WorldWideScience

Sample records for underground hard-coal mines

  1. Adaptation policy in hard coal mining. Die Anpassungspolitik im Steinkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Brink, H J; Haas, H; Jochum, E; Muellendorff, R; Rolshoven, H

    1981-01-01

    The book points out the necessity of balancing the output of hard coal mines. Detailed analyses of marketing conditions serve as a decision aid for business policy. Production and sales trends in German hard coal mining, instruments of adaptation to quantitative changes in sales, and empirical investigations of adaptation instruments in the underground part of the Goettelborn mine are reviewed.

  2. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-12-06

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension...), MSHA published a Request for Information on Refuge Alternatives for Underground Coal Mines. The RFI...

  3. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-09-23

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension... Alternatives for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013...

  4. 75 FR 17529 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-06

    ... High-Voltage Continuous Mining Machine Standard for Underground Coal Mines AGENCY: Mine Safety and... of high-voltage continuous mining machines in underground coal mines. It also revises MSHA's design...-- Underground Coal Mines III. Section-by-Section Analysis A. Part 18--Electric Motor-Driven Mine Equipment and...

  5. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-08-08

    ... Administration 30 CFR Parts 7 and 75 Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal... Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Limited reopening of the... for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of Appeals...

  6. 3D representation of geological observations in underground mine workings of the Upper Silesian Coal Basin

    Directory of Open Access Journals (Sweden)

    Marek Marcisz

    Full Text Available The purpose of the paper is to present the possibilities of the three-dimensional representation of geological strata in underground (access workings in a hard coal deposit in the SW part of the Upper Silesian Coal Basin, using CAD software and its flagship program AutoCAD. The 3D visualization of the results of underground workings’ mapping is presented and illustrated on two opening out workings (descending galleries. The criteria for choosing these workings were based on their length and the complexity of geological settings observed while they were driven. The described method may be applied in spatial visualization of geological structures observed in other deposits, mines and existing workings (it is not applicable for designing mine workings, also beyond the area of the Upper Silesian Coal Basin (USCB. The method presented describes the problem of the visualization of underground mine workings in a typical geological aspect, considering (aimed at detailed visualization of geological settings revealed on the side walls of workings cutting the deposit. Keywords: Upper silesian coal basin, Hard coal, Underground mine workings, 3D visualization, CAD

  7. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Science.gov (United States)

    2013-11-15

    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Reopen... coal mines. The U.S. Court of Appeals for the District of Columbia Circuit remanded a training... for refuge alternatives in underground coal mines. On January 13, 2009, the United Mine Workers of...

  8. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-11-10

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on...

  9. Methane in German hard coal mining

    International Nuclear Information System (INIS)

    Martens, P.N.; Den Drijver, J.

    1995-01-01

    Worldwide, hard coal mining is being carried out at ever increasing depth, and has, therefore, to cope with correspondingly increasing methane emissions are caused by coal mining. Beside carbon dioxide, chloro-fluoro-carbons (CFCs) and nitrogen oxides, methane is one of the most significant 'greenhouse' gases. It is mainly through the release of such trace gases that the greenhouse effect is brought about. Reducing methane emissions is therefore an important problem to be solved by the coal mining industry. This paper begins by highlighting some of the fundamental principles of methane in hard coal mining. The methane problem in German hard coal mining and the industry's efforts to reduce methane emissions are presented. The future development in German hard coal mining is illustrated by an example which shows how large methane volumes can be managed, while still maintaining high outputs at increasing depth. (author). 7 tabs., 10 figs., 20 refs

  10. Management of mining-related damages in abandoned underground coal mine areas using GIS

    International Nuclear Information System (INIS)

    Lee, U.J.; Kim, J.A.; Kim, S.S.; Kim, W.K.; Yoon, S.H.; Choi, J.K.

    2005-01-01

    The mining-related damages such as ground subsidence, acid mine drainage (AMD), and deforestation in the abandoned underground coal mine areas become an object of public concern. Therefore, the system to manage the mining-related damages is needed for the effective drive of rehabilitation activities. The management system for Abandoned Underground Coal Mine using GIS includes the database about mining record and information associated with the mining-related damages and application programs to support mine damage prevention business. Also, this system would support decision-making policy for rehabilitation and provide basic geological data for regional construction works in abandoned underground coal mine areas. (authors)

  11. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-10-12

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... Agency's proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in... proposed rule for Proximity Detection Systems on Continuous Mining Machines in Underground Coal Mines. Due...

  12. 76 FR 54163 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Science.gov (United States)

    2011-08-31

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... (except full-face continuous mining machines) with proximity detection systems. Miners working near..., each underground coal mine operator would be required to install proximity detection systems on...

  13. Underground coal mining technology - the future

    Energy Technology Data Exchange (ETDEWEB)

    Lama, R P [Kembla Coal and Coke Pty Limited, Wollongong, NSW (Australia)

    1989-01-01

    Discusses development of underground coal mining in Australia in the last four decades. The following aspects are reviewed: technology for underground mining (longwall mining, unidirectional cutting, bidirectional cutting, operation of more than one shearer on a working face, optimum dimensions of longwall blocks), longwall productivity (productivity increase will depend on increasing the availability factor of equipment, reducing failures due to human errors, organizational models, improving on-site decision making, improving monitoring, maintenance, planning and scheduling, concept of 'Transparent Mine'), roadway development systems (types of heading machines, standard systems for mine drivage and roof bolting and their productivity), size of coal mines, man and material transport systems (20,000-30,000 t/d from a single longwall face, mine shafts with a diameter 9-10 m), mine layout design (layout of longwall blocks, main intakes and returns situated in rock layers), mine environmental systems (ventilation systems, gas control), management, training and interpersonal relationships. Future coal mines will be developed with an integral capacity of 8-10 Mt/a from a single longwall operation with main development arteries placed in rocks. Development of gate roadways will require novel solutions with continuous cutting, loading and bolting. Information technology, with the concept of 'transparent mine', will form the backbone of decision making.

  14. Environmental aspects of hard coal mines closure in Poland

    International Nuclear Information System (INIS)

    Chaber, M.; Krogulski, K.; Gawlik, L.

    1998-01-01

    The environmental problems that arise during the closure processes of hard coal mines in Poland are undertaken in the paper. The problems of changes in water balance in rock mass are described with a stress put on underground water management. Regulation concerning ground reclamation and utilisation and removal of existing heat and power plants which after the mines closure will continue to supply surrounding consumers are stressed and the possible solutions are shown. 13 refs

  15. Development of mechanization of extraction in underground coal mining (part I)

    Energy Technology Data Exchange (ETDEWEB)

    Strzeminski, J

    1984-01-01

    The history of underground coal mining and history of mechanizing underground operations of cutting, strata control, mine haulage, hoisting and ventilation are discussed. The following development periods are characterized: until 1769 (date of steam engine invention by J. Watt), from 1769 to 1945 (period of partial mechanization of operations in underground coal mining), from 1945 (period of comprehensive mechanization and automation). A general description of mining in the first development period is given. Evaluation of the second development period concentrates on mechanization in underground coal mining. The following equipment types are described: cutting (pneumatic picks and pneumatic drills, coal saws developed by Eickhoff, coal cutters developed after 1870, cutter loaders patented in 1925-1927, coal plows and coal cutter loaders), mine haulage (mine cars, conveyors developed in the United Kingdom, Germany and Russia, Poland), strata control at working faces (timber props, steel friction props, roof bars), strata control in the goaf (room and pillar mining, stowing, minestone utilization for stowing in Upper Silesia, hydraulic stowing in Upper Silesia). 5 references.

  16. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Science.gov (United States)

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  17. High radon exposure in a Brazilian underground coal mine

    International Nuclear Information System (INIS)

    Veiga, L H S; Melo, V; Koifman, S; Amaral, E C S

    2004-01-01

    The main source of radiation exposure in most underground mining operations is radon and radon decay products. The situation of radon exposure in underground mining in Brazil is still unknown, since there has been no national regulation regarding this exposure. A preliminary radiological survey in non-uranium mines in Brazil indicated that an underground coal mine in the south of Brazil had high radon concentration and needed to be better evaluated. This paper intends to present an assessment of radon and radon decay product exposure in the underground environment of this coal mining industry and to estimate the annual exposure to the workers. As a product of this assessment, it was found that average radon concentrations at all sampling campaign and excavation sites were above the action level range for workplaces of 500-1500 Bq m -3 recommended by the International Commission on Radiological Protection-ICRP 65. The average effective dose estimated for the workers was almost 30 times higher than the world average dose for coal miners

  18. Mechanization of operations in underground workings in coal mines and research project trends. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Reich, K; Skoczynski, W; Sikora, W

    1985-01-01

    Structure of black coal reserves of Poland, imported and Polish made equipment for underground mining, prospects for mechanization of selected operations in underground mines and research programs of the KOMAG Center for Mechanization of Mining are evaluated. Prospects for longwall mining with caving or stowing in thick coal seams (slice mining), thin (0.8 to 1.2 m), level or inclined coal seams and steep seams are analyzed. The following equipment for mechanization of underground mining is evaluated: integrated face systems, shearer loaders, chain conveyors, belt conveyors, coal plows, equipment for mine drivage, hoists, drive systems for mining equipment. The following research programs of the KOMAG Center are reviewed: modernization of face systems for coal seams with uncomplicated mining conditions, development of equipment for thin seam mining, development of types of mining equipment for coal seams from 1.5 to 3.0 m thick with dip angles to 25 degrees, modernization of equipment for thick seam mining, increasing efficiency of mine drivage (new types of heading machines, materials handling equipment for mine drivage), mechanization of auxiliary operations in underground coal mines, improving quality of mining equipment, development of equipment for coal preparation, increasing occupational safety in underground mining.

  19. 77 FR 58170 - Proposed Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines)

    Science.gov (United States)

    2012-09-19

    ... Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines) AGENCY: Mine Safety... INFORMATION: I. Background Fire protection standards for underground coal mines are based on section 311(a) of the Federal Mine Safety and Health Act of 1977 (Mine Act). 30 CFR 75.1100 requires that each coal mine...

  20. Design Criteria for Wireless Mesh Communications in Underground Coal Mines

    OpenAIRE

    Griffin, Kenneth Reed

    2009-01-01

    The Mine Improvement and New Emergency Response (MINER) Act of 2006 was enacted in response to several coal mining accidents that occurred in the beginning of 2006. The MINER Act does not just require underground mines to integrate wireless communication and tracking systems, but aims to overall enhance health and safety in mining at both surface and underground operations. In 2006, the underground communication technologies available to the mining industry had inherent problems that limited ...

  1. Underground coal mining - methods, equipment developments and trends

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R

    1988-12-01

    Underground mines are truly beginning to accept the so-called 'high tech' technology evident in other industries. Automation, remote control and robotics have taken an added significance. Wireless communication, mine-wide equipment health and performance monitoring, and transmission of data from deeper levels to surface is moving towards becoming the norm. There is emphasis on developing and applying continuous mining systems, as well as on modifying cyclical discontinuous methods to continuous systems. Multi-purpose equipment is also being developed. Technology transfer is playing its role - equipment and systems from surface coal mining are being applied to underground mining and vice-versa. At the American Mining Congress Exhibition held in Chicago in April 1988, a variety of equipment for underground mining was displayed including coal face equipment such as shearer loaders, conveyors and powered supports, and equipment for room-and-pillar coal mining. The trend continues to be towards high power machines equipped with a variety of electronics and sensors, safety devices, and alarm systems. Ancillary equipment on display covered a variety of cutting drums, cutting tools, conveying equipment and so on. In room-and-pillar mining, the overall emphasis was on moving away from the cyclical nature of the work. Transportation by shuttle cars must be replaced by continuous transport systems such as conveyors. Experience from Australia has shown that the application of continuous haulage and breaker line supports has permitted a doubling of production from room-and-pillar systems. Production levels of 3,000tpd have already been achieved, and 4,000tpd is considered achievable.

  2. Ground engineering principles and practices for underground coal mining

    CERN Document Server

    Galvin, J M

    2016-01-01

    This book teaches readers ground engineering principles and related mining and risk management practices associated with underground coal mining. It establishes the basic elements of risk management and the fundamental principles of ground behaviour and then applies these to the essential building blocks of any underground coal mining system, comprising excavations, pillars, and interactions between workings. Readers will also learn about types of ground support and reinforcement systems and their operating mechanisms. These elements provide the platform whereby the principles can be applied to mining practice and risk management, directed primarily to bord and pillar mining, pillar extraction, longwall mining, sub-surface and surface subsidence, and operational hazards. The text concludes by presenting the framework of risk-based ground control management systems for achieving safe workplaces and efficient mining operations. In addition, a comprehensive reference list provides additional sources of informati...

  3. Performance of underground coal mines during the 1976 Tangshan earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.F.

    1987-01-01

    The Tangshan earthquake of 1976 costs 242 000 lives and was responsible for 164 000 serious injuries and structural damage of immense proportion. The area has eight coal mines, which together form the largest underground coal mining operation in China. Approximately 10 000 miners were working underground at the time of the earthquake. With few exceptions they survived and returned safely to the surface, only to find their families and belongings largely destroyed. Based on a comprehensive survey of the miners' observations, subsurface intensity profiles were drawn up. The profiles clearly indicated that seismic damage in the underground mines was far less severe than at the surface. 16 refs., 4 figs., 2 tabs.

  4. Booster fans : some considerations for their usage in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, S.; Slaughter, C. [Missouri Univ. of Science and Technology, Rolla, MO (United States); Calizaya, F. [Utah Univ., Salt Lake City, UT (United States); Wu, H.W. [Gillies Wu Mining Technology Pty Ltd., Brisbane, QLD (Australia)

    2010-07-01

    This paper reported on a study that investigated the conditions under which booster fans can be used safely and efficiently in underground coal mines. Booster fans are installed in series with a main surface fan and are used to boost the air pressure of the ventilation air passing through it. Several coal mining countries use booster fans, but in the United States, they are only used in metal/non-metal mines due to concerns of uncontrolled recirculation. This study investigated installations of booster fans in non-US underground coal mines where safe and efficient atmospheric conditions are achieved. The purpose was to collect reliable information on airway resistances and flow requirements typical in large US coal mines. The study showed that safe booster fan installations are found in both high and low gas conditions, and sometimes where workings are located at great depths. The interlocking systems within the booster fan can control the underground fans and avoid recirculation when surface fans are unexpectedly turned off. Another purpose of the study was to determine when booster fans become a more viable solution in coal mines due to increases in air requirements at higher production rates. It was concluded that a new fan selection algorithm to produce recirculation-free ventilation designs will be developed to enable US coal mine operators to develop ventilation designs to extract coal seams from depths greater than 1000 m. 17 refs., 1 fig.

  5. VRLane: a desktop virtual safety management program for underground coal mine

    Science.gov (United States)

    Li, Mei; Chen, Jingzhu; Xiong, Wei; Zhang, Pengpeng; Wu, Daozheng

    2008-10-01

    VR technologies, which generate immersive, interactive, and three-dimensional (3D) environments, are seldom applied to coal mine safety work management. In this paper, a new method that combined the VR technologies with underground mine safety management system was explored. A desktop virtual safety management program for underground coal mine, called VRLane, was developed. The paper mainly concerned about the current research advance in VR, system design, key techniques and system application. Two important techniques were introduced in the paper. Firstly, an algorithm was designed and implemented, with which the 3D laneway models and equipment models can be built on the basis of the latest mine 2D drawings automatically, whereas common VR programs established 3D environment by using 3DS Max or the other 3D modeling software packages with which laneway models were built manually and laboriously. Secondly, VRLane realized system integration with underground industrial automation. VRLane not only described a realistic 3D laneway environment, but also described the status of the coal mining, with functions of displaying the run states and related parameters of equipment, per-alarming the abnormal mining events, and animating mine cars, mine workers, or long-wall shearers. The system, with advantages of cheap, dynamic, easy to maintenance, provided a useful tool for safety production management in coal mine.

  6. A Wireless LAN and Voice Information System for Underground Coal Mine

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-06-01

    Full Text Available In this paper we constructed a wireless information system, and developed a wireless voice communication subsystem based on Wireless Local Area Networks (WLAN for underground coal mine, which employs Voice over IP (VoIP technology and Session Initiation Protocol (SIP to achieve wireless voice dispatching communications. The master control voice dispatching interface and call terminal software are also developed on the WLAN ground server side to manage and implement the voice dispatching communication. A testing system for voice communication was constructed in tunnels of an underground coal mine, which was used to actually test the wireless voice communication subsystem via a network analysis tool, named Clear Sight Analyzer. In tests, the actual flow charts of registration, call establishment and call removal were analyzed by capturing call signaling of SIP terminals, and the key performance indicators were evaluated in coal mine, including average subjective value of voice quality, packet loss rate, delay jitter, disorder packet transmission and end-to- end delay. Experimental results and analysis demonstrate that the wireless voice communication subsystem developed communicates well in underground coal mine environment, achieving the designed function of voice dispatching communication.

  7. Remote control of safety and technological mining processes in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Marjanovic, D. (Elektronska Industrija RO IRI OOUR Razvoj, Nis (Yugoslavia))

    1989-02-01

    Discusses importance of data relevant to remote monitoring of production and safety at work in underground coal mines. The EI PS 2000 multi-purpose system developed by Elektronska Industrija, Nis, for use with AP-X1 and AP-X2 microcomputers in Serbian mines is described. Component parts include the CUM-8 central unit, the CIP-8 communication interface processor, the SNM-64 disjunction unit, the NM-64 energy supply unit and the CRT alarm monitor. This system is designed to warn of mine fires, methane and coal dust explosions, to help in evacuating mine crews, to control production processes and mine management and other functions. 8 refs

  8. Possible strategies in development of highly productive underground coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Djoric, M

    1980-01-01

    This paper explains the basic strategies which may be applied in the exploitation of coal deposits by underground mining. It outlines the importance of combinations of extensive (non-mechanized) and intensive (mechanized) exploitation and their dependence on coal demand, available financial means, requirements concerning the protection of environment, unemployment of the population, availability of mechanical and electrical equipment, technical staff, etc. It is suggested that the applied strategy be revised and adapted to the current situation. Postponement of exploitation until the future when the demand and price of coal may be higher is criticized. The possibility of applying extensive underground mining in areas where unemployment and lack of capital speak against the application of fully mechanized working methods is also dealt with. (In Serbo-Croatian)

  9. Moving up down in the mine: Sex segregation in underground coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Tallichet, S.E.

    1991-01-01

    This study employs both individualist theories of human capital and sex-role spillover and structuralist theories from the socialist feminist perspective, emphasizing the formal and informal organizational factors operating within a patriarchal capitalist society to explain job-level sex segregation among underground coal miners. Both quantitative and qualitative data on women in coal mining are used to evaluate these theories. A logistic regression analysis performed on data obtained in 1986 by the US Bureau of Mines demonstrates that while human capital variables are predictive of a miner's job rank, variation in job rank attributed to gender is even greater. For men, training and experience in mining combine to increase the probability of being in a more skilled job in a coal mine. Age and seniority are curvilinearly related to the variation in men's job rank. For women, only age accounts for their advancement such that younger, not older women who have slightly more mining experience, occupy the more skilled positions in the work place. These findings suggest that, in terms of job advancement, men enjoy a greater return on their human capital investments than women, and that factors other than those representing a miner's human capital are affecting women's positions underground more than men's.

  10. Moving up down in the mine: Sex segregation in underground coal mining

    International Nuclear Information System (INIS)

    Tallichet, S.E.

    1991-01-01

    This study employs both individualist theories of human capital and sex-role spillover and structuralist theories from the socialist feminist perspective, emphasizing the formal and informal organizational factors operating within a patriarchal capitalist society to explain job-level sex segregation among underground coal miners. Both quantitative and qualitative data on women in coal mining are used to evaluate these theories. A logistic regression analysis performed on data obtained in 1986 by the US Bureau of Mines demonstrates that while human capital variables are predictive of a miner's job rank, variation in job rank attributed to gender is even greater. For men, training and experience in mining combine to increase the probability of being in a more skilled job in a coal mine. Age and seniority are curvilinearly related to the variation in men's job rank. For women, only age accounts for their advancement such that younger, not older women who have slightly more mining experience, occupy the more skilled positions in the work place. These findings suggest that, in terms of job advancement, men enjoy a greater return on their human capital investments than women, and that factors other than those representing a miner's human capital are affecting women's positions underground more than men's

  11. Damage to underground coal mines caused by surface blasting

    International Nuclear Information System (INIS)

    Fourie, A.B.; Green, R.W.

    1993-01-01

    An investigation of the potential damage to underground coal workings as a result of surface blasting at an opencast coal mine is described. Seismometers were installed in a worked out area of an underground mine, in the eastern Transvaal region of South Africa, and the vibration caused by nearby surface blasting recorded. These measurements were used to derive peak particle velocities. These velocities were correlated with observed damage underground in order to establish the allowable combination of the two blasting parameters of charge mass per relay, and blast-to-gage point distance. An upper limit of 110mm/sec peak particle velocity was found to be sufficient to ensure that the damage to the particular workings under consideration was minimal. It was further found that a cube-root scaling law provided a better fit to the field data than the common square-root law. 11 refs., 6 figs., 5 tabs

  12. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Science.gov (United States)

    2010-04-22

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page 17529 in the issue of Tuesday, April 6, 2010, make the following correction...

  13. Structural implications of underground coal mining in the Mesaverde Group in the Somerset Coal Field, Delta and Gunnison Counties, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Carroll; Eric Robeck; Greg Hunt; Wendell Koontz [Colorado Geological Survey, Denver, CO (United States)

    2004-07-01

    Paleogene and Neogene faults and fractures on the eastern edge of the Colorado Plateau are present in Mesaverde Group coal and sandstone beds. Recent observations of coal cleat orientation in relation to faults in coal mines have significant impacts for mine planning in the area. Faults, coal cleats, and natural fractures are interpreted to show a structural evolution of the Mesaverde Group through time. This field trip included a visit to two active underground coal mines, the Bowie Resources' Bowie No. 2 Mine, and Mountain Coal's West Elk Mine. Mine geologists discussed structural styles including fault orientations and timing, cleat development, and rotation. Geologic encounters ranging from fault flooding, subsidence, mine fires, methane gas problems, and land use restrictions were also discussed. Coal cleat development and open-mode fractures in adjacent sandstones were observed on outcrops and compared to underground measurements in coal mines in the Somerset Coal Field, Colorado's most productive. Coal cleat orientations along a reverse fault in one mine showed rotation in relation to possible Neogene age displacement.

  14. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    Science.gov (United States)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  15. Influence of surface water accumulations of the Stupnica creek on underground coal mining in the Durdevic coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Valjarevic, R; Urosevic, V

    1986-01-01

    Discusses hydrological, geological and mining conditions at the Durdevic underground coal mine. A landslide at a spoil bank dammed the creek flowing above the mine. Two exploratory boreholes (62 m and 68 m) were drilled for hydrological investigations. Water coloring techniques, chemical water analysis, measurement of underground water level and water flow were used to determine whether a sudden inrush of rainfall and accumulated surface water could endanger the mine. Underground water inflow to mine rooms varies from 110-200 m/sup 3//min, depending on the season. Diversion of the creek bed with the accumulated water and accumulation and subsequent drainage of surface water via large diameter concrete pipes were considered as possible ways of improving safety in the mine. Details of these projects are included. 4 refs.

  16. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jun; Xue, Sheng [CSIRO Earth Science and Resource Engineering, Kenmore (Australia); Cheng, Weimin; Wang, Gang [Shandong University of Science and Technology, Qingdao (China)

    2011-01-01

    Spontaneous combustion of coal (sponcom) is a major hazard in underground coal mining operations. If not detected early and managed properly, it can seriously affect mine safety and productivity. Gaseous products of sponcom, such as carbon monoxide, ethylene and hydrogen, are commonly used in coal mines as indicators to reflect the state of the sponcom. Studies have shown that ethylene starts to occur when sponcom reaches a characteristic temperature. However, due to dilution of ventilation air and detection limits of the instruments used for gas analysis at coal mines, ethylene cannot be detected until the sponcom has developed past its early stage, missing an optimum opportunity for mine operators to control the hazard. To address the issue, an ethylene-enriching system, based on its physical adsorption and desorption properties, has been developed to increase detection sensitivity of the ethylene concentration in mine air by about 10 times. This system has successfully been applied in a number of underground coal mines in China to detect sponcom at its early stage and enable mine operators to take effective control measures. This paper describes the ethylene enriching system and its application. (author)

  17. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  18. 76 FR 11187 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2011-03-01

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards... rule addressing Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health...

  19. Prevention and protection against propagation of explosionsin underground coal mines

    Directory of Open Access Journals (Sweden)

    Л. М. Пейч

    2017-06-01

    Full Text Available Over the past century, the coal mining industry experienced a large number of explosions leading to a considerable loss of life. The objective of this study is preventing the propagation of methane and/or coal dust explosions through the use of passive water barriers and its implementation to the Spanish coal mining industry. Physical and chemical properties, flammability and explosibility parameters of typical Spanish coals are presented. In this paper,   a flexible approach to meet the requirements of the EN-14591-2:2007 standard is presented for the very specific local conditions, characterized by small cross-sections galleries, vertical seem, use of explosives, etc. Authors have proven the viability of standard requirements to the typical roadway from Spanish underground mines, considering realistic roadway lengths as well as available cross-sections taking into account ubiquitous obstacles such as: locomotives, conveyor belt, ventilation ducts, etc.

  20. Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology

    Directory of Open Access Journals (Sweden)

    Rafael Rodríguez Díez

    2014-07-01

    Full Text Available Flooded mine workings have good potential as low-enthalpy geothermal resources, which could be used for heating and cooling purposes, thus making use of the mines long after mining activity itself ceases. It would be useful to estimate the scale of the geothermal potential represented by abandoned and flooded underground mines in Europe. From a few practical considerations, a procedure has been developed for assessing the geothermal energy potential of abandoned underground coal mines, as well as for quantifying the reduction in CO2 emissions associated with using the mines instead of conventional heating/cooling technologies. On this basis the authors have been able to estimate that the geothermal energy available from underground coal mines in Europe is on the order of several thousand megawatts thermal. Although this is a gross value, it can be considered a minimum, which in itself vindicates all efforts to investigate harnessing it.

  1. Data Mining Mining Data: MSHA Enforcement Efforts, Underground Coal Mine Safety, and New Health Implications

    OpenAIRE

    Kniesner, Thomas J.; Leeth, John D.

    2003-01-01

    Studies of industrial safety regulations, OSHA in particular, often find little effect on worker safety. Critics of the regulatory approach argue that safety standards have little to do with industrial injuries, and defenders of the regulatory approach cite infrequent inspections and low penalties for violating safety standards. We use recently assembled data from the Mine Safety and Health Administration (MSHA) concerning underground coal mine production, safety regulatory activities, and wo...

  2. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    Directory of Open Access Journals (Sweden)

    Yiming Zhao

    2016-10-01

    Full Text Available Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine.

  3. Groundwater and underground coal gasification in Alberta

    International Nuclear Information System (INIS)

    Haluszka, A.; MacMillan, G.; Maev, S.

    2010-01-01

    Underground coal gasification has potential in Alberta. This presentation provided background information on underground coal gasification and discussed groundwater and the Laurus Energy demonstration project. A multi-disciplined approach to project assessment was described with particular reference to geologic and hydrogeologic setting; geologic mapping; and a hydrogeologic numerical model. Underground coal gasification involves the conversion of coal into synthesis gas or syngas. It can be applied to mined coal at the surface or applied to non-mined coal seams using injection and production wells. Underground coal gasification can effect groundwater as the rate of water influx into the coal seams influences the quality and composition of the syngas. Byproducts created include heat as well as water with dissolved concentrations of ammonia, phenols, salts, polyaromatic hydrocarbons, and liquid organic products from the pyrolysis of coal. A process overview of underground coal gasification was also illustrated. It was concluded that underground coal gasification has the potential in Alberta and risks to groundwater could be minimized by a properly designed project. refs., figs.

  4. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    Energy Technology Data Exchange (ETDEWEB)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  5. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    International Nuclear Information System (INIS)

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power's (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP's Conesville Power Plant located approximately 3 miles northwest of the subject site

  6. Profitability and occupational injuries in U.S. underground coal mines.

    Science.gov (United States)

    Asfaw, Abay; Mark, Christopher; Pana-Cryan, Regina

    2013-01-01

    Coal plays a crucial role in the U.S. economy yet underground coal mining continues to be one of the most dangerous occupations in the country. In addition, there are large variations in both profitability and the incidence of occupational injuries across mines. The objective of this study was to examine the association between profitability and the incidence rate of occupational injuries in U.S. underground coal mines between 1992 and 2008. We used mine-specific data on annual hours worked, geographic location, and the number of occupational injuries suffered annually from the employment and accident/injury databases of the Mine Safety and Health Administration, and mine-specific data on annual revenue from coal sales, mine age, workforce union status, and mining method from the U.S. Energy Information Administration. A total of 5669 mine-year observations (number of mines×number of years) were included in our analysis. We used a negative binomial random effects model that was appropriate for analyzing panel (combined time-series and cross-sectional) injury data that were non-negative and discrete. The dependent variable, occupational injury, was measured in three different and non-mutually exclusive ways: all reported fatal and nonfatal injuries, reported nonfatal injuries with lost workdays, and the 'most serious' (i.e. sum of fatal and serious nonfatal) injuries reported. The total number of hours worked in each mine and year examined was used as an exposure variable. Profitability, the main explanatory variable, was approximated by revenue per hour worked. Our model included mine age, workforce union status, mining method, and geographic location as additional control variables. After controlling for other variables, a 10% increase in real total revenue per hour worked was associated with 0.9%, 1.1%, and 1.6% decrease, respectively, in the incidence rates of all reported injuries, reported injuries with lost workdays, and the most serious injuries reported

  7. Are underground coal miners satisfied with their work boots?

    Science.gov (United States)

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-01-01

    Dissatisfaction with work boot design is common in the mining industry. Many underground coal miners believe their work boots contribute to the high incidence of lower limb injuries they experience. Despite this, the most recent research to examine underground coal mining work boot satisfaction was conducted over a decade ago. This present study aimed to address this gap in the literature by assessing current mining work boot satisfaction in relation to the work-related requirements for underground coal mining. 358 underground coal miners (355 men; mean age = 39.1 ± 10.7 years) completed a 54-question survey regarding their job details, work footwear habits, foot problems, lower limb and lower back pain history, and work footwear fit and comfort. Results revealed that underground coal miners were not satisfied with their current mining work boots. This was evident in the high incidence of reported foot problems (55.3%), lower back pain (44.5%), knee pain (21.5%), ankle pain (24.9%) and foot pain (42.3%). Over half of the underground coal miners surveyed believed their work boots contributed to their lower limb pain and reported their work boots were uncomfortable. Different working roles and environments resulted in differences in the incidence of foot problems, lower limb pain and comfort scores, confirming that one boot design cannot meet all the work-related requirements of underground coal mining. Further research examining the interaction of a variety of boot designs across the different underground surfaces and the different tasks miners perform is paramount to identify key boot design features that affect the way underground coal miners perform. Enhanced work boot design could improve worker comfort and productivity by reducing the high rates of reported foot problems and pain amongst underground coal miners. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. CHANGE OF PARADIGM IN UNDERGROUND HARD COAL MINING THROUGH EXTRACTION AND CAPITALIZATION OF METHANE FOR ENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Valeriu PLESEA

    2014-05-01

    Full Text Available Besides oil and gas, coal is the most important fossil fuel for energy production. Of the energy mixture of our country, the internal production gas share is 80% of the required annual consumption, of about 14 billion cubic meters, the rest of 20% being insured by importing, by the Russian company Gazprom. The share of coal in the National Power System (NPS is of 24% and is one of the most profitable energy production sources, taking into account the continuous increase of gas price and its dependence on external suppliers. Taking into account the infestation of the atmosphere and global warming as effect of important release of greenhouse gas and carbon dioxide as a result of coal burning for energy production in thermal power plants, there is required to identify new solutions for keeping the environment clean. Such a solution is presented in the study and analysis shown in the paper and is the extraction and capitalization of methane from the coal deposits and the underground spaces remaining free after mine closures. Underground methane extraction is considered even more opportune because, during coal exploitation, large quantities of such combustible gas are released and exhausted into the atmosphere by the degasification and ventilation stations from the surface, representing and important pollution factor for the environment, as greenhouse gas with high global warming potential (high GWP of about 21 times higher than carbon dioxide.

  9. Data Mining Mining Data: MSHA Enforcement Efforts, Underground Coal Mine Safety, and New Health Policy Implications

    OpenAIRE

    Thomas J. Kniesner; John D. Leeth

    2003-01-01

    Studies of industrial safety regulations, Occupational Safety and Health Administration (OSHA) in particular, often find little effect on worker safety. Critics of the regulatory approach argue that safety standards have little to do with industrial injuries and defenders of the regulatory approach cite infrequent inspections and low fines for violating safety standards. We use recently assembled data from the Mine Safety and Health Administration (MSHA) concerning underground coal mine produ...

  10. Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry

    Science.gov (United States)

    Yang, Zefa; Li, Zhiwei; Zhu, Jianjun; Yi, Huiwei; Feng, Guangcai; Hu, Jun; Wu, Lixin; Preusse, Alex; Wang, Yunjia; Papst, Markus

    2018-01-01

    It is crucial to locate underground goafs (i.e., mined-out areas) resulting from coal mining and define their spatial dimensions for effectively controlling the induced damages and geohazards. Traditional geophysical techniques for locating and defining underground goafs, however, are ground-based, labour-consuming and costly. This paper presents a novel space-based method for locating and defining the underground goaf caused by coal extraction using Interferometric Synthetic Aperture Radar (InSAR) techniques. As the coal mining-induced goaf is often a cuboid-shaped void and eight critical geometric parameters (i.e., length, width, height, inclined angle, azimuth angle, mining depth, and two central geodetic coordinates) are capable of locating and defining this underground space, the proposed method reduces to determine the eight geometric parameters from InSAR observations. Therefore, it first applies the Probability Integral Method (PIM), a widely used model for mining-induced deformation prediction, to construct a functional relationship between the eight geometric parameters and the InSAR-derived surface deformation. Next, the method estimates these geometric parameters from the InSAR-derived deformation observations using a hybrid simulated annealing and genetic algorithm. Finally, the proposed method was tested with both simulated and two real data sets. The results demonstrate that the estimated geometric parameters of the goafs are accurate and compatible overall, with averaged relative errors of approximately 2.1% and 8.1% being observed for the simulated and the real data experiments, respectively. Owing to the advantages of the InSAR observations, the proposed method provides a non-contact, convenient and practical method for economically locating and defining underground goafs in a large spatial area from space.

  11. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    Science.gov (United States)

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  12. Industrial Internet of Things: (IIoT) applications in underground coal mines.

    Science.gov (United States)

    Zhou, C; Damiano, N; Whisner, B; Reyes, M

    2017-12-01

    The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.

  13. Injection of alkaline ashes into underground coal mines for acid mine drainage abatement

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1996-01-01

    The injection of alkaline coal combustion waste products into abandoned underground coal mines for acid mine drainage (AMD) abatement has obvious conceptual appeal. This paper summarizes the findings of the baseline hydrogeologic and water quality evaluations at two sites--one in West Virginia and one in Maryland--where field demonstrations of the technique are being pursued in cooperative efforts among State and Federal agencies and/or private companies. The West Virginia site produces severe AMD from three to seven AMD sources that are spaced over about a 1.2 km stretch of the down-dip side of the mine workings. By completely filling the most problematic portion of the mine workings with coal combustion ashes, the State expects that the costs and problems associated with AMD treatment will be greatly reduced. At the Maryland site, it is expected that the AMD from a relatively small target mine will be eliminated completely by filling the entire mine void with a grout composed of a mixture of fly ash, fluidized-bed combustion ash, and flue gas desulfurization sludge. This project will also demonstrate the potential cost-effectiveness of the technique at other sites, both for the purpose of AMD remediation and control of land subsidence

  14. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  15. Productivity Improvement in Underground Coal Mines - A Case Study

    Directory of Open Access Journals (Sweden)

    Devi Prasad Mishra

    2013-01-01

    Full Text Available Improvement of productivity has become an important goal for today's coal industry in the race to increase price competitiveness. The challenge now lying ahead for the coal industry is to identify areas of waste, meet the market price and maintain a healthy profit. The only way to achieve this is to reduce production costs by improving productivity, efficiency and the effectiveness of the equipment. This paper aims to identify the various factors and problems affecting the productivity of underground coal mines adopting the bord and pillar method of mining and to propose suitable measures for improving them. The various key factors affecting productivity, namely the cycle of operations, manpower deployment, machine efficiency, material handling and management of manpower are discussed. In addition, the problem of side discharge loader (SDL cable handling resulting in the wastage of precious manpower resources and SDL breakdown have also been identified and resolved in this paper.

  16. 75 FR 57849 - Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines

    Science.gov (United States)

    2010-09-23

    ... correlation between higher job risk and higher wages, suggesting that employees demand monetary compensation... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB76 Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines AGENCY: Mine Safety and Health...

  17. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  18. An Event Reporting and Early-Warning Safety System Based on the Internet of Things for Underground Coal Mines: A Case Study

    Directory of Open Access Journals (Sweden)

    Byung Wan Jo

    2017-09-01

    Full Text Available Fatal accidents associated with underground coal mines require the implementation of high-level gas monitoring and miner’s localization approaches to promote underground safety and health. This study introduces a real-time monitoring, event-reporting and early-warning platform, based on cluster analysis for outlier detection, spatiotemporal statistical analysis, and an RSS range-based weighted centroid localization algorithm for improving safety management and preventing accidents in underground coal mines. The proposed platform seamlessly integrates monitoring, analyzing, and localization approaches using the Internet of Things (IoT, cloud computing, a real-time operational database, application gateways, and application program interfaces. The prototype has been validated and verified at the operating underground Hassan Kishore coal mine. Sensors for air quality parameters including temperature, humidity, CH4, CO2, and CO demonstrated an excellent performance, with regression constants always greater than 0.97 for each parameter when compared to their commercial equivalent. This framework enables real-time monitoring, identification of abnormal events (>90%, and verification of a miner’s localization (with <1.8 m of error in the harsh environment of underground mines. The main contribution of this study is the development of an open source, customizable, and cost-effective platform for effectively promoting underground coal mine safety. This system is helpful for solving the problems of accessibility, serviceability, interoperability, and flexibility associated with safety in coal mines.

  19. Coal mining technologies possible for use in the Polish hard coal mining sector ensuring its sustainable development; Technologie eksploatacji wegla mozliwe do zastosowania w polskim gornictwie wegla kamiennego zapewniajace jego zrownowazony rozwoj

    Energy Technology Data Exchange (ETDEWEB)

    Dubinski, J. [Central Mining Institute, Katowice (Poland)

    2004-07-01

    The paper presents a prediction of the developments in hard coal mining technologies both in Poland and in the world. The longwall and the room-and-pillar systems will be realised. In Poland longwall equipment must be made more reliable and be better monitored, and more use made of roof bolting and means of controlling methane and rockbursts. Methods of underground gasification of coal seams need further development to realise the potential of this resource at reasonable production cost and with minimal environmental impact. 38 refs., 6 figs., 4 tabs.

  20. Logistics background study: underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  1. 30 CFR 49.20 - Requirements for all coal mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  2. Principles of integrated modeling of coal seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Magda, R

    1983-01-01

    Mathematical modeling of underground coal mining is discussed. Construction of a mathematical model of an underground mine is analyzed. The model is based on integrating the elementary units (modules). A so-called elementary mining field is defined with the example of a longwall face. A model of an elementary coal seam zone is constructed by integrating the elementary mining fields (in time and space) and supplementing them with a suitable model of mine roadway structure. By integrating the elementary coal seam zones a model of mining level is constructed. Such a mathematical model is used for optimizing the selected mining parameters e.g. structure of mine roadways, size of a coal mine, and organizational scheme of underground mining in a mine or in a mine section using the standardized optimization criterion e.g. investment. Use of the integration model of underground mining for optimizing coal mine construction is evaluated. The following elements of investment and operating cost are considered: shaft excavation, shaft equipment, investment in mining sections, ventilation, mine draining etc. 1 reference.

  3. 77 FR 4834 - Proposed Extension of Existing Information Collection; Refuge Alternatives for Underground Coal...

    Science.gov (United States)

    2012-01-31

    ... Extension of Existing Information Collection; Refuge Alternatives for Underground Coal Mines AGENCY: Mine... Underground Coal Mines DATES: Submit comments on or before April 2, 2012. ADDRESSES: Comments must be.... Title: Refuge Alternatives for Underground Coal Mines. OMB Number: 1219-0146. Affected Public: Business...

  4. Citation-related reliability analysis for a pilot sample of underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Kinilakodi, H.; Grayson, R.L. [Penn State University, University Park, PA (United States)

    2011-05-15

    The scrutiny of underground coal mine safety was heightened because of the disasters that occurred in 2006-2007, and more recently in 2010. In the aftermath of the 2006 incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address various issues related to emergency preparedness and response, escape from an emergency situation, and protection of miners. The National Mining Association-sponsored Mine Safety Technology and Training Commission study highlighted the role of risk management in identifying and controlling major hazards, which are elements that could come together and cause a mine disaster. In 2007 MSHA revised its approach to the 'Pattern of Violations' (POV) process in order to target unsafe mines and then force them to remediate conditions in their mines. The POV approach has certain limitations that make it difficult for it to be enforced. One very understandable way to focus on removing threats from major-hazard conditions is to use citation-related reliability analysis. The citation reliability approach, which focuses on the probability of not getting a citation on a given inspector day, is considered an analogue to the maintenance reliability approach, which many mine operators understand and use. In this study, the citation reliability approach was applied to a stratified random sample of 31 underground coal mines to examine its potential for broader application. The results clearly show the best-performing and worst-performing mines for compliance with mine safety standards, and they highlight differences among different mine sizes.

  5. The Increase of Power Efficiency of Underground Coal Mining by the Forecasting of Electric Power Consumption

    Science.gov (United States)

    Efremenko, Vladimir; Belyaevsky, Roman; Skrebneva, Evgeniya

    2017-11-01

    In article the analysis of electric power consumption and problems of power saving on coal mines are considered. Nowadays the share of conditionally constant costs of electric power for providing safe working conditions underground on coal mines is big. Therefore, the power efficiency of underground coal mining depends on electric power expense of the main technological processes and size of conditionally constant costs. The important direction of increase of power efficiency of coal mining is forecasting of a power consumption and monitoring of electric power expense. One of the main approaches to reducing of electric power costs is increase in accuracy of the enterprise demand in the wholesale electric power market. It is offered to use artificial neural networks to forecasting of day-ahead power consumption with hourly breakdown. At the same time use of neural and indistinct (hybrid) systems on the principles of fuzzy logic, neural networks and genetic algorithms is more preferable. This model allows to do exact short-term forecasts at a small array of input data. A set of the input parameters characterizing mining-and-geological and technological features of the enterprise is offered.

  6. Safety Research and Experimental Coal Mines

    Data.gov (United States)

    Federal Laboratory Consortium — Safety Research and Experimental Coal MinesLocation: Pittsburgh SiteThe Safety Research Coal Mine and Experimental Mine complex is a multi-purpose underground mine...

  7. 30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Reclamation plan: Surface mining near underground mining. 780.27 Section 780.27 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  8. A Look into Miners' Health in Prevailing Ambience of Underground Coal Mine Environment

    Science.gov (United States)

    Dey, N. C.; Pal, S.

    2012-04-01

    Environmental factors such as noise, vibration, illumination, humidity, temperature and air velocity, etc. do play a major role on the health, comfort and efficient performance of underground coal miners at work. Ergonomics can help to promote health, efficiency and well being of miners and to make best use of their capabilities within the ambit of underground coal mine environment. Adequate work stretch and work-rest scheduling have to be determined for every category of miners from work physiology point of view so as to keep better health of the miners in general and to have their maximum efficiency at work in particular.

  9. Finite element modeling of surface subsidence induced by underground coal mining

    International Nuclear Information System (INIS)

    Su, D.W.H.

    1992-01-01

    The ability to predict the effects of longwall mining on topography and surface structures is important for any coal company in making permit applications and anticipating potential mining problems. The sophisticated finite element model described and evaluated in this paper is based upon five years of underground and surface observations and evolutionary development of modeling techniques and attributes. The model provides a very powerful tool to address subsidence and other ground control questions. The model can be used to calculate postmining stress and strain conditions at any horizon between the mine and the ground surface. This holds the promise of assisting in the prediction of mining-related hydrological effects

  10. Groundwater-quality data associated with abandoned underground coal mine aquifers in West Virginia, 1973-2016: Compilation of existing data from multiple sources

    Science.gov (United States)

    McAdoo, Mitchell A.; Kozar, Mark D.

    2017-11-14

    This report describes a compilation of existing water-quality data associated with groundwater resources originating from abandoned underground coal mines in West Virginia. Data were compiled from multiple sources for the purpose of understanding the suitability of groundwater from abandoned underground coal mines for public supply, industrial, agricultural, and other uses. This compilation includes data collected for multiple individual studies conducted from July 13, 1973 through September 7, 2016. Analytical methods varied by the time period of data collection and requirements of the independent studies.This project identified 770 water-quality samples from 294 sites that could be attributed to abandoned underground coal mine aquifers originating from multiple coal seams in West Virginia.

  11. Radium balance in discharge waters from coal mines in Poland the ecological impact of underground water treatment

    International Nuclear Information System (INIS)

    Chalupnik, S.; Wysocka, M.

    2008-01-01

    Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from the uranium decay series and 228 Ra from the thorium series. More than 70% of the total amount of radium remains underground as radioactive deposits due to spontaneous co-precipitation or water treatment technologies, but several tens of MBq of 226 Ra and even higher activity of 228 Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Mine waters can have a severe impact on the natural environment, mainly due to its salinity. Additionally high levels of radium concentration in river waters, bottom sediments and vegetation were also observed. Sometimes radium concentrations in rivers exceeded 0.7 kBq/m 3 , which was the permitted level for wastewaters under Polish law. The investigations described here were carried out for all coal mines and on this basis the total radium balance in effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given an opportunity to study radium behaviour in river waters and to assess the degree of contamination. For removal of radium from saline waters a method of purification has been developed and implemented in full technical scale in two of Polish coal mines. The purification station in Piast Colliery was unique, the first underground installation for the removal of radium isotopes from saline waters. Very good results have been achieved - approximately 6 m 3 /min of radium-bearing waters were treated there, more than 100 MBq of 226 Ra and 228 Ra remained underground each day. Purification has been started in 1999, therefore a lot of experiences have been gathered during this period. Since year 2006, a new purification station is working in another colliery, Ziemowit, at the level -650 meters. Barium chloride is used as a cleaning , agent, and amount of water to be purified is reaching 9 m 3 /min. Technical measures such as

  12. Development of science and technology in underground coal mining in Czechoslovakia during the 7th 5 year plan

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M.

    1982-01-01

    Reviews main tasks of underground coal mining in Czechoslovakia from 1981 to 1985 in the following basins: Ostrava-Karvina, Kladno, Prievidza, Most and Sokolov. The planned increase of brown and black coal output in each of the basins is discussed. Selected problems associated with mining are evaluated: significant increase of mining depth, rock burst hazards, methane hazards and water influx in the Ostrava-Karvina basin. Investment program in the current 5 year plan as well as until the year 2000 is analyzed: sinking of 38.8 km of mine shafts and 4.4 km of blind shafts. Equipment for shaft sinking produced in the USA (by Robins the 241 SB-184) and in the USSR (the Uralmash Sk-1U system) is compared. Design and technical specifications of the two systems are given. Equipment for mine drivage is also reviewed. The following machines are described: the TVM-55H by Demag (FRG), the TBS V-600E/Sch by Wirth (FRG), the TBM ser. 18a781 by Robins (USA) and the MARK-18T by JARVA (USA). Selected types of powered supports which will be widely used in coal mines in the current 5 year plan are evaluated. Research programs in underground coal mining are reviewed (safety, mining thin coal seams, slice mining of thick coal seams in the Namurian B series, mining extremely thick seams with stowing of the top slice and mining with caving the 4.5 m thick bottom slice). (4 refs.) (In Czech)

  13. Evaluation of the mortality standard of a miners cohort exposed to radon in an underground coal mining, Parana, Brazil

    International Nuclear Information System (INIS)

    Veiga, Lene H.S.; Amaral, Eliana C.S.; Koifman, Sergio

    2005-01-01

    This study aims to to evaluate the possible health effects on workers in a underground coal mining that were exposed to radon and its decay products without the knowledge of the exposure risk. We established a historical cohort of workers in this mining which included 2856 workers, 1946 underground workers and 910 surface workers, and was carried out a retrospective tracking of mortality in this cohort between 1979 and 2002. Through multiple strategies for monitoring, involving several national institutions, was possible to trace the vital status of 92% of the cohort and 100% of the causes of deaths. The results showed that employees of underground coal mining in Parana had a risk of mortality from lung cancer higher than might be expected to the male population of the state of Parana, observing an increase in risk with the time of underground service. However, this increase in mortality from lung cancer was not observed for surface workers. Among several carcinogenic agents present in the mine environment, radon gas and its decay products can be identified as the major cause for this increase in risk of lung cancer for these workers, once other epidemiological studies in coal mining, which have no risk of exposure to radon, do not present an increased of mortality risk from lung cancer

  14. Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths

    Science.gov (United States)

    Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni

    2014-10-01

    Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to

  15. Is there an association of circulatory hospitalizations independent of mining employment in coal-mining and non-coal-mining counties in west virginia?

    Science.gov (United States)

    Talbott, Evelyn O; Sharma, Ravi K; Buchanich, Jeanine; Stacy, Shaina L

    2015-04-01

    Exposures associated with coal mining activities, including diesel fuel exhaust, products used in coal processing, and heavy metals and other forms of particulate matter, may impact the health of nearby residents. We investigated the relationships between county-level circulatory hospitalization rates (CHRs) in coal and non-coal-mining communities of West Virginia, coal production, coal employment, and sociodemographic factors. Direct age-adjusted CHRs were calculated using West Virginia hospitalizations from 2005 to 2009. Spatial regressions were conducted to explore associations between CHR and total, underground, and surface coal production. After adjustment, neither total, nor surface, nor underground coal production was significantly related to rate of hospitalization for circulatory disease. Our findings underscore the significant role sociodemographic and behavioral factors play in the health and well-being of coal mining communities.

  16. 75 FR 39735 - Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines...

    Science.gov (United States)

    2010-07-12

    ... sectors of the economy, including fossil fuel suppliers, industrial gas suppliers, and direct emitters of... Part II Environmental Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases From Magnesium Production, Underground Coal Mines, Industrial Wastewater Treatment, and Industrial...

  17. 77 FR 20700 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2012-04-06

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards AGENCY: Mine Safety and Health Administration, Labor. ACTION: Final rule. SUMMARY: The Mine Safety and...

  18. 77 FR 25205 - Proposed Extension of Existing Information Collection; Roof Control Plans for Underground Coal Mines

    Science.gov (United States)

    2012-04-27

    ... collections of information in accordance with the Paperwork Reduction Act of 1995. This program helps to assure that requested data can be provided in the desired format, reporting burden (time and financial... Information Collection; Roof Control Plans for Underground Coal Mines AGENCY: Mine Safety and Health...

  19. Determining origin of underground water in coal mines by means of natural isotopes and other geochemical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dolenec, T; Pezdic, J; Herlec, U; Kuscer, D; Mitrevski, G [Institut Josef Stefan, Ljubljana (Yugoslavia)

    1989-07-01

    Presents a preliminary report on origin of water in Slovenian brown coal mines. Water, coal and strata samples from the Hrastnik and Ojstro mines were analyzed for changes in chemical composition. Water samples were also analyzed for changes in isotopic composition and inorganic carbon and sulfur contents. Chemical, isotopic and geochemical techniques are described and results are presented with 21 diagrams. An attempt is made to explain the origin and age of water flowing from mine aquifers into mine rooms, and to explain the interdependence of surface and underground water flow. 10 refs.

  20. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  1. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-01-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  2. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-04-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  3. Initiative hard coal; Initiative Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.

    2007-08-02

    In order to decrease the import dependence of hard coal in the European Union, the author has submitted suggestions to the director of conventional sources of energy (directorate general for energy and transport) of the European community, which found a positive resonance. These suggestions are summarized in an elaboration 'Initiative Hard Coal'. After clarifying the starting situation and defining the target the presupposition for a better use of hard coal deposits as raw material in the European Union are pointed out. On that basis concrete suggestions for measures are made. Apart from the conditions of the deposits it concerns thereby also new mining techniques and mining-economical developments, connected with tasks for the mining-machine industry. (orig.)

  4. International mining forum 2004, new technologies in underground mining, safety in mines proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy Kicki; Eugeniusz Sobczyk (eds.)

    2004-01-15

    The book comprises technical papers that were presented at the International Mining Forum 2004. This event aims to bring together scientists and engineers in mining, rock mechanics, and computer engineering, with a view to explore and discuss international developments in the field. Topics discussed in this book are: trends in the mining industry; new solutions and tendencies in underground mines; rock engineering problems in underground mines; utilization and exploitation of methane; prevention measures for the control of rock bursts in Polish mines; and current problems in Ukrainian coal mines.

  5. A Wireless LAN and Voice Information System for Underground Coal Mine

    OpenAIRE

    Yu Zhang; Wei Yang; Dongsheng Han; Young-Il Kim

    2014-01-01

    In this paper we constructed a wireless information system, and developed a wireless voice communication subsystem based on Wireless Local Area Networks (WLAN) for underground coal mine, which employs Voice over IP (VoIP) technology and Session Initiation Protocol (SIP) to achieve wireless voice dispatching communications. The master control voice dispatching interface and call terminal software are also developed on the WLAN ground server side to manage and implement the voice dispatching co...

  6. 77 FR 43721 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2012-07-26

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards AGENCY: Mine Safety and Health Administration, Labor. ACTION: Notice of OMB approval of information...

  7. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect

  8. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    Energy Technology Data Exchange (ETDEWEB)

    Mahdevari, Satar, E-mail: satar.mahdevari@aut.ac.ir [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shahriar, Kourosh [Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Esfahanipour, Akbar [Industrial Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-08-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  9. Human health and safety risks management in underground coal mines using fuzzy TOPSIS

    International Nuclear Information System (INIS)

    Mahdevari, Satar; Shahriar, Kourosh; Esfahanipour, Akbar

    2014-01-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur. - Highlights: • Risks associated with health and safety of coal miners were investigated. • A reliable methodology based on Fuzzy TOPSIS was developed to manage the risks. • Three underground mines in Kerman

  10. State-of-the-art study of resource characterization and planning for underground coal mining. Final technical report as of June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D.; Ingham, W.; Kauffman, P.

    1980-06-01

    With the rapid developments taking place in coal mining technology and due to high investment costs, optimization of the structure of underground coal mines is crucial to the success of the mining project. The structure of a mine, once it is developed, cannot be readily changed and has a decisive influence on the productivity, safety, economics, and production capacity of the mine. The Department of Energy desires to ensure that the resource characterization and planning activity for underground coal mining will focus on those areas that offer the most promise of being advanced. Thus, this project was undertaken by Management Engineers Incorporated to determine the status in all aspects of the resource characterization and planning activities for underground coal mining as presently performed in the industry. The study team conducted a comprehensive computerized literature search and reviewed the results. From this a selection of the particularly relevant sources were annotated and a reference list was prepared, catalogued by resource characterization and mine planning activity. From this data, and discussions with industry representatives, academia, and research groups, private and federal, an assessment and evaluation was made of the state-of-the-art of each element in the resource characterization and mine planning process. The results of this analysis lead to the identifcation of areas requiring research and, specifically, those areas where DOE research efforts may be focused.

  11. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    Science.gov (United States)

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  12. Studies of significant properties of filter-type self rescuer for its use in underground coal mine in carbon monoxide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Mondal, P.C. [Central Institute of Mining and Fuel Research, Dhanbad (India)

    2007-07-01

    CO is a highly toxic gas; it is the outcome of fire or explosion in underground coal mines. It combines with hemoglobin of coal mine workers and carboxyhemoglobin forms, which reduces the oxygen carrying capacity of blood. A little intake of CO gas, even 0.1% in atmosphere, causes respiratory failure. Filter-type self rescuers (FSR) are a life-saving gas mask breathing apparatus against CO exposure in underground coal mine. The quality of FSR was evaluated in respect of its duration for use, CO conversion by hopcalite, breathing resistance, leak tightness properties, and so on. A scope of improvement is observed in cartridge of self rescuer as well as in the clauses of BIS 9563-1980 in order to increase the duration and improvement in the quality of self rescuers. 12 refs., 2 tabs.

  13. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    Science.gov (United States)

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    The surveys of radon concentrations in the Underground Tourist Route "Coal Mine" were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004-2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m(-3) and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route "Coal Mine". The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8-9 a.m. to 7-8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on radon

  14. Reducing rock fall injuries in underground US coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, S.B.; Molinda, G.M.; Pappas, D.M. [Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

    2005-07-01

    A continuing risk to underground US coal miners is rock falling from the mine roof. Almost 99% of injuries caused by rock falls are not from a major roof collapse, but from smaller rock that fall from between roof bolts. Installing roof screen provides excellent overhead roof coverage and dramatically reduces the potential for rock fall injuries, especially to roof bolted operators. The National Institute for Occupational Safety and Health (NIOSH) has explored different installation techniques and roof screening options along with machine design innovations that make roof screening easier and safer. Applying ergonomic principles to roof screening will offer insight and direction for better material handling. Other techniques for controlling rock falls and roof falls for long-term stability include the application of surface support liners and polyurethane (PUR) injection. An ongoing study at the NIOSH Lake Lynn Laboratory of various types of spray-on liner and shotcrete materials is providing a unique opportunity to evaluate the long-term behaviour of liners in an underground environment. In-mine studies of PUR have involved pre- and post-injection core drilling and video borecole logging. The results have provided insights into how PUR penetrates and reinforces weak and highly fractured rock. 11 refs., 8 figs., 1 tab.

  15. Burnout, Depression and Proactive Coping in Underground Coal Miners in Serbia - Pilot Project

    Directory of Open Access Journals (Sweden)

    Manić Saška

    2017-03-01

    Full Text Available Mining is unsurprisingly considered a high-risk occupation because it involves continuous hard labour under highly demanding and stressful conditions. Many of these work stressors can impair individuals’ well-being in both a physiological and psychological sense. The aims of this study were to assess the prevalence of burnout and depressive symptoms and to evaluate aspects of proactive coping among underground coal miners in Serbia. The study involved 46 male underground coal miners. Burnout was measured with the Copenhagen Burnout Inventory, depression was assessed with the Patient Health Questionnaire-9, and level of proactive coping was measured with the Proactive Coping Inventory. The results showed a low level of burnout syndrome among the underground coal miners (12.46±4.879. Depression was slightly above the minimum (1.2±2.094, and the majority of the participants had no symptoms of depression (93.5%. Overall, the underground coal miners’ ability to proactively cope with work stress was very good (42.17±6.567. This is in contrast to the findings of the few previous international studies and is a good basis for further research using a larger sample in Serbia.

  16. Using tracers to understand the hydrology of an abandoned underground coal mine

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Flooded underground mines pose a difficult problem for remediation efforts requiring hydrologic information. Mine environments are hydraulically complicated due to sinuous travel paths and variable hydraulic gradients. For an acidic mine remediation project, conducted by the University of Oklahoma in conjunction with the Oklahoma Conservation Commission, a tracer study was undertaken to identify basic hydrologic properties of a flooded coal mine. The study was conducted to investigate the possibility of in-situ remediation of acidic mine water with the use of alkaline coal combustion by-products. Information on the rate of flow and ''connectiveness'' of injection wells with the discharge point was needed to develop a treatment strategy. Fluorescent dyes are not typically used in mine tracer studies because of the low pH values associated with certain mines and a tendency to adsorb ferric iron precipitates. However, Rhodamine WT was used in one tracer test because it can be detected at low concentrations. Due to poor recovery, a second tracer test was undertaken using a more conservative tracer-chloride. Each tracer produced similar travel time results. Findings from this study suggest that Rhodamine WT can be used under slightly acidic conditions, with mixed results. The more conservative tracer provided somewhat better results, but recovery was still poor. Use of these tracers has provided some valuable information with regard to mine hydrology, but additional questions have been raised

  17. Using coal mine saline water to produce chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Gnot, W; Turek, M; Walburg, Z

    1979-01-01

    Utilizing hard coal mine waters with salt concentration reaching 140 kg/mat3 in the chemical industry would significantly reduce the cost of protecting the natural environment from salt. The Institute of Chemistry and Inorganic Technology of the Silesian Technical University in Gliwice developed an efficient technology of producing chorine from underground black coal mine waters. A scheme of the technology is explained: double stage brine purification with magnesium hydroxide as by-product. During the first stage magnesium is precipitated using sodium hydroxide; after increasing salt content in the brine calcium and a low percentage of magnesium are removed by lye-sodium method. During the second stage sedimentation rate increases to 1.4 mm/s, and volume of sludge is only 1%. Magnesium hydroxide is removed using a method patented in Poland (after adding a flocculant magnesium hydroxide is left untouched). Only at a later stage does sedimentation occur. The proposed technology of utilizing mine water will be tested in an experimental plant which will be built at the Ziemowit black coal mine. (7 refs.) (In Polish)

  18. Hydrogeology, water chemistry, and subsidence of underground coal mines at Huntsville, Missouri, July 1987 to December 1988. Water Resources Investigation

    International Nuclear Information System (INIS)

    Blevins, D.W.; Ziegler, A.C.

    1992-01-01

    Underground coal mining in and near Huntsville, in Randolph County in north-central Missouri, began soon after 1831. Mining in the Huntsville area was at its peak during 1903 and continued until 1966 when the last underground mine was closed and the economically recoverable coals under Huntsville had been mostly, if not completely, removed. The now abandoned mines are of concern to the public and to various State and Federal agencies for two reasons: (1) mine drainage acidifies streams and leaves large, soft, dangerous deposits of iron oxyhydroxides at mine springs and on streambeds (data on file at the Missouri Department of Natural Resources, Land Reclamation Commission), and (2) collapse of mine cavities sometimes causes surface subsidence resulting in property damage or personal injury. To address these concerns, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, in 1987 initiated a study to: determine the location of mine springs, the seasonal variation of stream-water chemistry, and the effects of underground-mine water on flow and water quality of nearby ground water and receiving streams; and identify areas susceptible to surface subsidence because of mine collapse. The purpose of the report is to present the findings and data collected for the study

  19. Application of underground microseismic monitoring for ground failure and secure longwall coal mining operation: A case study in an Indian mine

    Science.gov (United States)

    Ghosh, G. K.; Sivakumar, C.

    2018-03-01

    Longwall mining technique has been widely used around the globe due to its safe mining process. However, mining operations are suspended when various problems arise like collapse of roof falls, cracks and fractures propagation in the roof and complexity in roof strata behaviors. To overcome these colossal problems, an underground real time microseismic monitoring technique has been implemented in the working panel-P2 in the Rajendra longwall underground coal mine at South Eastern Coalfields Limited (SECL), India. The target coal seams appears at the panel P-2 within a depth of 70 m to 76 m. In this process, 10 to 15 uniaxial geophones were placed inside a borehole at depth range of 40 m to 60 m located over the working panel-P2 with high rock quality designation value for better seismic signal. Various microseismic events were recorded with magnitude ranging from -5 to 2 in the Richter scale. The time-series processing was carried out to get various seismic parameters like activity rate, potential energy, viscosity rate, seismic moment, energy index, apparent volume and potential energy with respect to time. The used of these parameters helped tracing the events, understanding crack and fractures propagation and locating both high and low stress distribution zones prior to roof fall occurrence. In most of the cases, the events were divided into three stage processes: initial or preliminary, middle or building, and final or falling. The results of this study reveal that underground microseismic monitoring provides sufficient prior information of underground weighting events. The information gathered during the study was conveyed to the mining personnel in advance prior to roof fall event. This permits to take appropriate action for safer mining operations and risk reduction during longwall operation.

  20. Highly-productive mechanization systems for coal mining in the Polish coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1985-01-01

    Effects of mechanization on underground coal mining in Poland from 1960 to 1980 and mining equipment used in Poland is reviewed. In 1983 black coal output increased to 191.1 Mt. There were 765 working faces, 442 of which with powered supports. Six hundred thirty-four shearer loaders were in use. About 82.7% of coal output fell on faces mined by sets of mining equipment (shearer loaders, powered supports and chain conveyors). The average coal output per working face amounted to 889 t/d. About 50% of mine roadways was driven by heading machines (346 heading machines were in use). The average coal output per face mined by a set of mining equipment amounted to 1248 t/d. About 86% of shearer loaders fell on double drum shearer loaders. Types of mining equipment used in underground mining are reviewed: powered supports (Pioma, Fazos, Glinik and the SOW), shearer loaders (drum shearer loaders and double-drum shearer loaders with chain haulage and chainless haulage systems for unidirectional and bi-directional mining), chain conveyors (Samson, Rybnik). Statistical data on working faces with various sets of equipment are given. 3 references.

  1. An injection technique for in-situ remediation of abandoned underground coal mines

    International Nuclear Information System (INIS)

    Canty, G.A.; Everett, J.W.

    1998-01-01

    Remediation of underground mines can prove to be a difficult task, given the physical constraints associated with introducing amendments to a subterranean environment. An acid mine abatement project involving in-situ chemical treatment method was conducted by the University of Oklahoma. The treatment method involved the injection of an alkaline coal combustion by-product (CCB) slurry into a flooded mine void (pH 4.4) to create a buffered zone. Injection of the CCB slurry was possible through the use of equipment developed by the petroleum industry for grouting recovery wells. This technology was selected because the CCB slurry could be injected under significant pressure and at a high rate. With higher pressure and rates of injection, a large quantity of slurry can be introduced into the mine within a limited amount of time. Theoretically, the high pressure and rate would improve dispersal of the slurry within the void. In addition, the high pressure is advantageous in fracturing or breaking-down obstructions to injection. During the injection process, a total of 418 tons of CCB was introduced within 15 hours. The mine did not refuse any of the material, and it is likely that a much larger mass could have been added. One injection well was drilled into a pillar of coal. Normally this would pose a problem when introducing a slurry; however, the coal pillar was easily fractured during the injection process. Currently, the pH of the mine discharge is above 6.5 and the alkalinity is approximately 100 mg/L as CACO 3

  2. 30 CFR 49.30 - Requirements for small coal mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  3. 30 CFR 49.40 - Requirements for large coal mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  4. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    Science.gov (United States)

    Borowski, Marek; Kuczera, Zbigniew

    2018-03-01

    Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location

  5. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    Directory of Open Access Journals (Sweden)

    Borowski Marek

    2018-01-01

    Full Text Available Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in

  6. Working group report: methane emissions from coal mining

    International Nuclear Information System (INIS)

    Kruger, D.

    1993-01-01

    The process of coalification inherently generates methane and other byproducts. The amount of methane released during coal mining is a function of coal rank and depth, gas content, and mining methods, as well as other factors such as moisture. In most underground mines, methane is removed by drawing large quantities of air through the mine releasing the air into the atmosphere. In surface mines, exposed coal faces and surfaces, as well as areas of coal rubble created by blasting operations are believed to be the major sources of methane. A portion of the methane emitted from coal mining comes from post-mining activities such as coal processing, transportation, and utilisation. Some methane is also released from coal waste piles and abandoned mines. This paper highlights difficulties with previous methane emission studies namely: absence of data on which to base estimates; use of national data to develop global estimates; failure to include all possible emission sources; overreliance on statistical estimation methodologies. It recommends a 'tiered' approach for the estimation of emissions from underground mines, surface mines and post-mining activities. For each source, two or more approaches (or 'tiers') are presented, with the first tier requiring basic and readily available data and higher tiers requiring additional data. 29 refs., 3 tabs

  7. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    Directory of Open Access Journals (Sweden)

    Jinyi TAO

    2014-09-01

    Full Text Available The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These parameters are magnetic permeability m (H/m, dielectric constant e (F/m and electrical conductivity s (S/m. In these parameters, electrical conductivity is not constant. Under the influence of various factors, it will be great changes. This paper, for the specific circumstances of coal mine rock, discuses and conduct dada mining the effect frequency on the electrical conductivity of underground rock in coal mine with through-the-earth wireless communication.

  8. Underground aboveground. Technology and market of coal mining in Dutch Limburg during the eighteenth and nineteenth centuries

    International Nuclear Information System (INIS)

    Gales, B.P.A.

    2002-01-01

    This book considers the development of coal mining in the Dutch province of Limburg during the eighteenth and nineteenth centuries. It is focused on the technical development and its economic background. Within the Dutch borders, as defined at the Congress of Vienna and the Dutch-Prussian negotiations of 1815 and 1816, the mining industry was small. In fact, it only consisted of two mines. (Earlier, more companies of miners had been working in the area since the Middle Ages). The two mines, however, had a certain symbolic importance for contemporaries. Most telling was the stubborn refusal to cede coal-ground to Prussia, ending in a remarkable compromise. The new national frontier was different above and underground. Underground the old borders were maintained. Thus it came about that in matters of mining, the Dutch were locally sovereign under a foreign surface. This fact itself shows that the political divisions of the nineteenth and twentieth centuries were rather artificial constructions. Dutch coal-strata were a continuation of the seams of the Worm-basin or the Aachen coal field. The Dutch collieries were just the most north-western ones of a whole series, the Worm-mines, until new pits were constructed around the turn of the nineteenth and into the twentieth centuries and modem mining in the Dutch-Limburg field took off. This is also the more general perspective taken in this book. Developments on the Dutch side of the border are contrasted with those on the German side. Furthermore, the evolution of the mines between Aachen in Germany and the Dutch town Kerkrade are considered in the light of what happened in the neighbourhood of Liege (Belgium) and the mining districts further south in Belgium, the north of France and both the Ruhr and Saar districts in Germany. In short, the Austrasian field, the concept framed by Wrigley in 1962, is the locus of reference. The symbolic importance of Dutch coal mining stimulated a series of experiments in bringing the

  9. Mining engineer requirements in a German coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Rauhut, F J

    1985-10-01

    Basic developments in German coal mines, new definitions of working areas of mining engineers, and groups of requirements in education are discussed. These groups include: requirements of hard-coal mining at great depth and in extended collieries; application of process technology and information systems in semi-automated mines; thinking in processes and systems; organizational changes; future requirements of mining engineers; responsibility of the mining engineer for employees and society.

  10. Selected problems of coal mining mechanization in the coal industry of Poland

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, J; Sikora, W [Politechnika Slaska, Gliwice (Poland)

    1987-01-01

    Discusses conditions for underground coal mining in Poland, types of equipment for coal cutting, mine haulage and strata control and development trends of mining technologies. In 1985, black coal output was 191.6 Mt; 85.3% came from longwall faces mined by sets of mining equipment (coal cutters, chain conveyors and powered supports). The average coal output per longwall face was 881 t/d, output per face mined by sets for mining equipment was 1,134 t/d. In 1985, 653 shearer loaders and 77 coal plows were used in Polish coal mines. Number of shearer loaders is increasing. Shearer loaders with chainless haulage system were safest and most economic. The shearer loaders were equipped with the POLTRAK chainless haulage system developed in Poland. Research programs concentrate on development of new mining equipment for thin seam mining, steep seam mining, longwall mining with hydraulic stowing, efficient strata control by powered or shield supports under conditions of increased stresses or rock burst hazards. 4 refs.

  11. Coal plows in underground mines in Czechoslovakia

    Energy Technology Data Exchange (ETDEWEB)

    Vasek, J.; Klimek, M.

    1980-05-01

    This article discusses factors which influence the possibility of using coal plows for mining black coal seams in Czechoslovakia. Seams inclined at angles up to 40 degrees can be mined by plows. Another factor which influences plow work is ease of separating coal seam from the direct roof: the plow can be used in seams with good or average separation, and can not be used in seams with roofs difficult to separate from the seam. Quality of rocks surrounding the coal seam: If the stability of the roof is low and strength of rock is low and roof falls occur easily coal plows can not be used. From among three classes of rock in Czechoslovakia plows can be used only in the class characterized by the highest strength. Intense seam dislocations are one of the most important difficulties in using coal plows. Plows can be used if height of seam dislocations is not greater than 40% of the seam thickness. Further factors which influence the possibility of using coal plows (coal resistance to cutting, features of cutting elements of the plow, specific features of the plow mechanism etc.) are also discussed. A method for assessing advantages and disadvantages of using coal plows in given circumstances is presented. (10 refs.) (In Czech)

  12. Characteristics of coal mine ventilation air flows.

    Science.gov (United States)

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  13. [Changes in the interleukin-6 and interleukin-10 concentrations in the blood plasma of miners working in deep coal mines].

    Science.gov (United States)

    Plotkin, V Ia; Rebrov, B A; Belkina, E B

    2000-03-01

    Blood plasma levels of interleukin-6 (IL-6) and interleukin-10 (IL-10) were measured in 45 miners working in a deep coal mine immediately after work shift using an immunoenzyme technique. The highest IL-6 level was recorded in those miners engaged in hard work under most adverse conditions of underground workings--it was found to exceed the control values. The same group of workers demonstrated the lowest level of IL-10 that differed from the control value. Miners aged between 41 to 50 years working in a coal mine, their underground service duration 16 to 20 years, displayed a decline in the level of IL-6. The coal mine miners with the 11- to 15-year service duration revealed an increase in the level of IL-10.

  14. Underground coal gasification technology impact on coal reserves in Colombia

    Directory of Open Access Journals (Sweden)

    John William Rosso Murillo

    2013-12-01

    Full Text Available In situ coal gasification technology (Underground Coal Gasification–UCG– is an alternative to the traditional exploitation, due to it allows to reach the today’s inaccessible coal reserves’ recovery, to conventional mining technologies. In this article I answer the question on how the today’s reserves available volume, can be increased, given the possibility to exploit further and better the same resources. Mining is an important wealth resource in Colombia as a contributor to the national GDP. According with the Energy Ministry (Ministerio de Minas y Energía [1] mining has been around 5% of total GDP in the last years. This is a significant fact due to the existence of a considerable volume of reserves not accounted for (proved reserves at year 2010 were 6.700 million of tons. Source: INGEOMINAS and UPME, and the coal future role’s prospect, in the world energy production.

  15. Applications of radio frequency identification systems in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Knights, P F; Kairouz, J; Daneshmend, L K; Pathak, J [McGill University, Montreal, PQ (Canada). Canadian Centre for Automation and Robotics in Mining

    1994-12-31

    The paper describes the application of Radio Frequency Identification (RFID) systems in underground hardrock mines. The operating principles and some of the applications of RDIF systems are described. The system operates by the exchange of information between transponder tags and an antenna and controller device. The suitability of RFID systems for process control, inventory control, materials handling, control of access, security, and transportation in underground coal and hardrock mines is discussed. An ore tonnage tracking system is under development that uses RDIF transponder tags to locate vehicles in an underground mine. 6 refs., 4 figs.

  16. Coal mine subsidence

    International Nuclear Information System (INIS)

    Rahall, N.J.

    1991-05-01

    This paper examines the efficacy of the Department of the Interior's Office of Surface Mining Reclamation and Enforcement's (OSMRE) efforts to implement the federally assisted coal mine subsidence insurance program. Coal mine subsidence, a gradual settling of the earth's surface above an underground mine, can damage nearby land and property. To help protect property owners from subsidence-related damage, the Congress passed legislation in 1984 authorizing OSMRE to make grants of up to $3 million to each state to help the states establish self-sustaining, state-administered insurance programs. Of the 21 eligible states, six Colorado, Indiana, Kentucky, Ohio, West Virginia, and Wyoming applied for grants. This paper reviews the efforts of these six states to develop self-sustaining insurance programs and assessed OSMRE's oversight of those efforts

  17. Construction and maintenance of underground mine roads

    Energy Technology Data Exchange (ETDEWEB)

    Logan, A.S.; Seedsman, R.W. [Coffey Partners International Pty. Ltd. (Australia)

    1995-12-31

    Good roads are essential in moving men and materials to and from the underground workplace. An underground coal industry funded project was recently completed on underground mine road construction and maintenance. This paper discusses practical approaches to construction and maintenance of underground mine roads using transferable civil technologies and innovative techniques. Mine pavements are generally low-cost (relative to civil roads), constructed to varying standards using locally available materials to best meet the mobility needs of the mine. Performance of pavements is thus largely dependent on the environmental conditions, quality of the available road making materials, maintenance policies and available resources. This paper explains the causes of bad roads in various underground environments. It details available management strategies, construction and water control techniques, road maintenance and vehicle considerations. It concludes that the trend to larger rubber tires mining equipment needs to be matched with construction and maintenance of high quality road surfaces. For large operations, the total cost due to poor roads may equate to in excess of $A1 million per annum. The strategies outlined in this paper provide the basis for construction and maintenance of underground mine roads to help achieve desired production targets. (author). 2 tabs., 4 figs., 7 refs.

  18. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Williams, A.; Mitchell, C.

    1993-01-01

    This paper outlines some of the problems associated with the prediction of levels of methane emission from underground and surface coal mines. Current knowledge of coal mining emissions sources is outlined. On the basis of this information the methodology proposed by the IPCC/OECD Programme on National Inventories is critically examined and alternatives considered. Finally, the technical options for emissions control are examined together with their feasibility. 8 refs., 6 figs., 2 tabs

  19. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  20. Lightweight monitoring and control system for coal mine safety using REST style.

    Science.gov (United States)

    Cheng, Bo; Cheng, Xin; Chen, Junliang

    2015-01-01

    The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Post mining hazard assessment in North Rhine-Westphalia (Germany) at the example of the Aachen hard coal mining district

    International Nuclear Information System (INIS)

    Heitfeld, M.; Mainz, M.; Schetelig, K.

    2005-01-01

    In North Rhine-Westphalia, large areas are affected by mining legacies endangering the ground surface and public safety. The problems arising and the current risk management are demonstrated at the example of the Aachen hard coal mining district. Hazards especially result from outcrops of coal seams mined at shallow depths and shafts whilst galleries usually seem to be rather unperilous due to their depth and small dimension. In this paper, the design of hazard zones and the assignment of hazard classes are described. Recent scientific developments related to the size of hazard areas are described and an outlook on future procedures is given. (authors)

  2. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  3. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-07-01

    Full Text Available Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs. We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  4. 30 CFR 75.1720-1 - Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Distinctively colored hard hats, or hard caps... STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1720-1 Distinctively colored hard hats, or hard caps; identification for newly employed, inexperienced miners. Hard hats or hard caps distinctively different in color...

  5. Investigation into the potential for dust and gas explosions in underground coal mines with reference to pick tip geometry

    International Nuclear Information System (INIS)

    Dawood, Albert D.

    2011-01-01

    In underground coal mines, methane gas, if present in sufficient concentration, may be ignited by sparks from hot spots on the picks of coal cutting machines striking hard bands of rock. During the coal cutting, wear-flat areas develop on the trailing side of the tips of picks. As pick wear progresses, the generation of frictional heat and coal dust increases and the development of hot spots at the cutting tips may lead to an explosion of methane gas. Field experience and research work over the last few years have facilitated excellent cutting performance for certain picks through the optimisation of the cutting parameters. Such performance improvements show great promise in preventing the incidence of gas or dust explosions occurring at the coal face area. This study sets out some of the fundamentals of pick geometry and cutting parameters and the methods which have been employed to achieve improvements in reducing the hazards of gas or dust explosions. It is based on the comparative trial results of two types of picks with different designs and on a range of available research information on the subject. My investigation looked at the fundamentals of pick geometry and cutting parameters and the current suppression techniques in place to control the dust and gas explosions on the coal operating face.

  6. A Review of Mine Rescue Ensembles for Underground Coal Mining in the United States.

    Science.gov (United States)

    Kilinc, F Selcen; Monaghan, William D; Powell, Jeffrey B

    The mining industry is among the top ten industries nationwide with high occupational injury and fatality rates, and mine rescue response may be considered one of the most hazardous activities in mining operations. In the aftermath of an underground mine fire, explosion or water inundation, specially equipped and trained teams have been sent underground to fight fires, rescue entrapped miners, test atmospheric conditions, investigate the causes of the disaster, or recover the dead. Special personal protective ensembles are used by the team members to improve the protection of rescuers against the hazards of mine rescue and recovery. Personal protective ensembles used by mine rescue teams consist of helmet, cap lamp, hood, gloves, protective clothing, boots, kneepads, facemask, breathing apparatus, belt, and suspenders. While improved technology such as wireless warning and communication systems, lifeline pulleys, and lighted vests have been developed for mine rescuers over the last 100 years, recent research in this area of personal protective ensembles has been minimal due to the trending of reduced exposure of rescue workers. In recent years, the exposure of mine rescue teams to hazardous situations has been changing. However, it is vital that members of the teams have the capability and proper protection to immediately respond to a wide range of hazardous situations. Currently, there are no minimum requirements, best practice documents, or nationally recognized consensus standards for protective clothing used by mine rescue teams in the United States (U.S.). The following review provides a summary of potential issues that can be addressed by rescue teams and industry to improve potential exposures to rescue team members should a disaster situation occur. However, the continued trending in the mining industry toward non-exposure to potential hazards for rescue workers should continue to be the primary goal. To assist in continuing this trend, the mining industry

  7. Coal Mining vis-â-vis Agriculture in India: A Question of Sustainability

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2015-01-01

    Full Text Available Coal mining adversely affects the eco-system as a whole. It is important to conduct suitable assessment studies to learn the potential adverse impact of mining on agriculture. In the subsequent discussions an attempt has been made to clarify the coal mining activities and its residual impact on environment and agricultural activities.The leaseholds for the underground mines are procured from the land lords who grant mining authority the right for underground coal mining. The land for houses, dwellings and the associated activities are purchased piecemeal from different sources while large portion of the surface right remained under the control of farmers and landlords. Underground mining in these areas is conducted with full responsibility of the surface protection by the operators who normally maintain pillars as the natural support to the surface features. Increasing demand for open caste mining process requires huge land. These lands sometime are acquired at the cost of cultivable land. Coal mining has direct impact over agriculture in the study region and residual impacts of mining bring far reaching consequences. The present study is explanatory in nature based on empirical facts collected from various formal sources from Coal India office. The task is to bring out the issues related to coal mining activities and their impact on vegetation and agriculture in adjoining areas in Raniganj and Jharia coalfields in India through this study.

  8. An investigation into radiation exposures in underground non-uranium mines in Western Australia

    International Nuclear Information System (INIS)

    Hewson, G.S.; Ralph, M.I.

    1994-01-01

    A preliminary investigation into the radiological conditions in underground non-uranium mines in Western Australia has been undertaken. Measurements of radon concentration by passive track etch monitors and absorbed gamma dose-rate by thermoluminescent dosimetry were undertaken in 27 mines. These mines employed 2173 workers which represented nearly 80% of the underground workforce at the time of the survey. Radon progeny concentration by both grab sampling and automatic devices were undertaken at selected mines. Radiological conditions in all surveyed underground workplaces were such that it was estimated that most underground workers should not exceed an annual effective dose of 5 mSv. The average annual effective dose across all mines was estimated to be 1.4±1.0 mSv, ranging from 0.4 mSv for a nickel mine to 4.2 mSv for a coal mine. Radon progeny exposure contributed approximately 70% of the total effective dose. The estimated average annual effective dose in three coal mines (employing 297 workers) was 2.9±1.5 mSv. On the basis of this preliminary investigation it was concluded that no regulatory controls are specifically required to limit radiation exposures in Western Australian underground mines. (author)

  9. Zoning method for environmental engineering geological patterns in underground coal mining areas.

    Science.gov (United States)

    Liu, Shiliang; Li, Wenping; Wang, Qiqing

    2018-09-01

    Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Analysis and Optimization of Entry Stability in Underground Longwall Mining

    Directory of Open Access Journals (Sweden)

    Yubing Gao

    2017-11-01

    Full Text Available For sustainable utilization of limited coal resources, it is important to increase the coal recovery rate and reduce mine accidents, especially those occurring in the entry (gateroad. Entry stabilities are vital for ventilation, transportation and other essential services in underground coal mining. In the present study, a finite difference model was built to investigate stress evolutions around the entry, and true triaxial tests were carried out at the laboratory to explore entry wall stabilities under different mining conditions. The modeling and experimental results indicated that a wide coal pillar was favorable for entry stabilities, but oversize pillars caused a serious waste of coal resources. As the width of the entry wall decreased, the integrated vertical stress, induced by two adjacent mining panels, coupled with each other and experienced an increase on the entry wall, which inevitably weakened the stability of the entry. Therefore, mining with coal pillars always involves a tradeoff between economy and safety. To address this problem, an innovative non-pillar mining technique by optimizing the entry surrounding structures was proposed. Numerical simulation showed that the deformation of the entry roof decreased by approximately 66% after adopting the new approach, compared with that using the conventional mining method. Field monitoring indicated that the stress condition of the entry was significantly improved and the average roof pressure decreased by appropriately 60.33% after adopting the new technique. This work provides an economical and effective approach to achieve sustainable exploitation of underground coal resources.

  11. Continuous quality control of mined hard and soft coals

    International Nuclear Information System (INIS)

    Fertl, W.H.; Gant, P.L.

    1978-01-01

    A method is provided for determining the shale content of mined coal by monitoring the thorium content of the coal. Thorium content and ash content are shown to be related whereby a direct reading of the thorium will be indicative of the shale content of the coal and the ash content of the coal. The method utilizes the natural radiation of thorium to provide the continuous or selective control of mined coals

  12. Absenteeism and accidents in a dangerous environment: empirical analysis of underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, P.S.; Garber, S.

    1988-02-01

    The study examined the effects or consequences of absenteeism on accidents. Data were gathered from production crews in five underground coal mines. A unique data set was created that traced on a daily basis the absence event, the company's policy on replacement, and the occurrence of an accident. The concept of familiarity was introduced to explain the impact of absenteeism on accidents. The basic data showed that absenteeism increased the chances for accidents in certain categories of unfamiliarity. Implications for manpower policy and absentee research are discussed. 4 tabs., 6 refs.

  13. Coal mine safety achievements in the USA and the contribution of NIOSH research

    Energy Technology Data Exchange (ETDEWEB)

    Esterhuizen, G.S.; Gurtunca, R.G. [NIOSH, Washington, DC (United States)

    2006-12-15

    Over the past century coal miner safety and health have seen tremendous improvements: the fatality and injury rates continue to decrease while productivity continues to increase. Many of the hazards that plagued miners in the past, such as coal bumps, methane and coal dust explosions, ground fall accidents and health issues have been significantly reduced. The contribution of NIOSH research includes products for prevention and survival of mine fires, methane control measures, design procedure for underground coal mines, methods for excavation surface controls, methods and procedures for blasting, laser usage in underground mines and prevention of electrocution from overhead power lines that have reduced accidents and injuries in underground coal mines. Health research has produced products such as the personal dust monitor, noise abating technologies and ergonomic solutions for equipment operators. Research priorities at NIOSH are set by considering surveillance statistics, stakeholder inputs and loss control principles. Future research in coal mining is directed towards respiratory diseases, noise-induced hearing loss, repetitive musculoskeletal injuries, traumatic injuries, falls of ground and mine disasters. The recent spate of accidents in coal mines resulted in the Miner Act of 2006, which includes a specific role for NIOSH in future mine safety research and development. The mine safety achievements in the USA reflect the commitment of industry, labour, government and research organizations to improving the safety of the mine worker.

  14. Improving underground ventilation conditions in coal mines

    CSIR Research Space (South Africa)

    Meyer, CF

    1993-11-01

    Full Text Available projects could be initiated by miningtek in co-operation with different mines. This report deals with the findings of this project and also deals with the future of research within Miningtek with regard to underground ventilation....

  15. Coal mine subsidence and structures

    International Nuclear Information System (INIS)

    Gray, R.E.

    1988-01-01

    Underground coal mining has occurred beneath 32 x 10 9 m 2 (8 million acres) of land in the United States and will eventually extend beneath 162 x 10 9 m 2 (40 million acres). Most of this mining has taken place and will take place in the eastern half of the United States. In areas of abandoned mines where total extraction was not achieved, roof collapse, crushing of coal pillars, or punching of coal pillars into softer mine floor or roof rock is now resulting in sinkhole or trough subsidence tens or even hundreds of years after mining. Difference in geology, in mining, and building construction practice between Europe and the United States preclude direct transfer of European subsidence engineering experience. Building damage cannot be related simply to tensile and compressive strains at the ground surface. Recognition of the subsidence damage role played by ground-structure interaction and by structural details is needed

  16. What differences does age make? Coal mining injuries

    Energy Technology Data Exchange (ETDEWEB)

    Mallett, L.; Schwerha, D.J. [National Institute for Occupational Safety and Health, Pittsburgh, PA (United States). Research Laboratory

    2007-02-15

    The US Bureau of Labor Statistics says that in 2002 the coal mine workforce in the USA had a higher medium age than the workforce in any other sector of mining. Many older miners are part of the generation group known as Baby Boomers. The article gives figures for injuries received in underground coal mining, surface coal mining and coal preparation plant workers, analysed by age groups (Nexters, {lt}22; Generation Xers, 22-41; Baby Boomers, 42-59; Veterans, 60 and above), and also by job title. In all generation groups, more injuries were recorded in miners with less than two years experience. 4 refs., 3 tabs., 6 charts.

  17. A practical application of photogrammetry to performing rib characterization measurements in an underground coal mine using a DSLR camera.

    Science.gov (United States)

    Slaker, Brent A; Mohamed, Khaled M

    2017-01-01

    Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health (NIOSH). A commercially available, digital single-lens reflex (DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject, camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio (F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.

  18. Behaviors of overlying strata in extra-thick coal seams using top-coal caving method

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2016-04-01

    Full Text Available Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos. 3–5 in Datong coal mine with top-coal caving method, which significantly hampers the mine's normal production. To understand the mechanism of strata failure, this paper presented a structure evolution model with respect to strata behaviors. Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis, physical simulation, and field measurement. The results show that the key strata, which are usually thick-hard strata, play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method. The structural model of far-field key strata presents a “masonry beam” type structure when “horizontal O-X” breakage type happens. The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway. This can induce excessive deformation of roadway near the goaf. Besides, this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting. It could effectively reduce stress concentration and release the accumulated energy of the strata, when mining underground coal resources with top-coal caving method.

  19. Debilitating lung disease among surface coal miners with no underground mining tenure.

    Science.gov (United States)

    Halldin, Cara N; Reed, William R; Joy, Gerald J; Colinet, Jay F; Rider, James P; Petsonk, Edward L; Abraham, Jerrold L; Wolfe, Anita L; Storey, Eileen; Laney, A Scott

    2015-01-01

    To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner's lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor.

  20. The impact of liberalisation of the electricity market on the hard coal mining sector in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Jacek [Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Energy and Environmental Policy Division, Wybickiego 7, 31-261 Krakow (Poland)

    2009-03-15

    The liberalisation of the electricity market changed the conditions of operation not only for the power industry, but also for related sectors. One of the particularly sensitive industries in Poland is coal mining, which is the result of coal-based structure of electricity generation. As it is more difficult, in the liberalised market, to burden consumers with all the costs, electricity producers are eager to transfer the risk of operation to the suppliers. That increases uncertainty about the future of the hard coal industry. The aim of this paper was to quantitatively estimate the impact that liberalisation of the electricity markets may have on the coal mining sector in Poland. First of all, the possible areas of that impact were identified. Then the model, which involved detailed relations in the impact areas identified, was developed and employed to evaluate the performance of the mining sector. The comparison of scenarios of a monopolistic electricity sector with a liberalised one enabled an estimation of the scale of the impact on the mining sector to be made. The results showed that liberalisation causes decreased coal consumption and decreased operating profits in coal companies. However, some savings in electricity costs are possible for coal producers. (author)

  1. The impact of liberalisation of the electricity market on the hard coal mining sector in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Jacek Kaminski [Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Krakow (Poland). Energy and Environmental Policy Division

    2009-03-15

    The liberalisation of the electricity market changed the conditions of operation not only for the power industry but also for related sectors. One of the particularly sensitive industries in Poland is coal mining, which is the result of coal-based structure of electricity generation. As it is more difficult, in the liberalised market, to burden consumers with all the costs, electricity producers are eager to transfer the risk of operation to the suppliers. That increases uncertainty about the future of the hard coal industry. The aim of this paper was to quantitatively estimate the impact that liberalisation of the electricity markets may have on the coal mining sector in Poland. First of all, the possible areas of that impact were identified. Then the model, which involved detailed relations in the impact areas identified, was developed and employed to evaluate the performance of the mining sector. The comparison of scenarios of a monopolistic electricity sector with a liberalised one enabled an estimation of the scale of the impact on the mining sector to be made. The results showed that liberalisation causes decreased coal consumption and decreased operating profits in coal companies. However, some savings in electricity costs are possible for coal producers. 42 refs., 20 figs., 9 tabs., 1 app.

  2. The impact of liberalisation of the electricity market on the hard coal mining sector in Poland

    International Nuclear Information System (INIS)

    Kaminski, Jacek

    2009-01-01

    The liberalisation of the electricity market changed the conditions of operation not only for the power industry, but also for related sectors. One of the particularly sensitive industries in Poland is coal mining, which is the result of coal-based structure of electricity generation. As it is more difficult, in the liberalised market, to burden consumers with all the costs, electricity producers are eager to transfer the risk of operation to the suppliers. That increases uncertainty about the future of the hard coal industry. The aim of this paper was to quantitatively estimate the impact that liberalisation of the electricity markets may have on the coal mining sector in Poland. First of all, the possible areas of that impact were identified. Then the model, which involved detailed relations in the impact areas identified, was developed and employed to evaluate the performance of the mining sector. The comparison of scenarios of a monopolistic electricity sector with a liberalised one enabled an estimation of the scale of the impact on the mining sector to be made. The results showed that liberalisation causes decreased coal consumption and decreased operating profits in coal companies. However, some savings in electricity costs are possible for coal producers. (author)

  3. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Science.gov (United States)

    2010-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  4. Target costing as an element of the hard coal extraction cost planning process

    Directory of Open Access Journals (Sweden)

    Katarzyna Segeth-Boniecka

    2017-09-01

    Full Text Available Target costing as an element of the hard coal extraction cost planning process Striving for the efficiency of activities is of great significance in the management of hard coal extractive enterprises, which are constantly subjected to the process of restructuring. Effective cost management is an important condition of the increase in the efficiency of the researched business entities’ activity. One of the tools whose basic objective is conscious influencing cost levels is target costing. The aim of this article is to analyse the conditions of implementing target costing in the planning of hard coal extraction costs in hard coal mines in Poland. The subject area raises a topical and important problem of the scope of solutions concerning cost analysis in hard coal mines in Poland, which has not been thoroughly researched yet. To achieve the abovementioned aim, the theoretical works of the subject area have been referenced. The mine management process is difficult and requires the application of best suited and most modern tools, including those used in the planning process of hard coal extraction costs in order to support the economic efficiency of mining operations. The use of the target costing concept in the planning of hard coal mine operations aims to support the decision-making process, so as to achieve a specified level of economic efficiency of the operations carried out in a territorially designated site of hard coal extraction.

  5. The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines

    Science.gov (United States)

    Wesseloo, Johan

    2018-06-01

    Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.

  6. Opencast coal mining and site restoration in Britain today

    Energy Technology Data Exchange (ETDEWEB)

    Whitworth, K.

    1981-05-07

    Production of opencast coal in Great Britain totalled around 13 million tons in 1980. Compared with underground coal, average profits are high and production costs low. Opencast mines thus make an important contribution to high-grade coal supply in Great Britain and to the financial situation of the National Coal Board. Former open-cast mines in Great Britain have been restored into leisure and pleasure regions that have become part of the rural scene.

  7. Computer-aided system for fire fighting in an underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, F; Sikora, M; Urbanski, J [Politechnika Wroclawska (Poland). Instytut Gornictwa

    1989-01-01

    Discusses structure of an algorithm for computer-aided planning of fire fighting and rescue in an underground coal mine. The algorithm developed by the Mining Institute of the Wroclaw Technical University consists of ten options: regulations on fire fighting, fire alarm for miners working underground (rescue ways, fire zones etc.), information system for mine management, movements of fire fighting teams, distribution of fire fighting equipment, assessment of explosion hazards of fire gases, fire gas temperature control of blower operation, detection of endogenous fires, ventilation control. 2 refs.

  8. Safety explosives in coal mining. Explosivos de seguridad en la mineria de carbon

    Energy Technology Data Exchange (ETDEWEB)

    (Union Espanola de Explosivos y Rio Blast, S.A., Madrid (Spain))

    1990-06-01

    The use of explosives in underground coal mining is essential for two reasons. The first is the highly resistant nature of the rock surrounding coal which requires explosives to remove it during development work. The second is that certain types of coal need to be blasted in order to achieve a higher output in coal winning operations. This article examines the characteristics, the types and the conditions under which safety or ion exchange explosives are used in underground coal mines where explosive atmospheres are sometimes encountered. 3 tabs. 2 pts.

  9. Interference immunity of blasting circuits in underground coal mining; Zur Stoerfestigkeit von Sprengzuendsystemen im untertaegigen Steinkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiler, C.

    1995-02-14

    Blasting technique with electric detonators is a standard instrument e.g. for drift heading in underground coal mining. The simultaneous increase of compactness and efficiency of electrical devices especially in underground mining calls for a careful consideration of susceptibility problems. As an interference of an inadmissible high level might cause a hazardous ignition limiting values and technical parameters of interference to electrical blasting circuits are evaluated. The sources of interference are classified into communication and power technique devices. Typical interference field strengths are determined by exemplary measurements and a model of wave propagation in underground galleries. An equivalent circuit of the impedance of typical electro-explosive devices used in German coal mining is evaluated and extended by an electro-thermal part based on the `Rosenthal equation`. By this means it is possible to determine a feasible ignition during a simulation using the calculated bridge wire temperature. (orig.) [Deutsch] Fuer den untertaegigen Steinkohlenbergbau ist die Sprengtechnik sowohl im Bereich der Streckenauffahrung als auch beim Schachtabteufen heute noch ein wichtiges Arbeitsinstrument. Dabei wird ausschliesslich die elektrische Zuendung eingesetzt. Durch den Trend zu kompakteren elektrischen Systemen bei gleichzeitiger Leistungssteigerung in Verbindung mit den geringen raeumlichen Abstaenden unter Tage gewinnen Phaenomene der elektromagnetischen Beeinflussung auch im Steinkohlenbergbau an Bedeutung. Eine unzulaessig hohe Beeinflussung des elektrischen Zuendsystems kann eine unerwuenschte Fruehzuendung verursachen. Dieses Gefahrenpotential erfordert eine gesonderte Untersuchung der Stoerfestigkeit elektrischer Zuendsysteme, zumal die Normen fuer den uebertaegigen Sprengbetrieb unter Tage aufgrund der unterschiedlichen Randbedingungen der Ausbreitung elektromagnetischer Wellen nicht uneingeschraenkt angewendet werden koennen. Die Stoerquellen der

  10. Evaluation of ecological consequences of coal mine closure in Kuzbass coal region

    International Nuclear Information System (INIS)

    Schastlivcev, E.L.; Barannic, L.P.; Ovdenko, B.I.; Bykov, A.A.

    2000-01-01

    Kemerovo region (otherwise called Kuzbass) is the most industrially developed and urbanized region of Siberia, Russia. The main industrial branch of Kuzbass is coal output. Open pits and underground mines of Kuzbass produce about 40% of total amount of coal in Russia and more than 70% of coking coal. In the current process of the coal industry's restructuring, the closing of many unprofitable coal enterprises is associated with radical changes in their influence on the environment. The task to provide a probable forecast of ecological consequence of mine closure is both practically significant and complicated. In order to find some scientific approach to solve named problem the authors made in the paper the first attempts to analyze of accessible closed mines data in Kuzbass, to classify coal mines (working and closed) with respect to there negative influence on soil, water and atmosphere and to obtain some numerical estimates of possible bounds of this influence. 7 refs

  11. Evaluation of Rock Bolt Support for Polish Hard Rock Mines

    Science.gov (United States)

    Skrzypkowski, Krzysztof

    2018-03-01

    The article presents different types of rock bolt support used in Polish ore mining. Individual point resin and expansion rock bolt support were characterized. The roof classes for zinc and lead and copper ore mines were presented. Furthermore, in the article laboratory tests of point resin rock bolt support in a geometric scale of 1:1 with minimal fixing length of 0.6 m were made. Static testing of point resin rock bolt support were carried out on a laboratory test facility of Department of Underground Mining which simulate mine conditions for Polish ore and hard coal mining. Laboratory tests of point resin bolts were carried out, especially for the ZGH Bolesław, zinc and lead "Olkusz - Pomorzany" mine. The primary aim of the research was to check whether at the anchoring point length of 0.6 m by means of one and a half resin cartridge, the type bolt "Olkusz - 20A" is able to overcome the load.The second purpose of the study was to obtain load - displacement characteristic with determination of the elastic and plastic range of the bolt. For the best simulation of mine conditions the station steel cylinders with an external diameter of 0.1 m and a length of 0.6 m with a core of rock from the roof of the underground excavations were used.

  12. Protective and control relays as coal-mine power-supply ACS subsystem

    Science.gov (United States)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  13. Experience and prospects of using the pneumatic designs in underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Rakhutin, V.S. [National Mining University of Ukraine, Dnipropetrovsk (Ukraine)

    1999-07-01

    The article reviews the experience of application of pneumatic designs ('flexible shells') in coal mines (pneumatic cogs and supports), ore mines (pneumatic cofferdams and partitions in filling), and in the construction of mines and underground constructions (pneumatic casings, temporary (pilot) supports). 2 refs.

  14. Using underground mine Karst water to solve water supply problem in underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W. [Wanbei Mining Administration (China). Liuqiao No. 2 Mine

    1995-05-01

    There is a very rich karst water resource under the Liuqiao No. 2 underground mine. Under normal mining conditions the drainage is 546 m{sup 3}/h while the maximum drainage is up to 819 m{sup 3}/h. If water inrush occurred from a broken zone of a fault or a sinkhole of the karst, the flow could be up to 3269 m{sup 3}/h. The karst water is of good quality and high in pressure. The water head pressure at -400 m level is about 3.5 MPa. To save mine construction cost, it was decided that the water supply for coal production equipment, mining operation and mine fire control was to be changed from the surface to the underground by drilling a water well to tap the karst water resource. A water well with a depth of 63.3 m was drilled in the -400 m transportation roadway. The diameter of the well is 127 mm and it has a casing pipe with a diameter of 108 mm which is connected to the water supply pipeline. The pressure of the water supply is measured at 23.5 MPa and the water flow rate is 252 m{sup 3}/h. The establishment of the water supply system has achieved great cost saving for Liuqiao No. 2 Mine. 2 figs.

  15. Coal mining in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Mills, L J

    1981-12-01

    In 1959 black coal production in Australia totalled some 21.9 million tonnes per annum, 70% of this being produced from underground mines in the coalfields of New South Wales. By 1980 output levels had increased by nearly 350% to 75.4 million tonnes per annum (54% of which was exported) compared with 5% some 20 years earlier. Because it is blessed with large reserves of coal and other forms of energy, it is inevitable that the Australian coal mining industry will be required to play a major role in the development of the international coal market through to the end of the present century. Experts now predict a need for the black coal output in Australia to be developed from its present level to a minimum of 293 million tonnes per annum by the year 2000. This paper examines the present circumstances in the Australian coal industry and attempts to outline the development which has to be undertaken in order to meet the needs of an energy hungry world.

  16. Hazard mitigation in coal mines

    Science.gov (United States)

    Rashmi, R. V.; Devalal, Shilpa; Jacob, Anjali; Vidhyapathi, C. M.

    2017-11-01

    Today’s world witnesses increased number of mine accidents caused due to explosion and fire. When the methane gas concentration goes high, it causes fire leading to explosion. In this paper, an IoT based system is proposed to ensure safety to the mine workers in underground collieries. The proposed system consists of DHT-11 sensor to monitor the temperature and humidity of coal mines. When the gas sensor detects high methane gas level, blower is activated so that the atmospheric air can be pumped in from outside to dilute the gas concentration. The smoke sensor is also used to detect the fire. In case of any abnormality in any of these parameters the buzzer sounds. All these parameters are uploaded to the cloud directly so that the people at the control station can be well informed of the underground mines.

  17. Coal mining situation in the Federal Republic of Germany. Year 2016

    International Nuclear Information System (INIS)

    2017-01-01

    The paper reports on the coal mining in the Federal Republic of Germany in the year 2016. Statistical data are presented for coal market, brown coal mining as well as the hard coal mining. These data consider the supply and demand of coal in Germany, and employees of the German coal industry.

  18. Coal mining situation in the Federal Republic of Germany. Year 2015

    International Nuclear Information System (INIS)

    2016-01-01

    The paper reports on the coal mining in the Federal Republic of Germany in the year 2015. Statistical data are presented for coal market, brown coal mining as well as the hard coal mining. These data consider the supply and demand of coal in Germany, and employees of the German coal industry.

  19. Automated Coal-Mine Shuttle Car

    Science.gov (United States)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  20. Determination of enrichment processes and radon concentration in underground mines of fluorite and coal in Santa Catarina state: criteria for radiation risk assessment

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendants in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m 3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m 3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the foot wall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m 3 . The inefficiency of the ventilation

  1. Interdependence between natural conditions and mining in causes of landslides in the vicinity of a coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Krajewski, R; Rybicki, S; Palki, J

    1983-01-01

    This paper discusses effects of underground black coal mining in the Rybnik coal region in Upper Silesia on landslides. Geologic structures of a mine situated in the southern section of the Chwalowice trough are analyzed. Several landslides and events which could have influenced them are discussed. The following data on landslides are given: date, season of the year, dimensions and range of a landslide, angle of slope inclination, angle of slope inclination after a landslide, water conditions, type of soil and its mechanical properties. Investigation results are given in 7 tables. Analyses show that only some landslides were caused by underground coal mining and the remaining ones were caused by natural factors. There is a close correlation between landslide number and atmospheric precipitation (between landslides and seasons characterized by a level of atmospheric precipitation far exceeding the average). Landslides are more frequent in the case of slopes with angle of inclination exceeding 30 degrees and under conditions of soils characterized by low stability (cohesion). Underground mining is only a supplementary factor which reduces soil stability and increases water infiltration. (8 refs.)

  2. Preliminary report on LLNL mine seismicity deployment at the Twentymile Coal Mine

    International Nuclear Information System (INIS)

    Walter, W.R.; Hunter, S.L.; Glenn, L.A.

    1996-01-01

    This report summarizes the preliminary results of a just completed experiment at the Twentymile Coal Mine, operated by the Cyprus Amax Coal Company near Oak Creek, CO. The purpose of the experiment was to obtain local and regional seismic data from roof caves associated with long-wall mining activities and to use this data to help determine the effectiveness with which these events can be discriminated from underground nuclear explosions under a future Comprehensive Test Ban Treaty

  3. Management of dry flue gas desulfurization by-products in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H.

    1997-06-01

    Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

  4. Effectiveness of underground coal extraction. Effektivnost' podzemnoy dobychi uglya

    Energy Technology Data Exchange (ETDEWEB)

    Pirskiy, A A

    1982-01-01

    This book examines the possibility of improving the efficiency of underground coal extraction based on the solution to the scientific-technical problem of monitoring and controlling concentration and intensifying mining operations. The problem has been resolved as applied to conditions of working coal fields of the Lvov-Volynskiy basin, West Donbass and other regions which are similar in relation to mining-geological conditions. The main conclusions and recommendations consist of the following: synthesized concept ''concentration of mining operations'' is determined by regulation and concentration, intensification of mining operations by using progressive technology, mechanization and organization of production in order to increase extraction, improve productivity of labor and reduce the net cost of coal. The structure of concentration of mining operations is based on the synthesis of natural, technical and organizational conditions for working coal seams. The problem of monitoring and control of the concentration of mining operations was realized by using the systems method based on the laws of development, principles of comprehensive evaluation and optimization of the level of concentration based on economic-mathematical modeling. The use of the systems approach guarantees a comprehensive solution to the problem. In definite periods of development of the coal industry, between the organizational-technical potentialities, natural conditions and trends determined in the sector for the change in the level of mining operation concentration, disproportions develop. The level of work concentration goes beyond the limits of optimal values, and the effectiveness of coal extraction is reduced. In order to predict and eliminate this phenomenon, it is recommended that the level of mining concentration be controlled.

  5. Application of ERTS-1 imagery to fracture related mine safety hazards in the coal mining industry. [Indiana

    Science.gov (United States)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    The author has identified the following significant results. New fracture detail of Indiana has been observed and mapped from ERTS-1 imagery. Studies so far indicate a close relationship between the directions of fracture traces mapped from the imagery, fractures measured on bedrock outcrops, and fractures measured in the underground mines. First hand observations and discussions with underground mine operators indicate good correlation of mine hazard maps prepared from ERTS-1/aircraft imagery and actual roof falls. The inventory of refuse piles/slurry ponds of the coal field of Indiana has identified over 225 such sites from past mining operations. These data will serve the State Legislature in making tax decisions on coal mining which take on increased importance because of the energy crisis.

  6. The estimation of the number of underground coal miners and normalization collective dose at present in China

    International Nuclear Information System (INIS)

    Liu, Fu-dong; Chen, Lu; Pan, Zi-qiang; Liu, Sen-lin; Chen, Ling; Wang, Chun-hong

    2017-01-01

    Due to the improvement of production technology and the adjustment of energy structure, as well as the town-ownership and private-ownership coal mines (TPCM) were closed or merged by national policy, the number of underground miner has changed comparing with 2004 in China, so collective dose and normalization collective dose in different type of coal mine should be changed at the same time. In this paper, according to radiation exposure by different ventilation condition and the annual output, the coal mines in China are divided into three types, which are named as national key coal mines (NKCM), station-owned local coal mines (SLCM) and TPCM. The number of underground coal miner, collective dose and normalization collective dose are estimated at present base on surveying annual output and production efficiency of raw coal in 2005-2014. The typical total value of the underground coal miners recommended in China is 5.1 million in 2005-2009, and in which there are respectively included 1 million, 0.9 million and 3.2 million for NKCM, SLCM and TPCM. There are total of 4.7 million underground coal miner in 2010-2014, and the respectively number for NKCM, SLCM and TPCM are 1.4 million, 1.2 million and 2.1 million. The collective dose in 2005-2009 is 11 335 man.Sv.y"-"1, and in which there are respectively included 280, 495 and 10 560 man.Sv.y"-"1 for NKCM, SLCM and TPCM. As far as 2010-2014, there are total of 7982 man.Sv.y"-"1, and 392, 660 and 6930 man.Sv.y"-"1 for each type of coal mines. Therefore, the main contributor of collective dose is from TPCM. The normalization collective dose in 2005-2009 is 0.0025, 0.015 and 0.117 man.Sv per 10 kt for NKCM, SLCM and TPCM, respectively. As far as 2010-2014, there are 0.0018, 0.010 and 0.107 man.Sv per 10 kt for each type of coal mines. The trend of normalization collective dose is decreased year by year. (authors)

  7. Simulating the Various Subsystems of a Coal Mine

    Directory of Open Access Journals (Sweden)

    V. Okolnishnikov

    2016-06-01

    Full Text Available A set of simulation models of various subsystems of a coal mine was developed with the help of a new visual interactive simulation system of technological processes. This paper contains a brief description of this simulation system and its possibilities. The main possibilities provided by the simulation system are: the quick construction of models from library elements, 3D representation, and the communication of models with actual control systems. These simulation models were developed for the simulation of various subsystems of a coal mine: underground conveyor network subsystems, pumping subsystems and coal face subsystems. These simulation models were developed with the goal to be used as a quality and reliability assurance tool for new process control systems in coal mining.

  8. Tube bundle system: for monitoring of coal mine atmosphere.

    Science.gov (United States)

    Zipf, R Karl; Marchewka, W; Mohamed, K; Addis, J; Karnack, F

    2013-05-01

    A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine.

  9. Identifying sources of respirable quartz and silica dust in underground coal mines in southern West Virginia, western Virginia, and eastern Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Schatzel, Steven J. [National Institute for Occupational Safety and Health, Pittsburgh Research Laboratory, 626 Cochrans Mill Road, PO Box 18070, Pittsburgh, PA 15236 (United States)

    2009-04-01

    Prior research has suggested that the source of respirable silica dust in underground coal mines is typically the immediate top or bottom lithology adjacent to the mined seam, not mineral matter bound within the mined coal bed. Geochemical analyses were applied in an effort to identify the specific source rock of respirable quartz dust in coal mines. The analyses also demonstrate the compositional changes that take place in the generation of the respirable dust fraction from parent rock material. All six mine sites were mining coal with relatively low mineral matter content, although two mines were operating in the Fire Clay coal bed which contains a persistent tonstein. Interpretations of Ca, Mg, Mn, Na, and K concentrations strongly suggest that the top strata above the mined seam is the primary source of mineral dust produced during mining. One site indicates a mixed or bottom source, possibly due to site specific conditions. Respirable dust compositional analyses suggest a direct relationship between the quantity of mineral Si and the quantity of quartz Si. A similar relationship was not found in either the top or bottom rocks adjacent to the mined seam. An apparent loss of elemental Al was noted in the respirable dust fraction when compared to potential parent rock sources. Elemental Al is present in top and bottom rock strata within illite, kaolinite, feldspar, and chlorite. A possible explanation for loss of Al in the respirable dust samples is the removal of clays and possibly chlorite minerals. It is expected that removal of this portion of the Al bearing mineral matter occurs during rock abrasion and dust transport prior to dust capture on the samplers. (author)

  10. Development of a fire detector for underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.A.; Walsh, P.T.; Hunneyball, S.R.; Williams, M.; Jobling, S.; Pell, B.; West, N.G. [Health and Safety Laboratory, Buxton (United Kingdom)

    2005-07-01

    Current fire detectors in use in UK coal mines, based on semiconductor sensors which detect gaseous products of combustion, are under-utilised, are not user-friendly, have performance limitations due to interferences and are obsolete. A joint research project was therefore instigated to develop an improved fire detector. This paper describes tests performed in an experimental mine roadway on various types of sensor. The sensors were exposed to smouldering conveyor belt, coal, wood, oil and grease, and diesel exhaust fume. A potential advanced detector is based on the combination of blue and infrared optical smoke sensors which distinguish fires and diesel exhaust from coal dust, nitric oxide or nitrogen dioxide sensors to distinguish smoulderi8ng fires form diesel exhaust, and carbon monoxide sensors for general body monitoring. 6 refs., 5 figs.

  11. 77 FR 26046 - Proposed Extension of Existing Information Collection; Ground Control for Surface Coal Mines and...

    Science.gov (United States)

    2012-05-02

    ... Extension of Existing Information Collection; Ground Control for Surface Coal Mines and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for... inspections and investigations in coal or other mines shall be made each year for the purposes of, among other...

  12. Research on and Design of a Self-Propelled Nozzle for the Tree-Type Drilling Technique in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-12-01

    Full Text Available Due to the increasing depths of coal mines and the low permeability of some coal seams, conventional methods of gas drainage in underground mines are facing many problems. To improve gas extraction, a new technique using water jets to drill tree-type boreholes in coal seams is proposed. A self-propelled water-jet drilling nozzle was designed to drill these boreholes. The configuration of the self-propelled nozzle was optimized by conducting drilling experiments and self-propelling force measurements. Experimental results show that the optimal self-propelled nozzle has a forward orifice axial angle at 25°, a radial angle at 90°, a center distance of 1.5 mm, and backward pointing orifices with an axial angle of 25°. The self-propelling force generated by the jets of the nozzle with 30 MPa pump pressure can reach 29.8 N, enough to pull the hose and the nozzle forward without any external forces. The nozzle can drill at speeds up to 41.5 m/h with pump pressures at 30 MPa. The radial angles of the forward orifices improve the rock breaking performance of the nozzle and, with the correct angle, the rock breaking area of the orifices overlap to produce a connecting hole. The diameter of boreholes drilled by this nozzle can reach 35.2 mm. The nozzle design can be used as the basis for designing other self-propelled nozzles. The drilling experiments demonstrate the feasibility of using the tree-type drilling technique in underground mines.

  13. Thermal load at workstations in the underground coal mining: Results of research carried out in 6 coal mines

    Directory of Open Access Journals (Sweden)

    Krzysztof Słota

    2016-08-01

    Full Text Available Background: Statistics shows that almost half of Polish extraction in underground mines takes place at workstations where temperature exceeds 28°C. The number of employees working in such conditions is gradually increasing, therefore, the problem of safety and health protection is still growing. Material and Methods: In the present study we assessed the heat load of employees at different workstations in the mining industry, taking into account current thermal conditions and work costs. The evaluation of energy cost of work was carried out in 6 coal mines. A total of 221 miners employed at different workstations were assessed. Individual groups of miners were characterized and thermal safety of the miners was assessed relying on thermal discomfort index. Results: The results of this study indicate considerable differences in the durations of analyzed work processes at individual workstations. The highest average energy cost was noted during the work performed in the forehead. The lowest value was found in the auxiliary staff. The calculated index of discomfort clearly indicated numerous situations in which the admissible range of thermal load exceeded the parameters of thermal load safe for human health. It should be noted that the values of average labor cost fall within the upper, albeit admissible, limits of thermal load. Conclusions: The results of the study indicate that in some cases work in mining is performed in conditions of thermal discomfort. Due to high variability and complexity of work conditions it becomes necessary to verify the workers’ load at different workstations, which largely depends on the environmental conditions and work organization, as well as on the performance of workers themselves. Med Pr 2016;67(4:477–498

  14. Situation of coal mining in the Federal Republic of Germany. Year 2014

    International Nuclear Information System (INIS)

    2015-01-01

    The paper reports on the coal mining in the Federal Republic of Germany in the year 2014. Statistical data are presented for coal market, brown coal mining as well as the hard coal mining. These data consider the supply and demand of coal in Germany, and employees of the German coal industry.

  15. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-08-01

    Full Text Available In this paper, a wireless sensor network (WSN technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD algorithm with particle swarm optimization (PSO, namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  16. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    Science.gov (United States)

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  17. Model of environmental life cycle assessment for coal mining operations

    Energy Technology Data Exchange (ETDEWEB)

    Burchart-Korol, Dorota, E-mail: dburchart@gig.eu; Fugiel, Agata, E-mail: afugiel@gig.eu; Czaplicka-Kolarz, Krystyna, E-mail: kczaplicka@gig.eu; Turek, Marian, E-mail: mturek@gig.eu

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  18. Model of environmental life cycle assessment for coal mining operations

    International Nuclear Information System (INIS)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-01-01

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500 years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. - Highlights: • A computational LCA model for assessment of coal mining operations • Identification of

  19. Improvements in electric power supply in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Minovskii, Yu.P.; Nabokov, Eh.P.; Savel' ev, G.P.

    1985-01-01

    Reviews measures taken by major coal producing countries to increase output levels. Discusses research carried out into advance design of equipment in FRG, UK, USA and France and proposes establishment of central automatic control of electric power supply system in Soviet mines, improvement in underground power supply equipment, increase in reliability, stabilization of standby capacity in low voltage circuits, maintenance-free electrical equipment, and efficient spare part storage in underground workings. States that introduction of the proposed system (details are given) will ensure that Soviet mines will eventually reach the development level of foreign mines. 2 refs.

  20. Effects of coal mining on ground and surface water quality, Monongalia County, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, R G

    1977-07-01

    Water quality data are compared. Areas disturbed extensively either by surface or underground mining for bituminous coal in Monongalia County, West Virginia yield water of poorer quality than similar terrain which is not so disturbed. Specifically, the disturbed areas yield hard water of the calcium-sulfate or calcium-magnesium-sulfate type which is low in pH, high in iron and aluminum, and which contains trace elements one or more orders of magnitude greater than water from undisturbed terrain. These hard waters differ from the more common type of hard waters in that sulfate rather than bicarbonate is the dominant anion. As such they may provide further insight into factors affecting the relationship between water hardness and cardiovascular disease rates. The necessary additional data are being collected.

  1. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    OpenAIRE

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between t...

  2. Long-hole destress blasting for rockburst control during deep underground coal mining

    Czech Academy of Sciences Publication Activity Database

    Koníček, Petr; Souček, Kamil; Staš, Lubomír; Singh, R.

    -, č. 61 (2013), s. 141-153 ISSN 1365-1609 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : Ostrava - Karvina Coal basin * longwall mining * rockbursts * destress blasting Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 1.424, year: 2013 http://www.sciencedirect.com/science/article/pii/S1365160913000348

  3. Model of environmental life cycle assessment for coal mining operations.

    Science.gov (United States)

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V. (GVSt), Herne (Germany)

    2015-07-01

    International the coal market in 2014 was the first time in a long time in a period of stagnation. In Germany, the coal consumption decreased even significantly, mainly due to the decrease in power generation. Here the national energy transition has now been noticable affected negative for coal use. The political guidances can expect a further significant downward movement for the future. In the present phase-out process of the German hard coal industry with still three active mines there was in 2014 no decommissioning. But the next is at the end of 2015, and the plans for the time after mining have been continued. [German] International war der Markt fuer Steinkohle 2014 erstmals seit langem wieder von einer Stagnation gekennzeichnet. In Deutschland ging der Steinkohlenverbrauch sogar deutlich zurueck, vor allem wegen des Rueckgangs in der Stromerzeugung. Hier hat sich die nationale Energiewende nun spuerbar und fuer die Steinkohlennutzung negativ ausgewirkt. Die politischen Weichenstellungen lassen fuer die Zukunft eine weitere erhebliche Abwaertsbewegung erwarten. Bei dem im Auslaufprozess befindlichen deutschen Steinkohlenbergbau mit noch drei aktiven Bergwerken gab es 2014 keine Stilllegung. Doch die naechste steht zum Jahresende 2015 an, und die Planungen fuer die Zeit nach dem Bergbau sind fortgefuehrt worden.

  5. Hydrologic and water quality characteristics of a partially-flooded, abandoned underground coal mine

    International Nuclear Information System (INIS)

    Aljoe, W.W.

    1994-01-01

    The hydrologic and water quality characteristics of a partially flooded, abandoned underground coal mine near Latrobe, PA, were studied to support the development of techniques for in situ abatement of its acidic discharge. A quantitative understanding of the conditions affecting discharge flow was considered to be very important in this regard. Statistical analysis of hydrologic data collected at the site shows that the flow rate of the main discharge (a borehole that penetrates the mine workings just behind a set of portal seals) is a linear function of the height of the mine pool above the borehole outlet. Seepage through or around the portal seals is collected by a set of french drains whose discharge rate is largely independent of the mine pool elevation. This seepage was enhanced after a breakthrough that occurred during a period of unusually high pool levels. The mine pool recharge rate during winter is about 2.5 times greater than that of any other season; recharge rates during spring, summer, and fall are approximately equal. Mine pool and discharge water quality information, along with bromide tracer tests, suggest that the original main entries discharge primarily to the french drains, while the borehole carries the discharge from an unmonitored set of entries northwest of the mains. The water quality of the east french drain discharge may have been improved substantially after seepage through the alkaline materials used to construct the portal seals

  6. Numerical Study on 4-1 Coal Seam of Xiaoming Mine in Ascending Mining

    Science.gov (United States)

    Tianwei, Lan; Hongwei, Zhang; Sheng, Li; Weihua, Song; Batugin, A. C.; Guoshui, Tang

    2015-01-01

    Coal seams ascending mining technology is very significant, since it influences the safety production and the liberation of dull coal, speeds up the construction of energy, improves the stability of stope, and reduces or avoids deep hard rock mining induced mine disaster. Combined with the Xiaoming ascending mining mine 4-1, by numerical calculation, the paper analyses ascending mining 4-1 factors, determines the feasibility of ascending mining 4-1 coalbed, and proposes roadway layout program about working face, which has broad economic and social benefits. PMID:25866840

  7. Application of Paste Backfill in Underground Coal Fires

    Science.gov (United States)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  8. Assessment of pneumoconiosis hazards associated with mining operations in coal mines. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V; Menyailo, N I; Petul' ko, S N

    1984-07-01

    Methods are discussed for evaluating hazards of pneumoconiosis in underground coal mines. Pneumoconiosis hazards are decisively influenced by: content of respirable dusts in mine air at a working place, dust composition, temperature and time of a miner's contact with dusts. The following classification of pneumoconiosis hazards is used in the USSR: low hazards when a miner is endangered by pneumoconiosis after 20 years or more, medium hazards when pneumoconiosis may occur after 10 to 20 years, high pneumoconiosis hazards when a miner is endangered by pneumoconiosis after less than 10 years of contact with dusts. High air temperature in deep coal mines increases pneumoconiosis hazards: when temperature exceeds 26 C a temperature increase of 1 C causes a 10% increase in dust chemical activity. Safety standards which describe the maximum permissible dust level in coal mine air in the USSR, the FRG, France and Poland are compared.

  9. Strata control in deep coal mines. Control de estratos en tajos subteraneos de la mineria del carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Oyanguren, P.; De la Cuadra, L.

    1985-01-01

    The six chapters cover the following subjects: mining methods used in Spanish coal mines; rock movement and pressure around a longwall face; roof bed study; underground support systems; gas dynamic phenomena; and instrumentation for underground mine monitoring.

  10. Environmental impact of coal mining on the natural environment in Poland

    International Nuclear Information System (INIS)

    Wysocka, M.; Chalupnik, S.; Michalik, B.; Skowronek, J.; Skubacz, K.

    2002-01-01

    Saline waters occurring in underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from uranium series and 228 Ra from thorium series. Approximately 40% of total amount of radium remains underground in a form of radioactive deposits, but 225 MBq of 226 Ra and 400 MBq of 228 Ra are released daily to the rivers with mine effluents. Technical measures as spontaneous precipitation of radium in gobs, decreasing of amounts of water inflows into underground working etc. have been undertaken in several coal mines and as the result total amount of radium released to the surface waters diminished of about 60% during last 5-6 years. Mine waters can cause a severe impact on the natural environment, mainly due to its salinity. But also the enhancement of radium concentration in river waters, bottom sediments and vegetation is observed. Sometimes radium concentration in rivers exceeds 0.7 kBq/m 3 , which is due to Polish law a permissible level for waste waters. The extended investigations were performed in all coal mines and on this basis the radium balance in effluents has been calculated. Measurements done in the vicinity of mine water's settling ponds and in rivers gave us an opportunity to survey radium behaviour in river waters and the range of contamination. Solid waste materials with enhanced natural radioactivity have been produced in huge amounts in power and coal industries in Poland. There are two main sources of these waste products. As a result of combustion of coal in power plants low radioactive waste materials are produced, with 226 Ra concentration seldom exceeding few hundreds of Bq/kg. Different situation is observed in coal mines, where as a result of precipitation of radium from radium-bearing waters radioactive deposits are formed. Sometimes natural radioactivity of such materials is very high, in case of scaling from coal mines radium concentration may reach 400 000 Bq/kg - similar activity as for 3% uranium ore

  11. The determination of methane resources from liquidated coal mines

    Science.gov (United States)

    Trenczek, Stanisław

    2017-11-01

    The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.

  12. Profitability and occupational injuries in U.S. underground coal mines☆

    Science.gov (United States)

    Asfaw, Abay; Mark, Christopher; Pana-Cryan, Regina

    2015-01-01

    Background Coal plays a crucial role in the U.S. economy yet underground coal mining continues to be one of the most dangerous occupations in the country. In addition, there are large variations in both profitability and the incidence of occupational injuries across mines. Objective The objective of this study was to examine the association between profitability and the incidence rate of occupational injuries in U.S. underground coal mines between 1992 and 2008. Data and method We used mine-specific data on annual hours worked, geographic location, and the number of occupational injuries suffered annually from the employment and accident/injury databases of the Mine Safety and Health Administration, and mine-specific data on annual revenue from coal sales, mine age, workforce union status, and mining method from the U.S. Energy Information Administration. A total of 5669 mine-year observations (number of mines × number of years) were included in our analysis. We used a negative binomial random effects model that was appropriate for analyzing panel (combined time-series and cross-sectional) injury data that were non-negative and discrete. The dependent variable, occupational injury, was measured in three different and non-mutually exclusive ways: all reported fatal and nonfatal injuries, reported nonfatal injuries with lost workdays, and the ‘most serious’ (i.e. sum of fatal and serious nonfatal) injuries reported. The total number of hours worked in each mine and year examined was used as an exposure variable. Profitability, the main explanatory variable, was approximated by revenue per hour worked. Our model included mine age, workforce union status, mining method, and geographic location as additional control variables. Results After controlling for other variables, a 10% increase in real total revenue per hour worked was associated with 0.9%, 1.1%, and 1.6% decrease, respectively, in the incidence rates of all reported injuries, reported injuries with lost

  13. In situ monitoring of primary roofbolts at underground coal mines in the USA

    OpenAIRE

    Spearing, A.J.S.; Hyett, A.

    2014-01-01

    Primary roof support represents the first line of defence against rock-related falls of ground in underground mines, and improper utilization or misunderstanding of the applicability and behaviour of primary support can be costly from a safety standpoint. This is a major concern for underground mines, as roof support is the single most costly expense from a mining operational perspective. This is further backed by the evidence that, in the USA, hundreds of injuries and fatalities still occur ...

  14. Application and Development of an Environmentally Friendly Blast Hole Plug for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Donghui Yang

    2018-01-01

    Full Text Available Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.

  15. Comprehensive Technical Support for High-Quality Anthracite Production: A Case Study in the Xinqiao Coal Mine, Yongxia Mining Area, China

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-12-01

    Full Text Available The effective production of high-quality anthracite has attracted increasing global attention. Based on the coal occurrence in Yongxia Mining Area and mining conditions of a coalface in Xinqiao Coal Mine, we proposed a systematic study on the technical support for the production of high-quality anthracite. Six key steps were explored, including coal falling at the coalface, transport, underground bunker storage, main shaft hoisting, coal preparation on the ground, and railway wagon loading. The study resulted in optimized running parameters for the shearers, and the rotating patterns of the shearer drums was altered (one-way cutting was employed. Mining height and roof supporting intensity were reduced. Besides, loose presplitting millisecond blasting and mechanized mining were applied to upgrade the coal quantity and the lump coal production rate. Additionally, the coalface end transloading, coalface crush, transport systems, underground storage, and main shaft skip unloading processes were improved, and fragmentation-prevention techniques were used in the washing and railway wagon loading processes. As a result, the lump coal production rate was maintained at a high level and fragmentation was significantly reduced. Because of using the parameters and techniques determined in this research, high-quality coal production and increased profits were achieved. The research results could provide theoretical guidance and methodology for other anthracite production bases.

  16. Determination of enrichment processes and the concentrations of radon in underground mines of fluorite and coal in Santa Catarina state: criteria for evaluation of radiological risks

    International Nuclear Information System (INIS)

    Santos, Carlos Eduardo Lima dos

    2008-01-01

    The inhalation of radon present in underground mines can imply in the deposition of its descendent in the lungs, which may cause harm to the lungs tissues and induce cancer. Concentration of radon not greater than 500 Bq/m3 in the environment of underground mines is considered to be acceptable internationally and concentrations above 1500 Bq/m3 require protective measures for the miners. The objectives of this research work are to determine the enrichment processes and the concentrations of radon in air, as well as the resulting doses due to the presence of this radionuclide in three underground mines of fluorite and three underground mines of coal in the State of Santa Catarina. The concentration of radon was measured employing two types of detectors of nuclear tracks (SSNTD), the LEXAN and the CR-39. This detection method consists in counting, with the help of a microscope, tracks resulting from the interaction of alpha particles with the film, due to the penetration of Rn-222 in the interior of the detector chamber and its decaying process. Contents of radium in collected samples of rocks, minerals and underground water were determined and compared with the corresponding radon concentration found in the underground air. It was observed that the coal mines showed low concentrations of radon, which can be explained by the low concentration of radium in rocks (sandstones and siltites in the footwall and hang wall) and in the coal that composes the mining environment or, yet still, due to the good ventilation system. The average dose to the workers of the coal mines was estimated as 0.7 mSv/a, value inferior to the limit of 1 mSv/a established by the Brazilian Nuclear Energy Commission (CNEN) for members of the public, and corresponding to a risk of fatal cancer after 50 years of work under this condition of 0.2%. On the other hand, the fluorite mines showed much higher concentrations of radon and superior to 1000 Bq/m3. The inefficiency of the ventilation system

  17. Barrier pillar between production panels in coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Zingano, Andre Cezar; Koppe, Jair Carlos; Costa, Joao Felipe C.L. [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2007-07-01

    The function of the barrier pillar is to protect the mining panel in activity from the abutment load of adjacent mining panels that were mined. In the case of underground mines in Santa Catarina State, the barrier pillar has functioned to protect the main entries of the mine against pillar failure from old mining panels. The objective of this paper is to verify the application of the empirical method to design barrier pillars as proposed by Peng (1986), using numerical simulation following the mining geometry of the coal mines in Santa Catarina State. Two-dimensional numerical models were built taking into account the geometry of the main entries and mining panels for different overburden thickness, and considering the geomechanical properties for the rock mass that forms the roof-pillar-floor system for the Bonito coal vein. The results of the simulations showed that the empirical method to determine the barrier pillar width is valid for the studied coal vein and considered mine geometry. Neither did the pillar at the main entry become overstressed due to adjacent mine panels, nor did the roof present any failure due to stress redistribution. 9 refs., 6 figs., 5 tabs.

  18. Construction and modernization of underground and surface mines. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Burshtein, N M

    1983-12-01

    Development of the Sredazugol' association in Soviet Central Asia from 1976 to 1985 is discussed. From 1976 to 1980 investment in the association amounted to 151 million rubles, 87.5 million of which fell on construction. Major development projects of the 1976-1980 period are reviewed: construction of new mining levels in underground coal mines, development of a number of operating surface mines, modernization of earthmoving and mining equipment, development of mine haulage by locomotives and railroad cars, improving occupational safety in coal mining, increasing slope stability in surface mining, especially in the area of the Atchinsk landslide in the Angren mine. From 1981 to 1985 investment in the Sredazugol' association should amount to 202 million rubles, of which 126 million rubles will be spent on construction. Investment will be 35% higher than in the 1976-1980 period and investment in mine construction 43% higher. The largest development project will be modernization of the Angren surface mine and increasing its targeted coal output from 5.2 Mt/y to 10.3 Mt/y by 1990. Modernization and reconstruction of the Angren mine will be carried out in 2 stages. Coal output of the mine will increase by 1.2 Mt/y in the current 5 year plan (by 1985), and by 3.9 Mt/y in the next 5 year period. Reconstruction and development of the Angren mine will cost approximately 254 million rubles. Mining and earthmoving equipment which will be used in the Angren mine is reviewed: EhRGV-630 bucket wheel excavators, EhSh-10/70 and EhSh-13/50 walking draglines, etc.

  19. Gamma radiation at coal mines and sections

    International Nuclear Information System (INIS)

    Pavlov, I.V.; Kuznetsov, A.T.

    1991-01-01

    The problem of radiation background in coal miner and open pits conditioned by γ-radiation of coals and enclousing rocks containing natural radioactive isotopes ( 40 K, 226 Ra, 232 Th) is analyzed. The data are presented on average content of the above isotopes in coals, hard rocks and earth crest; γ-dose rate in mines and open pits as well as on possible limits and average values of external γ-radiation in mines. It is shown that external γ-radiation is an insignificant factor of radiation hazard in mines and open pits. Systematic monitoring of and accounting for external radiation dose of the personnel are required only in mines where average concentration of 226 Ra exceeds 200 Bqxkg -1 , and that of 232 Th - 150 Bqxkg -1

  20. Recent advances in remote coal mining machine sensing, guidance, and teleoperation

    Energy Technology Data Exchange (ETDEWEB)

    Ralston, J C; Hainsworth, D W; Reid, D C; Anderson, D L; McPhee, R J [CSIRO Exploration & Minerals, Kenmore, Qld. (Australia)

    2001-10-01

    Some recent applications of sensing, guidance and telerobotic technology in the coal mining industry are presented. Of special interest is the development of semi or fully autonomous systems to provide remote guidance and communications for coal mining equipment. The use of radar and inertial based sensors are considered in an attempt to solve the horizontal and lateral guidance problems associated with mining equipment automation. Also described is a novel teleoperated robot vehicle with unique communications capabilities, called the Numbat, which is used in underground mine safety and reconnaissance missions.

  1. Clean coal technology - Study on the pilot project experiment of underground coal gasification

    International Nuclear Information System (INIS)

    Yang Lanhe; Liang Jie; Yu Li

    2003-01-01

    In this paper, the gasification conditions, the gasifier structure, the measuring system and the gasification rationale of a pilot project experiment of underground coal gasification (UCG) in the Liuzhuang Colliery, Tangshan, are illustrated. The technique of two-phase underground coal gasification is proposed. The detection of the moving speed and the length of the gasification working face is made using radon probing technology. An analysis of the experiment results indicates that the output of air gas is 3000 m 3 /h with a heating value of about 4.18 MJ/m 3 , while the output of water gas is 2000 m 3 /h with a heating value of over 11.00 MJ/m 3 , of which H 2 content is above 40% with a maximum of 71.68%. The cyclical time of two-phase underground gasification is 16 h, with 8 h for each phase. This prolongs the time when the high-heating value gas is produced. The moving speed of the gasification working face in two alternative gasifiers is identified, i.e. 0.204 and 0.487 m/d, respectively. The success of the pilot project experiment of the underground gasification reveals the strides that have been made toward the commercialization of the UCG in China. It also further justifies the reasonability and feasibility of the new technology of long channel, big section, two-phase underground gasification. A conclusion is also drawn that the technology of the pilot project experiment can be popularized in old and discarded coal mines

  2. Key Technologies and Applications of Gas Drainage in Underground Coal Mine

    Science.gov (United States)

    Zhou, Bo; Xue, Sheng; Cheng, Jiansheng; Li, Wenquan; Xiao, Jiaping

    2018-02-01

    It is the basis for the long-drilling directional drilling, precise control of the drilling trajectory and ensuring the effective extension of the drilling trajectory in the target layer. The technology can be used to complete the multi-branch hole construction and increase the effective extraction distance of the coal seam. The gas drainage and the bottom grouting reinforcement in the advanced area are realized, and the geological structure of the coal seam can be proved accurately. It is the main technical scheme for the efficient drainage of gas at home and abroad, and it is applied to the field of geological structure exploration and water exploration and other areas. At present, the data transmission method is relatively mature in the technology and application, including the mud pulse and the electromagnetic wave. Compared with the mud pulse transmission mode, the electromagnetic wave transmission mode has obvious potential in the data transmission rate and drilling fluid, and it is suitable for the coal mine. In this paper, the key technologies of the electromagnetic wave transmission mode are analyzed, including the attenuation characteristics of the electromagnetic transmission channel, the digital modulation scheme, the channel coding method and the weak signal processing technology. A coal mine under the electromagnetic wave drilling prototype is developed, and the ground transmission experiments and down hole transmission test are carried out. The main work includes the following aspects. First, the equivalent transmission line method is used to establish the electromagnetic transmission channel model of coal mine drilling while drilling, and the attenuation of the electromagnetic signal is measured when the electromagnetic channel measured. Second, the coal mine EM-MWD digital modulation method is developed. Third, the optimal linear block code which suitable for EM-MWD communication channel in coal mine is proposed. Fourth, the noise characteristics

  3. Prevalence and Associated Factors of Depressive Symptoms among Chinese Underground Coal Miners

    Directory of Open Access Journals (Sweden)

    Li Liu

    2014-01-01

    Full Text Available Although underground coal miners are quite susceptible to depressive symptoms due to a highly risky and stressful working environment, few studies have focused on this issue. The purpose of the study was to evaluate the prevalence of depressive symptoms and to explore its associated factors in this population. A cross-sectional survey was conducted in a coal-mining population in northeast China. A set of self-administered questionnaires was distributed to 2500 underground coal miners (1,936 effective respondents. Depressive symptoms, effort-reward imbalance (ERI, overcommitment (OC, perceived physical environment (PPE, work-family conflict (WFC, and some demographic and working characteristics were measured anonymously. The prevalence of depressive symptoms was 62.8%, and the mean level was 20.00 (9.99. Hierarchical linear regression showed that marital status, education, monthly income, and weekly working time were significantly associated with depressive symptoms. A high level of depressive symptoms was significantly associated with high ERI, PPE, WFC, and OC. Accordingly, most Chinese underground coal miners probably have depressive symptoms that are mainly predicted by some occupational psychosocial factors. Efforts should be made to develop strategies to reduce ERI and OC, improve physical working environment, and care for workers’ family well-being, thereby mitigating the risk of depression among Chinese underground coal miners.

  4. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  5. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.

    Science.gov (United States)

    Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E

    2017-09-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

  6. Analytical study on U/G coal mine CPT and inferences

    Energy Technology Data Exchange (ETDEWEB)

    Dey, N.C.; Mukhopadhyay, S. [Bengal Engineering College, Howrath (India). Dept. of Mining and Geology

    1999-08-01

    The analytical aspects of underground CPT (coal mine cost per tonne), which varies from mine to mine due to the different weightages of various contributing factors, are described. The CPT is not only dictated by the increasing wages but also by the availability of man-hour and accountability of machine utilization. An optimal blend of labour-intensive and machine-intensive methods involving least investment and operating cost, is a challenge for the coal industry. Technology upgradation and implementation, higher skill and morale, excellence in planning and monitoring, optimization in capacity utilization, and better consumer acceptability of coal will consistently improve the financial health of the coal mining sector. Other factors which will help improve the financial health of coal mining industries are (1) cost propaganda like safety week celebration; (2) cost consciousness at all levels; (3) noticeboard comprising the cost of man-hour and machine- hour; (4) no idle time for men as well as machine; (5) care to increase the life of machines; (6) scope of target amendment in a year; (7) prior to introducing costly machines, due weightage to be given on coal grade, mine life, geo-mining conditions; and (8) award to most economic mine and punishment to others rated below the BEP (break- even point). 2 refs., 3 figs.

  7. Fast and safe gas detection from underground coal fire by drone fly over

    International Nuclear Information System (INIS)

    Dunnington, Lucila; Nakagawa, Masami

    2017-01-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. - Graphical abstract: Concluding Figure for Gas Ratios: Plotted points and ranges of adjusted literature data. Stars represent bituminous and subbituminous coal types; Ovals represent lignite. - Highlights: • Recognize underground coal fire as a potential source of energy. • Developed a creative, safe, reliable and fast gas detection method. • Developed a concept of gas ratio measurement method that can provide more accurate description of underground burning coal resource.

  8. Development of brown coal mining in the Federal Republic of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Tilmann, W

    1985-01-01

    The significance of brown coal mining in the Federal Republic of Germany for the development of opencast technology and the power industry is discussed with emphasis on mining in the Rhineland Area. In 1984, 126.7 mt of brown coal were produced in the Federal Republic of Germany. In the development of high-performance equipment it is essential that the efficiency of the bucket-wheel excavator is increased. Trains and conveyors are mainly used for mine transport in the Federal Republic of Germany. A high moral commitment is linked to land claims, recultivation and environmental issues on the part of brown coal mining. In 1984 the percentage share of brown coal supplied to the public power stations was 83.6%, corresponding to 105.9 mt. The installed capacity of all brown coal power stations amounted to 12,764 MW at the end of 1984, providing around one quarter of overall public power output. Charge coal for coal refining has become more important and the production of brown coal dust and brown coal coke has also increased. The share of brown coal in domestic primary energy production is currently around 24% of 151 mt hard-coal units or around 10% of 376.5 mt hard-coal units in terms of energy consumption. 12 references.

  9. Polymers for combatting sudden outbursts in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiev, G P; Sukhanov, V V

    1988-02-01

    Describes investigations in coal mines in the Donetsk basin (hazardous because of the high methane presence, the risk of outbursts of coal and gas, underground fires and the high dust levels) with the aim of studying the toxic emissions of formaldehyde and methanol produced when a urea formaldehyde resin binder is applied to the coal seam. The measurements taken led to the following recommendations: the amount of free formaldehyde in the binder should be limited to 0.5%; the use of concentrated (50%) solutions should be limited to 10 l per ton of coal in areas where there are geologic faults; underground workings need ventilation of at least 200 m/sup 3//min; the binder should be introduced to the borehole separately from the water and hardener; individual protection measures and wet dusting should be used during coal extraction; a period of not less than 4 months should elapse between application of the resin and commencement of coal extraction; there should be at least 80 m between the point where the binder is applied and the coal face.

  10. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    Science.gov (United States)

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events. Copyright © 2013. Published by Elsevier Ltd.

  11. Developments in the application of underground battery vehicles in the UK coal mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Fortune, J A.B.; Crawshaw, S A.M. [Long-Airdox International Ltd. (United Kingdom)

    1996-10-01

    Trackless battery powered haulage vehicles have been in operation in British coal mines principally for longwall face transfer and personnel transportation. Changes within the industry have resulted in the introduction of room and pillar coal mining methods and the introduction of increasingly heavier longwall roof supports. This has resulted in the introduction of: battery powered coal haulage machines, which, without the need for trailing cables, increase productivity within room and pillar mining; and battery powered longwall shield haulers which are capable of carrying the heaviest shield supports currently being utilised within the British coal mining industry. The conventional machines have been adapted from an American design to meet the requirements of European legislation. This has seen the emphasis being placed upon the supplier with the European Machinery Directive being introduced, necessitating the assigning of a `CE` mark to each vehicle. Battery vehicle technology has advanced to meet the demands of the ever changing market and will no doubt be further adapted to meet the requirement of the British coal mining industry. 1 ref., 12 figs., 3 tabs.

  12. The Video Collaborative Localization of a Miner's Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines.

    Science.gov (United States)

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-09-29

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner's lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner's lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner's lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner's lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels.

  13. Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1994--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chugh, Y.P.; Dutta, D.; Esling, S. [and others

    1995-10-01

    On September 30, 1993, the U.S. Department of Energy-Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues (CCBs) in abandoned coal mines, and will assess the environmental impact of such underground CCB placement. This report describes progress in the following areas: environmental characterization, mix development and geotechnical characterization, material handling and system economics, underground placement, and field demonstration.

  14. Fast and safe gas detection from underground coal fire by drone fly over.

    Science.gov (United States)

    Dunnington, Lucila; Nakagawa, Masami

    2017-10-01

    Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A case of slope slide induced by underground coal mining - analysis for landslide genesis in Hancheng power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xun, Gu

    1988-01-01

    The Hancheng power plant landslide is a super-scale landslide, which consists of 7 landslides of various sizes. Among them the volume of No. 6 landslide is up to 10,000,000 m/sup 3/. The serious deformations and damages of power plant buildings have been caused by landslide. At present, the landslide is in a condition of slow deformation and creeping. Since the slope angle (30 degrees - 20 degrees) and dip (6 degrees - 8 degrees) of the rock formations are quite gentle, therefore, its movement should be slow all the time and no rapid slipping will occur. The characteristics of the No. 6 landslide mainly are the focus of the analysis and discussion in this paper. The landslide is transformed from the rock formation slipping of slope induced by coal mining beneath Hengshan slope. In this paper, the relationships between occurrence of the landslide and underground coal mining are analysed and proved in detail, and the problems, which should be paid attention to in harnessing the landslide, are put forward. 10 figs.

  16. Optimizing wireless LAN for longwall coal mine automation

    Energy Technology Data Exchange (ETDEWEB)

    Hargrave, C.O.; Ralston, J.C.; Hainsworth, D.W. [Exploration & Mining Commonwealth Science & Industrial Research Organisation, Pullenvale, Qld. (Australia)

    2007-01-15

    A significant development in underground longwall coal mining automation has been achieved with the successful implementation of wireless LAN (WLAN) technology for communication on a longwall shearer. WIreless-FIdelity (Wi-Fi) was selected to meet the bandwidth requirements of the underground data network, and several configurations were installed on operating longwalls to evaluate their performance. Although these efforts demonstrated the feasibility of using WLAN technology in longwall operation, it was clear that new research and development was required in order to establish optimal full-face coverage. By undertaking an accurate characterization of the target environment, it has been possible to achieve great improvements in WLAN performance over a nominal Wi-Fi installation. This paper discusses the impact of Fresnel zone obstructions and multipath effects on radio frequency propagation and reports an optimal antenna and system configuration. Many of the lessons learned in the longwall case are immediately applicable to other underground mining operations, particularly wherever there is a high degree of obstruction from mining equipment.

  17. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    OpenAIRE

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Fi...

  18. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    Science.gov (United States)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  19. Optimal location of emergency stations in underground mine networks using a multiobjective mathematical model.

    Science.gov (United States)

    Lotfian, Reza; Najafi, Mehdi

    2018-02-26

    Background Every year, many mining accidents occur in underground mines all over the world resulting in the death and maiming of many miners and heavy financial losses to mining companies. Underground mining accounts for an increasing share of these events due to their special circumstances and the risks of working therein. Thus, the optimal location of emergency stations within the network of an underground mine in order to provide medical first aid and transport injured people at the right time, plays an essential role in reducing deaths and disabilities caused by accidents Objective The main objective of this study is to determine the location of emergency stations (ES) within the network of an underground coal mine in order to minimize the outreach time for the injured. Methods A three-objective mathematical model is presented for placement of ES facility location selection and allocation of facilities to the injured in various stopes. Results Taking into account the radius of influence for each ES, the proposed model is capable to reduce the maximum time for provision of emergency services in the event of accident for each stope. In addition, the coverage or lack of coverage of each stope by any of the emergency facility is determined by means of Floyd-Warshall algorithm and graph. To solve the problem, a global criterion method using GAMS software is used to evaluate the accuracy and efficiency of the model. Conclusions 7 locations were selected from among 46 candidates for the establishment of emergency facilities in Tabas underground coal mine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Coal mining in the power industry of the Federal Republic of Germany in 2016

    International Nuclear Information System (INIS)

    2017-11-01

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2016. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  1. Coal mining in the power industry of the Federal Republic of Germany in 2015

    International Nuclear Information System (INIS)

    2016-11-01

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2015. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  2. Analysis on the Initial Cracking Parameters of Cross-Measure Hydraulic Fracture in Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2015-07-01

    Full Text Available Initial cracking pressure and locations are important parameters in conducting cross-measure hydraulic fracturing to enhance coal seam permeability in underground coalmines, which are significantly influenced by in-situ stress and occurrence of coal seam. In this study, stress state around cross-measure fracturing boreholes was analyzed using in-situ stress coordinate transformation, then a mathematical model was developed to evaluate initial cracking parameters of borehole assuming the maximum tensile stress criterion. Subsequently, the influences of in-situ stress and occurrence of coal seams on initial cracking pressure and locations in underground coalmines were analyzed using the proposed model. Finally, the proposed model was verified with field test data. The results suggest that the initial cracking pressure increases with the depth cover and coal seam dip angle. However, it decreases with the increase in azimuth of major principle stress. The results also indicate that the initial cracking locations concentrated in the second and fourth quadrant in polar coordinate, and shifted direction to the strike of coal seam as coal seam dip angle and azimuth of maximum principle stress increase. Field investigation revealed consistent rule with the developed model that the initial cracking pressure increases with the coal seam dip angle. Therefore, the proposed mathematical model provides theoretical insight to analyze the initial cracking parameters during cross-measure hydraulic fracturing for underground coalmines.

  3. A study of trends in occupational risks associated with coal mining

    International Nuclear Information System (INIS)

    Amoudru, C.

    1980-01-01

    The coal industry is well known as a major source of specific types of risk and harmful effects including, for instance, harm to the environment, pollution from various surface installations and hazards associated with the actual task of mining. We shall confine our attention to the third group and discuss only the occupational risks facing miners and ex-miners. Unlike the nuclear and oil industries, coal-mines employ very large work-forces, and the risks associated with mining therefore have a considerable impact. Mining is also a highly integrated industry: a mine's own work-force carries out all the underground engineering work (preparatory excavations, installation work, etc.) as well as maintenance. In this narrow field, a distinction should immediately be drawn between two main areas: industrial accidents; and occupational diseases, which include silicosis or, more precisely, coal-miner's pneumoconiosis

  4. Underground coal mine air quality in mines using disposable diesel exhaust filter control devices

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.H.; Johnson, J.H.; Bagley, S.T.; Gratz, L.D. [Michigan Technological University, Houghton, MI (United States). Dept. of Mining Engineering

    1996-07-01

    As part of a collaborative study with the US Bureau of Mines, in-mine studies have been conducted to assess the effects of a low temperature disposable diesel exhaust filter. The mines have been designed as mines R and S in US Bureau of Mines publications. Each mine operated three to four Jeffrey 4110 ramcar haulage vehicles in the test section. The ramcars were equipped with MWM D916-6 diesel engines, rated at 74.6 kW (100 hp), and were operated for 3 days with the disposal diesel exhaust filter and 2 days without in both mines. Average diesel particulate matter control efficiencies, as measured by samplers located on the coal haulage vehicle, were 80% in mine R and 76% in mine S. Diesel particulate matter average control efficiencies, as measured in the diesel engine tailpipe, were 52% for mine R (for two ramcar vehicles) and 86% for mine S (for four ramcar vehicles). The air quality index control efficiencies, as measured by samplers located on the coal haulage vehicle were 48% in mine R and 51% in mine S. The exhaust quality index control efficiencies from tailpipe measurements were 45% for mine R and 63% for mine S. As measured by a high volume sampler in mine S, diesel particulate matter and associated organics and mutagenic activity were reduced approximately 50% with the use of the disposal diesel exhaust filter. Similar results were found with modified personal samplers in mine R. Little effect was found on relative removal of semivolatile organics. The disposal diesel exhaust filter resulted in about a 50% reduction in the most volatile polynuclear hydrocarbons; however, there appeared to be little effect on the less volatile polynuclear hydrocarbons. The disposable diesel exhaust filter appears to be very effective in reducing the levels of all the diesel exhaust particulate components, while having minor effects on the relative breakdown of the individual components of the particulate. 30 refs., 13 figs., 4 tabs.

  5. Characterization and effectiveness of remining abandoned coal mines in Pennsylvania

    International Nuclear Information System (INIS)

    Hawkins, J.W.

    1995-01-01

    Under an approved remining program, mine operators can remine abandoned coal mines without assuming legal responsibility for treatment of the previously degraded water, as long as the discharging waters are not further degraded and other regulatory requirements are satisfied. A US Bureau of Mines review of 105 remining permits in Pennsylvania indicates that remining results in substantial reclamation of abandoned mine lands, utilization of significant quantities of coal, and reduction of contaminant loads (acidity and iron) from degraded mine drainage discharges. Normality tests performed on the water quality and flow data indicate generally nonnormal distributions and extreme right-skewness tending toward lower values. The water quality of underground coal mines was observed to be more highly degraded in terms of acidity, iron, and sulfate than that of surface coal mines. The optimum baseline sampling scenario is 12 months in duration at a frequency of one sample per month. Analysis of water quality and flow rates before and after remining indicates that a majority of the mines exhibited either no change or a significant decrease in pollution rate because of remining. The discharge flow rate was the dominant controlling factor when the post-remining contaminant load was significantly better or worse than the baseline (pre-mining) load

  6. Mine water management. Modification of the mine water management in the Ruhr district within the decommissioning of the hard coal mining; Grubenwasserhaltung. Aenderung der Grubenwasserhaltung im Ruhrrevier im Zuge der Stilllegung des Steinkohlenbergbaues

    Energy Technology Data Exchange (ETDEWEB)

    Terwelp, Tassilo [Bezirksregierung Arnsberg, Dortmund (Germany). Dezernat 63 - Zentrale Grubenwasserhaltung, Grubenwassernstieg, Schachtverfuellung

    2013-03-15

    Within the so-called Legacy Agreement regarding the overcoming of the burdens in perpetuity of the coal mining of the RAG AG (Herne, Federal Republic of Germany), the Federal States North Rhine-Westphalia (Federal Republic of Germany) and Saarland (Federal Republic of Germany) as well as the RAG Foundation (Essen, Federal Republic of Germany) have regulated the mine water drainage in the decommissioning of the mines. Under this aspect, the department 'Mining and energy in NRW' of the district government Arnsberg (Federal Republic of Germany) as the mining authority increasingly is concerned with the topic mine water in the Ruhr district. In this context, the district government Arnsberg is responsible for an organized mine water control after the withdrawal of the hard coal mining. The main aims of this are the protection of the surface area being mined and mine safety aspects. As part of the withdrawal from the deposit, the rise of the mine water level has to be planned and controlled carefully in order to avoid adverse impacts at the surface of the area to be mined.

  7. Behaviour of radium isotopes released with brines and sediments from coal mines in Poland

    International Nuclear Information System (INIS)

    Wysocka, M.; Chalupnik, S.; Mielnikow, A.; Lebecka, J.; Skubacz, K.

    1998-01-01

    Saline waters occurring in underground coal mines in Poland often contain natural radioactive isotopes, mainly 226 Ra from uranium series and 228 Ra from thorium series. Approximately 40% of total amount of radium remains underground in a form of radioactive deposits, but 225 MBq of 226 Ra and 380 MBq of 228 Ra are released daily to the rivers with mine effluents. Technical measures as spontaneous precipitation of radium in gobs, decreasing of amounts of water inflowing into underground working etc. have been undertaken in several coal mines and in the result total amount of radium released to the surface waters diminished by about 60% during last 5-6 years. Mine waters can cause a severe impact on the natural environment. The enhancement of radium concentration in river waters, bottom sediments and vegetation is observed. Sometimes radium concentration in rivers exceeds 0.7 kBq/m 3 , which is due to Polish law a permissible level for liquid radioactive waste. It was necessary to undertake investigations for development the methods of the purification of mine waters from radium. The radium balance in effluents has been calculated and a map of radioactive contamination of river waters have been prepared. Solid wastes with enhanced natural radioactivity have been produced in huge amounts in energy and coal industries in Poland. There are two main sources of these waste products. As a result of combustion of coal in power plants low radioactive waste materials are produced, with 226 Ra concentration seldom exceeding few hundreds of Bq/kg. Different situation is be observed in coal mines, where as a result of precipitation of radium from radium-bearing waters radioactive deposits are formed. Sometimes natural radioactivity of such materials is very high, in case of scaling from coal mines radium concentration may reach 4x10 5 Bq/kg - similar activity as for 3% uranium ore. Therefore maintenance of solid waste with technologically enhanced natural radioactivity (TENR

  8. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Kaiming You

    2015-09-01

    Full Text Available Based on wireless multimedia sensor networks (WMSNs deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels.

  9. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    Science.gov (United States)

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-01-01

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels. PMID:26426023

  10. The three-dimensional shapes of underground coal miners' feet do not match the internal dimensions of their work boots.

    Science.gov (United States)

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2018-04-01

    Mining work boots provide an interface between the foot and the ground, protecting and supporting miners' feet during lengthy coal mining shifts. Although underground coal miners report the fit of their work boots as reasonable to good, they frequently rate their boots as uncomfortable, suggesting that there is a mismatch between the shape of their feet and their boots. This study aimed to identify whether dimensions derived from the three-dimensional scans of 208 underground coal miners' feet (age 38.3 ± 9.8 years) differed from the internal dimensions of their work boots. The results revealed underground coal miners wore boots that were substantially longer than their feet, possibly because boots available in their correct length were too narrow. It is recommended boot manufacturers reassess the algorithms used to create boot lasts, focusing on adjusting boot circumference at the instep and heel relative to increases in foot length. Practitioner Summary: Fit and comfort ratings suggest a mismatch between the shape of underground coal miners' feet and their boots exists. This study examined whether three-dimensional scans of 208 miners' feet differed from their boot internal dimensions. Miners wore boots substantially longer than their feet, possibly due to inadequate width.

  11. Development and application of the Safe Performance Index as a risk-based methodology for identifying major hazard-related safety issues in underground coal mines

    Science.gov (United States)

    Kinilakodi, Harisha

    The underground coal mining industry has been under constant watch due to the high risk involved in its activities, and scrutiny increased because of the disasters that occurred in 2006-07. In the aftermath of the incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address the various issues related to a safe working environment in the mines. Risk analysis in any form should be done on a regular basis to tackle the possibility of unwanted major hazard-related events such as explosions, outbursts, airbursts, inundations, spontaneous combustion, and roof fall instabilities. One of the responses by the Mine Safety and Health Administration (MSHA) in 2007 involved a new pattern of violations (POV) process to target mines with a poor safety performance, specifically to improve their safety. However, the 2010 disaster (worst in 40 years) gave an impression that the collective effort of the industry, federal/state agencies, and researchers to achieve the goal of zero fatalities and serious injuries has gone awry. The Safe Performance Index (SPI) methodology developed in this research is a straight-forward, effective, transparent, and reproducible approach that can help in identifying and addressing some of the existing issues while targeting (poor safety performance) mines which need help. It combines three injury and three citation measures that are scaled to have an equal mean (5.0) in a balanced way with proportionate weighting factors (0.05, 0.15, 0.30) and overall normalizing factor (15) into a mine safety performance evaluation tool. It can be used to assess the relative safety-related risk of mines, including by mine-size category. Using 2008 and 2009 data, comparisons were made of SPI-associated, normalized safety performance measures across mine-size categories, with emphasis on small-mine safety performance as compared to large- and

  12. A Critical Study on the Underground Environment of Coal Mines in India-an Ergonomic Approach

    Science.gov (United States)

    Dey, Netai Chandra; Sharma, Gourab Dhara

    2013-04-01

    Ergonomics application on underground miner's health plays a great role in controlling the efficiency of miners. The job stress in underground mine is still physically demanding and continuous stress due to certain posture or movement of miners during work leads to localized muscle fatigue creating musculo-skeletal disorders. A good working environment can change the degree of job heaviness and thermal stress (WBGT values) can directly have the effect on stretch of work of miners. Out of many unit operations in underground mine, roof bolting keeps an important contribution with regard to safety of the mine and miners. Occupational stress of roof bolters from ergonomic consideration has been discussed in the paper.

  13. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Science.gov (United States)

    2010-07-01

    ...-voltage equipment supplying power to such equipment receiving power from resistance grounded systems shall... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage...

  14. Diesel aftertreatment control technologies in underground mines : the NO{sub 2} issue

    Energy Technology Data Exchange (ETDEWEB)

    Cauda, E.G.; Bugarski, A.D.; Patts, L. [National Inst. for Occupational Safety and Health, Pittsburgh, PA (United States). Office of Mine Safety and Health Research

    2010-07-01

    Diesel engines are the main source of exposure for underground miners to nitric oxide (NO) and nitrogen dioxide (NO{sub 2}). The exposure of underground miners to both these pollutants is regulated by the Mine Safety and Health Administration. Improvements have been made in mine ventilation in an attempt to meet more stringent emission limits. In coal mines in the United States, the exposure limits of underground miners to pollutant concentrations determine the ventilation rate specific for certified diesel engines. The ventilation rates are based on the amount of fresh air needed to dilute CO, CO{sub 2}, NO, NO{sub 2} in the undiluted exhaust gas to the threshold limit values (TLV). This presentation described the other options available to mine operators to reduce diesel particulate matter emissions. More advanced engine technologies, aftertreatment control strategies and the use of biodiesel fuels can reduce the mass concentrations of diesel particulate matter (DPM). However, these strategies can also alter tailpipe emissions of NO{sub 2} and an increase in ventilation rate may be required if the concentration of NO{sub 2} exceeds the regulatory enforced limit. The effects of different exhaust aftertreatment technologies were reviewed in this presentation along with ventilation control strategies for underground mining. 43 refs., 3 figs.

  15. Determination of radon and progeny concentrations in Brazilian underground mines

    International Nuclear Information System (INIS)

    Fraenkel, Mario O.; Gouvea, Vandir de Azevedo; Macacini, Jose F.; Cardozo, Katia; Carvalho Filho, Carlos A. de; Lima, Carlos E.

    2008-01-01

    The aim of this work is to present the activities related to the determination of radon and progeny concentrations in underground mines in Brazil. Radon is originated from decay of radium-226 and radium-228 present in rocks. Radon and its short-lived progeny can be retained in the workers pulmonary alveoli, and this way they bring about cancer risk to these mining professionals. The occurrence of high radon concentrations in underground coal and copper mines and the lack of systematic survey motivated CNEN, the regulatory agency, to develop the Radon Project, aiming to aid the formulation of a specific regulation with occupational dose limits consistent with international standards recommended by the International Atomic Energy Agency (IAEA). Dozens of underground mines are currently in operation in the national. It had to be noted that about 50% of these mines are located in Minas Gerais province, and for this reason it was chosen to start the Project. In each underground mine it is installed in selected points passive nuclear track etch radon detectors, type LEXAN and Cr-39, for periods from three to five months. It was also made local measurements with Dose Man Pro detectors from SARAD. The points are chosen according to geological features, radiometric activity and characteristics of prospect development. The determination of radon present in mines has been made in IEN (Nuclear Engineering Institute)/Rio de Janeiro-RJ, LAPOC (Pocos de Caldas Laboratory)/Pocos de Caldas-MG e ESPOA (Porto Alegre Office)/Porto Alegre-RS. Until now it was visited about 35 mines in a universe of about 50 mines, from which 20% showed concentration values higher than international limits (ICRP 65), between 500 and 1500 Bq.m -3 . (author)

  16. Application of fractal theory to top-coal caving

    International Nuclear Information System (INIS)

    Xie, H.; Zhou, H.W.

    2008-01-01

    The experiences of underground coal mining in China show that coal in a thick hard coal seam with a hard roof, the so-called 'double hard coal seam', is difficult to be excavated by top-coal caving technique. In order to solve the problem, a top-coal weakening technique is proposed in this paper. In the present study, fractal geometry provides a new description of the fracture mechanism for blasting. By means of theoretical analysis of the relationship between the fractal dimension of blasting fragments and the dynamite specific energy, a mechanical model for describing the size distribution of top-coal and the dissipation of blasting energy is proposed. The theoretical results are in agreement with laboratory and in situ test results. Moreover, it is shown that the fractal dimension of coal fragments can be used as an index for optimizing the blasting parameters for a top-coal weakening technique

  17. Alternative utilization of underground spaces with abandoned mine openings

    Energy Technology Data Exchange (ETDEWEB)

    Chung, So Keul; Cho, Won Jai; Han, Kong Chang; Choi, Sung Oong [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Utilization of the openings of the abandoned mines could be planned by the principal parameters such as location and geotechnical impact. The local governments have not only to lead the each stage of the utilization project from the very beginning of conceptual design up to the construction stage, but also to promote the project for the development of public purpose. The possible tentative candidates for the utilization of the abandoned mine openings which are supported by the local governments could be summarized as follows. a. The Gahak mine of Kwangmyung, Kyunggi: The mine caverns which have been served as the storage of the pickled fishes, could be reexcavated by taking into consideration the geotechnical parameters for the public use such as: 1) Training center for the youth, 2) Fermentation and storehouse of marine products, 3) Sightseeing resort, 4) Sports and leisure complex, 5) Underground parking lot, 6) Underground shopping mall and chilled room storage, 7) Library, concert hall and museum. b. Hamtae mine of Taebaek, Kangwon: The Hambaek main haulage way and its shaft should be investigated in detail in order to find out a possible use as the underground challenging park of the coal mining operation. c. Mines of Boryung and Hongsung, Chungnam: Lots of mine caverns have been used as the storehouse for the pickled shrimp. However, they have to be promoted to a large scale industries. d. Imgok mine of Kwangju and Palbong mine of Jeongeup, Chunbuk: Mine caverns which have been used as the storehouse of pickles, need a detailed investigation for alternative promotion. e. Yongho mine of Pusan Dalsung mine of Taegu: Both of the mines are located near metropolitan communities. Reconstruction of the old mine caverns of the Yongho mine is highly recommended for a public use. The caverns of the Dalsung mine could be utilized as the storage facilities. Detailed geotechnical survey and sit investigation could be suggested to design the recommended facilities for both

  18. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  19. Auxiliary mine ventilation manual

    Energy Technology Data Exchange (ETDEWEB)

    Workplace Safety North

    2010-07-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  20. Coal mining situation in the Federal Republic of Germany. 1st half of 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The report on coal mining in Germany contains statistical data on the following issues: (a) Hard coal mining: part 1: production, resources, performance, employees; part 2: marketing and foreign commerce. (b) brown coal: part 1: production, resources, performance, employees; part II: marketing in domestic and foreign commerce.

  1. Purification of mine water of radium - The implementation of the technology in a coal mine

    International Nuclear Information System (INIS)

    Chalupnik, S.

    2002-01-01

    In underground coal mines in the Upper Silesian Coal Basin there are inflows of highly mineralised waters containing radium isotopes. These waters cause radioactive pollution of the natural environment in mining areas. Therefore cleaning of saline waters of radium is very important. Two types of radium-bearing waters were distinguished - one type containing radium and barium ions, but no sulphates (type A) and another one in which radium and sulphate ions are present but no barium (type B). A very efficient and inexpensive method of purification of saline waters, of Ba 2+ and Ra 2+ ions was developed and implemented in two coal mines. As the result of used technology, based on application of phosphogypsum as the cleaning agent, a significant decrease of radium discharge was achieved - daily of about 120 MBq of 226 Ra and 80 MBq of 228 Ra. Another type of radium waters does not contain barium ions, but contains sulphate ions SO 4 2- . There is no carrier for co-precipitation of radium so radium is transported with discharged waters to main rivers. Different method of purification from radium must be applied for such waters. Laboratory and field experiments were performed, and a cleaning method was chosen. For purification of saline waters - waste products from other industrial processes are applied. The method of purification have been applied in full technical scale in coal mine with very good results - of about 6 m 3 /min of radium-bearing waters is cleaned. Whole this process takes place in underground old workings without any contact of mining crew with radioactive deposits, which are produced during the process. As a result radium amount released to the natural environment was significantly diminished - approximately of about 90 MBq of 226 Ra per day and 150 MBq of 228 Ra. (author)

  2. Residential damage in an area of underground coal mining

    International Nuclear Information System (INIS)

    Padgett, M.F.

    1988-01-01

    In order to estimate the potential for future subsidence-related residential damage, a statistical analysis of past residential damage in the Boulder-Weld, Colorado, coal field was performed. The objectives of this study were to assess the difference in damage severity and frequency between undermined and non-undermined areas, and to determine, where applicable, which mining factors significantly influence the severity and frequency of residential damage. The results of this study suggest that undermined homes have almost three times the risk of having some type of structural damage than do non-undermined homes. The study also indicated that both geologic factors, such as the ratio of sandstone/claystone in the overburden, and mining factors, such as the mining feature (room, pillar, entry, etc.), can significantly affect the severity of overlying residential damage. However, the results of this study are dependent on local conditions and should not be applied elsewhere unless the geologic, mining, and residential conditions are similar

  3. A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief

    International Nuclear Information System (INIS)

    Kong, Shengli; Cheng, Yuanping; Ren, Ting; Liu, Hongyong

    2014-01-01

    Highlights: • The gas reservoirs characteristics are measured and analyzed. • A sequential approach to control gas of multi-gassy coal seams is proposed. • The design of gas drainage wells has been improved. • The utilization ways of different concentrations of gas production are shown. - Abstract: As coal resources become exhausted in shallow mines, mining operations will inevitably progress from shallow depth to deep and gassy seams due to increased demands for more coal products. However, during the extraction process of deeper and gassier coal seams, new challenges to current gas control methods have emerged, these include the conflict between the coal mine safety and the economic benefits, the difficulties in reservoirs improvement, as well as the imbalance between pre-gas drainage, roadway development and coal mining. To solve these problems, a sequential approach is introduced in this paper. Three fundamental principles are proposed: the mining-induced stress relief effect of the first-mined coalbed should be sufficient to improve the permeability of the others; the coal resource of the first-mined seams must be abundant to guarantee the economic benefits; the arrangement of the vertical wells must fit the underground mining panel. Tunlan coal mine is taken as a typical example to demonstrate the effectiveness of this approach. The approach of integrating surface coalbed methane (CBM) exploitation with underground gas control technologies brings three major benefits: the improvement of underground coal mining safety, the implementation of CBM extraction, and the reduction of greenhouse gas emissions. This practice could be used as a valuable example for other coal mines having similar geological conditions

  4. 30 CFR 819.21 - Auger mining: Protection of underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Protection of underground mining. 819.21 Section 819.21 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... STANDARDS-AUGER MINING § 819.21 Auger mining: Protection of underground mining. Auger holes shall not extend...

  5. Coal mining situation in the Federal Republic of Germany. January to September 2017

    International Nuclear Information System (INIS)

    2017-01-01

    This publication presents statistical data on hard coal mining (production, stocks, performance per miner and shift, headcount, sales, foreign sales, imports) as well as brown coal mining (production, refining, headcount, domestic sales, imports) in Germany during the period from January through September 2017.

  6. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiao Xu

    2009-04-01

    Full Text Available Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.

  7. Anchor-free localization method for mobile targets in coal mine wireless sensor networks.

    Science.gov (United States)

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.

  8. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2017. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  9. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2015. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  10. Application of ergonomics principles in underground mines through the Occupational Safety and Health Management System--OSHMS OHSAS 18.001:2007.

    Science.gov (United States)

    de Arruda, Agnaldo Fernando Vieira; Gontijo, Leila Maral

    2012-01-01

    The underground mining activity is regarded as one of the activities that cause most accidents, deaths and illnesses in the world, highlighting the coal mines. This study examined how ergonomics principles can help improve this environment, reduce the number of accidents and occupational diseases, train and empower workers and leaders and humanize the activities of the duty cycle of an underground mine. For this, it was developed a conceptual model of safety managing and health at work for the underground mining through the incorporation of ergonomics principles in the Occupational Safety and Health Management System and OHSAS 18001 (2007). The elaboration of the model was based on analysis of the environments and stages of work in underground mines and the PDCA cycle to ensure continuous improvement.

  11. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models

    OpenAIRE

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-01-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to...

  12. Mine Water Treatment in Hongai Coal Mines

    Science.gov (United States)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  13. Technogenic effect of liquidation of coal mines on earth’s entrails: hydrogeochemical aspect

    Science.gov (United States)

    Tarasenko, I. A.; Zinkov, A. V.; Chudaev, O. V.; Vetoshkina, A. V.; Holodilov, I. I.

    2017-10-01

    The authors of the paper have established the geochemical features of the composition of underground waters and regularities of their formation in the areas of the liquidated coal mines of Russia and Ukraine. It is shown that the mine flood resulted in the formation of technogenic waters which geochemical specificity originates in the feeding field and is transformed in the direction of the filtration flow. It depends on the geological structure of sedimentary basins and the presence in the coal and supra-coal beds of the marine, salt-bearing and freshwater groups of geological formations. The water types are distinguished characterizing the conditions and processes of their formation that may be the regional markers in the hydrochemical and geological constructions. The technogenic waters influenced the safety of the underground waters, sources of water supply of the regions, and surface water channels. The pollutions are of local character in space.

  14. Analysis of US underground thin seam mining potential. Volume 1. Text. Final technical report, December 1978. [In thin seams

    Energy Technology Data Exchange (ETDEWEB)

    Pimental, R. A; Barell, D.; Fine, R. J.; Douglas, W. J.

    1979-06-01

    An analysis of the potential for US underground thin seam (< 28'') coal mining is undertaken to provide basic information for use in making a decision on further thin seam mining equipment development. The characteristics of the present low seam mines and their mining methods are determined, in order to establish baseline data against which changes in mine characteristics can be monitored as a function of time. A detailed data base of thin seam coal resources is developed through a quantitative and qualitative analysis at the bed, county and state level. By establishing present and future coal demand and relating demand to production and resources, the market for thin seam coal has been identified. No thin seam coal demand of significance is forecast before the year 2000. Current uncertainty as to coal's future does not permit market forecasts beyond the year 2000 with a sufficient level of reliability.

  15. Mine Water Treatment in Hongai Coal Mines

    Directory of Open Access Journals (Sweden)

    Dang Phuong Thao

    2018-01-01

    Full Text Available Acid mine drainage (AMD is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  16. Acidity decay of above-drainage underground mines in West Virginia.

    Science.gov (United States)

    Mack, B; McDonald, L M; Skousen, J

    2010-01-01

    Acidity of water from abandoned underground mines decreases over time, and the rate of decrease can help formulate remediation approaches and treatment system designs. The objective of this study was to determine an overall acidity decay rate for above-drainage underground mines in northern West Virginia from a large data set of mines that were closed 50 to 70 yr ago. Water quality data were obtained from 30 Upper Freeport and 7 Pittsburgh coal seam mines in 1968, 1980, 2000, and 2006, and acidity decay curves were calculated. The mean decay constant, k, for Upper Freeport mines was 2.73 x 10(-2) yr(-1), with a 95% confidence interval of +/- 0.0052, whereas the k value for Pittsburgh mines was not significantly different at 4.26 x 10(-2) yr(-1) +/- 0.017. Acidity from the T&T mine, which was closed 12 yr ago, showed a k value of 11.25 x 10(-2) yr(-1). This higher decay rate was likely due to initial flushing of accumulated metal salts on reaction surfaces in the mine, rapid changes in mine hydrology after closure, and treatment. Although each site showed a specific decay rate (varying from 0.04 x 10(-2) yr(-1) to 13.1 x 10(-2) yr(-1)), the decay constants of 2.7 x 10(-2) yr(-1) to 4.3 x 10(-2) yr(-1) are useful for predicting water quality trends and overall improvements across a wide spectrum of abandoned underground mines. We found first-order decay models improve long-term prediction of acidity declines from above-drainage mines compared with linear or percent annual decrease models. These predictions can help to select water treatment plans and evaluate costs for these treatments over time.

  17. Underground Coal Gasification - Experience of ONGC

    Science.gov (United States)

    Jain, P. K.

    2017-07-01

    Underground Coal Gasification (UCG) is expected to be game changer for nation like ours that requires large amounts of energy but have few natural resources other than coal. ONGC, being an integrated energy company and due to synergy between E & P operations and UCG, envisaged opportunities in UCG business. Its first campaign on UCG started in 1980s. With its initiative, a National Committee for UCG was constituted with representatives from Ministry of Petroleum, Dept. of Coal, CSIR, CMPDIL, State of Gujarat and ONGC for experimenting a pilot. It was decided in mid-1986 to carry out a UCG pilot in Sobhasan area of Mehsana district which was to be funded by OIDB. Two information wells were drilled to generate geological, geophysical, geo-hydrological data and core/coal samples. 3-D seismic survey data of Mehsana area was processed and interpreted and geological model was prepared. Basic designing of pilot project, drilling and completion, strategy of process wells and designing of surface facilities were carried out. The project could not be pursued further due to escalation in cost and contractual difficulty with design consultant. ONGC second UCG campaign commenced with signing of an agreement of collaboration (AOC) with Skochinsky Institute of Mining (SIM), Russia on 25th November 2004 for Underground Coal Gasification (UCG). In parallel, MOUs were signed with major coal and power companies, namely, Gujarat Industries Power Company Ltd (GIPCL), Gujarat Mineral Development Corporation Ltd (GMDC), Coal India Ltd (CIL), Singareni Colliery Company Ltd (SCCL) and NLC India Ltd. Under the AOC, suitability study was carried out for different sites belonging to MOU companies. Only Vastan mine block, Nani Naroli, Surat, Gujarat was found to be suitable for UCG. Therefore, subsequent stages of detailed characterization & pilot layout, detailed engineering design were taken up for Vastan site. After enormous efforts for quite long since 2006, in the absence of UCG policy

  18. Urinary bladder cancer risk factors in an area of former coal, iron, and steel industries in Germany.

    Science.gov (United States)

    Krech, Eugen; Selinski, Silvia; Blaszkewicz, Meinolf; Bürger, Hannah; Kadhum, Thura; Hengstler, Jan G; Truss, Michael C; Golka, Klaus

    2017-01-01

    This study was performed to investigate the frequency of bladder cancer in patients with an occupational history such as underground hard coal mining and/or painting after the structural change in the local industry. A total of 206 patients with bladder cancer and 207 controls were enlisted regarding occupational and nonoccupational bladder cancer risk factors by questionnaire. The phase II enzymes N-acetyltransferase 2 (NAT2), glutathione S-transferases M1 (GSTM1), and T1 (GSTT1) and the single nucleotide polymorphism (SNP) rs11892031[A/C] reported to be associated with bladder cancer in genome-wide association studies were genotyped. The bladder cancer risk in varnishers and underground hard coal miners was increased as previously shown in a study in this area performed in the 1980s. The occupation of a car mechanic was associated with a significantly elevated bladder cancer risk and higher in the case of underground hard coal miners even though the mine was closed in 1987. The frequency of GSTM1 negative genotype was comparable in cases and controls (53% versus 54%). In the case of NAT2, the slow NAT2 genotype was more frequent (62% versus 58%) and ultra-slow NAT2 genotype (NAT2*6A and/or *7B alleles only) was 23% versus 15%. An occupational history of a varnisher or an underground hard coal miner remains a risk factor for bladder cancer occurrence. Data indicate that in the case of bladder cancer, GSTM1 is a susceptibility factor related to environmental and/or occupational exposure.

  19. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China.

    Directory of Open Access Journals (Sweden)

    Jianhua Ping

    Full Text Available Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced.

  20. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China.

    Science.gov (United States)

    Ping, Jianhua; Yan, Shiyan; Gu, Pan; Wu, Zening; Hu, Caihong

    2017-01-01

    Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced.

  1. The Study of Cross-layer Optimization for Wireless Rechargeable Sensor Networks Implemented in Coal Mines

    Science.gov (United States)

    Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting

    2016-01-01

    Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500

  2. A comparison of physiological strain of carriers in underground manual coal mines in India

    Energy Technology Data Exchange (ETDEWEB)

    Saha, R.; Dey, N.C.; Samanta, A.; Biswas, R. [University College of Medical Science, Lumbini (Nepal). Dept. of Physics

    2008-07-15

    Thirty nine healthy carriers (23-57 years of age) were investigated in underground manual coal mines in West Bengal, India during two different work spells of a single work shift. We compared physiological strain of workers <40 and {ge} 40 years of age. For both groups, mean heart rate was 124-133 beats/min, with a mean corresponding relative cardiac cost of 50-66%. Maximum aerobic capacities were estimated indirectly, following a standard step test protocol. Average oxygen consumption was 1.07-1.1 l/min, with an energy expenditure of 5.35-5.5 kcal/min among both age groups. Acceptable levels of physiological strain were well encroached, and older workers faced the maximum burden. The tasks studied were heavy to very heavy in nature. The weight of load carriage at a spontaneously chosen speed and the prevailing environmental conditions merit serious attention. There is extreme need of ergonomic interventions in reducing the postural load and musculoskeletal discomforts in this population.

  3. Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines.

    Science.gov (United States)

    Chalupnik, S; Michalik, B; Wysocka, M; Skubacz, K; Mielnikow, A

    2001-01-01

    Saline waters from underground coal mines in Poland often contain natural radioactive isotopes, mainly 226Ra from the uranium decay series and 228Ra from the thorium series. Approximately 40% of the total amount of radium remains underground as radioactive deposits, but 225 MBq of 226Ra and 400 MBq of 228Ra are released daily into the rivers along with the other mine effluents from all Polish coal mines. Technical measures such as inducing the precipitation of radium in gobs, decreasing the amount of meteoric inflow water into underground workings, etc. have been undertaken in several coal mines, and as a result of these measures, the total amount of radium released to the surface waters has diminished by about 60% during the last 5-6 years. Mine water can have a severe impact on the natural environment, mainly due to its salinity. However, associated high levels of radium concentration in river waters, bottom sediments and vegetation have also been observed. Sometimes radium concentrations in rivers exceed 0.7 kBq/m3, which is the permitted level for waste waters under Polish law. The extensive investigations described here were carried out for all coal mines and on this basis the total radium balance in the effluents has been calculated. Measurements in the vicinity of mine settling ponds and in rivers have given us an opportunity to study radium behaviour in river waters and to assess the degree of contamination. Solid waste materials with enhanced natural radioactivity have been produced in huge amounts in the power and coal industries in Poland. As a result of the combustion of coal in power plants, low-radioactive waste materials are produced, with 226Ra concentration seldom exceeding a few hundreds of Bq/kg. A different situation is observed in coal mines, where, as a result of precipitation of radium from radium-bearing waters, highly radioactive deposits are formed. Sometimes the radioactivity of such materials is extremely high; precipitates from coal

  4. Sources of coal-mine drainage and their effects on surface-water chemistry in the Claybank Creek basin and vicinity, north-central Missouri, 1983-84

    Science.gov (United States)

    Blevins, Dale W.

    1989-01-01

    Eighteen sources of drainage related to past coal-mining activity were identified in the Claybank Creek, Missouri, study area, and eight of them were considered large enough to have detectable effects on receiving streams. However, only three sources (two coal-waste sites and one spring draining an underground mine) significantly affected the chemistry of water in receiving streams. Coal wastes in the Claybank Creek basin contributed large quantities of acid drainage to receiving streams during storm runoff. The pH of coal-waste runoff ranged from 2.1 to 2.8. At these small pH values, concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards established for these constituents. Effects of acid storm runoff were detected near the mouth of North Fork Claybank Creek where the pH during a small storm was 3.9. Coal wastes in the streambeds and seepage from coal wastes also had significant effects on receiving streams during base flows. The receiving waters had pH values between 2.8 and 3.5, and concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards. Most underground mines in the North Fork Claybank Creek basin seem to be hydraulically connected, and about 80 percent of their discharge surfaced at one site. Drainage from the underground mines contributed most of the dissolved constituents in North Fork Claybank Creek during dry weather. Underground-mine water always had a pH near 5.9 and was well-buffered. It had a dissolved-sulfate concentration of about 2,400 milligrams per liter, dissolved-manganese concentrations ranging from 4.0 to 5.3 milligrams per liter, and large concentrations of ferrous iron. Iron was in the ferrous state because of reducing conditions in the mines. When underground-mine drainage reached the ground surface, the ferrous iron was oxidized and precipitated to

  5. A jewel in the desert: BHP Billiton's San Juan underground mine

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, L.

    2007-12-15

    The Navajo Nation is America's largest native American tribe by population and acreage, and is blessed with large tracks of good coal deposits. BHP Billiton's New Mexico Coal Co. is the largest in the Navajo regeneration area. The holdings comprise the San Juan underground mine, the La Plata surface mine, now in reclamation, and the expanding Navajo surface mine. The article recounts the recent history of the mines. It stresses the emphasis on sensitivity to and helping to sustain tribal culture, and also on safety. San Juan's longwall system is unique to the nation. It started up as an automated system from the outset. Problems caused by hydrogen sulfide are being tackled. San Juan has a bleederless ventilation system to minimise the risk of spontaneous combustion of methane and the atmospheric conditions in the mine are heavily monitored, especially within the gob areas. 3 photos.

  6. Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam

    Directory of Open Access Journals (Sweden)

    Fa-qiang Su

    2018-04-01

    Full Text Available The Underground Coal Gasification (UCG system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining.

  7. A study of trends in occupational risks associated with coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Amoundru, C.

    1980-10-01

    The occupational risks associated with underground coal mining can be categorized as either industrial accidents or occupational diseases. Since 1957, the number of fatal accidents per million tons of coal produced has dropped by a factor of four. The number of industrial accidents in general decreased by 30% during 1967-75. The main occupational diseases affecting miners are arthrosis, deafness, and pneumoconiosis. To make an objective comparison with the health hazards from other sources of energy, the probable risks facing workers in a modern mine should be compared with those currently confronting workers in other industries.

  8. 30 CFR 77.1200 - Mine map.

    Science.gov (United States)

    2010-07-01

    ... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Maps § 77.1200 Mine...) The location of railroad tracks and public highways leading to the mine, and mine buildings of a permanent nature with identifying names shown; (k) Underground mine workings underlying and within 1,000...

  9. Mine Water Treatment in Hongai Coal Mines

    OpenAIRE

    Dang Phuong Thao; Dang Vu Chi

    2018-01-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine ...

  10. Proceedings of the 6th underground operators conference

    International Nuclear Information System (INIS)

    Golosinski, T.S.

    1995-01-01

    This conference presents recent development in underground mining operations. A large number of papers reported on underground mining practice in the Eastern Goldfields area of Western Australia and in the traditional mining centres of Mount Isa and Broken Hill. These are supplemented by papers reporting on other underground mining developments all throughout Australia and in several overseas countries known for advanced mining expertise. Apart from papers dealing with metalliferous mining, a number of papers related to coal mining present recent developments related to the topic. The papers are grouped into sessions relating to ground control, rock mechanics, management and human resources, mining methods, mining equipment, control and communications, mine backfill, mining operations, drilling and blasting and coal mining. Relevant papers have been individually indexed/abstracted. Tabs., figs., refs

  11. Continuous dust monitoring in headings in underground coal mines

    Directory of Open Access Journals (Sweden)

    Kazimierz Lebecki

    2016-01-01

    Full Text Available The article presents hazardous conditions of airborne dust based on the results of measurements of dust concentration taken at work-places at a underground rock-coal face drilled by a heading machine with combined ventilation (suction and forced ventilation with dust collector. The measurements were taken using three methods in order to examine and assess the actual conditions within the excavation subject to the study. The measurement results and conclusions show major difficulties in achieving MAC levels. Research conclusions indicate the low efficiency of collective and personal measures applied to protect against dust harmful to health as well as the need to improve them.

  12. Technological possibilities for increasing coarse coal yield in the Staszic mine

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Major, M

    1985-06-01

    Experiments carried out in the Staszic underground black coal mine in Upper Silesia showed that there is a correlation of coarse coal yield and yield strength of shield supports used at longwall faces. The faces were equipped with Pioma 25-45, Fazos 15-31 and Fazos 19-32 shield supports, KWB 3RDU shearer loaders and Rybnik chain conveyors. Pressure of oil in water emulsion used in the Pioma 25/45 shield supports was reduced from the recommended 30 MPa to 15 MPa or to 10 MPa. Reducing emulsion pressure (and support yield strength) caused an increase in coarse coal yield. Coarse coal yield was also increased by use of Fazos 19/32 shield supports with reduced yield strength. During the tests coarse coal yield increased 1.68% and 2.65%. Test results are shown in 3 diagrams. Investigations carried out in the Staszic mine in 1983 showed that by optimizing yield strength of shield supports coarse coal yield could be increased 2 to 8%. 6 references.

  13. Some Influences of Underground Coal Gasification on the Environment

    Directory of Open Access Journals (Sweden)

    Karol Kostúr

    2018-05-01

    Full Text Available Increasing energy costs and energy demand have renewed global interest in clean coal technologies. Underground Coal Gasification (UCG is an industrial process that converts coal into product gas. UCG is a promising technology with a lot of health, safety and environmental advantages over conventional mining techniques. UCG carries risks to human health, agriculture and the environment. This article briefly analyzes the advantages and negative environmental impacts of UCG. It describes experimental objects, mathematical models as tools for simulation cases and it used coal from UCG experiments in Cigel, Barbara and Wieczorek mines to analyze the environmental impacts of UCG. The gasification converts the carbon in the coal to syngas and heat. We carried out a numerical simulation of the two-dimensional unstable heat conduction in the coal and overburden, with the aim of judging the influence of this heat source on the surroundings, including the surface. The results show that the temperature in the surrounding rock first increases and then decreases with time, the peak of the temperature curve decreases gradually, and its position moves inside the surrounding rock from the ignition point. A small amount of potentially dangerous syngas leaks from the UCG cavity and channels into vulnerable areas depending on working pressures. The danger of explosion and poisoning in vulnerable zones was evaluated by the simulation model. The results show that the danger is real but by monitoring and controlling the air in the vulnerable area it is possible to reduce this risk.

  14. Evaluation of the effect of macerals on coal permeability in Tazareh and Parvadeh mines

    Directory of Open Access Journals (Sweden)

    Farhang Sereshki

    2016-08-01

    Full Text Available In recent decades, the subject of gas emission in underground coal mines in many countries is an important subject. Many factors affect in gas emissions in coal seams. Geological and physical structures of coal are affecting on gas emissions'. Also, composition and mineralization of coal, affect in coal permeability for different gases. In this study, the relationship between maceral composition and coal permeability in Tazareh and Parvadeh mines has been studied. Accordingly, a laboratory studies to investigate the relationship between coal composition and coal permeability was done. In coal samples, with MFORR equipment the permeability test was done. With microscopic analysis, the maceral contents of coal such as Inertinite and Vitrinite have been measured. Accordingly, many coal samples of Parvadeh and Tazareh coal mines have the pyrite as the dominant mineral matter. Parvadeh coal samples has the average percentage of Vitrinite equal 81.34% and 10.52% Inertinite. Also, in the Tazareh coal samples in Eastern Alborz coal mines, the average percentage of Vitrinite is 69.31% and inertinite is 22.47%. The average percentage of Pyrite content in Parvadeh coal samples in Tabas coal mines is 2.38% and in the Tazareh coal samples in Eastern Alborz coal mines is 2.62%.  The permeability test results have been shown, which, with increase of Inertinite contents, the permeability of coal is increasing. Also, test results have been shown, there was a reduction in the coal permeability with increasing of mineral contents and carbonate contents of the coal. So, the coal permeability in Tabas coal samples is more than Eastern Alborz coal samples.

  15. Mining technology and policy issues 1983

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This book presents conference papers on advances in mineral processing, coal mining, communications for mining executives, environmental laws and regulations, exploration philosophy, exploration technology, government controls and the environment, management, mine finance, minerals availability, mine safety, occupational health, open pit mining, the precious metals outlook, public lands, system improvements in processing ores, and underground mining. Topics considered include coal pipelines and saline water, an incentive program for coal mines, sandwich belt high-angle conveyors, the development of a mining company, regulations for radionuclides, contracts for western coal production for Pacific Rim exports, and the control of radon daughters in underground mines

  16. A Visualization Tool for Integrating Research Results at an Underground Mine

    Science.gov (United States)

    Boltz, S.; Macdonald, B. D.; Orr, T.; Johnson, W.; Benton, D. J.

    2016-12-01

    Researchers with the National Institute for Occupational Safety and Health are conducting research at a deep, underground metal mine in Idaho to develop improvements in ground control technologies that reduce the effects of dynamic loading on mine workings, thereby decreasing the risk to miners. This research is multifaceted and includes: photogrammetry, microseismic monitoring, geotechnical instrumentation, and numerical modeling. When managing research involving such a wide range of data, understanding how the data relate to each other and to the mining activity quickly becomes a daunting task. In an effort to combine this diverse research data into a single, easy-to-use system, a three-dimensional visualization tool was developed. The tool was created using the Unity3d video gaming engine and includes the mine development entries, production stopes, important geologic structures, and user-input research data. The tool provides the user with a first-person, interactive experience where they are able to walk through the mine as well as navigate the rock mass surrounding the mine to view and interpret the imported data in the context of the mine and as a function of time. The tool was developed using data from a single mine; however, it is intended to be a generic tool that can be easily extended to other mines. For example, a similar visualization tool is being developed for an underground coal mine in Colorado. The ultimate goal is for NIOSH researchers and mine personnel to be able to use the visualization tool to identify trends that may not otherwise be apparent when viewing the data separately. This presentation highlights the features and capabilities of the mine visualization tool and explains how it may be used to more effectively interpret data and reduce the risk of ground fall hazards to underground miners.

  17. Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network

    OpenAIRE

    Bo, Cheng; Xin, Cheng; Zhongyi, Zhai; Chengwen, Zhang; Junliang, Chen

    2014-01-01

    Frequent accidents have occurred in coal mine enterprises; therefore, raising the technological level of coal mine safety monitoring systems is an urgent problem. Wireless sensor networks (WSN), as a new field of research, have broad application prospects. This paper proposes a Web of Things- (WoT-) based remote monitoring system that takes full advantage of wireless sensor networks in combination with the CAN bus communication technique that abstracts the underground sensor data and capabili...

  18. GIS-based Analysis of LS Factor under Coal Mining Subsidence Impacts in Sandy Region

    Directory of Open Access Journals (Sweden)

    W. Xiao

    2014-09-01

    Full Text Available Coal deposits in the adjacent regions of Shanxi, Shaanxi, and Inner Mongolia province (SSI account for approximately two-thirds of coal in China; therefore, the SSI region has become the frontier of coal mining and its westward movement. Numerous adverse impacts to land and environment have arisen in these sandy, arid, and ecologically fragile areas. Underground coal mining activities cause land to subside and subsequent soil erosion, with slope length and slope steepness (LS as the key influential factor. In this investigation, an SSI mining site was chosen as a case study area, and 1 the pre-mining LS factor was obtained using a digital elevation model (DEM dataset; 2 a mining subsidence prediction was implemented with revised subsidence prediction factors; and 3 the post-mining LS factor was calculated by integrating the pre-mining DEM dataset and coal mining subsidence prediction data. The results revealed that the LS factor leads to some changes in the bottom of subsidence basin and considerable alterations at the basin’s edges of basin. Moreover, the LS factor became larger in the steeper terrain under subsidence impacts. This integrated method could quantitatively analyse LS changes and spatial distribution under mining impacts, which will benefit and provide references for soil erosion evaluations in this region

  19. Coal mining situation in the Federal Republic of Germany. Year 2016; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. Jahr 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-03-03

    The paper reports on the coal mining in the Federal Republic of Germany in the year 2016. Statistical data are presented for coal market, brown coal mining as well as the hard coal mining. These data consider the supply and demand of coal in Germany, and employees of the German coal industry.

  20. Coal mining situation in the Federal Republic of Germany. Year 2015; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. Jahr 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-03-08

    The paper reports on the coal mining in the Federal Republic of Germany in the year 2015. Statistical data are presented for coal market, brown coal mining as well as the hard coal mining. These data consider the supply and demand of coal in Germany, and employees of the German coal industry.

  1. Coal mining situation in the Federal Republic of Germany. Year 2017; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. Jahr 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2018-03-12

    The paper reports on the coal mining in the Federal Republic of Germany in the year 2017. Statistical data are presented for coal market, brown coal mining as well as the hard coal mining. These data consider the supply and demand of coal in Germany, and employees of the German coal industry.

  2. Respirable quartz hazard associated with coal mine roof bolter dust

    International Nuclear Information System (INIS)

    Joy, G.J.; Beck, T.W.; Listak, J.M.

    2010-01-01

    Pneumoconiosis has been reported to be increasing among underground coal miners in the Southern Appalachian Region. The National Institute for Occupational Safety and Health conducted a study to examine the particle size distribution and quartz content of dust generated by the installation of roof bolts in mines. Forty-six bulk samples of roof bolting machine pre-cleaner cyclone dump dust and collector box dust were collected from 26 underground coal mines. Real-time and integrated airborne respirable dust concentrations were measured on 3 mining sections in 2 mines. The real-time airborne dust concentrations profiles were examined to identify any concentration changes that might be associated with pre-cleaner cyclone dust discharge events. The study showed that bolter dust is a potential inhalation hazard due to the fraction of dust less than 10 μm in size, and the quartz content of the dust. The pre-cleaner cyclone dust was significantly larger than the collector box dust, indicating that the pre-cleaner functioned properly in removing the larger dust size fraction from the airstream. However, the pre-cleaner dust still contained a substantial amount of respirable dust. It was concluded that in order to maintain the effectiveness of a roof bolter dust collector, periodic removal of dust is required. Appropriate work procedures and equipment are necessary to minimize exposure during this cleaning task. 13 refs., 3 tabs., 2 figs.

  3. The feasibility of underground coal gasification in developing countries with abundant coal reserves

    International Nuclear Information System (INIS)

    Lakay, P.; Van Den Panhuyzen, W.

    1993-01-01

    The feasibility of underground coal gasification is evaluated on the basis of a case study for India. India has immense coal reserves at relatively shallow depths compared to Europe, has low wages, an urgent need to expand its power capacity, a strongly rising energy demand and has shown interest in underground coal gasification. Three scenarios including the cases of continued, declining and a strong economic growth were considered. Model calculations allow to compare the cost of the electric power generated by the combustion of the gas produced by underground coal gasification with the cost of the power produced by classic thermal power plants in India for -the reference year 2000. (A.S.) 4 figs. 1 tab

  4. 77 FR 56717 - Specifications for Medical Examinations of Underground Coal Miners

    Science.gov (United States)

    2012-09-13

    ... CFR Part 37 Specifications for Medical Examinations of Underground Coal Miners; Final Rule #0;#0... 0920-AA21 Specifications for Medical Examinations of Underground Coal Miners AGENCY: Centers for... medical examinations of underground coal miners. Existing regulations established specifications for...

  5. Geomechanics in hard rock mining-Lessons from two case histories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-01-01

    This paper summarizes the geomechanics programs conducted in two hard rock underground mining operations in the Western United States, between 1966 and 1981. The two projects were directed towards understanding the behavior of the rock masses, at the scale of the caverns. To this end, the emphasis was put on large scale field measurements, complemented by limited laboratory testing. The results of these observations were used to build realistic finite element models of the underground chambers. In the marble mine, at Crestmore, California, the models were applied to the structural optimization of the room-and-pillar pattern. In the granite mining, at Climax, Nevada Test Site, the models explained some unusual stress changes observed during excavation. Based on the large number of geomechanical techniques employed, specific conclusions and recommendations are offered regarding the quality, applicability, and usefulness of the various methods. The two case histories clearly indicate that numerical models are extremely useful for a detailed understanding of the structural behavior of mine openings. To be realistic, these models must be based first and foremost on large scale field observations. The lessons learned on these two projects also are directly applicable to the design and analysis of nuclear waste repositories in hard rocks such as basalt, granite, and welded tuff

  6. Use of natural gamma radiation in the coal mining industry

    International Nuclear Information System (INIS)

    Wykes, J.S.; Adsley, I.; Cooper, L.R.

    1982-01-01

    The technique of delineating coal seams by the use of natural gamma borehole logging sondes has been known for many years. The principle of the technique is that the gamma fluxes in shales are higher than in coals as the abundance of naturally occurring radionuclides is some twenty times greater in the former. This paper discusses other applications where the differeing natural gamma properties of coals and shales can be used. These are: (a) To distinguish between stone (shale) and run-of-mine coal on conveyor belts. A common situation underground is one in which stone from development headings and normal run-of-mine coal have to be batched along the same conveyor system. A natural gamma device capable of distinguishing between such batches of material, and thus allowing suitable mechanical separation, will be described. (b) To provide an accurate measurement of roof coal thickness by measuring the natural gamma flux penetrating the roof coal. To illustrate this examples will be given where this technique is used to provide automatic controlled steering of Long Wall Shearers and to provide manually assisted steering of In-seam Heading Machines

  7. Communications construction on mining grounds influenced by mining damage. Budownictwo komunikacyjne na terenach objetych szkodami gorniczymi

    Energy Technology Data Exchange (ETDEWEB)

    Rosikon, A

    1979-01-01

    This book considers problems associated with construction of communication lines on grounds influenced by underground coal mining. It is stated that about 50% of coal mined in Poland comes from protective coal pillars. Improving methods of strata control and ground control after underground mining will influence perspectives of mining in protective pillars. The following problems associated with minimizing mining damage are analyzed: types of ground deformation caused by underground mining, continuous and discontinuous deformation, factors which influence formation of subsidence troughs, forecasting ground subsidence according to the Knothe and Budryk theory, horizontal and vertical ground dislocation, coefficients used for description of ground deformation, Kochmanski's theory of continuous deformation, effects of ground subsidence of foundations of buildings and industrial structures, construction of roads, railway tracks and other communication lines on ground influenced by discontinuous deformations caused by coal mining, problems associated with construction of bridges and tunnels, construction of sewage systems, effects of underground mining on maintenance and repair of communication lines and sewage systems. Ways of minimizing discontinuous ground deformation are analyzed.

  8. Underground roadway drivage with heading machines in Indian coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, T.K.

    1983-03-01

    Heading machines have assumed a very important place in underground roadway drivage. They are not only a compromise between ''drill-and-blast'' technique and full-face machines, but are also an economic and versatile form of mechanised roadway drivage. Since the advantages gained by heading machines are considerable, the use of these machines is becoming popular in underground roadway drivage. Experience with continuous miner and heading machines in Indian coal mines is very limited compared to that of Western countries. In 1964-65, for the first time, two units of Lee Norse Miner were used at Kunostoria Colliery of Bengal Coal Company. In 1966, two units of Joy Continuous Miner were introduced at Chalkari Colliery of National Coal Development Corporation, but had to be adandoned because of heavy make of water at the installation site. A Russian PK-3 heading machine was used limitedly during the development of Banki Colliery, Madhya Pradesh. A Demag Unicorn VS-1 machine operated for the development of roadways at Jitpur and Chasnala Collieries of IISCO between 1967-70. With this machine, progress of 7 m per day was attained in level roadways and of about 2 m per day in steep raises.

  9. Water quality changes of a closed underground coal mine in Korea.

    Science.gov (United States)

    Cheong, Young Wook; Yim, Gil-Jae; Ji, Sang Woo; Kang, Sang Soo; Skousen, Jeffery

    2012-01-01

    The objective of this study was to assess the changes in mine water quality as an underground mine flooded from July 2005 to October 2008. The effect of air injection with a blower into the water was used to evaluate the potential to convert ferrous to ferric iron and to provide in situ treatment and precipitation. Mine flooding averaged 31 cm/day with a linear shape until November 2007, when it flattened out due to outflow. During flooding, mine water pH remained around 6, but Eh shifted from 200 to -150 mV. After the mine water level stabilized, contents of elements such as Fe and SO(4) tended to decrease as time passed. Air was injected by diffusers (150 L/min/each) at three different depths of 2, 3, and 5 m below the water level in the shaft. Dissolved oxygen eventually increased to 4 or 5 mg/L depending on the depth of the diffusers. Aeration caused conversion of ferrous iron to ferric iron and about 30 mg/l of iron was removed from the mine water. Therefore, air injection shows potential as a semi-active treatment or part of conventional treatment to precipitate iron in the mine pool.

  10. Gas migration from closed coal mines to the surface. Risk assessment methodology and prevention means

    International Nuclear Information System (INIS)

    Pokryszka, Z.; Tauziede, Ch.; Lagny, C.; Guise, Y.; Gobillot, R.; Planchenault, J.M.; Lagarde, R.

    2005-01-01

    French law as regards renunciation to mining concessions calls for the mining operator to first undertake analyses of the risks represented by their underground mining works. The problem of gas migration to the surface is especially significant in the context of coal mines. This is because mine gas can migrate to the earth's surface, then present significant risks: explosion, suffocation or gas poisoning risks. As part of the scheduled closure of all coal mining operations in France, INERIS has drawn up, at the request of national mining operator Charbonnages de France, a general methodology for assessing the risk linked to gas in the context of closed coal mines. This article presents the principles of this methodology. An application example based on a true case study is then described. This is completed by a presentation of the preventive and monitoring resources recommended and usually applied in order to manage the risk linked to gaseous emissions. (authors)

  11. 30 CFR 75.302 - Main mine fans.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fans. 75.302 Section 75.302 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.302 Main mine fans. Each coal mine shall be ventilated by one or more main mine fans. Booster fans shall not be installed underground to assist main mine...

  12. Situation of coal mining in the Federal Republic of Germany. Year 2014; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. Jahr 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-03-10

    The paper reports on the coal mining in the Federal Republic of Germany in the year 2014. Statistical data are presented for coal market, brown coal mining as well as the hard coal mining. These data consider the supply and demand of coal in Germany, and employees of the German coal industry.

  13. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  14. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    Science.gov (United States)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  15. Application of remote-sensing techniques to hydrologic studies in selected coal-mine areas of southeastern Kansas

    Science.gov (United States)

    Kenny, J.F.; McCauley, J.R.

    1983-01-01

    Disturbances resulting from intensive coal mining in the Cherry Creek basin of southeastern Kansas were investigated using color and color-infrared aerial photography in conjunction with water-quality data from simultaneously acquired samples. Imagery was used to identify the type and extent of vegetative cover on strip-mined lands and the extent and success of reclamation practices. Drainage patterns, point sources of acid mine drainage, and recharge areas for underground mines were located for onsite inspection. Comparison of these interpretations with water-quality data illustrated differences between the eastern and western parts of the Cherry Creek basin. Contamination in the eastern part is due largely to circulation of water from unreclaimed strip mines and collapse features through the network of underground mines and subsequent discharge of acidic drainage through seeps. Contamination in the western part is primarily caused by runoff and seepage from strip-mined lands in which surfaces have frequently been graded and limed but are generally devoid of mature stands of soil-anchoring vegetation. The successful use of aerial photography in the study of Cherry Creek basin indicates the potential of using remote-sensing techniques in studies of other coal-mined regions. (USGS)

  16. Exposure to dust and particle-associated 1-nitropyrene of drivers of diesel-powered equipment in underground mining.

    Science.gov (United States)

    Scheepers, P T J; Micka, V; Muzyka, V; Anzion, R; Dahmann, D; Poole, J; Bos, R P

    2003-07-01

    A field study was conducted in two mines in order to determine the most suitable strategy for ambient exposure assessment in the framework of a European study aimed at validation of biological monitoring approaches for diesel exhaust (BIOMODEM). Exposure to dust and particle-associated 1-nitropyrene (1-NP) was studied in 20 miners of black coal by the long wall method (Czech Republic) and in 20 workers in oil shale mining by the room and pillar method (Estonia). The study in the oil shale mine was extended to include 100 workers in a second phase (main study). In each mine half of the study population worked underground as drivers of diesel-powered trains (black coal) and excavators (oil shale). The other half consisted of workers occupied in various non-diesel production assignments. Exposure to diesel exhaust was studied by measurement of inhalable and respirable dust at fixed locations and by personal air sampling of respirable dust. The ratio of geometric mean inhalable to respirable dust concentration was approximately two to one. The underground/surface ratio of respirable dust concentrations measured at fixed locations and in the breathing zones of the workers was 2-fold or greater. Respirable dust was 2- to 3-fold higher in the breathing zone than at fixed sampling locations. The 1-NP content in these dust fractions was determined by gas chromatography-mass spectrometry/mass spectrometry and ranged from 0.003 to 42.2 ng/m(3) in the breathing zones of the workers. In mine dust no 1-NP was detected. In both mines 1-NP was observed to be primarily associated with respirable particles. The 1-NP concentrations were also higher underground than on the surface (2- to 3-fold in the coal mine and 10-fold or more in the oil shale mine). Concentrations of 1-NP in the breathing zones were also higher than at fixed sites (2.5-fold in the coal mine and 10-fold in the oil shale mine). For individual exposure assessment personal air sampling is preferred over air sampling

  17. Application Research on Testing Efficiency of Main Drainage Pump in Coal Mine Using Thermodynamic Theories

    OpenAIRE

    Shang, Deyong

    2017-01-01

    The efficiency of a drainage pump should be tested at regular intervals to master the status of the drainage pump in real time and thus achieve the goal of saving energy. The ultrasonic flowmeter method is traditionally used to measure the flow of the pump. But there are some defects in this kind of method of underground coal mine. This paper first introduces the principle of testing the main drainage pump efficiency in coal mine using thermodynamic theories, then analyzes the energy transfor...

  18. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Science.gov (United States)

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  19. Systems approach to design of power supply to mines

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, Yu I; Voloshko, A V

    1986-09-01

    Optimization of power supplies to underground coal mines in the USSR is evaluated. Systems analysis of power systems is discussed. Power system of a coal mine is treated as an element of the branch power system which forms a subsystem of the local and national power system. Design of a system for computerized control of power supplies to underground coal mines is evaluated. Elements of the system, control equipment, types of information stored and processed by the system as well as economic efficiency of using computerized control for power supply in underground mining are discussed. Recommendations for computer-aided design of power systems and use of computerized control systems for power supply in underground coal mining in the USSR are made.

  20. Research on water pollution induced by coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Dong, D.; Fu, Y.; Bai, X.; Sun, Z. [China University of Mining and Technology, Xuzhou (China). Dept of Resource Exploitation Engineering

    2002-01-01

    Water environment problems induced by mining were studied. Influences of coal mining on runoff of rivers and on water sources were discussed. And the forming mechanism of acid water was analysed. The result shows that the mining activity is gradually changing the co-environment of adjacent areas, especially the water. With the water sources being continually polluted, the underground water has some poisonous or harmful ions in the process of dynamic exchange of water. The falling level of water table results in an increase of depression cone, and the seepage of rivers and the increasing range of acid water have more or less influence on water sources. All these are threatening the normal life of human beings. 11 refs., 2 figs.

  1. 75 FR 81165 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Science.gov (United States)

    2010-12-27

    ..., face or ribs and coal or rock bursts. Sec. 75.220(a)(1). Each mine operator shall develop and follow a... materials, ventilation and roof control plans, and maintenance of incombustible content of rock dust are the... the mine * * *. Sec. 75.400. Coal dust, including float coal dust deposited on rock-dusted surfaces...

  2. Environmental problems in Russian coal industry

    International Nuclear Information System (INIS)

    Kharchenko, V.; Oumnov, V.

    1996-01-01

    The state of the Russian coal industry is complicated both economically and environmentally. Most mines are unprofitable. Several coal mines are intended to be closed. So, under existing conditions, coal mines are unable to give much attention to environmental protection problems. At the same time, coal mining is one of the most polluting industries. The main trends in this industry's negative influence upon the environment are: land spoilage and immobilization to lay out open-pit mines and mineral waste dump areas and tailing piles as well as with industrial waste water runoff; atmospheric pollution with the air coming from underground and substances blown off from dumps, hydrogeological regime intervention in coal mining areas, etc. One way to solve environmental problems in coal mining is a more rational utilization of the accompanying natural coal resources. Such measures make it possible to obtain complementary profits not only at the expense of reducing environmental destruction but producing new kinds of goods or services as well. Examples of similar solutions are solid mineral wastes utilization, underground space utilization, coal gas utilization and other issues

  3. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E.Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  4. Mapping and monitoring coal mine subsidence using LiDAR and InSAR

    Energy Technology Data Exchange (ETDEWEB)

    Froese, C.R.; Mei, S. [Alberta Geological Survey, Edmonton, AB (Canada). Energy Resources Conservation Board

    2008-07-01

    In the early 1900s, the abandonment of coal mines in Alberta was not regulated and closure documentation was poor. Although the general locations of mines are known, the locations of the specific adits and shafts are not. As such, there are many cases in southwestern Alberta where infrastructure was built on top of old coal mine workings without any detailed records of the abandoned mine or displacement monitoring. The crowns of these workings have been subject to ongoing strain that is reflected at the surface. The rate at which the strain is progressing prior to collapse is not well understood. Mitigation of collapse events is site specific and reactive. This paper demonstrated that airborne LiDAR and spaceborne InSAR technologies can provide valuable information on the distribution of abandoned underground coal mine workings. Both remote sensing techniques were used on Turtle Mountain in the Crowsnest Pass to obtain quantitative information on landslide mechanics, including the patterns and rate of ground movement and subsidence. These techniques can be used to map the location of surface collapse and delineate the location of the coal mine workings that were not previously documented. It was concluded that these technologies will likely become more readily available in the future and incorporated into geo-engineering practices for use in ground hazard detection, monitoring and management. 8 refs., 6 figs.

  5. Physical Experiments on the Deformation of Strata with Different Properties Induced by Underground Mining

    Directory of Open Access Journals (Sweden)

    Haifeng Hu

    2016-03-01

    Full Text Available Underground mining can cause ground and strata movements, which in turn cause damage to houses and the landscape. The different characteristics and properties of the strata encountered during mining can also result in corresponding deformation. In order to study the deformation and damage rules of strata which are composed of unconsolidated soil and bedrock induced by underground coal mining, a physical model that employs material sand, lime, and gypsum with water was utilized firstly to simulate strata and ground movements. Then overlying strata with different properties were created according to the corresponding ratio of the mixed material, physical models under two conditions (i.e., thick soil layer and thin bedrock, and thin soil layer and thick bedrock were set up. Lastly underground coal extraction was conducted using the proposed models. Results show that the proportion of unconsolidated soil layer in the overlying strata is the key factor that determines the significant differences in the movement of strata under the two special conditions. When the ratio of the soil layer is large, the unconsolidated soil layer is loaded on the bedrock; the bedrock is thus forced to move down, and the compression rate of the broken strata is increased. The soil layer follows the bedrock as an integral movement to subsidence. When the ratio of the soil layer is small, the load on the strata is small, but the structural function of the strata is obvious and the fraction degree in the strata is developed. The obtained results in this study can be applied to support mine planning in the aspect of ground damage evaluation.

  6. Specific Energy of Hard Coal Under Load

    Directory of Open Access Journals (Sweden)

    Bogusz Anna

    2015-03-01

    Full Text Available The article presents results of experimental tests of energy parameters of hard coals under loading, collected from research sites located within five main geologic structures of Upper Silesian Coal Basin (GZW - Main Trough, Main Anticline, Bytom Trough, Rybnik Trough and Chwałowice Trough. Coals from12 mines were analysed, starting with seams of group 200, through groups 400, 500, 600 and, finally, seams of group 700. Coal of each of the groups of seams underwent uniaxial compression stress of the energy parameters, in a servo-controlled testing machine MTS-810NEW, for the full range of strain of the tested coal samples. Based on the tests the dependence of different types of specific energy of longitudinal strain of coals on the value of uniaxial compression strength was determined. The dependence of the value of dissipated energy and kinetic energy of coals on the uniaxial compression strength was described with a linear function, both for coals which due to their age belong to various bed sand for various lithotypes of coal. An increase in the value of dissipated energy and in kinetic energy was observed, which was correlated with an increase in uniaxial compression strength of coal. The share of dissipated energy is dominant in the total energy of strain. Share of recoverable energy in the total energy of strain is small, independent of the compression strength of coals and is at most a few per cent high. In coals of low strength and dominant share of dissipated energy, share of recoverable energy is the biggest among the tested coals. It was shown that following an increase in compression strength the share of recoverable energy decreases, while the share of dissipated energy in the total energy increases. Further studies of specific energy of longitudinal strain of rocks in the full-range strain will be the next step inperfecting methodology of research into natural rock burst susceptibility of Carboniferous rock mass and changes in the

  7. An overview of underground coal gasification and its applicability for Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Pekpak, E.; Yoncaci, S.; Kilic, M.G. [Middle East Technical Univ., Ankara (Turkey). Dept. of Mining Engineering

    2010-07-01

    Coal is expected to maintain its significance as an energy source for a longer time period than oil and natural gas. Environmental concerns have led to the development of clean coal technologies, such as coal gasification. Coal gasification can be used at either at surface or in underground coal gasification (UCG). UCG has several advantages over surface gasification and conventional mining such as rank low calorific value coals. Coal gasification also has the potential to contribute to the energy supply of a country. Most Turkish coals are lignite and UCG may enable diversification of energy sources of Turkey and may help decrease external dependency on energy. This paper presented a study that matched a UCG technique to the most appropriate (Afsin Elbistan) lignite reserve in Turkey. Two UCG techniques were presented, including the linked vertical well method, and the directional drilling-controlled retractable injection point (CRIP) method. The properties of coal seams and coal properties were also outlined. It was concluded that Cobanbey is the most preferable sector in the Elbistan Lignite Reserve for a pilot study, and that the linked vertical well method could be considered as a candidate method. 17 refs., 6 tabs., 1 fig.

  8. Environmental management in hard coal mine group in the Upper Silesian Coal Basin, Poland

    International Nuclear Information System (INIS)

    Pozzi, M.; Weglarczyk, J.

    2000-01-01

    Mining activity and the other branches of heavy industry existing in the USCB for over 2 centuries have made large unfavourable changes of environment. Prevention of its further degradation needs the solution for the following main problems: utilisation of high saline mine drainage water (a problem unique in the world scale), treatment of solid wastes, land reclamation (mainly treatment of areas of ground subsiding). Market economy introduced 10 years ago and the necessity that all fields of life conform to the requirements of the European Union force the process of deep restructurisation of mining industry. One of the conditions for success of restructuring is the solution of ecological problems. The possibility of environmental management system implementation according to the ISO 14000 standard in the coal mine group condition was discussed. The chances and presumed results of these activities were presented in this paper. 6 refs

  9. Use of electrical resistivity to detect underground mine voids in Ohio

    Science.gov (United States)

    Sheets, Rodney A.

    2002-01-01

    Electrical resistivity surveys were completed at two sites along State Route 32 in Jackson and Vinton Counties, Ohio. The surveys were done to determine whether the electrical resistivity method could identify areas where coal was mined, leaving air- or water-filled voids. These voids can be local sources of potable water or acid mine drainage. They could also result in potentially dangerous collapse of roads or buildings that overlie the voids. The resistivity response of air- or water-filled voids compared to the surrounding bedrock may allow electrical resistivity surveys to delineate areas underlain by such voids. Surface deformation along State Route 32 in Jackson County led to a site investigation, which included electrical resistivity surveys. Several highly resistive areas were identified using axial dipole-dipole and Wenner resistivity surveys. Subsequent drilling and excavation led to the discovery of several air-filled abandoned underground mine tunnels. A site along State Route 32 in Vinton County, Ohio, was drilled as part of a mining permit application process. A mine void under the highway was instrumented with a pressure transducer to monitor water levels. During a period of high water level, electrical resistivity surveys were completed. The electrical response was dominated by a thin, low-resistivity layer of iron ore above where the coal was mined out. Nearby overhead powerlines also affected the results.

  10. Analysis of hard coal quality for narrow size fraction under 20 mm

    Science.gov (United States)

    Niedoba, Tomasz; Pięta, Paulina

    2018-01-01

    The paper presents the results of an analysis of hard coal quality diversion in narrow size fraction by using taxonomic methods. Raw material samples were collected in selected mines of Upper Silesian Industrial Region and they were classified according to the Polish classification as types 31, 34.2 and 35. Then, each size fraction was characterized in terms of the following properties: density, ash content, calorific content, volatile content, total sulfur content and analytical moisture. As a result of the analysis it can be stated that the best quality in the entire range of the tested size fractions was the 34.2 coking coal type. At the same time, in terms of price parameters, high quality of raw material characterised the following size fractions: 0-6.3 mm of 31 energetic coal type and 0-3.15 mm of 35 coking coal type. The methods of grouping (Ward's method) and agglomeration (k-means method) have shown that the size fraction below 10 mm was characterized by higher quality in all the analyzed hard coal types. However, the selected taxonomic methods do not make it possible to identify individual size fraction or hard coal types based on chosen parameters.

  11. Numerical analysis of control of hard roof's stepped cantilever structure for longwall mining with sublevel caving

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J.; Jin, Z.; Tang, Y. [Taiyuan University of Technology, Taiyuan (China)

    2002-12-01

    Based on the field monitoring and simulation test of strata movement, the hard roof's stepped cantilever structure and its mechanics model are presented. The finite element method is used to analyse the effect of hard coal cracking under the abutment pressure of hard roof, so the rational pre-treatment span of hard roof is determined, and the rational working resistance of support is selected also. According to the mechanics model, the transient balance conditions of the hard roof's stepped cantilever structure are studied, and the support-rock relation is theoretically explained. As a result, the basic theory and technique of surrounding rocks control for fully mechanised longwall mining with sub-level caving is formed under the hard roof and hard coal conditions, and the hard roof is effectively controlled not only to protect the working face but also to promote the caving of hard top-coal to increase the recovery rate of coal, thus to realise safe and highly efficient and productive fully mechanised longwall mining with sub-level caving in extra-thick seam. Finally, the successfully practice of hard roof control in 8914 and 8911 working face is presented in this paper. 10 refs., 5 figs., 4 tabs.

  12. Human action quality evaluation based on fuzzy logic with application in underground coal mining.

    Science.gov (United States)

    Ionica, Andreea; Leba, Monica

    2015-01-01

    The work system is defined by its components, their roles and the relationships between them. Any work system gravitates around the human resource and the interdependencies between human factor and the other components of it. Researches in this field agreed that the human factor and its actions are difficult to quantify and predict. The objective of this paper is to apply a method of human actions evaluation in order to estimate possible risks and prevent possible system faults, both at human factor level and at equipment level. In order to point out the importance of the human factor influence on all the elements of the working systems we propose a fuzzy logic based methodology for quality evaluation of human actions. This methodology has a multidisciplinary character, as it gathers ideas and methods from: quality management, ergonomics, work safety and artificial intelligence. The results presented refer to a work system with a high degree of specificity, namely, underground coal mining and are valuable for human resources risk evaluation pattern. The fuzzy logic evaluation of the human actions leads to early detection of possible dangerous evolutions of the work system and alarm the persons in charge.

  13. Coal Mining-Related Respiratory Diseases

    Science.gov (United States)

    ... Topics Publications and Products Programs Contact NIOSH NIOSH COAL WORKERS' HEALTH SURVEILLANCE PROGRAM Recommend on Facebook Tweet Share Compartir Coal Mining-Related Respiratory Diseases Coal mining-related respiratory ...

  14. Large blastholes in coal mining, canal effects. Barrenos largos en la mineria del carbon, efecto canal

    Energy Technology Data Exchange (ETDEWEB)

    Muniz Hevia, E.; Legorburu Zuazva, V.; Blanco Gonzalez, R. (Union Explosivos Rio Tinto SA, Madrid (Spain))

    1988-01-01

    The 'canal effect' has been known for a long time. It appears only in underground workings. It may be said that the coal industry has suffered from it less than other sectors, perhaps because of its rigorous safety legislation. The Spanish coal mining industry has now been without this phenomenon for many years. 3 refs., 3 figs.

  15. Quantitative prop support estimation and remote monitor early warning for hard roof weighting at the Muchengjian Mine in China

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Y.; Zhao, T.; Xiao, Y. [Shandong Univ. of Science and Technology, Qingdao, Shandong (China). Key Laboratory of Mine Disaster Prevention and Control

    2010-09-15

    Pillar extraction is the method used to mine the ore in the Muchengjian Coal Mine in China because the coal seams are too unstable for canopy-powered or shield-powered support. This study involved a retrospective analysis of roof cave-ins to determine the tensile strength by examining the complex coal seam structure and hard roof at the mine. The objective was to ensure workers' safety when hard roof strata cave in. The roof caving span and thickness was analyzed to determine the prop spacing or number of hydraulic props needed per unit area. The study showed that the early warning threshold bedding vertical separation velocity for hard roof caving at the Muchengjian Coal Mine was about 14 mm/day. The newly developed bedding separation remote monitoring system (BSRMS) was used for the first time for early warning of a roof fall. A total of 48 trials of early warning roof weighting were performed at the Muchengjian Mine on the no. 4 face. The roof above the coal seam consists of 3 layers. The roof is supported by hydraulic props connected to an articulated roof beam manufactured in China. It was concluded that the early warnings from the BSRMS proved to be accurate. The BSRMS also indicated that the support system is safe and reliable. 12 refs., 1 tab., 10 figs.

  16. Regional technological change in US coal mines: 1951-76

    Energy Technology Data Exchange (ETDEWEB)

    Lakhani, H A

    1982-04-01

    This paper analyses technological change in coal mines in five regions - the Northern and Southern Appalachians, the Rocky Mountains, the Interior and Gulf and Northern Great Plains. Section 2 deals with changes in production profiles, over time, of the regions by dividing coal mines into underground and surface mines. It concludes that the Appalachian regions are the declining regions with lower labour productivity and that the Northern Great Plains, with its increasing labour productivity, is the expanding region. Section 3 presents a methodology of S-shaped growth curves. Section 4 reports empirical results for growth rates of adoption of the newer techniques across regions. These results reveal that the Northern Great Plains region is not absorbing the manpower and resources released by the Appalachian regions so that there are shortages in the former in the face of unemployment in the latter. There is, therefore, an opportunity for the declining Appalachian regions to inform their surplus manpower and resources about the growth centre in the north and prepare them for relocation, retraining and readjustment to the changes. (11 refs.)

  17. Model for the prediction of subsurface strata movement due to underground mining

    Science.gov (United States)

    Cheng, Jianwei; Liu, Fangyuan; Li, Siyuan

    2017-12-01

    The problem of ground control stability due to large underground mining operations is often associated with large movements and deformations of strata. It is a complicated problem, and can induce severe safety or environmental hazards either at the surface or in strata. Hence, knowing the subsurface strata movement characteristics, and making any subsidence predictions in advance, are desirable for mining engineers to estimate any damage likely to affect the ground surface or subsurface strata. Based on previous research findings, this paper broadly applies a surface subsidence prediction model based on the influence function method to subsurface strata, in order to predict subsurface stratum movement. A step-wise prediction model is proposed, to investigate the movement of underground strata. The model involves a dynamic iteration calculation process to derive the movements and deformations for each stratum layer; modifications to the influence method function are also made for more precise calculations. The critical subsidence parameters, incorporating stratum mechanical properties and the spatial relationship of interest at the mining level, are thoroughly considered, with the purpose of improving the reliability of input parameters. Such research efforts can be very helpful to mining engineers’ understanding of the moving behavior of all strata over underground excavations, and assist in making any damage mitigation plan. In order to check the reliability of the model, two methods are carried out and cross-validation applied. One is to use a borehole TV monitor recording to identify the progress of subsurface stratum bedding and caving in a coal mine, the other is to conduct physical modelling of the subsidence in underground strata. The results of these two methods are used to compare with theoretical results calculated by the proposed mathematical model. The testing results agree well with each other, and the acceptable accuracy and reliability of the

  18. Application of mine water leaching protocol on coal fly ash to assess leaching characteristics for suitability as a mine backfill material.

    Science.gov (United States)

    Madzivire, Godfrey; Ramasenya, Koena; Tlowana, Supi; Coetzee, Henk; Vadapalli, Viswanath R K

    2018-04-16

    Over the years, coal mining in the Mpumalanga Province of South Africa has negatively affected the environment by causing pollution of water resources, land subsidence and spontaneous coal combustion. Previous studies show that in-situ treatment of acid mine drainage (AMD) using coal fly ash (CFA) from local power stations was possible and sludge recovered out of such treatment can be used to backfill mines. In this article, the authors have attempted to understand the leaching characteristics of CFA when placed underground as a backfill material using the mine water leaching protocol (MWLP). The results show that the migration of contaminants between the coal fly ash and the AMD in the mine voids depends on the pH and quality of the mine water. While backfilling mine voids with CFA can neutralize and scavenge between 50% and 95% of certain environmentally sensitive elements from AMD such as Fe, Al, Zn, Cu, Ni, Co and Mn. At this moment, it is also important to point out that certain scavenged/removed contaminants from the AMD during initial phases of backfilling can be remobilized by the influx of acidic water into the mine voids. It has therefore been concluded that, while CFA can be used to backfill mine voids, the influx of fresh acidic mine water should be avoided to minimize the remobilization of trapped contaminants such as Fe, Al, Mn and As. However, the pozzolanic material resulting from the CFA-AMD interaction could prevent such influx.

  19. Hydrologic conditions in the coal mining district of Indiana and implications for reclamation of abandoned mine lands

    International Nuclear Information System (INIS)

    Olyphant, G.A.; Harper, D.

    1998-01-01

    Bedrock strata of the mining district of Indiana (Indiana Coal Mining District, ICMD) include numerous coalbeds of economic importance, together with underclays, roof shales, limestones, and sandstones of Pennsylvanian age. These are typically poor aquifers with low hydraulic conductivities and specific yields. Surficial materials include loess, till, alluvium, and other deposits of pleistocene age. The loess and till also have low hydraulic conductivities, so that very few shallow aquifers exist in the vicinities of abandoned mine land (AML) sites, except where they are close to the alluvial fill of large bedrock valleys. The hydrologic cascade at AML sites in Indiana is strongly conditioned by the existence of elevated deposits of coarse-grained coal-preparation refuse and flooded underground mine workings. Flooded mines are the principal conduits of groundwater flow in the area, but their boundaries, flowpaths, and mechanisms of recharge and discharge are very different from those of natural aquifers and are poorly understood. Acidic mine drainage often emerges as seepages and springs on the edges of the elevated refuse deposits, but the low permeability of the natural surficial materials and bedrock inhibits the development of off-site groundwater contaminant plumes. The water balance across the surface of the refuse deposits is critical to reclamation planning and success. Enhancing runoff through reduction of infiltration capacity has the beneficial effect of reducing recharge through the acid-generating refuse, but the excess runoff may be accompanied by soil erosion that can lead to reclamation failure. Furthermore, during cool seasons and stormy periods, a well vegetated surface promotes recharge through increased infiltration, resulting in greater rates of acidic baseflow seepage. Passive Anoxic Limestone Drains (PALDs) have been successfully coupled with wetland treatment systems to improve surface waters that discharge from AML sites. Storm runoff from

  20. 30 CFR 75.804 - Underground high-voltage cables.

    Science.gov (United States)

    2010-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.804 Underground high-voltage cables. (a) Underground high-voltage cables used in resistance... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground high-voltage cables. 75.804 Section...

  1. Tasks in development of the USSR coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Bratchenko, B F

    1981-08-01

    Minister of the Soviet coal industry evaluates social and economic development plan of the Soviet coal industry from 1981 to 1985. Planned coal production should increase to 770-800 Mt, exceeding coal production in 1980 by 53 to 83 Mt. Proportion of coal mined by surface methods will further increase. Investment program concentrates on: construction of the Kansk-Achinsk fuel and energy basin, construction of the South Yakut coal basin and further development of surface mines in the Ehkibastuz basin. Proportion of coal mined in the Kuzbass will increase to 45% of the total coal output. Construction of the Kansk-Achinsk basin has the highest priority among the investment projects. Investment projects (construction of new coal mines and modernization of existing mines) in major coal basins in 1981 are analyzed. Mining machines and equipment for underground and surface black and brown coal mining are evaluated. Plans for developing new mining systems are described (e.g. narrow web coal cutter with chainless haulage system for thin and medium coal seams with drive system with power ranging from 110 to 315 kW). The following types of machines are discussed: coal cutters, shearer loaders, heading machines, belt conveyors, loaders. Selected social problems associated with manpower shortages for underground mining and for coal mines operating under extreme climatic conditions are also discussed.

  2. ENVIRONMENTAL IMPACT ON PHYSIOLOGICAL RESPONSES OF UNDERGROUND COAL MINERS IN THE EASTERN PART OF INDIA.

    Science.gov (United States)

    Dey, Netai Chandra; Nath, Suva; Sharma, Gourab Dhara; Mallik, Avijit

    2014-12-01

    Coal in India is extracted generally by semi-mechanized and mechanized underground mining methods. The Bord and Pillar (B & P) mining method still continues to be popular where deployment of manual miners is more than that of other mining methods. The study is conducted at haulage based mine of Eastern Coalfields of West Bengal. Underground miners confront with a lot of hazards like extreme hostile environment, awkward working posture, dust, noise as well as low luminosity. It is difficult to delay the onset of fatigue. In order to study the physiological responses of trammers, various parameters like working heart rates, net cardiac cost and relative cardiac cost including recovery heart rate patterns are recorded during their work at site. Workload classification of trammers has been done following various scales of heaviness. The effect of environment on the physiological responses has been observed and suitable recommendations are made. The work tasks are bound to induce musculoskeletal problems and those problems could be better managed through rationalizing the work-rest scheduling.

  3. Unattached fraction of radon progeny in Polish coal mines

    International Nuclear Information System (INIS)

    Skubacz, K.; Michalik, B.

    2002-01-01

    The system of the monitoring of the radiation hazard in Polish coal mines is based on the monitoring of the workplaces. This system works since 1989 in all coal mines. It gives a very good basis for further epidemiological investigation and assessment of the health detriment within the population of the mines as a result of the exposure for natural radiation. It is very important problem, due to the fact of the presence in the mines another factors, which probably have a synergetic effects on the respiratory tracts. As the routine instrument, a device called ALFA-31 sampling probe was developed in our laboratory. This device was accomplished to regular dust sampler and simultaneous measurements of dust content and potential alpha energy concentration of radon progeny are obligatory in all underground mines in Poland. But the microcyclone used a separator of the respirable fraction which causes the cut-off of unattached fraction of radon progeny, On the other hand measurements of the unattached fraction of short lived radon progeny play a very important role in the investigations of the adequate dose from this source of radiation hazard. During field experiments the use of the alpha spectroscopy system is necessary, while measurements are done not in the vacuum chambers but under normal pressure. It leads to situation, when particular peaks in alpha spectrum are very wide and interfere with other peaks of another alpha-emitting radionuclides. Such instrumentation was designed and completed, and a survey in several underground mines was performed. The analysis of the obtained results must be done very carefully; in other case it may cause a very big uncertainty of the result. In this paper a new approach to the analysis of the alpha spectra has been described. This approach can be used also in other applications of alpha spectroscopy, in which the analysis of energy of alpha peaks in spectrum is needed. The method of the analysis is based on a non-linear regression

  4. 77 FR 17099 - Proposed Extension of Existing Information Collection; Diesel-Powered Equipment for Underground...

    Science.gov (United States)

    2012-03-23

    ... to underground coal miners who work in mines that use diesel-powered equipment. Diesel equipment can... provide important safety protections to underground coal miners who work in mines that use diesel-powered... maintenance of fire suppression systems on the equipment and at fueling stations; exhaust gas sampling...

  5. Stability Control of Retained Goaf-Side Gateroad under Different Roof Conditions in Deep Underground Y Type Longwall Mining

    Directory of Open Access Journals (Sweden)

    Zhiyi Zhang

    2017-09-01

    Full Text Available Stability of the retained goaf-side gateroad (RGSG is influenced mainly by the movements of the roof strata near coal seam after coalface passes by. To make effective controlling technology for the stability of the RGSG, we analyze the roof structure over the RGSG to illustrate the mechanism causing the RGSG instability under different roof conditions. We then examine the dynamic evolution of the deformation and abutment stress in the rock surrounding the RGSG during coal seam mining, using the FLAC3D numerical software to reveal the instability characteristics of the RGSG under different roof conditions. Next, corresponding stability controlling technologies for the RGSGs are proposed and tested in three typical deep underground coalmines. Results show that: sink and rotation of the roof cantilever over the RGSG impose severer influence on the stability of the RGSG. The RGSG suffers disturbances three times during the coal-seam mining, and the deformation and abutment stress in the rock surrounding the RGSG increase significantly when the main roof becomes thicker and the immediate roof becomes thinner. Staged support technology involving grout cable bolts has better controlling results of the RGSG stability than that composed of conventional rock bolts, when the RGSG is beneath weak immediate roof with large thickness. Roof structure optimizing technology involving pre-split technology can improve the stability of the RGSG effectively when the RGSG is covered by hard main roof with large thickness directly.

  6. Wireless communication, tracking in mines topic of symposium

    OpenAIRE

    Trulove, Susan

    2006-01-01

    In response to the call for increased mine safety and improved underground communications in the wake of recent mining fatalities, the Virginia Center for Coal and Energy Research at Virginia Tech is cooperating with the Virginia Department of Mines Minerals and Energy to offer a Symposium on the Capabilities and Availability of Wireless Communication and Tracking Systems for Underground Coal Mines.

  7. Mining-induced surface damage and the study of countermeasures

    International Nuclear Information System (INIS)

    Cui Jixian

    1994-01-01

    Coal constitutes China's major energy resource. The majority of the coal is produced from underground mining operations. Surface subsidence may amount to 80% of the thickness of the seam mined, while the subsided volume is around 60% of the mined volume underground. An area of 20 hectares of land will be affected with each 1 million tons of coal mined, thereby causing severe surface damage. Following a description of the characteristics of surface damages due to underground mining disturbance, this paper elaborates on the damage prediction method, standards applied for evaluating the damages experienced by surface buildings, land reclamation methods in subsided area, measures for reinforcing and protecting buildings in mining-affected areas, and performance of antideformation buildings

  8. Fiscal 2000 survey of geological structures overseas. Exchange of engineers with Indonesia (Coal mining technology); 2000 nendo kaigai chishitsu kozo nado chosa hokokusho. Gijutsusha koryu jigyo (tanko gijutsu bun'ya) Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Indonesia rich in coal resources consumed 70-million tons of coal in 1999, which covered 17% of its total energy demand. It is estimated that as much as 120-million tons will be produced in 2005, and it is expected that underground mining will increase. Under such circumstances, Indonesia strongly desires that Japan's underground mining technologies be transferred to Indonesia. For the transfer of technologies especially involving production control and management out of Japan's underground mining technologies, Japan dispatched engineers to Indonesia under a mining engineer exchange project, and received and trained Indonesian engineers. Under the engineer exchange project, five engineers were dispatched to Indonesia and gave lectures and on-site training in the period July 9 through August 5, 2000. Japan received seven engineers, who were given lectures and training at the Ikeshima mining field of Matsushima Coal Mining Company in the period November 12 through December 12, 2000. (NEDO)

  9. Radon Progeny in Egyptian Underground Phosphate Mines

    International Nuclear Information System (INIS)

    El-Hady, M.A.; Mohammed, A.; El-Hussein, A.; Ali, A.E.; Ahmed, A.A.

    2001-01-01

    In addition to the workers in uranium mines, the staff of other underground mines, such as workers in underground phosphate mines, can be exposed to 222 Rn and its progeny. In this study the individual radon progeny concentrations were measured in three Egyptian underground phosphate mines to estimate the occupational exposure of the workers at those sites. A filter method was used to measure individual radon progeny concentrations ( 218 Po, 214 Pb and 214 Po). The reported mean values of radon progeny concentrations exceed the action levels which are recommended by ICRP 65 (1993). Based on the measured individual radon progeny concentrations ( 218 Po, 214 Pb and 214 Po) in these mines, the annual effective dose for the workers has been calculated using the lung dose model of ICRP 66 (1994). According to the obtained results, some countermeasures were recommended in this study to minimise these exposure levels. (author)

  10. Effects of radiation on coal mine environment -a critical review

    International Nuclear Information System (INIS)

    Singh, A.K.; Varma, N.K.; Sahay, N.; Ahmad, I.

    2001-01-01

    Due to mass-scale industrialization, world's environment is being polluted every day endangering the existence of living beings on the earth. This has attracted the attention of environmental engineers, medical practitioners, planners and researchers throughout the world. Attempts are being made to make air, water and atmosphere clean and to prevent likely hazards arising out of various industrial activities. In addition, the radiation from natural sources is all around us and has been here since time immemorial. Coal miners have small occupational radiation which arise from naturally occurring radioactive substance(s) underground. The predominant source of natural radiation present in coal mines is the radon gas. This paper describes the origin of radon and its radiological hazards. An attempt has been made to review the status of the problem likely to be caused by the different radioactive elements present in Indian coal, coal ash and allied coal-based industries. (author)

  11. Transport-location model of mine supply with timber. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Krause, E; Piasecki, B; Srutwa, J

    1981-01-01

    Underground black coal mines in Poland consume about 2 million m/sup 3/ of wood per year. Wood supply to coal mines will remain constant in spite of the planned coal output increase and assumed deterioration of mining conditions. An economic analysis of cost of rock strata control in coal mines is presented. The analysis concentrates on the proportion of wood cost in the total cost of strata control. Methods for reducing cost of wood supply to coal mines are analyzed using mathematical models. Transport system of wood to coal mines and within coal mines is analyzed. Site selection for storage facilities for wood, particularly wooden props, is evaluated. A mathematical model used for optimizing site selection is described. Economic effects associated with optimizing site selection of storage facilities for wood on mining cost and strata conrol cost in underground mining are described. (4 refs.)

  12. Coal mine subsidence: effects of mitigation on crop yields

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Subsidence from longwall underground coal mining adversely impacts agricultural land by creating wet or ponded areas. While most subsided areas show little impact, some localized places, usually less than 1.5 ha in size, may experience total crop failure. Coal companies mitigate subsidence damaged cropland by installing drainage waterways or by adding fill material to raise the grade. The objective of this study was to test the effectiveness of mitigation in restoring corn and soybean yields to pre-mined levels. Fourteen sites in southern Illinois were selected for study. Corn (Zea mays L.) and soybean (Glycine max L.) yields from mitigated and nearby undisturbed areas were compared for four years. Results varied due to differing weather and site conditions. Mean corn yields overall, however were significantly (α0.05) lower on mitigated areas. There was no significant difference in overall mean soybean yields. Soil fertility levels were similar and did not account for yield differences. 14 refs., 1 fig., 7 tabs

  13. Geotechnical design of underground slate mines

    International Nuclear Information System (INIS)

    Iglesias Comesaña, C.; Taboada Castro, J.; Arzúa Touriño, J.; Giráldez Pérez, E.; Martín Suárez, J.M.

    2017-01-01

    Slate is one of the most important natural materials in Spain, with a potent extractive and processing industry concentrated in the autonomous communities of Galicia, Castile and León. Thanks to its resistance to external agents, its impermeability and its excellent cleavability, slate is used as for roofing and tiling. Almost all the active exploitations in our country where this resource is extracted are open pit mines, where the exploitation ratios have nearly reached their economic limit, making it necessary to look for alternatives that will allow the mining works to be continued. Underground mining is a solution that offers low exploitation ratios, with low spoil generation. The room-and-pillar method with barrier pillars is usually applied for the exploitation of slate deposits. There are several factors to be taken into account when designing a mine (economic, logistical, geotechnical, technical, environmental…), especially for an underground mine. This study focuses on the geotechnical design process of a room-and-pillar underground mine, based on the tributary area theory, the analysis of the tensions in the ground with numerical methods and the choice of an appropriate reinforcement in view of the expected instabilities. This explanation is completed with an example of a design that includes the estimate exploitation rates and production. [es

  14. Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA

    Science.gov (United States)

    Cravotta, III, Charles A.; Brady, Keith B.C.

    2015-01-01

    Clean sampling and analysis procedures were used to quantify more than 70 inorganic constituents, including 35 potentially toxic or hazardous constituents, organic carbon, and other characteristics of untreated (influent) and treated (effluent) coal-mine discharges (CMD) at 38 permitted coal-mining or coal-processing facilities in the bituminous coalfield and 4 facilities in the anthracite coalfield of Pennsylvania. Of the 42 facilities sampled during 2011, 26 were surface mines, 11 were underground mines, and 5 were coal refuse disposal operations. Treatment of CMD with caustic soda (NaOH), lime (CaO or Ca(OH)2), flocculent, or limestone was ongoing at 21%, 40%, 6%, and 4% of the facilities, respectively; no chemicals were added at the remaining facilities. All facilities with CMD treatment incorporated structures for active or passive aeration and settling of metal-rich precipitate.

  15. Fiscal 1998 overseas geological structure survey report on the engineer interchange project (coal mine technology field), Indonesia; 1998 nendo kaigai chishitsu kozo nado chosa gijutsusha koryu jigyo (tanko gijutsu bun'ya), Indonesia hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims at improvement of coal mining technology and productivity in Indonesia by Japanese production control technology and business management technology for underground coal mining, through interchange of coal engineers between Japan and Indonesia. This project is composed of the short- term and long-term dispatch project of engineers to Indonesia, and the training project of Indonesian engineers in Japan. In fiscal 1998, the short-term dispatch was made for the training in Indonesia on underground coal mine development (development planning, pit mouth selection, main gallery design, mining system selection, transport planning, ventilation planning, under-river mining, mine water proofing, drainage). The long-term dispatch was made for contact and negotiation with concerned Indonesian organizations, support of the training project, and collection of information on the trend of Indonesian economy and energy, and the present and trend of the coal industry for conducting smooth and effective engineer interchange. (NEDO)

  16. Exposure to noise in coal mining; Metodologia para el Control y Prevencion del Ruido en las Minas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This study is centred on the analysis and evaluation of risk noise to which the workers are exposed in coal mines in ASTURIAS. To this end, great many measurements were carried out on the amount in workers belonging to the various mining professional categories. The results of the study show that there are a great many workers exposed to level of noise which notably surpass those limits established by the Royal Decree, 1316/1989 on the protection of worker against risks from exposure to noise at work particularly those involved in picking and in the preparation, which are, in fact, the most typical post in underground coal mining. (Author)

  17. Effects on Buildings of Surface Curvature Caused by Underground Coal Mining

    Directory of Open Access Journals (Sweden)

    Haifeng Hu

    2016-08-01

    Full Text Available Ground curvature caused by underground mining is one of the most obvious deformation quantities in buildings. To study the influence of surface curvature on buildings and predict the movement and deformation of buildings caused by ground curvature, a prediction model of the influence function on mining subsidence was used to establish the relationship between surface curvature and wall deformation. The prediction model of wall deformation was then established and the surface curvature was obtained from mining subsidence prediction software. Five prediction lines were set up in the wall from bottom to top and the predicted deformation of each line was used to calculate the crack positions in the wall. Thus, the crack prediction model was obtained. The model was verified by a case study from a coalmine in Shanxi, China. The results show that when the ground curvature is positive, the crack in the wall is shaped like a “V”; when the ground curvature is negative, the crack is shaped like a “∧”. The conclusion provides the basis for a damage evaluation method for buildings in coalmine areas.

  18. Hydrology and potential effects of mining in the Quitchupah and Pines coal-lease tracts, central Utah

    Science.gov (United States)

    Thiros, Susan A.; Cordy, G.E.

    1991-01-01

    Bydrologic data were collected for the proposed Quitchupah and Pines coal-lease tracts in Sevier and Bnery Counties, Utah, in order to describe the hydrology and potential effects of mining on the hydrologic system. The Quitchupah and Pines coal-lease tracts are near the Southern Utah Fuel Company coal mine in an area of the central Wasatch Plateau that is characterized by a relatively flat plateau deeply dissected by steep-sided canyons.Surface water in the Quitchupah and Pines study area drains to two perennial streams, Muddy Creek to the north and Quitchupah Creek to the south. Peak streamflow is usually in May and June in response to snowmelt runoff; however, thunderstorms can cause short-term high flows in late summer and fall. The specific conductance of surface water in and near the study area measured during the 1987 water year ranged from 440 (iS/cm to 860 (iS/cm. Suspended-sediment concentrations ranged from 17 to 10,900 mg/L in the Quitchupah Creek drainage and 34 to 312 mg/L in the Muddy Creek drainage.Stable-isotope studies indicate that recharge to aquifers in the study area is by seepage of snowmelt into rock outcrops. Discharge from the aquifers is at springs, seeps, mines, and zones of seepage in streambeds. The chemical quality of ground water is related to the mineralogy of the formations with which the water has contact. Water from the upper part of the Cast legate Sandstone has the smallest concentration of dissolved solids, 61 mg/L, and water from the North Horn Formation has the largest concentration, 1,080 mg/L.Observed effects of underground coal mining at the nearby active mine are considered indicative of the changes that can be expected in the Quitchupah and Pines coal-lease tracts. Subsidence above the mined area could cause dewatering of the Blackhawk Formation and the Star Point Sandstone, changes in the natural drainage patterns, and alteration of both surface- and ground-water quality. Additional studies are needed to gain a better

  19. Women and men coal miners: coping with gender integration underground

    Energy Technology Data Exchange (ETDEWEB)

    Yount, K.R.

    1986-01-01

    The central purpose of this research is to initiate a theoretical understanding of the integration of women into traditionally-male, physical-labor jobs. The primary sources of data consist of in depth interviews with women and men underground coal miners and company personnel, and field notes collected during participant observation work in mining communities. Part I addresses the relationship between conditions of production and modes of interaction in underground mines. Personality traits conceived as aspects of masculinity are traced to efforts to cope with the stressors of engaging in physical labor in a work setting characterized by lack of work autonomy, a high degree of threat, and a high degree of interdependence for task accomplishment. Part II focuses on situational and individual factors affecting the integration of women in the workplace. Although most women miners are satisfied with their work, a gender based division of labor has arisen in which women are concentrated in low-prestige laborer positions. The processes involved in undermining a woman's work reputation and self-concept are summarized and forms of discrimination that recreate aspects of the female sterotype and lead to the development of sex segregation in the workplace are to the development of sex segregation in the workplace are discussed.

  20. Hydrology of Alkali Creek and Castle Valley Ridge coal-lease tracts, central Utah, and potential effects of coal mining

    Science.gov (United States)

    Seiler, R.L.; Baskin, R.L.

    1988-01-01

    The Alkali Creek coal-lease tract includes about 2,150 acres in the Book Cliffs coal field in central Utah, and the Castle Valley Ridge coal-lease tract includes about 3,360 acres in the Wasatch Plateau coal field, also in central Utah. Both the Alkali Creek and Castle Valley Ridge coal-lease tracts are near areas where coal is currently (1987) mined by underground methods from the Cretaceous Blackhawk Formation. The Alkali Creek and Castle Valley Ridge areas have intermittent streams in which flow after snowmelt runoff is locally sustained into midsummer by springflow. The only perennial stream is South Fork Corner Canyon Creek in the Castle Valley Ridge area. Peak flow in both areas generally is from snowmelt runoff; however, peak flow from thunderstorm runoff in the Alkali Creek area can exceed that from snowmelt runoff. Estimated annual source-area sediment yield was 0.5 acre-ft/sq mi in the Alkali Creek lease tract and it was 0.3 acre-ft/sq mi in the Castle Valley Ridge lease tract. Groundwater in the Alkali Creek area occurs in perched aquifers in the Flagstaff Limestone and in other formations above the coal-bearing Blackhawk Formation. The principal source of recharge to the aquifers is snowmelt on outcrops. Faults may be major conduits and control the movement of groundwater. Groundwater discharges at formation contacts, between zones of differing permeability within a formation, near faults and into mines. Water sampled from 13 springs in the Alkali Creek area contained dissolved solids at concentrations ranging from 273 to 5,210 mg/L. Water sampled from 17 springs in the Castle Valley Ridge area contained dissolved solids at concentrations ranging from 208 to 579 mg/L. The composition of water from a recently abandoned part of an active mine the Wasatch Plateau closely resembles that of water discharging from a nearby mine that has been abandoned for more than 30 years. Mining of the Alkali Creek and Castle Valley Ridge coal-lease tracts likely will

  1. Steam coal mines of tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G

    1986-07-01

    A comprehensive review of new steam coal mines being planned or developed worldwide. It shows that at least 20 major mines with a combined annual output of 110 million tonnes per annum, could add their coal to world markets in the next 10 years. The review highlights: substantial activity in Australia with at least four major mines at advanced planning stages; a strengthening of the South American export industry with 4 major mines operating in 10 years compared with just one today; no major export mines being developed in the traditional US mining areas; and the emergence of Indonesia as a major steam coal producer/exporter. The review also shows a reduction in cost/output ratios, and also the proximity of the new mines to existing infrastructure (e.g. export terminals, rail links).

  2. Computer-aided planning of brown coal seam mining in regard to coal quality

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, R.; Lehmann, A.; Rabe, H.; Richter, S.

    1988-09-01

    Discusses features of the geologic SORVER software developed at the Freiberg Fuel Institute, GDR. The program processes geologic data from exploratory wells, petrographic characteristics of a coal seam model, technological mining parameters and coal quality requirements of consumers. Brown coal reserves of coking coal, gasification coal, briquetting coal and steam coal are calculated. Vertical seam profiles and maps of seam horizon isolines can be plotted using the program. Coal quality reserves along the surface of mine benches, mining block widths and lengths for excavators, maximum possible production of individual coal qualities by selective mining, and coal quality losses due to mining procedures are determined. The program is regarded as a means of utilizing deposit reserves more efficiently. 5 refs.

  3. Coal mining in the power industry of the Federal Republic of Germany in 2010; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2010. Statistical data are presented for the power market and coal market, brown coal mining as well as the hard coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  4. Coal mining in the power industry of the Federal Republic of Germany in 2016; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2016. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  5. Coal mining in the power industry of the Federal Republic of Germany in 2015; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2015. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  6. Coal mining in the power industry of the Federal Republic of Germany in 2013; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2013. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  7. Coal mining in the power industry of the Federal Republic of Germany in 2014; Der Kohlenbergbau in der Energiewirtschaft der Bundesrepublik Deutschland im Jahre 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-11-15

    The contribution under consideration reports on the coal mining in the Federal Republic of Germany in the year 2014. Statistical data are presented for the power market and coal market, hard coal mining as well as the brown coal mining. These data consider the energy consumption in Germany, power production, iron and steel production, utilization, re-cultivation and employees.

  8. Simulation of rainfall-runoff response in mined and unmined watersheds in coal areas of West Virginia

    Science.gov (United States)

    Puente, Celso; Atkins, John T.

    1989-01-01

    Meteorologic and hydrologic data from five small watersheds in the coal areas of West Virginia were used to calibrate and test the U.S. Geological Survey Precipitation-Runoff Modeling System for simulating streamflow under various climatic and land-use conditions. Three of the basins--Horsecamp Run, Gilmer Run, and Collison Creek--are primarily forested and relatively undisturbed. The remaining basins--Drawdy Creek and Brier Creek-are extensively mined, both surface and underground above stream drainage level. Low-flow measurements at numerous synoptic sites in the mined basins indicate that coal mining has substantially altered the hydrologic system of each basin. The effects of mining on streamflow that were identified are (1) reduced base flow in stream segments underlain by underground mines, (2) increased base flow in streams that are downdip and stratigraphically below the elevation of the mined coal beds, and (3) interbasin transfer of ground water through underground mines. These changes probably reflect increased permeability of surface rocks caused by subsidence fractures associated with collapsed underground mines in the basin. Such fractures would increase downward percolation of precipitation, surface and subsurface flow, and ground-water flow to deeper rocks or to underground mine workings. Model simulations of the water budgets for the unmined basins during the 1972-73 water years indicate that total annual runoff averaged 60 percent of average annual precipitation; annual evapotranspiration losses averaged 40 percent of average annual precipitation. Of the total annual runoff, approximately 91 percent was surface and subsurface runoff and 9 percent was groundwater discharge. Changes in storage in the soil zone and in the subsurface and ground-water reservoirs in the basins were negligible. In contrast, water-budget simulations for the mined basins indicate significant differences in annual recharge and in total annual runoff. Model simulations of

  9. Selective coal mining of intercalated lignite deposits

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, R [Kolubara-Projekt, Lazarevac (Yugoslavia)

    1991-01-01

    Describes selective coal mining in the Tamnava-Istocno Polje coal surface coal mine (Yugoslavia), designed for an annual coal production of 11.4 Mt. Until 1991, this mine exploited one thick lignite seam, without spoil intercalations, using a bucket wheel excavator-conveyor-spreader system both for coal mining and removal of overburden. In the future, several spoil intercalations of up to 1.0 m and thicker will appear with a total volume of 22 million m{sup 3}. These intercalations have to be selectively excavated in order to guarantee the calorific value of coal for the Nikola Tesla power plant. Computer calculations were carried out to determine the decrease in excavator coal production due to selective mining of spoil strata. Calculations found that the annual surface mine capacity will be lower by at most 9%, depending on thickness of spoil intercalations. The useful operation time of excavators will be reduced by 98 hours per year. The planned annual coal production will nevertheless be fulfilled. 3 refs.

  10. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models.

    Science.gov (United States)

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-10-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency.

  11. GPS-deprived localisation for underground mines

    CSIR Research Space (South Africa)

    Hlophe, K

    2010-08-31

    Full Text Available robots. Opencast mines utilise the global positioning system (GPS) to obtain location information. The unavailability of this technology in underground mining has actuated numerous researchers to investigate possible alternatives. These attempts exploit...

  12. Public views of reclaiming an abandoned coal mine: the Macoupin County project

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J. R.

    1980-07-01

    An abandoned underground coal mine waste area in Macoupin County, Illinois, has been reclaimed for demonstration and research purposes near the city of Staunton. According to federal law, end uses of reclaimed coal mines must be determined in part by local concerns. This study examined local residents' preferences for land uses and their social and economic evaluations of reclamation at the Macoupin County site. Personal interviews with 119 residents revealed preferences for recreational use of the demonstration area; however, responses were probably influenced by prior awareness of land-use intentions. Generally, very positive evaluations of the reclamation were received. Willingness to pay for reclamation appears to be linked to fulfillment of desired recreational uses on the site and socioeconomic status of the respondent. In general, the research results provide further evidence that the value of abatement of environmental damage from mining is recognized and supported in economic terms at the public level.

  13. A Standard Characterization Methodology for Respirable Coal Mine Dust Using SEM-EDX

    Directory of Open Access Journals (Sweden)

    Rachel Sellaro

    2015-12-01

    Full Text Available A key consideration for responsible development of mineral and energy resources is the well-being of workers. Respirable dust in mining environments represents a serious concern for occupational health. In particular, coal miners can be exposed to a variety of dust characteristics depending on their work activities, and some exposures may pose risk for lung diseases like CWP and silicosis. As underscored by common regulatory frameworks, respirable dust exposures are generally characterized on the basis of total mass concentration, and also the silica mass fraction. However, relatively little emphasis has been placed on other dust characteristics that may be important in terms of identifying health risks. Comprehensive particle-level analysis to estimate chemistry, size, and shape distributions of particles is possible. This paper describes a standard methodology for characterization of respirable coal mine dust using scanning electron microscopy (SEM with energy dispersive X-ray (EDX. Preliminary verification of the method is shown based several dust samples collected from an underground mine in Central Appalachia.

  14. Geophysical void detection at the site of an abandoned limestone quarry and underground mine in southwestern Pennsylvania

    International Nuclear Information System (INIS)

    Cohen, K.K.; Trevits, M.A.

    1992-01-01

    Locating underground voids, tunnels, and buried collapse structures continues to present a difficult problem for engineering geoscientists charged with this responsibility for a multitude of different studies. Solutions used and tested for void detection have run the gamut of surface geophysical and remote sensing techniques, to invasive trenching and drilling on closely-spaced centers. No where is the problem of locating underground voids more ubiquitous than in abandoned mined lands, and the U.S. Bureau of Mines continues to investigate this problem for areas overlying abandoned coal, metal, and nonmetal mines. Because of the great diversity of resources mined, the problem of void detection is compounded by the myriad of geologic conditions which exist for abandoned mined lands. At a control study site in southwestern Pennsylvania at the Bureau's Lake Lynn Laboratory, surface geophysical techniques, including seismic and other methods, were tested as a means to detect underground mine voids in the rather simple geologic environment of flat-lying sedimentary strata. The study site is underlain by an abandoned underground limestone mine developed in the Wymps Gap Limestone member of the Mississippian Mauch Chunk Formation. Portals or entrances into the mine, lead to drifts or tunnels driven into the limestone; these entries provided access to the limestone where it was extracted by the room-and-pillar method. The workings lie less than 300 ft from the surface, and survey lines or grids were positioned over the tunnels, the room-and-pillar zones, and the areas not mined. Results from these geophysical investigations are compared and contrasted. The application of this control study to abandoned mine void detection is apparent, but due to the carbonate terrain of the study site, the results may also have significance to sinkhole detection in karst topography

  15. Seismic monitoring of ground caving processes associated with longwall mining of coal

    International Nuclear Information System (INIS)

    Hatherly, P.; Luo, X.; Dixon, R.; McKavanagh, B.

    1997-01-01

    At the Gordonstone Coal Mine in Central Queensland, Australia, a microseismic monitoring study was undertaken to investigate the extent of ground failure caused by longwall mining. Twenty seven triaxial geophones were deployed in three vertical boreholes and over a six week period more than 1200 events were recorded. The seismicity correlated with periods of longwall production and occurred mainly within the 250 m wide mining panel. There was an arcuate zone of activity which extended from behind the face, at the sides of the panel and up to 70 m ahead of the face in the middle. There was lesser activity to a depth of about 30 m into the floor. The focal mechanisms show that reverse faulting was dominant. The presence of activity and reverse faulting ahead of the face was an unexpected result. However, piezometer readings at the time of the study and subsequent numerical modelling have supported this finding. This was the first detailed microseismic monitoring study of caving in an Australian underground coal mine. 9 refs., 6 figs

  16. Robotic complex for the development of thick steeply-inclined coal seams and ore deposits

    Science.gov (United States)

    Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu

    2017-09-01

    Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.

  17. 30 CFR 716.5 - Anthracite coal mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...

  18. Disposing of coal combustion residues in inactive surface mines: Effects on water quality

    International Nuclear Information System (INIS)

    Kim, A.G.; Ackman, T.E.

    1994-01-01

    The disposal of coal combustion residues (CCR) in surface and underground coal mines can provide a stable, low-maintenance alternative to landfills, benefiting the mining and electric power industries. The material may be able to improve water quality at acid generating abandoned or reclaimed coal mine sites. Most combustion residues are alkaline, and their addition to the subsurface environment could raise the pH, limiting the propagation of pyrite oxidizing bacteria and reducing the rate of acid generation. Many of these CCR are also pozzolanic, capable of forming cementitious grouts. Grouts injected into the buried spoil may decrease its permeability and porosity, diverting water away from the pyritic material. Both mechanisms, alkaline addition and water diversion, are capable of reducing the amount of acid produced at the disposal site. The US Bureau of Mines is cooperating in a test of subsurface injection of CCR into a reclaimed surface mine. Initially, a mixture of fly ash, lime, and acid mine drainage (AMD) sludge was injected. Lime was the source of calcium for the formation of the pozzolanic grout. Changes in water quality parameters (pH, acidity, anions, and trace metals) in water samples from wells and seeps indicate a small but significant improvement after CCR injection. Changes in the concentration of heavy metals in the water flowing across the site were apparently influenced by the presence of flyash

  19. Study of the Korean anthracite for utilization and the coal mine data management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report consists of two articles. (1) Petrographic study of the Korean anthracite for utilization (5): This research was initiated for the development of filtering materials those can be used in waste water treatment sites The small scale of filtration tester was built on the waste water treatment site of Chungjoo electric Co. to use waste water processed by purifying system for the feasibility study. (2) Study of the closed coal mine data management: Underground maps about 1700 adits of 100 coal mines, and related graphic data have been collected in the database. And all those data were entered into the database in vectorial form, coordinates obtaining from the digitizing tablet. Detailed works are described in the other report, including the discussions of graphic database and data handling of graphical mine data. Comments about the GIS is also provided in the volume. (author). 25 refs., 45 figs., 50 tabs., 3 maps.

  20. Technology for mining overburden with hard inclusions in landslide zones of KATEhK surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Egin, B A; Semikobyla, Ya G [Leningradskii Gornyi Institut (USSR)

    1990-10-01

    Discusses selected problems associated with overburden removal in the Berezovo and Uryup mines of the Kansk-Achinsk coal basin. The overburden consists of sandstones, clays and aleurites with a moisture content of 15-24%. Hard inclusions (lens) 0.1-4.5 m thick and up to 50 m long consist of sandstones and aleurites. The overburden will be mined by heavy-duty bucket wheel excavators with a capacity from 5,250 to 12,500 m{sup 3}. Effects of moisture content in the overburden and hard lens on excavator operation and landslide hazard are analyzed. Schemes for overburden removal and oversize crushing recommended by 2 research institutes would result in increasing slope angle from 47-50 degrees to 70 degrees and cause a safety factor increase (1.6 times). 2 refs.

  1. Liquid hydrocarbons from coal beds – risk factor for the underground work environment - Case study

    Directory of Open Access Journals (Sweden)

    Tomescu Cristian

    2017-01-01

    Full Text Available Liquid hydrocarbons from the coal bed and surrounding rocks, besides the stored gases, methane, carbon dioxide, carbon oxide, generate the increase of the risk factor from the occupational health and safety point of view. If for reducing the gas concentrations level and the methane emissions in order to increase the safety in exploitation exist well-known solutions and methods, the oxidation or self-oxidation of the hydrocarbons from the coal bed generate a series of compounds, reaction products over maximum admitted concentrations which give birth to a toxic atmosphere and which is hazardous for workers, at the same time inducing an error in noting the occurrence of a spontaneous combustion phenomena, a major risk for the workers and for the mineral resource. This paper represents a case study performed in one underground mine unit from Jiu Valley and presents the analysis for underground environment factors monitoring and for solutions for diminishing the OHS risk factors.

  2. Estimation of active rockburst prevention effectiveness during longwall mining under disadvantageous geological and mining conditions

    Directory of Open Access Journals (Sweden)

    Łukasz Wojtecki

    2016-01-01

    Full Text Available Underground longwall mining of coal seams in the Upper Silesian Coal Basin is currently being carried out under increasingly difficult geological and mining conditions. Mining depth, dislocations and mining remnants are the main factors responsible for the most significant rockburst hazard, which can be minimized via the use of active and passive rockburst prevention. Active rockburst prevention in longwalls is usually based on blasting, in order to either destress local stress concentrations in the rock mass or to fracture the thick layers of strong roof rocks to prevent or minimize the impact of high energy tremors on excavations. The accurate estimation of active rockburst prevention effectiveness is particularly important when mining under disadvantageous geological and mining conditions, which are associated with high levels of this hazard. The efficiency of blasting applied for this purpose is typically evaluated from the seismic effect, which is calculated based on seismic monitoring data and the weight of the charged explosive. This method, as used previously in the Czech Republic, was adopted in the present study to analyze conditions occurring in a Polish hard coal mine in the Upper Silesian Coal Basin. Parameters of long hole destress blastings in roof rocks (torpedo blastings from the face of the assigned longwall in coal seam no. 507 were correct a success according to the seismic effect method and corresponded to observations made in situ. The analytical method presented enables the rapid estimation of destress blasting effectiveness and could also be useful when determining appropriate active rockburst prevention.

  3. Main economic characteristics of new plant for underground gasification of coal. [5 planned USSR commercial installations

    Energy Technology Data Exchange (ETDEWEB)

    Leshchinskii, B F; Markman, L M

    1957-01-01

    As a result of experimental investigations, the erection of five large-capacity, industrial, underground gasification stations is planned. The locations and chief customers of the five stations are listed and their characteristics are as follows: 1. North Tula Station will use brown coal that averages 30 percent moisture and 23.1 percent ash. The coalbed, 1.5 meters thick, is horizontal and lies at a depth of 50 meters. Total reserves are estimated at 10.7 million tons and industrial reserves at 7 million tons. 2. Gorlovsky Station will use brown coal, averaging 30 percent water and 21 to 27.3 percent ash. The coalbed, 2.1 to 2.7 meters thick, is horizontal and lies at a depth of 35 to 60 meters. Total reserves are 105.4 million tons; industrial reserves are 73.5 million tons. 3. South Abinsk Station will use hard coal in beds 0.83 to 20 meters thick and contain 38 percent water and 9.4 percent ash. The angle of dip ranges from 60 to 70/sup 0/. The coal averages 330 meters from the surface. Total reserves are 98 million tons; industrial reserves are 58.5 million tons. 4. Stalinsk Station will use a semianthracite containing 12 to 15 percent ash and 7.7 to 12 percent volatile matter. The beds are 0.8 to 8.3 meters thick; the angle of dip ranges from 35 to 75/sup 0/. Total reserves are 287.6 million tons; reserves for gasification are 74.5 million tons. Depth from surface is 290 to 460 meters. 5. South Kuzbass Station will use hard coal that contains 4 to 19 percent ash and 8 to 15 percent volatiles. The beds are from 0.62 to 5.64 meters thick; the angle of dip ranges from 15 to 70/sup 0/. Total reserves are 156.9 million tons; industrial reserves are 105.5 million tons. The basic economic and technical figures for all five stations are listed. Capital investment costs and costs per unit of fuel are compared with those of conventional coal mines.

  4. Computer-supported planning on graphic terminals in the staff divisions of hard coal mines. Rechnergestuetzte Planung an grafischen Arbeitsplaetzen in den Stabsstellen von Steinkohlenbergwerken

    Energy Technology Data Exchange (ETDEWEB)

    Seeliger, A [Technische Hochschule Aachen (Germany)

    1990-01-01

    Analysis of the planning activity in the planning department of German hard coal mines have shown that in some branches of the planning process productivity and creativity of the involved experts can be increased, potentials for rationalization be opened up and the cooperation between different engineering disciplines be improved by using computer network systems in combination with graphic systems. This paper reports about the computer-supported planning system 'Grube', which has been developed at the RWTH (technical university) Aachen, and its applications in mine surveying, electro-technical and mechanical planning as well as in the planning of ventilation systems and detailed mine planning. The software module GRUBE-W, which will be in future the centre of the working place for the mine ventilation planning of the Ruhrkohle AG, is discussed in detail. (orig.).

  5. Twenty third scientific conference on research-scientific problems of constructing mine buildings and metallurgical plants

    Energy Technology Data Exchange (ETDEWEB)

    Swiadrowski, W

    1978-01-01

    Annual conference was held in Krynica from 16-23 September 1977. One hundred and nineteen papers were delivered, of these 24 papers were on mine buildings. It was noted that damage caused by underground coal mining is prevalent and characterized by a tendency to increase. In the middle of the 1970s damages paid by mines (mainly by coal mines) reached 5 billion zlotys yearly. Damages which were not compensated, and social cost of mining damages are not included in the calculation. The following problems were discussed: interaction between foundations of buildings with ground in areas affected by deformations; influnce of underground coal mining on properties of soil; improving construction of large industrial plants located on grounds characterized by surface deformations; influence of underground coal mining on deformations of walls of sedimentation tanks; complex utilization of mined deposits in the Upper Silesian basin, Rybnik basin and in the Lublin black coal basin (coal and other minerals). (In Polish)

  6. Rebirth of a 100-year-old technology: underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Young, B.C.; Harju, J.A.; Schmit, C.R.; Solc, J. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies Ltd. (Country unknown/Code not available); Kuehnel, R.A. [International Institute for Aerospace Survey and Earth Sciences (Netherlands); Walker, L.K. [Innisfree Pty. Ltd. (Country unknown/Code not available); Komsartra, C. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand)

    1997-04-01

    Underground coal gasification (UCG) is a clean coal technology that was first conceived by Mendeleev in Russia over 100 years ago. It involves the conversion of coal in situ to a low-to-medium grade product gas, avoiding the expense of mining and reclamation. The successful application of UCG is critically dependent on both judicious site selection and process design specific to that site. It requires a detailed knowledge and understanding of those geologic, hydrogeologic, and other site characteristics critical to the technical success and environmental acceptability of the process. This paper addresses the development and key features of UCG and describes a UCG feasibility project now under way in Southern Thailand on a lignite deposit. The relevance of the technology to the long-term supply of gas to the Eastern States of Australia is also discussed. It is concluded that the lack of acceptance of the technology to date follows from a confusion in the interpretation of test results from the different hydrogeologic settings of previous UCG test sites. Successful development of the technology requires the careful assembly of an integrated design team with hydrogeologic, geologic mineralogic, chemical and engineering expertise. (author). 1 fig., 11 refs.

  7. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2017-08-01

    Full Text Available Rock failure phenomena, such as rockburst, slabbing (or spalling and zonal disintegration, related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining. Currently, the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward. In this study, new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced. Two types of coupled loading modes, i.e. “critical static stress + slight disturbance” and “elastic static stress + impact disturbance”, are proposed, and associated test devices are developed. Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory, and the rockburst mechanism and related criteria are demonstrated. The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold, and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion. Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density. In addition, we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass, which can efficiently and accurately locate the rock failure in hard rock mines. Also, a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.

  8. Solution of problems, emerging with the transition to thin seams mining on underground mines

    International Nuclear Information System (INIS)

    Malkin, A.S.; Podshivalov, V.E.; Zhdamirov, V.M.; Kostarev, A.P.; Kulakov, A.N.; Savchenkov, V.E.

    1997-01-01

    The greatest volume of useful carbon-energetical and carbon-technological resources in the countries of the world consists of coal. Most likely, problems of the development of coal wining technology and coal consumption will interest scientists and mining engineers for a long time. Moreover, competing with the petroleum and gas industries becomes increasingly difficult. Considerable increases in coal production in countries with warm climates, and favourable mining and geological conditions also damages the international market for the coal industries of Russia (and Australia, India, and Vietnam). In a situation of critical deficits in both financial and material means in Russia, it is necessary to change the structure of the means of production and investment policies for the development of coal mining at every individual mine. 1 fig

  9. 30 CFR 75.313 - Main mine fan stoppage with persons underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Main mine fan stoppage with persons underground... mine fan stoppage with persons underground. (a) If a main mine fan stops while anyone is underground and the ventilating quantity provided by the fan is not maintained by a back-up fan system— (1...

  10. Sustainable application of reciprocating gas engines operating on coal mine methane

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Teo, T. [Caterpillar China Investment Co., Beijing (China); Tnay, C.H. [Westrac Inc., Beijing (China)

    2008-07-01

    According to the World Coal Institute, coal provides 25 per cent of worldwide primary energy needs and generates 40 per cent of the world's electricity. China produces the largest amount of hard coal. The anthropogenic release of methane (CH{sub 4}) into the environment is a byproduct of the coal mining process. The global warming potential of this methane continues to draw attention around the world. In particular, China's government has recognized the need for environmental responsibility in the pursuit of greater power production. The Kyoto Protocol requires developed countries to reduce their greenhouse gas emissions and targets must be met within a five-year time frame between 2008 and 2012. Sequestering coal mine methane (CMM) as an alternative fuel for reciprocating gas engine generator sets is a mature and proven technology for greenhouse gas mitigation. Prior to commissioning CMM-fueled power systems, the methane gas composition must be evaluated. An integrated systems approach can then be used to develop a CMM-fueled power project. This paper discussed the sustainable application of reciprocating gas engines operating on coal mine methane. It discussed the Kyoto Protocol, clean development mechanism, and CMM as compared to other fuel sources. It was concluded that there is considerable opportunity for growth in the Asia-Pacific region for electric power applications using CMM. 4 refs., 12 figs.

  11. Underground communications and tracking technology advances

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  12. Control of radon daughters in underground mining

    International Nuclear Information System (INIS)

    Swent, L.W.

    1983-01-01

    This paper discusses technical developments that may enable uranium mine operators to improve engineering controls of radon daughter concentrations in mines, and developments in regulatory controls. The origin of radon daughters in underground mines is explained. The procedure for sampling and determining the concentration of alpha radiation in sampled air is reviewed. The principal technical development in the last few years has been the perfection and use of a class of meters which determine radon daughter concentrations in an air sample in a matter of two or three minutes without any aging period. A number of underground uranium mine operators are now using ''instant'' type meters and the Mine Safety and Health Administration (MSHA) has approved their use in a number of mines. The difficulty experienced by uranium mine operators in complying with a MSHA regulation which requires that no person be exposed to radon daughter concentrations exceeding 1 Working Level (WL) in any active working place is discussed

  13. Perspectives on coal mining in Teruel; Perspectivo de la mineria del carbon en Teruel

    Energy Technology Data Exchange (ETDEWEB)

    Albeniz Campas, M.A. [Minas ENDESA (Spain)

    1993-12-31

    In the context of the various formations belonging to the Mesozoic Era, within the ambit of the Iberian Cordillera, that of Escucha is the most relevant from the point of view of its industrial exploitation, containing within its three parts seams of coal capable of exploitation by their use in the field of power generation. The difficulties inherent in the exploitation by underground mining methods can be negated by the use of opencast techniques with highly selective mechanised technique which make possible the mining of high volumes, and the reclamation of the land. Finally, technical innovations in the field of fluidised-bed combustion and in-situ gasification of coal, permit the exhaustive utilisation of the reserves of the Teruel Basin. 9 figs.

  14. Role and tasks of the Mine Safety and Health Administration

    Energy Technology Data Exchange (ETDEWEB)

    Bradecki, W. (Wyzszy Urzad Gorniczy, Katowice (Poland))

    1992-01-01

    Discusses the visit of 2 representatives of the Mine Safety and Health Administration and the West Mining Company from the United States to Poland in November 1991. During the visit, occupational safety in underground coal mines in Upper Silesia was evaluated. Selected aspects of experience and organization schemes of the Mine Safety and Health Administration are evaluated from the point of view of their use in Poland to increase occupational safety in coal mining. The following aspects are discussed: Mine Safety and Health Administration and its budget (US$ 186 million), personnel (2,700), research institutes that specialize in mine safety (the National Institute of Occupational Safety and Health, Bureau of Mines), natural hazards associated with mining, mine safety in underground and surface coal mines in the USA in relation to number of coal miners and coal output, job safety analysis as a key to the success of the MSHA, increased hazards in small mines (Pennsylvania, West Virginia, Virginia and Kentucky), problems of drug addiction and alcoholism among coal miners.

  15. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  16. Injury experience in coal mining, 1990

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  17. Injury experience in coal mining, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Reich, R.B.; Hugler, E.C.

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  18. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  19. A Coal Burst Mitigation Strategy for Tailgate during Deep Mining of Inclined Longwall Top Coal Caving Panels at Huafeng Coal Mine

    Directory of Open Access Journals (Sweden)

    Guorui Feng

    2018-01-01

    Full Text Available A coal burst mitigation strategy for tailgate in mining of deep inclined longwall panels with top coal caving at Huafeng Coal Mine is presented in this paper. Field data showed that coal bursts, rib sloughing or slabbing, large convergence, and so forth frequently occurred within the tailgate entries during development and panel retreating employing standard longwall top coal caving (LTCC layout which resulted in fatal injuries and tremendous profit loss. The contributing factors leading to coal bursts were analyzed. Laboratory tests, in situ measurement, and field observation demonstrate that the intrinsic bursting proneness of the coal seam and immediate roof stratum, deep cover, overlying ultrathick (500–800 m conglomerate strata, faults, and, most importantly, improper panel layout led to coal bursts. By employing a new strategy, that is, longwall mining with split-level gateroads (LMSG, gateroads on either end of a LMSG panel are located at different levels within a coal seam, adjacent LMSG panels overlap end to end, and the tailgate of the adjacent new LMSG panel can be located below the headgate entry of the previous LMSG panel or may be offset horizontally with respect to it. Numerical modeling was carried out to investigate the stress distribution and yield zone development within surrounding rock mass which was validated by field investigation. The results indicate that standard LTCC system gave rise to high ground pressure around tailgate entries next to the gob, while LMSG tailgate entry below the gob edge was in a destressed environment. Therefore, coal bursts are significantly mitigated. Field practice of LMSG at Huafeng Coal Mine demonstrates how the new strategy effectively dealt with coal burst problems in mining of deep inclined longwall panels with a reduced incidence of ground control problems. The new strategy can potentially be applied in similar settings.

  20. Injury experience in coal mining, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. Data used in compiling this report were reported by operators of coal mines and preparation plants on a mandatory basis as required under the Federal Mine Safety and Health Act of 1977, Public Law 91-173,as amended by Public Law 95-164. Since January 1, 1978, operators of mines or preparation plants or both which are subject to the Act have been required under 30 CFR, Part 50, to submit reports of injuries, occupational illnesses, and related data.

  1. Radio frequency propagation model and fading of wireless signal at 2.4 GHz in an underground coal mine

    OpenAIRE

    Patri, A.; Nimaje, D. S.

    2015-01-01

    Wireless sensor networks and wireless communication systems have become indispensable in underground mines. Wireless sensor networks are being used for better real-time data acquisition from ground monitoring devices, gas sensors, and mining equipment, whereas wireless communication systems are needed for locating and communicating with workers. Conventional methods like wireline communication have proved to be ineffective in the event of mine hazards such as roof falls, fires etc. Before imp...

  2. Third symposium on underground mining

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Third Symposium on Underground Mining was held at the Kentucky Fair and Exposition Center, Louisville, KY, October 18--20, 1977. Thirty-one papers have been entered individually into EDB and ERA. The topics covered include mining system (longwall, shortwall, room and pillar, etc.), mining equipment (continuous miners, longwall equipment, supports, roof bolters, shaft excavation equipment, monitoring and control systems. Maintenance and rebuilding facilities, lighting systems, etc.), ventilation, noise abatement, economics, accidents (cost), dust control and on-line computer systems. (LTN)

  3. Coal mining situation in the Federal Republic of Germany. 1st half of 2016; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Halbjahr 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-09-01

    The report on coal mining in Germany contains statistical data on the following issues: (a) Hard coal mining: part 1: production, resources, performance, employees; part 2: marketing and foreign commerce. (b) brown coal: part 1: production, resources, performance, employees; part II: marketing in domestic and foreign commerce.

  4. Coal mining situation in the Federal Republic of Germany. 1st half of 2017; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Halbjahr 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-09-01

    The report on coal mining in Germany contains statistical data on the following issues: (a) Hard coal mining: part 1: production, resources, performance, employees; part 2: sales and foreign trade. (b) brown coal: part 1: production, refinement, employees; part II: sales in domestic and foreign trade.

  5. Coal mining situation in the Federal Republic of Germany. 1st half of 2015; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Halbjahr 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-08-28

    The report on coal mining in Germany contains statistical data on the following issues: (a) Hard coal mining: part 1: production, resources, performance, employees; part 2: marketing and foreign commerce. (b) brown coal: part 1: production, resources, performance, employees; part II: marketing in domestic and foreign commerce.

  6. Mine-fire diagnostics applied to the Carbondale, Pennsylvania mine-fire site. Rept. of Investigations/1992

    International Nuclear Information System (INIS)

    Kim, A.G.; Justin, T.R.; Miller, J.F.

    1992-01-01

    The U.S. Bureau of Mines applied its mine fire diagnostic method to an abandoned anthracite mine fire site in Carbondale, Lackawanna County, PA. The technique to locate fires in abandoned coal mines and coal refuse piles includes the determination of hydrocarbon concentrations in mine gases, the imposition of an underground gas flow direction, and use of a surface mapping method, to define heated and cold zones in underground coal strata. The heated zones at Carbondale were characterized by elevated methane concentrations. The results of 25 communication tests were analyzed to define 2 large (approximately 100 by 250 ft) and 5 small, isolated heated zones. An approximate correlation existed between the location of the heated zones and areas of anomalous snow melt. The correlation between the results of the diagnostic test and subsurface temperatures was not significant

  7. Mercury and trace element contents of Donbas coals and associated mine water in the vicinity of Donetsk, Ukraine

    Science.gov (United States)

    Kolker, A.; Panov, B.S.; Panov, Y.B.; Landa, E.R.; Conko, K.M.; Korchemagin, V.A.; Shendrik, T.; McCord, J.D.

    2009-01-01

    Mercury-rich coals in the Donets Basin (Donbas region) of Ukraine were sampled in active underground mines to assess the levels of potentially harmful elements and the potential for dispersion of metals through use of this coal. For 29 samples representing c11 to m3 Carboniferous coals, mercury contents range from 0.02 to 3.5 ppm (whole-coal dry basis). Mercury is well correlated with pyritic sulfur (0.01 to 3.2 wt.%), with an r2 of 0.614 (one outlier excluded). Sulfides in these samples show enrichment of minor constituents in late-stage pyrite formed as a result of interaction of coal with hydrothermal fluids. Mine water sampled at depth and at surface collection points does not show enrichment of trace metals at harmful levels, indicating pyrite stability at subsurface conditions. Four samples of coal exposed in the defunct open-cast Nikitovka mercury mines in Gorlovka have extreme mercury contents of 12.8 to 25.5 ppm. This coal was formerly produced as a byproduct of extracting sandstone-hosted cinnabar ore. Access to these workings is unrestricted and small amounts of extreme mercury-rich coal are collected for domestic use, posing a limited human health hazard. More widespread hazards are posed by the abandoned Nikitovka mercury processing plant, the extensive mercury mine tailings, and mercury enrichment of soils extending into residential areas of Gorlovka.

  8. Swedish mines. Underground exploitation methods

    International Nuclear Information System (INIS)

    Paucard, A.

    1960-01-01

    Between 1949 and 1957, 10 engineers of the Mining research and exploitation department of the CEA visited 17 Swedish mines during 5 field trips. This paper presents a compilation of the information gathered during these field trips concerning the different underground mining techniques used in Swedish iron mines: mining with backfilling (Central Sweden and Boliden mines); mining without backfilling (mines of the polar circle area). The following techniques are described successively: pillar drawing and backfilled slices (Ammeberg, Falun, Garpenberg, Boliden group), sub-level pillar drawing (Grangesberg, Bloettberget, Haeksberg), empty room and sub-level pillar drawing (Bodas, Haksberg, Stripa, Bastkarn), storage chamber pillar drawing (Bodas, Haeksberg, Bastkarn), and pillar drawing by block caving (ldkerberget). Reprint of a paper published in Revue de l'Industrie Minerale, vol. 41, no. 12, 1959 [fr

  9. South Blackwater Coal`s maintenance program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, J. [South Blackwater Coal Limited, Blackwater, Qld. (Australia)

    1998-09-01

    The South Blackwater operation consists of two opencut mining areas and two underground mines (Laleham and Kenmure) near Blackwater in central Queensland, all of which supply coal to a central coal preparation plant. South Blackwater Coal Ltd. recently developed a maintenance improvement programme, described in this article. The programme involved implementation systems of key performance indicators (KPIs), benchmaking, condition monitoring, work planning and control, failure analysis and maintenance audit. Some improvements became almost immediately apparent, others were quite gradual. Major results included: improved availability (and reliability) of all opencast fleets, improvements in rear dump availability; reduced maintenance man-hours for opencast fleets; and increased availability of the coal handling and preparation plant. The paper is an edited version of that presented at the `Maintenance in mining conference` 16-19 March 1998, held in Bali, Indonesia. 4 figs., 2 photos.

  10. Coal mine subsidence: effects of mitigation on crop yields. [USA - Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W. (Illinois Univ., Urbana, IL (USA). Dept. of Agronomy)

    1992-01-01

    Subsidence from longwall underground coal mining adversely impacts agricultural land by creating wet or ponded areas. While most subsided areas show little impact, some localized places, usually less than 1.5 ha in size, may experience total crop failure. Coal companies mitigate subsidence damaged cropland by installing drainage waterways or by adding fill material to raise the grade. The objective of this study was to test the effectiveness of mitigation in restoring corn and soybean yields to pre-mined levels. Fourteen sites in southern Illinois were selected for study. Corn ([ital Zea mays] L.) and soybean ([ital Glycine max] L.) yields from mitigated and nearby undisturbed areas were compared for four years. Results varied due to differing weather and site conditions. Mean corn yields overall, however were significantly ([alpha]0.05) lower on mitigated areas. There was no significant difference in overall mean soybean yields. Soil fertility levels were similar and did not account for yield differences. 14 refs., 1 fig., 7 tabs.

  11. Applicability of gassy mine regulations: Engineering study report

    International Nuclear Information System (INIS)

    1987-08-01

    This study reviewed three bodies of current Mine Safety and Health Administration (MSHA) gassy mine regulations, to address whether the Code of Federal Regulations (CFR) Title 30, Part 57 Safety and Health Standards - Metal and Nonmetal Underground Mines, Section 21-Gassy Mines, or Parts 75 Mandatory Safety Standards - Underground Coal Mines, and Part 77 Mandatory Safety Standards - Surface Coal Mines and Surface Work Areas of Underground Coal Mines, are more applicable to a subsurface repository design. Part 57.21 is determined to be most applicable. There are, however, three sections in Parts 75 and 77 which address certain applicable items in greater detail and, therefore, will provide a more conservative design approach in these areas than Part 57.21, and should be incorporated into the basis for design. Study work also revealed that proposed CFR Title 30, Part 58 Mine Safety and Health - Metal and Nonmetal Standards, will have to be considered during design work if and when these have been promulgated. 9 refs., 1 fig., 1 tab

  12. Question marks of the Czech coal mining industry

    International Nuclear Information System (INIS)

    Dopita, M.; Pesek, J.

    1995-01-01

    An overview of brown and black coal mining in the Czech Republic is presented, and problems of the extent of coal reserves and of the profitability of deep black coal mining are discussed. Costs of coal mining in foreign countries are given. Coal mining in the Czech Republic can be expected to be loss-making unless coal prices are increased. Since coal resources in the Czech Republic are limited, additional nuclear power plants will have to be constructed or else coal for power generation will have to be imported. The environmental aspects of coal mining and burning are discussed. Medium-term and long-term solutions to reduce the environmental burden include thermal power plant desulfurization, application of the fluidized-bed combustion regime to coals with large ash and/or sulfur contents, and introduction of gas in towns and power plants. In the short run, large-scale consumers in towns and coal basins should be obliged to accumulate reserves of low-sulfur coal for later use. (J.B.). 2 tabs., 3 figs., 8 refs

  13. The largest US coal acquisition takes shape

    International Nuclear Information System (INIS)

    Carter, R.A.

    1998-01-01

    The midyear purchase of Arco's US coal properties for 1.14 billion dollars gave Arch coal, Inc. (ACI) a string of surface and underground mines stretching from Wyoming's Powder River Basin to the coalfields of central Utah. The transaction created a new entity, Arch Western Resources LLC. The article describes operations at Black Thunder and Coal Creek surface mines and SUFCO, Skyline, Dugout Canyon and West Elk longwall mines. 4 photos

  14. The exergy underground coal gasification technology for power generation and chemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Blinderman, M.S. [Ergo Exergy Technologies Inc., Montreal, PQ (Canada)

    2006-07-01

    Underground coal gasification (UCG) is a gasification process carried out in non-mined coal seams using injection and production wells drilled from the surface, converting coal in situ into a product gas usable for chemical processes and power generation. The UCG process developed, refined and practised by Ergo Exergy Technologies is called the Exergy UCG Technology or {epsilon}UCG{trademark} technology. This paper describes the technology and its applications. The {epsilon}UCG technology is being applied in numerous power generation and chemical projects worldwide, some of which are described. These include power projects in South Africa, India, Pakistan and Canada, as well as chemical projects in Australia and Canada. A number of {epsilon}UCG{trademark} based industrial projects are now at a feasibility usage in India, New Zealand, USA and Europe. An {epsilon}UCG{trademark} IGCC power plant will generate electricity at a much lower cost than existing fossil fuel power plants. CO{sub 2} emissions of the plant can be reduced to a level 55% less than those of a supercritical coal-fired plant and 25% less than the emissions of NG CC. 10 refs., 8 figs.

  15. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  16. Posture estimation system for underground mine vehicles

    CSIR Research Space (South Africa)

    Hlophe, K

    2010-09-01

    Full Text Available Page 1 of 8 25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 13-16 July 2010, Pretoria, South Africa A POSTURE ESTIMATION SYSTEM FOR UNDERGROUND MINE VEHICLES Khonzumusa Hlophe1, Gideon Ferreira2... and the transmitter. The main difference between the three systems is their implementation. This paper describes an implementation of a posture estimation system for underground mine vehicles. The paper is organized as follows. In the next section, a brief...

  17. Economic aspects of comprehensive mechanization of mining operations. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Zemla, F

    1978-02-01

    The development of mining equipment for longwall mining and effects of mechanization of mining operations on labor productivity and output of underground coal mines in Poland from 1950 to 1976 are discussed. Mining equipment used from 1950 to 1960 (cutters, steel or timber supports, chain conveyors, drilling and blasting), from 1960 to 1970 (cutter loaders, chain conveyors and steel supports), from 1970 to 1976 (shearer loaders, chain conveyors and powered or shield supports) is analyzed. Coal output of faces mined by mechanized equipment increased from 9.7% in 1950 to 63.1% in 1969 and to 87.6% of total coal output in 1976. The total coal output of underground coal mines increased from 99.1 Mt in 1959 to 125.0 Mt in 1969 and 179.3 Mt in 1976. Labor productivity per miner increased from 1.561 t/d in 1959 to 2.529 t/d in 1969 and to 3.433 t/d in 1976.

  18. Fiscal 1997 technological survey report. Engineer exchange project - coal mine technological field (Advanced coal producing country survey - U.S.A. survey); 1997 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) senshin santankoku chosa. Beikoku chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    While the introduction and adaptation of the Longwall excavation technology were carried forward for coal producing countries in the Pacific region, U.S.A. information was collected by making tours of coal mines in the West and Washington/Colorado/Utah States, with the intention of ascertaining technological trend so as to carry out efficient technological transfer, and for the purpose of replenishing the contents and contributing to the smooth implementation of the engineer exchange project in 'coal mine technological field'. The coal reserves are 400 billion tons, with 840 million tons produced and with 80 million tons exported; not less than 56% of the U.S. domestic electricity rests on coal. Production by open-pit mining is the majority while the output by underground mining is 38%; the Longwall method has increased as a digging method, taking 18% of all digging output. The productivity is 4.24 ton/person per day and ranks as the world highest. The coal mining technological trend in the U.S. can be summarized as follows. The coal mining output in the West is increasing, with the number of mines decreasing, so that the output per mine is increasing. With the output ratio by open-pit mining increasing, the digging method in the mine is being changed to the Longwall. (NEDO)

  19. Economical Optimization of the Mechanized Longwall Faces with Top Coal Caving Mining, In Horizontal Slices

    Science.gov (United States)

    Onica, Ilie; Mihăilescu, Viorel; Andrioni, Felicia

    2016-09-01

    To increase the economic and technical performances of the Jiu Valley hard coal mines, the top coal caving, in horizontal slices, mining methods (Bourbaki methods) were introduced, adapted to the local geo-mining conditions. This mining was successfully experimented by using classical technology, using the individual supports and coal blasting. In the future, it is planned to adopt the mechanized technology, with frame supports and shearers. The mechanized longwall faces with top coal caving mining, in horizontal slices, of coal seam no. 3 could be efficient only if the sizes of the top coal height and the panel length determine a minimum cost of production. Therefore, the goal of this paper is the optimization of these parameters, from a technical and economic point of view, taking into account the general model of the cost function, at the panel level. For that, it was necessary to make a certain sequence of analysis involving: technological unit establishment, purpose function and optimizing model. Thus, there attaining to the mathematical model of the unit cost, after determination of all the individual calculation articles, regarding the preparatory workings, coal face equipments, materials, energy, workforce, etc. Because of the complexity of the obtained technical and economic model, to determine the optimum sizes of the panel length and top coal height, it was necessary to archive a sensitivity analysis of the unit cost function to the main parameters implied into this mathematical model.

  20. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2016; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-06

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2016. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  1. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2017; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-06-14

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2017. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  2. Coal mining situation in the Federal Republic of Germany. The 1st quarter 2015; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. 1. Vierteljahr 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-07

    The paper reports on the coal mining in the Federal Republic of Germany in the 1st quarter of 2015. Statistical data are presented for mining, exports and imports of hard coal and lignite and for employees.

  3. Radioactivity of dumps in mining areas of the Upper Silesian Coal Basin in Poland

    Directory of Open Access Journals (Sweden)

    Dorda J.

    2012-04-01

    Full Text Available Underground coal mining is associated with large quantities of gangue. In the past, the majority of gangue was not utilized but was placed in the vicinity of the coalmines forming cone-shaped dumps. Some of them contained even millions of tons of rock. Nowadays, environmental precautions extort larger utilization of any kind of waste materials, for example in road construction, civil engineering or as stowing in underground abandoned workings. Examination of the composition of waste dumps, including radioactivity, is thus an important issue. The paper presents results of a radiological survey carried out in several dumps located in the Upper Silesian Coal Basin in the south of Poland. Measurements of samples were carried out with the use of a gamma-ray spectrometer. Activity concentration results for the uranium and thorium decay chains are discussed.

  4. Computational Fluid Dynamics Simulation of Oxygen Seepage in Coal Mine Goaf with Gas Drainage

    Directory of Open Access Journals (Sweden)

    Guo-Qing Shi

    2015-01-01

    Full Text Available Mine fires mainly arise from spontaneous combustion of coal seams and are a global issue that has attracted increasing public attention. Particularly in china, the closure of coal workfaces because of spontaneous combustion has contributed to substantial economic loss. To reduce the occurrence of mine fires, the spontaneous coal combustion underground needs to be studied. In this paper, a computational fluid dynamics (CFD model was developed for coal spontaneous combustion under goaf gas drainage conditions. The CFD model was used to simulate the distribution of oxygen in the goaf at the workface in a fully mechanized cave mine. The goaf was treated as an anisotropic medium, and the effects of methane drainage and oxygen consumption on spontaneous combustion were considered. The simulation results matched observational data from a field study, which indicates CFD simulation is suitable for research on the distribution of oxygen in coalmines. The results also indicated that near the workface spontaneous combustion was more likely to take place in the upper part of the goaf than near the bottom, while further from workface the risk of spontaneous combustion was greater in the lower part of the goaf. These results can be used to develop firefighting approaches for coalmines.

  5. Changing organizational structures and management systems in coal industry with special consideration of the economic sphere. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Szaflik, J.

    1985-01-01

    Organizational models are analyzed for underground black coal mining in Poland from 1945 to 1984. From 1945 to 1949 organizational model of coal mining was based on selected solutions successfully tested in pre-war Poland. Coal mining was supervised by the Central Board of the Coal Industry. Coal mines were grouped in 8 and later in 10 mine associations. In 1949 the Central Board was dissolved and replaced by the Ministry of Mining and Power Generation. Role of Mine Associations was modified. Further changes were introduced in 1957. Power of Mine Associations in relation to individual coal mines increased. From 1972 to 1975 plans for a structural reform in the coal industry were developed but never realized. From 1980 to 1981 a program of structural changes in management of coal industry (in particular, underground coal mining) was developed. From 1982 to 1984 provisions of the economic reform in relation to coal mines were temporarily suspended. In 1984 a new organizational structure of the coal industry was introduced. The structure is similar to traditional structures used in previous decades (stronger position of mine associations, which since 1984 have been called Mine Unions, etc.). 9 references.

  6. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    OpenAIRE

    Jinyi TAO; Yuchen ZHANG

    2014-01-01

    The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These p...

  7. Inelastic neutron scattering method in hard coal quality monitoring

    International Nuclear Information System (INIS)

    Cywicka-Jakiel, T.; Loskiewicz, J.; Tracz, G.

    1994-07-01

    Nuclear methods in mining industry and power generation plants are nowadays very important especially because of the need for optimization of combustion processes and reduction of environmental pollution. On-line analysis of coal quality not only economic benefits but contribute to environmental protection too. Neutron methods especially inelastic scattering and PGNAA are very useful for analysis of coal quality where calorific valve, ash and moisture content are the most important. Using Pu-Be or Am-Be isotopic sources and measuring carbon 4.43 MeV γ-rays from neutron inelastic scattering: 12 C(n,n'γ) 12 C we can evaluate calorific valve in hard coals with precision better than in PGNAA method. This is mainly because of large cross-section for inelastic scattering and the strong correlation between carbon content and calorific value shown in the paper for different coal basins. The influence of moisture on 4.43 MeV carbon γ-rays in considered in the paper in theoretical and experimental aspects and appropriate formula is introduced. Also the possibilities of determine ash, moisture, Cl, Na and Si in coal are shown. (author). 11 refs, 15 figs

  8. Inelastic neutron scattering method in hard coal quality monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Cywicka-Jakiel, T.; Loskiewicz, J.; Tracz, G. [Institute of Nuclear Physics, Cracow (Poland)

    1994-07-01

    Nuclear methods in mining industry and power generation plants are nowadays very important especially because of the need for optimization of combustion processes and reduction of environmental pollution. On-line analysis of coal quality not only economic benefits but contribute to environmental protection too. Neutron methods especially inelastic scattering and PGNAA are very useful for analysis of coal quality where calorific valve, ash and moisture content are the most important. Using Pu-Be or Am-Be isotopic sources and measuring carbon 4.43 MeV {gamma}-rays from neutron inelastic scattering: {sup 12}C(n,n`{gamma}){sup 12}C we can evaluate calorific valve in hard coals with precision better than in PGNAA method. This is mainly because of large cross-section for inelastic scattering and the strong correlation between carbon content and calorific value shown in the paper for different coal basins. The influence of moisture on 4.43 MeV carbon {gamma}-rays in considered in the paper in theoretical and experimental aspects and appropriate formula is introduced. Also the possibilities of determine ash, moisture, Cl, Na and Si in coal are shown. (author). 11 refs, 15 figs.

  9. 30 CFR 77.1708 - Safety program; instruction of persons employed at the mine.

    Science.gov (United States)

    2010-07-01

    ... at the mine. 77.1708 Section 77.1708 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1708 Safety program; instruction of persons...

  10. South African mine valuation

    Energy Technology Data Exchange (ETDEWEB)

    Storrar, C D

    1977-01-01

    This article sets out the basic concepts of mine valuation, with gold mining receiving more space than base minerals and coal. Sampling practice is given special attention. Chapter headings are methods of investigation, sampling, underground sampling, averaging of underground sampling, diamond-drill sampling, mass and mineral content of ore, organization of a sample office, working costs, mining pay limits, ore reserves, ore accounting, maintenance of grade, forecasting operations and life of mine, statistical mine valuation, state's share of profits and taxation, and financial valuation of mining ventures.

  11. A method for analyzing low statistics high resolution spectra from 210Pb in underground coal miners from Brazil

    International Nuclear Information System (INIS)

    Dantas, A.L.A.; Dantas, B.M.; Lipsztein, J.L.; Spitz, H.B.

    2006-01-01

    A survey conducted by the IRD-CNEN determined that some workers from an underground coal mine in the south of Brazil were exposed to elevated airborne concentrations of 222 Rn. Because inhalation of high airborne concentrations of 222 Rn can lead to an increase of 210 Pb in bone, in vivo measurements of 210 Pb in the skeleton were performed in selected underground workers from this mine. Measurements were performed using an array of high-resolution germanium detectors positioned around the head and knee to detect the low abundant 46.5 keV photon emitted by 210 Pb. The gamma-ray spectra were analyzed using a moving median smoothing function to detect the presence of a photopeak at 46.5 keV. The minimum detectable activity of 210 Pb in the skeleton using this methodology was 50 Bq. (author)

  12. Hospitalization patterns associated with Appalachian coal mining.

    Science.gov (United States)

    Hendryx, Michael; Ahern, Melissa M; Nurkiewicz, Timothy R

    2007-12-01

    The goal of this study was to test whether the volume of coal mining was related to population hospitalization risk for diseases postulated to be sensitive or insensitive to coal mining by-products. The study was a retrospective analysis of 2001 adult hospitalization data (n = 93,952) for West Virginia, Kentucky, and Pennsylvania, merged with county-level coal production figures. Hospitalization data were obtained from the Health Care Utilization Project National Inpatient Sample. Diagnoses postulated to be sensitive to coal mining by-product exposure were contrasted with diagnoses postulated to be insensitive to exposure. Data were analyzed using hierarchical nonlinear models, controlling for patient age, gender, insurance, comorbidities, hospital teaching status, county poverty, and county social capital. Controlling for covariates, the volume of coal mining was significantly related to hospitalization risk for two conditions postulated to be sensitive to exposure: hypertension and chronic obstructive pulmonary disease (COPD). The odds for a COPD hospitalization increased 1% for each 1462 tons of coal, and the odds for a hypertension hospitalization increased 1% for each 1873 tons of coal. Other conditions were not related to mining volume. Exposure to particulates or other pollutants generated by coal mining activities may be linked to increased risk of COPD and hypertension hospitalizations. Limitations in the data likely result in an underestimate of associations.

  13. Coal and Open-pit surface mining impacts on American Lands (COAL)

    Science.gov (United States)

    Brown, T. A.; McGibbney, L. J.

    2017-12-01

    Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL

  14. A retrospective mortality study of workers exposed to radon in a Brazilian coal mine

    International Nuclear Information System (INIS)

    Veiga, Lene Holanda Sadler

    2004-08-01

    High levels of radon concentration were found in the underground workplace of an underground coal mine in Parana state, which has been in activity since 1942. Many of these workers were exposed for a long period of time to a work atmosphere with high radon, and radon decay products concentration. Taking this into account, it was decided to carry on a historical cohort, study with the workers' of this mining universe (underground and surface) in. order to evaluate the possible health effects related to this exposure, by means of a retrospective study of mortality. Through multiple strategies, it was possible to trace the vital status of 90% of the cohort. The causes of the deaths were identified by active search, of Death Declarations in the Health Office of Parana state and also in and other states. The success rate of cause of death identification was 100%. The final, cohort included 1946 underground workers and 910 surface workers. Standard mortality ratio (SMR) analysis showed lower mortality from all causes for both underground (SMR-88, 95%CI=78-98) and surface workers (SMR=96, 95%CI=81- 113). A highly significant SMR was observed for pneumonia cause of death among surface ((SMR=284, 95%CI=118-684) and underground miners (SMR-254, 95%CI=140-459), while a highly significant lung cancer mortality risk was observed only for underground miners (SMR=177, 95%CI=105-299) with a significant trend in relation to years of underground work (duration of exposure). Taking into account that mortality from smoking-related cancers other than lung cancer is not elevated in underground workers and diesel equipment were not used at this mine, the results suggest that the exposure to radon daughters may have been responsible for the lung cancer excess among underground workers. This work consists of the first historical Brazilian cohort involving miners exposed to radon and one of the few historical cohorts built in Brazil. It should be considered the fact that many workers of

  15. 30 CFR 819.13 - Auger mining: Coal recovery.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...

  16. 30 CFR 817.84 - Coal mine waste: Impounding structures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...

  17. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luis F.O., E-mail: felipeqma@hotmail.com [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Fdez- Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Sampaio, Carlos H.; Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Leão, Felipe B. de; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Madariaga, Juan M. [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain)

    2013-03-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements.

  18. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    International Nuclear Information System (INIS)

    Silva, Luis F.O.; Fdez- Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa; Oliveira, Marcos L.S.; Sampaio, Carlos H.; Brum, Irineu A.S. de; Leão, Felipe B. de; Taffarel, Silvio R.; Madariaga, Juan M.

    2013-01-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements

  19. Proceedings of the 13. U.S./North American mine ventilation symposium

    International Nuclear Information System (INIS)

    Hardcastle, S.; McKinnon, D.L.

    2010-01-01

    This biannual symposium has become a major international forum for presenting technical papers in the field of underground mine ventilation. Participants included members of industry, academia and government organizations. The presentations dealt with underground coal and metal mining issues, including fire prevention, air quality control, heat and refrigeration and innovations in fan technology. The papers reflected the issues that underground mine ventilation professionals are currently facing to ensure the health and safety of miners. The sessions 7 were entitled: air quality; metal mine ventilation; coal mine ventilation; heat issues; mine fires; ventilation modeling; and fan technology. All 72 presentations featured at this conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  20. Management present situation and countermeasures of coal mines safety in production

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-dong; YU Chang-wu

    2008-01-01

    Analyzed of the present situation of Chinese coal mines safety in production and the reasons for coal mining accident, and realized the coal mines safety in production,which should increase the legal safeguards of coal mine safety in production, and safety input, established the comprehensive coal mine safety evaluation system, comprehensively enhance quality of coal mine workers, established and improved early warning mechanism of safety production of coal mine.

  1. Geomechanics of subsidence above single and multi-seam coal mining

    Directory of Open Access Journals (Sweden)

    A.M. Suchowerska Iwanec

    2016-06-01

    Full Text Available Accurate prediction of surface subsidence due to the extraction of underground coal seams is a significant challenge in geotechnical engineering. This task is further compounded by the growing trend for coal to be extracted from seams either above or below previously extracted coal seams, a practice known as multi-seam mining. In order to accurately predict the subsidence above single and multi-seam longwall panels using numerical methods, constitutive laws need to appropriately represent the mechanical behaviour of coal measure strata. The choice of the most appropriate model is not always straightforward. This paper compares predictions of surface subsidence obtained using the finite element method, considering a range of well-known constitutive models. The results show that more sophisticated and numerically taxing constitutive laws do not necessarily lead to more accurate predictions of subsidence when compared to field measurements. The advantages and limitations of using each particular constitutive law are discussed. A comparison of the numerical predictions and field measurements of surface subsidence is also provided.

  2. 30 CFR 817.81 - Coal mine waste: General requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  3. 30 CFR 816.81 - Coal mine waste: General requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  4. Radio Frequency Propagation Model and Fading of Wireless Signal at 2.4 GHz in Underground Coal Mine

    OpenAIRE

    Patri, Ashutosh; Nimaje, Devidas S.

    2015-01-01

    Deployment of wireless sensor networks and wireless communication systems have become indispensable for better real-time data acquisition from ground monitoring devices, gas sensors, and equipment used in underground mines as well as in locating the miners, since conventional methods like use of wireline communication are rendered ineffective in the event of mine hazards such as roof-falls, fire hazard etc. Before implementation of any wireless system, the variable path loss indices for diffe...

  5. EVALUATION OF ROOF BOLTING REQUIREMENTS BASED ON IN-MINE ROOF BOLTER DRILLING

    Energy Technology Data Exchange (ETDEWEB)

    Syd S. Peng

    2005-01-15

    In this quarter, the field, theoretical and programming works have been performed toward achieving the research goals set in the proposal. The main accomplishments in this quarter included: (1) one more field test has been conducted in an underground coal mine, (2) optimization studies of the control parameters have been conducted, (3) method to use torque to thrust ratio as indicator of rock relative hardness has also been explored, and (4) about 98% of the development work for the roof geology mapping program, MRGIS, has completed, (5) A real time roof geology mapping system for roof bolters in limestone mine, including a special version of the geology mapping program and hardware, has already been verified to perform very well in underground production condition.

  6. Risk Assessment in Underground Coalmines Using Fuzzy Logic in the Presence of Uncertainty

    Science.gov (United States)

    Tripathy, Debi Prasad; Ala, Charan Kumar

    2018-04-01

    Fatal accidents are occurring every year as regular events in Indian coal mining industry. To increase the safety conditions, it has become a prerequisite to performing a risk assessment of various operations in mines. However, due to uncertain accident data, it is hard to conduct a risk assessment in mines. The object of this study is to present a method to assess safety risks in underground coalmines. The assessment of safety risks is based on the fuzzy reasoning approach. Mamdani fuzzy logic model is developed in the fuzzy logic toolbox of MATLAB. A case study is used to demonstrate the applicability of the developed model. The summary of risk evaluation in case study mine indicated that mine fire has the highest risk level among all the hazard factors. This study could help the mine management to prepare safety measures based on the risk rankings obtained.

  7. Sixth underground coal-conversion symposium

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The sixth annual underground coal conversion symposium was held at Shangri-la near Afton, Oklahoma, July 13 to 17, 1980. Sessions were developed to: Doe Field Programs, Major Industry Activity, Mathematical Modeling, Laboratory Studies, Environmental Studies, Economics, Instruments and Controls, and General Topics. Fifty-two papers from the proceedings have been entered individually into EDB and ERA. Thirteen papers had been entered previously from other sources. (LTN)

  8. Landslide, caused by reasons other than mining, on land influenced by mining

    Energy Technology Data Exchange (ETDEWEB)

    Palki, J

    1979-01-01

    Surface damage to land influenced by coal mining is most often assumed to be caused by underground mining. In some cases this assumption can be incorrect. Such a case is described. A landslide occurred on a slope inclined at 4 degrees in the upper part and 8 to 10 degrees in the lower part. In the upper part of the slope was a land road built partly of coal mine waste. The landslide damaged the road and a house located in the vicinity of the road. A scheme of the area affected by the landslide is discussed. Geological and hydrogeological conditions of the area are analyzed as well as physical and mechanical properties of the soil. Investigations show that the landslide was caused by intensive rain and snow fall and accumulation of water in the soil which disturbed slope stability. The described investigation methods can be used in other cases where compensation for damages allegedly caused by underground coal mining is requested. (4 refs.)

  9. Report of investigation on underground limestone mines in the Ohio region

    International Nuclear Information System (INIS)

    Byerly, D.W.

    1976-06-01

    The following is a report of investigation on the geologic setting of several underground limestone mines in Ohio other than the PPG mine at Barberton, Ohio. Due to the element of available time, the writer is only able to deliver a brief synopsis of the geology of three sites visited. These three sites and the Barberton, Ohio site are the only underground limestone mines in Ohio to the best of the writer's knowledge. The sites visited include: (1) the Jonathan Mine located near Zanesville, Ohio, and currently operated by the Columbia Cement Corporation; (2) the abandoned Alpha Portland Cement Mine located near Ironton, Ohio; and (3) the Lewisburg Mine located at Lewisburg, Ohio, and currently being utilized as an underground storage facility. Other remaining possibilities where limestone is being mined underground are located in middle Ordovician strata near Carntown and Maysville, Kentucky. These are drift mines into a thick sequence of carbonates. The writer predicts, however, that these mines would have some problems with water due to the preponderance of carbonate rocks and the proximity of the mines to the Ohio River. None of the sites visited nor the sites in Kentucky have conditions comparable to the deep mine at Barberton, Ohio

  10. 30 CFR 716.4 - Special bituminous coal mines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  11. Utilization of coal ash/coal combustion products for mine reclamation

    International Nuclear Information System (INIS)

    Dolence, R.C.; Giovannitti, E.

    1997-01-01

    Society's demand for an inexpensive fuel, combined with ignorance of the long term impacts, has left numerous scars on the Pennsylvania landscape. There are over 250,000 acres of abandoned surface mines with dangerous highwalls and water filled pits. About 2,400 miles of streams do not meet water quality standards because of drainage from abandoned mines. There are uncounted households without an adequate water supply due to past mining practices. Mine fires and mine subsidence plague many Pennsylvania communities. The estimated cost to reclaim these past scars is over $15 billion. The beneficial use of coal ash in Pennsylvania for mine reclamation and mine drainage pollution abatement projects increased during the past ten years. The increase is primarily due to procedural and regulatory changes by the Department of Environmental Protection (DEP). Prior to 1986, DEP required a mining permit and a separate waste disposal permit for the use of coal ash in backfilling and reclaiming a surface mine site. In order to eliminate the dual permitting requirements and promote mine reclamation, procedural changes now allow a single permit which authorize both mining and the use of coal ash in reclaiming active and abandoned pits. The actual ash placement, however, must be conducted in accordance with the technical specifications in the solid waste regulations

  12. Influence of Mining Thickness on the Rationality of Upward Mining in Coal Seam Group

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-04-01

    Full Text Available This study aimed to determine the influence of mining thickness on the rationality of upward mining in coal seam group. Numerical simulation and theoretical analysis were performed to investigate the influence of the mining thicknesses of initial mining seam on the destruction and pressure relief effect of the upper coal seam in a high-gas coal seam group. The mechanical model of the roof failure based on the mining thickness was established by assuming that the gob formed after adjacent panels have fully been caved is the infinite plane. On the basis of this model, an equation was derived to calculate the roof failure height of the panel. Considering the geological conditions of No. 9 and No. 12 coal seams of Zhaogezhuang Coal Mine, economic effectiveness, and proposed techniques, we concluded that the top layer (4 m of the No. 12 coal seam should be mined first. The top layer of the No. 9 coal seam should be subsequently mined. The topcaving technique was applied to the exploitation of the lower layer of the No. 12 coal seam. Practically monitored data revealed that the deformation and failure of the No. 2699 panel roadway was small and controllable, the amount of gas emission was reduced significantly, and the effect of upward mining was active. The results of this study provide theory basics for mine designing, and it is the provision of a reference for safe and efficient coal exploitation under similar conditions.

  13. 30 CFR 816.79 - Protection of underground mining.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Protection of underground mining. 816.79 Section 816.79 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING...

  14. The automation of the "making safe" process in South African hard-rock underground mine

    CSIR Research Space (South Africa)

    Teleka, SR

    2011-07-01

    Full Text Available In South African hard-rock mines, best practice dictates that the hanging-walls be inspected after blasting. This process is known as ‘making safe’ and although intended to save lives, it is laborious and subjective. Pressure is placed on the barrer...

  15. Coal mining situation in the Federal Republic of Germany. January to September 2017; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. Januar bis September 2017

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-12-04

    This publication presents statistical data on hard coal mining (production, stocks, performance per miner and shift, headcount, sales, foreign sales, imports) as well as brown coal mining (production, refining, headcount, domestic sales, imports) in Germany during the period from January through September 2017.

  16. Coal mining situation in the Federal Republic of Germany. January to September 2016; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. Januar bis September 2016

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-11-16

    This publication presents statistical data on hard coal mining (production, stocks, performance per miner and shift, headcount, sales, foreign sales, imports) as well as brown coal mining (production, refining, headcount, domestic sales, imports) in Germany during the period from January through September 2016.

  17. Coal mining situation in the Federal Republic of Germany. January to September 2015; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. Januar bis September 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-11-30

    This publication presents statistical data on hard coal mining (production, stocks, performance per miner and shift, headcount, sales, foreign sales, imports) as well as brown coal mining (production, refining, headcount, domestic sales, imports) in Germany during the period from January through September 2015.

  18. Coal mining situation in the Federal Republic of Germany. January to September 2014; Zur Lage des Kohlenbergbaus in der Bundesrepublik Deutschland. Januar bis September 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-12

    This publication presents statistical data on hard coal mining (production, stocks, performance per miner and shift, headcount, sales, foreign sales, imports) as well as brown coal mining (production, refining, headcount, domestic sales, imports) in Germany during the period from January through September 2014.

  19. Development a solid state sensor based on SnO_2 nanoparticles for underground coal mine methane detection using zeolites as filter

    International Nuclear Information System (INIS)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Luvizon, N.S.

    2016-01-01

    Aiming the monitoring of methane (CH_4) in underground coal mines, the tin oxide (SnO_2) was synthesis and applied to the development of a MOS sensor (metal oxide semiconductor). Zeolite have been tested as a filter of carbon dioxide (CO_2) to ensure the selectivity in the detection of CH_4. Analysis of Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD) indicated a synthesis of nanoscaled structures. The energy band gap showed characteristic values for a potential application of SnO_2 in CH_4 sensors. Analysis of surface area by BET isotherms showed high values for the zeolite 13X and Y, while adsorption tests indicated that the zeolite 13X presents greater adsorption efficiency of CO_2. The sputtering technique for deposition of the electrodes, as well as the method of drop coating for deposition of SnO_2, proved effective in developing the sensor. (author)

  20. Hydroseeding on anthracite coal-mine spoils

    Science.gov (United States)

    Miroslaw M. Czapowskyj; Ross Writer

    1970-01-01

    A study was made of the performance of selected species of legumes, grasses, and trees hydroseeded on anthracite coal-mine spoils in a slurry of lime, fertilizer, and mulch. Hydroseeding failed on coal-breaker refuse, but was partially successful on strip-mine spoils.

  1. Annual bulletin of coal statistics for Europe. Vol. IX

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    Tables are presented giving the following information: Production, imports, exports, and deliveries of solid fuels with the subdivisions: hard coal, patent fuel, and cokeoven coke; gas coke; brown coal, brown coal briquets, and brown coal coke; and pech coal (hard brown coal produced in the area between the rivers Inn and Lech); Hard coal mines (structure of production, employment and productivity of labor); Brown coal mines (production, employment and productivity of labor); Imports of solid fuels, by country; Exports of solid fuels, by country; and Production of hydroelectric energy and natural gas, and deliveries of petroleum products for inland consumption.

  2. 30 CFR 75.1200-1 - Additional information on mine map.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Maps § 75.1200-1 Additional... symbols; (g) The location of railroad tracks and public highways leading to the mine, and mine buildings... permanent base line points coordinated with the underground and surface mine traverses, and the location and...

  3. Analytical model and application of stress distribution on mining coal floor

    Institute of Scientific and Technical Information of China (English)

    ZHU Shu-yun; JIAN Zhen-quan; HOU Hong-liang; XIAO Wei-guo; YAO Pu

    2008-01-01

    Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aquifers.

  4. Annotated bibliography on selected areas of coal mining research and development. Report prepared for the Committee on Science and Technology, US House of Representatives, Ninety-Sixth Congress, First Session by the Congressional Research Service, Library of Congress

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The Congressional Research Service has completed an annotated bibliography on coal mining research and development. Although the completion of the study was delayed in order to permit CRS analysts to search the libraries of Bituminous Coal, Research Inc., and the Bureau of Mines in the Pittsburgh area, current re-emphasis on the use of coal as an energy source indicates a sustained relevance. The bibliography presents key references to coal-mining R and D under six subject headings keyed to issues of central concern in coal production: (1) mine health and safety, (2) methane recovery, (3) 1-hour rescuer, (4) use of diesels underground, (5) coal preparation, and (6) manpower development in coal mining.

  5. Wind versus coal: Comparing the local economic impacts of energy resource development in Appalachia

    International Nuclear Information System (INIS)

    Collins, Alan R.; Hansen, Evan; Hendryx, Michael

    2012-01-01

    Two energy development scenarios were compared for the Coal River Mountain in Raleigh County, West Virginia: (1) mountaintop mining (MTM) of coal, and (2) wind energy plus underground mining of coal. Economic impact computations over the life of each energy development scenario were made on a county basis for output of goods and services, the number of jobs created, and local earnings. Externality costs were assigned monetary values for coal mining and subtracted from earnings. Premature mortality within the general population due to additional coal mining accounted for 96% of these external cost computations. The results showed that economic output over the life of each scenario was twice as high for MTM mining as wind energy plus underground coal mining. Over the short term, employment and earnings were higher for MTM mining, but towards the end of the scenario, cumulative employment and earnings became higher under scenario (2). When local externality costs were subtracted from local earnings, MTM coal production had an overall negative net social impact on the citizens of Raleigh County. The external costs of MTM coal production provide an explanation of the existence of a “resource curse” and the conflicting results of output versus income provide insights into why coal-producing counties are underdeveloped. - Highlights: ► Mountaintop mining (MTM) was compared to wind plus underground mining. ► Economic output was twice as high for MTM. ► Employment and earnings were cumulatively higher for wind energy. ► Including local externality costs, MTM had an overall negative net social impact. ► Results provide insights into why coal-producing counties are underdeveloped.

  6. Underground coal gasification: An overview of groundwater contamination hazards and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Camp, David W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-13

    Underground coal gasification is the in situ conversion of coal into an energy-rich product gas. It takes place deep underground, using chemical reactions to consume the coal and grow a cavity. Gas wells, drilled into the coal seam, inject reactant air, oxygen, and/or steam to sustain the reactions. Production wells then extract the product gas. Careful analysis and understanding of likely failure modes will help prevent and minimize impacts. This document provides a general description of the relevant processes, potential failure modes, and practical mitigation strategies. It can guide critical review of project design and operations.

  7. Waste disposal in underground mines -- A technology partnership to protect the environment

    International Nuclear Information System (INIS)

    1995-01-01

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment

  8. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining.

    Science.gov (United States)

    Yang, Jing-Hu; Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of "cantilever beam and elastic foundation beam" was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation

  9. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining

    Science.gov (United States)

    Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of “cantilever beam and elastic foundation beam” was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the

  10. FY 2000 international exchange project on exchanges of engineers - Coal mine technology field. Overseas workshop (Indonesia); 2000 nendo gijutsusha koryu jigyo (tanko gijutsu bun'ya) kokusai koryu jigyo. Kaigai workshop (Indonesia)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of making effective technology exchanges and surveying levels of technology in Indonesia and the needs and possibilities of technology transfer from Japan, workshop was held in Jakarta city on March 1, 2001. Subjects were the following seven: subjects on coal resource and technical strategy in the 21st century, challenge in coal development in Indonesia, geological structure survey at Tanjung Enim coal mine, waste water treatment in Indonesia, outlook for underground mining coal mines, joint research on the centralized monitoring system, and introduction of the optimum high wall coal mining system into open pit mining coal mines in Indonesia. The coal production amount in Indonesia was 75 million tons, and the domestic demand was 22 million tons. Japan imported 14 million tons from Indonesia. In coal mines in Indonesia, most of the coal preparation plants have no waste water treatment facilities. Considering that waste water treatment facilities are necessary for the plants in future, the joint research was made on the simple coal preparation waste water treatment system. (NEDO)

  11. 4D seismic data acquisition method during coal mining

    International Nuclear Information System (INIS)

    Du, Wen-Feng; Peng, Su-Ping

    2014-01-01

    In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions. (paper)

  12. Mining a coal seam with caving in a protective pillar of a mine shaft. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Szymura, G; Dilling, R; Kowalski, A

    1984-01-01

    Mining the 620 seam is evaluated (from 1.5 to 1.7 m thick at a depth of 468 m in the protective pillar of the upcast mine shaft used for ventilation, manriding and transport of materials in the Pstrowski mine in Upper Silesia). The shaft is 496 m deep, has a diameter of 3.5 m and its liners are made of bricks. Ground subsidence caused by underground mining influenced: the head frame above the shaft, residential buildings, a church, railway tracks and a river bed. A system of shortwall mining with caving was used. Deformation of shaft liners was reduced by advanced cutting of a coal block 30x30 m around the shaft. A system of timber cribbings and yielding elements was used. Design of support systems used around the shaft is shown in 3 schemes. Shaft deformation was within permissible limits. The maximum ground subsidence (0.95 m) occurred in the river area. Ground subsidence in the area of the church ranged from 0.75 to 0.81 m and in the head frame area 0.84 m. Accuracy of ground subsidence and shaft deformation forecasting was high. 4 references.

  13. ANFO bulk loading in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Gajjar, A.

    1987-08-01

    With India's total coal production projected to increase from 152 to 237 million tons by 1990, net additional production from new mines must be more because of substantial depletion in existing mines. This article discusses the best possible application of explosive techniques in open-cast coal mines to economize production cost. The most energy-efficient and safest explosive is ANFO (ammonium nitrate, fuel oil); however, manual charging by INFO is not possible. Therefore, the solution is the application of bulk-loading systems of ANFO for giant mining operations. Cost of blasting per ton of coal production in India is in the range of Rs 25. Thus, the author suggests it will be the responsibility of mining engineers to see that the ANFO based bulk-loading system is implemented and the cost of production per ton reduced to Rs 19.50.

  14. Quantitative Modelling of Trace Elements in Hard Coal.

    Science.gov (United States)

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  15. Environmental geochemistry of acid mine drainage water at Indus coal mine at Lakhra, Sindh Pakistan

    International Nuclear Information System (INIS)

    Siddique, I.; Shah, M.T.

    2000-01-01

    The annual coal production of Pakistan is about 3,637, 825 tones which is about 6% of the country's energy resources, out of this 1,241, 965 tones of coal was produced/ mined from the Lakhra coal field, District Dadu, Sindh which after the Thar coal field is the second largest coal field of Pakistan. At this coal field more than 58 mining companies are engaged in exploring the hidden wealth of the country. The problem of acid mine drainage, is caused by the passage or seepage of water, through mines where iron disulfides, usually pyrites, are exposed to the oxidizing action of water, air and bacteria, is the main problem faced by the mining companies. The geochemical analysis of acid mine drainage water collected from Indus coal mine no. 6 shows that beside its higher pH, total Dissolved Solids and Sulfates, it also posses higher amount of heavy metals like Cd, Cu, Pb, Co, Ni and Fe. This acid mine drainage water not only damages the mine structures but is also harmful to soil and ecology. (author)

  16. The impact of the financial crisis on the global seaborne hard coal market. Are there implications for the future?

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, Maggi; Braun, Raphael [E.ON Kraftwerke GmbH, Hannover (Germany)

    2011-06-15

    The global financial crisis in 2008 sent commodity markets spinning which caused demand to erode, price levels to quickly plummet and project financing costs to rise. In this paper, the authors examine the impacts the economic slowdown has had on the global seaborne hard coal market looking at the impacts for both coking (metallurgical) and thermal (steam) coals including pricing, supply availability, demand and aggregated mine level production costs. The hard coal market experienced a significant slow down; the commodity has bounced back strongly in 2010 driven by strong Asian demand at growth rates above historic levels and strong projections for the future. (orig.)

  17. Virtual Reality in Presentation of the Underground Mine Technological Process

    Directory of Open Access Journals (Sweden)

    Kodym Oldøich

    2003-09-01

    Full Text Available Virtual Reality in Presentation of the Underground Mine Technological Process focuses on methods of presentation of an underground mine technologies in intranet technology. It shows usage of platform independent VRML client for presentation of static and dynamic information about technological process. Bi-directional interactions between client and process information database are solved.Based on analysis of technological process of underground mine a database structure was designed. It is skeleton for storing all information about any underground mine. This skeleton can be modified in any direction. Data in this "static model" of underground mine can be applied for visualization in VRML environment. In this way it is possible to simplify and unify a user's front-end for all kinds of tasks.All designed scenes can be interactively displayed in full view or in any detail view, so that a user is able to recognize every important part of installed equipment, its stage, technical parameters and other information. If manufacturers of mining equipment will supply VRML model of their real products everybody would be able to place it into VRML scene and learn everything about it.This work explores and tries to enlighten some of the areas and available approaches compliant with VRML 97 specification of modifying static scene by its browser. Concepts of animation pipeline, inside and outside scripting in scene displayed and authoring of VRML targeted geometry are discussed including database connectivity.

  18. Consequences of coal mining and burning in the North Bohemian Brown Coal Basin (2). Territorial consequences of coal mining

    International Nuclear Information System (INIS)

    Stahlik, Z.

    1992-01-01

    Out of the 1450 km 2 of the North Bohemian Brown Coal Basin, the area of the coal-bearing territory is 850 km 2 . The area occupied by the open pits, spoil banks and mines is nearly 27O km 2 , out of which over 90 km 2 have already been recultivated. Predicted mining development scenarios for the region till 2035 are outlined. The extent of mining will decrease gradually, and land will be reclaimed. The abandoned pits will be filled with water and employed for recreation purposes. The specific features of the individual open pit mines are given. The ways to reduce the adverse environmental impacts of mining are outlined; these include, in particular, desulfurization of existing power plants on the one hand, and energy savings associated with a reduction in mining and power generation activities on the other hand. (J.B.)

  19. Thin seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W [Politechnika Slaska, Gliwice (Poland). Instytut Mechanizacji Gornictwa

    1989-06-01

    Discusses thin seam mining in Poland and its prospects. There were 194 working faces in coal seams to 1.5 m thick in Poland in 1988. Of them, 115 fell on faces with powered supports, 79 on faces with SHC-40 and Valent props; 108 shearer loaders and 45 coal plows were used for longwall mining of thin coal seams. Drilling and blasting was used to mine 21 working faces. Longwall faces in seams to 1.0 m thick gave 2.0% coal output, faces in coal seams 1.01-1.5 m thick gave 12.2% of daily coal output of underground mining. Structure of daily coal output of faces in thin seams was the following: 52 faces below 300 t/day, 42 from 301-500 t/day, 63 from 501 to 1,000 t/day, 17 faces above 1,000 t/day. Prospects for increasing coal output of faces in thin seams are discussed. 7 refs.

  20. Occupational exposures in underground gold mines in South Africa. An overview

    International Nuclear Information System (INIS)

    Khoathane, M.

    2002-01-01

    South Africa has a very large mining and minerals processing industry exploiting a variety of ores and minerals containing elevated levels of NORM. The industry employs more than 300,000 persons. Doses have been assessed to workers in the mining industry in South Africa. In the gold mining industry radon measurements have been performed since the early 1970s. Regulations have been in force since 1990. The mean annual dose to underground gold mine workers, mostly from radon progeny, is about 5 mSv with maximum doses exceeding 20 mSv. The maximum annual dose to surface workers in gold mines is 5 mSv. In South African coal mines the mean annual dose from inhalation of radon decay products has been estimated from limited radon concentration measurements to be about 0.6 mSv. In the phosphoric acid and fertilizer production industry the doses to the workers do not exceed 6 mSv/y. There are 3 mineral sands operations in South Africa, for which the maximum annual dose to workers is 3 mSv. One open pit copper mine contains elevated levels of U, which is extracted as a by-product. The maximum annual doses to workers are 5 mSv for workers in the mine and 20 mSv for workers in the metallurgical plant. Worker doses in the metallurgical plant have since been reduced with the introduction of radiation protection measures

  1. A comparison of environmental and personal control of short-lived radon decay products in hard-coal mines

    International Nuclear Information System (INIS)

    Skowronek, J.; Skubacz, K.; Chalupnik, S.; Kajdasz, R.; Nalepa, S.

    1993-01-01

    Monitoring of workplaces in the first step of the monitoring of radiation hazard in coal mines. Decision concerning application of individual dosimetry is taken on the basis of the results of workplace monitoring. The system applies to all sources of natural radiation in coal mines. The workplace monitoring is performed at certain preselected points, usually in one air stream while miners change their position during their work. Therefore, a question arises how far one can relay on workplace monitoring when making decision on application of personal dosimetry and when evaluating individual radiation doses. The results of investigations concerning this question are presented in this paper. Results of measurements of radon daughters concentrations at workplaces obtained by ALFA-31 sampling probes and dust samplers are compared with the results of individual exposures measured by active French individual dosimeters and by passive track detectors used as individual dosimeters and for workplace monitoring by the Institute of Occupation Medicine (IOM) in Lodz. The readouts of detectors were performed by its owners: IOM Lodz, Centre de Radioprotection dans les Mines (CRPM) - France and Centre Mining Institute (CMI). The presented results have been obtained in two independent coal mines in Upper Silesia -Ziemowit and Jankowice - during 1991-1992. The results obtained by passive dosimeters (IOM track detectors) were by 1-2 orders of magnitude higher than the results of measurements carried out by active dosimeters (CRPM and CMI). (author). 7 refs, 8 figs, 6 tabs

  2. Integrated engineering and cost model for management of coal combustion byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H. [Department of Mining Engineering, Southern Illinois University at Carbondale, Carbondale, Illinois (United States); Renninger, S. [US Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia (United States)

    1998-07-01

    An integrated engineering and cost model has been developed as a part of an overall research project for exploring the technical, environmental and economic feasibility of disposing coal combustion byproducts and flue gas desulfurisation products in underground coal mines in Illinois. The features of the model have been keyed in user-friendly software. In this paper, the purpose and the structure of the model are described. The capabilities of the software are illustrated through an example involving transportation of byproducts in containers from a power plant to a mine site, and subsequent placement of the byproducts in a abandoned underground coal mine using a hydraulic injection system. 3 refs.

  3. Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining

    Science.gov (United States)

    Bian, Zhengfu; Lei, Shaogang; Inyang, Hilary I.; Chang, Luqun; Zhang, Richen; Zhou, Chengjun; He, Xiao

    2009-03-01

    Mining affects the environment in different ways depending on the physical context in which the mining occurs. In mining areas with an arid environment, mining affects plants’ growth by changing the amount of available water. This paper discusses the effects of mining on two important determinants of plant growth—soil moisture and groundwater table (GWT)—which were investigated using an integrated approach involving a field sampling investigation with remote sensing (RS) and ground-penetrating radar (GPR). To calculate and map the distribution of soil moisture for a target area, we initially analyzed four models for regression analysis between soil moisture and apparent thermal inertia and finally selected a linear model for modeling the soil moisture at a depth 10 cm; the relative error of the modeled soil moisture was about 6.3% and correlation coefficient 0.7794. A comparison of mined and unmined areas based on the results of limited field sampling tests or RS monitoring of Landsat 5-thermatic mapping (TM) data indicated that soil moisture did not undergo remarkable changes following mining. This result indicates that mining does not have an effect on soil moisture in the Shendong coal mining area. The coverage of vegetation in 2005 was compared with that in 1995 by means of the normalized difference vegetation index (NDVI) deduced from TM data, and the results showed that the coverage of vegetation in Shendong coal mining area has improved greatly since 1995 because of policy input RMB¥0.4 per ton coal production by Shendong Coal Mining Company. The factor most affected by coal mining was GWT, which dropped from a depth of 35.41 m before mining to a depth of 43.38 m after mining at the Bulianta Coal Mine based on water well measurements. Ground-penetrating radar at frequencies of 25 and 50 MHz revealed that the deepest GWT was at about 43.4 m. There was a weak water linkage between the unsaturated zone and groundwater, and the decline of water table

  4. Summary of coal production data

    International Nuclear Information System (INIS)

    Kuhn, E.A.

    1992-01-01

    The paper contains two tables which give data on coal production for both 1990 and 1991. The states included are: Arizona, Colorado, Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming. Data on the following are given: number of active mines (total, underground, surface, and auger mines), average number of men working, man hours, total production, number of fatalities, and average value per ton of coal

  5. Underground gasification of coal. [Newman Spinney

    Energy Technology Data Exchange (ETDEWEB)

    1950-06-16

    This article gives an account of the experimental work on underground gasification at Newman Spinney near Sheffield, England. An attempt was made to develop the percolation technique in flat coal seams but to demonstrate first that gas can be made underground. A borehole system was created on an opencast site where an exposed seam face would allow horizontal drilling to be carried out. Details of trails are given, and drilling techniques, electromagnetic device developed by the Great Britain Post Office Research Branch and radioactive location developed by the Anglo-Iranian Oil Company. An account is given of the inauguration of a series of experiments on May 22, 1950.

  6. The mechanism and characteristics of ground movement and strata failure caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Tianquan, L. (Central Coal Mining Research Institute, Beijing (China))

    1988-01-01

    Analyzes strata movement and ground subsidence caused by underground coal mining. Five types of strata failure during and after underground coal mining are comparatively evaluated: caving zone, fractured zone, bending zone, arched caving, bending with continuous ground movement, sinkhole formation. Effects of coal seam thickness, dip angle, coal panel dimensions, rock stratification and mechanical properties on dimensions and distribution of failure zones in rock strata are investigated. Strata movement during level and steep seam mining is comparatively evaluated. Causes of continuous ground surface deformation and discontinuous deformation are analyzed. Rock strata properties and water influx, which influence sinkhole hazards, are discussed.

  7. Coal mine subsidence

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Longwall coal mining in southern Illinois occurs beneath some of the best agricultural land in the U.S. This region is characterized by highly productive, nearly level, and somewhat poorly drained soils. Subsidence from longwall mining causes changes in surface topography which alters surface and subsurface hydrology. These changes can adversely affect agricultural land by creating wet or ponded areas that can be deleterious to crop production. While most subsided areas show little impact from subsidence, some areas experience total crop failure. Coal companies are required by law to mitigate subsidence damage to cropland. The objective of this paper is to test the effectiveness of mitigation in restoring grain yields to their pre-mined levels. The research was conducted on sites selected to represent conventional mitigation techniques on the predominate soils in the area. Corn (Zea mays L.) and soybean [Glycine max.(L.) Merr] yields in 1988, 1989, 1990, and 1991 from mitigated areas were compared to yields from nearby undisturbed areas

  8. Mine shaft fire and smoke protection systems - an update on hardware development and in-mine testing

    International Nuclear Information System (INIS)

    Johnson, G.A.

    1982-01-01

    In 1976, The Bureau of Mines developed a prototype system to sense and extinguish fires in shafts and shaft stations in underground metal and nonmetal mines. Subsequent work modified this technology to include fueling areas, spontaneous combustion zones and coal mines. This paper updates IC-8783 ''In-mine Fire Tests of Mine Shaft Fire and Smoke Protection Systems'', which was published in 1978 and summarized the design and in-mine, actual fire testing of the first prototype mine shaft fire and smoke protection system. This paper also updates related work from IC-8775 ''Spontaneous Oxidation and Combustion of Sulfide Ores in Underground Mines, (also published in 1978) and IC-8808 ''In-mine Evaluation of Underground Fire and Smoke Detectors'', (published in early 1979)

  9. Controlling ventilation for safe escape from coal mine fires

    Energy Technology Data Exchange (ETDEWEB)

    Wala, A M [University of Kentucky, Lexington, KY (United States). Mining Engineering Dept.

    1966-04-01

    If a fire occurs outby an underground coal mine section, the immediate safe evacuation of miners from the working section should always take precedence. Unfortunately, in many cases, the dedicated escapeway (escape routes) for the evacuation of the miners become contaminated by the byproducts of fire from the adjacent entries. The purpose of this paper is to present the ventilation-control process that would keep the escapeway free from contaminants and, thus, available for travel. A few scenarios of mine fires in longwall development panels are analysed and discussed. To perform these studies, a mine-fire simulator (MFS) was used. This (MFS) provides a dynamic representation of the fire`s progress (in real time) and gives a color-graphic visualization of the spready of oxygen, combustion products and temperature of the gases throughout the ventilation system. Also presented and discussed are ways in which the MFS can be used as a training and teaching tool for miners and particularly, for ventilation and safety specialists. 7 refs., 10 figs.

  10. Australian coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    Total export shipments of coal in Australia in the year ending June 30 1985 reached a record of 83.8 Mt. The export trade is expected to bring in an income of 4 billion Australian dollars in the current year making coal Australia's biggest revenue-earning export commodity. This article presents a brief overview of the Australian coal industry with production and export statistics and information on major open pit and underground mines.

  11. Cost of mining Eastern coal

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper, Chapter 7.2.3 of the 'surface mining' reference book, gives an example of how the cost of mining a ton of coal is calculated. Conditions set down are for a coal tract of 50.6 ha in West Virginia, USA to be mined by the contour surface method, the seam being 101.6cm thick. Elements of the costing are: permitting and bonding costs, engineering and construction costs, equipment and other operating expenses (such as hauling and wheeling), royalties, direct taxes and fees, costs of revegetation, and employment costs (payroll and medical expenses). 5 tabs

  12. Mining influence on underground water resources in arid and semiarid regions

    Science.gov (United States)

    Luo, A. K.; Hou, Y.; Hu, X. Y.

    2018-02-01

    Coordinated mining of coal and water resources in arid and semiarid regions has traditionally become a focus issue. The research takes Energy and Chemical Base in Northern Shaanxi as an example, and conducts statistical analysis on coal yield and drainage volume from several large-scale mines in the mining area. Meanwhile, research determines average water volume per ton coal, and calculates four typical years’ drainage volume in different mining intensity. Then during mining drainage, with the combination of precipitation observation data in recent two decades and water level data from observation well, the calculation of groundwater table, precipitation infiltration recharge, and evaporation capacity are performed. Moreover, the research analyzes the transforming relationship between surface water, mine water, and groundwater. The result shows that the main reason for reduction of water resources quantity and transforming relationship between surface water, groundwater, and mine water is massive mine drainage, which is caused by large-scale coal mining in the research area.

  13. Geomorphological and hydrological transformation of the landscape due to mining activity in the mining area Bana Dolina

    International Nuclear Information System (INIS)

    Balga, J.; Hroncova, E.

    2010-01-01

    After more than 150 year history of mining activity in the brown coal mining area Bana Dolina have been produced a range of anthropogenic forms of relief. For reasons of underground coal mining to make interventions in the hydrographic network. Significant changes due to surface mining of coal seams should result in subsidence basins of different sizes, damage to buildings and roads. Mining activity was influenced by agricultural and forestry fund, gardening settlements. All these factors have contributed to the change in relief of the surrounding area. This study aims to research the effects of the largest mining Bana Dolina mining area reflecting the structure of land area. (authors)

  14. [Changes in the blood concentrations of interleukins and electrolytes in miners working in deep coal mines].

    Science.gov (United States)

    Belkina, E B; Rebrov, B A; Rebrova, O A; Stroilo, N G; Voloshinovich, A R

    2001-01-01

    Miners working in deep coal mines, engaged in hard physical work under most harsh mine conditions demonstrate a striking imbalance between pro- and antiinflammatory cytokines and a rise in the blood levels of electrolytes K+ and Na+ as well. The analysis performed revealed a direct correlation between the level of blood concentration of IL-6 and that of K+, Na+.

  15. General program of energy research: innovation in hard coal, 1974-1977. New logistical systems. Volume 2. Rahmenprogramm energieforschung: innovation steinkohle, 1976-1977. Neue logistische systeme. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The Federal Ministry of Economy subsidized 22 research and development projects in the field of new logistic systems in underground coal mines. The Juelich energy research project management, as the representative of the ministry, examined and endorsed all projects before the financial aid of 50% of the total project cost was granted. The 22 projects included development of the following underground equipment: electrical motor brakes for belt conveyors, automatic operation of underground locomotive transportation, protected batteries for use in firedamp conditions, rack wheel drives for the rack rail train and suspended monorail trolley, electrical equipment for 10 kV power supply, flame proof electrical switches, capacitors, circuit breakers, transformers and vacuum contactors,a chair lift system for personnel transportation, and also computerized monitoring systems in the field of mine operation and mine safety.

  16. Coal statistics 1977

    Energy Technology Data Exchange (ETDEWEB)

    Statistical Office of the European Communities

    1978-01-01

    Presents tables of data relating to the coal market in the European Community in 1977. The tables cover hard coal production, supply and trade; briquettes; cokes; lignite, brown coal briquettes and peat; and mines and coke ovens.

  17. Evaluation of occupational exposure in a underground coal mine by environmental measures of 222Rn and in vivo measurements of 210Pb in bones

    International Nuclear Information System (INIS)

    Dantas, A.L.A.; Veiga, L.H.S.; Dantas, B.M.; Melo, V.P.

    2005-01-01

    A radiological survey performed in an underground coal mining in the State of Parana, southern Brazil, has indicated the occurrence of high levels of concentration of radon and its decay products. The levels of 222 Rn concentration measured in the basement of this mine, in the period from 1999 to 2003 ranged from 2000 to 7000 Bq m -3 . It is estimated, for these workers, an average annual exposure of 2.1 WLM ranging from 0.2 to 7.2 WLM. A retrospective mortality study conducted with 2856 miners of this mining indicated a risk of lung cancer mortality greater than the one expected for the male population of the State. In this study the cumulative exposure to radon cannot be estimated since there was no radon measures in other periods. In this way, the cumulative exposure can be evaluated by through 210 Pb activities monitored in the skeleton. The measures of 210 Pb in skeleton ranged from 83 to 164 Bq, indicating that these workers were significantly exposed to 222 Rn. These results show that cumulative exposure to radon has been higher than estimated based on recent measures of the activity concentration of radon in the workplace and is compatible with the risk determined in the epidemiological study

  18. MONITORING METAL POLLUTION LEVELS IN MINE WASTES AROUND A COAL MINE SITE USING GIS

    Directory of Open Access Journals (Sweden)

    D. Sanliyuksel Yucel

    2017-11-01

    Full Text Available In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey are evaluated using geographical information system (GIS tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.

  19. Monitoring Metal Pollution Levels in Mine Wastes around a Coal Mine Site Using GIS

    Science.gov (United States)

    Sanliyuksel Yucel, D.; Yucel, M. A.; Ileri, B.

    2017-11-01

    In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.

  20. FY 1998 annual report on the survey on overseas geological structures. Project for exchanging engineers (coal mining technology area) (Vietnam); 1998 nendo kaigai chishitsu kozo nado chosaa. Gijutsusha koryu jigyo (tanko gijutsu bun'ya) (Vietnam)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The project for exchanging engineers has been implemented, in order to improve production and managemental techniques of coal mining engineers in the Asia-Pacific region, promote smooth and efficient projects for surveying overseas geological structures, and facilitate stable supply of overseas coal to Japan. The FY 1998 project was concentrated on Vietnam, to which Japanese coal mining engineers were sent, and from which production management engineers were invited to Japan as trainees. The Japanese engineers sent to Vietnam educated the underground coal mining techniques. The Vietnamese management engineers invited were trained for, e.g., production management techniques (e.g., those for workplaces and organizations) in the Japanese mines, administrative management techniques, and techniques to improve safety and productivity in the mines. Coal Energy Center and Taiheiyo Mining's Kushiro Mine provided training facilities. (NEDO)

  1. 100 years of the main mine rescue service. A contribution to the protection against disasters in the coal mining industry; 100 Jahre Hauptstelle fuer das Grubenrettungswesen. Ein Beitrag zum Katastrophenschutz im Steinkohlenbergbau

    Energy Technology Data Exchange (ETDEWEB)

    Hermuelheim, Walter [RAG Aktiengesellschaft, Herne (Germany). Zentralbereich Arbeits-, Gesundheits- und Umweltschutz

    2011-06-15

    A review of 100 years of protection against disasters in the coal mining industry impressively shows the way from an era of major accidents to a modern branch of industry, which justifiably and with good prospects of success can pursue the aim of ''No accidents - no damage to health - no damage to the environment''. However, the development of the mine rescue service over more than 100 years - represented in the Ruhr by the Main Mine Rescue Service established in 1910 in Essen - would be incomplete without consideration of the allied technical fields underground fire protection and explosion protection. Cooperation between institutions such as the Tremonia test mine and the BVG has produced a safety level in all three fields, which is regarded as exemplary worldwide, and in addition to the latest mining technology is a good advertisement for the German coal mining industry. (orig.)

  2. Development of tools for managing the impacts on surface due to changing hydrological regimes surrounding closed underground coal mines (ECSC Coal RTD programme, contract 7220-PR-136)

    International Nuclear Information System (INIS)

    Veschkens, M.; Unland, W.; Kories, H.

    2005-01-01

    This paper demonstrates how box model approach and FE and box mixed model approach allow to better understand and model water flows in complex mined coal measures and interactions between shallow aquifers and flooded coal measures. Benefits of these approaches are illustrated on the basis of case studies in Liege and Ruhr coal basins. (authors)

  3. Development of tools for managing the impacts on surface due to changing hydrological regimes surrounding closed underground coal mines (ECSC Coal RTD programme, contract 7220-PR-136)

    Energy Technology Data Exchange (ETDEWEB)

    Veschkens, M. [ISSeP, Liege (Belgium); Unland, W.; Kories, H. [DMT, Am Technologiepark, Essen (Germany)

    2005-07-01

    This paper demonstrates how box model approach and FE and box mixed model approach allow to better understand and model water flows in complex mined coal measures and interactions between shallow aquifers and flooded coal measures. Benefits of these approaches are illustrated on the basis of case studies in Liege and Ruhr coal basins. (authors)

  4. Geological Feasibility of Underground Oil Storage in Jintan Salt Mine of China

    Directory of Open Access Journals (Sweden)

    Xilin Shi

    2017-01-01

    Full Text Available A number of large underground oil storage spaces will be constructed in deep salt mines in China in the coming years. According to the general geological survey, the first salt cavern oil storage base of China is planned to be built in Jintan salt mine. In this research, the geological feasibility of the salt mine for oil storage is identified in detail as follows. (1 The characteristics of regional structure, strata sediment, and impermeable layer distribution of Jintan salt mine were evaluated and analyzed. (2 The tightness of cap rock was evaluated in reviews of macroscopic geology and microscopic measuring. (3 According to the geological characteristics of Jintan salt mine, the specific targeted formation for building underground oil storage was chosen, and the sealing of nonsalt interlayers was evaluated. (4 Based on the sonar measuring results of the salt caverns, the characteristics of solution mining salt caverns were analyzed. In addition, the preferred way of underground oil storage construction was determined. (5 Finally, the results of closed well observation in solution mining salt caverns were assessed. The research results indicated that Jintan salt mine has the basic geological conditions for building large-scale underground oil storage.

  5. Study on the reliability of the underground conveyor belt system installed at Vulcan Mine, the Jiu Valley Basin in Romania

    Directory of Open Access Journals (Sweden)

    Tomuș Ovidiu-Bogdan

    2017-01-01

    Full Text Available The paper deals with a comprehensive reliability analysis of the conveyor belts belonging to an underground coal mine in the Jiu Valley, Romania. As resulted from the mine management reports, the transportation system is responsible for many downtimes and is a real bottleneck in the constant and adequate production, and the suspicion is the weak state of belt conveyers, which are the spinal column of the extraction process. For this reason, a comprehensive reliability analysis has been decided, in order to deliver a maintenance-upgrading plan.

  6. How air quality can be monitored in an underground uranium mine

    International Nuclear Information System (INIS)

    Bigu, J.; Gangal, M.; Knight, G.

    1983-01-01

    The mining of uranium ores in underground uranium mines releases and produces a great variety of substances which readily become airborne, posing a potential health hazard to occupational workers. The substances are either released, or their 'normal' rate of release when no mining activity is present is increased as a consequence of certain mining operations, including blasting, drilling, and mucking. They may also be produced as a result of the use of tools, artifacts, and machinery utilized in mining operations. This paper reports on parallel measurements of radiation, dust and meteorological variables during several mining operations in a Canadian underground mine. Measurements were conducted at three uranium mines for a combined period of several weeks

  7. 78 FR 79010 - Criteria to Certify Coal Mine Rescue Teams

    Science.gov (United States)

    2013-12-27

    ... coal requires more heat to combust; (3) anthracite dust does not propagate an explosion; and (4) there... to Certify Coal Mine Rescue Teams AGENCY: Mine Safety and Health Administration, Labor. ACTION... updated the coal mine rescue team certification criteria. The Mine Improvement and New Emergency Response...

  8. Miners’ return to work following injuries in coal mines

    Directory of Open Access Journals (Sweden)

    Ashis Bhattacherjee

    2016-12-01

    Full Text Available Background: The occupational injuries in mines are common and result in severe socio-economical consequences. Earlier studies have revealed the role of multiple factors such as demographic factors, behavioral factors, health-related factors, working environment, and working conditions for mine injuries. However, there is a dearth of information about the role of some of these factors in delayed return to work (RTW following a miner’s injury. These factors may likely include personal characteristics of injured persons and his or her family, the injured person’s social and economic status, and job characteristics. This study was conducted to assess the role of some of these factors for the return to work following coal miners’ injuries. Material and Methods: A study was conducted for 109 injured workers from an underground coal mine in the years 2000–2009. A questionnaire, which was completed by the personnel interviews, included among others age, height, weight, seniority, alcohol consumption, sleeping duration, presence of diseases, job stress, job satisfaction, and injury type. The data was analyzed using the Kaplan-Meier estimates and the Cox proportional hazard model. Results: According to Kaplan-Meier estimate it was revealed that a lower number of dependents, longer sleep duration, no job stress, no disease, no alcohol addiction, and higher monthly income have a great impact on early return to work after injury. The Cox regression analysis revealed that the significant risk factors which influenced miners’ return to work included presence of disease, job satisfaction and injury type. Conclusions: The mine management should pay attention to significant risk factors for injuries in order to develop effective preventive measures. Med Pr 2016;67(6:729–742

  9. 8th international congress on mining and metallurgy. 8. Congreso internacional de mineria y metalurgia

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The meeting covered many aspects of mining and metallurgy including: underground and surface mining of coal; coal preparation; desulfurization and conversion; coal and coal waste combustion, including FBC; coal quality and chemistry; coal gasification; research programs on coal, the economics of the Spanish coal industry; and the Spanish coal industry and the European Community.

  10. Report on the achievements in the Sunshine Project in investigations and studies on treatment technologies for coals used in coal gasification. A report on coal type investigation; Sekitan gas ka yotan no shori gijutsu ni kansuru chosa kenkyu. Tanshu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    This paper reports the investigation on coal types for coal gasification in the Sunshine Project. With regard to the status of existence, production and dressing of coals as the material for coal gasification and liquefaction, summarized site investigations and sampling were performed on underground mining coal mines being operated in Japan. Test sample coals are put into a data file as the important fundamental data for gasification and liquefaction characteristics tests at the Japan Coal Energy Center. The sampling investigation is planned to start in fiscal 1988. The coal mines having been investigated to date include: Taiheiyo Coal Mine (Kushiro), Mitsui Coal Mining Industry (Miike), Matsushima Coal Mine (Ikejima), Mitsubishi Coal Mining Industry (Minami O-Yubari), Sumitomo Coal Akabira Coal Mine (Akabira), Mitsui Coal Mining Industry (Ashibetsu), and Sorachi Coal Mine (Sorachi). Coal beds subjected to the sampling were selected upon carefully discussing with the site engineers on the current status of the coal mine, and the coal beds that could be operated in the future. The sampling method was such that the whole coal bed from the upper bed to the lower bed at the facing was sampled and put into vinyl sampling bags each at about 2 kg as the target. (NEDO)

  11. That bloody Cape Breton coal: stories of mining disasters in everyday life

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, R.; Caplan, R. (ed.)

    2004-07-01

    The book is a compilation of 18 true stories about coal mining accidents to individuals and the impact of each on the miner, if he survived, and his family. The stories are based on the recollections of New Waterford miners, family members and people in the community. The accidents all occurred in the twentieth century, in particular during the period 1950 to 1980. The daily life of the miner, working conditions, the reality of working underground, causes of the accidents, and family life in the New Waterford community are described in detail. 28 photos.

  12. Pathological study of the prevalence of silicosis among coal miners in Iran: A case history

    Science.gov (United States)

    Zare Naghadehi, Masoud; Sereshki, Farhang; Mohammadi, F.

    2014-02-01

    One of the most hazardous diseases that is commonly associated with the coal mining industry is Silicosis which caused by dust inhalation. This disease occurs as a result of prolonged breathing of dust containing silica (quartz). The generation of coal mine dust during underground and surface coal mining is the most significant source of coal dust exposure. Silica dust develops scar tissue inside the lungs which reduces the lungs ability to extract oxygen from the air. All miners working in underground and surface coal mines are at risk of being exposed to mine dust containing silica. In this study, cases with pathologic diagnosis of silicosis during seven years period between 2000 and 2007 were retrieved, from the pathologic file of Department of Pathology, Massih Daneshvary Hospital in Iran. Results of this case study showed the great effects of dust exposure and inhalation from the viewpoint of symptoms especially between the miners.

  13. The hazardous nature of small scale underground mining in Ghana

    Directory of Open Access Journals (Sweden)

    K.J. Bansah

    2016-01-01

    Full Text Available Small scale mining continues to contribute significantly to the growth of Ghana's economy. However, the sector poses serious dangers to human health and the environment. Ground failures resulting from poorly supported stopes have led to injuries and fatalities in recent times. Dust and fumes from drilling and blasting of ore present health threats due to poor ventilation. Four prominent small scale underground mines were studied to identify the safety issues associated with small scale underground mining in Ghana. It is recognized that small scale underground mining in Ghana is inundated with unsafe acts and conditions including stope collapse, improper choice of working tools, absence of personal protective equipment and land degradation. Inadequate monitoring of the operations and lack of regulatory enforcement by the Minerals Commission of Ghana are major contributing factors to the environmental, safety and national security issues of the operations.

  14. The effects of ambient conditions on the passive dust sampler when used in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Hemingway, M.; Thorpe, A.

    1998-09-01

    A previous feasibility study of the Health and Safety Laboratory (HSL) electret-based passive dust sampler carried out during site sampling in coal mines showed that the measurements made with the passive sampler and those made with the MRE sampler correlated well in each of two mines, but the ratios of samples obtained with the passive sampler and the MRE sampler in the two mines were different. This means the passive sampler would need a separate calibration for each coal mine in which it was used. Laboratory tests and further underground trials were carried out to quantify the possible effects of temperature and humidity on ratios. The passive dust samplers used at Maltby Colliery in the UK were found to pass the acceptance criteria according to the CEN standard for the assessment of the performance of instruments for the measurement of airborne particles, provided that samplers exposed when coal was not being cut were not included in the analysis. Temperature and relative humidity slightly affected the behaviour of the passive sampler during laboratory trials and relative humidity was found to possibly affect the behaviour during field trials. Ventilation rates had no effect on the passive sampler behaviour but the orientation of the passive dust sampler with respect to air flow affected the behaviour during laboratory trials. Further work is needed to quantify effects. 7 refs., 14 figs., 3 tabs.

  15. Seventh symposium on coal mine drainage research. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The Seventh Symposium on Coal Mine Drainage Research, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Seventeen papers from the proceedings have been entered individually into EDB and ERA. Topics covered include chemical reactions of pyrite oxidation and acid formation in spoil banks, abandoned mines, etc., formation of small acid lakes from the drainage and their neutralization by natural and other neutralization measures, trace elements in acid mine drainage, ground water contamination, limnology, effects of surface mined ground reclamation and neutralization, water purification and treatment, mining and coal preparation plant waste disposal, ash and fly ash disposal (to minimize leaching from the wastes), runoff from large coal storage stockpiles during storms (prevention of environmental effects by collection and neutralization by passing through an ash pond). (LTN)

  16. Investigation of the role of personal factors on work injury in underground mines using structural equation modeling

    Institute of Scientific and Technical Information of China (English)

    P.S. Paul

    2013-01-01

    Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics. In this paper, investigation was made through the application of structural equation modeling to study the nature of relationships between the influencing/associating personal factors and work injury and their sequential relationships leading towards work injury occurrences in underground coal mines. Six variables namely, rebelliousness, negative affectivity, job boredom, job dissatisfaction and work injury were considered in this study. Instruments were developed to quantify them through a questionnaire survey. Underground mine work-ers were randomly selected for the survey. Responses from 300 participants were used for the analysis. The structural model of LISREL was used to estimate the interrelationships amongst the variables. The case study results show that negative affectivity and job boredom induce more job dissatisfaction to the workers whereas risk taking attitude of the individual is positively influenced by job dissatisfaction as well as by rebelliousness characteristics of the individual. Finally, risk taking and job dissatisfaction are having positive significant direct relationship with work injury. The findings of this study clearly reveal that rebelliousness, negative affectivity and job boredom are the three key personal factors influencing work related injuries in mines that need to be addressed properly through effective safety programs.

  17. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route “Coal Mine” (SW Poland)

    International Nuclear Information System (INIS)

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-01-01

    The surveys of radon concentrations in the Underground Tourist Route “Coal Mine” were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004–2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m"−"3 and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route “Coal Mine”. The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8–9 a.m. to 7–8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on

  18. Utilizing coal remaining resources and post-mining land use planning based on GIS-based optimization method : study case at PT Adaro coal mine in South Kalimantan

    Directory of Open Access Journals (Sweden)

    Mohamad Anis

    2017-06-01

    Full Text Available Coal mining activities may cause a series of environmental and socio-economic issues in communities around the mining area. Mining can become an obstacle to environmental sustainability and a major hidden danger to the security of the local ecology. Therefore, the coal mining industry should follow some specific principles and factors in achieving sustainable development. These factors include geological conditions, land use, mining technology, environmental sustainability policies and government regulations, socio-economic factors, as well as sustainability optimization for post-mining land use. Resources of the remains of the coal which is defined as the last remaining condition of the resources and reserves of coal when the coal companies have already completed the life of the mine or the expiration of the licensing contract (in accordance with government permission. This research uses approch of knowledge-driven GIS based methods mainly Analytical Hierarchy Process (AHP and Fuzzy logic for utilizing coal remaining resources and post-mining land use planning. The mining area selected for this study belongs to a PKP2B (Work Agreement for Coal Mining company named Adaro Indonesia (PT Adaro. The result shows that geologically the existing formation is dominated by Coal Bearing Formation (Warukin Formation which allows the presence of remains coal resource potential after the lifetime of mine, and the suitability of rubber plantation for the optimization of land use in all mining sites and also in some disposal places in conservation areas and protected forests.

  19. Operational and geotechnical constraints to coal mining in Alaska's interior

    Energy Technology Data Exchange (ETDEWEB)

    Corser, P; Usibelli, M

    1989-01-01

    Surface mining of coal from the Poker Flats mining area to the north of Healy, Alaska began in 1978. Current operations involve a 25 m/sup 3/ walking dragline which strips two coal seams, using an extended bench on the second pass; a fleet of trucks and shovels are used for coal removal and some limited overburden stripping. Geotechnical constraints to mining within the steeply dipping coal deposits are discussed. The area had a number of landslides. During 1984, mining operations close to a landslide caused movement to resume. A mine plan was developed which allowed the coal to be safely removed without inducing additional movement. This involves a dipline mining scheme through the slide area. Future mine plans will acknowledge the hazards of mining through potentially unstable zones. Aerial photographs, field mapping and geological exploration were used. 1 ref., 6 figs.

  20. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined