underground, accelerator-based experiments are an important tool to study nuclear astrophysics reactions involving stable charged particles. This technique has been used with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies, as well as the continuation of solar fusion studies. As a result, NuPECC strongly recommended the installation of one or more higher-energy underground accelerators. Such a project is underway in Dresden. A 5 MV Pelletron accelerator is currently being refurbished by installing an ion source on the high voltage terminal, enabling intensive helium beams. The preparation of the underground site is funded, and the civil engineering project is being updated. The science case, operational strategy and project status are reported.

  19. US Underground Nuclear Test History Reports

    Science.gov (United States)

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Support Center Contact Us FAQ Sheet Links Success Stories Contracts Business Opportunities Current

  20. Electromagnetic signals from underground nuclear explosions

    International Nuclear Information System (INIS)

    Malik, J.; Fitzhugh, R.; Homuth, F.

    1985-10-01

    Electromagnetic fields and ground currents resulting from underground nuclear explosions have been observed since the first such event. A few measurements have been reported, but most have not. There also have been some speculations as to their origin; the two most generally proposed are the magnetic bubble and the seismoelectric effect. The evidence seems to favor the latter mechanism. 15 refs., 36 figs

  1. Neutron albedo effects of underground nuclear explosion

    International Nuclear Information System (INIS)

    Yang Bo; Ying Yangjun; Li Jinhong; Bai Yun

    2013-01-01

    The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device.The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device. (authors)

  2. Underground nuclear waste storage backed

    International Nuclear Information System (INIS)

    Long, J.R.

    1978-01-01

    Latest to hold hearings on nuclear waste disposal problems is the Senate Commerce Subcommittee on Science, Technology and Space. Testimonies by John M. Deutch, Rustum Roy (presenting results of National Research Council panel on waste solidification), and Darleane C. Hoffman are summarized

  3. Magnitude determination for large underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Lawrence D [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    A method is presented for determining the local magnitudes for large underground nuclear explosions. The Gutenberg-Richter nomograph is applied to the peak amplitudes for 24 large underground nuclear explosions that took place in Nevada. The amplitudes were measured at 18 California Wood-Anderson stations located 150-810 km from the explosion epicenter. The variation of the individual station magnitudes and magnitude corrections and the variation of the average and rms error estimates in the magnitude determinations are examined with respect to distance, azimuth, and event location. The magnitude prediction capability of the Gutenberg-Richter nomograph is examined on the basis of these two criteria, and certain corrections are suggested. The azimuthal dependence of the individual station magnitudes is investigated, and corrections for the California stations are calculated. Statistical weighting schemes for two-component data are employed, and the assumptions and limitations in the use of peak amplitudes are discussed. (author)

  4. Engineering effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Charles R [CER Geonuclear Corporation, Las Vegas, NV (United States)

    1970-05-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  5. Engineering effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Boardman, Charles R.

    1970-01-01

    Useful effects of contained underground nuclear explosions are discussed in light of today's most promising potential applications. Relevant data obtained through exploration of explosion environments of nine U.S. tests in competent rock are summarized and presented as a practical basis for estimating magnitudes of effects. Effects discussed include chimney configuration, permeability, and volume as well as rubble particle size distributions and extents of permeability change in the chimney wall rock. Explosion mediums include shale, granite, dolomite, and salt. (author)

  6. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    International Nuclear Information System (INIS)

    Lombardi, Mara; Garzia, Fabio; Guarascio, Massimo; Giovannone, Enzo Paolo; Giampaoli, Antonio; Musti, Mafalda; Ranalli, Maria Teresa; Perruzza, Roberto; Tartaglia, Roberto

    2017-01-01

    The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS) of the Italian National Institute for Nuclear Physics (INFN). The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m"3 of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m"3 ) at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability. (author)

  7. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    Directory of Open Access Journals (Sweden)

    Mara Lombardi

    Full Text Available Abstract The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS of the Italian National Institute for Nuclear Physics (INFN. The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m3 of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m3 at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability.

  8. Risk analysis and reliability of the GERDA Experiment extraction and ventilation plant at Gran Sasso mountain underground laboratory of Italian National Institute for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Mara; Garzia, Fabio; Guarascio, Massimo; Giovannone, Enzo Paolo; Giampaoli, Antonio; Musti, Mafalda; Ranalli, Maria Teresa; Perruzza, Roberto; Tartaglia, Roberto, E-mail: mara.lombardi@uniroma1.it, E-mail: fabio.garzia@uniroma1.it, E-mail: massimo.guarascio@uniroma1.it [Universita degli Studi di Roma La Sapienza-Engineering Roma (Italy); Corpo Nazionale Vigili del Fuoco L' Aquila (CNVF) (Italy); Istituto Nazionale di Fisica Nucleare - Laboratori del Gran Sasso L' Aquila, Abruzzo (Italy)

    2017-07-15

    The aim of this study is the risk analysis evaluation about argon release from the GERDA experiment in the Gran Sasso underground National Laboratories (LNGS) of the Italian National Institute for Nuclear Physics (INFN). The GERDA apparatus, located in Hall A of the LNGS, is a facility with germanium detectors located in a wide tank filled with about 70 m{sup 3} of cold liquefied argon. This cryo-tank sits in another water-filled tank (700 m{sup 3} ) at atmospheric pressure. In such cryogenic processes, the main cause of an accidental scenario is lacking insulation of the cryo-tank. A preliminary HazOp analysis has been carried out on the whole system. The risk assessment identified two possible top-events: explosion due to a Rapid Phase Transition - RPT and argon runaway evaporation. Risk analysis highlighted a higher probability of occurrence of the latter top event. To avoid emission in Hall A, the HazOp, Fault Tree and Event tree analyses of the cryogenic gas extraction and ventilation plant have been made. The failures related to the ventilation system are the main cause responsible for the occurrence. To improve the system reliability some corrective actions were proposed: the use of UPS and the upgrade of damper opening devices. Furthermore, the Human Reliability Analysis identified some operating and management improvements: action procedure optimization, alert warnings and staff training. The proposed model integrates the existing analysis techniques by applying the results to an atypical work environment and there are useful suggestions for improving the system reliability. (author)

  9. Siting technology of underground nuclear power station

    International Nuclear Information System (INIS)

    Motojima, M.; Hibino, S.

    1989-01-01

    For the site of a nuclear power station, it may be possible to select a seaside mountain area, if the condition is suitable to excavate large rock caverns in which a reactor and other equipments are installed. As the case study on the siting technology for an underground nuclear power station, the following example was investigated. The site is a seaside steep mountain area, and almost all the equipments are installed in plural tunnel type caverns. The depth from the ground surface to the top of the reactor cavern is about 150 m, and the thickness of the rock pillar between the reactor cavern of 33 m W x 82 mH x 79 mD and the neighboring turbine cavern is 60 m. In this paper, the stability of rock caverns in this example, evaluated by numerical analysis, is described. The numerical analysis was carried out on the central cross section of the reactor cavern, taking the turbine cavern, geostress, the mechanical properties of rock mass and the process of excavation works in consideration. By the analysis, the underground caverns in this example were evaluated as stable, if the rock quality is equivalent to C H class or better according to the CRIEPI rock classification. (K.I.)

  10. Radiological criteria for underground nuclear tests

    International Nuclear Information System (INIS)

    Malik, J.S.; Brownlee, R.R.; Costa, C.F.; Mueller, H.F.; Newman, R.W.

    1981-04-01

    The radiological criteria for the conduct of nuclear tests have undergone many revisions with the current criteria being 0.17 rad for uncontrolled populations and 0.5 rad for controllable populations. Their effect upon operations at the Nevada Test Site and the current off-site protective plans are reviewed for areas surrounding the Site. The few accidental releases that have occurred are used to establish estimates of probability of release and of hazard to the population. These are then put into context by comparing statistical data on other accidents and cataclysms. The guidelines established by DOE Manual Chapter MC-0524 have never been exceeded during the entire underground nuclear test program. The probability of real hazard to off-site populations appears to be sufficiently low as not to cause undue concern to the citizenry

  11. Radiological criteria for underground nuclear tests

    Energy Technology Data Exchange (ETDEWEB)

    Malik, J.S.; Brownlee, R.R.; Costa, C.F.; Mueller, H.F.; Newman, R.W.

    1981-04-01

    The radiological criteria for the conduct of nuclear tests have undergone many revisions with the current criteria being 0.17 rad for uncontrolled populations and 0.5 rad for controllable populations. Their effect upon operations at the Nevada Test Site and the current off-site protective plans are reviewed for areas surrounding the Site. The few accidental releases that have occurred are used to establish estimates of probability of release and of hazard to the population. These are then put into context by comparing statistical data on other accidents and cataclysms. The guidelines established by DOE Manual Chapter MC-0524 have never been exceeded during the entire underground nuclear test program. The probability of real hazard to off-site populations appears to be sufficiently low as not to cause undue concern to the citizenry.

  12. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  13. Nuclear reactors sited deep underground in steel containment vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bourque, Robert [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2006-07-01

    Although nuclear power plants are certainly very safe, they are not perceived as safe by the general populace. Also, there are concerns about overland transport of spent fuel rods and other irradiated components. It is hereby proposed that the nuclear components of nuclear power plants be placed in deep underground steel vessels with secondary coolant fed from them to turbines at or near the surface. All irradiated components, including spent fuel, would remain in the chamber indefinitely. This general concept was suggested by the late Edward Teller, generated some activity 20-25 years ago and appears to be recently reviving in interest. Previous work dealt with issues of geologic stability of underground, possibly reinforced, caverns. This paper presents another approach that makes siting independent of geology by placing the reactor components in a robust steel vessel capable of resisting full overburden pressure as well as pressures resulting from accident scenarios. Structural analysis of the two vessel concepts and approximate estimated costs are presented. This work clears the way for the extensive discussions required to evaluate the advantages of this concept. (author)

  14. Cavities produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Butkovich, T.R.

    1976-01-01

    This investigation studied the displacement of rock that formerly occupied cavities produced by underground nuclear explosions. There are three possible explanations for this displacement: the volume could be displaced to the free surface; it could occupy previously air-filled pores removed from the surrounding rock through compaction; or it could be accounted for by persisting compressive stresses induced by the outgoing shock wave. The analysis shows it unlikely that stored residual elastic stresses account for large fractions of cavity volumes. There is limited experimental evidence that free surface displacement accounts for a significant portion of this volume. Whenever the explosion mediums contain air-filled pores, the compaction of these pores most likely accounts for all the volume. Calculations show that 4 percent air-filled porosity can account for all the cavity volume within about 4 cavity radii and that even 1 percent can account for a significant fraction of the volume

  15. General phenomenology of underground nuclear explosions

    International Nuclear Information System (INIS)

    Derlich, S.; Supiot, F.

    1969-01-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [fr

  16. Delayed signatures of underground nuclear explosions

    Science.gov (United States)

    Carrigan, Charles R.; Sun, Yunwei; Hunter, Steven L.; Ruddle, David G.; Wagoner, Jeffrey L.; Myers, Katherine B. L.; Emer, Dudley F.; Drellack, Sigmund L.; Chipman, Veraun D.

    2016-03-01

    Radionuclide signals from underground nuclear explosions (UNEs) are strongly influenced by the surrounding hydrogeologic regime. One effect of containment is delay of detonation-produced radioxenon reaching the surface as well as lengthening of its period of detectability compared to uncontained explosions. Using a field-scale tracer experiment, we evaluate important transport properties of a former UNE site. We observe the character of signals at the surface due to the migration of gases from the post-detonation chimney under realistic transport conditions. Background radon signals are found to be highly responsive to cavity pressurization suggesting that large local radon anomalies may be an indicator of a clandestine UNE. Computer simulations, using transport properties obtained from the experiment, track radioxenon isotopes in the chimney and their migration to the surface. They show that the chimney surrounded by a fractured containment regime behaves as a leaky chemical reactor regarding its effect on isotopic evolution introducing a dependence on nuclear yield not previously considered. This evolutionary model for radioxenon isotopes is validated by atmospheric observations of radioxenon from a 2013 UNE in the Democratic People’s Republic of Korea (DPRK). Our model produces results similar to isotopic observations with nuclear yields being comparable to seismic estimates.

  17. Pulsed nuclear power plant

    International Nuclear Information System (INIS)

    David, C.V.

    1986-01-01

    This patent describes a nuclear power plant. This power plant consists of: 1.) a cavity; 2.) a detonatable nuclear device in a central region of the cavity; 3.) a working fluid inside of the cavity; 4.) a method to denote a nuclear device inside of the cavity; 5.) a mechanical projection from an interior wall of the cavity for recoiling to absorb a shock wave produced by the detonation of the nuclear device and thereby protecting the cavity from damage. A plurality of segments defines a shell within the cavity and a plurality of shock absorbers, each connecting a corresponding segment to a corresponding location on the wall of the cavity. Each of these shock absorbers regulate the recoil action of the segments; and 6.) means for permitting controlled extraction of a quantity of hot gases from the cavity produced by the vaporization of the working fluid upon detonation of the nuclear device. A method of generating power is also described. This method consists of: 1.) introducing a quantity of water in an underground cavity; 2.) heating the water in the cavity to form saturated steam; 3.) detonating a nuclear device at a central location inside the cavity; 4.) recoiling plate-like elements inside the cavity away from the central location in a mechanically regulated and controlled manner to absorb a shock wave produced by the nuclear device detonation and thereby protect the underground cavity against damage; 5.) extracting a quantity of superheated steam produced by the detonation of the nuclear device; and 6.) Converting the energy in the extracted superheated steam into electrical power

  18. Glass produced by underground nuclear explosions

    International Nuclear Information System (INIS)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10 12 calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 μm scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity

  19. Subsidence caused by an underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, W W [Environmental Research Corp., Alexandria, VA (United States)

    1970-05-15

    An underground nuclear detonation creates a cavity, which may be followed by the formation of a rubble chimney and possibly by a surface subsidence crater. A knowledge of the mechanisms of surface and subsurface subsidence is valuable not only because of the potential engineering uses of the chimneys and craters that may form, but also for the prevention of surface damage. Some of the parameters that are of interest in the subsidence phenomenon are the height and volume of the chimney, the porosity of the chimney, the crater size (depth and radius) and shape, and the time required after detonation for formation of the chimney or crater. The influence of the properties of the subsidence medium on the geometry of the subsidence crater must be considered. The conditions under which partial or complete subsidence is prevented must also be studied. The applicability of the relations that have been developed for the flow of bulk solids for relatively small masses and low pressures to the subsidence problem associated with nuclear explosions is examined. Rational modifications are made to describe the subsidence problem. Sensitivity of the subsidence parameters to material properties and the prevailing geometry is shown. Comparison with observed results at the Nevada Test Site is made and the variations encountered are found to be within reasonable limits. The chimney size and subsidence crater dimensions are found to be a function of the bulking characteristics of the medium, the strength parameters, the dimensions of the subsurface cavity, and the depth of the cavity. The great influence of the strength parameters on the collapse times is shown. For a given medium, the prevention of subsidence is dependent on the cavity size. (author)

  20. Horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions

    International Nuclear Information System (INIS)

    Drobzheva, Ya.V.; Krasnov, V.M.; Sokolova, O.I.

    2001-01-01

    The horizontal dimensions of ionosphere agitation provoked by underground nuclear explosions have been experimentally determined for 13 explosions conducted at the Balapan test site of the Semipalatinsk test site. (author)

  1. Detecting and identifying underground nuclear explosions

    International Nuclear Information System (INIS)

    Spiliopoulos, S.

    1996-01-01

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called 'array beams'. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  2. Detecting and identifying underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Spiliopoulos, S. [Australian Geological Survey Organisation, Anzac Park, Canberra, ACT (Australia). Department of Primary Industry

    1996-12-31

    The monitoring of underground nuclear explosions involves, first determining that the signals have originated from a test site and if so, then a pattern recognition analysis is undertaken to determine whether the signals originate from an explosion rather than an earthquake. In this we are aided by seismic observations of previous explosions from each test site. To determine the origin of a signal use is first made of the two seismic arrays in central Australia. Each of these arrays consists of 20 spatially separated sensors (seismometers), and each of which can provide a preliminary estimate of the location of the source. In practice this is done automatically by inserting delays into the output of each of the sensors to compensate for a seismic signal taking a finite time to cross the array, and then adding the output of each sensor to form what are called `array beams`. When the correct delays for a particular azimuth and wavespeed (corresponding to a particular source location) have been inserted, the signals recorded by each sensor will be in phase and the energy in the array beam will be a maximum. Because the seismic background noise at each sensor is not correlated, this beam forming also improves the signal-to-noise ratio. In this sense a seismic array is equivalent to other arrays of sensors - e.g. a radar antenna. Having determined that a signal originates from somewhere near a test site a more precise location can be obtained from the times that the signal arrives at different seismic stations

  3. Nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    Data concerning the existing nuclear power plants in the world are presented. The data was retrieved from the SIEN (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: nuclear plants, its status and type; installed nuclear power plants by country; nuclear power plants under construction by country; planned nuclear power plants by country; cancelled nuclear power plants by country; shut-down nuclear power plants by country. (E.G.) [pt

  4. Review of Soviet studies related to peaceful underground nuclear explosions

    International Nuclear Information System (INIS)

    Lin, W.

    1978-01-01

    Theoretical and empirical studies of contained and crater-forming underground nuclear explosions by USSR investigators are reviewed and summarized. Published data on U.S., USSR, and French cavity-forming nuclear explosions are compared with those predicted by the formula. Empirical studies on U.S. and USSR cratering explosions, both high explosions, both high explosive and nuclear are summarized. The parameters governing an excavation explosion are reviewed

  5. Interplant communication of tomato plants through underground common mycorrhizal networks.

    Science.gov (United States)

    Song, Yuan Yuan; Zeng, Ren Sen; Xu, Jian Feng; Li, Jun; Shen, Xiang; Yihdego, Woldemariam Gebrehiwot

    2010-10-13

    Plants can defend themselves to pathogen and herbivore attack by responding to chemical signals that are emitted by attacked plants. It is well established that such signals can be transferred through the air. In theory, plants can also communicate with each other through underground common mycorrhizal networks (CMNs) that interconnect roots of multiple plants. However, until now research focused on plant-to-plant carbon nutrient movement and there is no evidence that defense signals can be exchanged through such mycorrhizal hyphal networks. Here, we show that CMNs mediate plant-plant communication between healthy plants and pathogen-infected tomato plants (Lycopersicon esculentum Mill.). After establishment of CMNs with the arbuscular mycorrhizal fungus Glomus mosseae between tomato plants, inoculation of 'donor' plants with the pathogen Alternaria solani led to increases in disease resistance and activities of the putative defensive enzymes, peroxidase, polyphenol oxidase, chitinase, β-1,3-glucanase, phenylalanine ammonia-lyase and lipoxygenase in healthy neighbouring 'receiver' plants. The uninfected 'receiver' plants also activated six defence-related genes when CMNs connected 'donor' plants challenged with A. solani. This finding indicates that CMNs may function as a plant-plant underground communication conduit whereby disease resistance and induced defence signals can be transferred between the healthy and pathogen-infected neighbouring plants, suggesting that plants can 'eavesdrop' on defence signals from the pathogen-challenged neighbours through CMNs to activate defences before being attacked themselves.

  6. Development and application of anti-washout special material for long distance. Remediation work of contaminated water at Fukushima Daiichi Nuclear Power Plant underground structure

    International Nuclear Information System (INIS)

    Otsu, Hitoshi; Nishikori, Kazumasa; Sato, Keita; Hibi, Yasuki; Yanai, Shuji; Deguchi, Amane

    2017-01-01

    The seawater piping trench of Fukushima Daiichi Nuclear Power Station connects the screen pump room and turbine building. High concentration contaminated water stagnated in the trench due to the 2011 off the Pacific coast of Tohoku Earthquake, which caused a leakage accident. In order to solve the future leakage risk, a replacement work the liquid with cement was performed to remove contaminated water inside the trench. This paper explains the development of cement filler applied to the trench and the outline of its application work. Long-distance underwater fluid filler that can flow in the water throughout the longest 85 m long shafts was developed and its fluidity was confirmed in a laboratory and mockup device. In the field application, a cement manufacturing plant was set up in the power plant premises, and it took about a year to pour the cement into the trenches of No 2, 3, and 4 Units. To prevent the leakage of contaminated water in the trench, the cement pouring was performed while controlling the water level. Due to the high concentration of contaminated water, workers' radiation exposure management was conducted on a daily and monthly basis, and cumulative radiation exposure was strictly controlled. For radiation shielding, laying crushed stone and iron plate, installation of concrete protection wall and lead wool mat, and use of tungsten vest during work were practiced. Thanks to these measures, it was possible to reduce the exposure dose to about 27% of the originally predicted level. (A.O.)

  7. Underground nuclear explosions. Study of the cavity radius

    International Nuclear Information System (INIS)

    Michaud, L.

    1968-11-01

    An underground nuclear explosion creates a cavity due to the expansion of the surrounding medium vaporized by the shot. The cavity radius is related to the energy of explosion and to the overburden pressure of the medium. The introduction of new elements such as the environment of the device (in a deep hole or in a tunnel) and the cohesion of the medium leads to a relationship which determines this radius. The known French and American underground explosions performed in various media, energy and overburden conditions, satisfy this relationship with a good precision. (author) [fr

  8. Chapter 2. Peculiarities of radioactive particle formation and isotope fractionation resulted from underground nuclear explosions

    International Nuclear Information System (INIS)

    1996-01-01

    Radioactive particles, forming terrain fallouts from underground nuclear explosion differ sufficiently from radioactive particles, produced by atmospheric nuclear explosions. Patterns of underground nuclear explosion development, release of radioactivity to the atmosphere, formation of a cloud and base surge, peculiarities of formed radioactive particles, data on isotope fractionation in radioactive particles are presented. Scheme of particle activation, resulted from underground explosions is given

  9. Summary of nuclear power plant construction

    International Nuclear Information System (INIS)

    Tamura, Saburo

    1973-01-01

    Various conditions for the construction of nuclear power plants in Japan without natural resources were investigated. Expansion of the sites of plants, change of reactor vessels, standardization of nuclear power plants, possiblity of the reduction of construction period, approaching of nuclear power plants to consuming cities, and group construction were studied. Evaluation points were safety and economy. Previous sites of nuclear power plants were mostly on plane ground or cut and enlarge sites. Proposals for underground or offshore plants have been made. The underground plants were made at several places in Europe, and the ocean plant is now approved in U.S.A. as a plant on a man-made island. Vessels for containing nuclear reactors are the last barriers to the leakage of radioactive substance. At the initial period, the vessels were made of steel, which were surrounded by shielding material. Those were dry well type containers. Then, vessel type changed to pressure-suppression type wet containers. Now, it tends to concrete (PC or RC) type containers. There is the policy on the standardization of nuclear power plants by U.S.A.E.C. in recent remarkable activity. The merit and effect of the standardization were studied, and are presented in this paper. Cost of the construction of nuclear power plants is expensive, and interest of money is large. Then, the reduction of construction period is an important problem. The situations of plants approaching to consuming cities in various countries were studied. Idea of group construction is described. (Kato, T.)

  10. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  11. Underground nuclear explosion effects in granite rock fracturing

    International Nuclear Information System (INIS)

    Derlich, S.

    1970-01-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  12. Underground nuclear explosion effects in granite rock fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S [Commissariat a l' Energie Atomique, Centre d' Etude de Bruyeres-le-Chatel (France)

    1970-05-01

    On the Saharan nuclear test site in Hoggar granite, mechanical properties of the altered zones were studied by in situ and laboratory measurements. In situ methods of study are drillings, television, geophysical and permeability measurements. Fracturing is one of the most important nuclear explosion effects. Several altered zones were identified. There are: crushed zone, fractured zone and stressed zone. Collapse of crushed and fractured zone formed the chimney. The extent of each zone can be expressed in terms of yield and of characteristic parameters. Such results are of main interest for industrial uses of underground nuclear explosives in hard rock. (author)

  13. Managing nuclear waste: the underground perspective

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A simplified, very-general overview of the history of nuclear waste management is presented. The sources of different wastes of different levels of radioactivity are discussed. The current governmental program, including three DOE programs currently studying the problems of isolating waste in geological repositories, is discussed briefly. The general thrust of ensuing articles in the same magazine dealing with different facets of the waste-management program is outlined. (BLM)

  14. Letter Report: Contaminant Boundary at the Shoal Underground Nuclear Test

    International Nuclear Information System (INIS)

    Greg Pohll; Karl Pohlmann

    2004-01-01

    As part of the corrective action strategy reached between the U.S. Department of Energy and the State of Nevada, the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations must be addressed. This report provides the contaminant boundary for the Project Shoal Site, based on the groundwater flow and transport model for the site, by Pohlmann (and others)

  15. Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cowan, T. E.; Gohl, S.; Ilgner, C.; Junghans, A. R.; Reinhardt, T. P.; Rimarzig, B.; Reinicke, S.; Röder, M.; Schmidt, K.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M.; Wagner, A.; Wagner, L.; Zuber, K.

    2015-05-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, proteced from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise has been carried out using the same HPGe detector in a typical nuclear astrophysics setup at several sites, including the Dresden Felsenkeller underground laboratory. It was found that its rock overburden of 45m rock, together with an active veto against the remaining muon flux, reduces the background to a level that is similar to the deep underground scenario. Based on this finding, a used 5 MV pelletron tandem with 250 μA upcharge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is underway. The project is now fully funded. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the planned access possibilities for external users will be reported.

  16. Origins of displacements caused by underground nuclear explosions

    International Nuclear Information System (INIS)

    Rinehart, John S.

    1970-01-01

    Elastic theory has been used to calculate the relative displacement that will occur between the two sides of a loose boundary when a plane wave strikes the boundary obliquely. The calculations suggest that the displacements produced along loose fractures and faults close in to the underground nuclear explosions are a direct consequence of reflection of the transient stress wave at this loose boundary. Quantitatively the results agree fairly well with the limited data that are available. (author)

  17. Origins of displacements caused by underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, John S [ESSA Research Laboratories, and Department of Mechanical Engineering, University of Colorado, Boulder, CO (United States)

    1970-05-15

    Elastic theory has been used to calculate the relative displacement that will occur between the two sides of a loose boundary when a plane wave strikes the boundary obliquely. The calculations suggest that the displacements produced along loose fractures and faults close in to the underground nuclear explosions are a direct consequence of reflection of the transient stress wave at this loose boundary. Quantitatively the results agree fairly well with the limited data that are available. (author)

  18. Natural gas production from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-01

    A remote location in Rio Arriba County, NW. New Mexico, is being considered as the site for an experiment in the use of a nuclear explosive to increase production from a natural gas field. A feasibility study has been conducted by the El Paso Natural Gas Co., the U.S. Atomic Energy commission, and the U.S. Bureau of Mines. As presently conceived, a nuclear explosive would be set in an emplacement hole and detonated. The explosion would create a cylinder or ''chimney'' of collapsed rock, and a network of fractures extending beyond the chimney. The fractures are the key effect. These would consist of new fractures, enlargement of existing ones, and movement along planes where strata overlap. In addition, there are a number of intangible but important benefits that could accrue from the stimulating effect. Among these are the great increase in recoverable reserves and the deliverability of large volumes of gas during the periods of high demand. It is believed that this type of well stimulation may increase the total gas production of these low permeability natural gas fields by about 7 times the amounts now attainable.

  19. Mission of mediation on planting underground research laboratories

    International Nuclear Information System (INIS)

    Bataille, C.

    1994-01-01

    France, who chose to have a strong nuclear industry, is confronted to the problem of management, treatment, storage and elimination of radioactive waste. The law defined an important research program with a study of underground storage in laboratories. Here is the report of this mission. A problem of people confidence arose; there is a difference between the great level of science or technology and the level of understanding of public opinion. The only answer brought by a democratic society is to develop information

  20. UNDERGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-11-15

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  1. UNDERGROUND

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Cossetted deep underground, sheltered from cosmic ray noise, has always been a favourite haunt of neutrino physicists. Already in the 1930s, significant limits were obtained by taking a geiger counter down in Holborn 'tube' station, one of the deepest in London's underground system. Since then, neutrino physicists have popped up in many unlikely places - gold mines, salt mines, and road tunnels deep under mountain chains. Two such locations - the 1MB (Irvine/ Michigan/Brookhaven) detector 600 metres below ground in an Ohio salt mine, and the Kamiokande apparatus 1000m underground 300 km west of Tokyo - picked up neutrinos on 23 February 1987 from the famous 1987A supernova. Purpose-built underground laboratories have made life easier, notably the Italian Gran Sasso Laboratory near Rome, 1.4 kilometres below the surface, and the Russian Baksan Neutrino Observatory under Mount Andyrchi in the Caucasus range. Gran Sasso houses ICARUS (April, page 15), Gallex, Borexino, Macro and the LVD Large Volume Detector, while Baksan is the home of the SAGE gallium-based solar neutrino experiment. Elsewhere, important ongoing underground neutrino experiments include Soudan II in the US (April, page 16), the Canadian Sudbury Neutrino Observatory with its heavy water target (January 1990, page 23), and Superkamiokande in Japan (May 1991, page 8)

  2. Salt creep design consideration for underground nuclear waste storage

    International Nuclear Information System (INIS)

    Li, W.T.; Wu, C.L.; Antonas, N.J.

    1983-01-01

    This paper summarizes the creep consideration in the design of nuclear waste storage facilities in salt, describes the non-linear analysis method for evaluating the design adequacy, and presents computational results for the current storage design. The application of rock mechanics instrumentation to assure the appropriateness of the design is discussed. It also describes the design evolution of such a facility, starting from the conceptual design, through the preliminary design, to the detailed design stage. The empirical design method, laboratory tests and numerical analyses, and the underground in situ tests have been incorporated in the design process to assure the stability of the underground openings, retrievability of waste during the operation phase and encapsulation of waste after decommissioning

  3. Progress of Jinping Underground laboratory for Nuclear Astrophysics (JUNA

    Directory of Open Access Journals (Sweden)

    Liu WeiPing

    2016-01-01

    Full Text Available Jinping Underground lab for Nuclear Astrophysics (JUNA will take the advantage of the ultralow background in Jinping underground lab, high current accelerator based on an ECR source and highly sensitive detector to study directly a number of crucial reactions to the hydrostatic stellar evolution for the first time at their relevant stellar energies. In its first phase, JUNA aims at the direct measurements of 25Mg(p,γ26Al, 19F(p,α16O, 13C(α,n16O and 12C(α,γ16O. The experimental setup, which include the accelerator system with high stability and high intensity, the detector system, and the shielding material with low background, will be established during the above research. The current progress of JUNA will be given.

  4. Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions

    Science.gov (United States)

    Carrigan, C. R.; Sun, Y.

    2016-12-01

    Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032

  5. The consequences of underground nuclear testing in French Polynesia

    International Nuclear Information System (INIS)

    Brown, E.T.

    1998-01-01

    France began atmospheric nuclear testing at Mururoa and Fangataufa atolls in the South Pacific in July 1966. Following international protest, atmospheric testing ceased in August 1970. In late 1995, an International Geomechanical Commission (IGC) was created to assess the short- and long-term effects of underground nuclear testing on the stability and hydrology of Mururoa and Fangataufa. With the aid of its consultants, the Commission sought to develop its own understanding of the mechanics and consequences of the underground nuclear tests. It carried out extensive numerical analyses of shock wave effects, seismic wave propagation, slope stability and pre- and post-test hydrology. However, in its studies, the IGC was constrained to use the data made available to it by the French authorities. The Commission's report (International Geomechanical Commission 1998) has been submitted to the French Government. This article draws heavily on parts of that report. The Commission's observations and analyses show that there has been no apparent change, on the atoll scale, to the overall mechanical stability of either atoll as a consequence of the underground nuclear tests. The main observable consequences of the tests are underwater slope failures, open fractures on the rim surface and surface settlements. The fractures visible on the surface are generally associated with subsurface slope displacements and occur only in the carbonates. There is no evidence that slope failures or settlements have occurred in the underlying volcanics. There has been no significant change in the long-term (beyond 500 years) hydrology of either atoll. The IGC estimates that the long-term change in the natural groundwater flow will be no more than 1%. There are, however, significant short-term changes locally around the test sites, which are briefly outlined

  6. Enlarging the underground hydroelectric plant at Villarino, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Oriard, L.L.

    1997-05-01

    Near the village of Villarino de los Aires, in the province of Salamanca, Spain, was an existing underground hydroelectric power plant. A major enlargement was undertaken to increase the electrical generating capacity, under a contract awarded to a joint venture of Dragados y Construcciones, S. A. (Spain), Entrecanales y Tavora, S. A. (Spain), and S.A. Conrad Zschokke (Switzerland). The enlargement required the excavation of a large and complex underground system of tunnels, shafts and chambers adjacent to existing facilities and interconnected with these facilities. The existing machine hall and transformer chamber were both extended, requiring the blasting of the existing end walls. The drilling, blasting and excavating of the underground system had to be done without damage to existing underground chambers and tunnels, or any of the existing structures, equipment or instrumentation facilities, often within just a few feet of the blasting. This required careful control of vibrations, airblast overpressures and dust. Because the only available non-electric detonating systems were found to be unreliable and unsafe, electric systems would be preferred if they could be used in a safe manner at this site. High electrical potentials existed at the site, and the facilities could not be shut down. Electrical fields were studied carefully, both in the underground environment and above the ground surface. Based on these results, it was concluded that electric detonators could be used if special blasting procedures were developed and followed. In accord with contracting practices of this Spanish agency, the contract was not awarded to the lowest bidder, but to the bidder who demonstrated the best understanding of the project and who presented the best technical proposal for conducting the work to a conclusion that would be satisfactory to the owner. The development of the technical proposal was a two-month effort for a technical group and support staff, prepared in Madrid.

  7. Underground Nuclear Explosions and Release of Radioactive Noble Gases

    Science.gov (United States)

    Dubasov, Yuri V.

    2010-05-01

    Over a period in 1961-1990 496 underground nuclear tests and explosions of different purpose and in different rocks were conducted in the Soviet Union at Semipalatinsk and anovaya Zemlya Test Sites. A total of 340 underground nuclear tests were conducted at the Semipalatinsk Test Site. One hundred seventy-nine explosions (52.6%) among them were classified as these of complete containment, 145 explosions (42.6%) as explosions with weak release of radioactive noble gases (RNG), 12 explosions (3.5%) as explosions with nonstandard radiation situation, and four excavation explosions with ground ejection (1.1%). Thirty-nine nuclear tests had been conducted at the Novaya Zemlya Test Site; six of them - in shafts. In 14 tests (36%) there were no RNG release. Twenty-three tests have been accompanied by RNG release into the atmosphere without sedimental contamination. Nonstandard radiation situation occurred in two tests. In incomplete containment explosions both early-time RNG release (up to ~1 h) and late-time release from 1 to 28 h after the explosion were observed. Sometimes gas release took place for several days, and it occurred either through tunnel portal or epicentral zone, depending on atmospheric air temperature.

  8. Radioactive rare gases emission at underground nuclear explosions

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.

    2016-01-01

    The examples of radioactive rare gases emission at underground nuclear explosions conducted in the USSR on the Novaya Zemlya and Semipalatinsk test sites are considered. It is pointed out that in the case of evasive explosion in vertical wells without apparent radioactive gases emission the samples of subsurface gas must contain the traces of radioactive rare gases. Under the inspection of evasive explosion in horizontal workings of rock massif, one should guided by the analysis of atmospheric air samples in the inspected area [ru

  9. Damage caused to houses and equipment by underground nuclear explosions

    International Nuclear Information System (INIS)

    Delort, F.; Guerrini, C.

    1969-01-01

    A description is given of the damaged caused to various structures, buildings, houses, mechanical equipment and electrical equipment by underground nuclear explosions in granite. For each type of equipment or building are given the limiting distances for a given degree of damage. These distances have been related to a parameter characterizing the movement of the medium; it is thus possible to generalize the results obtained in granite, for different media. The problem of estimating the damage caused at a greater distance from the explosion is considered. (authors) [fr

  10. Inherent security benefits of underground dry storage of nuclear materials

    International Nuclear Information System (INIS)

    Moore, R.D.; Zahn, T.

    1997-07-01

    This paper, augmented by color slides and handouts, will examine the inherent security benefits of underground dry storage of nuclear materials. Specific items to be presented include: the successful implementation of this type of storage configuration at Argonne National Laboratory - West; facility design concepts with security as a primary consideration; physical barriers achieved by container design; detection, assessment, and monitoring capabilities; and open-quotes self protectionclose quotes strategies. This is a report on the security features of such a facility. The technical operational aspects of the facility are beyond the scope of this paper

  11. Contaminant Boundary at the Faultless Underground Nuclear Test

    International Nuclear Information System (INIS)

    Greg Pohll; Karl Pohlmann; Jeff Daniels; Ahmed Hassan; Jenny Chapman

    2003-01-01

    The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision

  12. Analysis on one underground nuclear waste repository rock mass in USA

    International Nuclear Information System (INIS)

    Ha Qiuling; Zhang Tiantian

    2012-01-01

    When analyzing the rock mass of a underground nuclear waste repository, the current studies are all based on the loading mechanical condition, and the unloading damage of rock mass is unconsidered. According to the different mechanical condition of actual engineering rock mass of loading and unloading, this paper implements a comprehensive analysis on the rock mass deformation of underground nuclear waste repository through the combination of present loading and unloading rock mass mechanics. It is found that the results of comprehensive analysis and actual measured data on the rock mass deformation of underground nuclear waste repository are basically the same, which provide supporting data for the underground nuclear waste repository. (authors)

  13. Measurents of natural radioactivity in an underground hydroelectric power plant

    International Nuclear Information System (INIS)

    Malvicini, Andrea; Esposito, PierLuigi; Depiesse, Danielle

    2008-01-01

    In underground working places, especially when ventilation is not properly regulated, large amounts of natural radioactivity can be found. This can give rise to potential exposures of non-negligible magnitude. Direct measurements of gamma radiation and radon were carried out during excavation works for the construction of an hydroelectric plant in the north of Italy. After the construction of the plant, in order to reduce radon concentrations and to improve ventilation effectiveness, the main entry gate was motorized and automated. Then, in order to find the optimal speed for the fans located in the galleries and in the power plant, radon and airflow velocity were measured. Correlation data between airflow and radon concentrations were found. An automatic regulation system has been set up using air velocity detectors and slightly modifying the software for the control and regulation of the power plant. Measurements must be made in order to identify radon sources and evaluate quantitative contributions as a function of ventilation. Underground hydroelectric plants are provided with entry galleries as well as secondary galleries from which radon coming out from the soil and the walls can exhale in quantities that depend on the contents of 226 Ra in the rocks and in the building materials. Other radon sources are the water coming out from the walls of the galleries and the water in the deep well located at the bottom of the power plant. Geological studies and mathematical models are useful means for the analysis of the relative contributions of the main sources as well as for the prediction of the effects deriving from modifications of the hydroelectric plant ventilation system or resulting from other important structural changes. (author)

  14. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    Science.gov (United States)

    Hampel, V.E.

    1988-05-17

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  15. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    Science.gov (United States)

    Hampel, Viktor E.

    1989-01-01

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  16. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    International Nuclear Information System (INIS)

    Hampel, V.E.

    1989-01-01

    The author presents a nuclear reactor for generating electricity disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor

  17. Nuclear power plants

    International Nuclear Information System (INIS)

    Margulova, T.Ch.

    1976-01-01

    The textbook focuses on the technology and the operating characteristics of nuclear power plants equiped with pressurized water or boiling water reactors, which are in operation all over the world at present. The following topics are dealt with in relation to the complete plant and to economics: distribution and consumption of electric and thermal energy, types and equipment of nuclear power plants, chemical processes and material balance, economical characteristics concerning heat and energy, regenerative preheating of feed water, degassing and condenser systems, water supply, evaporators, district heating systems, steam generating systems and turbines, coolant loops and pipes, plant siting, ventilation and decontamination systems, reactor operation and management, heat transfer including its calculation, design of reactor buildings, and nuclear power plants with gas or sodium cooled reactors. Numerous technical data of modern Soviet nuclear power plants are included. The book is of interest to graduate and post-graduate students in the field of nuclear engineering as well as to nuclear engineers

  18. Summary of Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    International Nuclear Information System (INIS)

    Taylor, S.R.; Kamm, J.R.

    1993-01-01

    This document contains the Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium held in Durango, Colorado on March 23-25, 1993. The symposium was sponsored by the Office of Arms Control and Nonproliferation of the United States Department of Energy and hosted by the Source Region Program of Los Alamos National Laboratory. The purpose of the meeting was to discuss state-of-the-art advances in numerical simulations of nuclear explosion phenomenology for the purpose of test ban monitoring. Another goal of the symposium was to promote discussion between seismologists and explosion source-code calculators. Presentation topics include the following: numerical model fits to data, measurement and characterization of material response models, applications of modeling to monitoring problems, explosion source phenomenology, numerical simulations and seismic sources

  19. SECURE nuclear district heating plant

    International Nuclear Information System (INIS)

    Nilsson; Hannus, M.

    1978-01-01

    The role foreseen for the SECURE (Safe Environmentally Clean Urban REactor) nuclear district heating plant is to provide the baseload heating needs of primarily the larger and medium size urban centers that are outside the range of waste heat supply from conventional nuclear power stations. The rationale of the SECURE concept is that the simplicity in design and the inherent safety advantages due to the use of low temperatures and pressures should make such reactors economically feasible in much smaller unit sizes than nuclear power reactors and should make their urban location possible. It is felt that the present design should be safe enough to make urban underground location possible without restriction according to any criteria based on actual risk evaluation. From the environmental point of view, this is a municipal heat supply plant with negligible pollution. Waste heat is negligible, gaseous radioactivity release is negligible, and there is no liquid radwaste release. Economic comparisons show that the SECURE plant is competitive with current fossil-fueled alternatives. Expected future increase in energy raw material prices will lead to additional energy cost advantages to the SECURE plant

  20. Nuclear power plant outages

    International Nuclear Information System (INIS)

    1998-01-01

    The Finnish Radiation and Nuclear Safety Authority (STUK) controls nuclear power plant safety in Finland. In addition to controlling the design, construction and operation of nuclear power plants, STUK also controls refuelling and repair outages at the plants. According to section 9 of the Nuclear Energy Act (990/87), it shall be the licence-holder's obligation to ensure the safety of the use of nuclear energy. Requirements applicable to the licence-holder as regards the assurance of outage safety are presented in this guide. STUK's regulatory control activities pertaining to outages are also described

  1. Integrated Nuclear Recycle Plant

    International Nuclear Information System (INIS)

    Patodi, Anuj; Parashar, Abhishek; Samadhiya, Akshay K.; Ray, Saheli; Dey, Mitun; Singh, K.K.

    2017-01-01

    Nuclear Recycle Board (NRB), Tarapur proposes to set up an 'Integrated Nuclear Recycle Plant' at Tarapur. This will be located in the premises of BARC facilities. The project location is at coastal town of Tarapur, 130 Km north of Mumbai. Project area cover of INRP is around 80 hectares. The plant will be designed to process spent fuel received from Pressurized Heavy Water Reactors (PHWRs). This is the first large scale integrated plant of the country. INRP will process spent fuel obtained from indigenous nuclear power plants and perform left over nuclear waste disposal

  2. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  3. Safety in nuclear power plants

    International Nuclear Information System (INIS)

    Koeberlein, K.

    1987-01-01

    In nuclear power plants large amounts of radioactive fission products ensue from the fission of uranium. In order to protect the environment, the radioactive material is confined in multiple 'activity barriers' (crystal matrix of the fuel, fuel cladding, coolant boundary, safety containment, reactor building). These barriers are protected by applying a defense-in-depth concept (high quality requirements, protection systems which recognize and terminate operational incidents, safety systems to cope with accidents). In spite of a favorable safety record of German nuclear power plants it is obvious - and became most evident by the Chernobyl accident - that absolute safety is not achievable. At Chernobyl, however, design disadvantages of that reactor type (like positive reactivity feedback of coolant voiding, missing safety containment) played an important role in accident initiation and progression. Such features of the Russian 'graphite-moderated pressure tube boiling water reactor' are different from those of light water reactors operating in western countries. The essential steps of the waste management of the nuclear fuel cycle ('Entsorgung') are the interim storage, the shipment, and the reprocessing of the spent fuel and the final repository of radioactive waste. Reprocessing means the separation of fossil material (uranium, plutonium) from radioactive waste. Legal requirements for radiological protection of the environment, which are identical for nuclear power plants and reprocessing plant, are complied with by means of comprehensive filter systems. Safety problems of a reprocessing plant are eased considerably by the fact that system pressures, process temperatures and energy densities are low. In order to confine the radioactive waste from the biosphere for a very long period of time, it is to be discarded after appropriate treatment into the deep geological underground of salt domes. (orig./HP) [de

  4. The role of underground laboratories in nuclear waste disposal programmes

    International Nuclear Information System (INIS)

    2001-01-01

    Underground research laboratories (URLs) are essential to provide the scientific and technical information and practical experience that are needed for the design and construction of nuclear waste disposal facilities, as well as for the development of the safety case that must be presented at various stages of repository development. This report provides an overview of the purpose of URLs within repository development programmes; the range of URLs that have been developed, or are planned, in NEA Member countries to date; the various contributions that such facilities can make to repository development programmes and the development of a safety case; considerations on the timing of developing a URL within a national programme; and the opportunities and benefits of international co-operation in relation to URLs. (author)

  5. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  6. Nuclear power plant construction

    International Nuclear Information System (INIS)

    Lima Moreira, Y.M. de.

    1979-01-01

    The legal aspects of nuclear power plant construction in Brazil, derived from governamental political guidelines, are presented. Their evolution, as a consequence of tecnology development is related. (A.L.S.L.) [pt

  7. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  8. Consideration of impact of atmospheric intrusion in subsurface sampling for investigation of suspected underground nuclear explosions

    International Nuclear Information System (INIS)

    Lowrey, J.D.; Bowyer, T.W.; Haas, D.A.; Hayes, J.C.; Biegalski, S.R.

    2016-01-01

    Radioactive noble gases radioxenon and radioargon constitute the primary smoking gun of an underground nuclear explosion. The aim of subsurface sampling of soil gas as part of an on-site inspection (OSI) is to search for evidence of a suspected underground nuclear event. It has been hypothesized that atmospheric gas can disturb soil gas concentrations and therefore potentially add to problems in civilian source discrimination verifying treaty compliance under the comprehensive nuclear-test ban treaty. This work describes a study of intrusion of atmospheric air into the subsurface and its potential impact on an OSI using results of simulations from the underground transport of environmental xenon (UTEX) model. (author)

  9. NUCLEAR POWER PLANT

    Science.gov (United States)

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  10. Nuclear power plants maintenance

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Nuclear power plants maintenance now appears as an important factor contributing to the competitivity of nuclea energy. The articles published in this issue describe the way maintenance has been organized in France and how it led to an actual industrial activity developing and providing products and services. An information note about Georges Besse uranium enrichment plant (Eurodif) recalls that maintenance has become a main data not only for power plants but for all nuclear industry installations. (The second part of this dossier will be published in the next issue: vol. 1 January-February 1989) [fr

  11. KWU Nuclear Plant Analyzer

    International Nuclear Information System (INIS)

    Bennewitz, F.; Hummel, R.; Oelmann, K.

    1986-01-01

    The KWU Nuclear Plant Analyzer is a real time engineering simulator based on the KWU computer programs used in plant transient analysis and licensing. The primary goal is to promote the understanding of the technical and physical processes of a nuclear power plant at an on-site training facility. Thus the KWU Nuclear Plant Analyzer is available with comparable low costs right at the time when technical questions or training needs arise. This has been achieved by (1) application of the transient code NLOOP; (2) unrestricted operator interaction including all simulator functions; (3) using the mainframe computer Control Data Cyber 176 in the KWU computing center; (4) four color graphic displays controlled by a dedicated graphic computer, no control room equipment; and (5) coupling of computers by telecommunication via telephone

  12. Nuclear Power Plants (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Lyerly, Ray L.; Mitchell III, Walter [Southern Nuclear Engineering, Inc.

    1973-01-01

    Projected energy requirements for the future suggest that we must employ atomic energy to generate electric power or face depletion of our fossil-fuel resources—coal, oil, and gas. In short, both conservation and economic considerations will require us to use nuclear energy to generate the electricity that supports our civilization. Until we reach the time when nuclear power plants are as common as fossil-fueled or hydroelectric plants, many people will wonder how the nuclear plants work, how much they cost, where they are located, and what kinds of reactors they use. The purpose of this booklet is to answer these questions. In doing so, it will consider only central station plants, which are those that provide electric power for established utility systems.

  13. The 20th nuclear explosion test of the Peoples' Republic of China (underground nuclear test)

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    (1) The New China News Agency and the Radio Peking announced that China conducted the underground nuclear explosion test on 17 October, 1976. However, no exact data concerning the data, the place and the scale of this test was stated in above announcement. (2) However, relatively high radioactivity than that of normal level was detected in the rain and dry fallout samples collected from several prefectures. (author)

  14. Nuclear power plant safety

    International Nuclear Information System (INIS)

    Otway, H.J.

    1974-01-01

    Action at the international level will assume greater importance as the number of nuclear power plants increases, especially in the more densely populated parts of the world. Predictions of growth made prior to October 1973 [9] indicated that, by 1980, 14% of the electricity would be supplied by nuclear plants and by the year 2000 this figure would be about 50%. This will make the topic of international co-operation and standards of even greater importance. The IAEA has long been active in providing assistance to Member States in the siting design and operation of nuclear reactors. These activities have been pursued through advisory missions, the publication of codes of practice, guide books, technical reports and in arranging meetings to promote information exchange. During the early development of nuclear power, there was no well-established body of experience which would allow formulation of internationally acceptable safety criteria, except in a few special cases. Hence, nuclear power plant safety and reliability matters often received an ad hoc approach which necessarily entailed a lack of consistency in the criteria used and in the levels of safety required. It is clear that the continuation of an ad hoc approach to safety will prove inadequate in the context of a world-wide nuclear power industry, and the international trade which this implies. As in several other fields, the establishment of internationally acceptable safety standards and appropriate guides for use by regulatory bodies, utilities, designers and constructors, is becoming a necessity. The IAEA is presently planning the development of a comprehensive set of basic requirements for nuclear power plant safety, and the associated reliability requirements, which would be internationally acceptable, and could serve as a standard frame of reference for nuclear plant safety and reliability analyses

  15. Recognition of underground nuclear explosion and natural earthquake based on neural network

    International Nuclear Information System (INIS)

    Yang Hong; Jia Weimin

    2000-01-01

    Many features are extracted to improve the identified rate and reliability of underground nuclear explosion and natural earthquake. But how to synthesize these characters is the key of pattern recognition. Based on the improved Delta algorithm, features of underground nuclear explosion and natural earthquake are inputted into BP neural network, and friendship functions are constructed to identify the output values. The identified rate is up to 92.0%, which shows that: the way is feasible

  16. Nuclear plant life extension

    International Nuclear Information System (INIS)

    Negin, C.A.

    1989-01-01

    The nuclear power industry's addressing of life extension is a natural trend in the maturation of this technology after 20 years of commercial operation. With increasing emphasis on how plants are operated, and less on how to build them, attention is turning on to maximizing the use of these substantial investments. The first studies of life extension were conducted in the period from 1978 and 1982. These were motivated by the initiation, by the Nuclear Regulatory Commission (NRC), of studies to support decommissioning rulemaking. The basic conclusions of those early studies that life extension is feasible and worth pursuing have not been changed by the much more extensive investigations that have since been conducted. From an engineering perspective, life extension for nuclear plants is fundamentally the same as for fossil plants

  17. Benchmarking Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jakic, I.

    2016-01-01

    One of the main tasks an owner have is to keep its business competitive on the market while delivering its product. Being owner of nuclear power plant bear the same (or even more complex and stern) responsibility due to safety risks and costs. In the past, nuclear power plant managements could (partly) ignore profit or it was simply expected and to some degree assured through the various regulatory processes governing electricity rate design. It is obvious now that, with the deregulation, utility privatization and competitive electricity market, key measure of success used at nuclear power plants must include traditional metrics of successful business (return on investment, earnings and revenue generation) as well as those of plant performance, safety and reliability. In order to analyze business performance of (specific) nuclear power plant, benchmarking, as one of the well-established concept and usual method was used. Domain was conservatively designed, with well-adjusted framework, but results have still limited application due to many differences, gaps and uncertainties. (author).

  18. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  19. Numerical simulation of stress wave propagation from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, J T; Petersen, F L [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the

  20. Numerical simulation of stress wave propagation from underground nuclear explosions

    International Nuclear Information System (INIS)

    Cherry, J.T.; Petersen, F.L.

    1970-01-01

    This paper presents a numerical model of stress wave propagation (SOC) which uses material properties data from a preshot testing program to predict the stress-induced effects on the rock mass involved in a Plowshare application. SOC calculates stress and particle velocity history, cavity radius, extent of brittle failure, and the rock's efficiency for transmitting stress. The calculations are based on an equation of state for the rock, which is developed from preshot field and laboratory measurements of the rock properties. The field measurements, made by hole logging, determine in situ values of the rock's density, water content, and propagation velocity for elastic waves. These logs also are useful in judging the layering of the rock and in choosing which core samples to test in the laboratory. The laboratory analysis of rock cores includes determination of hydrostatic compressibility to 40 kb, triaxial strength data, tensile strength, Hugoniot elastic limit, and, for the rock near the point of detonation, high-pressure Hugoniot data. Equation-of-state data are presented for rock from three sites subjected to high explosive or underground nuclear shots, including the Hardhat and Gasbuggy sites. SOC calculations of the effects of these two shots on the surrounding rock are compared with the observed effects. In both cases SOC predicts the size of the cavity quite closely. Results of the Gasbuggy calculations indicate that useful predictions of cavity size and chimney height can be made when an adequate preshot testing program is run to determine the rock's equation of state. Seismic coupling is very sensitive to the low-pressure part of the equation of state, and its successful prediction depends on agreement between the logging data and the static compressibility data. In general, it appears that enough progress has been made in calculating stress wave propagation to begin looking at derived numbers, such as number of cracks per zone, for some insight into the

  1. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  2. Nuclear power plant analyzer

    International Nuclear Information System (INIS)

    Stritar, A.

    1986-01-01

    The development of Nuclear Power Plant Analyzers in USA is described. There are two different types of Analyzers under development in USA, the forst in Idaho and Los Alamos national Lab, the second in brookhaven National lab. That one is described in detail. The computer hardware and the mathematical models of the reactor vessel thermalhydraulics are described. (author)

  3. Nuclear plant scram reduction

    International Nuclear Information System (INIS)

    Wiegle, H.R.

    1986-01-01

    The Nuclear Utility Management and Human Resources Committee (NUMARC) is a confederation of all 55 utilities with nuclear plants either in operation or under construction. NUMARC was formed in April 1984 by senior nuclear executives with hundreds of man-years of plant experience to improve (plant) performance and resolve NRC concerns. NUMARC has adopted 10 commitments in the areas of management, training, staffing and performance. One of these commitments is to strive to reduce automatic trips to 3 per year per unit for calendar year 1985 for plants in commercial operation greater than 3 years (with greater than 25% capacity factor). This goal applies to any unplanned automatic protection system trips at any time when the reactor is critical. Each utility has committed to develop methods to thoroughly evaluate all unplanned automatic trips to identify the root causes and formulate plans to correct the root causes thus reducing future unplanned scrams. As part of this program, the Institute of Nuclear Power Operations (INPO) collects and evaluates information on automatic reactor trips. It publishes the results of these evaluations to aid the industry to identify root causes and corrective actions

  4. Nuclear plant license renewal

    International Nuclear Information System (INIS)

    Gazda, P.A.; Bhatt, P.C.

    1991-01-01

    During the next 10 years, nuclear plant license renewal is expected to become a significant issue. Recent Electric Power Research Institute (EPRI) studies have shown license renewal to be technically and economically feasible. Filing an application for license renewal with the Nuclear Regulatory Commission (NRC) entails verifying that the systems, structures, and components essential for safety will continue to perform their safety functions throughout the license renewal period. This paper discusses the current proposed requirements for this verification and the current industry knowledge regarding age-related degradation of structures. Elements of a license renewal program incorporating NRC requirements and industry knowledge including a schedule are presented. Degradation mechanisms for structural components, their significance to nuclear plant structures, and industry-suggested age-related degradation management options are also reviewed

  5. Nuclear plant safety

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The four-member New York Power Pool Panel concluded that, for a number of reasons, no nuclear power plant in New York State is prone to the type of accident that occurred at Three Mile Island (TMI). The Panel further concluded that changes in operating practices, both regulatory and voluntary, and heightened sensitivity to reactor-core-cooling requirements will substantially reduce the chances for another such accident anywhere. Panel members found that New York State utilities have taken a responsible attitude with regard to requirements set forth by the Nuclear Regulatory Commission (NRC) as a result of the TMI accident. In a cover letter that accompanied the report to Federal and New York state officials, New York Power Pool Executive Committee Chairman Francis E. Drake, Jr. expressed hope that the report will alleviate public fears of nuclear reactors and promote wider acceptance of nuclear energy as an economic and safe means of power production. 17 references

  6. Nuclear plants - military hostages

    International Nuclear Information System (INIS)

    Ramberg, B.

    1986-01-01

    Recent events suggest that nuclear reactors could make tempting military or terrorist targets. Despite the care with which most reactors are built, studies document their vulnerability to willful destruction through disruption of coolant mechanisms both inside and outside the containment building. In addition to reactors, such nuclear support facilities as fuel fabrication, reprocessing, and waste storage installations may be attractive military targets. A nuclear bomb which exploded in the vicinity of a reactor could increase its lethal effects by one-third. The implications of this is vulnerability for Middle East stability as well as to other volatile regions. The author suggests several avenues for controlling the dangers: international law, military and civil defense, facility siting, increasing plant safety, and the international management of nuclear energy. 21 references

  7. Beloyarsk Nuclear Power Plant

    International Nuclear Information System (INIS)

    1997-01-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities

  8. Control of the dynamic environment produced by underground nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D L; Jackson, E C; Miller, A B [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    One important aspect of any underground nuclear explosion is recording, retrieval and analysis of experiment and/or device performance. Most of the information is recorded or conditioned on sensitive electronic equipment and often transmitted via antennas that must remain in alignment. Sometimes diagnostic packages are located in towers near surface ground zero (SGZ). Also, some equipment is needed for timing and firing as well as safety requirements. Generally it is desirable to locate this equipment as close to SGZ as possible. This paper is a summary of LRL's method of controlling the dynamic environment in order to get good quality data and protect equipment while optimizing the cost. The overall problem blends together: (1) definition of input, i.e. ground shock parameters; (2) shock sensitivity or fragility level of equipment to the input and purpose (i.e. does it record or transmit through shock arrival time?); and (3) design of a fail-safe shock mount (SM) system to modify the shock environment when required. Before any SM system can be designed, items I and 2 must be answered as the ground shock can vary over a wide range and the sensitivity/fragility of the equipment can vary from less than 1/2 g to more than 100 g's, particularly if recording is done through shock arrival time. Keeping antennas in alignment is a somewhat different problem. Whenever possible the design of the SM system is based only on peak input parameters of the ground motion since detailed time histories of the ground motions are very difficult to predict. For towers and other systems which require detailed time histories, computer codes have been developed which allow a parametric study of the input ground motion's effect on the response of the system. This paper deals mainly with the close-in region where the dynamic environment is quite severe. In this region, non-standard methods and analysis are required. Out of this region, more standard methods can be used. (author)

  9. Control of the dynamic environment produced by underground nuclear explosives

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Jackson, E.C.; Miller, A.B.

    1970-01-01

    One important aspect of any underground nuclear explosion is recording, retrieval and analysis of experiment and/or device performance. Most of the information is recorded or conditioned on sensitive electronic equipment and often transmitted via antennas that must remain in alignment. Sometimes diagnostic packages are located in towers near surface ground zero (SGZ). Also, some equipment is needed for timing and firing as well as safety requirements. Generally it is desirable to locate this equipment as close to SGZ as possible. This paper is a summary of LRL's method of controlling the dynamic environment in order to get good quality data and protect equipment while optimizing the cost. The overall problem blends together: (1) definition of input, i.e. ground shock parameters; (2) shock sensitivity or fragility level of equipment to the input and purpose (i.e. does it record or transmit through shock arrival time?); and (3) design of a fail-safe shock mount (SM) system to modify the shock environment when required. Before any SM system can be designed, items I and 2 must be answered as the ground shock can vary over a wide range and the sensitivity/fragility of the equipment can vary from less than 1/2 g to more than 100 g's, particularly if recording is done through shock arrival time. Keeping antennas in alignment is a somewhat different problem. Whenever possible the design of the SM system is based only on peak input parameters of the ground motion since detailed time histories of the ground motions are very difficult to predict. For towers and other systems which require detailed time histories, computer codes have been developed which allow a parametric study of the input ground motion's effect on the response of the system. This paper deals mainly with the close-in region where the dynamic environment is quite severe. In this region, non-standard methods and analysis are required. Out of this region, more standard methods can be used. (author)

  10. Nuclear Plant Data Bank

    International Nuclear Information System (INIS)

    Booker, C.P.; Turner, M.R.; Spore, J.W.

    1986-01-01

    The Nuclear Plant Data Bank (NPDB) is being developed at the Los Alamos National Laboratory to assist analysts in the rapid and accurate creation of input decks for reactor transient analysis. The NPDB will reduce the time and cost of the creation or modification of a typical input deck. This data bank will be an invaluable tool in the timely investigation of recent and ongoing nuclear reactor safety analysis. This paper discusses the status and plans for the NPDB development and describes its anticipated structure and capabilities

  11. The strengthening and repair of underground structures: A new approach to the management of nuclear waste

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1991-01-01

    This paper presents three closely related ideas and technologies: (1) The secure, repairable, long time confinement of nuclear radioactive waste underground by a large surrounding region of compressive overstress; (2) The inherent tectonic weakness and vulnerability of the normal underground environment and its modification by overstress; (3) The process of creating overstress by the sequential periodic high pressure injection of a finite gel strength rapid setting grout. 12 refs., 6 figs

  12. Ardennes nuclear power plant

    International Nuclear Information System (INIS)

    1974-12-01

    The SENA nuclear power plant continued to operate, as before, at authorized rated power, namely 905MWth during the first half year and 950MWth during the second half year. Net energy production:2028GWh; hours phased to the line: 7534H; availability factor: 84%; utilization factor: 84%; total shutdowns:19; number of scrams:10; cost per KWh: 4,35 French centimes. Overall, the plant is performing very satisfactory. Over the last three years net production has been 5900GWh, corresponding to in average utilization factor of 83%

  13. Nuclear power plant

    International Nuclear Information System (INIS)

    Orlov, V.V.; Rineisky, A.A.

    1975-01-01

    The invention is aimed at designing a nuclear power plant with a heat transfer system which permits an accelerated fuel regeneration maintaining relatively high initial steam values and efficiency of the steam power circuit. In case of a plant with three circuits the secondary cooling circuit includes a steam generator with preheater, evaporator, steam superheater and intermediate steam superheater. At the heat supply side the latter is connected with its inlet to the outlet of the evaporator and with its outlet to the low-temperature side of the secondary circuit

  14. Adaptation of magnesian cements to underground storage of nuclear wastes

    International Nuclear Information System (INIS)

    Dufournet, F.

    1987-01-01

    The aim of this thesis is the experimental study of magnesium oxychloride cements as filling materials for underground granitic cavities containing high level radioactive wastes. After a bibliographic study, mechanical properties are examined before and after setting, in function of the ratio MgO/MgCl 2 . Then behavior with water is investigated: swelling, cracking and leaching [fr

  15. Nuclear power plant

    International Nuclear Information System (INIS)

    Aisaka, Tatsuyoshi; Kamahara, Hisato; Yanagisawa, Ko.

    1982-01-01

    Purpose: To prevent corrosion stress cracks in structural materials in a BWR type nuclear power plant by decreasing the oxygen concentration in the reactor coolants. Constitution: A hydrogen injector is connected between the condensator and a condensate clean up system of a nuclear power plant. The injector is incorporated with hydrogenated compounds formed from metal hydrides, for example, of alloys such as lanthanum-nickel alloy, iron titanium alloy, vanadium, palladium, magnesium-copper alloy, magnesium-nickel alloy and the like. Even if the pressure of hydrogen obtained from a hydrogen bomb or by way of water electrolysis is changed, the hydrogen can always be injected into a reactor coolant at a pressure equal to the equilibrium dissociation pressure for metal hydride by introducing the hydrogen into the hydrogen injector. (Seki, T.)

  16. Third generation nuclear plants

    Science.gov (United States)

    Barré, Bertrand

    2012-05-01

    After the Chernobyl accident, a new generation of Light Water Reactors has been designed and is being built. Third generation nuclear plants are equipped with dedicated systems to insure that if the worst accident were to occur, i.e. total core meltdown, no matter how low the probability of such occurrence, radioactive releases in the environment would be minimal. This article describes the EPR, representative of this "Generation III" and a few of its competitors on the world market.

  17. Nuclear power plant

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1976-01-01

    The invention concerns a quick-acting valve on the main-steam pipe of a nuclear power plant. The engineering design of the valve is to be improved. To the main valve disc, a piston-operated auxiliary valve disc is to be assigned closing a section of the area of the main valve disc. This way it is avoided that the drive of the main valve disc has to carry out different movements. 15 sub-claims. (UWI) [de

  18. Managing nuclear waste from power plants

    International Nuclear Information System (INIS)

    Keeney, R.L.; Winterfeldt, D. von

    1994-01-01

    National strategies to manage nuclear waste from commercial nuclear power plants are analyzed and compared. The current strategy is to try to operate a repository at Yucca Mountain, Nevada, to dispose storage at a centralized facility or next to nuclear power plants. If either of these is pursued now, the analysis assumes that a repository will be built in 2100 for waste not subsequently put to use. The analysis treats various uncertainties: whether a repository at Yucca Mountain would be licensed, possible theft and misuse of the waste, innovations in repository design and waste management, the potential availability of a cancer cure by 2100, and possible future uses of nuclear waste. The objectives used to compare alternatives include concerns for health and safety, environmental and socioeconomic impacts, and direct economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs, as well as equity concerns (geographical, intergenerational, and procedural), indirect economic costs to electricity ratepayers, federal government responsibility to manage nuclear waste, and implications of theft and misuse of nuclear waste. The analysis shows that currently building an underground repository at Yucca Mountain is inferior to other available strategies by the equivalent of $10,000 million to $50,000 million. This strongly suggests that this policy should be reconsidered. A more detailed analysis using the framework presented would help to define a new national policy to manage nuclear waste. 36 refs., 3 figs., 17 tabs

  19. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

    2009-01-09

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors

  20. Dynamic analysis and structural design of underground nuclear reactor containments

    International Nuclear Information System (INIS)

    Kierans, T.W.; Reddy, D.V.

    1975-01-01

    All concept options are assumed to be similar in design criteria for structural competence to contain radioactivity and fuel heat and meet the functional, servicing, protective and aesthetic requirements. The choice of underground siting should be based on criteria developed from the sequential consideration of load-causing phenomena, concept and site characteristics. From the criteria, loads for a particular concept and site are calculated and the design formulated. (orig./ORU) [de

  1. On nuclear power plant uprating

    International Nuclear Information System (INIS)

    Ho, S. Allen; Bailey, James V.; Maginnis, Stephen T.

    2004-01-01

    Power uprating for commercial nuclear power plants has become increasingly attractive because of pragmatic reasons. It provides quick return on investment and competitive financial benefits, while involving low risks regarding plant safety and public objection. This paper briefly discussed nuclear plant uprating guidelines, scope for design basis analysis and engineering evaluation, and presented the Salem nuclear power plant uprating study for illustration purposes. A cost and benefit evaluation of the Salem power uprating was also included. (author)

  2. A Careful Blasting Technique During Construction of underground Openings for Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Ester, Z.; Vrkljan, D.

    1998-01-01

    Underground nuclear waste repositories are constructed in natural rock formations, with heterogenous compound and structure, and should be accommodated in design and construction according to rock conditions. The quality insurance of underground repository, during and after construction, is most demanding in view of contour and category of excavation. the technology of drilling and blasting, regarding the mechanical excavation, is accommodated in sense of response to cross section magnitude of underground openings, the rock conditions and category, the support performance and other design demands. The high level rock damage around underground openings, that is in opposition with reaching quality insurance. Conventional construction technology can be successful by implementation of controlled blasting technique avoiding extensive rock weakness. (author)

  3. Nuclear Power Plant 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Again this year, our magazine presents the details of the conference on Spanish nuclear power plant operation held in February and that was devoted to 1996 operating results. The Protocol for Establishment of a New Electrical Sector Regulation that was signed last December will undoubtedly represent a new challenge for the nuclear industry. By clearing stating that current standards of quality and safety should be maintained or even increased if possible, the Protocol will force the Sector to improve its productivity, which is already high as demonstrated by the results of the last few years described during this conference and by recent sectorial economic studies. Generation of a nuclear kWh that can compete with other types of power plants is the new challenge for the Sector's professionals, who do not fear the new liberalization policies and approaching competition. Lower inflation and the resulting lower interest rates, apart from being representative indices of our economy's marked improvement, will be very helpful in facing this challenge. (Author)

  4. Conceptual designs of automated systems for underground emplacement and retrieval of nuclear waste

    International Nuclear Information System (INIS)

    Slocum, A.H.; Hou, W.M.; Park, K.; Hochmuth, C.; Thurston, D.C.

    1987-01-01

    Current designs of underground nuclear waste repositories have not adequately addressed the possibility of automated, unmanned emplacement and retrieval. This report will present design methodologies for development of an automated system for underground emplacement of nuclear waste. By scaling generic issues to different repositories, it is shown that a two vehicle automated waste emplacement/retrieval system can be designed to operate in a fail-safe mode. Evaluation of cost at this time is not possible. Significant gains in worker safety, however, can be realized by minimizing the possibility of human exposure

  5. Siting nuclear power plants

    International Nuclear Information System (INIS)

    Yellin, J.; Joskow, P.L.

    1980-01-01

    The first edition of this journal is devoted to the policies and problems of siting nuclear power plants and the question of how far commercial reactors should be placed from urban areas. The article is divided into four major siting issues: policies, risk evaluation, accident consequences, and economic and physical constraints. One concern is how to treat currently operating reactors and those under construction that were established under less-stringent criteria if siting is to be used as a way to limit the consequences of accidents. Mehanical cost-benefit analyses are not as appropriate as the systematic use of empirical observations in assessing the values involved. Stricter siting rules are justified because (1) opposition because of safety is growing: (2) remote siting will make the industry more stable; (3) the conflict is eliminated between regulatory policies and the probability basis for nuclear insurance; and (4) joint ownership of utilities and power-pooling are increasing. 227 references, 7 tables

  6. Nuclear power plant disasters

    International Nuclear Information System (INIS)

    Trott, K.R.

    1979-01-01

    The possibility of a nuclear power plant disaster is small but not excluded: in its event, assistance to the affected population mainly depends on local practitioners. Already existing diseases have to be diagnosed and treated; moreover, these physicians are responsible for the early detection of those individuals exposed to radiation doses high enough to induce acute illness. Here we present the pathogenesis, clinical development and possible diagnostic and therapeutical problems related to acute radiation-induced diseases. The differentiation of persons according to therapy need and prognosis is done on the sole base of the clinical evidence and the peripheral blood count. (orig.) [de

  7. Nuclear reactor plant

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1977-01-01

    The invention is concerned with a quick-closing valve on the main-steam pipe of a nuclear reactor plant. The quick-closing valve serves as isolating valve and as safety valve permitting depressurization in case of an accident. For normal operation a tube-shaped gate valve is provided as valve disc, enclosing an auxiliary valve disc to be used in case of accidents and which is opened at increased pressure to provide a smaller flow cross-section. The design features are described in detail. (RW) [de

  8. Challenges associated with the design of underground grinding plant at McArthur River project

    International Nuclear Information System (INIS)

    Jamrozek, J.S.

    2000-01-01

    McArthur River is an unique high grade uranium underground mine. Ore grinding and thickening are part of the underground operation. The grinding circuit is designed to operate in conditions different from conventional plant environments. Design of the grinding plant was a collective effort of a multi-disciplinary engineering team closely cooperating with project operating personnel. The equipment had to be selected to reflect widely varying ore properties. A user-friendly plant layout provides access to equipment inspections, services, and the delivery of necessary components. The size of the grinding chamber was limited in order to keep the rock stress levels within allowable values. All underground equipment brought to the construction site was restricted in size and weight. Plant construction faced limited storage space underground, tight erection sequencing, and schedule. Plant ventilation is a critical design feature. It efficiently removes radioactive dust from work areas, eliminates stagnant air pockets, and separates clean air from contaminated air areas. Radiation shielding on the equipment is designed to correspond with operational and maintenance functions. Plant operation is remotely controlled and requires little attendance. Video cameras are used on critical equipment and in controlled access areas. An extensive program of preventive and predictive maintenance allows highly reliable plant operation. (author)

  9. Garigliano nuclear power plant

    International Nuclear Information System (INIS)

    1976-03-01

    During the period under review, the Garigliano power station produced 1,028,77 million kWh with a utilization factor of 73,41% and an availability factor of 85,64%. The disparity between the utilization and availability factors was mainly due to a shutdown of about one and half months owing to lack of staff at the plant. The reasons for nonavailability (14.36%) break down as follows: nuclear reasons 11,49%; conventional reasons 2,81%; other reasons 0,06%. During the period under review, no fuel replacements took place. The plant functioned throughout with a single reactor reticulation pump and resulting maximum available capacity of 150 MWe gross. After the month of August, the plant was operated at levels slightly below the maximum available capacity in order to lengthen the fuel cycle. The total number of outages during the period under review was 11. Since the plant was brought into commercial operation, it has produced 9.226 million kWh

  10. Verification and Uncertainty Reduction of Amchitka Underground Nuclear Testing Models

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed Hassan; Jenny Chapman

    2006-02-01

    The modeling of Amchitka underground nuclear tests conducted in 2002 is verified and uncertainty in model input parameters, as well as predictions, has been reduced using newly collected data obtained by the summer 2004 field expedition of CRESP. Newly collected data that pertain to the groundwater model include magnetotelluric (MT) surveys conducted on the island to determine the subsurface salinity and porosity structure of the subsurface, and bathymetric surveys to determine the bathymetric maps of the areas offshore from the Long Shot and Cannikin Sites. Analysis and interpretation of the MT data yielded information on the location of the transition zone, and porosity profiles showing porosity values decaying with depth. These new data sets are used to verify the original model in terms of model parameters, model structure, and model output verification. In addition, by using the new data along with the existing data (chemistry and head data), the uncertainty in model input and output is decreased by conditioning on all the available data. A Markov Chain Monte Carlo (MCMC) approach is adapted for developing new input parameter distributions conditioned on prior knowledge and new data. The MCMC approach is a form of Bayesian conditioning that is constructed in such a way that it produces samples of the model parameters that eventually converge to a stationary posterior distribution. The Bayesian MCMC approach enhances probabilistic assessment. Instead of simply propagating uncertainty forward from input parameters into model predictions (i.e., traditional Monte Carlo approach), MCMC propagates uncertainty backward from data onto parameters, and then forward from parameters into predictions. Comparisons between new data and the original model, and conditioning on all available data using MCMC method, yield the following results and conclusions: (1) Model structure is verified at Long Shot and Cannikin where the high-resolution bathymetric data collected by CRESP

  11. Nuclear power plant emergency preparedness

    International Nuclear Information System (INIS)

    2005-01-01

    The guide sets forth detailed requirements on how the licensee of a nuclear power plant shall plan, implement and maintain emergency response arrangements. The guide is also applied to nuclear material and nuclear waste transport in situations referred to in guide YVL 6.5. Requirements on physical protection are presented in a separate guide of Finnish Radiation and Nuclear Safety Authority (STUK)

  12. Earthquakes: no danger for deep underground nuclear waste repositories

    International Nuclear Information System (INIS)

    2010-03-01

    On the Earth, the continental plates are steadily moving. Principally at the plate boundaries such shifts produce stresses which are released in form of earthquakes. The highest the built-up energy, the more violent will be the shaking. Earthquakes accompany mankind from very ancient times on and they disturb the population. Till now nobody is able to predict where and when they will take place. But on the Earth there are regions where, due to their geological situation, the occurrence of earthquakes is more probable than elsewhere. The impact of a very strong earthquake on the structures at the Earth surface depends on several factors. Besides the ground structure, the density of buildings, construction style and materials used play an important role. Construction-related technical measures can improve the safety of buildings and, together with a correct behaviour of the people concerned, save many lives. Earthquakes are well known in Switzerland. Here, the stresses are due to the collision of the African and European continental plates that created the Alps. The impact of earthquake is more limited in the underground than at the Earth surface. There is no danger for deep underground repositories

  13. Analytic model for surface ground motion with spall induced by underground nuclear tests

    International Nuclear Information System (INIS)

    MacQueen, D.H.

    1982-04-01

    This report provides a detailed presentation and critique of a model used to characterize the surface ground motion following a contained, spalling underground nuclear explosion intended for calculation of the resulting atmospheric acoustic pulse. Some examples of its use are included. Some discussion of the general approach of ground motion model parameter extraction, not dependent on the specific model, is also presented

  14. On the infrasound detected from the 2013 and 2016 DPRK's underground nuclear tests

    NARCIS (Netherlands)

    Assink, J. D.; Averbuch, G.; Smets, P.S.M.; Evers, L.G.

    2016-01-01

    The underground nuclear tests by the Democratic People's Republic of Korea (DPRK) generated atmospheric infrasound both in 2013 and 2016. Clear detections were made in the Russian Federation (I45RU) and Japan (I30JP) in 2013 at stations from the International Monitoring System. Both tropospheric

  15. The French experimentation at the underground nuclear testing site in the Sahara desert

    Energy Technology Data Exchange (ETDEWEB)

    Gauvenet, Andre [Commissariat a l' Energie Atomique (France)

    1970-05-01

    The present paper will be essentially an introduction to the technical exposes which will be delivered during the Las Vegas Meeting. The presentation is divided in two parts. The first part summarizes very briefly the experience that has been gained from the underground nuclear shots which took place in the Sahara desert from 1961 to 1966. in the second part, an idea is given of the studies at present carried on in France in the domain of peaceful applications of nuclear explosions.

  16. The French experimentation at the underground nuclear testing site in the Sahara desert

    International Nuclear Information System (INIS)

    Gauvenet, Andre

    1970-01-01

    The present paper will be essentially an introduction to the technical exposes which will be delivered during the Las Vegas Meeting. The presentation is divided in two parts. The first part summarizes very briefly the experience that has been gained from the underground nuclear shots which took place in the Sahara desert from 1961 to 1966. in the second part, an idea is given of the studies at present carried on in France in the domain of peaceful applications of nuclear explosions

  17. Nuclear power plant operator licensing

    International Nuclear Information System (INIS)

    1997-01-01

    The guide applies to the nuclear power plant operator licensing procedure referred to the section 128 of the Finnish Nuclear Energy Degree. The licensing procedure applies to shift supervisors and those operators of the shift teams of nuclear power plant units who manipulate the controls of nuclear power plants systems in the main control room. The qualification requirements presented in the guide also apply to nuclear safety engineers who work in the main control room and provide support to the shift supervisors, operation engineers who are the immediate superiors of shift supervisors, heads of the operational planning units and simulator instructors. The operator licensing procedure for other nuclear facilities are decided case by case. The requirements for the basic education, work experience and the initial, refresher and complementary training of nuclear power plant operating personnel are presented in the YVL guide 1.7. (2 refs.)

  18. Images of nuclear power plants

    International Nuclear Information System (INIS)

    Hashiguchi, Katsuhisa; Misumi, Jyuji; Yamada, Akira; Sakurai, Yukihiro; Seki, Fumiyasu; Shinohara, Hirofumi; Misumi, Emiko; Kinjou, Akira; Kubo, Tomonori.

    1995-01-01

    This study was conducted to check and see, using Hayashi's quantification method III, whether or not the respondents differed in their images of a nuclear power plant, depending on their demographic variables particularly occupations. In our simple tabulation, we compared subject groups of nuclear power plant employees with general citizens, nurses and students in terms of their images of a nuclear power plant. The results were that while the nuclear power plant employees were high in their evaluations of facts about a nuclear power plant and in their positive images of a nuclear power plant, general citizens, nurses and students were overwhelmingly high in their negative images of a nuclear power plant. In our analysis on category score by means of the quantification method III, the first correlation axis was the dimension of 'safety'-'danger' and the second correlation axis was the dimension of 'subjectivity'-'objectivity', and that the first quadrant was the area of 'safety-subjectivity', the second quadrant was the area of 'danger-subjectivity', the third quadrant as the area of 'danger-objectivity', and the forth quadrant was the area of 'safety-objectivity'. In our analysis of sample score, 16 occupation groups was compared. As a result, it was found that the 16 occupation groups' images of a nuclear power plant were, in the order of favorableness, (1) section chiefs in charge, maintenance subsection chiefs, maintenance foremen, (2) field leaders from subcontractors, (3) maintenance section members, operation section members, (4) employees of those subcontractors, (5) general citizens, nurses and students. On the 'safety-danger' dimension, nuclear power plant workers on the one hand and general citizens, nurses and students on the other were clearly divided in terms of their images of a nuclear power plant. Nuclear power plant workers were concentrated in the area of 'safety' and general citizens, nurses and students in the area of 'danger'. (J.P.N.)

  19. Wuergassen nuclear power plant

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The decision of the Federal Court of Administration concerns an application for immediate decommissioning of a nuclear power plant (Wuergassen reactor): The repeal of the permit granted. The decision dismisses the appeal for non-admission lodged by the plaintiffs against the ruling of the Higher Court of Administration (OVG) of North-Rhine Westphalia of December 19th 1988 (File no. 21 AK 8/88). As to the matter in dispute, the Federal Court of Administration confirms the opinion of the Higher Court of Administration. As to the headnotes, reference can be made to that decision. Federal Court of Administration, decision of April 5th 1989 - 7 B 47.89. Lower instance: OVG NW, Az.: 21 AK 8/88. (orig./RST) [de

  20. Nuclear power plant

    International Nuclear Information System (INIS)

    Uruma, Hiroshi

    1998-01-01

    In the first embodiment of the present invention, elements less activated by neutrons are used as reactor core structural materials placed under high neutron irradiation. In the second embodiment of the present invention, materials less activated by neutrons when corrosive materials intrude to a reactor core are used as structural materials constituting portions where corrosion products are generated. In the third embodiment, chemical species comprising elements less activated by neutrons are used as chemical species to be added to reactor water with an aim of controlling water quality. A nuclear power plant causing less radioactivity can be provided by using structural materials comprising a group of specific elements hardly forming radioactivity by activation of neutrons or by controlling isotope ratios. (N.H.)

  1. Nuclear power plant

    International Nuclear Information System (INIS)

    Schabert, H.P.

    1976-01-01

    A nuclear power plant is described which includes a steam generator supplied via an input inlet with feedwater heated by reactor coolant to generate steam, the steam being conducted to a steam engine having a high pressure stage to which the steam is supplied, and which exhausts the steam through a reheater to a low pressure stage. The reheater is a heat exchanger requiring a supply of hot fluid. To avoid the extra load that would be placed on the steam generator by using a portion of its steam output as such heating fluid, a portion of the water in the steam generator is removed and passed through the reheater, this water having received at least adequate heating in the steam generator to make the reheater effective, but not at the time of its removal being in a boiling condition

  2. Geomechanical problems of an underground storage of spent nuclear fuel and their mathematic modelling

    Directory of Open Access Journals (Sweden)

    Antonín Hájek

    2007-01-01

    Full Text Available The paper is devoted to the use of mathematical modelling for analysis of the thermo-mechanical (T-M processes, which are relevant for the assessment of underground repositories of the spent nuclear fuel. Wes shall discuss mathematical formulation, numerical methods and parallel alghorithms, which are capable to solve large-scale complicated and coupled 3D problems. Particularly, we show an application of the described methods and parallel computer simulations for analysis of model problems concerning the Swedish KBS3 concept of underground repository.

  3. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  4. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    International Nuclear Information System (INIS)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-01-01

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP

  5. Nuclear power plants

    International Nuclear Information System (INIS)

    Kiyokawa, Teruyuki; Soman, Yoshindo.

    1985-01-01

    Purpose: To constitute a heat exchanger as one unit by integrating primary and secondary coolant circuits with secondary coolant circuit and steam circuit into a single primary circuit and steam circuit. Constitution: A nuclear power plant comprises a nuclear reactor vessel, primary coolant pipeways and a leakage detection system, in which a dual-pipe type heat exchanger is connected to the primary circuit pipeway. The heat conduction tube of the heat exchanger has a dual pipe structure, in which the inside of the inner tube is connected to the primary circuit pipeway, the outside of the outer tube is connected to steam circuit pipeway and a fluid channel is disposed between the inner and outer tubes and the fluid channel is connected to the inside of an expansion tank for intermediate heat medium. The leak detection system is disposed to the intermediate heat medium expansion tank. Sodium as the intermediate heat medium is introduced from the intermediate portion (between the inner and outer tubes) by way of inermediate heat medium pipeways to the intermediate heat medium expansion tank and, further, to the intermediate portion for recycling. (Kawakami, Y.)

  6. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    International Nuclear Information System (INIS)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines

  7. Perspectives of nuclear power plants

    International Nuclear Information System (INIS)

    Vajda, Gy.

    2001-01-01

    In several countries the construction of nuclear power plants has been stopped, and in some counties several plants have been decommissioned or are planned to. Therefore, the question arises: have nuclear power plants any future? According to the author, the question should be reformulated: can mankind survive without nuclear power? To examine this challenge, the global power demand and its trends are analyzed. According to the results, traditional energy sources cannot be adequate to supply power. Therefore, a reconsideration of nuclear power should be imminent. The economic, environmental attractions are discussed as opposite to the lack of social support. (R.P.)

  8. Seismic signal simulation and study of underground nuclear sources by moment inversion

    International Nuclear Information System (INIS)

    Crusem, R.

    1986-09-01

    Some problems of underground nuclear explosions are examined from the seismological point of view. In the first part a model is developed for mean seismic propagation through the lagoon of Mururoa atoll and for calculation of synthetic seismograms (in intermediate fields: 5 to 20 km) by summation of discrete wave numbers. In the second part this ground model is used with a linear inversion method of seismic moments for estimation of elastic source terms equivalent to the nuclear source. Only the isotrope part is investigated solution stability is increased by using spectral smoothing and a minimal phase hypothesis. Some examples of applications are presented: total energy estimation of a nuclear explosion, simulation of mechanical effects induced by an underground explosion [fr

  9. Owners of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  10. Rock siting of nuclear power plants from a reactor safety standpoint. Status report October 1974

    International Nuclear Information System (INIS)

    1975-01-01

    The aim of this study is to clearify the advantages and disadvantages of an underground nuclear power plant from a reactor safety point of view, compared to a plant above ground. Principles for the technical design of a rock sited BWR nuclear power plant is presented. Also questions of sabotage and closing down the plant at the end of the operational period are treated. (K.K.)

  11. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  12. Elecnuc. Nuclear power plants worldwide

    International Nuclear Information System (INIS)

    1998-01-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  13. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2001-01-01

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  14. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    Energy Technology Data Exchange (ETDEWEB)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  15. Measurements of Argon-39 at the U20az underground nuclear explosion site.

    Science.gov (United States)

    McIntyre, J I; Aalseth, C E; Alexander, T R; Back, H O; Bellgraph, B J; Bowyer, T W; Chipman, V; Cooper, M W; Day, A R; Drellack, S; Foxe, M P; Fritz, B G; Hayes, J C; Humble, P; Keillor, M E; Kirkham, R R; Krogstad, E J; Lowrey, J D; Mace, E K; Mayer, M F; Milbrath, B D; Misner, A; Morley, S M; Panisko, M E; Olsen, K B; Ripplinger, M D; Seifert, A; Suarez, R

    2017-11-01

    Pacific Northwest National Laboratory reports on the detection of 39 Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39 Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37 Ar and 85 Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39 Ar from the fission product 85 Kr. Proportional counters are currently used for high-sensitivity measurement of 37 Ar and 39 Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85 Kr can be mistaken for that of 39 Ar, and the presence of either isotope increases the measurement background level for the measurement of 37 Ar. Measured values for the 39 Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion. Published by Elsevier Ltd.

  16. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    International Nuclear Information System (INIS)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA

  17. Owners of nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.S.

    1991-07-01

    This report indicates percentage ownership of commercial nuclear power plants by utility companies. The report includes all plants operating, under construction, docketed for NRC safety and environmental reviews, or under NRC antitrust review, but does not include those plants announced but not yet under review or those plants formally cancelled. Part 1 of the report lists plants alphabetically with their associated applicants or licensees and percentage ownership. Part 2 lists applicants or licensees alphabetically with their associated plants and percentage ownership. Part 1 also indicates which plants have received operating licenses (OLS)

  18. Nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Hidehiro; Oya, Takashi

    1996-11-05

    The present invention provides a highly safe light water-cooled type nuclear power plant capable of reducing radiation dose by suppressing deposition of activated corrosion products by a simple constitution. Namely, equipments and pipelines for fluid such as pumps at least in one of fluid systems such as a condensate cleanup system are constituted by a material containing metal species such as Zn having an effect of suppressing deposition of radioactivity. Alternatively, the surface of these equipments and pipelines for fluids on which water passes is formed by a coating layer comprising a material containing a metal having a radiation deposition suppressing effect. As a result, radioactivity deposited on the equipments and pipelines for fluids is reduced. In addition, since the method described above may be applied only at least to a portion of the members constituting at least one of the systems for fluids, it is economical. Accordingly, radiation dose upon inspection of equipments and pipelines for fluids can be reduced simply and reliably. (I.S.)

  19. Nuclear power plant

    International Nuclear Information System (INIS)

    Urata, Hidehiro; Oya, Takashi.

    1996-01-01

    The present invention provides a highly safe light water-cooled type nuclear power plant capable of reducing radiation dose by suppressing deposition of activated corrosion products by a simple constitution. Namely, equipments and pipelines for fluid such as pumps at least in one of fluid systems such as a condensate cleanup system are constituted by a material containing metal species such as Zn having an effect of suppressing deposition of radioactivity. Alternatively, the surface of these equipments and pipelines for fluids on which water passes is formed by a coating layer comprising a material containing a metal having a radiation deposition suppressing effect. As a result, radioactivity deposited on the equipments and pipelines for fluids is reduced. In addition, since the method described above may be applied only at least to a portion of the members constituting at least one of the systems for fluids, it is economical. Accordingly, radiation dose upon inspection of equipments and pipelines for fluids can be reduced simply and reliably. (I.S.)

  20. Nuclear power plants

    International Nuclear Information System (INIS)

    Ushijima, Susumu.

    1984-01-01

    Purpose: To enable to prevent the degradation in the quality of condensated water in a case where sea water leakage should occur in a steam condenser of a BWR type nuclear power plant. Constitution: Increase in the ion concentration in condensated water is detected by an ion concentration detector and the leaking factor of sea water is calculated in a leaking factor calculator. If the sea water leaking factor exceeds a predetermined value, a leak generation signal is sent from a judging device to a reactor power control device to reduce the reactor power. At ehe same tiem, the leak generation signal is also sent to a steam condenser selection and isolation device to interrupt the sea water pump of a specified steam condenser based on the signal from the ion concentration detector, as well as close the inlet and outlet valves while open vent and drain valves to thereby forcively discharge the sea water in the cooling water pipes. This can keep the condensate desalting device from ion breaking and prevent the degradation in the quality of the reactor water. (Horiuchi, T.)

  1. Public regulation of nuclear plants

    International Nuclear Information System (INIS)

    Burtheret, M.; Cormis, de

    1980-01-01

    The construction and operation of nuclear plants are subject to a complex system of governmental administration. The authors list the various governmental authorisations and rules applicable to these plants. In the first part, they describe the national regulations which relate specifically to nuclear plants, and emphasize the provisions which are intended to ensure the safety of the installations and the protection of the public against ionizing radiation. However, while the safety of nuclear plants is a major concern of the authorities, other interests are also protected. This is accomplished by various laws or regulations which apply to nuclear plants as well as other industrial installations. The duties which these texts, and the administrative practice based thereon, impose on Electricite de France are covered in the second part [fr

  2. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  3. Technical concepts of further improvement of nuclear power plant safety

    International Nuclear Information System (INIS)

    Sochor, R.

    1983-01-01

    The following technical concepts are described which secure the integrity of the containment in case of an accident whose scale exceeds the so-called design basis accident: siting nuclear power plants underground which raises construction costs by 20 - 25%; completing the containment with equipment preventing the outflow of molten corium; completing the containment with emergency pressure space for discharging overpressure - this emergency space is filled with gravel which will trap approximately 50% of fission waste. (Ha)

  4. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -1 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - 24 April 1972; first controlled reactor power - 27 November 1978, 15 March 1980; connection to the grid - 17 December 1978, 26 March 1980; commercial operation - 1 April 1980, 7 January 1981. This leaflet contains: NPP V-1 construction; Major technological equipment (Primary circuit: Nuclear reactor [WWER 440 V230 type reactor];Steam generator; Reactor Coolant Pumps; Primary Circuit Auxiliary Systems. Secondary circuit: Turbine generators, Nuclear power plant electrical equipment; power plant control) and technical data

  5. Ground motion effects of underground nuclear testing on perennial vegetation at Nevada Test Site

    International Nuclear Information System (INIS)

    Rhoads, W.A.

    1976-07-01

    In this study to estimate the potential injury to vegetation from earth movement caused by underground nuclear detonations and to estimate the extent to which this may have occurred at NTS, two explosions in the megaton range on Pahute Mesa were studied in some detail: Boxcar, which caused a surface subsidence, and Benham, which did not. Because of the subsidence phenomenology, shock propagation through the earth and along the surface, and the resulting fractures, shrubs were killed at Boxcar around the perimeter of the subsidence crater. Both trees and shrubs were killed along tectonic faults, which became the path for earth fractures, and along fractures and rock falls elsewhere. There was also evidence at Boxcar of tree damage which antedated the nuclear testing program, presumably from natural earthquakes. With the possible exception of damage to aged junipers this investigation did not reveal any good evidence of immediate effects from underground testing on vegetation beyond that recognized earlier as the edge effect

  6. The destabilizing influence of heat flow on the geological environment during underground nuclear explosions

    International Nuclear Information System (INIS)

    Politikov, M.I.; Kamberov, I.M.; Krivchenko, V.F.; Lukashenko, S.N.; Solodukhin, V.P.

    2001-01-01

    The study has determined the fact that the processes of gas-radioactive ectoplasm intrusion from nuclear cavities in the geological environment bring the significant contribution in bosom destabilizing besides the mechanical rock destruction as affected by underground nuclear explosions. Not only heat field forming that reduces the rock resistance and increases its porosity is related to it, but also the forming, on the way, of man-caused contamination aureoles of the geological environment, including the underground water bearing horizon. Unfortunately, this problem is hardly studied, mainly for the lack of reliable apparatus and methods. Judging by the results of information search, the best way to solve the problem is not yet known. (author)

  7. The density jump at the inner core boundary using underground nuclear explosion records

    International Nuclear Information System (INIS)

    Krasnoshchekov, D.N.; Ovchinnikov, V.M.

    2001-01-01

    This paper presents the estimation of the minimum jump value using experimental wave forms reflected from the boundary between the Earth core and mantle (PcP) and the one between the inner and outer core (PKiKP) at a distance of 6 deg. Digital seismic records of underground nuclear tests conducted at the Semipalatinsk test site in 70s by Zerenda-Vostochny-Chkalovo seismic array have been used. (author)

  8. Study of chemical reactions in the nuclear underground explosion - Incidence on radioactivity

    International Nuclear Information System (INIS)

    Picq, Jean Maurice

    1970-01-01

    In order to find out and state the theoretical or semi-empirical laws governing the reaction of radioactivity in contained nuclear explosion, we are studying the chemical reactions during the different stages of the cavity and chimney formation, as well as thermal transfers. At the same time, we are carrying an experimental study on melted rock and gas samples taken from the French underground explosions. The results of which can be found in this paper are derived from our present experiments at the plant (have been obtained from partial studies). During the French underground explosions, we took gaseous samples. The gas analysis, without taking water vapour into consideration, showed that those samples were composed of hydrogen, carbon dioxide, carbon monoxide with small quantities of hydrocarbons (chiefly methane - about one per cent). The total amount of gas being quite large and proportional to the burst power, we came to the conclusion that those gases were produced by rock reactions (that rock was granite). We considered the following reagents because they were found in sufficient quantities to alter the balance between the different components: ferrous ions contained in mica, biotite, carbon dioxide from carbonates and water, either free or in a component state, contained in the rock. A comparison between theoretical and experimental results led us to notice among other things: the temperature of rock re-solidification; pressure nearing lithostatic pressure. Since the components of the environment, water not included, is quite homogeneous, the gas volume produced by '1 kiloton' is quite constant. On the other hand, the relative proportion of the gases undergoes a few changes, particularly the ratio CO/CO 2 which normally depends on the quantity of water contained in the environment. This statement is verified by the calculation of thermodynamic equilibriums. In order to calculate the simultaneous chemical equilibrium we have first selected five reactions. We

  9. Remote installation of risers on underground nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Jackson, J.P.; Gessner, R.F.

    1988-03-01

    The West Valley Demonstration Project was established to solidify 2120 m 3 (560,000) gallons of high-level nuclear waste generated during six years of commercial nuclear fuel reprocessing. This liquid will be processed to remove radioactive elements which, with the remaining sludge, will be combined with glass formers and be converted into borosilicate glass. Risers were installed on the high-level tank for installation of pumps which will be used to remove the liquid and sludge. The extensive use of remote technology was required to install the risers and to minimize operator exposure to high levels of radiation and contamination. The riser installation required remotely: drilling through two feet of concrete shielding; installing pump access pipes which are welded to the tank top; and cutting holes in tanks located 3658 mm (12) feet below ground. These operations were successfully completed 13 times without exposing personnel to high-level radiation or contamination. Specially designed remote equipment was developed for each step of this operation. Extensive operator training in the use of this equipment was performed on a tank with low radiation prior to work on the high-level tank. This paper discusses the application of remote technology that assured a quality job was safely accomplished. 3 refs., 18 figs., 2 tabs

  10. Enhanced coupling and decoupling of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-09-04

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/.

  11. Enhanced coupling and decoupling of underground nuclear explosions

    International Nuclear Information System (INIS)

    Terhune, R.W.; Snell, C.M.; Rodean, H.C.

    1979-01-01

    The seismic coupling efficiency of nuclear explosions was studied in granite by means of computer calculations as a function of scaled explosion source radius. The scaled source radii were varied from 0.1 m/kt/sup 1/3/ (point source) to 20 m/kt/sup 1/3/ (representing a nearly full decoupling cavity). It was found that seismic coupling efficiency is at a maximum when the scaled source radius is approximately 2 m/kt/sup 1/3/. The primary cause of this maximum in seismic wave source strength is the effect of initial source radius on peak particle velocity and pulse duration of the outgoing elastic wave. A secondary cause is that rock vaporization (an energy sink) does not occur for scaled source radii somewhat greater than 1 m/kt/sup 1/3/. Therefore, for scaled source radii greater than 1 m/kt/sup 1/3/, there is additional energy available for seismic wave generations. Available data for some nuclear explosions at the Nevada Test Site do not provide sufficient evidence to either support or negate the enhanced coupling that is indicated by calculations at scaled source radii of 1-2 m/kt/sup 1/3/

  12. Man and nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    According to the Inst. fuer Unfallforschung/TUeV Rheinland, Koeln, the interpretation of empirical data gained from the operation of nuclear power plants at home and abroad during the period 1967-1975 has shown that about 38% of all reactor accidents were caused by human failures. These occured either during the design and construction, the commissioning, the reconditioning or the operation of the plants. This very fact stresses human responsibility for the safety of nuclear power plants, in spite of those plants being automated to a high degree and devices. (orig.) [de

  13. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures

  14. Radiochemistry in nuclear power plants

    International Nuclear Information System (INIS)

    Schwarz, W.

    2007-01-01

    Radiochemistry is employed in nuclear power plants not as an end in itself but, among other things, as a main prerequisite of optimum radiation protection. Radiochemical monitoring of various loops provides important information about sources of radioactivity, activity distribution in the plant and its changes. In the light of these analytical findings, plant crews are able to take measures having a positive effect on radiation levels in the plant. The example of a BWR plant is used to show, among other things, how radiochemical analyses helped to reduce radiation levels in a plant and, as a consequence, to decrease clearly radiation exposure of the personnel despite higher workloads. (orig.)

  15. Nuclear Power Plant Simulation Game.

    Science.gov (United States)

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  16. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-01-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics. (author)

  17. Robotics for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shiraiwa, Takanori; Watanabe, Atsuo; Miyasawa, Tatsuo

    1984-10-01

    Demand for robots in nuclear power plants is increasing of late in order to reduce workers' exposure to radiations. Especially, owing to the progress of microelectronics and robotics, earnest desire is growing for the advent of intellecturized robots that perform indeterminate and complicated security work. Herein represented are the robots recently developed for nuclear power plants and the review of the present status of robotics.

  18. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Vollradt, J.

    1977-01-01

    A survey of the main questions of decommissioning of nuclear power plants will be given in the sight of German utilities (VDEW-Working group 'Stillegung'). The main topics are: 1) Definitions of decommissioning, entombment, removal and combinations of such alternatives; 2) Radioactive inventory (build up and decay); 3) Experience up to now; 4) Possibilities to dismantle are given by possibility to repair nuclear power plants; 5) Estimated costs, waste, occupational radiation dose; 6) German concept of decommissioning. (orig./HK) [de

  19. Organizing nuclear power plant operation

    International Nuclear Information System (INIS)

    Adams, H.W.; Rekittke, K.

    1987-01-01

    With the preliminary culmination in the convoy plants of the high standard of engineered safeguards in German nuclear power plants developed over the past twenty years, the interest of operators has now increasingly turned to problems which had not been in the focus of attention before. One of these problems is the organization of nuclear power plant operation. In order to enlarge the basis of knowledge, which is documented also in the rules published by the Kerntechnischer Ausschuss (Nuclear Technology Committee), the German Federal Minister of the Interior has commissioned a study of the organizational structures of nuclear power plants. The findings of that study are covered in the article. Two representative nuclear power plants in the Federal Republic of Germany were selected for the study, one of them a single-unit plant run by an independent operating company in the form of a private company under German law (GmbH), the other a dual-unit plant operated as a dependent unit of a utility. The two enterprises have different structures of organization. (orig.) [de

  20. To the issue about negative consequences of underground nuclear explosions in the salt domes

    International Nuclear Information System (INIS)

    Belyashov, D.N.; Mokhov, V.A.; Murzadilov, T.D.

    1998-01-01

    I. From 1970 to 1984, 26 underground explosions were conducted at Azgir test site salt domes and Karachaganak gas-condensate deposit (KGKD) of Kazakhstan. Consequence, 9 and 6, relatively, underground cavities were created. At Azgir test site 5 cavities were filled by water and brines. Some of them were destroyed with surface spotting formation. It is noticed the spreading of radionuclides out of cavities bounds. At the KGKD gas-condensate is loaded into 4 cavities, another 2 cavities are in the accident condition, the last one (5TK) was filled by brine. There are characters of radioecological situation degradation above the last cavity. Radioactive logging in the cavity shown that the γ-activity of rock was increased more then 8 times in the distance of depths 0-64 m for 3 years. Apparently, outbreak of radioactive brines takes place along the zones of fissuring on the bound of casing tubes into the 5TK borehole and along enclosing rocks with sorption of radioactive isotopes in clay rocks. 2. There are examples of negative evolution of events at the Astrakhan gas-condensate deposit, where 15 nuclear cavities were created from 1980 to 1984 years. In 1986 year, 13 of them stopped to exist because of tectonic shearing, triggering by underground nuclear explosion in the salt dome. Many of them are flooded and they throw out the radioactive brines, reaching the surface. 3. Negative development of radioecological situation is occurred because of depressurization of cavities, their flooding, displacement of radionuclides with salt into the brines, destroying of cavities, extrusion of radioactive brines along the permeable zones, more often along the militant and observation boreholes. It is possible to spread of radioactive contamination along horizontal at the distance for l,5-3 km. In 2 years after the underground nuclear explosion at the Grachev oil deposit of Bashkiria radioactive tritium was detected in underground water and in the ground more then 3 km far from

  1. Partner of nuclear power plants

    International Nuclear Information System (INIS)

    Gribi, M.; Lauer, F.; Pauli, W.; Ruzek, W.

    1992-01-01

    Sulzer, the Swiss technology group, is a supplier of components and systems for nuclear power plants. Important parts of Swiss nuclear power stations, such as containments, reactor pressure vessels, primary pipings, are made in Winterthur. Sulzer Thermtec AG and some divisions of Sulzer Innotec focus their activities on servicing and backfitting nuclear power plants. The European market enjoys priority. New types of valves or systems are developed as economic solutions meeting more stringent criteria imposed by public authorities or arising from operating conditions. (orig.) [de

  2. Operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.

    1987-01-01

    This textbook gives a systematic introduction into the operational and maintenance activities in nuclear power plants with pressurized water reactors. Subjects: (1) Setup and operational behaviour of power reactors, (2) setup of nuclear power plants, (3) radiation protection and nuclear safety, (4) nuclear fuel, (5) constructional layout of nuclear power plants, (6) management, and (7) maintenance. 158 figs., 56 tabs

  3. Loviisa nuclear power plant analyzer

    International Nuclear Information System (INIS)

    Porkholm, K.; Nurmilaukas, P.; Tiihonen, O.; Haenninen, M.; Puska, E.

    1992-12-01

    The APROS Simulation Environment has been developed since 1986 by Imatran Voima Oy (IVO) and the Technical Research Centre of Finland (VTT). It provides tools, solution algorithms and process components for use in different simulation systems for design, analysis and training purposes. One of its main nuclear applications is the Loviisa Nuclear Power Plant Analyzer (LPA). The Loviisa Plant Analyzer includes all the important plant components both in the primary and in the secondary circuits. In addition, all the main control systems, the protection system and the high voltage electrical systems are included. (orig.)

  4. The Dresden Felsenkeller shallow-underground accelerator laboratory for nuclear astrophysics - Status and first physics program

    Energy Technology Data Exchange (ETDEWEB)

    Ilgner, Ch. [Nuclear Astrophysics group, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)

    2015-07-01

    Favored by the low background in underground laboratories, low-background accelerator-based experiments are an important tool to study nuclear reactions involving stable charged particles. This technique has been used for many years with great success at the 0.4 MV LUNA accelerator in the Gran Sasso laboratory in Italy, protected from cosmic rays by 1400 m of rock. However, the nuclear reactions of helium and carbon burning and the neutron source reactions for the astrophysical s-process require higher beam energies than those available at LUNA. Also the study of solar fusion reactions necessitates new data at higher energies. As a result, in the present NuPECC long range plan for nuclear physics in Europe, the installation of one or more higher-energy underground accelerators is strongly recommended. An intercomparison exercise using the same High-Purity Ge detector at several sites has shown that, with a combination of 45 m rock overburden, as can be found in the Felsenkeller underground site in Dresden, and an active veto against the remaining muon flux, in a typical nuclear astrophysics setup a background level can be achieved that is similar to the deep underground scenario as in the Gran- Sasso underground laboratory, for instance. Recently, a muon background study and geodetic measurements were carried out by the REGARD group. It was estimated that the rock overburden at the place of the future ion accelerator is equivalent to 130 m of water. The maximum muon flux measured was 2.5 m{sup -2} sr{sup -1} s{sup -1}, in the direction of the tunnel entrance. Based on this finding, a used 5 MV pelletron tandem accelerator with 250 μA up-charge current and external sputter ion source has been obtained and transported to Dresden. Work on an additional radio-frequency ion source on the high voltage terminal is in progress and far advanced. The installation of the accelerator in the Felsenkeller is expected for the near future. The status of the project and the

  5. On-site inspection for the radionuclide observables of an underground nuclear explosion

    International Nuclear Information System (INIS)

    Burnett, J.L.

    2015-01-01

    Under the Comprehensive Nuclear-Test-Ban Treaty an on-site inspection (OSI) may be undertaken to identify signatures from a potential nuclear explosion. This includes the measurement of 17 particulate radionuclides ( 95 Zr, 95 Nb, 99 Mo, 99m Tc, 103 Ru, 106 Rh, 132 Te, 131 I, 132 I, 134 Cs, 137 Cs, 140 Ba, 140 La, 141 Ce, 144 Ce, 144 Pr, 147 Nd). This research provides an assessment of the potential to detect these radionuclides during an OSI within 1 week to 2 years after a nuclear explosion at two locations. A model has been developed that simulates the underground detonation of a 1 kT 235 U nuclear weapon with 1 % venting. This indicates a requirement to minimise the time since detonation with accurate determination of the test location. (author)

  6. Building of nuclear power plant

    International Nuclear Information System (INIS)

    Saito, Takashi.

    1997-01-01

    A first nuclear plant and a second nuclear power plant are disposed in adjacent with each other in a building for a nuclear reactor. A reactor container is disposed in each of the plants, and each reactor container is surrounded by a second containing facility. A repairing chamber capable of communicating with the secondary containing facilities for both of the secondary containing facilities is disposed being in contact with the second containing facility of each plant for repairing control rod driving mechanisms or reactor incorporated-type recycling pumps. Namely, the repairing chamber is in adjacent with the reactor containers of both plants, and situated between both of the plants as a repairing chamber to be used in common for both plants. Air tight inlet/exit doors are formed to the inlets/exits of both plants of the repairing chamber. Space for the repairing chamber can be reduced to about one half compared with a case where the repairing chamber is formed independently on each plant. (I.N.)

  7. TVA's nuclear power plant experience

    International Nuclear Information System (INIS)

    Willis, W.F.

    1979-01-01

    This paper reviews TVA's nuclear power plant design and construction experience in terms of schedule and capital costs. The completed plant in commercial operation at Browns Ferry and six additional plants currently under construction represent the nation's largest single commitment to nuclear power and an ultimate investment of $12 billion by 1986. The presentation is made in three separate phases. Phase one will recapitulate the status of the nuclear power industry in 1966 and set forth the assumptions used for estimating capital costs and projecting project schedules for the first TVA units. Phase two describes what happened to the program in the hectic early 1979's in terms of expansion of scope (particularly for safety features), the dramatic increase in regulatory requirements, vendor problems, stretchout of project schedules, and unprecedented inflation. Phase three addresses the assumptions used today in estimating schedules and plant costs for the next ten-year period

  8. Progress of the Felsenkeller Shallow-Underground Accelerator for Nuclear Astrophysics

    Science.gov (United States)

    Bemmerer, D.; Cavanna, F.; Cowan, T. E.; Grieger, M.; Hensel, T.; Junghans, A. R.; Ludwig, F.; Müller, S. E.; Rimarzig, B.; Reinicke, S.; Schulz, S.; Schwengner, R.; Stöckel, K.; Szücs, T.; Takács, M. P.; Wagner, A.; Wagner, L.; Zuber, K.

    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 µA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.

  9. Nuclear plant simulation using the Nuclear Plant Analyzer

    International Nuclear Information System (INIS)

    Beelman, R.J.; Laats, E.T.; Wagner, R.J.

    1984-01-01

    The Nuclear Plant Analyzer (NPA), a state-of-the-art computerized safety analysis and engineering tool, was employed to simulate nuclear plant response to an abnormal transient during a training exercise at the US Nuclear Regulatory Commission (USNRC) in Washington, DC. Information relative to plant status was taken from a computer animated color graphics display depicting the course of the transient and was transmitted to the NRC Operations Center in a manner identical to that employed during an actual event. Recommendations from the Operations Center were implemented during on-line, interactive execution of the RELAP5 reactor systems code through the NPA allowing a degree of flexibility in training exercises not realized previously. When the debriefing was conducted, the RELAP5 calculations were replayed by way of the color graphics display, adding a new dimension to the debriefing and greatly enhancing the critique of the exercise

  10. ALARA at nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.

    1991-01-01

    Implementation of the ALARA principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed through a variety of dose reduction techniques. Initiatives by the ICRP, NCRP, NRC, INPO, EPRI, and BNL ALARA Center have all contributed to a heightened interest and emphasis on dose reduction. The NCRP has formed Scientific Committee 46-9 which is developing a report on ALARA at Nuclear Power Plants. It is planned that this report will include material on historical aspects, management, valuation of dose reduction ($/person-Sv), quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report

  11. World nuclear power plant capacity

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides the background information for statistics and analysis developed by NUKEM in its monthly Market Report on the Nuclear Fuel Cycle. The assessments in this Special Report are based on the continuous review of individual nuclear power plant projects. This Special Report begins with tables summarizing a variety of nuclear power generating capacity statistics for 1990. It continues with a brief review of the year's major events regarding each country's nuclear power program. The standard NUKEM Market Report tables on nuclear plant capacity are given on pages 24 and 25. Owing to space limitations, the first year shown is 1988. Please refer to previous Special Reports for data covering earlier years. Detailed tables for each country list all existing plants as well as those expected by NUKEM to be in commercial operation by the end of 2005. An Appendix containing a list of abbreviations can be found starting on page 56. Only nuclear power plants intended for civilian use are included in this Special Report. Reactor lifetimes are assumed to be 35 years for all light water reactors and 30 years for all other reactor types, unless other data or definite decommissioning dates have been published by the operators. (orig./UA) [de

  12. Final repository for spent nuclear fuel. Underground design Simpevarp, Layout D1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    This report is a compilation of the results of the underground design work carried out in design phase D1 of the Repository Design Project within the Deep Repository Project for the Simpevarp site. Similar reports are also being produced for the Laxemar and Forsmark sites. The design phase coincides with the initial site investigation phase. The main purpose of phase D1 is to answer the question 'Can a final repository be accommodated within the designated site', but also to test the design methodology and provide feedback to the modelling project. Design was carried out in accordance with the methodology described in UDP (Underground Design Premises), SKB R-04-60, and was based on preliminary data from various disciplines in the site modelling project. The preliminary input data used were then cross-checked against data in the final Site Descriptive Model SDM v 1.2 and significant differences were integrated in the design work. The design results from each design topic were presented by the designer at presentation meetings for SKB's design management and the reviewers engaged by SKB for the specific topic. After the presentation meeting the designer wrote up the work reports for the topic in question. The work reports were then reviewed by SKB's review team. The results of the review were compiled in a statement that was submitted to the designer to be dealt with. In the statement the designer documented which comments were dealt with and how. This report is a compilation of the entire design phase D1 for Simpevarp. The 3D layout with coordinate lists for deposition holes and tunnels that was drawn to illustrate a possible layout was used in the Preliminary safety evaluation of the Simpevarp subarea and the hydro modelling of the Open Repository, both activities within the Deep Repository Project. According to current plans for the Swedish nuclear programme, the minimum required number of canister positions in the repository is estimated to be

  13. STORAGE AND RECOVERY OF SECONDARY WASTE COMING FROM MUNICIPAL WASTE INCINERATION PLANTS IN UNDERGROUND MINE

    Directory of Open Access Journals (Sweden)

    Waldemar Korzeniowski

    2016-09-01

    Full Text Available Regarding current and planned development of municipal waste incineration plants in Poland there is an important problem of the generated secondary waste management. The experience of West European countries in mining shows that waste can be stored successfully in the underground mines, but especially in salt mines. In Poland there is a possibility to set up the underground storage facility in the Salt Mine “Kłodawa”. The mine today is capable to locate over 3 million cubic meters and in the future it can increase significantly. Two techniques are proposed: 1 – storage of packaged waste, 2 – waste recovery as selfsolidifying paste with mining technology for rooms backfilling. Assuming the processing capacity of the storage facility as 100 000 Mg of waste per year, “Kłodawa” mine will be able to accept around 25 % of currently generated waste coming from the municipal waste incineration plants and the current volume of the storage space is sufficient for more than 20 years. Underground storage and waste recovery in mining techniques are beneficial for the economy and environment.

  14. Medium-size nuclear plants

    International Nuclear Information System (INIS)

    Vogelweith, L.; Lavergne, J.C.; Martinot, G.; Weiss, A.

    1977-01-01

    CEA (TECHNICATOME) has developed a range of pressurized water reactors of the type ''CAS compact'' which are adapted to civil ship propulsion, or to electric power production, combined possibly with heat production, up to outputs equivalent to 125 MWe. Nuclear plants equipped with these reactors are suitable to medium-size electric networks. Among the possible realizations, two types of plants are mentioned as examples: 1) Floating electron-nuclear plants; and 2) Combined electric power and desalting plants. The report describes the design characteristics of the different parts of a 125 MWe unit floating electro-nuclear plant: nuclear steam system CAS 3 G, power generating plant, floating platform for the whole plant. The report gives attention to the different possibilities according to site conditions (the plant can be kept floating, in a natural or artificial basin, it can be put aground, ...) and to safety and environment factors. Such unit can be used in places where there is a growing demand in electric power and fresh water. The report describes how the reactor, the power generating plant and multiflash distillation units of an electric power-desalting plant can be combined: choice of the ratio water output/electric power output, thermal cycle combination, choice of the gain ratio, according to economic considerations, and to desired goal of water output. The report analyses also some technical options, such as: choice of the extraction point of steam used as heat supply of the desalting station (bleeding a condensation turbine, or recovering steam at the exhaust of a backpressure turbine), design making the system safe. Lastly, economic considerations are dealt with: combining the production of fresh water and electric power provides usually a much better energy balance and a lower cost for both products. Examples are given of some types of installations which combine medium-size reactors with fresh water stations yielding from 10000 to 120000 m 3 per day

  15. Design and construction work of underground pit for existing light oil tank foundation at Onagawa Nuclear Power Station

    International Nuclear Information System (INIS)

    Kikuchi, Keita; Date, Masanao; Horimi, Shingo

    2017-01-01

    Based on the new regulatory standards for commercial power plant reactors enforced in July 2013, Onagawa Nuclear Power Station of Tohoku Electric Power Co., Inc. implemented various safety measure works. One of them was a measure for the existing light oil tank foundation for emergency diesel generators for Unit 2 reactor. In consideration of tornado, external fire, and earthquake resistance, the company implemented the underground pit construction for a light oil tank basement by utilizing the existing oil retaining wall and foundation. This paper reported the outline of the planning, design, and implementation of construction works, which were carried out while securing quality and safety. Upon installation of the underground pit, the company utilized the existing oil retaining wall from the viewpoint of reducing construction costs, shortening time schedule, and reducing environmental burden. As a result of checking bending and axial force, part of these values exceeded the design reference values. So, 3-dimensional shell model was applied, and the simulation results showed sufficient seismic margin. As a measure to secure seismic margin against shear force, Ceramic-Cap-bar construction method was adopted. Upon construction, the company adopted the water jet method, and devised the sequential order of construction. In parallel with the day and night work and tank installation, it constructed the top slab, which secured the time schedule and quality. (A.O.)

  16. Owners of nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.S.

    1979-12-01

    The following list indicates percentage ownership of commercial nuclear power plants by utility companies as of December 1, 1979. The list includes all plants licensed to operate, under construction, docketed for NRC safety and envionmental reviews, or under NRC antitrust review. It does not include those plants announced but not yet under review or those plants formally cancelled. In many cases, ownership may be in the process of changing as a result of antitrust license conditions and hearings, altered financial conditions, changed power needs, and other reasons. However, this list reflects only those ownership percentages of which the NRC has been formally notified

  17. Latina nuclear power plant

    International Nuclear Information System (INIS)

    1976-03-01

    In the period under review, the Latina power plant produced 1009,07 million kWh with a utilization factor of 72% and an availability factor of 80,51%. The disparity between the utilization and availability factors was mainly due to the shutdown of the plant owing to trade union strife. The reasons for non-availability (19,49%) were almost all related to the functioning of the conventional part and the general servicing of the plant (18 September-28 October). During the shutdown for maintenance, an inspection of the steel members and parts of the core stabilizing structure was made in order to check for the familiar oxidation phenomena caused by CO 2 ; the results of the inspection were all satisfactory. Operation of the plant during 1974 was marked by numerous power cutbacks as a result of outages of the steam-raising units (leaks from the manifolds) and main turbines (inspection and repairs to the LP rotors). Since it was first brought into commercial operation, the plant has produced 13,4 thousand million kWh

  18. Maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Lashgari, Farbod.

    1995-01-01

    This paper is about maintenance of nuclear power plants. In part one, the outage management of nuclear power plants has described. Meaning of the outage and objectives of outage management is given in introduction. The necessity of a long-term outage strategy is shown in chapter one. The main parts of an outage are as follows: Planning; Preparation; Execution, Each of them and also post-outage review have been explained in the followed chapters. Part two deals with technical details of main primary components of nuclear power plant type WWER. After an introduction about WWER reactors, in each chapter first the general and detailed description of main primary components has given and then their maintenance schedules and procedures. Chapter about reactor and steam generator is related to both types of WWER-440 and WWER-1000, but chapter about reactor coolant pump has specified to WWER-1000 to be more in details.(author)

  19. Summary of USSR reports on mechanical and radioactivity effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Paul [Civil Engineering Department, Stanford University, Stanford, CA (United States)

    1970-05-01

    Two reports have been issued by the USSR which examine the mechanical effects and radioactive contamination of the environment from underground nuclear explosions. In reviewing the mechanical effects, the institute of Terrestrial Physics of the USSR Academy of Sciences emphasizes the advantages of nuclear explosives, namely the tremendous power and small dimensions, in the industrial and construction fields. The authors note that the mechanical effects are based not only upon the explosive yield but also upon the thermodynamic properties of the cavity gases during expansion. These properties may vary widely depending upon the rock material. A list of the basic parameters affecting the mechanical effects of contained nuclear explosions includes: cavity volume, dimensions of the chimney, degree of rock fracturing, intensity of the compression wave as a function of distance from shot point, and seismic effects. The second paper describes the phenomenology of radioactive contamination of the environment for both contained and excavation explosions.

  20. Summary of USSR reports on mechanical and radioactivity effects of underground nuclear explosions

    International Nuclear Information System (INIS)

    Kruger, Paul

    1970-01-01

    Two reports have been issued by the USSR which examine the mechanical effects and radioactive contamination of the environment from underground nuclear explosions. In reviewing the mechanical effects, the institute of Terrestrial Physics of the USSR Academy of Sciences emphasizes the advantages of nuclear explosives, namely the tremendous power and small dimensions, in the industrial and construction fields. The authors note that the mechanical effects are based not only upon the explosive yield but also upon the thermodynamic properties of the cavity gases during expansion. These properties may vary widely depending upon the rock material. A list of the basic parameters affecting the mechanical effects of contained nuclear explosions includes: cavity volume, dimensions of the chimney, degree of rock fracturing, intensity of the compression wave as a function of distance from shot point, and seismic effects. The second paper describes the phenomenology of radioactive contamination of the environment for both contained and excavation explosions

  1. Investigation of surface and underground waters about the Blayais nuclear site - 2010

    International Nuclear Information System (INIS)

    Migeon, A.; Bernollin, A.; Dunand, E.; Barbey, P.; Boilley, D.; Josset, M.

    2011-01-01

    This investigation aims at proposing a first assessment of the impact of releases on surface and underground waters around the Blayais nuclear power station, i.e. the assessment of the (mainly radiological) quality of waters. The report identifies the various pollution sources: old sources (like atmospheric nuclear tests, nuclear accidents), incidents in the Blayais station, and potential sources for the present contamination. Different radionuclides are searched like tritium, carbon 14, gamma radioactivity (from different elements), some beta emitters, radon as well as some chemicals related to the station activity (hydrazine, boric acid, EDTA, lithium, morpholine). Sampling sites are presented (estuary, canals, reservoirs). Radiological and chemical analysis are reported and commented. Significant presence of Tritium and Nickel-63 are noticed

  2. Space nuclear reactor power plants

    International Nuclear Information System (INIS)

    Buden, D.; Ranken, W.A.; Koenig, D.R.

    1980-01-01

    Requirements for electrical and propulsion power for space are expected to increase dramatically in the 1980s. Nuclear power is probably the only source for some deep space missions and a major competitor for many orbital missions, especially those at geosynchronous orbit. Because of the potential requirements, a technology program on space nuclear power plant components has been initiated by the Department of Energy. The missions that are foreseen, the current power plant concept, the technology program plan, and early key results are described

  3. Pumps in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J.H.

    1991-01-01

    This paper reports that pumps play an important role in nuclear plant operation. For instance, reactor coolant pumps (RCPs) should provide adequate cooling for reactor core in both normal operation and transient or accident conditions. Pumps such as Low Pressure Safety Injection (LPSI) pump in the Emergency Core Cooling System (ECCS) play a crucial role during an accident, and their reliability is of paramount importance. Some key issues involved with pumps in nuclear plant system include the performance of RCP under two-phase flow conditions, piping vibration due to pump operating in two-phase flows, and reliability of LPSI pumps

  4. Nuclear power plant V-2

    International Nuclear Information System (INIS)

    1998-01-01

    The nuclear power plant Bohunice V -2 is briefly described. This NPP consists from two reactor units. Their main time characteristics are (Reactor Unit 1, Reactor Unit 2): beginning of construction - December 1976; first controlled reactor power - 7 August 1984, 2 August 1985; connection to the grid - 20 August 1984, 9 August 1985; commercial operation - 14 February 1985, 18 December 1985. This leaflet contains: NPP V-2 construction; Major technological equipment [WWER 440 V230 type reactor; Nuclear Power plant operation safety (Safety barriers; Safety systems [Active safety systems, Passive safety systems]); Centralized heat supply system; Scheme of Bohunice V-2 NPP and technical data

  5. Nuclear power plant

    International Nuclear Information System (INIS)

    Wieser, R.

    1979-01-01

    The reactor pressure vessel consists of two parts. A cylindrical lower part with a hemispherical steel roof is placed at some distance within an equally shaped pressure vessel of concrete. Both vessels are standing on a common bottom plate. The interspace is kept at subpressure. It serves to contain ring galleries, elevator shafts, and power plant components. (GL) [de

  6. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    Energy Technology Data Exchange (ETDEWEB)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  7. Challenges for new nuclear plants

    International Nuclear Information System (INIS)

    Bruschi, H.J.

    2000-01-01

    In the past 20 years, numerous new nuclear plant designs have been introduced in the hope of generating a mixture of features and benefits that generated enough enthusiasm amongst the utility industry decision makers to move forward with a new nuclear generation. Not only has there not been enough enthusiasm, there has been little interest in building new plants with advanced features, especially in the U.S. Compounding this predicament are the changing paradigms to which a new plant would be measured. The near hiatus on new plant orders is the clear cause of the significant consolidation in the nuclear industry. Regardless whether the disappearance of old-line nuclear companies is over or not, some paradigms for new generation designs are unmovable, while others are still under discussion as to their role in future plant designs. This paper will address those design goals that Westinghouse deems already having earned the rank of exemplar, and those still open to debate. Because it is my hope that this paper will lead to a fruitful discussion period, I will provide a list of what I feel are the champion design requirements, and those I consider the contenders. (author)

  8. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  9. Submarine nuclear power plant

    International Nuclear Information System (INIS)

    Enohara, Masami; Araragi, Fujio.

    1980-01-01

    Purpose: To provide a ballast tank, and nuclear power facilities within the containment shell of a pressure resistance structure and a maintenance operator's entrance and a transmission cable cut-off device at the outer part of the containment shell, whereby after the construction, the shell is towed, and installed by self-submerging, and it can be refloated for repairs by its own strength. Constitution: Within a containment shell having a ballast tank and a pressure resisting structure, there are provided nuclear power facilities including a nuclear power generating chamber, a maintenance operator's living room and the like. Furthermore, a maintenance operator's entrance and exit device and a transmission cable cut-off device are provided within the shell, whereby when it is towed to a predetermined a area after the construction, it submerges by its own strength and when any repair inspection is necessary, it can float up by its own strength, and can be towed to a repair dock or the like. (Yoshihara, H.)

  10. Worldwide nuclear-plant performance

    International Nuclear Information System (INIS)

    Surrey, J.; Thomas, S.

    1980-01-01

    The authors compare the performance of different reactor systems to identify the determinants of plant performance, to examine the evidence of technological maturation, and to discover the principal causes of outage or unavailability. In the light of the findings, they discuss the implications for the UK regarding reactor choice and technology development. They make no judgements about the relative merits of nuclear and fossil-fuel plants, or about safety. (author)

  11. Decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Friske, A.; Thiele, D.

    1988-01-01

    The IAEA classification of decommissioning stages is outlined. The international development hitherto observed in decommissioning of nuclear reactors and nuclear power stations is presented. The dismantling, cutting and decontamination methods used in the decommissioning process are mentioned. The radioactive wastes from decommissioning are characterized, the state of the art of their treatment and disposal is given. The radiation burdens and the decommissioning cost in a decommissioning process are estimated. Finally, some evaluation of the trends in the decommissioning process of nuclear power plants is given. 54 refs. (author)

  12. Nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Hollo, E.; Siklossy, P.

    1982-01-01

    The cooling circuit vibration diagnostic system of the Block 1 of the Paks nuclear power station is described. The automatic online vibration monitoring system consisting presently of 42 acceleration sensors and 9 pressure fluctuation sensors, which could be extended, performs both global and local inspection of the primary cooling circuit and its components. The offline data processing system evaluates the data for failure mode analysis. The software under development will be appropriate for partial preliminary identification of failure reasons during their initial phases. The installation experiences and the preliminary results during the hot operational testing of Block 1 are presented. (Sz.J.)

  13. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2003-01-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  14. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  15. Underwater nuclear power plant structure

    International Nuclear Information System (INIS)

    Severs, S.; Toll, H.V.

    1982-01-01

    A structure for an underwater nuclear power generating plant comprising a triangular platform formed of tubular leg and truss members upon which are attached one or more large spherical pressure vessels and one or more small cylindrical auxiliary pressure vessels. (author)

  16. Nuclear power plant

    International Nuclear Information System (INIS)

    Igarashi, Yoko; Kato, Naoyoshi.

    1982-01-01

    Purpose: To decrease the reducing speed of nuclear reactor water level after the water level has reached a turbine trip level to trip the turbine thereby preventing cooling systems or the likes from undesired operation upon separation caused by the reduction of the reactor water level to a low water level before the water level control is switched to the manual control. Constitution: Two feedwater pumps arranged in parallel are operated in usual operation to feedwater to a BWR type reactor. If a trouble should occur in a feedwater controller to increase the feedwater rate and the reactor water level, one of the feedwater pumps is tripped by a signal from a feedwater pump trip device. Then, when the trip level is reached again the remaining pump is tripped. In this way, the sudden decrease in the feedwater rate and the reactor water level can be prevented. (Yoshino, Y.)

  17. Operation and performance of the ICARUS-T600 cryogenic plant at Gran Sasso underground Laboratory

    CERN Document Server

    Antonello, M.; Baibussinov, B.; Boffelli, F.; Bubak, A.; Calligarich, E.; Canci, N.; Centro, S.; Cesana, A.; Cieślik, K.; Cline, D.B.; Cocco, A.G.; Dabrowska, A.; Dermenev, A.; Disdier, J.M.; Falcone, A.; Farnese, C.; Fava, A.; Ferrari, A.; Gibin, D.; Gninenko, S.; Guglielmi, A.; Haranczyk, M.; Holeczek, J.; Ivashkin, A.; Kirsanov, M.; Kisiel, J.; Kochanek, I.; Lagoda, J.; Mania, S.; Menegolli, A.; Meng, G.; Montanari, C.; Otwinowski, S.; Picchi, P.; Pietropaolo, F.; Plonski, P.; Rappoldi, A.; Raselli, G.L.; Rossella, M.; Rubbia, C.; Sala, P.R.; Scaramelli, A.; Segreto, E.; Sergiampietri, F.; Stefan, D.; Sulej, R.; Szarska, M.; Terrani, M.; Torti, M.; Varanini, F.; Ventura, S.; Vignoli, C.; Wang, H.G.; Yang, X.; Zalewska, A.; Zani, A.; Zaremba, K.

    2015-12-04

    ICARUS T600 liquid argon time projection chamber is the first large mass electronic detector of a new generation able to combine the imaging capabilities of the old bubble chambers with the excellent calorimetric energy measurement. After the three months demonstration run on surface in Pavia during 2001, the T600 cryogenic plant was significantly revised, in terms of reliability and safety, in view of its long-term operation in an underground environment. The T600 detector was activated in Hall B of the INFN Gran Sasso Laboratory during Spring 2010, where it was operated without interruption for about three years, taking data exposed to the CERN to Gran Sasso long baseline neutrino beam and cosmic rays. In this paper the T600 cryogenic plant is described in detail together with the commissioning procedures that lead to the successful operation of the detector shortly after the end of the filling with liquid Argon. Overall plant performance and stability during the long-term underground operation are discusse...

  18. Synthetic seismograms - II. Synthesis of amplitude spectra and seismograms of P waves from underground nuclear explosions

    International Nuclear Information System (INIS)

    Banghar, A.R.

    1980-01-01

    As a part of programme of seismic detection of underground nuclear explosions, step by step variations in the amplitude spectra and waveforms of P wave signal, as it propagates from source to receiver region, are investigated. Influences on the amplitude spectra and waveforms of teleseismic p waves due to : (1) variation in the shape of reduced displacement potential, (2) variation of mantle Q values, (3) change in depth, (4) various yields, (5) spalling, and (6) variation of crustal structure at source as well as at receiver are studied. The results show that for a yield of 85 kilotons, the time structure of seismograms is nearly same for four types of reduced displacement potentials considered here. The duration of waveforms is affected both by crustal structure at source as well as due to spalling. In general, effect of receiver crust on seismograms is found to be minor. Synthesized and observed P wave seismograms for Longshot, Milrow and Cannikin underground nuclear explosions are computed at various seismometer array stations of the UKAEA. Computed seismograms compare well with the recorded ones. It is seen that: (1) overburden P wave velocity inferred from seismograms is less as compared to its value obtained from on-site measurements, and (2) the source function, the source crust transfer function, the mantle transfer function and the spalling function are the most important factors that influence shaping of spectra and seismograms. (M.G.B.)

  19. ISC origin times for announced and presumed underground nuclear explosions at several test sites

    International Nuclear Information System (INIS)

    Rodean, H.C.

    1979-01-01

    Announced data for US and French underground nuclear explosions indicate that nearly all detonations have occurred within one or two tenths of a second after the minute. This report contains ISC origin-time data for announced explosions at two US test sites and one French test site, and includes similar data for presumed underground nuclear explosions at five Soviet sites. Origin-time distributions for these sites are analyzed for those events that appeared to be detonated very close to the minute. Particular attention is given to the origin times for the principal US and Soviet test sites in Nevada and Eastern Kazakhstan. The mean origin times for events at the several test sites range from 0.4 s to 2.8 s before the minute, with the earlier mean times associated with the Soviet sites and the later times with the US and French sites. These times indicate lower seismic velocities beneath the US and French sites, and higher velocities beneath the sites in the USSR 9 figures, 8 tables

  20. UK National Data Centre archive of seismic recordings of (presumed) underground nuclear tests 1964-1996

    Science.gov (United States)

    Young, John; Peacock, Sheila

    2016-04-01

    The year 1996 has particular significance for forensic seismologists. This was the year when the Comprehensive Test Ban Treaty (CTBT) was signed in September at the United Nations, setting an international norm against nuclear testing. Blacknest, as a long time seismic centre for research into detecting and identifying underground explosions using seismology, provided significant technical advice during the CTBT negotiations. Since 1962 seismic recordings of both presumed nuclear explosions and earthquakes from the four seismometer arrays Eskdalemuir, Scotland (EKA), Yellowknife, Canada (YKA), Gauribidanur, India (GBA), and Warramunga, Australia (WRA) have been copied, digitised, and saved. There was a possibility this archive would be lost. It was decided to process the records and catalogue them for distribution to other groups and institutions. This work continues at Blacknest but the archive is no longer under threat. In addition much of the archive of analogue tape recordings has been re-digitised with modern equipment, allowing sampling rates of 100 rather than 20 Hz.

  1. Study of the mineralogical transformations of granite by underground nuclear explosions

    International Nuclear Information System (INIS)

    Faure, Jean

    1970-01-01

    The object of the following communication is to prove new data about the petrographic effects of the underground nuclear explosions. It is founded on the results of trench tests in granite rock. The samples are collected by drilling and the temperature of the rock was measured in the hole. Four types of melted rocks can be sorted, grey-green glass and pumices, beige to red-brown pumices, dark lavas, dark veinlets and crushed granite. The distribution of these rocks is studied. Optical microscopy, X-rays and chemical analysis, study by electron probe, are made. The results complete previously published data. They are interesting as far as the use of nuclear explosions for industrial applications is concerned. (author)

  2. Calculational model for condensation of water vapor during an underground nuclear detonation

    International Nuclear Information System (INIS)

    Knox, R.J.

    1975-01-01

    An empirally derived mathematical model was developed to calculate the pressure and temperature history during condensation of water vapor in an underground-nuclear-explosion cavity. The condensation process is non-isothermal. Use has been made of the Clapeyron-Clausius equation as a basis for development of the model. Analytic fits to the vapor pressure and the latent heat of vaporization for saturated-water vapor, together with an estimated value for the heat-transfer coefficient, have been used to describe the phenomena. The calculated pressure-history during condensation has been determined to be exponential, with a time constant somewhat less than that observed during the cooling of the superheated steam from the explosion. The behavior of the calculated condensation-pressure compares well with the observed-pressure record (until just prior to cavity collapse) for a particular nuclear-detonation event for which data is available

  3. Study of the mineralogical transformations of granite by underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Faure, Jean [Commissariat a I' Energie Atomique, Centre d' Etudes de Bruyeres-le-Chatel (France)

    1970-05-15

    The object of the following communication is to prove new data about the petrographic effects of the underground nuclear explosions. It is founded on the results of trench tests in granite rock. The samples are collected by drilling and the temperature of the rock was measured in the hole. Four types of melted rocks can be sorted, grey-green glass and pumices, beige to red-brown pumices, dark lavas, dark veinlets and crushed granite. The distribution of these rocks is studied. Optical microscopy, X-rays and chemical analysis, study by electron probe, are made. The results complete previously published data. They are interesting as far as the use of nuclear explosions for industrial applications is concerned. (author)

  4. Nuclear power plant

    International Nuclear Information System (INIS)

    Nishio, Masahide

    1986-01-01

    Purpose: To provide a constitution capable of previously and reliably preventing radioactivity from releasing into the atmosphere upon occurrence of main steam pipe rupture accidents in a main steam tunnel chamber. Constitution: The outer circumference at the penetration portion of a nuclear reactor container is tightly closed and the main steam tunnel chamber has a tightly closed vessel structure, which is cooled by a local cooler during normal operation. The main steam tunnel chamber is in communication with a pressure control chamber by way of a release line and a releaf valve is disposed at the midway of the release line. Upon occurrence of rupture accident to the main steam pipes in the main steam tunnel chamber, while steams are issued from the ruptured portion, they are discharged through the release line to the suppression chamber and condensated. As a result, excess pressure in the main steam tunnel can be prevented and when the rupture accident is detected, the main steam isolation valve is closed rapidly to interrupt the steam feeding, whereby the steam released from the ruptured pipeways is stopped to avoid the radioactivity release to the atmosphere. (Kamimura, M.)

  5. Analysis in environmental radioactivity around Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Woo; Han, Man Jung; Cho, Seong Won; Cho, Hong Jun; Oh, Hyeon Kyun; Lee, Jeong Min; Chang, Jae Sook [KORTIC, Taejon (Korea, Republic of)

    2003-12-15

    Twelve kinds of environmental samples such as soil, seawater, underground water, etc. around Nuclear Power Plants(NPPs) were collected. Tritium chemical analysis was tried for the samples of rain water, pine-needle, air, seawater, underground water, chinese cabbage, again of rice and milk sampled around NPPs, and surface seawater and rain water sampled over the country. Strontium in the soil that were sampled at 60 point of district in Korea were analyzed. Tritium were analyzed in 21 samples of surface seawater around the Korea peninsular that were supplied form KFRDI(National Fisheries Research and Development Institute). Sampling and chemical analysis environmental samples around Kori, Woolsung, Youngkwang, Wooljin NPPs and Taeduk science town for tritium and strontium analysis was managed according to plans. Succeed to KINS after all samples were tried.

  6. Passive Nuclear Plants Program (UPDATE)

    International Nuclear Information System (INIS)

    Chimeno, M. A.

    1998-01-01

    The light water passive plants program (PCNP), today Advanced Nuclear Power Plants Program (PCNA), was constituted in order to reach the goals of the Spanish Electrical Sector in the field of advanced nuclear power plants, optimize the efforts of all Spanish initiatives, and increase joint presence in international projects. The last update of this program, featured in revision 5th of the Program Report, reflects the consolidation of the Spanish sector's presence in International programs of the advanced power plants on the basis of the practically concluded American ALWR program. Since the beginning of the program , the PCNP relies on financing from the Electrical sector, Ocide, SEPI-Endesa, Westinghouse, General Electric, as well as from the industrial cooperators, Initec, UTE (Initec- Empresarios Agrupados), Ciemat, Enusa, Ensa and Tecnatom. The program is made up of the following projects, already concluded: - EPRI's Advanced Light Water Plants Certification Project - Westinghouse's AP600 Project - General Electric's SBWR Project (presently paralyzed) and ABWR project Currently, the following project are under development, at different degrees of advance: - EPP project (European Passive Plant) - EBWR project (European Advanced Boiling Water Reactor)

  7. Relative costs to nuclear plants: international experience

    International Nuclear Information System (INIS)

    Souza, Jair Albo Marques de

    1992-03-01

    This work approaches the relative costs to nuclear plants in the Brazil. It also presents the calculation methods and its hypothesis to determinate the costs, and the nacional experience in costs of investment, operating and maintenance of the nuclear plants

  8. Cooling water recipients for nuclear power plants

    International Nuclear Information System (INIS)

    Dahl, F.-E.; Saetre, H.J.

    1971-10-01

    The hydrographical and hydrological conditions at 17 prospective nuclear power plant sites in the Oslofjord district are evaluated with respect to their suitability as recipients for thermal discharges from nuclear power plants. No comparative evaluations are made. (JIW)

  9. Nuclear power plant

    International Nuclear Information System (INIS)

    Inami, Ichiro; Kobayashi, Minoru.

    1995-01-01

    In a condensate cleanup system and a reactor water cleanup system of a BWR-type reactor, in which primary coolants flow, there is disposed a filtering and desalting device using hollow thread membrane filter and ion exchange resin for a condensate cleanup system, and using a high temperature filter made of a metal, a metal oxide or ceramics as a filtering material and a precoat filter made of a powdery ion exchange resin as a filtering material for a reactor water cleanup system. This can completely remove cruds generated in the condensate system. Since the reactor water cleanup system comprises the powdery resin precoat-type filtering and desalting device and the high temperature filter using ceramics, ionic impurities such as radioactive materials can be removed. Accordingly, cruds are not carried into the inside of the reactor, and since the radioactive concentration in the reactor water is reduced, radiation exposure upon periodical inspection can be minimized almost to zero, to attain a clean plant. (T.M.)

  10. Advanced nuclear plant control complex

    International Nuclear Information System (INIS)

    Scarola, K.; Jamison, S.; Manazir, R.M.; Rescorl, R.L.; Harmon, D.L.

    1991-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system which is nuclear qualified for rapid response to changes in plant parameters and a component control system which together provide a discrete monitoring and control capability at a panel in the control room. A separate data processing system, which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs and a large, overhead integrated process status overview board. The discrete indicator and alarm system and the data processing system receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accidental conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof. (author)

  11. Docommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Essmann, J.

    1981-01-01

    The German utilities operating nuclear power plants have long concerned themselves with aspects of decommissioning and for this purpose an engineering company was given a contract to study the entire spectrum of decommissioning. The results of this study have been available in autumn 1980 and it is possible to discuss all the aspects of decommissioning on a new basis. Following these results no change in the design concept of LWR nuclear power plants in operation or under construction is necessary because the techniques, necessary for decommissioning, are fully available today. The technical feasibility of decommissioning for power plants of Biblis A and KRB type has been shown in detail. The calculations of the quantity of waste produced during removal of a nuclear power plant could be confirmed and it could be determined with high procedure. The radiation dose to the decommissioning personnel is in the range of the radiation protection regulations and is in the same range as the radiation dose to the personnel within a yearly inservice inspection. (AF)

  12. Fire prevention in nuclear plants

    International Nuclear Information System (INIS)

    Cayla, J.P.; Jacquet-Francillon, J.; Matarozzo, F.

    2014-01-01

    About 80 fire starts are reported in EDF nuclear power plants every year but only 3 or 4 turn into a real fire and none has, so far, has led to a major safety failure of a nuclear plant. A new regulation has been implemented in july 2014 that strengthens the concept of defense in depth, proposes an approach that is proportionate to the stakes and risks, this proportionality means that the requirements for a power reactor are not the same as for a nuclear laboratory, and imposes an obligation or result rather than of means. The second article deals with the fire that broke out in the waste silo number 130 at La Hague plant in january 1981. The investigation showed that the flammability of the silo content had been underestimated. The third article presents the consequences of the fire that broke out in a power transformer at the Cattenom plant in june 2013. The fire was rapidly brought under control thanks to the immediate triggering of the emergency plan. The article details also the feedback experience of this event. (A.C.)

  13. Atucha I nuclear power plant transients analysis

    International Nuclear Information System (INIS)

    Castano, J.; Schivo, M.

    1987-01-01

    A program for the transients simulation thermohydraulic calculation without loss of coolant (KWU-ENACE development) to evaluate Atucha I nuclear power plant behaviour is used. The program includes systems simulation and nuclear power plants control bonds with real parameters. The calculation results show a good agreement with the output 'protocol' of various transients of the nuclear power plant, keeping the error, in general, lesser than ± 10% from the variation of the nuclear power plant's state variables. (Author)

  14. Fighting fires in nuclear plants

    International Nuclear Information System (INIS)

    Fantom, L.F.; Weldon, G.E.

    1978-01-01

    Since the Browns Ferry incident, the specter of fires at nuclear plants has been the focus of attention by NRC, the utilities, and the public. There are sophisticated hardware and software available - in the form of fire-protection systems and equipment and training and fire-protection programs. Potential fire losses at nuclear faclities can be staggering. Thus, it behooves all those involved to maximize fire-protection security while simultaneously minimizing the chance of human error, which cancels out the effectiveness of the most up-to-date protective systems and devices

  15. QA programs in nuclear power plants

    International Nuclear Information System (INIS)

    Ellingson, A.C.

    1976-01-01

    As an overview of quality assurance programs in nuclear power plants, the energy picture as it appears today is reviewed. Nuclear power plants and their operations are described and an attempt is made to place in proper perspective the alleged ''threats'' inherent in nuclear power. Finally, the quality assurance programs being used in the nuclear industry are described

  16. 4. Nuclear power plant component failures

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear power plant component failures are dealt with in relation to reliability in nuclear power engineering. The topics treated include classification of failures, analysis of their causes and impacts, nuclear power plant failure data acquisition and processing, interdependent failures, and human factor reliability in nuclear power engineering. (P.A.). 8 figs., 7 tabs., 23 refs

  17. Increased yield of heterologous viral glycoprotein in the seeds of homozygous transgenic tobacco plants cultivated underground.

    Science.gov (United States)

    Tackaberry, Eilleen S; Prior, Fiona; Bell, Margaret; Tocchi, Monika; Porter, Suzanne; Mehic, Jelica; Ganz, Peter R; Sardana, Ravinder; Altosaar, Illimar; Dudani, Anil

    2003-06-01

    The use of transgenic plants in the production of recombinant proteins for human therapy, including subunit vaccines, is being investigated to evaluate the efficacy and safety of these emerging biopharmaceutical products. We have previously shown that synthesis of recombinant glycoprotein B (gB) of human cytomegalovirus can be targeted to seeds of transgenic tobacco when directed by the rice glutelin 3 promoter, with gB retaining critical features of immunological reactivity (E.S. Tackaberry et al. 1999. Vaccine, 17: 3020-3029). Here, we report development of second generation transgenic plant lines (T1) homozygous for the transgene. Twenty progeny plants from two lines (A23T(1)-2 and A24T(1)-3) were grown underground in an environmentally contained mine shaft. Based on yields of gB in their seeds, the A23T(1)-2 line was then selected for scale-up in the same facility. Analyses of mature seeds by ELISA showedthat gB specific activity in A23T(1)-2 seeds was over 30-fold greater than the best T0 plants from the same transformation series, representing 1.07% total seed protein. These data demonstrate stable inheritance, an absence of transgene inactivation, and enhanced levels of gB expression in a homozygous second generation plant line. They also provide evidence for the suitability of using this environmentally secure facility to grow transgenic plants producing therapeutic biopharmaceuticals.

  18. Maintenance of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Quintana, J. M.; Sanchez, J. T.

    2002-01-01

    With this article about the Maintenance in nuclear power plants we will try to give to see the importance of this kind of installations but the problems found by the clients and contractors to face it, and some possible solutions to improve it. It is necessary to understand this problem like something inner to the installation and must be considerate like a benefit for the same. Of course, there must be adequate Sevices Companies in direct relation with the installation that take the responsibility of assuming and understanding the correct fulfillment of the fixed milestones to get the optimal working of the whole plant systems. (Author)

  19. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    1998-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  20. Nuclear power plant life management

    International Nuclear Information System (INIS)

    Rorive, P.; Berthe, J.; Lafaille, J.P.; Eussen, G.

    1998-01-01

    Several definitions can be given to the design life of a nuclear power plant just as they can be attributed to the design life of an industrial installation: the book-keeping life which is the duration of the provision for depreciation of the plant, the licensed life which corresponds to the duration for which the plant license has been granted and beyond which a new license should be granted by the safety authorities, the design life which corresponds to the duration specified for ageing and fatigue calculations in the design of some selected components during the plant design phase, the technical life which is the duration of effective technical operation and finally the economic life corresponding to the duration of profitable operation of the plant compared with other means of electricity production. Plant life management refers to the measures taken to cope with the combination of licensed, design, technical and economical life. They can include repairs and replacements of components which have arrived to the end of their life due to known degradation processes such as fatigue, embrittlement, corrosion, wear, erosion, thermal ageing. In all cases however, it is of great importance to plan the intervention so as to minimise the economic impact. Predictive maintenance is used together with in-service inspection programs to fulfil this goal. The paper will go over the methodologies adopted in Belgium in all aspects of electrical, mechanical and civil equipment for managing plant life. (author)

  1. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots enhance a safety and operations in nuclear plants. E.I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligence, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  2. Expert robots in nuclear plants

    International Nuclear Information System (INIS)

    Byrd, J.S.; Fisher, J.J.; DeVries, K.R.; Martin, T.P.

    1987-01-01

    Expert robots will enhance safety and operations in nuclear plants. E. I. du Pont de Nemours and Company, Savannah River Laboratory, is developing expert mobile robots for deployment in nuclear applications at the Savannah River Plant. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation and manipulation functions, and to analyze sensory information. Development work using two research vehicles is underway to demonstrate semiautonomous, intelligent, expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being used to allow mobile robots to autonomously navigate and perform tasks in known environments without the need for large computer systems

  3. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2005-01-01

    This 2005 edition of the Elecnuc booklet summarizes in tables all numerical data relative to the nuclear power plants worldwide. These data come from the PRIS database managed by the IAEA. The following aspects are reviewed: 2004 highlights; main characteristics of reactor types; map of the French nuclear power plants on 2005/01/01; worldwide status of nuclear power plants at the end of 2004; units distributed by countries; nuclear power plants connected to the grid by reactor-type group; nuclear power plants under construction on 2004; evolution of nuclear power plant capacities connected to the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear power plants by country at the end 2004; performance indicator of PWR units in France; trend of the generation indicator worldwide; 2004 load factor by owners; units connected to the grid by countries at 12/31/2004; status of licence renewal applications in USA; nuclear power plants under construction at 12/31/2004; shutdown reactors; exported nuclear capacity in net MWe; exported and national nuclear capacity connected to the grid; exported nuclear power plants under construction or order; exported and national nuclear capacity under construction or order; recycling of plutonium in LWR; Mox licence plant projects; Appendix - historical development; acronyms, glossary

  4. Nuclear power plants and environment

    International Nuclear Information System (INIS)

    Agudo, E.G.; Penteado Filho, A.C.

    1980-01-01

    The question of nuclear power plants is analysed in details. The fundamental principles of reactors are described as well as the problems of safety involved with the reactor operation and the quantity and type of radioactive released to the environment. It shows that the amount of radioactive is very long. The reactor accidents has occurred, as three mile island, are also analysed. (M.I.A.)

  5. Operation of nuclear power plants

    International Nuclear Information System (INIS)

    Severa, P.

    1988-04-01

    The textbook for training nuclear power plant personnel is centred on the most important aspects of operating modes of WWER-440 reactors. Attention is devoted to the steady state operation of the unit, shutdown, overhaul with refuelling, physical and power start-up. Also given are the regulations of shift operation and the duties of individual categories of personnel during the shift and during the change of shifts. (Z.M.). 3 figs., 1 tab

  6. Geochemistry research planning for the underground storage of high-level nuclear waste

    International Nuclear Information System (INIS)

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables

  7. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    International Nuclear Information System (INIS)

    Wu, Q.; Sun, L.T.; Cui, B.Q.; Lian, G.; Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M.; Liu, W.P.

    2016-01-01

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H + , 10 emA He + and 2.0 emA He 2+ beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  8. Design of an intense ion source and LEBT for Jinping Underground Nuclear Astrophysics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Sun, L.T., E-mail: sunlt@impcas.ac.cn [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Cui, B.Q.; Lian, G. [China Institute of Atomic Energy, Beijing 102413 (China); Yang, Y.; Ma, H.Y.; Tang, X.D.; Zhang, X.Z.; Zhang, Z.M. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.P. [China Institute of Atomic Energy, Beijing 102413 (China)

    2016-09-11

    The ongoing Jinping Underground Nuclear Astrophysics experiment (JUNA) will take the advantage of the ultralow background in China Jinping Underground Laboratory (CJPL), high current accelerator driven by on an ECR source and highly sensitive detector to study directly a number of important reactions for the first time within their relevant stellar energy range. A 2.45 GHz ECR ion source is one of its key components to provide 10 emA H{sup +}, 10 emA He{sup +} and 2.0 emA He{sup 2+} beams for the study of (p,γ), (p,α), (α,p) and (α,γ) reactions in the first phase of the JUNA project. Ion beam is extracted from the source with energies up to 50 kV/q. The following low energy beam transport (LEBT) system transports and matches the ion beam from the exit of ion source to the acceleration tube (AT). The design status of the ECR ion source and LEBT system for the JUNA project are presented. The potential risks of the ion source are also discussed and analysed.

  9. Utilization of the noble gases in studies of underground nuclear detonations

    International Nuclear Information System (INIS)

    Smith, C.F.

    1973-01-01

    The Livermore Gas Diagnostics Program employs a number of rare gas isotopes, both stable and radioactive, in its investigations of the phenomenology of underground nuclear detonations. Radioactive gases in a sample are radiochemically purified by elution chromatography, and the separated gases are radioassayed by gamma-ray spectrometry and by internal or thin-window beta proportional counting. Concentrations of the stable gases are determined by mass-spectrometry, following chemical removal of the reactive gases in the sample. The most general application of the noble gases is as device fraction indicators to provide a basis for estimating totals of chimney-gas components. All of the stable rare gases, except argon, have been used as tracers, as have xenon-127 and krypton-85. Argon-37 and krypton-85 have proven to be of particular value in the absence of a good tracer material as reference species for studies of chimney-gas chemistry. The rate of mixing of chimney gases, and the degree to which the sampled gas truly represents the underground gas mixture, can be studied with the aid of the fission-product gases. Radon-222 and helium are released to the cavity from the surrounding rock, and are, therefore, useful in studies of the interaction of the detonation with the surrounding medium

  10. Nuclear power plants - Quality assurance

    International Nuclear Information System (INIS)

    1980-01-01

    This International Standard defines principles for the establishment and implementation of quality assurance programmes during all phases of design, procurement, fabrication, construction, commissioning, operation, maintenance and decommissioning of structures, systems and components of nuclear power plants. These principles apply to activities affecting the quality of items, such as designing, purchasing, fabricating, handling, shipping, storing, cleaning, erecting, installing, testing, commissioning, operating, inspecting, maintaining, repairing, refuelling and modifying and eventually decommissioning. The manner in which the principles described in this document will be implemented in different organizations involved in a specific nuclear power project will depend on regulatory and contractual requirements, the form of management applied to a nuclear power project, and the nature and scope of the work to be performed by different organizations

  11. Exploiting nuclear plants in time

    International Nuclear Information System (INIS)

    Tran, Lionel

    2011-02-01

    This document outlines that the French fleet of 58 reactors is only 25 year old in average, and that nuclear safety is strongly regulated, and notably relies on improved indicators and on a decennial re-assessment. It outlines that nuclear energy is a response to energy challenges and that it is therefore relevant to operate the nuclear fleet beyond the initially foreseen lifetime (40 years). Due to maintenance and renewal activities, plants are supposed to be safer and more efficient. To guarantee an always safer and more efficient operation in time, five actions are highlighted: decennial controls, installation and equipment modifications, control and anticipation of installation and equipment wear, competencies and ability renewal, better knowledge of techniques and technologies

  12. Community attitudes toward nuclear plants

    International Nuclear Information System (INIS)

    Peelle, E.

    1982-01-01

    Among the many effects of the accident at Three Mile Island are impacts upon other communities that currently host nuclear-power reactors. Because studies on communities' reactions not immediately available, this chapter reviews existing studies and speculates about possible effects. The patterns and variations in impacts on and responses of nuclear host communities have been the subject of studies at Oak Ridge National Laboratory (Oak Ridge, Tennessee) since 1972. This essay presents results from four post-licensing studies of host communities - Plymouth, Massachusetts, and Waterford, Connecticut (PL-1), and Brunswick, North Carolina, and Appling-Toombs counties, Georgia (PL-2) - along with case study and attitude survey information from two additional communities in which reactors are under construction: Hartsville, Tennessee, and Cherokee County, South Carolina. Differences and similarities between the sites have been assessed in terms of differences in input and social structure; factors affecting the generally favorable attitudes toward local nuclear plants are discussed

  13. Nuclear plant analyzer desktop workstation

    International Nuclear Information System (INIS)

    Beelman, R.J.

    1990-01-01

    In 1983 the U.S. Nuclear Regulatory Commission (USNRC) commissioned the Idaho National Engineering Laboratory (INEL) to develop a Nuclear Plant Analyzer (NPA). The NPA was envisioned as a graphical aid to assist reactor safety analysts in comprehending the results of thermal-hydraulic code calculations. The development was to proceed in three distinct phases culminating in a desktop reactor safety workstation. The desktop NPA is now complete. The desktop NPA is a microcomputer based reactor transient simulation, visualization and analysis tool developed at INEL to assist an analyst in evaluating the transient behavior of nuclear power plants by means of graphic displays. The NPA desktop workstation integrates advanced reactor simulation codes with online computer graphics allowing reactor plant transient simulation and graphical presentation of results. The graphics software, written exclusively in ANSI standard C and FORTRAN 77 and implemented over the UNIX/X-windows operating environment, is modular and is designed to interface to the NRC's suite of advanced thermal-hydraulic codes to the extent allowed by that code. Currently, full, interactive, desktop NPA capabilities are realized only with RELAP5

  14. Occupational dose control in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Viktorsson, C.; Lochard, J.; Benedittini, M.; Baum, J.; Khan, T.A.

    1990-01-01

    Reduction in occupational exposure at nuclear power plants is desirable not only in the interest of the health and safety of plant personnel, but also because it enhances the safety and reliability of the plants. This report summarises the current trends of doses to workers at nuclear power plants and the achievements and developments regarding methods for their reduction

  15. Sabotage at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  16. Nuclear plant life cycle costs

    International Nuclear Information System (INIS)

    Durante, R.W.

    1994-01-01

    Life cycle costs of nuclear power plants in the United States are discussed. The author argues that these costs have been mishandled or neglected. Decommissioning costs have escalated, e.g. from $328 per unit in 1991 to $370 in 1993 for the Sacramento Municipal Utility District, though they still only amount to less than 0.1 cent per kWh. Waste management has been complicated in the U.S. by the decision to abandon civilian reprocessing; by the year 2000, roughly 30 U.S. nuclear power units will have filled their storage pools; dry storage has been delayed, and will be an expense not originally envisaged. Some examples of costs of major component replacement are provided. No single component has caused as much operational disruption and financial penalties as the steam generator. Operation and maintenance costs have increased steadily, and now amount to more than 70% of production costs. A strategic plan by the Nuclear Power Oversight Committee (of U.S. utilities) will ensure that the ability to correctly operate and maintain a nuclear power plant is built into the original design. 6 figs

  17. Sabotage at Nuclear Power Plants

    International Nuclear Information System (INIS)

    Purvis, James W.

    1999-01-01

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented

  18. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  19. Remote sensing of traveling ionospheric disturbances resulting from underground nuclear tests

    International Nuclear Information System (INIS)

    Copenhaver, C.

    1985-01-01

    Following an underground nuclear test, an acoustic pulse propagates upward through the atmosphere and sets the ionosphere in motion which, in turn, generates gravity waves. The usual ionospheric monitoring approach is to use a phase sounder to observe the acoustic pulse. However, there are other detection techniques that can be employed. These detection techniques include the use of a low-frequency filter so that only long period (approximately 10 minutes) gravity waves can be observed. Another detection technique is to correlate microbarographic measurements on the surface with HF sounder data from the ionosphere to measure Lamb waves. A third detection technique is to correlate seismometer measurements in the ground with their corresponding ionospheric perturbations. The theoretical and experimental aspects of these remote detection techniques are discussed here

  20. The influence of geological loading on the structural integrity of an underground nuclear waste repository

    International Nuclear Information System (INIS)

    Jakeman, N.

    1985-08-01

    Stresses are developed in underground nuclear waste repositories as a result of applied loads from geological movements caused by the encroachment of ice sheets or seismic activity for example. These stresses may induce fracturing of the waste matrix, repository vault and nearfield host geology. This fracturing will enhance the advective flow and allow more-rapid transfer of radionuclides from their encapsulation through the repository barriers and nearfield host rock. Geological loads may be applied either gradually as in crustal folding or encroachment of ice sheets, or rapidly as in the case of seismic movements. The analysis outlined in this report is conducted with a view to including the effects of geological loading in a probabilistic repository site assessment computer code such as SYVAC. (author)

  1. Sea water pumping-up power plant system combined with nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Tanaka, Masayuki.

    1991-01-01

    It is difficult to find a site suitable to construction for a sea water pumping-up power plant at a place relatively near the electric power consumption area. Then, a nuclear power plant is set at the sea bottom or the land portion of a sea shore near the power consumption area. A cavity is excavated underground or at the bottom of the sea in the vicinity of the power plant to form a lower pond, and the bottom of the sea, as an upper pond and the lower pond are connected by a water pressure pipe and a water discharge pipe. A pump water turbine is disposed therebetween, to which electric power generator is connected. In addition, an ordinary or emergency cooling facility in the nuclear power plant is constituted such that sea water in the cavity is supplied by a sea water pump. Accordingly, the sea water pumping-up plant system in combination with the nuclear power plant is constituted with no injuring from salts to animals and plants on land in the suburbs of a large city. The cost for facilities for supplying power from a remote power plant to large city areas and power loss are decreased and stable electric power can be supplied. (N.H.)

  2. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  3. Wide area change detection with satellite imagery for locating underground nuclear testing

    International Nuclear Information System (INIS)

    Canty, M.J.; Jasani, B.; Schlittenhardt, J.

    2001-01-01

    With the advent of high resolution optical imagery from commercial earth observation satellites, the use of remote sensing data for verification of nuclear non-proliferation agreements is becoming increasingly attractive. Non-governmental organizations are routinely publishing high-quality imagery of sensitive nuclear installations round the world, and international verification authorities, such as the International Atomic Energy Agency (IAEA) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), will also want to make use, directly or indirectly, of this additional open source of information. Exact location of the sites of underground nuclear explosions is a task eminently suited to satellite imagery. Here both moderate resolutions for detecting signals in very large testing ranges as well as high resolution images for exact interpretation play important roles. We describe in our paper a particularly sensitive change detection procedure for bitemporal, multispectral satellite imagery which can be used to locate the spall zone of underground nuclear explosions with commercial satellite imagery. The method is based on the multivariate alteration detection (MAD) technique of Nielsen et al. Linear combinations of the spectral channels in two images of the same scene are chosen so as to minimize their positive correlation. This leads to a series of difference images - the so-called MAD components - which are mutually orthogonal (uncorrelated) and ordered according to decreasing variance in their pixel intensities. Since interesting changes in man-made structures may contribute minimally to the overall variance (as the latter may be dominated for instance by seasonal vegetation differences) it is often the case that such changes turn up in a higher order MAD component. This is because they will be uncorrelated with seasonal vegetation changes, stochastic image noise or other major contributions to the overall change signal. This in fact is one of the

  4. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2002 was made up on bases of answers on questionnaires from 65 electric power companies and other nuclear organizations in 28 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  5. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2008-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2007/2008 was made up on bases of answers on questionnaires from electric power companies and other nuclear organizations around the world by JAIF. This report is comprised of 18 items, and contains generating capacity of the plants; effect of the Niigata-ken chuetsu-oki earthquake; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities, and so forth. (J.P.N.)

  6. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Industrial Forum, Inc. (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Nuclear power plants in the world'. In this report, some data at the end of 2003 was made up on bases of answers on questionnaires from 81 electric power companies and other nuclear organizations in 33 countries and regions around the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; status of MOX use in the world; location of the plants; the plants in the world; directory of the plants; nuclear fuel cycle facilities; and so forth. (J.P.N.)

  7. Maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Migaud, D.; Hutin, J.P.; Jouette, I.; Eymond, P.; Devie, P.; Cudelou, C.; Magnier, S.; Frydman, M.

    2016-01-01

    This document gathers different articles concerning the maintenance of the French nuclear power plants. The first article analyses the impact of the recent law on the energetic transition that sets the share of nuclear power at 50% of the electricity produced by 2025. A consequence may be the decommissioning of 17 to 20 reactors by 2025 and the huge maintenance program called 'Grand Carenage' whose aim is to extend operating life over 40 years will have to be re-considered in order to avoid useless expenses. The second article shows that in 2015 the French nuclear reactor fleet got very good results in terms of availability and safety. There were 49 scheduled outages and among them some ended ahead of time. The third article describes the specificities of the maintenance of a nuclear power plant, for instance the redundancy of some systems implies that maintenance has to deal with systems that have never functioned but must be ready to operate at any moment. Another specificity is the complexity of a nuclear power plant that implies an essential phase of preparation for maintenance operations. Because of safety requirements any maintenance operation has to be controlled, checked and may provide feedback. The fourth article presents the 'Grand Carenage' maintenance program that involves the following operations: the replacement of steam generators, the re-tubing of condensers, the replacement of the filtering drums used for cooling water, the testing of the reactor building, the hydraulic test of the primary circuit and the inspection of the reactor vessel. The fifth article focuses on the organization of the work-site for maintenance operations and the example of the Belleville-sur-Loire is described in the sixth article. Important maintenance operations like 'Grand Carenage' requires a strong collaboration with a network of specialized enterprises and as no reactor (except Flamanville EPR) is being built in France, maintenance

  8. Nuclear Plant Integrated Outage Management

    International Nuclear Information System (INIS)

    Gerstberger, C. R.; Coulehan, R. J.; Tench, W. A.

    1992-01-01

    This paper is a discussion of an emerging concept for improving nuclear plant outage performance - integrated outage management. The paper begins with an explanation of what the concept encompasses, including a scope definition of the service and descriptions of the organization structure, various team functions, and vendor/customer relationships. The evolvement of traditional base scope services to the integrated outage concept is addressed and includes discussions on changing customer needs, shared risks, and a partnership approach to outages. Experiences with concept implementation from a single service in 1984 to the current volume of integrated outage management presented in this paper. We at Westinghouse believe that the operators of nuclear power plants will continue to be aggressively challenged in the next decade to improve the operating and financial performance of their units. More and more customers in the U. S. are looking towards integrated outage as the way to meet these challenges of the 1990s, an arrangement that is best implemented through a long-term partnering with a single-source supplier of high quality nuclear and turbine generator outage services. This availability, and other important parameters

  9. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    International Nuclear Information System (INIS)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-01-01

    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3)

  10. Analysis of trace neptunium in the vicinity of underground nuclear tests at the Nevada National Security Site.

    Science.gov (United States)

    Zhao, P; Tinnacher, R M; Zavarin, M; Kersting, A B

    2014-11-01

    A high sensitivity analytical method for (237)Np analysis was developed and applied to groundwater samples from the Nevada National Security Site (NNSS) using short-lived (239)Np as a yield tracer and HR magnetic sector ICP-MS. The (237)Np concentrations in the vicinity of the Almendro, Cambric, Dalhart, Cheshire, and Chancellor underground nuclear test locations range from nuclear tests at very low but measureable concentrations. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Simulators for nuclear power plants

    International Nuclear Information System (INIS)

    Ancarani, A.; Zanobetti, D.

    1983-01-01

    The different types of simulator for nuclear power plants depend on the kind of programme and the degree of representation to be achieved, which in turn determines the functions to duplicate. Different degrees correspond to different simulators and hence to different choices in the functions. Training of nuclear power plant operators takes advantage of the contribution of simulators of various degrees of complexity and fidelity. Reduced scope simulators are best for understanding basic phenomena; replica simulators are best used for formal qualification and requalification of personnel, while modular mini simulators of single parts of a plant are best for replay and assessment of malfunctions. Another category consists of simulators for the development of assistance during operation, with the inclusion of disturbance and alarm analysis. The only existing standard on simulators is, at present, the one adopted in the United States. This is too stringent and is never complied with by present simulators. A description of possible advantages of a European standard is therefore offered: it rests on methods of measurement of basic simulator characteristics such as fidelity in values and time. (author)

  12. Advanced plant design recommendations from Cook Nuclear Plant experience

    International Nuclear Information System (INIS)

    Zimmerman, W.L.

    1993-01-01

    A project in the American Electric Power Service Corporation to review operating and maintenance experience at Cook Nuclear Plant to identify recommendations for advanced nuclear plant design is described. Recommendations so gathered in the areas of plant fluid systems, instrument and control, testing and surveillance provisions, plant layout of equipment, provisions to enhance effective maintenance, ventilation systems, radiological protection, and construction, are presented accordingly. An example for a design review checklist for effective plant operations and maintenance is suggested

  13. Nuclear power plant V-2

    International Nuclear Information System (INIS)

    1999-01-01

    In this leaflet the short history of commissioning of Bohunice V-2 NPP is reviewed (beginning of construction December 1976; First controlled reactor power, Reactor Unit 1 (RU1): 7 August 1984, Reactor Unit 2 (RU2): 2 August 1985; Connection to the grid: RU1 20 August 1984, RU2 9 August 1985; Commercial operation: RU1 14 February 1985, RU2 18 December 1985. The scheme of the nuclear reactor WWER 440/V213 is depicted. The major technological equipment are described. Principles of nuclear power plant operation safety (safety barriers, active and passive safety systems, centralized heat supply system, as well as technical data of the Bohunice V-2 NPP are presented

  14. Nuclear power plant V-1

    International Nuclear Information System (INIS)

    1999-01-01

    In this leaflet the short history of commissioning of Bohunice V-1 NPP is reviewed (beginning of construction 24 April 1972; First controlled reactor power, Reactor Unit 1 (RU1): 27 November 1978, Reactor Unit 2 (RU2): 15 March 1980; Connection to the grid: RU1 17 December 1978, RU2 26 March 1980; Commercial operation: RU1 1 April 1980, RU2 7 January 1981. The scheme of the nuclear reactor WWER 440/V230 is depicted. The major technological equipment (primary circuit, nuclear reactor, steam generators, reactor coolant pumps, primary circuit auxiliary systems, secondary circuit, turbine generators, NPP electrical equipment, and power plant control) are described. Technical data of the Bohunice V-1 NPP are presented

  15. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    In this popular scientific brochure a brief description of construction scheme of Bohunice Nuclear Power Plant is presented. Electricity generation in a nuclear power plant is described. Instrumentation and control system as well as nuclear safety principles applied on the NPP are presented

  16. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  17. Design of nuclear power plants

    International Nuclear Information System (INIS)

    Lobo, C.G.

    1987-01-01

    The criteria of design and safety, applied internationally to systems and components of PWR type reactors, are described. The main criteria of the design analysed are: thermohydraulic optimization; optimized arrangement of buildings and components; low costs of energy generation; high level of standardization; application of specific safety criteria for nuclear power plants. The safety criteria aim to: assure the safe reactor shutdown; remove the residual heat and; avoid the release of radioactive elements for environment. Some exemples of safety criteria are given for Angra-2 and Angra-3 reactors. (M.C.K.) [pt

  18. Off-shore nuclear power plant

    International Nuclear Information System (INIS)

    Nakanishi, T.

    1980-01-01

    In order to avoid losses of energy and seawater pollution an off-shore nuclear power plant is coupled with a power plant which utilizes the temperature difference between seawater and hot reactor cooling water. According to the invention the power plant has a working media loop which is separated from the nuclear power plant. The apparative equipment and the operational characteristics of the power plant are the subject of the patent. (UWI) [de

  19. Blending mining and nuclear industries at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Walls, J.R.

    1990-01-01

    At the Waste Isolation Pilot Plant (WIPP) traditional procedures for underground mining activities have been significantly altered in order to assure underground safety and project adherence to numerous regulatory requirements. Innovative techniques have been developed for WIPP underground procedures, mining equipment, and operating environments. The mining emphasis at WIPP is upon the quality of the excavation, not (as in conventional mines) on the production of ore. The WIPP is a United States Department of Energy (DOE) project that is located 30 miles southeast of Carlsbad, New Mexico, where the nation's first underground engineered nuclear repository is being constructed. The WIPP site was selected because of its location amidst a 607 meter thick salt bed, which provides a remarkably stable rock formation for the permanent storage of nuclear waste. The underground facility is located 655 meters below the earth's surface, in the Salado formation, which comprises two-hundred million year old halites with minor amounts of clay and anhydrites. When completed, the WIPP underground facility will consist of two components: approximately 81 square kilometers of experimental areas, and approximately 405 square kilometers of repository. 3 figs

  20. Nuclear power. Volume 1. Nuclear power plant design

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 1 contains the following chapters; (1) nuclear reactor theory; (2) nuclear reactor design; (3) types of nuclear power plants; (4) licensing requirements; (5) shielding and personnel exposure; (6) containment and structural design; (7) main steam and turbine cycles; (8) plant electrical system; (9) plant instrumentation and control systems; (10) radioactive waste disposal (waste management) and (11) conclusion

  1. Nuclear power plant operation 2016. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2017-05-15

    A report is given on the operating results achieved in 2016, events important to plant safety, special and relevant repair, and retrofit measures from nuclear power plants in Germany. Reports about nuclear power plants in Belgium, Finland, the Netherlands, Switzerland, and Spain will be published in a further issue.

  2. Environmental survey around EDF nuclear power plants

    International Nuclear Information System (INIS)

    Foulquier, L.

    1992-01-01

    Description of various types of environmental test carried out under the responsibility of the Operator of nuclear power plants in France, with taking Fessenheim nuclear power plant as an example: permanent monitoring of radioactivity, periodic radioecological assessments, main results of measurements taken, showing that there are no detectable effects of the plant on the environment, policy of openness by publication of these results

  3. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, 90 Sr, and 137 Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test

  4. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient

  5. Developing a Hierarchical Decision Model to Evaluate Nuclear Power Plant Alternative Siting Technologies

    Science.gov (United States)

    Lingga, Marwan Mossa

    A strong trend of returning to nuclear power is evident in different places in the world. Forty-five countries are planning to add nuclear power to their grids and more than 66 nuclear power plants are under construction. Nuclear power plants that generate electricity and steam need to improve safety to become more acceptable to governments and the public. One novel practical solution to increase nuclear power plants' safety factor is to build them away from urban areas, such as offshore or underground. To date, Land-Based siting is the dominant option for siting all commercial operational nuclear power plants. However, the literature reveals several options for building nuclear power plants in safer sitings than Land-Based sitings. The alternatives are several and each has advantages and disadvantages, and it is difficult to distinguish among them and choose the best for a specific project. In this research, we recall the old idea of using the alternatives of offshore and underground sitings for new nuclear power plants and propose a tool to help in choosing the best siting technology. This research involved the development of a decision model for evaluating several potential nuclear power plant siting technologies, both those that are currently available and future ones. The decision model was developed based on the Hierarchical Decision Modeling (HDM) methodology. The model considers five major dimensions, social, technical, economic, environmental, and political (STEEP), and their related criteria and sub-criteria. The model was designed and developed by the author, and its elements' validation and evaluation were done by a large number of experts in the field of nuclear energy. The decision model was applied in evaluating five potential siting technologies and ranked the Natural Island as the best in comparison to Land-Based, Floating Plant, Artificial Island, and Semi-Embedded plant.

  6. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    International Nuclear Information System (INIS)

    Brantberger, Martin; Zetterqvist, Anders; Arnbjerg-Nielsen, Torben; Olsson, Tommy; Outters, Nils; Syrjaenen, Pauli

    2006-04-01

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due to the applied

  7. Final repository for spent nuclear fuel. Underground design Forsmark, Layout D1

    Energy Technology Data Exchange (ETDEWEB)

    Brantberger, Martin; Zetterqvist, Anders [Ramboell Sweden AB, Stockholm (Sweden); Arnbjerg-Nielsen, Torben [Ramboell Denmark A/S, Virum (Denmark); Olsson, Tommy [IandT Olsson AB, Uppsala (Sweden); Outters, Nils [Golder Associates AB, Uppsala (Sweden); Syrjaenen, Pauli [Gridpoint Oy, Helsinki (Sweden)

    2006-04-15

    This report comprises the design step D1 related to the underground design for a deep repository located at the Forsmark site. The design is based on the Site Descriptive Model Forsmark v1.2. All studies have been focussed at an area southeast of the Forsmark nuclear plant, which has been considered to be the most promising area for hosting the repository. SKB has developed guidelines for the design of the repository, which further describes the methodology applied for the studies. From these guidelines the following basic objectives for the design step D1 are summarized: to determine whether the final repository can be accommodated within the studied site; to identify site-specific facility critical issues; to test and evaluate the design methodology; to provide feedback to: the design organisation regarding additional studies that needs to be done; the site investigation and modelling organization regarding further investigations required; and the safety assessment team. The possible locations for a tentative deep repository are analysed in Chapter 3 of the report. The most promising area for the repository (denoted 'priority site') has been defined by SKB to be located southeast of the Forsmark nuclear plant and northwest of the gently dipping deformation zone ZFMNE00A2. Regarding the repository depth, present knowledge acquired from the site investigations indicates that it is possible to locate the repository at all stipulated depths according to SKB, that is between 400 m and 700 m depth. The preliminary assessment made in Chapter 3 clearly demonstrates that the repository can be accommodated within the 'priority site'. The potential to accommodate the repository is essentially the same for both 400 m and 500 m depths. The design of the deposition areas is reported in Chapter 4, which includes the design of layout features for all tunnels and deposition holes, orientation of tunnels, calculation of anticipated loss of deposition holes due

  8. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  9. TOSHIBA CAE system for nuclear power plant

    International Nuclear Information System (INIS)

    Machiba, Hiroshi; Sasaki, Norio

    1990-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plant using Computer Aided Engineering (CAE). TOSHIBA CAE system for nuclear power plant consists of numbers of sub-systems which had been integrated centering around the Nuclear Power Plant Engineering Data Base (PDBMS) and covers all stage of engineering for nuclear power plant from project management, design, manufacturing, construction to operating plant service and preventive maintenance as it were 'Plant Life-Cycle CAE System'. In recent years, TOSHIBA has been devoting to extend the system for integrated intelligent CAE system with state-of-the-art computer technologies such as computer graphics and artificial intelligence. This paper shows the outline of CAE system for nuclear power plant in TOSHIBA. (author)

  10. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-06-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear and radiation safety, which the Finnish Centre for Radiation and Nuclear Safety considers significant. Also other events of general interest are reported. The reports also include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the plants' production and load factors

  11. Safety culture in nuclear power plants

    International Nuclear Information System (INIS)

    Weihe, G. von; Pamme, H.

    2003-01-01

    Experience shows that German nuclear power plants have always been operated reliably and safely. Over the years, the safety level in these plants has been raised considerably so that they can stand any comparison with other countries. This is confirmed by the two reports published by the Federal Ministry for the Environment on the nuclear safety convention. Behind this, there must obviously stand countless appropriate 'good practices' and a safety management system in nuclear power plants. (orig.) [de

  12. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-03-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear and radiation safety, which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Also other events of general interest are reported. The reports also include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the plants' production and load factors

  13. HVDC transmission from nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Yukio; Takenaka, Kiyoshi; Taniguchi, Haruto; Ueda, Kiyotaka

    1980-01-01

    HVDC transmission directly from a nuclear power plant is expected as one of the bulk power transmission systems from distant power generating area. Successively from the analysis of HVDC transmission from BWR-type nuclear power plant, this report discusses dynamic response characteristics of HVDC transmission (double poles, two circuits) from PWR type nuclear power plant due to dc-line faults (DC-1LG, 2LG) and ac-line faults (3LG) near inverter station. (author)

  14. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  15. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  16. Basic safety principles for nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Shiguan

    1989-01-01

    To ensure the safety operation of nuclear power plant, one should strictly adhere to the implelmentation of safety codes and the establishment of nuclear safety code system, as well as the applicable basic safety principles of nuclear power plants. This article briefly introduce the importance of nuclear codes and its economic benefits and the implementation of basic safety principles to be accumulated in practice for many years by various countries

  17. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  18. Qualification of nuclear power plant operations personnel

    International Nuclear Information System (INIS)

    1984-01-01

    With the ultimate aim of reducing the possibility of human error in nuclear power plant operations, the Guidebook discusses the organizational aspects, the staffing requirements, the educational systems and qualifications, the competence requirements, the ways to establish, preserve and verify competence, the specific aspects of personnel management and training for nuclear power plant operations, and finally the particular situations and difficulties to be overcome by utilities starting their first nuclear power plant. An important aspect presented in the Guidebook is the experience in training and qualification of nuclear power plant personnel in various countries: Argentina, Belgium, Canada, Czechoslovakia, France, Federal Republic of Germany, Spain, Sweden, United Kingdom and United States of America

  19. The operation of nuclear power plants

    International Nuclear Information System (INIS)

    Brosche, D.

    1992-01-01

    The duties to be performed in managing the operation of a nuclear power plant are highly diverse, as will be explained in this contribution by the examples of the Grafenrheinfeld Nuclear Power Station. The excellent safety record and the high availabilities of German nuclear power plants demonstrate that their operators have adopted the right approaches. Systematic evaluation of the operating experience accumulated inhouse and in other plants is of great significance in removing weak spots and improving operation. The manifold and complex activities in the structure of organization and of activities in a nuclear power plant require a high degree of division of labor. (orig.) [de

  20. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-02-01

    During the third quarter of 1990 the Finnish nuclear power plant units Loviisa 1 and 2 and TVO I and II were in commercial operation for most of the time. The annual maintenance outages of the Loviisa plant units were held during the report period. All events during this quarter are classified as Level hero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were below authorised limits. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  1. Emergency control centers for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidance is provided for the development and implementation of emergency control centers for nuclear power plants, including nuclear plant control room, nuclear plant company headquarters, emergency control center, and nuclear plant alternate emergency control center. Requirements and recommendations are presented for the mission, communications, instrumentation and equipment associated with each type of control center. Decisional aids, manning requirements and resources are also given; the decision aids cover both the accident assessment and protective action areas. Both normal and alternate means of communications are considered. Off-site emergency control centers, although not covered in the strict sense by this standard, are considered in an appendix

  2. Electromagnetic compatibility of nuclear power plants

    International Nuclear Information System (INIS)

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants

  3. Nuclear accidents and safety measures of domestic nuclear power plants

    International Nuclear Information System (INIS)

    Song Zurong; Che Shuwei; Pan Xiang

    2012-01-01

    Based on the design standards for the safety of nuclear and radiation in nuclear power plants, the three accidents in the history of nuclear power are analyzed. And the main factors for these accidents are found out, that is, human factors and unpredicted natural calamity. By combining the design and operation parameters of domestic nuclear plants, the same accidents are studied and some necessary preventive schemes are put forward. In the security operation technology of domestic nuclear power plants nowadays, accidents caused by human factors can by prevented completely. But the safety standards have to be reconsidered for the unpredicted neutral disasters. How to reduce the hazard of nuclear radiation and leakage to the level that can be accepted by the government and public when accidents occur under extreme conditions during construction and operation of nuclear power plants must be considered adequately. (authors)

  4. Large nuclear steam turbine plants

    International Nuclear Information System (INIS)

    Urushidani, Haruo; Moriya, Shin-ichi; Tsuji, Kunio; Fujita, Isao; Ebata, Sakae; Nagai, Yoji.

    1986-01-01

    The technical development of the large capacity steam turbines for ABWR plants was partially completed, and that in progress is expected to be completed soon. In this report, the outline of those new technologies is described. As the technologies for increasing the capacity and heightening the efficiency, 52 in long blades and moisture separating heaters are explained. Besides, in the large bore butterfly valves developed for making the layout compact, the effect of thermal efficiency rise due to the reduction of pressure loss can be expected. As the new technology on the system side, the simplification of the turbine system and the effect of heightening the thermal efficiency by high pressure and low pressure drain pumping-up method based on the recent improvement of feed water quality are discussed. As for nuclear steam turbines, the actual records of performance of 1100 MW class, the largest output at present, have been obtained, and as a next large capacity machine, the development of a steam turbine of 1300 MWe class for an ABWR plant is in progress. It can be expected that by the introduction of those new technologies, the plants having high economical efficiency are realized. (Kako, I.)

  5. Waste from nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    The report presents proposals for organizing and financing of the treatment and deposition of spent fuel and radioactive waste. Decommissioning of plants is taken into consideration. The proposals refer to a program of twelve reactors. A relatively complete model for the handling of radioactive waste in Sweden is at hand. The cost for the years 1980 to 2000 is estimated at approx 1040 million SKr. Also the expense to dispose of the rest of the waste is calculated up to the year 2060, when the waste is planned to be put into final deposit. The state must have substantial influence over the organization which should be closely connected to the nuclear industry. Three different types of organization are discussed, namely (i) a company along with a newly created authority, (ii) a company along with the existing Nuclear Power Inspectorate or (iii) a company along with a board of experts. The proposals for financing the cost of handling nuclear waste are given in chief outlines. The nuclear industry should reserve means to special funds. The allocations are calculated to 1.4 oere per delivered kWh up to and including the year 1980. The accumulated allocations for 1979 should thus amount to 1310 million SKr. The charge for supervision and for certain research and development is recommended to be 0.1 oere per kWh which corresponds to approx 23 million SKr for 1980. The funds should be assured by binding agreements which must be approved by the state. The amounts are given in the monetary value of the year 1979. (G.B.)

  6. Data retrieval techniques for nuclear power plants

    International Nuclear Information System (INIS)

    Sozzi, G.L.; Dahl, C.C.; Gross, R.S.; Voeller, J.G. III

    1995-01-01

    Data retrieval, processing retrieved data, and maintaining the plant documentation system to reflect the as-built condition of the plant are challenging tasks for most existing nuclear facilities. The information management systems available when these facilities were designed and constructed are archaic by today's standards. Today's plant documentation systems generally include hard copy drawings and text, drawings in various CAD formats, handwritten information, and incompatible databases. These existing plant documentation systems perpetuate inefficiency for the plant technical staff in the performance of their daily activities. This paper discusses data retrieval techniques and tools available to nuclear facilities to minimize the impacts of the existing plant documentation system on plant technical staff productivity

  7. Commissioning of the nuclear power plant

    International Nuclear Information System (INIS)

    Furtado, P.M.; Rolf, F.

    1984-01-01

    Nuclear Power Plant Angra 2, located at Itaorna Beach-Angra dos Reis is the first plant of the Brazilian-German Agreement to be commissioned. The Nuclear Power Plant is a pressurized water reactor rated at 3765 Mw thermal/1325 Mw electrical. For commissioning purpose the plant is divided into 110 systems. Plant commissioning objective is to demonstrate the safe and correct operation of each plan component, system and of the whole plant in agreement with design conditions, licensing requirements and contractual obligations. This work gives a description of plant commissioning objectives, activities their time sequence, and documentation. (Author) [pt

  8. Nuclear Power Plant (NPP) safety in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    The multidisciplinary aspects of the activities involved in the nuclear power plant (NPP) licensing, are presented. The activities of CNEN's technical staff in the licensing of Angra-1 and Angra-2 power plants are shown. (E.G.) [pt

  9. Development of nuclear power plant Risk Monitor

    International Nuclear Information System (INIS)

    Yang Xiaoming; Sun Jinlong; Ma Chao; Wang Lin; Gu Xiaohui; Bao Zhenli; Qu Yong; Zheng Hao

    2014-01-01

    Risk Monitor is a tool to monitor the real-time risk of a nuclear power plant for risk management and comprehensive decision-making, which has been widely used all over the world. The nuclear power plant Risk Monitor applies the real-time risk model with low-complicacy that could reflect the plant's actual configuration, automatically reads the plant's configuration information from the engineering system through the developed interface, and efficiently analyzes the plant's risk Dy the intelligent parallel-computing method in order to provide the risk basement for the safety management of nuclear power plant. This paper generally introduces the background, architecture, functions and key technical features of a nuclear power plant Risk Monitor, and validates the risk result, which could well reflect the plant's risk information and has a significant practical value. (authors)

  10. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 Environmental Assessment... Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Impact Statement for License Renewal of Nuclear Plants, Calvert Cliffs Nuclear Power Plant (NUREG-1437...

  11. Nuclear power plant operating experience, 1976

    International Nuclear Information System (INIS)

    1977-11-01

    This report is the third in a series of reports issued annually that summarize the operating experience of U.S. nuclear power plants in commercial operation. Power generation statistics, plant outages, reportable occurrences, fuel element performance, occupational radiation exposure and radioactive effluents for each plant are presented. Summary highlights of these areas are discussed. The report includes 1976 data from 55 plants--23 boiling water reactor plants and 32 pressurized water reactor plants

  12. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-09-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations, relating to nuclear safety and radiation protection which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Safety-enhancing modifications at the nuclear power plants and issues relating to the use of nuclear energy which are of general interest are also reported. The reports include a summary of the radiation safety of plant personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the first quarter of 1993, a primary feedwater system pipe break occurred at Loviisa 2, in a section of piping after a feedwater pump. The break was erosion-corrosion induced. Repairs and inspections interrupted power generation for seven days. On the International Nuclear Event Scale the event is classified as a level 2 incident. Other events in the first quarter of 1993 had no bearing on nuclear safety and radiation protection

  13. Dukovany nuclear power plant safety

    International Nuclear Information System (INIS)

    1999-01-01

    Presentation covers recommended safety issues for the Dukovany NPP which have been solved with satisfactory conclusions. Safety issues concerned include: radiation safety; nuclear safety; security; emergency preparedness; health protection at work; fire protection; environmental protection; chemical safety; technical safety. Quality assurance programs at all stages on NPP life time is described. Report includes description of NPP staff training provision, training simulator, emergency operating procedures, emergency preparedness, Year 2000 problem, inspections and life time management. Description of Dukovany Plant Safety Analysis Projects including integrity of the equipment, modernisation, equipment innovation and safety upgrading program show that this approach corresponds to the actual practice applied in EU countries, and fulfilment of current IAEA requirements for safety enhancement of the WWER 440/213 units in the course of MORAWA Equipment Upgrading program

  14. Nuclear power plants in Germany

    International Nuclear Information System (INIS)

    Hennings, U.; Stuermer, W.

    1993-01-01

    Under the influence of the polarization between belief in progress, on the one hand, and the moral rigorism of our society, on the other hand, the risks of modern large technical systems have helped the highest level of technical safety to be attained in Germany. It has been reached especially by opting for maximum quality, maximum utility and reliability, complete documentation, continuous in-service checks during operation and, last but not least, by including man and human fallibility. Our concern should be that this strategy pursued in the Western industrialized countries becomes the rule, at least in its main characteristics, also in the Eastern countries. The hazards associated with reactors in Eastern countries affect us all, and it is especially the safety of those reactors which is causing concern. The experience accumulated with the 417 nuclear power plants now in operation, especially the incidents and accidents, shows that hazard potential management is admissible only with a highly developed safety strategy. (orig.) [de

  15. Nuclear power plant annunciator systems

    International Nuclear Information System (INIS)

    Rankin, W.L.

    1983-08-01

    Analyses of nuclear power plant annunciator systems have uncovered a variety of problems. Many of these problems stem from the fact that the underlying philosophy of annunciator systems have never been elucidated so as to impact the initial annunciator system design. This research determined that the basic philosophy of an annunciator system should be to minimize the potential for system and process deviations to develop into significant hazards. In order to do this the annunciator system should alert the operators to the fact that a system or process deviation exists, inform the operators as to the priority and nature of the deviation, guide the operators' initial responses to the deviation, and confirm whether operators responses corrected the deviation. Annunciator design features were analyzed to determine to what degree they helped the system meet the functional criteria, the priority for implementing specific design features, and the cost and ease of implementing specific design features

  16. BWR type nuclear power plant

    International Nuclear Information System (INIS)

    Matsumoto, Kosuke.

    1991-01-01

    In a BWR type nuclear power plant in which reactor water in a reactor pressure vessel can be drained to a waste processing system by way of reactor recycling pipeways and remaining heat removal system pipeways, a pressurized air supply device is disposed for supplying air for pressurizing reactor water to the inside of the reactor pressure vessel by way of an upper head. With such a constitution, since the pressurized air sent from the pressurized air supply device above the reactor pressure vessel for the reactor water discharging pressure upon draining, the water draining pressure is increased compared with a conventional case and, accordingly, the amount of drained water is not reduced even in the latter half of draining. Accordingly, the draining efficiency can be improved and only a relatively short period of time is required till the completion of the draining, which can improve safety and save labors. (T.M.)

  17. Nuclear power plant component protection

    International Nuclear Information System (INIS)

    Michel, E.; Ruf, R.; Dorner, H.

    1976-01-01

    Described is a nuclear power plant installation which includes a concrete biological shield forming a pit in which a reactor pressure vessel is positioned. A steam generator on the outside of the shield is connected with the pressure vessel via coolant pipe lines which extend through the shield, the coolant circulation being provided by a coolant pump which is also on the outside of the shield. To protect these components on the outside of the shield and which are of mainly or substantially cylindrical shape, semicylindrical concrete segments are interfitted around them to form complete outer cylinders which are retained against outward separation radially from the components, by rings of high tensile steel which may be interspaced so closely that they provide, in effect, an outer steel cylinder. The invention is particularly applicable to pressurized-water coolant reactor installations

  18. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  19. Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1980-01-01

    This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography

  20. Plant life management optimized utilization of existing nuclear power plants

    International Nuclear Information System (INIS)

    Watzinger, H.; Erve, M.

    1999-01-01

    For safe, reliable and economical nuclear power generation it is of central importance to understand, analyze and manage aging-related phenomena and to apply this information in the systematic utilization and as-necessary extension of the service life of components and systems. An operator's overall approach to aging and plant life management which also improves performance characteristics can help to optimize plant operating economy. In view of the deregulation of the power generation industry with its increased competition, nuclear power plants must today also increasingly provide for or maintain a high level of plant availability and low power generating costs. This is a difficult challenge even for the newest, most modern plants, and as plants age they can only remain competitive if a plant operator adopts a strategic approach which takes into account the various aging-related effects on a plant-wide basis. The significance of aging and plant life management for nuclear power plants becomes apparent when looking at their age: By the year 2000 roughly fifty of the world's 434 commercial nuclear power plants will have been in operation for thirty years or more. According to the International Atomic Energy Agency, as many as 110 plants will have reached the thirty-year service mark by the year 2005. In many countries human society does not push the construction of new nuclear power plants and presumably will not change mind within the next ten years. New construction licenses cannot be expected so that for economical and ecological reasons existing plants have to be operated unchallengeably. On the other hand the deregulation of the power production market is asking just now for analysis of plant life time to operate the plants at a high technical and economical level until new nuclear power plants can be licensed and constructed. (author)

  1. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  2. Traveling ionospheric disturbances triggered by the 2009 North Korean underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Tang, L. [Wuhan Univ. (China). School of Geodesy and Geomatics

    2015-04-01

    Underground nuclear explosions (UNEs) can induce acoustic-gravity waves, which disturb the ionosphere and initiate traveling ionospheric disturbances (TIDs). In this paper, we employ a multi-step and multi-order numerical difference method with dual-frequency GPS data to detect ionospheric disturbances triggered by the North Korean UNE on 25 May 2009. Several International GNSS Service (IGS) stations with different distances (400 to 1200 km) from the epicenter were chosen for the experiment. The results show that there are two types of disturbances in the ionospheric disturbance series: high-frequency TIDs with periods of approximately 1 to 2 min and low-frequency waves with period spectrums of 2 to 5 min. The observed TIDs are situated around the epicenter of the UNE, and show similar features, indicating the origin of the observed disturbances is the UNE event. According to the amplitudes, periods and average propagation velocities, the high-frequency and low-frequency TIDs can be attributed to the acoustic waves in the lower ionosphere and higher ionosphere, respectively. (orig.)

  3. Underground nuclear explosions. Geological survey of the cavities; Explosions nucleaires souterraines etude geologique des cavites

    Energy Technology Data Exchange (ETDEWEB)

    Faure, J [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    A geological survey of underground nuclear explosions makes it possible to determine the main characteristics of the cavity formed. The lower portion is spherical; the same was very likely true of the roof, which collapses in the majority of media with the exception of rock-salt. Its radius, for a given bomb size, can vary by a factor of two according to the type of rock. The lay-out of its contents depends on the characteristics of the solid and liquid products at the moment of the roof collapse; according to the medium involved, mixing of the rubble and the mud-flow occurs (granite) or does not occur (tuff and alluvia). In all media, the average physical properties can be evaluated. (author) [French] L'etude geologique d'explosions nucleaires souterraines permet de determiner les principaux caracteres de la cavite creee. Sa partie inferieure est spherique; il en etait vraisemblablement de meme de sa voute, effondree dans la plupart des milieux a l'exception du sel gemme. Son rayon, a energie d'engin egale, varie selon les roches du simple au double. La disposition de son contenu depend des caracteristiques des produits solides et liquides au moment de la chute du toit; selon le cas, il n'y a pas (tuf et alluvions) ou il y a (granite) melange des eboulis et des laves. Dans tous les milieux, les proprietes physiques moyennes peuvent etre evaluees. (auteur)

  4. Surface-wave generation by underground nuclear explosions releasing tectonic strain

    International Nuclear Information System (INIS)

    Patton, H.J.

    1980-01-01

    Seismic surface-wave generation by underground nuclear explosions releasing tectonic strain is studied through a series of synthetic radiation-pattern calculations based on the earthquake-trigger model. From amplitude and phase radiation patterns for 20-s Rayleigh waves, inferences are made about effects on surface-wave magnitude, M/sub s/, and waveform character. The focus of this study is a comparison between two mechanisms of tectonic strain release: strike-slip motion on vertical faults and thrust motion on 45 0 dipping faults. The results of our calculations show that Rayleigh-wave amplitudes of the dip-slip model at F values between 0.75 and 1.5 are significantly lower than amplitudes of the strike-slip model or of the explosion source alone. This effect translates into M/sub s/ values about 0.5 units lower than M/sub s/ of the explosion alone. Waveform polarity reversals occur in two of four azimuthal quadrants for the strike-slip model and in all azimuths of the dip-slip-thrust model for F values above about 3. A cursory examination of waveforms from presumed explosions in eastern Kazakhstan suggests that releases of tectonic strain are accompanying the detonation of many of these explosions. Qualitatively, the observations seem to favor the dip-slip-thrust model, which, in the case of a few explosions, must have F values above 3

  5. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  6. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  7. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach

  8. Assessment of hydrologic transport of radionuclides from the Gasbuggy underground nuclear test site, New Mexico

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gasbuggy site in northwestern New Mexico was the location of an underground detonation of a 29-kiloton nuclear device in 1967. The test took place in the Lewis Shale, approximately 182 m below the Ojo Alamo Sandstone, which is the aquifer closest to the detonation horizon. The conservative assumption was made that tritium was injected from the blast-created cavity into the Ojo Alamo Sandstone by the force of the explosion, via fractures created by the shot. Model results suggest that if radionuclides produced by the shot entered the Ojo Alamo, they are most likely contained within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity, followed by the variance in hydraulic conductivity, the correlation scale of hydraulic conductivity, the transverse hydrodynamic dispersion coefficient, and uncertainty in the source size. This modeling was performed to investigate how the uncertainty in various physical parameters affects calculations of radionuclide transport at the Gasbuggy site, and to serve as a starting point for discussion regarding further investigation at the site; it was not intended to be a definitive simulation of migration pathways or radionuclide concentration values

  9. Monitoring of surface chemical and underground nuclear explosions with help of ionospheric radio-sounding above test site

    International Nuclear Information System (INIS)

    Krasnov, V.M.; Drobzheva, Ya.V.

    2000-01-01

    We describe the basic principles, advantages and disadvantages of ionospheric method to monitor surface chemical and underground nuclear explosions. The ionosphere is 'an apparatus' for the infra-sound measurements immediately above the test site. Using remote radio sounding of the ionosphere you can obtain that information. So you carry out the inspection at the test site. The main disadvantage of the ionospheric method is the necessity to sound the ionosphere with radio waves. (author)

  10. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  11. Spatial selection of focal of underground nuclear explosion by means of directed investigation and a method of vibroseismic oscillation

    International Nuclear Information System (INIS)

    Voskobojnikova, G.M.; Sedukhina, G.F.; Khajretdinov, M.S.

    2006-01-01

    An approach to task solving on parameters localization and determination within focal area of underground nuclear explosion (UNE) by scanning the inspected area by vibroseismic translucent field is considered. For the method, which application has been justified for task solving on On-Site Inspection (OSI), results of numerical modeling of seismic antenna orientation specifications are given, results of experiments on directed method of vibroseismic oscillation is described, questions on practical application of On-Site Inspection tasks are discussed. (author)

  12. Life management plants at nuclear power plants PWR

    International Nuclear Information System (INIS)

    Esteban, G.

    2014-01-01

    Since in 2009 the CSN published the Safety Instruction IS-22 (1) which established the regulatory framework the Spanish nuclear power plants must meet in regard to Life Management, most of Spanish nuclear plants began a process of convergence of their Life Management Plants to practice 10 CFR 54 (2), which is the current standard of Spanish nuclear industry for Ageing Management, either during the design lifetime of the plant, as well as for Long-Term Operation. This article describe how Life Management Plans are being implemented in Spanish PWR NPP. (Author)

  13. The compact simulator for Tihange nuclear plant

    International Nuclear Information System (INIS)

    Gueben, M.

    1982-01-01

    After an introduction about the simulators for nuclear plants, a description is given of the compact simulator for the Tihange nuclear power plant as well as the simulated circuits and equipments such as the primary and secondary coolant circuits. The extent of simulation, the functions used by the instructor, the use of the simulator, the formation programme and construction planning are described. (AF)

  14. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1994-03-01

    In the third quarter of 1993, all of Finland's four nuclear power plant units were in power operation, with the exception of the annual maintenance outages of the Loviisa units. The load factor average of the plant units was 83.6 %. None of the events which occurred during this annual quarter had any bearing on nuclear or radiation safety. (4 figs., 5 tabs.)

  15. Radiological characterization of nuclear plants under decommissioning

    International Nuclear Information System (INIS)

    Mincarini, M.

    1989-01-01

    In the present work a description of major problems encountered in qualitative and quantitative radiological characterization of nuclear plants for decommissioning and decontamination purpose is presented. Referring to several nuclear plant classes activation and contamination processes, direct and indirect radiological analysis and some italian significant experience are descripted

  16. Accidents with nuclear power plants, ch. 11

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    A recalculation of the consequences of nuclear power plant accidents is presented taking into account different parameters or different quantities than those usually accepted. A case study of a nuclear power plant planned for the Eems-river estuary in the Netherlands is presented

  17. Slovak Electric, plc, Mochovce Nuclear Power Plant

    International Nuclear Information System (INIS)

    2000-01-01

    In this popular scientific brochure a brief description of history construction of Bohunice Nuclear Power Plant is presented. The chart of electricity generation in WWER 440/V-213 nuclear power plant is described. Operation and safety improvements at Mochovce NPP as well as environment protection are presented. Basic data of Mochovce NPP are included

  18. Quality assurance in nuclear power plant

    International Nuclear Information System (INIS)

    Magalhaes, M.T. de

    1981-01-01

    The factors related to the licensing procedures of a nuclear power plant (quality assurance and safety analysis) are presented and discussed. The consequences of inadequate attitudes towards these factors are shown and suggestions to assure the safety of nuclear power plants in Brazil are presented. (E.G.) [pt

  19. Medical consequences of a nuclear plant accident

    International Nuclear Information System (INIS)

    Olsson, S.E.; Reizenstein, P.; Stenke, L.

    1987-01-01

    The report gives background information concerning radiation and the biological medical effects and damages caused by radiation. The report also discusses nuclear power plant accidents and efforts from the medical service in the case of a nuclear power plant accident. (L.F.)

  20. HVDC transmission from isorated nuclear power plant

    International Nuclear Information System (INIS)

    Takenaka, Kiyoshi; Takasaki, Masahiro; Ichikawa, Tatemi; Hayashi, Toshiyuki

    1985-01-01

    HVDC transmission directly from nuclear power plant is considered as one of the patterns of long distance and large capacity transmission system. This reports considers two route HVDC transmission from PWR type nuclear power plant, and analyzes dynamic response characteristics due to bus fault, main protection failure and etc. using the AC-DC Power System Simulator. (author)

  1. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  2. Slovak Electric, plc, Bohunice Nuclear Power Plant

    International Nuclear Information System (INIS)

    1999-01-01

    A brief account of activities carried out by the Bohunice Nuclear Power Plant in 1998 is presented. These activities are reported under the headings: (1) Operation and electric power generation; (2) Nuclear and radiation safety; (3) Maintenance and scheduled refuelling out-gages; (4) Investment and WWER units upgrading; (5) Power Plants Personnel; (6) Public relations

  3. Aircraft, ships, spacecraft, nuclear plants and quality

    International Nuclear Information System (INIS)

    Patrick, M.G.

    1984-05-01

    A few quality assurance programs outside the purview of the Nuclear Regulatory Commission were studied to identify features or practices which the NRC could use to enhance its program for assuring quality in the design and construction of nuclear power plants. The programs selected were: the manufacture of large commercial transport aircraft, regulated by the Federal Aviation Administration; US Navy shipbuilding; commercial shipbuilding regulated by the Maritime Administration and the US Coast Guard; Government-owned nuclear plants under the Department of Energy; spacecraft under the National Aeronautics and Space Administration; and the construction of nuclear power plants in Canada, West Germany, France, Japan, Sweden, and the United Kingdom

  4. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1992-09-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in operation for almost all the time in the first quarter of 1992. The load factor average was 99.8%. All events which are classified on the International Nuclear Event Scale were level 0/below scale on the Scale. Occupational radiation doses and releases of radioactive material off-site remained well below authorised limits. Only quantities of radioactive material insignificant to radiation exposure, originating from the nuclear power plants, were detected in samples collected in the vicinity of the nuclear power plants

  5. Underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, A., E-mail: Bettini@pd.infn.i [Padua University and INFN Section, Dipartimento di Fisca G. Galilei, Via Marzolo 8, 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc, Plaza Ayuntamiento n1 2piso, Canfranc (Huesca) (Spain)

    2011-01-21

    Underground laboratories provide the low radioactive background environment necessary to frontier experiments in particle and nuclear astrophysics and other disciplines, geology and biology, that can profit of their unique characteristics. The cosmic silence allows to explore the highest energy scales that cannot be reached with accelerators by searching for extremely rare phenomena. I will briefly review the facilities that are operational or in an advanced status of approval around the world.

  6. Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions

    International Nuclear Information System (INIS)

    Durrani, B.A.

    1996-09-01

    The Department of Energy is investigating Yucca Mountain, Nevada as a potential site for commercial radioactive waste disposal in a mined geologic repository. One critical aspect of site suitability is the tectonic stability of the repository site. The levels of risk from both actual fault displacements in the repository block and ground shaking from nearby earthquakes are being examined. In particular, it is necessary to determine the expected level of ground shaking at the repository depth for large seismic sources such as nearby large earthquakes or underground nuclear explosions (UNEs). Earthquakes are expected to cause the largest ground motions at the site, however, only underground nuclear explosion data have been obtained at the repository depth level (about 350m below the ground level) to date. In this study we investigate ground motion from Nevada Test Site underground nuclear explosions recorded at Yucca Mountain to establish a compressional velocity model for the uppermost 350m of the mountain. This model is useful for prediction of repository-level ground motions for potential large nearby earthquakes

  7. Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, B.A. [Texas Univ., El Paso, TX (United States). Dept. of Geological Sciences; Walck, M.C. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    The Department of Energy is investigating Yucca Mountain, Nevada as a potential site for commercial radioactive waste disposal in a mined geologic repository. One critical aspect of site suitability is the tectonic stability of the repository site. The levels of risk from both actual fault displacements in the repository block and ground shaking from nearby earthquakes are being examined. In particular, it is necessary to determine the expected level of ground shaking at the repository depth for large seismic sources such as nearby large earthquakes or underground nuclear explosions (UNEs). Earthquakes are expected to cause the largest ground motions at the site, however, only underground nuclear explosion data have been obtained at the repository depth level (about 350m below the ground level) to date. In this study we investigate ground motion from Nevada Test Site underground nuclear explosions recorded at Yucca Mountain to establish a compressional velocity model for the uppermost 350m of the mountain. This model is useful for prediction of repository-level ground motions for potential large nearby earthquakes.

  8. Thermodynamic and economic analysis of a partially-underground tower-type boiler design for advanced double reheat power plants

    International Nuclear Information System (INIS)

    Xu, Gang; Xu, Cheng; Yang, Yongping; Fang, Yaxiong; Zhou, Luyao; Yang, Zhiping

    2015-01-01

    An increasing number of tower-type boilers have been selected for advanced double reheat power plants, due to the uniform flue gas profile and the smooth steam temperature increase. The tall height and long steam pipelines lengths will however, result in dramatic increases in the difficulty of construction, as well as increased power plant investment cost. Given these factors, a novel partially-underground tower-type boiler design has been proposed in this study, which has nearly half of the boiler embedded underground, thereby significantly reducing the boiler height and steam pipeline lengths. Thermodynamic and economic analyses were quantitatively conducted on a 1000 MW advanced double reheat steam cycle. Results showed that compared to the reference power plant, the power plant with the proposed tower-type boiler design could reduce the net heat rate by 18.3 kJ/kWh and could reduce the cost of electricity (COE) by $0.60/MWh. The study also investigated the effects of price fluctuations on the cost-effectiveness of the reference power plant, for both the conventional and the proposed tower-type boilers designs, and found that the double reheat power plant with the proposed tower-type boiler design would be even more competitive and price-effective when the coal price and the investment costs increase. The research of this paper may provide a promising tower-type boiler design for advanced double reheat power plants with lower construction complexity and better cost-effectiveness. - Highlights: • A partially-underground tower-type boiler in double reheat power plants is proposed. for double reheat power plants is proposed. • Thermodynamic and economic analyses are quantitatively conducted. • Better energetic efficiency and greater economic benefits are achieved. • The impacts of price fluctuations on the economic feasibility are discussed

  9. Millstone nuclear power plant emergency system assessment

    International Nuclear Information System (INIS)

    Akhmad Khusyairi

    2011-01-01

    U.S.NRC determined an obligation to build a nuclear power plant emergency response organization for both on-site and off-site. Millstone Nuclear Power Plants have 3 nuclear reactors and 2 of 3 still in commercial operation. Reactor unit 1, BWR type has been permanently shut down in 1998, while the two others, units 2 and 3 obtain the extended operating license respectively until 2035 and 2045. As a nuclear installation has the high potential radiological impact, Millstone nuclear power plant emergency response organization must establish both on-site or off-site. Emergency response organization that is formed must involve several state agencies, both state agencies and municipality. They have specific duties and functions in a state of emergency, so that protective measures can be undertaken in accordance with the community that has been planned. Meanwhile, NRC conduct their own independent assessment of nuclear power plant emergencies. (author)

  10. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Low energy neutron background in deep underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Best, Andreas, E-mail: andreas.best@lngs.infn.it [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Görres, Joachim [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Junker, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Kratz, Karl-Ludwig [Department for Biogeochemistry, Max-Planck-Institute for Chemistry, 55020 Mainz (Germany); Laubenstein, Matthias [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Long, Alexander [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nisi, Stefano [INFN, Laboratori Nazionali del Gran Sasso (LNGS), 67100 Assergi (Italy); Smith, Karl; Wiescher, Michael [Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2016-03-11

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of {sup 3}He counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  12. Cooling towers of nuclear power plants

    International Nuclear Information System (INIS)

    Mikyska, L.

    1986-01-01

    The specifications are given of cooling towers of foreign nuclear power plants and a comparison is made with specifications of cooling towers with natural draught in Czechoslovak nuclear power plants. Shortcomings are pointed out in the design of cooling towers of Czechoslovak nuclear power plants which have been derived from conventional power plant design. The main differences are in the adjustment of the towers for winter operation and in the designed spray intensity. The comparison of selected parameters is expressed graphically. (J.B.)

  13. Nuclear power plants and their insurances

    International Nuclear Information System (INIS)

    Schludi, H.N.

    1984-01-01

    From the commencement of building to the time of decommissioning of nuclear power plants, the insurances provide continuous coverage, i.e. for construction, nuclear liability, nuclear energy hazards insurance, fire insurance, machinery insurance. The respective financial security is quantified. (DG) [de

  14. Lifting devices in nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The regulation applies to lifts, cranes, winches, rail trolleys, load pick-up equipment and fuel charging machines for LWR reactors, as far as these are employed in plants for the production or fission of nuclear fuels or for the reprocessing of spent nuclear fuels or for the storage or other uses of nuclear fuels. (orig.) 891 HP [de

  15. Anatomy of a nuclear power plant

    International Nuclear Information System (INIS)

    Navarro, Q.O.

    1983-01-01

    This paper presents the Q model which attempts to classify arguments for use in the discussion on the pros and cons of nuclear power. The basic principles of nuclear energy production, operation of a nuclear power plant and a comparison with other electric power sources are presented and discussed. (ELC)

  16. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  17. Fire prevention in nuclear power plants

    International Nuclear Information System (INIS)

    1993-01-01

    The causes and frequency of fires at nuclear power plants in various countries are briefly given. Methods are described of fire hazard assessment at nuclear power plants, such as Gretener's method and the probabilistic methods. Approaches to the management of nuclear reactor fire protection in various countries as well as the provisions to secure such protection are dealt with. An overview and the basic characteristics of fire detection and extinguishing systems is presented. (Z.S.). 1 tab

  18. Fire protection at nuclear power plants

    International Nuclear Information System (INIS)

    1999-11-01

    The guide presents specific requirements for the design and implementation of fire protection arrangements at nuclear power plants and for the documents relating to the fire protection that are to be submitted to STUK (Finnish Radiation and Nuclear Safety Authority). Inspections of the fire protection arrangements to be conducted by STUK during the construction and operation of the power plants are also described in this guide. The guide can also be followed at other nuclear facilities

  19. Knowledge preservation strategies for nuclear power plants

    International Nuclear Information System (INIS)

    Koruna, S.; Bachmann, H.

    2004-01-01

    The nuclear industry is currently facing several challenges. An internal threat to the safety and operations of nuclear power plants is the loss of those employees who hold knowledge that is either critical to operations or safety. This report discusses the possibilities to preserve knowledge in nuclear power plants. Dependent on the degree of tacitness two different knowledge preservation strategies can be discerned: personalization and codification. The knowledge preservation activities discussed are valued according to the criteria: cost, immediacy of availability and completeness

  20. Repository for spent nuclear fuel. Plant description layout D - Forsmark

    International Nuclear Information System (INIS)

    2010-07-01

    This document describes the final repository for spent nuclear fuel, SFK, which is located at Forsmark, in Oesthammar. The bedrock at the site is part of a so-called tectonic lens, in which the rock composition is relatively homogeneous and less deformed than outside the lens. The bedrock consists mainly of granite with high quartz content and good thermal conductivity. The central parts above ground are grouped in an operations area, located at the Soederviken on the south side of the intake duct for cooling water for nuclear power plant. Operating area is divided into an internal, secured portion, where the canisters of fuel are handled and there are links to the underground part, and a outer part, where the buffer, backfill and sealing used in the repository's barriers are produced. The above-ground part of the plant and also include storage of excavated rock, ventilation stations, and supplies of bentonite. The underground portion consists of a central area and a storage area. Caverns of the central area contain features for the underground operation. It communicates with the internal operating range above ground via a spiral ramp and several shafts. The ramp used to transport capsules of spent fuel and other heavy or bulky transport. The shafts are used to transport rock, buffer, backfill and staff, as well as for ventilation. The largest part of the space below ground is the repository where the canisters with the spent fuel are disposed. The capsules are deposited in vertical holes in the tunnels. When the deposit in a tunnel is complete, the tunnel is re-filled. The two main activities underground is rock work and disposal work, which are conducted separately from each other. Rock works covers all steps required to excavate tunnels and drill deposition holes, as well as to make temporary installations in the tunnels. To the landfill works count, besides the deposit of the capsule, the placement of the bentonite buffer in the deposition hole and backfilling

  1. Chemistry management system for nuclear power plants

    International Nuclear Information System (INIS)

    Nagasawa, Katsumi; Maeda, Katsuji

    1998-01-01

    Recently, the chemistry management in the nuclear power plants has been changing from the problem solution to the predictive diagnosis and maintenance. It is important to maintain the integrity of plant operation by an adequate chemistry control. For these reasons, many plant operation data and chemistry analysis data should be collected and treated effectively to evaluate chemistry condition of the nuclear power plants. When some indications of chemistry anomalies occur, quick and effective root cause evaluation and countermeasures should be required. The chemistry management system has been developed as to provide sophisticate chemistry management in the nuclear power plants. This paper introduces the concept and functions of the chemistry management system for the nuclear power plants. (author)

  2. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

  3. Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance

  4. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-08-01

    In the Quarterly Reports on the operation of the Finnish nuclear power plants such events and observations are described relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Also other events of general interest are reported. The report also includes a summary of the radiation safety of the plants' workers and the environment, as well as tabulated data on the production and load factors of the plants. The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO I and II were in commercial operation during the whole first quarter of 1991. The load factor average was 99.1 %. Failures have been detected in the uppermost spacing lattices of nuclear fuel bundles removed from the Loviisa nuclear reactors. Further investigations into the significance of the failures have been initiated. In this quarter, renewed cooling systems for the instrumentation area were introduced at Loviisa 1. The modifications made in the systems serve to ensure reliable cooling of the area even during the hottest summer months when the possibility exists that the temperature of the automation equipment could rise too high causing malfunctions which could endanger plant safety. Occupational radiation doses and external releases of radioactivity were below prescribed limits in this quarter. Only small amounts of radioactive substances originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  5. Elecnuc. Nuclear power plants in the world

    International Nuclear Information System (INIS)

    2000-01-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1999 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1999; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; grid connection forecasts; world electric power market; electronuclear owners and share holders in EU, capacity and load factor; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; 1999 gross load factor by operator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  6. Systems management support for ERCDC study of undergrounding and berm containment. Interim report. Preliminary program assessment and follow-on program development

    International Nuclear Information System (INIS)

    1977-08-01

    Interim results of a study being conducted with respect to the technological aspects of the costs and benefits of underground nuclear power plant construction in direct support of the California Energy Commission's legislative mandate in this area are presented. The program was directed towards problem scoping, methodology evaluation, program definition and planning for subsequent, more detailed investigations of underground facility designs and their potential advantages and disadvantages. The material presented describes the results of (a) systems analyses which were conducted to determine logical requirements for determination of those elements of a nuclear power plant which should be constructed underground; (b) bounding estimates of incremental plant costs for a variety of underground concepts; (c) applicable prior experience in underground facility design and construction which could be used to identify potential sources of strength and weaknessees of underground nuclear power plants; (d) estimates of seismic environments for underground construction in California; (e) preliminary descriptions of underground reactor accident scenarios; (f) bounding estimates of the consequences of such accidents, in terms of comparisons of relative emissions of radioactivity with respect to similar accidents for surface-sited nuclear power plants and (g) results of analyses of several other important technological aspects of the problem. A description is also provided of the program development work performed to provide planning and criteria for subsequent investigations to determine: (a) definitive underground nuclear power plant designs and costs, and (b) estimates of accident consequences in underground nuclear power plants

  7. Systems management support for ERCDC study of undergrounding and berm containment. Interim report. Preliminary program assessment and follow-on program development

    Energy Technology Data Exchange (ETDEWEB)

    1977-08-01

    Interim results of a study being conducted with respect to the technological aspects of the costs and benefits of underground nuclear power plant construction in direct support of the California Energy Commission's legislative mandate in this area are presented. The program was directed towards problem scoping, methodology evaluation, program definition and planning for subsequent, more detailed investigations of underground facility designs and their potential advantages and disadvantages. The material presented describes the results of (a) systems analyses which were conducted to determine logical requirements for determination of those elements of a nuclear power plant which should be constructed underground; (b) bounding estimates of incremental plant costs for a variety of underground concepts; (c) applicable prior experience in underground facility design and construction which could be used to identify potential sources of strength and weaknessees of underground nuclear power plants; (d) estimates of seismic environments for underground construction in California; (e) preliminary descriptions of underground reactor accident scenarios; (f) bounding estimates of the consequences of such accidents, in terms of comparisons of relative emissions of radioactivity with respect to similar accidents for surface-sited nuclear power plants and (g) results of analyses of several other important technological aspects of the problem. A description is also provided of the program development work performed to provide planning and criteria for subsequent investigations to determine: (a) definitive underground nuclear power plant designs and costs, and (b) estimates of accident consequences in underground nuclear power plants.

  8. Human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Swain, A.D.

    1981-01-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants. (orig.) [de

  9. Human factors in nuclear power plant operations

    International Nuclear Information System (INIS)

    Swain, A.D.

    1980-08-01

    This report describes some of the human factors problems in nuclear power plants and the technology that can be employed to reduce those problems. Many of the changes to improve the human factors in existing plants are inexpensive, and the expected gain in human reliability is substantial. The human factors technology is well-established and there are practitioners in most countries that have nuclear power plants

  10. Nuclear Power Plant Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Prabir [International Atomic Energy Agency (IAEA); Labbe, Pierre [Electricity of France (EDF); Naus, Dan [Oak Ridge National Laboratory (ORNL)

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  11. Dosimetry in nuclear power plants

    International Nuclear Information System (INIS)

    Lastra B, J. A.

    2008-12-01

    To control the occupationally exposed personnel dose working at the Laguna Verde nuclear power plant, two types of dosemeters are used, the thermoluminescent (TLD) which is processed monthly, and the direct reading dosemeter that is electronic and works as daily control of personal dose. In the case of the electronic dosemeters of direct reading conventional, the readings and dose automatic registers and the user identity to which he was assigned to each dosemeter was to carry out the restricted area exit. In activities where the ionizing radiation sources are not fully characterized, it is necessary to relocate the personal dosemeter or assigned auxiliary dosemeters (TLDs and electronics) to determine the dose received by the user to both whole body and in any specific area of it. In jobs more complicated are used a tele dosimetry system where the radiation protection technician can be monitoring the user dose to remote control, the data transmission is by radio. The dosimetry activities are documented in procedures that include dosemeter inventories realization, the equipment and dosemeters calibration, the dosimetry quality control and the discrepancies investigation between the direct reading and TLD systems. TLD dosimetry to have technical expertise in direct and indirect dosimetry and two technicians in TLD dosimetry; electronic dosimetry to have 4 calibration technicians. For the electronic dosemeters are based on a calibrator source of Cesium-137. TLD dosemeters to have an automatic radiator, an automatic reader which can read up to 100 TLD dosemeters per hour and a semiautomatic reader. To keep the equipment under a quality process was development a process of initial entry into service and carried out a periodic verification of the heating cycles. It also has a maintenance contract for the equipment directly with the manufacturer to ensure their proper functioning. The vision in perspective of the dosimetry services of Laguna Verde nuclear power plant

  12. Nuclear Power Plants in the World

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Industrial Forum (JAIF) used every year to summarize a trend survey on the private nuclear power plants in the world in a shape of the 'Developmental trends on nuclear power plants in the world'. In this report, some data at the end of 1999 was made up on bases of answers on questionnaires from 72 electric companies in 31 nations and regions in the world by JAIF. This report is comprised of 19 items, and contains generating capacity of the plants; current status of Japan; trends of generating capacity of operating the plants, the plant orders and generating capacity of the plants; world nuclear capacity by reactor type; location of the plants; the plants in the world; and so forth. And, it also has some survey results on the 'Liberalization of electric power markets and nuclear power generation' such as some 70% of respondents in nuclear power for future option, gas-thermal power seen as power source with most to gain from liberalization, merits on nuclear power generation (environmental considerations and supply stability), most commonly voiced concern about new plant orders in poor economy, and so forth. (G.K.)

  13. Effects of nuclear electromagnetic pulse (EMP) on nuclear power plants

    International Nuclear Information System (INIS)

    Barnes, P.R.; Manweiler, R.W.; Davis, R.R.

    1977-09-01

    The electromagnetic pulse (EMP) from a high-altitude nuclear detonation consists of a transient pulse of high intensity electromagnetic fields. These intense fields induce current and voltage transients in electrical conductors. Although most nuclear power plant cables are not directly exposed to these fields, the attenuated EMP fields that propagate into the plant will couple some EMP energy to these cables. The report predicts the probable effects of the EMP transients that could be induced in critical circuits of safety-related systems. It was found that the most likely consequence of EMP for nuclear plants is an unscheduled shutdown. EMP could prolong the shutdown period by the unnecessary actuation of certain safety systems. In general, EMP could be a nuisance to nuclear power plants, but it is not considered a serious threat to plant safety

  14. Seismic reevaluation of existing nuclear power plants

    International Nuclear Information System (INIS)

    Hennart, J.C.

    1978-01-01

    The codes and regulations governing Nuclear Power Plant seismic analysis are continuously becoming more stringent. In addition, design ground accelerations of existing plants must sometimes be increased as a result of discovery of faulting zones or recording of recent earthquakes near the plant location after plant design. These new factors can result in augmented seismic design criteria. Seismic reanalysius of the existing Nuclear Power Plant structures and equipments is necessary to prevent the consequences of newly postulated accidents that could cause undue risk to the health or safety of the public. This paper reviews the developments of seismic analysis as applied to Nuclear Power Plants and the methods used by Westinghouse to requalify existing plants to the most recent safety requirements. (author)

  15. Nuclear plant data systems - some emerging directions

    International Nuclear Information System (INIS)

    Johnson, R.D.; Humphress, G.B.; McCullough, L.D.; Tashjian, B.M.

    1983-01-01

    Significant changes have occurred in recent years in the nuclear power industry to accentuate the need for data systems to support information flow and decision making. Economic conditions resulting in rapid inflation and larger investments in new and existing plants and the need to plan further ahead are primary factors. Government policies concerning environmental control, as well as minimizing risk to the public through increased nuclear safety regulations on operating plants are additional factors. The impact of computer technology on plant data systems, evolution of corporate and plant infrastructures, future plant data, system designs and benefits, and decision making capabilities and data usage support are discussed. (U.K.)

  16. Examining work structure in nuclear power plants

    International Nuclear Information System (INIS)

    Bauman, M.B.; Boulette, M.D.; Van Cott, H.P.

    1985-01-01

    This paper describes the assessment of the work structure of ten nuclear power plants. Work structure factors are those factors that relate to the way in which work at all levels in a plant is organized, staffed, managed, rewarded, and perceived by plant personnel. Questionnaires given to a cross-section of personnel at the plants were the primary source of data collection. Structured ''critical incident'' interviews were conducted to verify the questionnaire results. The study revealed that a variety of work structure factor problem areas do exist in nuclear power plants. The paper highlights a prioritized set of candidate research themes to be considered in EPRI's Work Structure and Performance Research Program

  17. Surveillance system for nuclear power plants

    International Nuclear Information System (INIS)

    Mizeracki, M.T.

    1981-01-01

    This paper describes an integrated surveillance system for nuclear power plant application. The author explores an expanded role for closed circuit television, with remotely located cameras and infrared scanners as the basic elements. The video system, integrated with voice communication, can enhance the safe and efficient operation of the plant, by improving the operator's knowledge of plant conditions. 7 refs

  18. A Study on distinguishing seismic waves caused by natural earthquakes and underground nuclear explosion within North Korean Context

    Science.gov (United States)

    Premlet, B.; Sabu, S.; Kamarudheen, R.; Subair, S.

    2017-12-01

    Since the first nuclear test on 15 July 1945 , there have been over 2,051 other weapon tests around the world . The waveforms of a natural earthquake which generates strong S waves and an underground explosion which is dominated by P waves were distinguished from the analysis of data corresponding to a 2005 M5.0 Earthquake and a 2016 North Korean nuclear test , both at similar distances from seismometer . Further differences between the seismograms were evaluated and successfully distinguished between the origins of the elastic waves through the data using Moment Tensor Solution using stations BJT , HIA and INCN . North Korea has developed a nuclear fuel cycle capability and has both plutonium and enriched uranium programs at Pyongyang . Seismic recordings of vertical ground motion at Global Seismographic Network station IC.MDJ of the 4 seismic events at Punggye-ri , North Korea , which occurred on the 9th of October 2006 , 25th of May 2009, 12th of February 2013 and on the 6th of January and 9th of September , 2016 were examined and the P waves of these seismic waves , which show very similar wave form , were inspected and compared to the seismic data of the latest underground nuclear test on the 3rd of September 2017 at 03:30 UTC at the same site which is many times more powerful than the previous tests . The country , which is the only nation to have tested nuclear weapons in this millennium , has successfully prevented the release of radioactive isotopes and hampered data collection but further studies were done using acoustic data which was analysed from sonograms of the 4 North Korean tests at station MDJ. The latest explosion data from 3rd September was also compared to 42 presumed underground explosions which occurred in China , India , the U.S.S.R , Iran , Turkey and recorded at Arkansas Seismic Network.

  19. Nuclear power plant containment construction

    International Nuclear Information System (INIS)

    Schabert, H.P.; Danisch, R.; Strickroth, E.

    1975-01-01

    The Nuclear Power Plant Containment Construction includes the spherical steel safety enclosure for the reactor and the equipment associated with the reactor and requiring this type of enclosure. This steel enclosure is externally structurally protected against accident by a concrete construction providing a foundation for the steel enclosure and having a cylindrical wall and a hemispherical dome, these parts being dimensioned to form an annular space surrounding the spherical steel enclosure, the latter and the concrete construction heretofore being concentrically arranged with respect to each other. In the disclosed construction the two parts are arranged with their vertical axis horizontally offset from each other so that opposite to the offsetting direction of the concrete construction a relatively large space is formed in the now asymmetrical annular space in which reactor auxiliary equipment not requiring enclosure by the steel containment vessel or safety enclosure, may be located outside of the steel containment vessel and inside of the concrete construction where it is structurally protected by the latter

  20. Geomechanical problems of an underground storage of spent nuclear fuel and their mathematic modelling

    Czech Academy of Sciences Publication Activity Database

    Blaheta, Radim; Byczanski, Petr; Šňupárek, Richard; Hájek, Antonín

    2007-01-01

    Roč. 12, č. 1 (2007), s. 140-146 ISSN 1335-1788 Institutional research plan: CEZ:AV0Z30860518 Keywords : mathematical modelling * thermo-mechanical processes * underground deposition Subject RIV: BA - General Mathematics

  1. Effect on localized waste-container failure on radionuclide transport from an underground nuclear waste vault

    International Nuclear Information System (INIS)

    Cheung, S.C.H.; Chan, T.

    1983-07-01

    In the geological disposal of nuclear fuel waste, one option is to emplace the waste container in a borehole drilled into the floor of the underground vault. In the borehole, the waste container is surrounded by a compacted soil material known as the buffer. A finite-element simulation has been performed to study the effect of localized partial failure of the waste container on the steady-state radionuclide transport by diffusion from the container through the buffer to the surrounding rock and/or backfill. In this study, the radionuclide concentration at the buffer-backfill interface is assumed to be zero. Two cases are considered at the interface between the buffer and the rock. In case 1, a no-flux boundary condition is used to simulate intact rock. In case 2, a constant radionuclide concentration condition is used to simulate fractured rock with groundwater flow. The results show that the effect of localized partial failure of the waste container on the total flux is dependent on the boundary condition at the buffer-rock interface. For the intact rock condition, the total flux is mainly dependent on the location of the failure. The total flux increases as the location changes from the bottom to the top of the emplaced waste container. For a given localized failure of the waste container, the total flux remains unaffected by the area of failed surface below the top of the failure. For fractured rock, the total flux is directly proportional to the failed surface area of the waste container regardless of the failure location

  2. Artificial radionuclides in oils from the underground nuclear test site (Perm region, Russia)

    International Nuclear Information System (INIS)

    Kalmykov, S.N.; Sapozhnikov, Yu.A.; Goloubov, B.N.

    1998-01-01

    Underground nuclear tests (UNT) are one of the possible sources of radioactive contamination of environment. About 2500 UNTs were carried out both for military and industrial (peaceful) purposes. In the former Soviet Union most of peaceful UNTs were oriented to the needs of the gas- and oil-extracting industry. Earlier it was considered that the holes of UNT are hermetic and the leakage of radionuclides is negligible. In this work nine oil samples from Gezh oil deposit in Perm region of Russia collected from different holes both where the explosion took part and from distant holes were analyzed for 3 H and 14 C and such fission products as 90 Sr and 134,137 Cs. For the determination of gamma-emitting radionuclides the gamma spectrometry with HPGe detector was used. For 90 Sr determination the measurements of Cherenkov radiation generated by daughter 90 Y were carried out with liquid scintillation equipment. It showed that even in the oil samples from the hole where the explosion took place no measurable 134,137 Cs and 90 Sr activities were detected. For 3 H and 14 C determination the oil samples were fractionated by distillation. For each sample 10-12 fractions were taken. Liquid scintillation spectrometry was used for 3 H and 14 C simultaneous determination. It was shown that in all samples the 3 H and 14 C concentrations are higher than the background level and for the hole where the explosion took place reached the value of about 1.3 x 10 5 Bq/L for low boiling fraction (40-750C). The 3 H and 14 C enrichment of oils from distant holes shows that UNT cavities are not hermetic and the radionuclide migration is not negligible. (author)

  3. Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions

    Science.gov (United States)

    Peacock, Sheila; Douglas, Alan; Bowers, David

    2017-08-01

    Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.

  4. Thermoluminescence response of calcic bentonite subjected to conditions of high nuclear waste underground storage

    International Nuclear Information System (INIS)

    Dies, J.; Miralles, L.; Tarrasa, F.; Pueyo, J.J.; Cuevas, C. de las

    2002-01-01

    Bentonite is regarded as a backfilling material for underground storage facilities of highly radioactive nuclear waste built on granite formations. In these facilities, bentonite will be subjected to a gradient of temperature and dose rate, achieving a very high integrated dose and, therefore, changes in its structure and physical properties may take place. Two experiments to discriminate between the thermal and the irradiation effect were performed. In the first (named BIC-2A), samples were subjected to temperature while in second (named BIC-2B) the combined effect of temperature and irradiation was studied. The experimental conditions were: a thermal gradient between 130 deg. C and 90 deg. C, a maximum dose rate of 3.5 kGy.h -1 and a gradient of the integrated dose between 1.75 MGy and 10 MGy. Both experiments lasted a total of 124 days. An irradiation source of 60 Co with an activity close to 300,000 Ci, and bentonite samples of 200 mm in length and 50 mm in diameter were used. After the experiment, the samples were ground and two fractions were obtained: a fine fraction ( 80 μm). The results are described of thermoluminescence analyses on the two fractions obtained which showed that the coarse fractions can be 100 times more sensitive to radiation than the fine fraction. On the other hand, the heated and irradiated samples showed a thermoluminescence response around 50 times greater than the samples that were only heated. In addition to this, the temperature and dose rate conditions are relevant parameters in the generation and stabilisation of radiation induced defects. Finally, the response of samples heated and irradiated for two months was quite similar to that obtained on samples heated and irradiated for four months, indicating a saturation phenomenon. (author)

  5. General phenomenology of underground nuclear explosions; Phenomenologie generale des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S; Supiot, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [French] On donne une description essentiellement qualitative des phenomenes lies aux explosions nucleaires souterraines (explosion d'un seul engin, d'engins en ligne et explosions simultanees). Dans un premier chapitre sont decrits les phenomenes communs aux explosions contenues et aux explosions formant un cratere (formation et propagation d'une onde de choc provoquant la vaporisation, la fusion et la fracturation du milieu). Le deuxieme chapitre decrit les phenomenes lies aux tirs contenus (formation d'une cavite et d'une cheminee). Le troisieme chapitre est consacre a la phenomenologie des tirs formant un cratere et decrit notamment le mecanisme de formation et les differents types de crateres en fonction de la profondeur d'explosion et de la nature du terrain. Les phenomenes aeriens lies aux explosions formant un cratere: onde de pression aerienne et focalisation a grande distance, nuages de poussieres, sont egalement abordes. (auteurs)

  6. Performance evaluation recommendations and manuals of nuclear power plants outdoor significant civil structures earthquake resistance

    International Nuclear Information System (INIS)

    2005-06-01

    Performance evaluation recommendations and manuals of nuclear power plants outdoor significant civil structures earthquake resistance have been updated in June 2005 by the Japan Society of Civil Engineers. Based on experimental and analytical considerations on the recommendations of May 2002, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been evaluated and incorporated in new recommendations. (T. Tanaka)

  7. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Technical documentation

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Experimental and analytical considerations on the seismic effects evaluation criteria, such as analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings, were shown in this document and incorporated in new recommendations. (T. Tanaka)

  8. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Performance evaluation examples

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Based on experimental and analytical considerations, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been incorporated in new recommendations. This document shows outdoor civil structures earthquake resistance and endurance performance evaluation examples based on revised recommendations. (T. Tanaka)

  9. Nuclear plant life - A business decision

    International Nuclear Information System (INIS)

    Joosten, J.K.

    1995-01-01

    Regarding the future of the nuclear power option, many scenarios have been put forth over the years. The most commonly accepted projections for installed nuclear capacity show it growing at a rate of about 2% per year throughout the next few decades. These projections appear modes on the surface. However, underlying the projections are critical assumptions and sometimes misconceptions about the lifetimes of existing reactors and how they are determined. The notion of a 40 year plant life is very common. Consequently, many projections start either with the assumption that no plants will be retired in the near terms or with the assumption that each retired plant will be replaced by another nuclear plant after 40 years. Effectively, these assumptions yield future projections for installed capacity that might be characterized as low growth, medium growth and high growth scenarios - or grow, grow, grow. The question remains as to whether or not these assumptions accurately model the driving forces and constraints to nuclear development. After all, there is no scientific basis for believing that all plants, PWRs BWRs, RBMKs, etc., should have the same 40 year life. Most power plant owners purchase the plant for the main reason of supplying electrical power to their consumer. For these owners, electricity production is a day to day commercial activity with various alternatives on how to achieve the prime objective. The decision of which electricity generation alternative to select (gas, coal, nuclear or renewable energy) and how long to operate the plant before replacing it with a new one is essentially a business decision. The paper discusses ageing, the nuclear plant life decision process, the factors which influence the decision and their ramifications regarding the near term growth of nuclear power capacity. The modelling of nuclear plant lifetimes is also discussed. (author). 5 refs, 10 figs, 1 tab

  10. Nuclear power plant's safety and risk

    International Nuclear Information System (INIS)

    Franzen, L.F.

    1975-01-01

    Starting with a comprehensive safety strategy as evolved over the past years and the present legal provisions for the construction and operation of nuclear power plants, the risk of the intended operation, of accidents and unforeseen events is discussed. Owing to the excellent safety record of nuclear power plants, main emphasis in discussing accidents is given to the precautionary analysis within the framework of the licensing procedure. In this context, hypothetical accidents are mentioned only as having been utilized for general risk comparisons. The development of a comprehensive risk concept for a completely objective safety assessment of nuclear power plants remains as a final goal. (orig.) [de

  11. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Ottosson, C.

    1989-05-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment

  12. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Haenninen, R.; Koponen, H.; Nevander, O.; Paltemaa, R.; Poellaenen, I.; Rannila, P.; Valtonen, K.; Vilkamo, O.

    1988-02-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment

  13. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Heimburger, H.

    1988-08-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment

  14. Fuzzy logic control of nuclear power plant

    International Nuclear Information System (INIS)

    Yao Liangzhong; Guo Renjun; Ma Changwen

    1996-01-01

    The main advantage of the fuzzy logic control is that the method does not require a detailed mathematical model of the object to be controlled. In this paper, the shortcomings and limitations of the model-based method in nuclear power plant control were presented, the theory of the fuzzy logic control was briefly introduced, and the applications of the fuzzy logic control technology in nuclear power plant controls were surveyed. Finally, the problems to be solved by using the fuzzy logic control in nuclear power plants were discussed

  15. Maintenance planning for nuclear power plants

    International Nuclear Information System (INIS)

    Mattu, R.K.; Cooper, S.E.; Lauderdale, J.R.

    2004-01-01

    Maintenance planning for nuclear power plants is similar to that in other industrial plants but it is heavily influenced by regulatory rules, with consequent costs of compliance. Steps by the nuclear industry and the Nuclear Regulatory Commission to address that problem include development of guidelines for maintenance of risk-critical equipment, using PRA-based techniques to select a set of equipment that requires maintenance and reliability-centered maintenance (RCM) approaches for determining what maintenance is required. The result of the process is a program designed to ensure effective maintenance of the equipment most critical to plant safety. (author)

  16. Heat supply from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Stach, V [Ustav Jaderneho Vyzkumu CSKAE, Rez (Czechoslovakia)

    1978-05-01

    The current state of world power production and consumption is assessed. Prognoses made for the years 1980 to 2000 show that nuclear energy should replace the major part of fossil fuels not only in the production of power but also in the production of heat. In this respect high-temperature reactors are highly prospective. The question is discussed of the technical and economic parameters of dual-purpose heat and power plants. It is, however, necessary to solve problems arising from the safe siting of nuclear heat and power plants and their environmental impacts. The economic benefits of combined power and heat production by such nuclear plants is evident.

  17. Methods of assessing nuclear power plant risks

    International Nuclear Information System (INIS)

    Skvarka, P.; Kovacz, Z.

    1985-01-01

    The concept of safety evalution is based on safety criteria -standards or set qualitative values of parameters and indices used in designing nuclear power plants, incorporating demands on the quality of equipment and operation of the plant, its siting and technical means for achieving nuclear safety. The concepts are presented of basic and optimal risk values. Factors are summed up indispensable for the evaluation of the nuclear power plant risk and the present world trend of evaluation based on probability is discussed. (J.C.)

  18. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Haenninen, R.

    1988-09-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tabulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hzard to the personnel or the environment

  19. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    1988-04-01

    This general review of the operation of the Finnish nuclear power plants concentrates on such events and discoveries related to nuclear and radiation safety as the regulatory body, the Finnish Centre for Radiation and Nuclear Safety, regards as noteworthy. The report also includes a summary of the radiation safety of the personnel and the environment, as well as tubulated data on the production and load factors of the plants. In the report period, no event essentially degraded plant safety nor posed a radiation hazard to the personnel or the environment

  20. List of the world's nuclear power plants

    International Nuclear Information System (INIS)

    Kempken, M.

    1984-01-01

    This list published once a year presents, subdivided into countries, data on all nuclear power plants in operation, under construction, or for which a contract has been placed, referring to the following aspects: Year the contract has been placed, name and/or size, owner or operator, design type, manufacturers, net output, first year of commercial operation, and total electricity output up to the data June 30, 1984. Two additional tables present a survey on the world's nuclear power plants, also grouped by countries, and the largest commercially used nuclear power plants of the world. (UA) [de

  1. Safety assessment principles for nuclear plants

    International Nuclear Information System (INIS)

    1992-01-01

    The present Safety Assessment Principles result from the revision of those which were drawn up following a recommendation arising from the Sizewell-B enquiry. The principles presented here relate only to nuclear safety; there is a section on risks from normal operation and accident conditions and the standards against which those risks are assessed. A major part of the document deals with the principles that cover the design of nuclear plants. The revised Safety assessment principles are aimed primarily at the safety assessment of new nuclear plants but they will also be used in assessing existing plants. (UK)

  2. Introduction to Exxon nuclear fuel fabrication plant

    International Nuclear Information System (INIS)

    Schneider, R.A.

    1985-01-01

    The Exxon Nuclear low-enriched uranium fuel fabrication plant in Richland, Washington produces fuel assemblies for both pressurized water and boiling water reactors. The Richland plant was the first US bulk-handling facility selected by the IAEA for inspection under the US-IAEA Safeguards Agreement. The plant was under IAEA inspection from March 1981 through October 1983. This text provides a written description of the plant layout, operation and process. The text also includes a one ton-a-day model (or reference) plant which was adapted from the Exxon Nuclear plant. The Model Plant provides a generic example of a low-enriched uranium (LEU) bulk-handling facility. The Model Plant is used to illustrate in a more quantitative way some of the key safeguards requirements for a bulk-handling facility

  3. Analysis of the stability of underground high-level nuclear waste repository in discontinuous rock mass using 3DEC

    International Nuclear Information System (INIS)

    Kwon, Sang Ki; Park, Jeong Hwa; Choi, Jong Won; Kang, Chul Hyung

    2001-03-01

    For the safe design of a high-level nuclear waste repository in deep location, it is necessary to confirm the stability of the underground excavations under the high overburden pressure and also to investigate the influence of discontinuities such as fault, fracture zone, and joints. In this study, computer simulations using 3DEC, which is a Distince Element (DEM) code, were carried out for determining important parameters on the stability of the disposal tunnel and deposition holes excavated in 500 m deep granite body. The development of plastic zone and stress and strain distributions were analyzed with various modelling conditions with variation on the parameters including joint numbers, tunnel size, joint properties, rock properties, and stress ratio. Furthermore, the influence of fracture zone, which is located around the underground excavations, on the stability of the excavation was investigated. In this study, the variation of stress and strain distribution due to the variation of fracture zone location, dip, and width was analyzed

  4. Safety principles for nuclear power plants

    International Nuclear Information System (INIS)

    Vuorinen, A.

    1993-01-01

    The role and purpose of safety principles for nuclear power plants are discussed. A brief information is presented on safety objectives as given in the INSAG documents. The possible linkage is discussed between the two mentioned elements of nuclear safety and safety culture. Safety culture is a rather new concept and there is more than one interpretation of the definition given by INSAG. The defence in depth is defined by INSAG as a fundamental principle of safety technology of nuclear power. Discussed is the overall strategy for safety measures, and features of nuclear power plants provided by the defence-in-depth concept. (Z.S.) 7 refs

  5. Power generation by nuclear power plants

    International Nuclear Information System (INIS)

    Bacher, P.

    2004-01-01

    Nuclear power plays an important role in the world, European (33%) and French (75%) power generation. This article aims at presenting in a synthetic way the main reactor types with their respective advantages with respect to the objectives foreseen (power generation, resources valorization, waste management). It makes a fast review of 50 years of nuclear development, thanks to which the nuclear industry has become one of the safest and less environmentally harmful industry which allows to produce low cost electricity: 1 - simplified description of a nuclear power generation plant: nuclear reactor, heat transfer system, power generation system, interface with the power distribution grid; 2 - first historical developments of nuclear power; 3 - industrial development and experience feedback (1965-1995): water reactors (PWR, BWR, Candu), RBMK, fast neutron reactors, high temperature demonstration reactors, costs of industrial reactors; 4 - service life of nuclear power plants and replacement: technical, regulatory and economical lifetime, problems linked with the replacement; 5 - conclusion. (J.S.)

  6. Seismic review of existing nuclear power plants

    International Nuclear Information System (INIS)

    Yanev, P.I.; Mayes, R.L.; Jones, L.R.

    1975-01-01

    Because of developments in the fields of earthquake and structural engineering over the last two decades, the codes, standards and design criteria for Nuclear Power Plants and other critical structures have changed substantially. As a result, plants designed only a few years ago do not satisfy the requirements for new plants. Accordingly, the Regulatory Agencies are requiring owners of older Nuclear Power Plants to re-qualify the plants seismically, using codes, standards, analytical techniques and knowledge developed in recent years. Seismic review consists of three major phases: establishing the design and performance criteria, re-qualifying the structures, and re-qualifying the equipment. The authors of the paper have been recently involved in the seismic review of existing nuclear power plants in the United States. This paper is a brief summary of their experiences

  7. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  8. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1990-12-01

    During the second quarter of 1990 the Finnish nuclear plant units Loviisa 1 and 2 and TVO and II were in commercial operation for most of the time. The feedwater pipe rupture at Loviisa 1 and the resulting inspections and repairs at both Loviisa plant units brought about an outage the overall duration of which was 32 days. The annual maintenance outages of the TVO plant units were arranged during the report period and their combined duration was 31.5 days. Nuclear electricity accounted for 35.3% of the total Finnish electricity production during this quarter. The load factor average of the nuclear power plant units was 83.0%. Three events occurred during the report period which are classified as Level 1 on the International Nuclear Event Scale: feedwater pipe rupture at Loviisa 1, control rod withdrawal at TVO I in a test during an outage when the hydraulic scram system was rendered inoperable and erroneous fuel bundle transfers during control rod drives maintenance at TVO II. Other events during this quarter are classified as Level Zero (Below Scale) on the International Nuclear Event Scale. Occupational radiation doses and external releases of radioactivity were considerably below authorised limits. Only small amounts of nuclides originating in nuclear power plants were detected in samples taken in the vicinity of nuclear power plants

  9. Nuclear power plants: 2009 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    At the turn of 2009/2010, nuclear power plants were available for energy supply in 30 countries of the world. A total of 437 nuclear power plants, which is one plant less than at the 2008/2009 turn, were in operation with an aggregate gross power of approx. 391 GWe and an aggregate net power, respectively, of 371 GWe. The available gross power of nuclear power plants did not changed noticeably from 2008 to the end of 2009. In total 2 nuclear generating units were commissioned in 2009. One NPP started operation in India and one in Japan. Three nuclear generating units in Japan (2) und Lithuania (1) were decomissioned in 2009. 52 nuclear generating units, i.e. 10 plants more than at the end of 2008, with an aggregate gross power of approx. 51 GWe, were under construction in 14 countries end of 2009. New or continued projects are notified from (number of new projects): China (+9), Russia (1), and South Korea (1). Some 84 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another units are in their preliminary project phases. (orig.)

  10. Nuclear power plants: 2008 atw compact statistics

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    At the turn of 2008/2009, nuclear power plants were available for energy supply in 31 countries of the world. A total of 438 nuclear power plants, which is one plant less than at the 2007/2008 turn, were in operation with an aggregate gross power of approx. 393 GWe and an aggregate net power, respectively, of 372 GWe. The available gross power of nuclear power plants didn't changed noticeabely from 2007 to the end of 2008. No nuclear generating unit was commissioned in 2008. One nuclear generating unit in the Slovak Republic was decomissioned in 2008. 42 nuclear generating units, i.e. 10 plants more than at the end of 2007, with an aggregate gross power of approx. 38 GWe, were under construction in 14 countries end of 2008. New or continued projects are notified from (in brackets: number of new projects): Bulgaria (2), China (5), South Korea (2), Russia (1), and the Slovak Republic (2). Some 80 new nuclear power plants are in the concrete project design, planning and licensing phases worldwide; on some of them, contracts have already been awarded. Another approximately 120 units are in their preliminary project phases. (orig.)

  11. Calibration of antimony-based electrode for ph monitoring into underground components of nuclear repositories

    International Nuclear Information System (INIS)

    Betelu, S.; Ignatiadis, I.

    2012-01-01

    Document available in extended abstract form only. Nuclear waste repositories are being installed in deep excavated rock formations in some places in Europe to isolate and store radioactive waste. In France, Callovo-Oxfordian formation (COx) is potential candidate for nuclear waste repository. It is thus necessary to measure in situ the state of a structure's health during its entire life. The monitoring of the near-field rock and the knowledge of the geochemical transformations can be carried out by a set of sensors for a sustainable management of long-term safety, reversibility and retrievability. Among the chemical parameters, the most significant are pH, conductivity and redox potential. Based upon the reversible interfacial redox processes involving H + , metal-metal oxides electrodes should be regarded among the promising technologies to be devoted to the observation and monitoring of pH into the underground components of nuclear repositories due to their physical and chemical stability, with regards to temperatures, pressures and aggressive environments. Metal-metal oxides electrodes present furthermore the advantage of being easily miniaturised. Among the metal-metal oxide group, antimony-antimony oxide system, for which improved properties were obtained using mono-crystalline antimony, has been the first and then the most investigated and disputed for pH sensing; the fact remains that it has been the most frequently used in practical pH measurements. Nevertheless, numerous conflicting data exist concerning the disturbances of their potential by various physical and chemical parameters, which require calibrating the electrode under conditions similar to those in which it is to be applied. This work aimed to calibrate mono-crystalline Sb electrode (99.999 %, m = 500 mg, d = 6.7) for pH measurements into the underground components of nuclear repositories. The electrode presented the advantage of being strong in the conception: it presented an important

  12. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1991-12-01

    The Finnish nuclear power plant units Loviisa 1 and 2 as well as TVO 1 and II were in operation for almost the whole second quarter of 1991. The load factor average was 87.4 %. In consequence of a fire, which broke out in the switchgear building, connections to both external grids were lost and TVO II relied on power supplied by four back-up diesels for 7.5 hrs. The event is classified as Level 2 on the International Nuclear Event Scale. The process of examining the non-leaking fuel bundles removed from the Loviisa nuclear reactors has continued. The examinations have revealed, so far, that the uppermost spacing lattices of the bundles exhibit deformations similar to those detected in the leaking fuel bundles removed from the reactors. This event is classified as Level 1 on the International Nuclear Event Scale. Other events in this quarter which are classified according to the International Nuclear Event Scale are Level Zero (Below Scale) on the Scale. The Finnish Centre for Radiation and Nuclear Safety has assessed the safety of the Loviisa and Olkiluoto nuclear power plants based on the new regulations issued on 14.2.1991 by the Council of State. The safety regulations are much more stringent than those in force when the Loviisa and Olkiluoto nuclear power plants were built. The assessment indicated that the TVO nuclear power plant meets these safety regulations. The Loviisa nuclear power plant meets the requirements with the exception of certain requirements related to the ensuring of safety functions and provision for accidents. At the Loviisa nuclear power plant there are several projects under consideration to enhance safety

  13. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  14. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  15. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  16. First observations of tritium in ground water outside chimneys of underground nuclear explosions, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Crow, N.B.

    1976-01-01

    Abnormal levels of radionuclides had not been detected in ground water at the Nevada Test Site beyond the immediate vicinity of underground nuclear explosions until April 1974, when above-background tritium activity levels were detected in ground-water inflow from the tuff beneath Yucca Flat to an emplacement chamber being mined in hole U2aw in the east-central part of Area 2. No other radionuclides were detected in a sample of water from the chamber. In comparison with the amount of tritium estimated to be present in the ground water in nearby nuclear chimneys, the activity level at U2aw is very low. To put the tritium activity levels at U2aw into proper perspective, the maximum tritium activity level observed was significantly less than the maximum permissible concentration (MPC) for a restricted area, though from mid-April 1974 until the emplacement chamber was expended in September 1974, the tritium activity exceeded the MPC for the general public. Above-background tritium activity was also detected in ground water from the adjacent exploratory hole, Ue2aw. The nearest underground nuclear explosion detonated beneath the water table, believed to be the source of the tritium observed, is Commodore (U2am), located 465 m southeast of the emplacement chamber in U2aw. Commodore was detonated in May 1967. In May 1975, tritium activity May significantly higher than regional background. was detected in ground water from hole Ue2ar, 980 m south of the emplacement chamber in U2aw and 361 m from a second underground nuclear explosion, Agile (U2v), also detonated below the water table, in February 1967. This paper describes these occurrences of tritium in the ground water. A mechanism to account for the movement of tritium is postulated

  17. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  18. Nuclear power plants and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, K [Ceskoslovenska Komise pro Atomovou Energii, Prague

    1978-05-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO/sub 2/, NO/sub 2/, ash and soot emissions with /sup 133/Xe and /sup 85/Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts.

  19. Nuclear power plants and the environment

    International Nuclear Information System (INIS)

    Barabas, K.

    1978-01-01

    The environmental impacts are compared of conventional coal-fired and oil-fired power plants and of nuclear power plants. The values are compared of SO 2 , NO 2 , ash and soot emmisions with 133 Xe and 85 Kr fission products release and the requirement for air for diluting these emissions in the atmosphere is assessed. Also compared are thermal pollution from an oil-fired power plant and from PWR and fast reactor power plants. The conclusion is arrived at that nuclear energy can solve the problem of increasing demand for electric and heat power while reducing negative environmental impacts. (O.K.)

  20. Intelligent operation system for nuclear power plants

    International Nuclear Information System (INIS)

    Morioka, Toshihiko; Fukumoto, Akira; Suto, Osamu; Naito, Norio.

    1987-01-01

    Nuclear power plants consist of many systems and are operated by skillful operators with plenty of knowledge and experience of nuclear plants. Recently, plant automation or computerized operator support systems have come to be utilized, but the synthetic judgment of plant operation and management remains as human roles. Toshiba is of the opinion that the activities (planning, operation and maintenance) should be integrated, and man-machine interface should be human-friendly. We have begun to develop the intelligent operation system aiming at reducing the operator's role within the fundamental judgment through the use of artificial intelligence. (author)

  1. Radioecological zoning of territories of carrying out of underground nuclear explosions in conditions of Yakutia

    International Nuclear Information System (INIS)

    Yakovleva, V.D.; Stepanov, V.E.

    2005-01-01

    Full text: In territory of Yakutia on period 1974 - 1987 years in the industrial purposes 12 peace underground nuclear explosions (UNE) have been made seven from which is carried out on Average-Botuobinsk a deposit with the purpose of an intensification of an oil recovery and inflow of gas (a chink No. 42, 43, 47, 66, 61, 68) and one (No. 101) - for creation of underground capacity - storehouses of the oil, four explosions - for seismic sounding an earth's crust ('Kimberlit', 'Horizon - 4', 'Kraton-4', 'Kraton-3'), and one 'Crystal' - for creation of a dam by loosening of breeds. From them 'Crystal' and 'Kraton-3' are emergency where the dead woods forming impact zones were formed. Impact zones are the sites dated for places with attributes of changes of an environment from influence of radiation. Differently, impact zone can be characterized as a zone of shock influence of the radiating factor on an environment allocated on the basis of seen damages of a vegetative cover. On Average-Botuobinsk 'air-blast cleaning' a deposit are available local radioactive a stain, formed (educated) at 'air-blast cleaning' chinks 42, 43, 47, 68 after end of chisel works and opening potted component which is taking place under the cement bridge. As a result of it has taken place teknogen change of a radiating background as a local stain the area approximately from 4 up to 25 m 2 , adjoining to mouth blowing lines (in approximately 100 m from a mouth of chinks). As a result of radioecological researches on vicinities of objects UNE conclusions which further can be a basis of the concept are received. 1. radioactive pollution of objects UNE have spotty character, are found out: on emergency UNE - a) cesium - 137, americium - 241, cobalt - 60; 6) cesium - 134, antimony - 125, europium - 155; a) objects kamuflet cesium - 137 and americium -241. 2. Definition impact zones on objects UNE is based on attributes- a) the vegetative cover is damaged; the level of a scale - background is

  2. Subsurface Completion Report for Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Echelard, Tim

    2006-09-01

    Three underground nuclear tests were conducted on Amchitka Island, Alaska, in 1965, 1969, and 1971. The effects of the Long Shot, Milrow, and Cannikin tests on the environment were extensively investigated during and following the detonations, and the area continues to be monitored today. This report is intended to document the basis for the Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin (hereafter referred to as ''Amchitka Site'') subsurface completion recommendation of No Further Remedial Action Planned with Long-Term Surveillance and Maintenance, and define the long-term surveillance and maintenance strategy for the subsurface. A number of factors were considered in evaluating and selecting this recommendation for the Amchitka Site. Historical studies and monitoring data, ongoing monitoring data, the results of groundwater modeling, and the results of an independent stakeholder-guided scientific investigation were also considered in deciding the completion action. Water sampling during and following the testing showed no indication that radionuclides were released to the near surface, or marine environment with the exception of tritium, krypton-85, and iodine-131 found in the immediate vicinity of Long Shot surface ground zero. One year after Long Shot, only tritium was detectable (Merritt and Fuller, 1977). These tritium levels, which were routinely monitored and have continued to decline since the test, are above background levels but well below the current safe drinking water standard. There are currently no feasible means to contain or remove radionuclides in or around the test cavities beneath the sites. Surface remediation was conducted in 2001. Eleven drilling mud pits associated with the Long Shot, Milrow and Cannikin sites were remediated. Ten pits were remediated by stabilizing the contaminants and constructing an impermeable cap over each pit. One pit was remediated by removing all of the contaminated mud

  3. Steam generators for nuclear power plants

    International Nuclear Information System (INIS)

    Tillequin, Jean

    1975-01-01

    The role and the general characteristics of steam generators in nuclear power plants are indicated, and particular types are described according to the coolant nature (carbon dioxide, helium, light water, heavy water, sodium) [fr

  4. Fiber optic applications in nuclear power plants

    International Nuclear Information System (INIS)

    Collette, P.; Kwapien, D.

    1984-01-01

    Fiber optic technology possesses many desirable attributes for applications in commercial nuclear power plants. The non-electrical nature of fiber optics is an important factor in an industry governed by federal safety regulations such as Class 1E isolation and separation criteria. Immunity from Electromagnetic Interference (EMI), an increasing industry problem area, is another significant characteristic. Because of the extremely wide bandwidth offered, fiber optics better addresses the data acquistion and communication requirements of the complex processes of a nuclear power plant. Potential for fiber optic sensor applications exists within the nuclear industry because their small size and physical flexibility allows access into normally inaccessible areas. They possess high accuracy and allow environmentally sensitive electronics to be remotely located. The purpose of this paper is to explore current applications for fiber optic technology in modern nuclear plants, document examples of present day usage in C-E plants and suggest possible future application areas

  5. Environmental hazards from nuclear power plants

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1973-04-01

    The article discusses the radiation exposure due to nuclear power stations in normal operation and after reactor incidents. Also mentioned is the radiation exposure to the emissions from fuel reprocessing plants and radioactive waste facilities. (RW/AK) [de

  6. A trend to small nuclear power plants?

    International Nuclear Information System (INIS)

    Lameira, Fernando Soares

    2000-01-01

    The release of fossil fuel greenhouse gases and the depletion of cheap oil reserves outside the Persic Gulf suggest a promising scenario for the future of nuclear power. But the end of the Cold War, the crisis of the state, axiological questions and globalization may lead to a marked for small power plants. The purpose of this paper is to analyze these factors, since they are not always considered all together in the future scenarios for nuclear power. It is concluded that the current evolutionary trend of nuclear power projects toward big plants may become one of the main barriers for the introduction of new plants in the future. It is suggested that a combination of fission reactors with technologies unavailable in the 1950's, when the design characteristics of the current nuclear power plants were established, could be considered to overcome this barrier. (author)

  7. Risk analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Koelzer, W.

    1983-01-01

    The German risk analysis program for nuclear power plants aiming at the man and the environment is presented. An accident consequence model to calculate the radiological impact and the potential health effects is described. (E.G.) [pt

  8. Vital areas at nuclear power plants

    International Nuclear Information System (INIS)

    Cameron, D.F.

    1985-01-01

    Vital area analysis of nuclear power plants has been performed for the Nuclear Regulatory Commission by the Los Alamos National Laboratory from the late 1970's through the present. The Los Alamos Vital Area Study uses a fault-tree modeling technique to identify vital areas and equipment at nuclear power plants to determine their vulnerability. This technique has been applied to all operating plants and approximately one-half of those under construction in the US. All saboteur-induced loss-of-coolant accidents and transients and the systems needed to mitigate them are considered. As a result of this effort, security programs at nuclear power plants now include vulnerability studies that identify targets in a systematic manner, and thus unnecessary protection has been minimized. 1 ref., 8 figs., 1 tab

  9. Design quality assurance for nuclear power plants

    International Nuclear Information System (INIS)

    1986-07-01

    This Standard contains the requirements for the quality assurance program applicable to the design phase of a nuclear plant, and is applicable to the design of safety-related equipment, systems, and structures, as identified by the owner. 1 fig

  10. ALARA for nuclear power plant operation

    International Nuclear Information System (INIS)

    Knapp, P.J.

    1979-01-01

    The concept of maintaining radiation exposures as low as reasonably achievable (ALARA) is outlined in connection with nuclear power plant operations. The basis of the concept is reviewed and a specific example of ALARA action is presented. (author)

  11. Design quality assurance for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-07-01

    This Standard contains the requirements for the quality assurance program applicable to the design phase of a nuclear plant, and is applicable to the design of safety-related equipment, systems, and structures, as identified by the owner. 1 fig.

  12. Environmental and security challenges of nuclear plants

    International Nuclear Information System (INIS)

    Omar, A.S.

    2014-01-01

    The world population increase, the acceleration of global requirement for development and the need to expand energy production, have led to the depletion of natural resources. The international efforts are increasing to get clean, safe and economical energy sources . The electricity generated from nuclear energy considers less polluting and high economic competitiveness as well as reliability and efficiency. The nuclear power plants projects face significant challenges, especially after two major accidents, in Chernobyl 1986 and Fukushima 2011 including the fears of radiation effects, nuclear waste management and nuclear proliferation issues, as well as the lack of public acceptance. So those bodies interested in operating nuclear power plants work to increase nuclear safety standards, review the nuclear facilities safety, know the strict application of laws, seek to prove the economic competitiveness, maintain environmental security, assist in the nonproliferation regime and gain public acceptance. This article discusses the most important environmental and security challenges of nuclear power plants. It highlights the importance of the peaceful uses of nuclear energy as a source of sustainable development and environmental security. It also offers a number of recommendations to support the Arab countries trend towards the inclusion of nuclear energy option within their national programs to generate electricity. (author)

  13. Problems facing a first nuclear power plant

    International Nuclear Information System (INIS)

    Diaz, E.

    1986-01-01

    Requirement of nuclear power generation. Reason for considering a nuclear power programme. Decision to 'go nuclear'. Existing antecedents in the country (nuclear research institution, conventional generating plants, other nuclear utilities). - First organizational steps. Feasibility studies. Site selection and power module. Eventual reactor type decision. Site approval. - Pre-purchasing activities. Eventual selection of a consultant. Domestic participation capabilities. Pre-qualification bids. - Definition of contract type and scopes. Turn-key/non-turn-key. Architect Engineer organization. Bidding documentation. Financing. Warranties. Role of the owner. Licensing procedures and regulations. (orig./GL)

  14. Nuclear plant fire incident data file

    International Nuclear Information System (INIS)

    Sideris, A.G.; Hockenbury, R.W.; Yeater, M.L.; Vesely, W.E.

    1979-01-01

    A computerized nuclear plant fire incident data file was developed by American Nuclear Insurers and was further analyzed by Rensselaer Polytechnic Institute with technical and monetary support provided by the Nuclear Regulatory Commission. Data on 214 fires that occurred at nuclear facilities have been entered in the file. A computer program has been developed to sort the fire incidents according to various parameters. The parametric sorts that are presented in this article are significant since they are the most comprehensive statistics presently available on fires that have occurred at nuclear facilities

  15. Nuclear power plant with several reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grishanin, E I; Ilyunin, V G; Kuznetsov, I A; Murogov, V M; Shmelev, A N

    1972-05-10

    A design of a nuclear power plant suggested involves several reactors consequently transmitting heat to a gaseous coolant in the joint thermodynamical circuit. In order to increase the power and the rate of fuel reproduction the low temperature section of the thermodynamical circuit involves a fast nuclear reactor, whereas a thermal nuclear reactor is employed in the high temperature section of the circuit for intermediate heating and for over-heating of the working body. Between the fast nuclear and the thermal nuclear reactors there is a turbine providing for the necessary ratio between pressures in the reactors. Each reactor may employ its own coolant.

  16. Report concerning Zarnowiec nuclear power plant

    International Nuclear Information System (INIS)

    Albinowski, S.; Dakowski, M.; Downarowicz, M.

    1990-01-01

    Report of the Team of the President of the National Atomic Energy Agency regarding Zarnowiec nuclear power plant contains the analysis of situation in Poland in June 1990, the assessment of public opinion, as well as the description of ecological, technical and economical problems. The team's conclusions are given together with the general conclusion to stop the construction of Zarnowiec nuclear power plant. 5 appendixes, 6 enclosures, 1 documents list, 1 tab. (A.S.)

  17. Nuclear power plant pressure vessels. Inservice inspections

    International Nuclear Information System (INIS)

    1995-01-01

    The requirements for the planning and reporting of inservice inspections of nuclear power plant pressure vessels are presented. The guide specifically applies to inservice inspections of Safety class 1 and 2 nuclear power plant pressure vessels, piping, pumps and valves plus their supports and reactor pressure vessel internals by non- destructive examination methods (NDE). Inservice inspections according to the Pressure Vessel Degree (549/73) are discussed separately in the guide YVL 3.0. (4 refs.)

  18. Quality assurance organization for nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This Safety Guide provides requirements, recommendations and illustrative examples for structuring, staffing and documenting the organizations that perform activities affecting quality of a nuclear power plant. It also provides guidance on control of organization interfaces, and establishment of lines for direction, communication and co-ordination. The provisions of this Guide are applicable to all organizations participating in any of the constituent areas of activities affecting quality of a nuclear power plant, such as design, manufacture, construction, commissioning and operation

  19. Risk analyses of nuclear power plants

    International Nuclear Information System (INIS)

    Jehee, J.N.T.; Seebregts, A.J.

    1991-02-01

    Probabilistic risk analyses of nuclear power plants are carried out by systematically analyzing the possible consequences of a broad spectrum of causes of accidents. The risk can be expressed in the probabilities for melt down, radioactive releases, or harmful effects for the environment. Following risk policies for chemical installations as expressed in the mandatory nature of External Safety Reports (EVRs) or, e.g., the publication ''How to deal with risks'', probabilistic risk analyses are required for nuclear power plants

  20. Method of operating a nuclear turbine plant

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hiraku; Ootawara, Yasuhiko; Imai, Tetsu

    1985-04-25

    A method is presented to prevent the lowering in the reactor feedwater temperature thereby secure necessary amount of steams even in a plant operation under low load. The feedwater temperature of a nuclear reactor is detected at the low load region of the plant and high enthalpy steams are supplied to a high pressure feedwater heater by opening a supply stream extract switching valve. This enables to maintain the feedwater temperature in the nuclear reactor at a constant level.

  1. Seismic instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Senne Junior, M.

    1983-07-01

    A seismic instrumentation system used in Nuclear Power Plants to monitor the design parameters of systems, structures and components, needed to provide safety to those plants, against the action of earth quarks is described. The instrumentation is based on the nuclear standards and other components used, as well as their general localization is indicated. The operation of the instrumentation system as a whole and the handling of the recovered data are dealt with accordingly. The accelerometer is described in detail. (Author) [pt

  2. Investigative study of the underground excavations for a nuclear waste repository in tuff: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-07-01

    Numerical studies were conducted on the behavior of a tuff rock mass within which emplacement drifts for a nuclear waste repository are excavated. The first study evaluated the effects of rockbolting and excavation-induced damage on the behavior of the rock mass round typical drifts. The second study provided a simple means of assessing the significance of drift shape, drift size, and in-situ state of stress on the deformation and stress in the vicinity of drifts for vertical and horizontal emplacement of waste. Neither study considered the effect of heating of the rock mass after emplacement of the waste so the conclusions pertain only to the conditions immediately after excavation of the underground openings. The results of analyses of the rockbolted excavations indicated that rockbolts do not have a significant influence on the states of deformation or stress within the rock mass, and that the rockbolts are subjected to acceptable levels of stress even if installed as close to the face of the excavation as possible. Accordingly, rockbolts were not considered in the study of drift shape, drift size, and the in-situ state of stress. That study indicated that stable openings of the dimensions investigated can be constructed within a tuff rock mass with the properties assumed. Of the parameters investigated, the in-situ state of stress appeared to be most important. Potentially adverse conditions were predicted if the in-situ horizontal stress is very low, but current indications are that it lies within a range which is consistent with good conditions and a stable roof. 28 refs., 49 figs., 11 tabs

  3. Fire scenarios in nuclear power plant

    International Nuclear Information System (INIS)

    Asp, I.B.; MacDougall, E.A.; Hall, R.E.

    1978-01-01

    This report defines a Design Base Fire and looks at 3 major areas of a hypothetical model for a Nuclear Power Plant. In each of these areas a Design Base Fire was developed and explained. In addition, guidance is given for comparing fire conditions of a given Nuclear Power Plant with the model plant described. Since there is such a wide variation in nuclear plant layouts, model areas were chosen for simplicity. The areas were not patterned after any existing plant area; rather several plant layouts were reviewed and a simplified model developed. The developed models considered several types of fires. The fire selected was considered to be the dominant one for the case in point. In general, the dominant fire selected is time dependent and starts at a specific location. After these models were developed, a comparison was drawn between the model and an operating plant for items such as area, cable numbers and weight, tray sizes and lengths. The heat loads of the model plant are summarized by area and compared with those of an actual operating plant. This document is intended to be used as a guide in the evaluation of fire hazards in nuclear power stations and a summarization of one acceptable analytical methodology to accomplish this

  4. Cost savings from extended life nuclear plants

    International Nuclear Information System (INIS)

    Forest, L.R. Jr.; Deutsch, T.R.; Schenler, W.W.

    1988-09-01

    This study assesses the costs and benefits of nuclear power plant life extension (NUPLEX) for the overall US under widely varying economic assumptions and compares these with alternative new coal- fired plants (NEWCOAL). It is found that NUPLEX saves future electricity consumers more than 3 cents/-kwh compared with NEWCOAL. The NUPLEX costs and benefits for existing individual US nuclear power plants under base-line, or most likely, assumptions are assessed to determine the effects of the basic plant design and plant age. While benefits vary widely, virtually all units would have a positive benefit from NUPLEX. The study also presents a cost-benefit analysis of the nuclear industry's planned advanced light water reactor (ALWR). It is concluded that ALWR offers electrical power at a substantially lower cost than NEWCOAL. 9 refs., 6 figs

  5. The safety of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Do nuclear power plants present an unjustifiable risk Can there be confidence in their safety The Uranium Institute invited a group of senior safety experts from eight different Western countries operating different types of reactors to provide an authoritative explanation for non-specialists of the basic principles of reactor safety, their application and their implications. The report presents the group's opinion on the level of safety achieved in the Western nuclear power plants with which the authors are directly familiar. Although many of the points made may well also be true for non-Western reactors, the report does not cover them except where specifically stated. It does describe and discuss the causes of the Chernobyl disaster. It does not compare nuclear power with other fuels, nor does it deal with its benefits, since however great the benefits from the peaceful use of nuclear power, and its own advantages over other fuels, they could not compensate for lack of safety. The conclusion reached is that the risk associated with electricity production at nuclear power plants can be kept very low. Proper use of the extensive knowledge available today can guarantee operation of nuclear power plants at very high safety levels, carrying very low risks, both to health and of contamination of the environment: risks that are continually lowered by upgrading existing plants and their operation, and by the design of future power plants. (author).

  6. Operation of Finnish nuclear power plants

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1993-12-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations related to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety considers safety significant. Safety-enhancing plant modifications and general matters relating to the use of nuclear energy are also reported. A summary of the radiation safety of plant personnel and the environment, and tabulated data on the plants' production and their load factors are also given. At the Loviisa 1 plant unit one of two specially-backed AC busbars was lost during the second quarter of 1993. A ca. 30 minute voltage break caused malfunctions in the plant unit's electrical equipment and rendered inoperable certain components important to safety. The event is rated on the International Nuclear Event Scale (INES) at level 1. In inspections carried out at TVO II during the annual maintenance outage, the number of cracks detected in control rod structural material was higher than usual. When cracks occur, part of boron carbide, the power regulating medium in control rods, may wash into the reactor water and control rod shutdown capability may be impaired. The event is rated on the INES at level 1. Other events in the second quarter of 1993 had no bearing on nuclear or radiation safety. (4 figs., 5 tabs.)

  7. PWR reactors for BBR nuclear power plants

    International Nuclear Information System (INIS)

    Structure and functioning of the nuclear steam generator system developed by BBR and its components are described. Auxiliary systems, control and load following behaviour and fuel management are discussed and the main data of PWR given. The brochure closes with a perspective of the future of the Muelheim-Kaerlich nuclear power plant. (GL) [de

  8. How safe are nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    After naming the countries in which power plants are operated today, the author discusses the attitudes of their governments towards the problem of nuclear safety as well as the question if today's measures are sufficient in developing countries considering the increasing utilization of nuclear energy.

  9. Operation reports of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    The requirements aiming to standardize the program of nuclear power plant operation report, required by Brazilian Energy Commission - CNEN - to evaluate the activities related to the nuclear technical safety and to the radiation protection during the units operational phase, are showed. (E.G.) [pt

  10. Automated ultrasonic inspection of nuclear plant components

    International Nuclear Information System (INIS)

    Baron, J.A.; Dolbey, M.P.

    1982-01-01

    For reasons of safety and efficiency, automated systems are used in performing ultrasonic inspection of nuclear components. An automated system designed specifically for the inspection of headers in a nuclear plant is described. In-service inspection results obtained with this system are shown to correlate with pre-service inspection results obtained by manual methods

  11. Questions and Answers About Nuclear Power Plants.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  12. MODELLING OF NUCLEAR POWER PLANT DECOMMISSIONING FINANCING

    Czech Academy of Sciences Publication Activity Database

    Bemš, J.; Knápek, J.; Králík, T.; Hejhal, M.; Kubančák, Ján; Vašíček, J.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 519-522 ISSN 0144-8420 Institutional support: RVO:61389005 Keywords : nuclear power plant * methodology * future decommissioning costs Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  13. Effort on Nuclear Power Plants safety

    International Nuclear Information System (INIS)

    Prayoto.

    1979-01-01

    Prospects of nuclear power plant on designing, building and operation covering natural safety, technical safety, and emergency safety are discussed. Several problems and their solutions and nuclear energy operation in developing countries especially control and permission are also discussed. (author tr.)

  14. Architecture and aesthetics of nuclear power plants

    International Nuclear Information System (INIS)

    Andreu, P.

    1977-01-01

    Having first analysed the main aesthetical and architectural problems related to the establishment of nuclear sites, the first results of the description is given of studies undertaken by a group of architects asked by E.D.F. to conceive the main buildings of a nuclear power plant and to imagine their insert in the site [fr

  15. Remediation of the Faultless Underground Nuclear Test: Moving Forward in the Face of Model Uncertainty

    International Nuclear Information System (INIS)

    Chapman, J. B.; Pohlmann, K.; Pohll, G.; Hassan, A.; Sanders, P.; Sanchez, M.; Jaunarajs, S.

    2002-01-01

    The Faultless underground nuclear test, conducted in central Nevada, is the site of an ongoing environmental remediation effort that has successfully progressed through numerous technical challenges due to close cooperation between the U.S. Department of Energy, (DOE) National Nuclear Security Administration and the State of Nevada Division of Environmental Protection (NDEP). The challenges faced at this site are similar to those of many other sites of groundwater contamination: substantial uncertainties due to the relative lack of data from a highly heterogeneous subsurface environment. Knowing when, where, and how to devote the often enormous resources needed to collect new data is a common problem, and one that can cause remediators and regulators to disagree and stall progress toward closing sites. For Faultless, a variety of numerical modeling techniques and statistical tools are used to provide the information needed for DOE and NDEP to confidently move forward along the remediation path to site closure. A general framework for remediation was established in an agreement and consent order between DOE and the State of Nevada that recognized that no cost-effective technology currently exists to remove the source of contaminants in nuclear cavities. Rather, the emphasis of the corrective action is on identifying the impacted groundwater resource and ensuring protection of human health and the environment from the contamination through monitoring. As a result, groundwater flow and transport modeling is the linchpin in the remediation effort. An early issue was whether or not new site data should be collected via drilling and testing prior to modeling. After several iterations of the Corrective Action Investigation Plan, all parties agreed that sufficient data existed to support a flow and transport model for the site. Though several aspects of uncertainty were included in the subsequent modeling work, concerns remained regarding uncertainty in individual

  16. The decommissioning of the Barnwell nuclear fuel plant

    International Nuclear Information System (INIS)

    McNeil, J.

    1999-01-01

    The decommissioning of the Barnwell Nuclear Fuel Plant is nearing completion. The owner's objective is to terminate the plant radioactive material license associated with natural uranium and transuranic contamination at the plant. The property is being released for commercial-industrial uses, with radiation exposure from residual radioactivity not to exceed 0.15 millisieverts per year. Historical site assessments have been performed and the plant characterized for residual radioactivity. The decommissioning of the uranium hexafluoride building was completed in April, 1999. Most challenging from a radiological control standpoint is the laboratory building that contained sixteen labs with a total of 37 glove boxes, many of which had seen transuranics. Other facilities being decommissioned include the separations building and the 300,000-gallon underground high-level waste tanks. This decommissioning in many ways is the most significant project of this type yet undertaken in South Carolina. Many innovations have been made to reduce the time and costs associated with the project. (author)

  17. Nuclear power plant safety in Brazil

    International Nuclear Information System (INIS)

    Lederman, L.

    1980-01-01

    The Code of Practice for the Safe Operation of Nuclear Power Plants states that: 'In discharging its responsibility for public health and safety, the government should ensure that the operational safety of a nuclear reactor is subject to surveillance by a regulatory body independent of the operating organization'. In Brazil this task is being carried out by the Comissao Nacional de Energia Nuclear in accordance with the best international practice. (orig./RW)

  18. Engineering development in nuclear power plant construction

    International Nuclear Information System (INIS)

    Guenther, P.

    1979-01-01

    Proceeding from the up-to-now experience in the erection of nuclear power stations, especially of the first and second unit of the Greifswald nuclear power plant, the following essential aspects of the development of constructional engineering are discussed: (1) constructional features and criteria, (2) organizational management, (3) current status and problems in prelimary operations, and (4) possibilities of further expenditure reductions in constructing nuclear power stations

  19. Nuclear power plant construction activity, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1986, are presented. This report, which is updated annually, was prepared to provide an overview of the nuclear power plant construction industry. The report contains information on the status of nuclear generating units, average construction costs and lead-times, and construction milestones for individual reactors

  20. Insurance risk of nuclear power plant concentrations

    International Nuclear Information System (INIS)

    Feldmann, J.

    1976-01-01

    The limited number of sites available in the Federal Republic of Germany for the erection of nuclear power plants has resulted in the construction of multiple nuclear generating units on a few sites, such as Biblis, Gundremmingen and Neckarwestheim. At a value invested of approximately DM 1,200/kW this corresponds to a property concentration on one site worth DM 2 - 3 billion and more. This raises the question whether a concentration of value of this magnitude does not already exceed the limits of bearable economic risks. The property risk of a nuclear power plant, as that of any other industrial plant, is a function of the property that can be destroyed in a maximum probable loss. Insurance companies subdivide plants into so-called complex areas in which fire damage or nuclear damage could spread. While in some foreign countries twin nuclear power plants are built, where the technical systems of both units are installed in one building without any physical separation, dual unit plants are built in the Federal Republic in which the complexes with a high concentration of valuable property are physically separate building units. As a result of this separation, property insurance companies have no grounds for assessing the risk and hence, the premium different from those of single unit plants. (orig.) [de

  1. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  2. Modifications to nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2007-01-01

    This Safety Guide was prepared under the IAEA's programme for safety standards for nuclear power plants. It supplements Section 7 of the Safety Requirements publication on Safety of Nuclear Power Plants: Operation, which establishes the safety requirements for the modification of nuclear power plants. Reasons for carrying out modifications to nuclear power plants may include: (1) maintaining or strengthening existing safety provisions and thus maintaining consistency with or improving on the current design. (2) recovering from plant faults. (3) improving the thermal performance or increasing the power rating of the plant. (4) increasing the maintainability of the plant, reducing the radiation exposure of personnel or reducing the costs of plant maintenance. And (5) extending the design life of the plant. Most modifications, made on the basis of operating experience, are intended to improve on the design or to improve operational performance and flexibility. Some are rendered necessary by new regulatory requirements, ageing of the plant or obsolescence of equipment. However, the benefits of regularly updating the plant design can be jeopardized if modifications are not kept under rigorous control throughout the lifetime of the plant. The need to reduce costs and improve efficiency, in combination with changes to the structure of the electricity generation sector of the economy in many countries, has led many companies to make changes in the structure of the operating organization for nuclear power plants. Whatever the reason for such organizational changes, consideration should be given to the effects of those changes with the aim of ensuring that they would have no impacts that would compromise the safety of the plant. The objective of this Safety Guide is to provide guidance and recommendations on controlling activities relating to modifications at nuclear power plants in order to reduce risk and to ensure that the configuration of the plant is at all times under

  3. The underground as a storage facility. Modelling of nuclear waste repositories and aquifer thermal energy stores

    International Nuclear Information System (INIS)

    Probert, T.

    1998-06-01

    This thesis, which consists of eleven papers and reports, deals with nuclear waste repositories in solid rock and with aquifer thermal energy storage systems. All these storage systems induce multidimensional, time-variable thermo-hydro-elastic processes in the ground in and around the storage region. The partial differential equations that govern the physical processes are solved analytically in some cases, and in other cases numerical models are developed. Many methods of classical mathematical physics are employed for the solution. The analytical approach provides a deeper physical understanding of the processes and their interactions. At large depths, the salinity of groundwater, and hence its density, often increases downwards. In the first study, the upward buoyancy flow of groundwater in fracture planes due to heat release from the nuclear waste is studied considering the added effect of a salt gradient. The aim of the study is to determine the natural barrier effect caused by the salt. A simple formula for the largest upward displacement from the repository is derived. There may be a strong natural barrier, which is independent of fracture permeabilities. In two papers, the temperature field in rock due to a large rectangular grid of heat-releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. A complete analytical solution is presented. In the next set of papers, the thermoelastic response from the rectangular field of nuclear waste is analysed. Another study concerns the use of heat as a tracer to investigate flow in a fracture plane. Two papers deal with the thermohydraulic evaluations of two aquifer thermal energy storage projects in southern Sweden. Both plants have been successfully simulated using models based on conformal flow and entropy

  4. Comparative studies between nuclear power plants and hydroelectric power plants

    International Nuclear Information System (INIS)

    Menegassi, J.

    1984-01-01

    This paper shows the quantitative evolution of the power plants in the main countries of the world. The Brazilian situation is analysed, with emphasys in the technical and economical aspects related to power production by hidroelectric or nuclear power plants. The conclusion is that the electricity produced by hidro power plants becomes not economics when is intended to be produced at large distances from the demand centers. (Author) [pt

  5. Yield Estimation for Semipalatinsk Underground Nuclear Explosions Using Seismic Surface-wave Observations at Near-regional Distances

    Science.gov (United States)

    Adushkin, V. V.

    - A statistical procedure is described for estimating the yields of underground nuclear tests at the former Soviet Semipalatinsk test site using the peak amplitudes of short-period surface waves observed at near-regional distances (Δ Semipalatinsk explosions, including the Soviet JVE explosion of September 14, 1988, and it is demonstrated that it provides seismic estimates of explosion yield which are typically within 20% of the yields determined for these same explosions using more accurate, non-seismic techniques based on near-source observations.

  6. Measurement and evaluation of high-rise building response to ground motion generated by underground nuclear explosions

    International Nuclear Information System (INIS)

    Honda, K.K.

    1976-01-01

    As part of the structural response research program being conducted for ERDA, the response behavior of high-rise buildings in Las Vegas, Nevada, due to ground motion caused by underground nuclear explosions (UNEs) at the Nevada Test Site (NTS) has been measured for the past 12 years. Results obtained include variation in dynamic response properties as a function of amplitude of motion, influence of nonstructural partitions in the building response, and comparison of calculated and measured response. These data for three reinforced concrete high-rise buildings, all designed as moment-resisting space frames are presented

  7. Operations quality assurance for nuclear power plants

    International Nuclear Information System (INIS)

    1987-01-01

    This standard covers the quality assurance of all activities concerned with the operation and maintenance of plant equipment and systems in CANDU-based nuclear power plants during the operations phase, the period between the completion of commissioning and the start of decommissioning

  8. Nuclear power plant operational data compilation system

    International Nuclear Information System (INIS)

    Silberberg, S.

    1980-01-01

    Electricite de France R and D Division has set up a nuclear power plant operational data compilation system. This data bank, created through American documents allows results about plant operation and operational material behaviour to be given. At present, French units at commercial operation are taken into account. Results obtained after five years of data bank operation are given. (author)

  9. Nuclear power plants of the nineties

    International Nuclear Information System (INIS)

    Weyermann, P.

    1989-01-01

    Nuclear power plants which will be available in the second half of the nineties are introduced. The demands which utilities must put on such a power plant that it covers their needs and meets the necessary acceptance of the public are presented. 8 figs

  10. Drought prompts government to close nuclear plant

    CERN Multimedia

    2003-01-01

    "A nuclear power plant was shut down Sunday because a record drought left insufficient water to cool down the reactor. The plant supplies more than 10 percent of Romania's electricity and closure prompted fears of a price hike" (1/2 page).

  11. The nuclear plants at Dodewaard and Borssele

    International Nuclear Information System (INIS)

    Wessels, M.

    In this writing, the main benefits and drawbacks of the functioning of the Dutch nuclear power plants at Dodewaard and Borssele are discussed. First, an introductory chapter is devoted to the nuclear developments in the Netherlands and Europe after World War II. Next, the economic aspects of the possible dismantlement of the Dodewaard and Borssele plants are considered. The last part deals with some other aspects like nuclear research and industrial activities in the Netherlands and their relation with Borssele and Dodewaard; safety aspects; the waste problem and non-proliferation problems. (G.J.P.)

  12. Quality assurance program for nuclear power plants

    International Nuclear Information System (INIS)

    Gamon, T.H.

    1976-02-01

    The Topical Report presented establishes and provides the basis for the Brown and Root Quality Assurance Program for Nuclear Power Plants from which the Brown and Root Quality Assurance Manual is prepared and implemented. The Quality Assurance Program is implemented by the Brown and Root Power Division during the design, procurement, and construction phases of nuclear power plants. The Brown and Root Quality Assurance Program conforms to the requirements of Nuclear Regulatory Commission Regulation 10 CFR 50, Appendix B; to approved industry standards such as ANSI N45.2 and ''Daughter Standards''; or to equivalent alternatives as indicated in the appropriate sections of the report

  13. Preinspection of nuclear power plant systems

    International Nuclear Information System (INIS)

    1975-01-01

    The general plans of the systems affecting the safety of the nuclear power plants are accepted by the Institute of Radiation Protection (IRP) on the basis of the preinspection of the systems. This is the prerequisite of the preinspection of the structures and components belonging to these systems. Exceptionally, when separately agreed, the IRP may perform the preinspection of a separate structure or component, although the preinspection documentation of the whole system, e.g. the nuclear heat generating system, has not been accepted. This guide applies to the nuclear power plant systems that have been defined to be preinspected in the classification document accepted by the IRP

  14. Losses in German nuclear power plants

    International Nuclear Information System (INIS)

    Abinger, R.

    1982-01-01

    The author illustrates the special features of engineering insurance for nuclear power plants. The shares of the Allianz Versicherungs-AG in the insurance of construction and erection work and in machinery insurance are dealt with. Risk estimation is usually based on statistical analysis of losses. Loss analysis in the conventional sector of nuclear power plants shows typical characteristics of traditional erection and machinery losses. In the nuclear field, however, costs are greatly increased by added safety measures. For this reason, additional cover is allocated and incorporated in premium assessment. Examples from erection and machinery reveal the greater costs involved in handling losses. (orig.) [de

  15. Quality assurance program for nuclear power plants

    International Nuclear Information System (INIS)

    Gamon, T.H.

    1976-06-01

    This topical report establishes and provides the basis for the Brown and Root Quality Assurance Program for Nuclear Power Plants from which the Brown and Root Quality Assurance Manual is prepared and implemented. The Quality Assurance Program is implemented by the Brown and Root Power Division during the design, procurement, and construction phases of nuclear power plants. The Brown and Root Quality Assurance Program conforms to the requirements of Nuclear Regulatory Commission Regulation 10 CFR 50, Appendix B; to approved industry standards such as ANSI N45.2 and ''Daughter Standards''; or to equivalent alternatives as indicated in the appropriate sections of this report

  16. Dose reduction at nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.; Dionne, B.J.

    1983-01-01

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook

  17. Operation control device for nuclear power plants

    International Nuclear Information System (INIS)

    Suto, Osamu.

    1982-01-01

    Purpose: To render the controlling functions of a central control console more centralized by constituting the operation controls for a nuclear power plant with computer systems having substantially independent functions such as those of plant monitor controls, reactor monitor management and CRT display and decreasing interactions between each of the systems. Constitution: An input/output device for the input of process data for a nuclear power plant and indication data for a plant control console is connected to a plant supervisory and control computer system and a display computer system, the plant supervisory control computer system and a reactor and management computer system are connected with a CRT display control device, a printer and a CRT display input/output device, and the display computer system is connected with the CRT display control device and the CRT display unit on the central control console, whereby process input can be processed and displayed at high speed. (Yoshino, Y.)

  18. Availability Improvement of German Nuclear Power Plants

    International Nuclear Information System (INIS)

    Wilhelm, Oliver

    2008-01-01

    High availability is important for the safety and economical performance of Nuclear Power Plants (NPP). The strategy for availability improvement in a typical German PWR shall be discussed here. Key parameters for strategy development are plant design, availability of safety systems, component reliability, preventive maintenance and outage organization. Plant design, availability of safety systems and component reliability are to a greater extent given parameters that can hardly be influenced after the construction of the plant. But they set the frame for maintenance and outage organisation which have shown to have a large influence on the availability of the plant. (author)

  19. More child leukemia near nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    A French study shows that there are more cases of child leukemia near nuclear power plants but the statistics is low: only 14 cases detected. The same study shows that the excess is not due to the releases of gaseous effluents from the plant, there is no relationship between the excess and a particular type of plant or even a particular plant. Some experts suggest that it might be the movement and intermingling of populations in the plant area that ease the propagation of infectious agents involved in child acute leukemia. A similar result was obtained in Germany a few years ago. (A.C.)

  20. Investigation of human system interface design in nuclear power plant

    International Nuclear Information System (INIS)

    Feng Yan; Zhang Yunbo; Wang Zhongqiu

    2012-01-01

    The paper introduces the importance of HFE in designing nuclear power plant, and introduces briefly the content and scope of HFE, discusses human system interface design of new built nuclear power plants. This paper also describes human system interface design of foreign nuclear power plant, and describes in detail human system interface design of domestic nuclear power plant. (authors)