WorldWideScience

Sample records for underground carbon steel

  1. Ultrahigh carbon steels, Damascus steels, and superplasticity

    Energy Technology Data Exchange (ETDEWEB)

    Sherby, O.D. [Stanford Univ., CA (United States). Dept. of Materials Science and Engineering; Wadsworth, J. [Lawrence Livermore National Lab., CA (United States)

    1997-04-01

    The processing properties of ultrahigh carbon steels (UHCSs) have been studied at Stanford University over the past twenty years. These studies have shown that such steels (1 to 2.1% C) can be made superplastic at elevated temperature and can have remarkable mechanical properties at room temperature. It was the investigation of these UHCSs that eventually brought us to study the myths, magic, and metallurgy of ancient Damascus steels, which in fact, were also ultrahigh carbon steels. These steels were made in India as castings, known as wootz, possibly as far back as the time of Alexander the Great. The best swords are believed to have been forged in Persia from Indian wootz. This paper centers on recent work on superplastic UHCSs and on their relation to Damascus steels. 32 refs., 6 figs.

  2. corrosion inhibitor for carbon steels

    African Journals Online (AJOL)

    potentiodynamic polarisation techniques. It was found that. CNSL reduces the extent of the electrochemical processes taking place on carbon steel undergoing corrosion. The corrosion rate of the carbon steel was reduced by over 92 % when only 300 ppm of CNSL was applied. This indicates that. CNSL is a potential ...

  3. History of ultrahigh carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  4. Ultrahigh Carbon Steel.

    Science.gov (United States)

    1984-10-01

    Wadsworth, "On the Bulat (Damascus Steels)", Bull. Metals Museum, 4 (1979), pp. 7-23. A 17...34 ’ ." ." ." . .’~.. ." .- .. . .. ,..-.. . . . . -. . . . . .’% ,d ,".. r~~; -W .- & .j2!* . * ~ (8) J. Wadsworth and 0. D. Sherby, "On the Bulat - Damascus Steels Re- visited", Prog. Mater. Sci., 25

  5. Corrosion of carbon steel welds

    International Nuclear Information System (INIS)

    Daniel, B.

    1988-09-01

    This report assesses the factors which cause preferential attack to occur in carbon steel fusion welds. It was concluded that the main factors were: the inclusion content of the weld metal, the potential of the weld metal being less noble than that of the parent, and the presence of low-temperature transformation products in the heat-affected zone of the weld. These factors should be minimized or eliminated as appropriate so that the corrosion allowances determined for carbon steel waste drums is also adequate for the welds. An experimental/theoretical approach is recommended to evaluate the relative corrosion resistance of welds prepared from BS 4360 grade 43A steel to that of the parent material. (author)

  6. The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years

    International Nuclear Information System (INIS)

    Yoder, T.S.; Adler Flitton, M.K.

    2009-01-01

    Recently, interest in long-term underground corrosion has greatly increased because of the ongoing need to dispose of nuclear waste. Additionally, the Nuclear Waste Policy Act of 1982 requires disposal of high-level nuclear waste in an underground repository. Current contaminant release and transport models use limited available short-term underground corrosion rates when considering container and waste form degradation. Consequently, the resulting models oversimplify the complex mechanisms of underground metal corrosion. The complexity of stainless steel corrosion mechanisms and the processes by which corrosion products migrate from their source are not well depicted by a corrosion rate based on general attack. The research presented here is the analysis of austenitic stainless steels after 33 and a half years of burial. In this research, the corrosion specimens were analyzed using applicable ASTM standards as well as microscopic and X-ray examination to determine the mechanisms of underground stainless steel corrosion. As presented, the differences in the corrosion mechanisms vary with the type of stainless steel and the treatment of the samples. The uniqueness of the long sampling time allows for further understanding of the actual stainless steel corrosion mechanisms, and when applied back into predictive models, will assist in reduction of the uncertainty in parameters for predicting long-term fate and transport

  7. The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years

    Energy Technology Data Exchange (ETDEWEB)

    T. S. Yoder; M. K. Adler Flitton

    2009-03-01

    Recently, interest in long-term underground corrosion has greatly increased because of the ongoing need to dispose of nuclear waste. Additionally, the Nuclear Waste Policy Act of 1982 requires disposal of high-level nuclear waste in an underground repository. Current contaminant release and transport models use limited available short-term underground corrosion rates when considering container and waste form degradation. Consequently, the resulting models oversimplify the complex mechanisms of underground metal corrosion. The complexity of stainless steel corrosion mechanisms and the processes by which corrosion products migrate from their source are not well depicted by a corrosion rate based on general attack. The research presented here is the analysis of austenitic stainless steels after 33½ years of burial. In this research, the corrosion specimens were analyzed using applicable ASTM standards as well as microscopic and X-ray examination to determine the mechanisms of underground stainless steel corrosion. As presented, the differences in the corrosion mechanisms vary with the type of stainless steel and the treatment of the samples. The uniqueness of the long sampling time allows for further understanding of the actual stainless steel corrosion mechanisms, and when applied back into predictive models, will assist in reduction of the uncertainty in parameters for predicting long-term fate and transport.

  8. The underground storages of carbon dioxide. Juridical aspects

    International Nuclear Information System (INIS)

    Bersani, F.

    2006-04-01

    In the framework of the reduction of the carbon dioxide emissions in the air, the underground storage of the CO 2 is studied. Some experimentation are already realized in the world and envisaged in France. This document aims to study the juridical aspects of these first works in France. After a presentation of the realization conditions and some recalls on the carbon dioxide its capture and storage, the natural CO 2 underground storages and the first artificial storages are discussed. The CO 2 waste qualification, in the framework of the environmental legislation is then detailed with a special task on the Lacq region. The problem of the sea underground storages is also presented. (A.L.B.)

  9. Deep underground measurements of 60Co in steel exposed to the Hiroshima atomic bomb explosion.

    Science.gov (United States)

    Hult, Mikael; Gasparro, Joël; Vasselli, Roberto; Shizuma, Kiyoshi; Hoshi, Masaharu; Arnold, Dirk; Neumaier, Stefan

    2004-01-01

    When using gamma-ray spectrometry performed deep underground, it is possible to measure 60Co activities down to 0.1 mBq in steel samples of some 100 g without any pre-concentration. It is thus still possible to measure 60Co induced by neutrons from the atomic bomb explosion in Hiroshima in pieces of steel collected at distances up to about 1200 m slant range. The results of non-destructive measurements of eight steel samples are compared with the 1986 Dose Re-Evaluation (DS86) model calculations.

  10. Deep underground measurements of 60Co in steel exposed to the Hiroshima atomic bomb explosion

    International Nuclear Information System (INIS)

    Hult, Mikael; Gasparro, J.Joeel; Vasselli, Roberto; Shizuma, Kiyoshi; Hoshi, Masaharu; Arnold, Dirk; Neumaier, Stefan

    2004-01-01

    When using gamma-ray spectrometry performed deep underground, it is possible to measure 60 Co activities down to 0.1 mBq in steel samples of some 100 g without any pre-concentration. It is thus still possible to measure 60 Co induced by neutrons from the atomic bomb explosion in Hiroshima in pieces of steel collected at distances up to about 1200 m slant range. The results of non-destructive measurements of eight steel samples are compared with the 1986 Dose Re-Evaluation (DS86) model calculations

  11. Deep underground measurements of {sup 60}Co in steel exposed to the Hiroshima atomic bomb explosion

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Mikael E-mail: mikael.hult@cec.eu.int; Gasparro, J.Joeel; Vasselli, Roberto; Shizuma, Kiyoshi; Hoshi, Masaharu; Arnold, Dirk; Neumaier, Stefan

    2004-09-01

    When using gamma-ray spectrometry performed deep underground, it is possible to measure {sup 60}Co activities down to 0.1 mBq in steel samples of some 100 g without any pre-concentration. It is thus still possible to measure {sup 60}Co induced by neutrons from the atomic bomb explosion in Hiroshima in pieces of steel collected at distances up to about 1200 m slant range. The results of non-destructive measurements of eight steel samples are compared with the 1986 Dose Re-Evaluation (DS86) model calculations.

  12. Special steel production on common carbon steel production line

    Science.gov (United States)

    Pi, Huachun; Han, Jingtao; Hu, Haiping; Bian, Ruisheng; Kang, Jianjun; Xu, Manlin

    2004-06-01

    The equipment and technology of small bar tandem rolling line of Shijiazhuang Iron & Steel Co. in China has reached the 90's international advanced level in the 20th century, but products on the line are mostly of common carbon steel. Currently there are few steel plants in China to produce 45 steel bars for cold drawing, which is a kind of shortage product. Development of 45 steel for cold drawing has a wide market outlook in China. In this paper, continuous cooling transformation (CCT) curve of 45 steel for cold drawing used for rolling was set out first. According to the CCT curve, we determined some key temperature points such as Ac3 temperature and Ac1 temperature during the cooling procedure and discussed the precipitation microstructure at different cooling rate. Then by studying thermal treatment process of 45 steel bars for cold drawing, the influence of cooling time on microstructure was analyzed and the optimum cooling speed has been found. All results concluded from the above studies are the basis of regulating controlled cooling process of 45 steel bars for cold drawing. Finally, the feasible production process of 45 steel bars for cold drawing on common carbon steel production line combined with the field condition was recommended.

  13. Special steel production on common carbon steel production line

    International Nuclear Information System (INIS)

    Pi Huachun; Han Jingtao; Hu Haiping; Bian Ruisheng; Kang Jianjun; Xu Manlin

    2004-01-01

    The equipment and technology of small bar tandem rolling line of Shijiazhuang Iron and Steel Co. in China has reached the 90's international advanced level in the 20th century, but products on the line are mostly of common carbon steel. Currently there are few steel plants in China to produce 45 steel bars for cold drawing, which is a kind of shortage product. Development of 45 steel for cold drawing has a wide market outlook in China. In this paper, continuous cooling transformation (CCT) curve of 45 steel for cold drawing used for rolling was set out first. According to the CCT curve, we determined some key temperature points such as Ac3 temperature and Ac1 temperature during the cooling procedure and discussed the precipitation microstructure at different cooling rate. Then by studying thermal treatment process of 45 steel bars for cold drawing, the influence of cooling time on microstructure was analyzed and the optimum cooling speed has been found. All results concluded from the above studies are the basis of regulating controlled cooling process of 45 steel bars for cold drawing. Finally, the feasible production process of 45 steel bars for cold drawing on common carbon steel production line combined with the field condition was recommended

  14. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Carbon-steel or alloy-steel castings. 59.20-1 Section 59... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  15. Marine atmospheric corrosion of carbon steels

    OpenAIRE

    Morcillo, Manuel; Alcántara, Jenifer; Díaz, Iván; Chico, Belén; Simancas, Joaquín; de la Fuente, Daniel

    2015-01-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products...

  16. EIS Response of MIC on Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Maahn, Ernst

    1998-01-01

    Abstract Microbially influenced corrosion of carbon steel under sulphate reducing (sulphide-producing) bacterial activity (SRB) results in the formation of both ferrous sulphides as well as biofilm on the metal surface. The electrochemical characteristics of the ferrous sulphide/steel interface...... as compared to the biofilm/ferrous sulphide/steel interface has been studied with EIS, DC polarisations (Tafel, LPR) and a potentiostatic step technique. The electrochemical response is related to a threshold sulphide concentration above which very characteristic changes such as indications of finite...

  17. Corrosion of carbon steel in neutral water

    International Nuclear Information System (INIS)

    Kawai, Noboru; Iwahori, Toru; Kurosawa, Tatsuo

    1983-01-01

    The initial corrosion behavior of materials used in the construction of heat exchanger and piping system of BWR nuclear power plants and thermal power plants have been examined in neutral water at 30, 50, 100, 160, 200, and 285 deg C with two concentrations of dissolved oxygen in the water. In air-saturated water, the corrosion rate of carbon steel was so higher than those in deaerated conditions and the maximum corrosion rate was observed at 200 deg C. The corrosion rate in deaerated water gradually increased with increasing the water temperature. Low alloy steel (2.25 Cr, 1Mo) exhibited good corrosion resistance compared with the corrosion of carbon steel under similar testing conditions. Oxide films grown on carbon steel in deaerated water at 50, 100, 160, 200, and 285 deg C for 48 and 240 hrs were attacked by dissolved oxygen in room temperature water respectively. However the oxide films formed higher than about 160 deg C showed more protective. The electrochemical behavior of carbon steel with oxide films was also similar to the effect of temperature on the stability of oxide films. (author)

  18. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed

  19. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  20. Marine atmospheric corrosion of carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Morcillo, M.; Alcantara, J.; Diaz, I.; Chico, B.; Simancas, J.; Fuente, D. de la

    2015-07-01

    Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a) environmental conditions necessary for akaganeite formation; (b) characterisation of akaganeite in the corrosion products formed; (c) corrosion mechanisms of carbon steel in marine atmospheres; (d) exfoliation of rust layers formed in highly aggressive marine atmospheres; (e) long-term corrosion rate prediction; and (f) behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camarinas, Galicia) in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS), X-ray diffraction (XRD), Mossbauer spectroscopy and SEM/μRaman spectroscopy. (Author)

  1. Plasticity of low carbon stainless steels

    International Nuclear Information System (INIS)

    Bulat, S.I.; Fel'dgandler, Eh.G.; Kareva, E.N.

    1975-01-01

    In the temperature range 800-1200 0 C and with strain rates of from 10 -3 to 3 s -1 , austenitic (000Kh18N12) and austenitic-ferrite (000Kh26N6) very low carbon stainless steels containing 0.02-0.03% C exhibit no higher resilience than corresponding ordinary steels containing 0.10-0.12% C. However, the plasticity of such steels (particularly two-phase steels) at 900-1100 0 C is appreciably inferior owing to the development of intergranular brittle fracture. Pressure treatment preceded by partial cooling of the surface to 850 0 C yields rolled and forged products with acceptable indices but is inconvenient technically. At the Zlatoustovsk and Ashin metallurgical plants successful tests have been performed involving the forging and rolling of such steels heated to 1280-1300 0 C without partial cooling; it was necessary to improve the killing conditions, correct the chemical composition (increasing the proportion of ferrite) and take measures against heat loss. (author)

  2. Internal friction in martensitic carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2009-01-01

    This paper proposes relationships between the internal friction and the microstructure of two steels containing 0.626 and 0.71 wt.% carbon. The steels were annealed at 1093 K for 5 min, quenched into water and tempered for 10 min at 423, 573 and 723 K. Internal friction was measured by using a forced vibration pendulum, in a temperature range from 100 to 450 K. The internal friction spectrum is decomposed into four peaks: P1 at 215 K, P2 at 235 K, P3 at 260 K and P4 at 380 K for 3 Hz. Peak P1 is attributed to the interactions between dislocations and carbon atoms. Peak P2 is related to the interaction between dislocations and carbide. Peak P3 is related to the generations of kink - pairs along edge dislocations. Peak P4 is attributed to epsilon carbide precipitation.

  3. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    OpenAIRE

    N. V. Kolebina; V. L. Danilov; S. Frechinet

    2015-01-01

    The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. How...

  4. Study on corrosion of carbon steel in DEA aqueous solutions

    Science.gov (United States)

    Yang, Jun Han; Xie, Jia Lin; Zhang, Li

    2018-02-01

    Corrosion of carbon steel in the CO2 capture process using diethanolamine (DEA) aqueous solutions was investigated. The effects of the mass concentrations of DEA, solution temperature and CO2 loading on the corrosion rate of carbon steel were demonstrated. The experimental results provided comprehensive information on the appropriate concentration range of DEA aqueous solutions under which low corrosion of carbon steel can be achieved.

  5. Friction stir processing on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Sergei Yu., E-mail: tsy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, Alexander G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Rubtsov, Valery E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    Friction stir processing of medium carbon steel samples has been carried out using a milling machine and tools made of cemented tungsten carbide. Samples have been machined from 40 and 40X steels. The tools have been made in the shape of 5×5×1.5 mm and 3×3×1.5 mm tetrahedrons. The microstructure of stirred zone has been obtained using the smaller tool and consists of fine recrystallized 2-3 μm grains, whereas the larger tool has produced the 'onion-like' structures comprising hard quenched 'white' 500-600 MPa layers with 300-350 MPa interlayers of bainite needles. The mean values of wear intensity obtained after measuring the wear scar width were 0.02 mm/m and 0.001 mm/m for non-processed and processed samples, respectively.

  6. Passivation condition of carbon steel in bentonite/sand mixture

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawakami, Susumu

    2002-03-01

    It is essential to understand the corrosion type of carbon steel under the repository conditions for the lifetime assessment of carbon steel overpack used for geological isolation of high-level radioactive waste. According to the previous study, carbon steel is hard to passivate in buffer material assuming a chemical condition range of groundwater in Japan. However, concrete support will be constructed around the overpack in the case of repository in the soft rock system and groundwater having a higher pH may infiltrate to buffer material. There is a possibility that the corrosion type of carbon steel will be influenced by the rise of the pH in groundwater. In this study, anodic polarization experiments were performed to understand the passivation condition of carbon steel in buffer material saturated with water contacted with concrete. An ordinary concrete an a low-alkalinity concrete were used in the experiment. The results of the experiments showed that the carbon steel can passivate under the condition that water having pH > 13 infiltrate to the buffer material assuming present property of buffer material. If the low-alkalinity concrete is selected as the support material, passivation can not occur on carbon steel overpack. The effect of the factors of buffer material such as dry density and mixing ratio of sand on the passivation of carbon steel was also studied. The results of the study showed that the present property of buffer material is enough to prevent passivation of carbon steel. (author)

  7. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  8. Low carbon manganese-nickel-niobium steel

    International Nuclear Information System (INIS)

    Heisterkamp, F.; Hulka, K.

    1983-11-01

    Experimental heats of a low carbon-manganese-0.5% nickel-0.15% niobium steel have been rolled to plates between 13.5 and 50 mm thickness and to a 16 mm hot strip. Various combinations of soaking temperatures form 1100 0 C to 1300 0 C and of finish rolling temperatures between 710 0 C and 930 0 C have been investigated. From mechanical properties obtained, one can conclude that the investigated steel composition provides very good properties e.g. for pipe steels X65 to X75. In particular, the toughness at low temperature is outstanding despite relaxed rolling conditions. Metalographic and special investigations such as electron microscopy, texture evaluation and chemical extraction, correlated with applied rolling schedules and the mechanical properties obtained resulted in a comprehensive understanding about the benefits of high niobium metallurgy combined with nickel addition. All practically applied welding processes generated mechanical properties, in particular toughness of the weldment, that meet arctic specifications.(Author) [pt

  9. Mechanistic studies of carbon steel corrosion inhibition by cashew ...

    African Journals Online (AJOL)

    The phenoxide, R-Ar-O- ions from the CNSL inhibitor were found to be responsible for the reduction of the corrosion rate of the carbon steel. Also, it was observed that the surface charge of the carbon steel electrodes was positive with respect to the solutions containing CNSL inhibitor. It is likely that the mechanism of the ...

  10. The case for ultrahigh-carbon steels as structural materials

    Science.gov (United States)

    Lesuer, D. R.; Syn, C. K.; Goldberg, A.; Wadsworth, J.; Sherby, O. D.

    1993-08-01

    Ultrahigh-carbon steels (UHCSs) are low-alloyed plain carbon steels containing 1-2.1% carbon. These steels have remarkable structural properties when processed to achieve fine ferrite grains with fine spheroidized carbides. They can be made superplastic at intermediate temperatures. Further, they can be made hard with compression toughness and strong with good tensile ductility at ambient temperatures. Contrary to conventional wisdom, UHCSs are ideal replacements for currently used high-carbon (0.5-1 % carbon) steels because they have comparable ductility but higher strength and hardness. In this article, examples of structural components formed from fine-grained spheroidized UHCSs are illustrated, and other potential structural applications are reviewed. These steels can be laminated with other metal-based materials to achieve superplasticity, high impact resistance, exceptionally high tensile ductility, and improved fatigue behavior.

  11. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    Directory of Open Access Journals (Sweden)

    Wenning Shen

    Full Text Available The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel. Keywords: Stainless steel, Carbon steel, Anti-corrosion, Conductivity, Electrochemical, EIS

  12. The Spot Weldability of Carbon Steel Sheet

    Directory of Open Access Journals (Sweden)

    A. M. Al-Mukhtar

    2013-01-01

    Full Text Available The specimens of thickness 0.8 mm carbon steel number 1.8902 in a strip form were welded. The strips of lap joints and curved peeljoints configurations have been welded. The welding parameters such as weld current and weld time have been investigated. The relation between the weld area and the joint strength properties has been presented. The obtained results were showing that the weld joint strength and the molten area (weld nugget volume highly increase with the increasing of weld current. Therefore, the correlation between the maximum load (joint strength and area has been given. The reliable weldability under the tensile and shearing loading was considered. Therefore, the new limits of weldability have been presented to consider these two types of loading. Moreover, the experimental results were compared with the empirical relations that consider the sheet thickness only.

  13. Basic studies on carbon steel decontamination

    International Nuclear Information System (INIS)

    Pavarotti, M.; Rizzi, R.; Ronchetti, C.

    1982-01-01

    The dissolution of magnetite films grown in autoclave at high temperature on carbon steel has been performed in a dynamic loop in ammoniated citric and oxalic acid solutions at two different temperatures and constant pH. The dissolution process seems to be affected by the dual-layer oxide morphology depending on the growth conditions in the autoclave. The open-circuit potential of the specimens and the corrosion rate measured by the linear polarization method have been monitored. To this aim a particular corrosion cell and a suitable reference electrode have been set up at CISE. Polarization curves have been performed to check the electrochemical processes involved in the anodic and cathodic area. At last the effect of a corrosion inhibitor, of a complexing and a reducing agent and of temperature has also been studied. The work was carried out in the frame of a CNEN research programme for the development of the CIRENE prototype

  14. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  15. Marine atmospheric corrosion of carbon steels

    Directory of Open Access Journals (Sweden)

    Morcillo, Manuel

    2015-06-01

    Full Text Available Basic research on marine atmospheric corrosion of carbon steels is a relatively young scientific field and there continue to be great gaps in this area of knowledge. The presence of akaganeite in the corrosion products that form on steel when it is exposed to marine atmospheres leads to a notable increase in the corrosion rate. This work addresses the following issues: (a environmental conditions necessary for akaganeite formation; (b characterisation of akaganeite in the corrosion products formed; (c corrosion mechanisms of carbon steel in marine atmospheres; (d exfoliation of rust layers formed in highly aggressive marine atmospheres; (e long-term corrosion rate prediction; and (f behaviour of weathering steels. Field research has been carried out at Cabo Vilano wind farm (Camariñas, Galicia in a wide range of atmospheric salinities and laboratory work involving the use of conventional atmospheric corrosion techniques and near-surface and bulk sensitive analytical techniques: scanning electron microscopy (SEM/energy dispersive spectrometry (EDS, X-ray diffraction (XRD, Mössbauer spectroscopy and SEM/μRaman spectroscopy.La investigación fundamental en corrosión atmosférica marina de aceros al carbono es un campo científico relativamente joven que presenta grandes lagunas de conocimiento. La formación de akaganeíta en los productos de corrosión que se forman sobre el acero cuando se expone a atmósferas marinas conduce a un incremento notable de la velocidad de corrosión. En el trabajo se abordan las siguientes cuestiones: (a condiciones ambientales necesarias para la formación de akaganeíta, (b caracterización de la akaganeíta en los productos de corrosión formados, (c mecanismos de corrosión del acero al carbono en atmósferas marinas, (d exfoliación de las capas de herrumbre formadas en atmósferas marinas muy agresivas, (e predicción de la velocidad de corrosión a largo plazo, y (f comportamiento de aceros patinables. La

  16. corrosion of a carbon steel covered by treated bentonites in ...

    African Journals Online (AJOL)

    F. Arbaoui

    2017-09-01

    Sep 1, 2017 ... Keywords: Corrosion inhibitor, Carbon steel, Electrochemical Impedances Spectroscopy;. Algerian bentonites; Tungstate. ... layer of corrosion products formed on the steel surface remains thinner than in aqueous solutions [11]. ..... chloride-induced crevice corrosion of Alloy 22. Corrosion Science, 2013, 68, ...

  17. STRUCTURAL TRANSFORMATION DURING COLD DEFORMED CARBON STEEL TEMPERING

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2010-06-01

    Full Text Available The influence of parameters of degree of plastic deformation for 30…80 % and subsequent temper on the structure and yielding stress in the microyield region of preimproved carbon steels has been studied. The classification of dispersed phase of ferrite into two types containing the high angle boundaries and substructure boundaries respectively in relation to steels has been discussed.

  18. Medium carbon vanadium steels for closed die forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1993-01-01

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported

  19. Experimental and numerical simulation of carbon manganese steel ...

    African Journals Online (AJOL)

    The paper deals with finite element modeling of saturated low cycle fatigue and the cyclic hardening phenomena of the materials Sa333 grade 6 carbon steel and SS316 stainless steel. Von Mises' yield function and Chaboche's kinematic hardening rules have been used. The recall terms of Chaboche's kinematic ...

  20. Use of carbon dioxide in underground natural gas storage processes

    Directory of Open Access Journals (Sweden)

    Nagy Stanislaw

    2006-10-01

    Full Text Available The possibility of use of carbon dioxide in gas storage processes is presented. The model of mixing process between CO2 and methane in porous media is given. The process of injection of carbon dioxide into a lower part of storage near the water –gas contact is modeled. The example of changes in the mixing zone is presented and discussed.

  1. Corrosion of a carbon steel covered by treated bentonites in ...

    African Journals Online (AJOL)

    Electrochemical impedance spectroscopy results prove that tungstate reduces iron and chlorides ions transport through the clay. This deduction is supported also by microscopic observations. Keywords: Corrosion inhibitor, Carbon steel, Electrochemical Impedances Spectroscopy; Algerian bentonites; Tungstate ...

  2. An Evaluation of Carbon Steel Corrosion Under Stagnant Seawater Conditions

    National Research Council Canada - National Science Library

    Lee, Jason

    2004-01-01

    Corrosion, of 1020 carbon steel coupons in, natural seawater over a six-month period was more aggressive under stagnant anaerobic conditions than stagnant aerobic conditions as measured by weight loss...

  3. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    Energy Technology Data Exchange (ETDEWEB)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Pan, Szu-Jung [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tsai, Wen-Ta, E-mail: wttsai@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Tai, Chen-Yi [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Shih, Chuan-Feng [Ocean Energy Research Center, Tainan Hydraulics Laboratory, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China); Department of Electrical Engineering, National Cheng Kung University, 1, Ta-Hsueh Road, Tainan 701, Taiwan (China)

    2013-02-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test.

  4. Electrochemical performances of diamond-like carbon coatings on carbon steel, stainless steel, and brass

    International Nuclear Information System (INIS)

    Hadinata, Samuel-Sudibyo; Lee, Ming-Tsung; Pan, Szu-Jung; Tsai, Wen-Ta; Tai, Chen-Yi; Shih, Chuan-Feng

    2013-01-01

    Diamond-like carbon (DLC) coatings have been deposited onto stainless steel, carbon steel and brass by plasma-enhanced chemical vapor deposition, respectively. Atomic arrangement, chemical structure, surface morphology and cross-section microstructure of the DLC coatings were examined by X-ray diffraction, Raman scattering spectroscopy and scanning electron microscopy. The electrochemical behaviors of the DLC coatings in 3.5 wt.% NaCl solution were investigated by performing an open circuit potential (OCP) measurement and a potentiodynamic polarization test. The experimental results showed that properly deposited DLC coatings could cause an increase of OCP by hundreds of millivolts and a reduction of anodic current density by several orders of magnitude as compared to that of the substrate. The results also demonstrated that electrochemical techniques could be used as tools to detect the soundness of the DLC coating by examining OCP and polarization curve, which varied with the form of defect and depended on the type of substrate. - Highlights: ► The substrate could affect the quality of diamond-like carbon (DLC) coating. ► Defect-free DLC coating exhibited extremely low anodic current density. ► The quality of DLC coating on metal could be evaluated by electrochemical test

  5. Relationship between elemental carbon, total carbon, and diesel particulate matter in several underground metal/non-metal mines.

    Science.gov (United States)

    Noll, J D; Bugarski, A D; Patts, L D; Mischler, S E; McWilliams, L

    2007-02-01

    Elemental carbon (EC) is currently used as a surrogate for diesel particulate matter (DPM) in underground mines since it can be accurately measured at low concentrations and diesels are the only source of submicrometer EC in underground mines. A disadvantage of using EC as a surrogate for DPM is that the fraction of EC in DPM is a function of various engine parameters and fuel formulations, etc. In order to evaluate how EC predicts DPM in the underground mining atmosphere, measurements of total carbon (TC; representing over 80% of the DPM) and EC were taken away from potential interferences in four underground metal/non-metal mines during actual production. In a controlled atmosphere, DPM mass, TC, and EC measurements were also collected while several different types of vehicles simulated production with and without different types of control technologies. When diesel particulate filters (DPFs) were not used, both studies showed that EC could be used to predict DPM mass or TC. The variability of the data started to increase at TC concentrations below 230 microg/m3 and was high (> +/- 20%) at TC concentrations below 160 microg/m3, probably due to the problem with sampling organic carbon (OC) at these concentrations. It was also discovered that when certain DPFs were used, the relationship between DPM and EC changed at lower DPM concentrations.

  6. Iron cycling at corroding carbon steel surfaces

    Science.gov (United States)

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  7. Controlling the mechanical properties of carbon steel by thermomechanical treatment

    Science.gov (United States)

    Balavar, Mohsen; Mirzadeh, Hamed

    2018-01-01

    The effect of thermomechanical processing and heat treatment on the microstructure and mechanical properties of low carbon steel was studied. It was revealed that the dual phase ferritic-martensitic microstructure shows a good combination of tensile strength and ductility along with superior work hardening response. On the other hand, the bimodal-sized structure containing ultrafine grained (UFG) and micron-sized ferrite phase can be easily produced by cold rolling and annealing of the dual phase starting microstructure. This steel showed high yield stress, tensile strength, and ductility, but poor work hardening ability. The full annealed ferritic-pearlitic sheet with banded morphology exhibited low strength and high total elongation with the appearance of the yield point phenomenon. The martensitic steels, however, had high tensile strength and low ductility. By comparing the tensile properties of these steels, it was shown that it is possible to control the mechanical properties of low carbon steel by simple processing routes.

  8. Archaeologic analogues: Microstructural changes by natural ageing in carbon steels

    International Nuclear Information System (INIS)

    Munoz, Esther Bravo; Fernandez, Jorge Chamon; Arasanz, Javier Guzman; Peces, Raquel Arevalo; Criado, Antonio Javier; Dietz, Christian; Martinez, Juan Antonio; Criado Portal, Antonio Jose

    2006-01-01

    When discussing the container material for highly active radionuclear waste, carbon steel is one of the materials most frequently proposed by the international scientific community. Evidently, security with respect to the container behaviour into deep geological deposits is fundamental. Among other parameters, knowledge about material mechanical properties is essential when designing the container. Time ageing of carbon steel, apart from possible alterations of the chemical composition (e.g. corrosion) involves important microstructural changes, at the scale of centuries and millenniums. The latter may cause variations of the mechanical properties of carbon steel storage containers, with the corresponding risk of possible leakage. In order to properly estimate such risk and to adjust the corresponding mathematical models to reality, the microstructural changes observed in this study on archaeologic samples are evaluated, comparing ancient and modern steels of similar chemical composition and fabrication processes

  9. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Abstract Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC...... of carbon steel must be monitored on-line in order to provide an efficient protection and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic...... corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS might be used for detection of MIC. EN is a suitable technique to characterise the type of corrosion attack, but is unsuitable for corrosion rate estimation. The concentric electrodes galvanic probe arrangement...

  10. Archaeologic analogues: Microstructural changes by natural ageing in carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Esther Bravo [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Fernandez, Jorge Chamon [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Arasanz, Javier Guzman [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Peces, Raquel Arevalo [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Criado, Antonio Javier [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Dietz, Christian [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Martinez, Juan Antonio [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Criado Portal, Antonio Jose [Dpto. de Ciencia de los Materiales e Ingenieria Metalurgica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)]. E-mail: antoniocriado@quim.ucm.es

    2006-02-15

    When discussing the container material for highly active radionuclear waste, carbon steel is one of the materials most frequently proposed by the international scientific community. Evidently, security with respect to the container behaviour into deep geological deposits is fundamental. Among other parameters, knowledge about material mechanical properties is essential when designing the container. Time ageing of carbon steel, apart from possible alterations of the chemical composition (e.g. corrosion) involves important microstructural changes, at the scale of centuries and millenniums. The latter may cause variations of the mechanical properties of carbon steel storage containers, with the corresponding risk of possible leakage. In order to properly estimate such risk and to adjust the corresponding mathematical models to reality, the microstructural changes observed in this study on archaeologic samples are evaluated, comparing ancient and modern steels of similar chemical composition and fabrication processes.

  11. Abnormal growth of austenite grain of low-carbon steel

    International Nuclear Information System (INIS)

    Yu Qingbo; Sun Ying

    2006-01-01

    Niobium is an important alloying element for the steel. To know further the effect of Nb in the steel, the contrast experiments on the austenite grain growth of the 0.015%Nb and free Nb steels were carried out using Gleeble 1500 thermomechanical simulator. The experimental results indicate that the austenite grain of 0.015%Nb steel is finer than that of Nb free steel at 1150-1230 deg. C. And when the heating temperature arrives the critical temperature 1240 deg. C, the austenite grain of Nb steel suddenly grows up, while the austenite grain of Nb free steel changes little. Finally, the austenite grain of Nb steel is obviously coarser than that of Nb free steel. By transmission electron microscopy (TEM) using a carbon extraction replica technique, the precipitates of Nb(C,N) were not observed in the 0.015%Nb steel. It is concluded that the grain-boundary internal adsorption of Nb atoms leads to the result

  12. Damascus steels: history, processing, properties and carbon dating

    International Nuclear Information System (INIS)

    Wadsworth, J.

    2007-01-01

    In the mid-1970s, a class of steels containing high levels of carbon (∼ 1-2 wt% C) was developed for superplastic characteristics - that is, the ability to plastically deform to an extraordinary degree in tension at intermediate temperatures. Because these steels also had excellent room temperature properties, they were developed for their commercial potential. In the late 1970s, we became aware of the striking compositional similarities between these modern steels and the ancient steels of Damascus. This observation led us to revisit the history and metallurgy of Damascus steels and related steels. The legends and origins of Damascus steel date back to the time of Alexander the Great (323 BC) and the medieval Crusades (11th and 12th century AD), and this material has also been the subject of scrutiny by famous scientist in Europe, including Michael Faraday. Modern attempts to reproduce the legendary surface patterns which famously characterized Damascus steels are described. The extend to which the characteristics of Damascus steels are unusual is discussed. Finally, a program on radiocarbon dating was initiated to directly determine the age of about 50 ancient steels, including a Damascus knife, and the results are summarized. (author)

  13. Super-Hydrophobic Green Corrosion Inhibitor On Carbon Steel

    Science.gov (United States)

    Hassan, H.; Ismail, A.; Ahmad, S.; Soon, C. F.

    2017-06-01

    There are many examples of organic coatings used for corrosion protection. In particular, hydrophobic and super-hydrophobic coatings are shown to give good protection because of their enhanced ability to slow down transport of water and ions through the coating. The purpose of this research is to develop water repellent coating to avoid direct contact between metal and environment corrosive and mitigate corrosion attack at pipeline system. This water repellent characteristic on super-hydrophobic coating was coated by electrodeposition method. Wettability of carbon steel with super-hydrophobic coating (cerium chloride and myristic acid) and oxidized surface was investigated through contact angle and inhibitor performance test. The inhibitor performance was studied in 25% tannin acid corrosion test at 30°C and 3.5% sodium chloride (NaCl). The water contact angle test was determined by placing a 4-μL water droplet of distilled water. It shows that the wettability of contact angle super-hydrophobic with an angle of 151.60° at zero minute can be classified as super-hydrophobic characteristic. By added tannin acid as inhibitor the corrosion protection on carbon steel becomes more consistent. This reveals that the ability of the coating to withstand with the corrosion attack in the seawater at different period of immersions. The results elucidate that the weight loss increased as the time of exposure increased. However, the corrosion rates for uncoated carbon steel is high compared to coated carbon steel. As a conclusion, from both samples it can be seen that the coated carbon steel has less corrosion rated compared to uncoated carbon steel and addition of inhibitor to the seawater provides more protection to resist corrosion attack on carbon steel.

  14. intercritical heat treatments effects on low carbon steels quenched

    African Journals Online (AJOL)

    DR B. A. EZEKOYE

    Department of Physics and Astronomy, University of Nigeria, Nsukka. 2. E-mail: benjamin.ezekoye@unn.edu.ng; bezekoye@yahoo.com. ABSTRACT. Six low carbon steels containing carbon in the range 0.13-0.18wt%C were studied after intercritical quenching, intercritical quenching with low temperature tempering, ...

  15. Intercritical Heat Treatment Effects on Low Carbon Steels Quenched ...

    African Journals Online (AJOL)

    Six low carbon steels containing carbon in the range 0.13-0.18wt%C were studied after intercritical quenching, intercritical quenching with low temperature tempering, intercritical annealing and intercritical normalizing using specimens originally quenched from intermediate austenitizing temperature (9500C). The studies ...

  16. Ultra low carbon bainitic (ULCB) steels after quenching and tempering

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Kolan, C.; Jeziorski, L.

    1998-01-01

    The mechanical and Charpy V impact strength properties of new advanced ultra low carbon bainitic (ULBC) steels after water quenching and tempering (WQT) have been investigated. Their chemical compositions are given. The nine continuous cooling transformation diagrams (CCT) of the new ULCB steel grades have been established. The CCT diagrams for ULCB N i steels containing 9% Ni - grade 10N9 and 5% Ni - grade HN5MVNb are given. The comparison between CCT diagrams of 3.5%Ni + 1.5%Cu containing steels grade HSLA 100 and HN3MCu is shown. The effect of the increase in carbon and titanium contents in the chemical composition of ULCB M n steels 04G3Ti, 06G3Ti and 09G3Ti on the kinetics of phase transformations during continuous cooling is presented by the shifting CCT diagrams. The Charpy V impact strength and brittle fracture occurence curves are shown. The effect of tempering temperature on tensile properties of WQT HN3MCu steel is shown and Charpy V impact strength curves after different tempering conditions are shown. The optimum tempering temperatures region of HN3MCu steel for high Charpy V impact toughness at law temperatures - 80 o C(193 K) and -120 o C(153 K) is estimated. The effect of tempering temperature on mechanical properties of HN5MVNb steel is given. The low temperature impact Charpy V toughness of HN5MVNb steel is shown. The optimum range of tempering temperature during 1 hour for high toughness of WQT HN5MVNb steel is given. HN3MCu and HN5MVNb steels after WQT have high yield strength YS≥690 MPa and high Charpy V impact toughness KV≥80 J at -100 o C (173K) and KCV≥50 J/cm 2 at - 120 o C (153K) so they may be used for cryogenic applications

  17. Correlation Between Shear Punch and Tensile Strength for Low-Carbon Steel and Stainless Steel Sheets

    Science.gov (United States)

    Mahmudi, R.; Sadeghi, M.

    2013-02-01

    The deformation behavior of AISI 1015 low-carbon steel, and AISI 304 stainless steel sheets was investigated by uniaxial tension and the shear punch test (SPT). Both materials were cold rolled to an 80% thickness reduction and subsequently annealed in the temperature range 25-850 °C to produce a wide range of yield and ultimate strength levels. The correlations between shear punch and tensile yield and ultimate stresses were established empirically. Different linear relationships having different slopes and intercepts were found for the low-carbon and stainless steel sheets, and the possible parameters affecting the correlation were discussed. It was shown that, within limits, yield and tensile strength of thin steel sheets can be predicted from the shear data obtained by the easy-to-perform SPT.

  18. An Investigation of the Charpy V Notch Characteristics of Leaded Carbon and Alloy Steels.

    Science.gov (United States)

    Steel , *Lead alloys, * Charpy impact tests , Low alloy steels , Carbon steels , Billets(Materials), Elongation, Orientation(Direction), Low temperature...Heat treatment, Tensile properties, Hardness, Impact strength, Transition temperature, Microstructure, Fracture(Mechanics), Microradiography

  19. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Science.gov (United States)

    2010-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and armor...

  20. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  1. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1991-01-01

    This is the final report of a 2 year programme aimed at (1) determining the rate of anaerobic corrosion of steel in concrete, (2) investigating the nature of the corrosion products formed on carbon steel embedded in cementitious material under anaerobic conditions and (3) evaluating the effect of hydrogen over-pressures on the rate of anaerobic corrosion. All experiments have been carried out at temperatures in the range 20-30 0 C, ie ambient conditions. 4 refs.; 19 figs.; 6 tabs

  2. Modeling and characterization of high carbon nanobainitic steels

    Science.gov (United States)

    Sidhu, Gaganpreet

    Analytical models have been developed for the transformation kinetics, microstructure analysis and the mechanical properties in bainitic steels. Three models are proposed for the bainitic transformation based on the chemical composition and the heat treatment conditions of the steel as inputs: (1) thermodynamic model on kinetics of bainite transformation, (2) improved thermo-statistical model that eliminates the material dependent empirical constants and (3) an artificial neural network model to predict the volume fraction of bainite. Neural networks have also been used to model the hardness of high carbon steels, subjected to isothermal heat treatment. Collectively, for a steel of given composition and subjected to a particular isothermal heat treatment, the models can be used to determine the volume fraction of bainitic phase and the material hardness values. The models have been extensively validated with the experimental data from literature as well as from three new high carbon experimental steels with various alloying elements that were used in the present work. For these experimental steels, data on the volume fraction of phases (via X-ray diffraction), yield strength (via compression tests) and hardness were obtained for various combinations of isothermal heat treatment times and temperatures. The heat treated steels were subjected to compression and hardness tests and the data have been used to develop a new correlation between the yield stress and the hardness. It was observed that while all three experimental steels exhibit a predominantly nanostructured bainite microstructure, the presence of Co and Al in one of the steels accelerated and maximized the nano-bainitic transformation within a reasonably short isothermal transformation time. Excellent yield strength (>1.7 GPa) and good deformability were observed in this steel after isothermal heat treatment at a low temperature of 250°C for a relatively short duration of 24 hours.

  3. ESTIMATION OF IRREVERSIBLE DAMAGEABILITY AT FATIGUE OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-04-01

    Full Text Available Purpose. Damageability estimation of carbon steel in the conditions of cyclic loading. Methodology. The steel fragments of railway wheel rim and rail head served as material for research with chemical composition 0.65 % С, 0.67 % Mn, 0.3 % Si, 0.027 % P, 0.028 % S и 0.7 % C, 0.82 % Mn, 0.56 % Si, 0.025 % P, 0.029 % S accordingly. The microstructure of tested steels corresponded to the state of metal after a hot plastic deformation. The fatigue research was conducted in the conditions of symmetric bend using the proof-of-concept machine of type «Saturn-10». Full Wohler diagrams and the lines corresponding to forming of sub-and micro cracks were constructed. The distribution analysis of internal stresses in the metal under cyclic loading was carried out using the microhardness tester of PMT-3 type.Findings. On the basis of fatigue curves for high-carbon steels analysis the positions of borders dividing the areas of convertible and irreversible damages were determined. The article shows that with the growth of carbon concentration in the steel at invariability of the structural state an increase of fatigue limit is observed. At the same time the acceleration of processes, which determine transition terms from the stage of forming of submicrocracks to the microcracks occurs. The research of microhardness distribution in the metal after destruction confirmed the nature of carbon amount influence on the carbon steel characteristics. Originality. Regardless on the stages of breakdown site forming the carbon steels behavior at a fatigue is determined by the ration between the processes of strengthening and softening. At a cyclic loading the heterogeneity of internal stresses distribution decreases with the increase of distance from the destruction surface. Analysis of metal internal restructuring processes at fatigue loading made it possible to determine that at the stages prior to incubation period in the metal microvolumes the cells are already

  4. Content of nitrogen in waste petroleum carbon for steel industries

    International Nuclear Information System (INIS)

    Rios, R.O; Jimenez, A.F; Szieber, C.W; Banchik, A.D

    2004-01-01

    Steel industries use refined carbon as an alloy for steel production. This alloy is produced from waste carbon from the distillation of the petroleum. The refined carbon, called recarburizer, is obtained by calcination at high temperature. Under these thermal conditions the organic molecules decompose and a fraction of the N 2 , S and H 2 , volatile material and moisture are released; while the carbon tends to develop a crystalline structure similar to graphite's. The right combination of calcinations temperature and time in the furnace can optimize the quality of the resulting product. The content of S and N 2 has to be minimized for the use of calcined carbon in the steel industry. Nitrogen content should be reduced by two orders of magnitude, from 1% - 2% down to hundreds of ppm by weight. This work describes the activities undertaken to obtain calcined coke from petroleum from crude oil carbon that satisfies the requirements of the Mercosur standard 02:00-169 (Pending) for use as a carborizer in steels industries. To satisfy the requirements of the Mercosur standards NM 236:00 IRAM-IAS-NM so that graphite is used as a carburizer a content of 300 ppm maximum weight of nitrogen has to be obtained. So the first stage in this development is to define a production process for supplying calcined coke in the range of nitrogen concentrations required by the Mercosur standards (CW)

  5. A real-time, wearable elemental carbon monitor for use in underground mines

    International Nuclear Information System (INIS)

    Takiff, L.; Aiken, G.

    2010-01-01

    A real-time, wearable elemental carbon monitor has been developed to determines the exposure of workers in underground mines to diesel particulate material (DPM). ICx Technologies designed the device in an effort to address the health hazards associated with DPM exposure. Occupational exposure to DPM in underground metal and nonmetal mines is regulated by the Mine Safety and Health Administration. The most common method of measuring exposure to elemental or total carbon nanoparticles involves capturing the particles on a filter followed by a thermo-optical laboratory analysis, which integrates the exposure spatially and in time. The ICx monitor is based on a design developed and tested by the National Institute of Occupational Safety and Health (NIOSH). The ICx monitor uses a real-time particle capture and light transmission method to yield elemental carbon values that are displayed for the wearer and are stored internally in a compact device. The ICx monitoring results were found to be in good agreement with the established laboratory method (NIOSH Method 5040) for elemental carbon emissions from a diesel engine. The monitors are compact and powered by a rechargeable lithium-ion battery. Examples of DPM monitoring in mines demonstrated how the real-time data can be more useful that time-averaged results. The information can be used to determine ventilation rates needed at any given location to lower the DPM concentrations.15 refs., 6 figs.

  6. A real-time, wearable elemental carbon monitor for use in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Takiff, L. [ICx Technologies, Cambridge, MA (United States); Aiken, G. [ICx Technologies, Albuquerque, NM (United States)

    2010-07-01

    A real-time, wearable elemental carbon monitor has been developed to determines the exposure of workers in underground mines to diesel particulate material (DPM). ICx Technologies designed the device in an effort to address the health hazards associated with DPM exposure. Occupational exposure to DPM in underground metal and nonmetal mines is regulated by the Mine Safety and Health Administration. The most common method of measuring exposure to elemental or total carbon nanoparticles involves capturing the particles on a filter followed by a thermo-optical laboratory analysis, which integrates the exposure spatially and in time. The ICx monitor is based on a design developed and tested by the National Institute of Occupational Safety and Health (NIOSH). The ICx monitor uses a real-time particle capture and light transmission method to yield elemental carbon values that are displayed for the wearer and are stored internally in a compact device. The ICx monitoring results were found to be in good agreement with the established laboratory method (NIOSH Method 5040) for elemental carbon emissions from a diesel engine. The monitors are compact and powered by a rechargeable lithium-ion battery. Examples of DPM monitoring in mines demonstrated how the real-time data can be more useful that time-averaged results. The information can be used to determine ventilation rates needed at any given location to lower the DPM concentrations.15 refs., 6 figs.

  7. Surface protection of austenitic steels by carbon nanotube coatings

    Science.gov (United States)

    MacLucas, T.; Schütz, S.; Suarez, S.; Mücklich, F.

    2018-03-01

    In the present study, surface protection properties of multiwall carbon nanotubes (CNTs) deposited on polished austenitic stainless steel are evaluated. Electrophoretic deposition is used as a coating technique. Contact angle measurements reveal hydrophilic as well as hydrophobic wetting characteristics of the carbon nanotube coating depending on the additive used for the deposition. Tribological properties of carbon nanotube coatings on steel substrate are determined with a ball-on-disc tribometer. Effective lubrication can be achieved by adding magnesium nitrate as an additive due to the formation of a holding layer detaining CNTs in the contact area. Furthermore, wear track analysis reveals minimal wear on the coated substrate as well as carbon residues providing lubrication. Energy dispersive x-ray spectroscopy is used to qualitatively analyse the elemental composition of the coating and the underlying substrate. The results explain the observed wetting characteristics of each coating. Finally, merely minimal oxidation is detected on the CNT-coated substrate as opposed to the uncoated sample.

  8. Carbon burning in stars - Prospects for underground measurements of the 12C+12C fusion reactions

    International Nuclear Information System (INIS)

    Strieder, Frank

    2010-01-01

    The 12 C+ 12 C fusion reactions are together with the reaction 12 C(a,γ) 16 O the most important nuclear processes in the late stellar evolution. These fusion reactions play a key role in the understanding of various types of astrophysical objects. Thus, a measurement of the 12 C+ 12 C cross section at very low energies can serve as flagship experiment for a future underground accelerator laboratory. It is hoped that an appropriate facility for such a study will be created in the near future somewhere in the world. The prospects for the measurement of the carbon fusion reactions will be discussed in the present work.

  9. Carbon in condensed hydrocarbon phases, steels and cast irons

    Directory of Open Access Journals (Sweden)

    GAFAROVA Victoria Alexandrovna

    2017-11-01

    Full Text Available The article presents a review of studies carried out mainly by the researchers of the Ufa State Petroleum Technological University, which are aimed at detection of new properties of carbon in such condensed media as petroleum and coal pitches, steels and cast irons. Carbon plays an important role in the industry of construction materials being a component of road and roof bitumen and setting the main mechanical properties of steels. It was determined that crystal-like structures appear in classical glass-like substances – pitches which contain several thousands of individual hydrocarbons of various compositions. That significantly extends the concept of crystallinity. In structures of pitches, the control parameter of the staged structuring process is paramagnetism of condensed aromatic hydrocarbons. Fullerenes were detected in steels and cast irons and identified by various methods of spectrometry and microscopy. Fullerene С60, which contains 60 carbon atoms, has diameter of 0,7 nm and is referred to the nanoscale objects, which have a significant influence on the formation of steel and cast iron properties. It was shown that fullerenes appear at all stages of manufacture of cast irons; they are formed during introduction of carbon from the outside, during crystallization of metal in welded joints. Creation of modified fullerene layers in steels makes it possible to improve anticorrosion and tribological properties of structural materials. At the same time, outside diffusion of carbon from the carbon deposits on the metal surface also leads to formation of additional amount of fullerenes. This creates conditions for occurrence of local microdistortions of the structure, which lead to occurrence of cracks. Distribution of fullerenes in iron matrix is difficult to study as the method is labor-intensive, it requires dissolution of the matrix in the hydrofluoric acid and stage fullerene separation with further identification by spectral methods.

  10. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    Science.gov (United States)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  11. Monitoring Techniques for Microbially Influenced Corrosion of Carbon Steel

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    2000-01-01

    Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria, e.g. on pipelines buried in soil and on marine structures. MIC of carbon steel must be monitored on-line in order to provide an efficient protection...... and control the corrosion. A number of monitoring techniques is industrially used today, and the applicability and reliability of these for monitoring MIC is evaluated. Coupons and ER are recommended as necessary basic techniques even though localised corrosion rate cannot be measured. FSM measures general...... corrosion and detects localised corrosion, but the sensitivity is not high enough for monitoring initiation of pitting and small attacks. Electrochemical techniques as LPR and EIS give distorted data and unreliable corrosion rates, when biofilm and corrosion products cover the steel surface. However, EIS...

  12. Upset Resistance Welding of Carbon Steel to Austenitic Stainless Steel Narrow Rods

    Science.gov (United States)

    Ozlati, Ashkaan; Movahedi, Mojtaba; Mohammadkamal, Helia

    2016-11-01

    Effects of welding current (at the range of 2-4 kA) on the microstructure and mechanical properties of upset resistance welds of AISI-1035 carbon steel to AISI-304L austenitic stainless steel rods were investigated. The results showed that the joint strength first increased by raising the welding current up to 3 kA and then decreased beyond it. Increasing trend was related to more plastic deformation, accelerated diffusion, reduction of defects and formation of mechanical locks at the joint interface. For currents more than 3 kA, decrease in the joint strength was mainly caused by formation of hot spots. Using the optimum welding current of 3 kA, tensile strength of the joint reached to 76% of the carbon steel base metal strength. Microstructural observations and microhardness results confirmed that there was no hard phase, i.e., martensite or bainite, at the weld zone. Moreover, a fully austenitic transition layer related to carbon diffusion from carbon steel was observed at the weld interface.

  13. Vegetable oils as quenchants for hardening medium carbon steel ...

    African Journals Online (AJOL)

    The study was conducted to find vegetable oil alternatives to the commonly used synthetic polymer quenchants, which are considered hazardous, costly and not readily available. The influence of cooling rates of the quenching media on microstructure, tensile strength, yield stress and hardness of medium carbon steel were ...

  14. Vanadium Effect on a Medium Carbon Forging Steel

    Directory of Open Access Journals (Sweden)

    Carlos Garcia-Mateo

    2016-05-01

    Full Text Available In the present work the influence of vanadium on the hardenability and the bainitic transformation of a medium carbon steel is analyzed. While V in solid solution enhances the former, it hardly affects bainitic transformation. The results also reveal an unexpected result, an increase of the prior austenite grain size as the V content increases.

  15. intercritical heat treatments effects on low carbon steels quenched

    African Journals Online (AJOL)

    DR B. A. EZEKOYE

    hardening and precipitation effects [2]. Of all the metallic materials of engineering ... of this work was to investigate the effect of diverse intercritical heat treatments on the ... INTERCRITICAL HEAT TREATMENT EFFECTS ON LOW CARBON STEELS QUENCHED FROM INTERMEDIATE ... Series II- Intercritical quench with.

  16. Microbial corrosion of carbon steel by sulfate-reducing bacteria:

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo; Hilbert, Lisbeth Rischel

    1997-01-01

    Electrochemical measurements (EIS and DC-polarisation curves) have been conducted on carbon steel coupons exposed in SRB-active environments. Results from EIS measurements show that very large interfacial capacities are found in such systems, and consequently high capacitive currents are to be ex...

  17. Friction and wear characteristics of carbon steels in vacuum

    Science.gov (United States)

    Verkin, B. I.; Lyubarskiy, I. M.; Udovenko, V. F.; Guslyakov, A. A.

    1974-01-01

    The nature of carbon steel friction and wear under vacuum conditions is described within the framework of general friction and wear theory. Friction is considered a dynamic process and wear is considered to be the result of a continuous sequence of transitions of the friction surface material from one state into another.

  18. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  19. Corrosion behaviour of carbon steel in the Tournemire clay

    Energy Technology Data Exchange (ETDEWEB)

    Foct, F.; Dridi, W. [EDF R and D MMC, Site des Renardieres, 77818 Moret sur Loing Cedex (France); Cabrera, J.; Savoye, S. [IRSN/DEI/SARG, bat 76/2, BP 17, 92262 Fontenay-aux Roses (France)

    2004-07-01

    Carbon steels are possible materials for the fabrication of nuclear waste containers for long term geological disposal in argillaceous environments. Experimental studies of the corrosion behaviour of such materials has been conducted in various conditions. Concerning the numerous laboratory experiments, these conditions (water and clay mixture or compacted clay) mainly concern the bentonite clay that would be used for the engineered barrier. On the opposite, only few in-situ experiments has been conducted directly in the local clay of the repository site (such as Boom clay, etc.). In order to better estimate the corrosion behaviour of carbon steels in natural clay site conditions, an experimental study has been conducted jointly by EDF and IRSN in the argillaceous French site of Tournemire. In this study, A42 carbon steel specimens have been exposed in 3 different zones of the Tournemire clay formation. The first type of environmental conditions concerns a zone where the clay has not been affected by the excavation (EDZ) of the main tunnel neither by the main fracture zone of the clay formation. The second and third ones are located in the EDZ of the tunnel. In the second zone, an additional aerated water flows from the tunnel, whereas it does not in the third place. Some carbon steel specimens have been extracted after several years of exposure to these conditions. The average corrosion rate has been measured by the weight loss technique and the pitting corrosion depth has been evaluated under an optical microscope. Corrosion products have also been characterised by scanning electron microscopy and X-ray diffraction technique. Results are then discussed regarding the surrounding environmental conditions. Calculations of the oxygen transport from the tunnel through the clay and of the clay re-saturation can explain, in a first approach, the corrosion behaviour of the carbon steel in the different tested zones. (authors)

  20. Corrosion behaviour of carbon steel in the Tournemire clay

    International Nuclear Information System (INIS)

    Foct, F.; Dridi, W.; Cabrera, J.; Savoye, S.

    2004-01-01

    Carbon steels are possible materials for the fabrication of nuclear waste containers for long term geological disposal in argillaceous environments. Experimental studies of the corrosion behaviour of such materials has been conducted in various conditions. Concerning the numerous laboratory experiments, these conditions (water and clay mixture or compacted clay) mainly concern the bentonite clay that would be used for the engineered barrier. On the opposite, only few in-situ experiments has been conducted directly in the local clay of the repository site (such as Boom clay, etc.). In order to better estimate the corrosion behaviour of carbon steels in natural clay site conditions, an experimental study has been conducted jointly by EDF and IRSN in the argillaceous French site of Tournemire. In this study, A42 carbon steel specimens have been exposed in 3 different zones of the Tournemire clay formation. The first type of environmental conditions concerns a zone where the clay has not been affected by the excavation (EDZ) of the main tunnel neither by the main fracture zone of the clay formation. The second and third ones are located in the EDZ of the tunnel. In the second zone, an additional aerated water flows from the tunnel, whereas it does not in the third place. Some carbon steel specimens have been extracted after several years of exposure to these conditions. The average corrosion rate has been measured by the weight loss technique and the pitting corrosion depth has been evaluated under an optical microscope. Corrosion products have also been characterised by scanning electron microscopy and X-ray diffraction technique. Results are then discussed regarding the surrounding environmental conditions. Calculations of the oxygen transport from the tunnel through the clay and of the clay re-saturation can explain, in a first approach, the corrosion behaviour of the carbon steel in the different tested zones. (authors)

  1. Examination of the 1970 National Bureau of Standards Underground Corrosion Test Welded Stainless STeel Coupons from Site D

    Energy Technology Data Exchange (ETDEWEB)

    L. R. Zirker; M. K. Adler Flitton; T. S. Yoder; T. L. Trowbridge

    2008-01-01

    A 1970 study initiated by the National Bureau of Standards (NBS), now known as the National Institute of Standards and Technology (NIST), buried over 6000 corrosion coupons or specimens of stainless steel Types 201, 202, 301, 304, 316, 409, 410, 430, and 434. The coupons were configured as sheet metal plates, coated plates, cross-welded plates, U-bend samples, sandwiched materials, and welded tubes. All coupons were of various heat-treatments and cold worked conditions and were buried at six distinctive soil-type sites throughout the United States. The NBS scientists dug five sets of two trenches at each of the six sites. In each pair of trenches, they buried duplicate sets of stainless steel coupons. The NBS study was designed to retrieve coupons after one year, two years, four years, eight years, and x years in the soil. During the first eight years of the study, four of five planned removals were completed. After the fourth retrieval, the NBS study was abandoned, and the fifth and final set of specimens remained undisturbed for over 33 years. In 2003, an interdisciplinary research team of industrial, university, and national laboratory investigators were funded under the United States Department of Energy’s Environmental Management Science Program (EMSP; Project Number 86803) to extract part of the remaining set of coupons at one of the test sites, characterize the stainless steel underground corrosion rates, and examine the fate and transport of metal ions into the soil. Extraction of one trench at one of the test sites occurred in April 2004. This report details only the characterization of corrosion found on the 14 welded coupons–two cross welded plates, six U-bends, and six welded tubes–that were retrieved from Site D, located near Wildwood, NJ. The welded coupons included Type 301, 304, 316, and 409 stainless steels. After 33 years in the soil, corrosion on the coupons varied according to alloy. This report discusses the stress corrosion cracking and

  2. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  3. Anticorrosive influence of Acetobacter aceti biofilms on carbon steel1

    Science.gov (United States)

    France, Danielle Cook

    2016-01-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments, and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems. PMID:28082824

  4. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    Science.gov (United States)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  5. Configuration Optimization of Underground Cables inside a Large Magnetic Steel Casing for Best Ampacity

    Science.gov (United States)

    Moutassem, Wael

    This thesis presents a method for optimizing cable configuration inside a large magnetic cylindrical steel casing, from the total ampacity point of view. The method is comprised of two main parts, namely: 1) analytically calculating the electromagnetic losses in the steel casing and sheathed cables, for an arbitrary cables configuration, and 2) implementing an algorithm for determining the optimal cables configuration to obtain the best total ampacity. The first part involves approximating the eddy current and hysteresis losses in the casing and cables. The calculation is based on the theory of images, which this thesis expands to apply to casings having both high magnetic permeability and high electric conductivity at the same time. The method of images, in combination with approximating the cable conductors and sheaths as multiple physical filaments, is used to compute the final current distributions in the cables and pipe and thus the associated losses. The accuracy of this computation is assessed against numerical solutions obtained using the Maxwell finite element program by Ansoft. Next, the optimal cable configuration is determined by applying a proposed two-level optimization algorithm. At the outer level, a combinatorial optimization based on a genetic algorithm explores the different possible configurations. The performance of every configuration is evaluated according to its total ampacity, which is calculated using a convex optimization algorithm. The convex optimization algorithm, which forms the inner level of the overall optimization procedure, is based on the barrier method. This proposed optimization procedure is tested for a duct bank installation containing twelve cables and fifteen ducts, comprising two circuits and two cables per phase, and compared with a brute force method of considering all possible configurations. The optimization process is also applied to an installation consisting of a single circuit inside a large magnetic steel casing.

  6. THE MACHINING OF HARDENED CARBON STEELS BY COATED CUTTING TOOLS

    Directory of Open Access Journals (Sweden)

    Yusuf ŞAHİN

    2001-02-01

    Full Text Available The investigation of machining AISI 1050 carbon steels hardened to the 60 HRC hardness was carried out to determine the tool life and wear behaviour of the various cutting tools under different conditions. These experiments were conducted at using coated ceramic cutting tools and carbide cutting tools. The experimental results showed that the coated ceramic tools exhibited better performance than those of the coated carbide tools when machining the hardened steels. Moreover, wear behaviour of cutting tools were investigated in a scanning electron microscope. Electron microscopic examination also indicated that flank wear, thermal cracks on the tool nose combined with the nose deformation on the tools were responsible for the wear behaviour of the ceramic tools. For the carbide tools, however, removal of coated material from the substrate tool and combined with the crater wear were effective for the machining the hardened steel.

  7. Effects of tempering on internal friction of carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2011-01-01

    Research highlights: → Time tempering dependent microstructure of two steels is studied by internal friction. → Internal friction indicates the interactions of dislocations with carbon and carbides. → Internal friction detects the first stage of tempering. → Precipitation hardening is detected by the decrease in the background. - Abstract: Two steels containing 0.626 and 0.71 wt.% carbon have been studied to determine the effects of tempering on the microstructure and the internal friction. The steels were annealed at 1093 K, quenched into water and tempered for 60 min at 423 K, 573 K and 723 K. The increase of the tempering time diminishes the martensite tetragonality due to the redistribution of carbon atoms from octahedrical interstitial sites to dislocations. Internal friction spectrum is decomposed into five peaks and an exponential background, which are attributed to the carbide precipitation and the dislocation relaxation process. Simultaneous presence of peaks P1 and P2 indicates the interaction of dislocations with the segregated carbon and carbide precipitate.

  8. Corrosion and Stress Corrosion Behaviors of Low and Medium Carbon Steels in Agro-Fluid Media

    Directory of Open Access Journals (Sweden)

    Ayo Samuel AFOLABI

    2007-01-01

    Full Text Available Investigations were carried out to study critically the corrosion behaviour and Stress Corrosion Cracking (SCC of low and medium carbon steels in cassava and cocoa extracts by weight loss measurement and constant extension to fracture method respectively. The results obtained showed that medium carbon steel is more susceptible to corrosion than low carbon steel in both media. SCC is also more in medium carbon steel than low carbon steel in the two media under study. These deductions are due to higher carbon content in medium carbon steel coupled with various aggressive corrosion constituents contained in these media. Hydrogen embrittlement, as well as carbon cracking, is responsible for SCC of these materials in the agro-fluid media.

  9. Lewis Acid-Base Properties of a Low Carbon Aluminium Killed Steel ...

    African Journals Online (AJOL)

    NJD

    a particular use.7–9 Low carbon aluminium killed (LCAK) steel. (steel deoxidized with aluminium in order to reduce the oxygen content to a minimum so that no reaction occurs between carbon and oxygen during solidification) was considered. This type of steel is used mostly by the packaging industry. Organic coatings.

  10. Fatal carbon monoxide poisoning after the detonation of explosives in an underground mine: a case report.

    Science.gov (United States)

    Markey, M A; Zumwalt, R E

    2001-12-01

    An unusual death caused by carbon monoxide poisoning after the detonation of explosives in an underground mine was investigated by the Office of the Medical Investigator of the State of New Mexico. The 50-year-old miner had 18 years of mining experience but no documented safety training. He collapsed approximately 20 minutes after entering the mine and working at the bottom of the single vertical shaft. The tight confines of the mine shaft hindered rescue personnel from reaching him, and the body was not recovered until 2 days later. The autopsy showed severe coronary artery atherosclerosis with remote and resolving myocardial microinfarcts, as well as the characteristic pink lividity of carbon monoxide poisoning, which was confirmed by laboratory analysis. Detailed investigation of the scene revealed no sources of carbon monoxide other than the explosives. The case represents an uncommon cause of death in mining that may have been avoided through the use of proper safety procedures, and illustrates the importance of recognizing the many sources of carbon monoxide.

  11. OF PLAIN CARBON AND LOW ALLOY STEELS

    African Journals Online (AJOL)

    CVD coating in the carburized and uncarburized conditions. The continuity of the coatings and their adherance to the substrate were examined. The thickness of the deposited coatings were also measured, their adherence to the substrate and their thickness was off ected by the percentage carbon of the substrates surf ace.

  12. Study of the effect of magnesium concentration on the deposit of allotropic forms of calcium carbonate and related carbon steel interface behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ben Amor, Y., E-mail: yasser_ben@yahoo.f [Institut Superieur des Sciences et Technologies de l' Environnement de Borj-Cedria, B.P 1003, Hammam-Lif 2050 (Tunisia); Bousselmi, L. [Laboratoire Traitement et Recyclage des Eaux, B.P 273, Hammam-Lif, Technopole de Borj-Cedria, 8020 Soliman (Tunisia); Tribollet, B. [UPR 15 CNRS - Physique des liquides et Electrochimie, Universite Pierre et Marie Curie - Tour 22, 4 place Jussieu, 75252 Paris Cedex 05 (France); Triki, E. [Unite de recherche Corrosion et Protection des metalliques, Ecole Nationale d' Ingenieurs de Tunis, P.B. 37, 1002 Tunis, Belvedere (Tunisia)

    2010-06-30

    Different allotropic forms of calcium carbonate scales were electrochemically deposited on a carbon steel surface in artificial underground Tunisian water at -0.95 V{sub SCE} and various Mg{sup 2+} concentrations. Because of the importance of the diffusion process, the rotating disk electrode was used. The deposition kinetics were analyzed by chronoamperometry measurements and the calcareous layers were characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The physical model proposed by Gabrielli was used to analyze the EIS measurements. Independent of the deposited allotropic form of calcium carbonate, the measurements showed that the oxygen reduction occurs in the pores formed between the CaCO{sub 3} crystals and the metallic surface.

  13. Atmospheric corrosion of carbon steel resulting from short term exposures

    International Nuclear Information System (INIS)

    Balasubramanian, R.; Cook, D.C.; Perez, T.; Reyes, J.

    1998-01-01

    The study of corrosion products from short term atmospheric exposures of carbon steel, is very important to understand the processes that lead to corrosion of steels, and ultimately improve the performance of such steel in highly corrosive environments. Many regions along the Gulf of Mexico have extremely corrosive environments due to high mean annual temperature, humidity, time-of-wetness and every high atmospheric pollutants. The process the formation of corrosion products resulting from short term exposure of carbon steel, both as a function of environmental conditions and exposure time, has been investigated. Two sets of coupons were exposed at marine and marine locations, in Campeche, Mexico. Each set was exposed between 1 and 12 months to study the corrosion as a function of time. During the exposure periods, the relative humidity, rainfall, mean temperature, wind speed and wind direction were monitored along with the chloride and sulfur dioxide concentrations in the air. The corroded coupons were analyzed by Moessbauer, Raman, Infrared spectroscopies and X-ray diffraction in order to completely identify the oxides and map their location in the corrosion coating. Scattering and transmission Moessbauer analysis showed some layering of the oxides with lepidocrocite and akaganeite closer to the surface. The fraction of akaganeite phase increased at sites with higher chloride concentrations. A detailed analysis on the development of the oxide phases as a function of exposure time and environmental conditions will be presented. (Author)

  14. Corrosion of carbon steel nuclear waste containers in marine sediment

    International Nuclear Information System (INIS)

    Marsh, G.P.; Taylor, K.J.; Harker, A.H.

    1987-08-01

    The report describes a study of the corrosion of carbon steel nuclear waste containers in deep ocean sediments, which had the objective of estimating the metal allowance needed to ensure that the containers were not breached by corrosion for 1000 years. It was concluded that under such disposal conditions carbon steel would not be subject to localised corrosion or hydrogen embrittlement, and therefore the study concentrated on evaluating the rate of general attack. This was carried out by developing a mechanistically based mathematical model which was formulated on the conservative assumption that the corrosion would be under activation control, and would not be impeded by the formation of corrosion product layers. This model predicted that an allowance of 33 mm would be required for a 1000 year life. (author)

  15. Hardness and adhesion performances of nanocoating on carbon steel

    Science.gov (United States)

    Hasnidawani, J. N.; Azlina, H. N.; Norita, H.; Bonnia, N. N.

    2018-01-01

    Nanocoatings industry has been aggressive in searching for cost-effective alternatives and environmental friendly approaches to manufacture products. Nanocoatings represent an engineering solution to prevent corrosion of the structural parts of ships, insulation and pipelines industries. The adhesion and hardness properties of coating affect material properties. This paper reviews ZnO-SiO2 as nanopowder in nano coating formulation as the agent for new and improved coating performances. Carbon steel on type S50C used as common substrate in nanocoating industry. 3wt% ZnO and 2wt% SiO2 addition of nanoparticles into nanocoating showed the best formulation since hardness and adhesion of nanocoating was good on carbon steel substrate. Incorporation of nanoparticles into coating increased the performances of coating.

  16. Grain Refinement of Low Carbon Martensitic Steel by Heat Treatment

    Directory of Open Access Journals (Sweden)

    N. V. Kolebina

    2015-01-01

    Full Text Available The low-carbon steels have good corrosion and technological properties. Hot deformation is the main operation in manufacturing the parts from these steels. So one of the important properties of the material is a property of plasticity. The grain size significantly influences on the ductility properties of steel. The grain size of steel depends on the chemical composition of the crystallization process, heat treatment, and steel machining. There are plenty methods to have grain refinement. However, taking into account the large size of the blanks for the hydro turbine parts, the thermal cycling is an advanced method of the grain refinement adaptable to streamlined production. This work experimentally studies the heat treatment influence on the microstructure of the low-carbon 01X13N04 alloy steel and proposes the optimal regime of the heat treatment to provide a significantly reduced grain size. L.M. Kleiner, N.P. Melnikov and I.N. Bogachyova’s works focused both on the microstructure of these steels and on the influence of its parameters on the mechanical properties. The paper focuses mainly on defining an optimal regime of the heat treatment for grain refinement. The phase composition of steel and temperature of phase transformation were defined by the theoretical analysis. The dilatometric experiment was done to determine the precise temperature of the phase transformations. The analysis and comparison of the experimental data with theoretical data and earlier studies have shown that the initial sample has residual stress and chemical heterogeneity. The influence of the heat treatment on the grain size was studied in detail. It is found that at temperatures above 950 ° C there is a high grain growth. It is determined that the optimal number of cycles is two. The postincreasing number of cycles does not cause further reducing grain size because of the accumulative recrystallization process. Based on the results obtained, the thermal cycling

  17. Interaction of sulphuric acid solutions with carbonates and feldspar during underground uranium leaching

    International Nuclear Information System (INIS)

    Alekseev, V.A.; Klassova, N.S.; Prisyagina, N.I.; Volodina, E.A.; Rafal'skij, R.P.

    1982-01-01

    The interaction of sulphuric acid solutions with calcite, dolomite and alkali feldspar at room temperature is experimentally studied. The mineral ground up to 0.63-1 mm has been mixed with crushed quartz glass and poured over by sulphate solution. The time required for sulphate solution neutralization by these minerals is determined. The interaction of sulphuric acid with calcite occurs very quickly, the solution has a neutral reaction in some days, the process with dolomite proceeds at first quickly up to total neutralization, then its rate sharply drops, the H 2 SO 4 interaction with alkali feldspars proceeds very slowly. To estimate the extent of equilibrium between the solution and carbonates the experimental data are compared with the results of computer calculations of partial equilibria at various degrees of main reaction course. The results can be used in supplement to the processes occurring at underground uranium leaching as well as processes in oxidation and cementation zones of sulphide deposits

  18. Effect of carbon content on the mechanical properties of medium carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Calik, Adnan [Dept. of Mechanical Education, Suleyman Demirel Univ., Isparta (Turkey); Duzgun, Akin [Civil Engineering Dept., Ataturk Univ., Erzurum (Turkey); Sahin, Osman [Physics Dept., M. Kemal Univ., Hatay (Turkey); Ucar, Nazim [Physics Dept., Suleyman Demirel Univ., Isparta (Turkey)

    2010-05-15

    The mechanical properties of medium-carbon steels with a carbon content ranging from 0.30 to 0.55 wt.% were investigated by tensile and microhardness tests at room temperature. It was observed that the higher carbon content results in an increase in yield stress and ultimate tensile stress, while the elongation remains essentially constant. The results were explained by the hindering of dislocation motion associated with solid solution hardening. (orig.)

  19. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    OpenAIRE

    Harisha S. R.; Sharma Sathyashankara; Kini U. Achutha; Gowri Shankar M. C.

    2018-01-01

    The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to l...

  20. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    International Nuclear Information System (INIS)

    Bouanis, F.Z.; Bentiss, F.; Bellayer, S.; Vogt, J.B.; Jama, C.

    2011-01-01

    Highlights: → C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. → RF plasma treatment enables nitriding for non-heated substrates. → The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. → Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe x N. → The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N 2 gas. Surface characterizations before and after N 2 plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 μm for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV 0.005 at a plasma processing time of 8 h.

  1. Mineral CO2 sequestration by steel slag carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2005-12-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feedstock for mineral CO2 sequestration. These materials are cheap, available near large point sources of CO2, and tend to react relatively rapidly with CO2 due to their chemical instability. Ground steel slag was carbonated in aqueous suspensions to study its reaction mechanisms. Process variables, such as particle size, temperature, carbon dioxide pressure, and reaction time, were systematically varied, and their influence on the carbonation rate was investigated. The maximum carbonation degree reached was 74% of the Ca content in 30 min at 19 bar pressure, 100C, and a particle size of <38 μm. The two must important factors determining the reaction rare are particle size (<2 mm to <38 μm) and reaction temperature (25-225C). The carbonation reaction was found to occur in two steps: (1) leaching of calcium from the steel slag particles into the solution; (2) precipitation of calcite on the surface of these particles. The first step and, more in particular, the diffusion of calcium through the solid matrix toward the surface appeared to be the rate-determining reaction step, The Ca diffusion was found to be hindered by the formation of a CaCO3-coating and a Ca-depleted silicate zona during the carbonation process. Research on further enhancement of the reaction rate, which would contribute to the development of a cost-effective CO2-sequestration process, should focus particularly on this mechanism

  2. APPRAISAL OF THE POPULATION THREAT RISK BY CARBON LEAKAGE PRODUCED BY UNDERGROUND COAL GASIFICATION

    OpenAIRE

    Šofranko, Marian; Škvareková, Erika; Laciak, Marek

    2013-01-01

    The UCG /underground coal gasification/ technology could increase energy production resulting in improving the economic situation. Even if the risk of accidents may occur in the both coal gasification and underground mining, the other parameters suggest that the coal gasification method is much safer that the underground mining.

  3. Anomalous distribution in atom map of solute carbon in steel

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Takahashi, J.; Kawakami, K.

    2011-01-01

    The distribution of carbon in atom probe tomography maps was investigated in various phases of steel. Carbon atoms in 3D atom maps of martensite and cementite phases showed an almost uniform distribution. On the other hand, carbon atoms in ferrite were consistently enriched along the zone line joining the (0 0 2) and the (2 2 2) poles, and in the depth direction of analysis, which was different from the actual distribution. The width and concentration of the enriched regions remained unchanged at a specimen temperature ranging from 90to 30 K. Moreover, the ratio of molecular carbon ions to total carbon ions decreased with decreasing temperature, but did not change between the enriched and diluted regions. Based on the results, the reason for the anomalous distribution of solute carbon atoms in atom maps is discussed. -- Research highlights: → The distribution of carbon in atom probe tomography maps was investigated. → Carbon atoms in ferrite were artificially enriched along specific crystal direction. → The direction was on the zone line joining the (0 0 2) and the (2 2 2) poles. → We investigated the concentration and molecular ion ratio at various temperatures. → Main reason for the phenomenon is considered to be trajectory aberrations.

  4. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    Science.gov (United States)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  5. Investigation of carbon segregation during low temperature tempering in a medium carbon steel

    International Nuclear Information System (INIS)

    Xiao, Y.; Li, W.; Zhao, H.S.; Lu, X.W.; Jin, X.J.

    2016-01-01

    Low temperature tempering is important in improving the mechanical properties of steels. In this study, the thermoelectric power method was employed to investigate carbon segregation during low temperature tempering ranging from 110 °C to 170 °C of a medium carbon alloyed steel, combined with micro-hardness, transmission electron microscopy and atom probe tomography. Evolution of carbon dissolution from martensite and segregation to grain boundaries/interfaces and dislocations were investigated for different tempering conditions. Carbon concentration variation was quantified from 0.33 wt.% in quenching sample to 0.15 wt.% after long time tempering. The kinetic of carbon diffusion during tempering process was discussed through Johnson-Mehl-Avrami equation. - Highlights: • The thermoelectric power (TEP) was employed to investigate the low temperature tempering of a medium carbon alloyed steel. • Evolution of carbon dissolution was investigated for different tempering conditions. • Carbon concentration variation was quantified from 0.33 wt.% in quenching sample to 0.15 wt.% after long time tempering.

  6. Corrosion behavior of carbon steel in wet Na-bentonite medium

    International Nuclear Information System (INIS)

    Yeon, Jae-Won; Ha, Young-Kyoung; Choi, In-Kyu; Chun, Kwan-Sik

    1996-01-01

    Corrosion behaviors of carbon steel in wet Na-bentonite medium were studied. Corrosion rate of carbon steel in wet bentonite was measured to be 20 μm/yr at 25 deg C using the AC impedance technique. This value is agreed with that obtained by weight loss at 40 deg C for 1 year. The effect of bicarbonate ion on the corrosion of carbon steel in wet bentonite was also evaluated. The carbon steels in wet bentonite having 0.001, 0.01, and 0.1 M concentration of bicarbonate ion gave corrosion rates of 20, 8, and 0.2 μm/yr, respectively. Corrosion potentials of specimens were also measured and compared with the AC impedance results. Both results indicated that bicarbonate ion could effectively reduce the corrosion rate of carbon steels in bentonite due to the formation of protective layer on the carbon steel. (author)

  7. Transport of carbon in 316 steels submitted to neutron irradiation

    International Nuclear Information System (INIS)

    Rouault, J.; Galland, L.; Cytermann, R.; Colin, M.

    1983-04-01

    The carburization of fast reactor cladding material may affect its mechanical properties and give rise to severe embrittlement. Carbon profiles were determined by EMPA in various irradiated carburized clads. All clads were in 316 type steels. An effective diffusion coefficient (Dsub(eff)) has been calculated for each profile. The set of Dsub(eff)) is shown in an Arrhenius Diagram. The experimental dispersion on Dsub(eff)) calculated values is due to the non-applicability of the model to a few profiles. The analysis is then made on the remaining Dsub(eff)). These values constitue a good coherent set of points. A comparison is then drawn between this set of points and: - true diffusion coefficient of carbon in the gamma phase, - effective diffusion coefficients of carbon derived from out-of-pile simulation experiments. Activation energy of Dsub(eff) coefficient (in pile and out-of-pile) is small compared too the activation of carbon diffusion in austenite. Dsub(eff) values are quite insensitive to surface concentration in the range 0,9 - 4%. Diffusion time is shown to have a great influence on Dsub(eff): Dsub(eff) decreases as time increases. A Dsub(eff) value for simple evaluations of carburization intensity in irradiated 316 steels is recommended [fr

  8. Accelerated carbonation of steel slags in a landfill cover construction.

    Science.gov (United States)

    Diener, S; Andreas, L; Herrmann, I; Ecke, H; Lagerkvist, A

    2010-01-01

    Steel slags from high-alloyed tool steel production were used in a full scale cover construction of a municipal solid waste (MSW) landfill. In order to study the long-term stability of the steel slags within the final cover, a laboratory experiment was performed. The effect on the ageing process, due to i.e. carbonation, exerted by five different factors resembling both the material characteristics and the environmental conditions is investigated. Leaching behaviour, acid neutralization capacity and mineralogy (evaluated by means of X-ray diffraction, XRD, and thermogravimetry/differential thermal analysis, TG/DTA) are tested after different periods of ageing under different conditions. Samples aged for 3 and 10 months were evaluated in this paper. Multivariate data analysis was used for data evaluation. The results indicate that among the investigated factors, ageing time and carbon dioxide content of the atmosphere were able to exert the most relevant effect. However, further investigations are required in order to clarify the role of the temperature.

  9. Effect of Surface Pretreatment on the Corrosion Resistance of Epoxy-Coated Carbon Steel

    International Nuclear Information System (INIS)

    Lee, Dongho; Park, Jinhwan; Shon, Minyoung

    2012-01-01

    The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting with different size, steel shot ball blasting and power tool treatment. To study the effect of the treatments, the topology of the treated surface was observed by optical 3D microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with hygrothermal cyclic testing. The results of EIS indicated that the epoxy-coated carbon steel treated with steel grit blasting showed an improved corrosion resistance compared to untreated epoxy-coated surfaces or surfaces subjected to shot ball blasting and power tool treatments

  10. Corrosion damage examples and brittleness affecting containing carbon steel materials of the PWR type reactors

    International Nuclear Information System (INIS)

    Millet, L.; Dordonat, M.; Guttmann, D.; Calle, P.

    1993-01-01

    Intercrystalline corrosion has been observed in carbon steel heat exchanger tubes. Waterproof turbine boxes composed of graphite rings and carbon steel, some coated with a KANIGEN chemical nickel, may develop a galvanic coupling corrosion between the graphite rings and the carbon steel body. In a steam impulsion pipe circuit, fatigue corrosion and stress corrosion cracking may appear. Brittleness of carbon steel is linked to an anomalous composition with an excess content of phosphorus and nitrogen. Lamellar wrenchings are observed on steam pipes connection. 5 refs., 3 figs

  11. Corrosion of a carbon steel in simulated liquid nuclear wastes

    International Nuclear Information System (INIS)

    Saenz Gonzalez, Eduardo

    2005-01-01

    This work is part of a collaboration agreement between CNEA (National Atomic Energy Commission of Argentina) and USDOE (Department of Energy of the United States of America), entitled 'Tank Corrosion Chemistry Cooperation', to study the corrosion behavior of carbon steel A537 class 1 in different simulated non-radioactive wastes in order to establish the safety concentration limits of the tank waste chemistry at Hanford site (Richland-US). Liquid high level nuclear wastes are stored in tanks made of carbon steel A537 (ASTM nomenclature) that were designed for a service life of 20 to 50 years. A thickness reduction of some tank walls, due to corrosion processes, was detected at Hanford site, beyond the existing predicted values. Two year long-term immersion tests were started using non radioactive simulated liquid nuclear waste solutions at 40 C degrees. This work extends throughout the first year of immersion. The simulated solutions consist basically in combinations of the 10 most corrosion significant chemical components: 5 main components (NaNO 3 , NaCl, NaF, NaNO 2 and NaOH) at three concentration levels and 5 secondary components at two concentration levels. Measurements of the general corrosion rate with time were performed for carbon steel coupons, both immersed in the solutions and in the vapor phases, using weight loss and electrochemistry impedance spectroscopy techniques. Optic and scanning electron microscopy examination, analysis of U-bend samples and corrosion potential measurements, were also done. Localized corrosion susceptibility (pitting and crevice corrosion) was assessed in isolated short-term tests by means of cyclic potentiodynamic polarization curves. The effect of the simulated waste composition on the corrosion behavior of A537 steel was studied based on statistical analyses. The Surface Response Model could be successfully applied to the statistical analysis of the A537 steel corrosion in the studied solutions. General corrosion was not

  12. Carbon determination in carbon-manganese steels under atmospheric conditions by Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Labutin, Timur A; Zaytsev, Sergey M; Popov, Andrey M; Zorov, Nikita B

    2014-09-22

    The most sensitive lines of carbon, used nowadays for its determination in steels by laser-induced-breakdown spectroscopy (LIBS), are at vacuum UV and, thereby, LIBS potential is significantly reduced. We suggested the use of the C I 833.51 nm line for carbon determination in low-alloy steels (c(C)~0.186-1.33 wt.%) in air. Double-pulse LIBS with the collinear scheme was performed for maximal enhancement of a carbon emission signal without substantial complication of experimental setup. Since this line is strongly broadened in laser plasma, it overlapped with the closest iron lines greatly. We implemented a PCR method for the construction of a multivariate calibration model under spectral interferences. The model provided a RMSECV = 0.045 wt.%. The predicted carbon content in the rail templet was in an agreement with the reference value obtained by a combustion analyzer within the relative error of 6%.

  13. INFLUENCE OF ELECTRIC SPARK ON HARDNESS OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-03-01

    Full Text Available Purpose. The purpose of work is an estimation of influence of an electric spark treatment on the state of mouldable superficial coverage of carbon steel. Methodology. The steel of fragment of railway wheel rim served as material for research with chemical composition 0.65% С, 0.67% Mn, 0.3% Si, 0.027% P, 0.028% S. Structural researches were conducted with the use of light microscopy and methods of quantitative metallography. The structural state of the probed steel corresponded to the state after hot plastic deformation. The analysis of hardness distribution in the micro volumes of cathode metal was carried out with the use of microhardness tester of type of PMT-3. An electric spark treatment of carbon steel surface was executed with the use of equipment type of EFI-25M. Findings. After electric spark treatment of specimen surface from carbon steel the forming of multi-layered coverage was observed. The analysis of microstructure found out the existence of high-quality distinctions in the internal structure of coverage metal, depending on the probed area. The results obtained in the process are confirmed by the well-known theses, that forming of superficial coverage according to technology of electric spark is determined by the terms of transfer and crystallization of metal. The gradient of structures on the coverage thickness largely depends on development of structural transformation processes similar to the thermal character influence. Originality. As a result of electric spark treatment on the condition of identical metal of anode and cathode, the first formed layer of coverage corresponds to the monophase state according to external signs. In the volume of coverage metal, the appearance of carbide phase particles is accompanied by the decrease of microhardness values. Practical value. Forming of multi-layered superficial coverage during electric spark treatment is accompanied by the origin of structure gradient on a thickness. The effect

  14. An assessment of carbon steel overpacks for radioactive waste disposal

    International Nuclear Information System (INIS)

    Marsh, G.P.; Bland, I.D.; Taylor, K.J.; Sharland, S.; Tasker, P.

    1986-01-01

    The report summarizes the results obtained at Harwell in the second phase of a project evaluating the corrosion behaviour of high-level waste overpacks in geological disposal. It has concentrated on the use of carbon steel in granitic and argillaceous environments, and has aimed at estimating the corrosion allowance required to achieve a 1000-year overpack life. Experimental and mathematical modelling studies have indicated that 200 mm of steel should be more than sufficient to prevent overpack penetration by general or localized corrosion. A theoretical assessment of the possible effects of micro-organisms on overpack corrosion has concluded that such species are likely to be found in repositories, but that only a fraction of their population should be corrosive towards carbon steel. Making the pessimistic assumption that all organic carbon in a 500 mm bentonite backfill is utilized by corrosive sulphate reducing bacteria, it has been estimated that this will result in an additional metal loss of 13 mm. One form of corrosion which cannot be dealt with by the corrosion allowance approach is stress corrosion cracking, since even at the lowest reported propagation rates, a metal thickness exceeding 3 m would be penetrated in 1000 years. It has been concluded that the possibility of stress corrosion cannot be dismissed, but, because the process requires a certain minimum stress level before it can occur, it should be possible to avoid the problem by giving the overpacks a stress relief heat treatment. Tests in a model environment have shown that a heat treatment designed to reduce fabrication stresses to 50% of the yield strengh should be sufficient to prevent cracking. It is recommended that this conclusion be substantiated by scaled-up experiments with model overpacks. The report draws further attention to degradation by hydrogen embrittlement

  15. Friction stir processing on high carbon steel U12

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, S. Yu., E-mail: tsy@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, A. G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation.

  16. Corrosion Inhibitor of Carbon Steel from Onion Peel Extract

    Directory of Open Access Journals (Sweden)

    Muhammad Samsudin Asep

    2018-01-01

    Full Text Available Carbon steels composed by two main elements, they are iron (Fe and carbon (C elements which widely used in industrial because of its resistance and more affordable than stainless steel, but their weakness is they have low corrosion resistance. One way to modify carbon steel is by coating them with antioxidant compounds that can delay, slow down, and prevent lipid oxidation process, which obtained from onion peel extract. Several studies on corrosion inhibitors have been performed. However, the efficiency was not reach the optimum. This study aims to examine the effect of onion peel extract concentration on the efficiency of corrosion inhibitor and characterization of the green corrosion inhibitor from onion peel extract. This research method begins by extracting onion peel to 200 ml solvent which we use aquadest and methanol and mixed with 5 grams of crushed onion peel, then let them be extracted for 60 minutes with room temperature. Once it was filtered and the solution obtained, followed by evaporating process with rotary evaporator to decrease the content of solvent. The product is ready to be used as a green corrosion inhibitor of carbon steel in 1 mol/L HCl. While the analysis used is HPLC qualitative analysis, and electroplatting process. The impedance is measured at a frequency of 100 kHz to 4 mHz with an AC current of 10mV. Inhibitor concentrations are vary between 2 ml and 4 ml of onion peel extract. Electroplatting is done within 30 minutes with 10 minutes each checking time. Furthermore, quantitative analysis was done for the analysis of corrosion rate and weight loss. Based on HPLC analysis, it is known that the extract of onion peel contains 1mg/L of quercetin, which is belong to flavonoid group as green inhibitor. While electroplatting process, aquadest solvent having average efficiency of 99,57% for 2 ml of extract, and 99,60% for 4 ml of extract. Methanol solvent having average efficiency of 99,52% for 2 ml of extract and 99

  17. Plasticity of low carbon steel in a hot state

    International Nuclear Information System (INIS)

    Konovalov, V.P.; Rizol', A.I.; Shram, N.N.

    1977-01-01

    The hot ductility (in tapered-specimen piersing test and the in wedge-shaped specimen rolling test) is studied of the Armeo-type low carbon steel produced by vacuum induction and open hearth techniques. The variations of the chemical composition within specified ranges, particularly as regards sulphur, oxygen and the Mn/S ratio, have a marked effect on the processing ductility. The temperature range of brittle fracture and acceptable hot working reductions as functions of the chemical composition have been revealed

  18. A simple computational method for predicting magnetic field in the vicinity of a three-phase underground cable with a fluid-filled steel-pipe enclosure

    International Nuclear Information System (INIS)

    Xu, X.B.; Yang, X.M.

    1994-01-01

    This paper presents a simple computational method for predicting the magnetic field above ground, generated by an underground three-phase pipe-type cable. In the computation, an approximation is made to simplify the problem a Fourier series technique and an iterative procedure are employed to handle the nonlinear B-H characteristic of the steel pipe. To validate the computational method, measurements were made and the numerical results are compared with the measurement data. Also, data of magnetic fields generated by the pipe type cable are compared with those due to the cable in absence of the pipe. The advantages and disadvantages of this simple method are discussed

  19. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    Directory of Open Access Journals (Sweden)

    Harisha S. R.

    2018-01-01

    Full Text Available The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.

  20. Kinetics of electrochemical boriding of low carbon steel

    International Nuclear Information System (INIS)

    Kartal, G.; Eryilmaz, O.L.; Krumdick, G.; Erdemir, A.; Timur, S.

    2011-01-01

    In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2 B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.

  1. Surface martensitization of Carbon steel using Arc Plasma Sintering

    Science.gov (United States)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  2. General corrosion of carbon steels in high temperature water

    International Nuclear Information System (INIS)

    Gras, J.M.

    1994-04-01

    This short paper seeks to provide a summary of the main knowledge about the general corrosion of carbon steels in high temperature water. In pure water or slightly alkaline deaerated water, steels develop a protective coating of magnetite in a double layer (Potter and Mann oxide) or a single layer (Bloom oxide). The morphology of the oxide layer and the kinetics of corrosion depend on the test parameters controlling the solubility of iron. The parameters exercising the greatest influence are partial hydrogen pressure and mass transfer: hydrogen favours the solubilization of the magnetite; the entrainment of the dissolved iron prevents a redeposition of magnetite on the surface of the steel. Cubic or parabolic in static conditions, the kinetics of corrosion tends to be linear in dynamic conditions. In dynamic operation, corrosion is at least one order of magnitude lower in water with a pH of 10 than in pure water with a pH of 7. The activation energy of corrosion is 130 kJ/mol (31 kcal/mol). This results in the doubling of corrosion at around 300 deg C for a temperature increase of 15 deg C. Present in small quantities (100-200 ppb), oxygen decreases general corrosion but increases the risk of pitting corrosion - even for a low chloride content - and stress corrosion cracking or corrosion-fatigue. The steel composition has probably an influence on the kinetics of corrosion in dynamic conditions; further work would be required to clarify the effect of some residual elements. (author). 31 refs., 9 figs., 2 tabs

  3. 75 FR 42782 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-07-22

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United...-year reviews concerning the countervailing duty order on certain hot-rolled flat-rolled carbon-quality steel products (``hot-rolled steel'') from Brazil, the antidumping duty orders on hot-rolled steel from...

  4. Carbon steel protection in G.S. (Girlder sulfide) plants. CITROSOLV process influence. Pt. 6

    International Nuclear Information System (INIS)

    Lires, O.A.; Burkart, A.L.; Delfino, C.A.; Rojo, E.A.

    1988-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfides, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2 MPa, for periods of 14 days). CITROSOLV Process (Pfizer) is used to descaling and passivating stainless steel plant's components. This process must be used in mixed (carbon steel - stainless steel) circuits and may cause the formation of magnetite scales over the carbon steel. The influence of magnetite in the pyrrotite-pyrite scales formation is studied in this work. (Author) [es

  5. 76 FR 66901 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Final...

    Science.gov (United States)

    2011-10-28

    ... least one of the chemical elements exceeds those listed above (including, e.g., American Society for... lamination steels. IF steels are recognized as low carbon steels with micro-alloying levels of elements such... and nitrogen elements. HSLA steels are recognized as steels with micro-alloying levels of elements...

  6. Marine Atmospheric Corrosion of Carbon Steel: A Review.

    Science.gov (United States)

    Alcántara, Jenifer; Fuente, Daniel de la; Chico, Belén; Simancas, Joaquín; Díaz, Iván; Morcillo, Manuel

    2017-04-13

    The atmospheric corrosion of carbon steel is an extensive topic that has been studied over the years by many researchers. However, until relatively recently, surprisingly little attention has been paid to the action of marine chlorides. Corrosion in coastal regions is a particularly relevant issue due the latter's great importance to human society. About half of the world's population lives in coastal regions and the industrialisation of developing countries tends to concentrate production plants close to the sea. Until the start of the 21st century, research on the basic mechanisms of rust formation in Cl - -rich atmospheres was limited to just a small number of studies. However, in recent years, scientific understanding of marine atmospheric corrosion has advanced greatly, and in the authors' opinion a sufficient body of knowledge has been built up in published scientific papers to warrant an up-to-date review of the current state-of-the-art and to assess what issues still need to be addressed. That is the purpose of the present review. After a preliminary section devoted to basic concepts on atmospheric corrosion, the marine atmosphere, and experimentation on marine atmospheric corrosion, the paper addresses key aspects such as the most significant corrosion products, the characteristics of the rust layers formed, and the mechanisms of steel corrosion in marine atmospheres. Special attention is then paid to important matters such as coastal-industrial atmospheres and long-term behaviour of carbon steel exposed to marine atmospheres. The work ends with a section dedicated to issues pending, noting a series of questions in relation with which greater research efforts would seem to be necessary.

  7. CORROSION INHIBITION OF CARBON STEEL XC70 IN H2SO4 ...

    African Journals Online (AJOL)

    2012-12-31

    Dec 31, 2012 ... In this work, we studied the efficiency of corrosion inhibition of carbon steel XC70 in H2SO4. 0.5 M aqueous solution using ... Keywords: Corrosion, carbon steel XC70, Inhibition, ferrocene derivative, Adsorption. 1. INTRODUCTION ... oxide film which may be present on the surface. The electrode was then ...

  8. Effect of neutralization on protectiveness of sulfide films on carbon steel

    International Nuclear Information System (INIS)

    Tapping, R.L.; Lavoie, P.A.; Davidson, R.D.

    1983-01-01

    During shutdown of the Girdler sulfide (GS) process heavy water plants, the carbon steel and stainless steel surfaces are neutralized with ammonia and/or sodium carbonate. The effects of neutralization on the protective pyrite film and subsequent in-plant corrosion rates were investigated. It was concluded that these neutralization methods did not destroy the protectiveness of the pyrite films

  9. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate. ...

  10. Corrosion of carbon steel and low-alloy steel in diluted seawater containing hydrazine under gamma-rays irradiation

    International Nuclear Information System (INIS)

    Nakano, Junichi; Yamamoto, Masahiro; Tsukada, Takashi

    2014-01-01

    Seawater was injected into reactor cores of Units 1, 2, and 3 in the Fukushima Daiichi nuclear power station as an urgent coolant. It is considered that the injected seawater causes corrosion of steels of the reactor pressure vessel and primary containment vessel. To investigate the effects of gamma-rays irradiation on weight loss in carbon steel and low-alloy steel, corrosion tests were performed in diluted seawater at 50°C under gamma-rays irradiation. Specimens were irradiated with dose rates of 4.4 kGy/h and 0.2 kGy/h. To evaluate the effects of hydrazine (N 2 H 4 ) on the reduction of oxygen and hydrogen peroxide, N 2 H 4 was added to the diluted seawater. In the diluted seawater without N 2 H 4 , weight loss in the steels irradiated with 0.2 kGy/h was similar to that in the unirradiated steels, and weight loss in the steels irradiated with 4.4 kGy/h increased to approximate 1.7 times of those in the unirradiated steels. Weight loss in the steels irradiated in the diluted seawater containing N 2 H 4 was similar to that in the diluted seawater without N 2 H 4 . When N 2 was introduced into the gas phase in the flasks during gamma-rays irradiation, weight loss in the steels decreased. (author)

  11. Special Advanced Studies for Pollution Prevention. Delivery Order 0017: Sol-Gel Surface Preparation for Carbon Steel and Stainless Steel Bonding

    National Research Council Canada - National Science Library

    Zheng, Haixing

    1997-01-01

    The objective of this program is to study the feasibility of using sol-gel active alumina coatings for the surface preparation of carbon steel and stainless steel for adhesive bonding, and to optimize...

  12. Characterization of the Carbon and Retained Austenite Distributions in Martensitic Medium Carbon, High Silicon Steel

    Science.gov (United States)

    Sherman, Donald H.; Cross, Steven M.; Kim, Sangho; Grandjean, Fernande; Long, Gary J.; Miller, Michael K.

    2007-08-01

    The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (˜300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in

  13. Mechanical Behaviour and Microstructural Characterization of Carbon Steel Samples from Three Selected Steel Rolling Plants

    OpenAIRE

    P. O. Atanda; A. A. Abioye; A. O. Iyiola

    2015-01-01

    The research investigated the mechanical behavior of samples of steel rods obtained from three selected Steel Rolling Companies in South Western part of Nigeria. This was done by carrying out some mechanical tests such as tensile, impact and hardness as well as microstructural examination.Four sets of 16 mm steel rod samples were collected from Tiger steel industries, Phoenix steel and Oxil steel Industies, all located in South West Nigeria, The chemical composition was carried out using a...

  14. Recent Progress in High Strength Low Carbon Steels

    OpenAIRE

    Zrník, J.; Mamuzić, I.; Dobatkin, S. V.

    2006-01-01

    Advanced High Strength (AHS) steels, among them especially Dual Phase (DP) steels, Transformation Induced Plasticity (TRIP) steels, Complex Phase (CP) steels, Partially Martensite (PM) steels, feature promising results in the field. Their extraordinary mechanical properties can be tailored and adjusted by alloying and processing. The introduction of steels with a microstructure consisting at least of two different components has led to the enlargement of the strength level without a deteriora...

  15. 77 FR 14501 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2012-03-12

    ... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of... antidumping duty administrative review for certain corrosion-resistant carbon steel flat products (CORE) from... (POR) is August 1, 2009, through, July 31, 2010. \\1\\ See Certain Corrosion-Resistant Carbon Steel Flat...

  16. 77 FR 24221 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission...

    Science.gov (United States)

    2012-04-23

    ...)] Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Notice of Commission Determinations... countervailing duty order on corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion- resistant carbon steel flat products from Germany and Korea would be likely to lead...

  17. 77 FR 301 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year...

    Science.gov (United States)

    2012-01-04

    ...)] Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea: Institution of Five-Year Reviews Concerning the Countervailing Duty Order on Corrosion-Resistant Carbon Steel Flat Products From Korea and the Antidumping Duty Orders on Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea AGENCY...

  18. 76 FR 66893 - Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Final...

    Science.gov (United States)

    2011-10-28

    ...] Certain Circular Welded Carbon Steel Pipes and Tubes From India, Thailand, and Turkey; Final Results of... circular welded carbon steel pipes and tubes from India, Thailand, and Turkey, pursuant to section 751(c..., Thailand, and Turkey. See Antidumping Duty Order; Certain Welded Carbon Steel Standard Pipes and Tubes from...

  19. 75 FR 47777 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Final Results of...

    Science.gov (United States)

    2010-08-09

    ...-Quality Steel Plate Products From Italy: Final Results of Antidumping Duty Administrative Review AGENCY... administrative review of the antidumping duty order on certain cut-to-length carbon-quality steel plate products...-length carbon-quality steel plate products (CTL plate) from Italy. See Certain Cut-to-Length Carbon...

  20. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  1. High-carbon chromium steel resistance to small plastic deformation

    International Nuclear Information System (INIS)

    Gajduchenya, V.F.; Madyanov, S.A.; Apaev, B.A.; Kirillov, Yu.V.; Sokolov, L.D.

    1978-01-01

    The phase composition of a steel with 1.08% C and 2.1% Cr, and the variation in the level of microstresses in the matrix as related to the annealing temperature in the range of 400-600 deg C and in the applied compression stress were investigated. To study the phase composition, and chromium content in the α-solution and the carbide phases, magnetic, chemical, and X-ray spectrum analyses were carried out. The change in the level of microstresses was determined roentgenographically. During the stress relaxation test at temperatures of 20-180 deg C, the mechanism of plastic deformation near the yield point was investigated. It is shown that three dislocation mechanisms operate in high-carbon chromium steel under the conditions at hand: overcoming the Pierls-Nabarro barriers by the dislocations, overcoming the stress fields of coherent carbide particles by dislocations, and circumvention of second-phase particles by dislocations. The dependence of the realization of the different plastic deformation mechanisms on the number of carbide particles and the chromium concentration in the matrix was established. The thermally activated nature of the motion of the dislocations under conditions of stress relaxation at an elevated temperature is noted

  2. The corrosion behaviour of carbon steel in Portland cement

    International Nuclear Information System (INIS)

    Grauer, R.

    1988-01-01

    The production of hydrogen can cause problems in a repository for low- and intermediate-level waste. Since gas production is mainly due to the corrosion of carbon steel, it is important to have as reliable data as possible on the corrosion rate of steel in anaerobic cement. A review of the literature shows that the corrosion current densities lie in the range 0.01 to 0.1 μA/cm 2 (corresponding to corrosion rates between 0.1 and 1.2 μm/a). This implies hydrogen production rates between 0.022 and 0.22 mol/(m 2 .a). Corrosion rates of this order of magnitude are technically irrelevant, with the result that there is very little interest in determining them accurately. Furthermore, their determination entails problems of measurement technique. Given the current situation, it would appear somewhat risky to accept the lower value for hydrogen production as proven. Proposals are made for experiments which would reduce this element of uncertainty. (author) 10 figs., 35 refs

  3. Effect of Nanoparticles on Wettability of Nanocoating on Carbon Steel

    Directory of Open Access Journals (Sweden)

    Norhasnidawani Johari

    2016-12-01

    Full Text Available Nanocoatings plays an important role in coating industry. The solution was being prepared through copolymerization of epoxy resin hardener and with the incorporation of metal oxide nanoparticles, Zinc Oxide (ZnO and Silica (SiO2. ZnO and SiO2 were synthesized using sol-gel. Epoxy hardener acted as host while the metal oxide nanoparticles as guest components. The formulation of nanocoatings with excellent adhesion strength and corrosion protection of carbon steel was studied. The performance of wetting ability with different medium was analysed using contact angle. Water medium showed the addition of 3wt% of hybrid between ZnO and SiO2 was the best nanocoating to form hydrophobic surface and was also the best nanocoating surface to form hydrophilic surface with vacuum oil dropping. In oil dropping, the contact angle was smaller than 90° and the water drop tends to spreads on surface.

  4. Environmental review of options for managing radioactively contaminated carbon steel

    International Nuclear Information System (INIS)

    1996-10-01

    The U.S. Department of Energy (DOE) is proposing to develop a strategy for the management of radioactively contaminated carbon steel (RCCS). Currently, most of this material either is placed in special containers and disposed of by shallow land burial in facilities designed for low-level radioactive waste (LLW) or is stored indefinitely pending sufficient funding to support alternative disposition. The growing amount of RCCS with which DOE will have to deal in the foreseeable future, coupled with the continued need to protect the human and natural environment, has led the Department to evaluate other approaches for managing this material. This environmental review (ER) describes the options that could be used for RCCS management and examines the potential environmental consequences of implementing each. Because much of the analysis underlying this document is available from previous studies, wherever possible the ER relies on incorporating the conclusions of those studies as summaries or by reference

  5. Environmental review of options for managing radioactively contaminated carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The U.S. Department of Energy (DOE) is proposing to develop a strategy for the management of radioactively contaminated carbon steel (RCCS). Currently, most of this material either is placed in special containers and disposed of by shallow land burial in facilities designed for low-level radioactive waste (LLW) or is stored indefinitely pending sufficient funding to support alternative disposition. The growing amount of RCCS with which DOE will have to deal in the foreseeable future, coupled with the continued need to protect the human and natural environment, has led the Department to evaluate other approaches for managing this material. This environmental review (ER) describes the options that could be used for RCCS management and examines the potential environmental consequences of implementing each. Because much of the analysis underlying this document is available from previous studies, wherever possible the ER relies on incorporating the conclusions of those studies as summaries or by reference.

  6. Microbiologically induced corrosion of carbon steel under continuous flow conditions

    International Nuclear Information System (INIS)

    Tunaru, Mariana; Dragomir, Maria; Voicu, Anca

    2008-01-01

    Microbiologically induced corrosion is the label generally applied to corrosion involving the action of bacteria on metal surfaces. While different combinations of bacterial species, materials and chemical constituents are interrelated factors, stagnant water is the factor most often mentioned in reported cases. This paper presents the results obtained regarding the testing of microbiologically induced corrosion of carbon steel under continuous flow conditions in the presence of iron-oxidizing bacteria. The tests were performed on coupons of SA106gr.B exposed both in stagnant conditions and in flow conditions. The surfaces of these coupons were studied by metallographic technique, while the developed biofilms were analysed using microbiological technique. The correlation of all the results which were obtained emphasized that the minimizing the occurrence of stagnant or low-flow conditions can prove effective in reducing the risk of microbiologically induced corrosion in plant cooling-water systems. (authors)

  7. Stress corrosion cracking of A515 grade 60 carbon steel

    International Nuclear Information System (INIS)

    Moore, E.L.

    1971-01-01

    An investigation was conducted to evaluate the effect of welding method plate thickness, and subsequent stress relief treatment on the stress corrosion cracking propensity of ASTM A515 Grade 60 carbon steel plate exposed to a 5 M NaNO 3 solution at 190 0 F for eight weeks. It was found that all weld coupons receiving no thermal stress relief treatment cracked within eight weeks; all weld coupons given a vibratory stress relief cracked within eight weeks; two of the eight weld coupons stress relieved at 600 0 F for one hour cracked within eight weeks; none of the weld coupons stress relieved at 1100 0 F for one hour cracked within eight weeks; and that cracking was generally more severe in coupons fabricated from 7/8 inch plate by shielded metal arc welding than it was in coupons fabricated by other welding methods. (U.S.)

  8. STUDY OF THE HARDENING TEMPERATURE INFLUENCE ON PROCESSES WHEN TEMPERING CARBON STEEL

    Directory of Open Access Journals (Sweden)

    Ms. Irina L. Polyanskaya

    2016-12-01

    Full Text Available The article presents the research results of carbon steel electrical resistance changes at low tem-pering and determines the effect of temperature on the electrical resistance. The analysis of the results showed that the influence of carbon on the value of the electrical resistance is higher than the influence of the crystal structure defects. The changes of the hardened steel electrical resistance are due to the redistri-bution of carbon.

  9. Investigating pitting in X65 carbon steel using potentiostatic polarisation

    Science.gov (United States)

    Mohammed, Sikiru; Hua, Yong; Barker, R.; Neville, A.

    2017-11-01

    Although pitting corrosion in passive materials is generally well understood, the growth of surface pits in actively-corroding materials has received much less attention to date and remains poorly understood. One of the key challenges which exists is repeatedly and reliably generating surface pits in a practical time-frame in the absence of deformation and/or residual stress so that studies on pit propagation and healing can be performed. Another pertinent issue is how to evaluate pitting while addressing general corrosion in low carbon steel. In this work, potentiostatic polarisation was employed to induce corrosion pits (free from deformation or residual stress) on actively corroding X65 carbon steel. The influence of applied potential (50 mV, 100 mV and 150 mV vs open circuit potential) was investigated over 24 h in a CO2-saturated, 3.5 wt.% NaCl solution at 30 °C and pH 3.8. Scanning electron microscopy (SEM) was utilised to examine pits, while surface profilometry was conducted to measure pit depth as a function of applied potential over the range considered. Analyses of light pitting (up to 120 μm) revealed that pit depth increased linearly with increase in applied potential. This paper relates total pit volume (measured using white light interferometry) to dissipated charge or total mass loss (using the current response for potentiostatic polarisation in conjunction with Faraday's law). By controlling the potential of the surface (anodic) the extent of pitting and general corrosion could be controlled. This allowed pits to be evaluated for their ability to continue to propagate after the potentiostatic technique was employed. Linear growth from a depth of 70 μm at pH 3.8, 80 °C was demonstrated. The technique offers promise for the study of inhibition of pitting.

  10. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  11. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  12. Recent Progress in High Strength Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    Zrník J.

    2006-01-01

    Full Text Available Advanced High Strength (AHS steels, among them especially Dual Phase (DP steels, Transformation Induced Plasticity (TRIP steels, Complex Phase (CP steels, Partially Martensite (PM steels, feature promising results in the field. Their extraordinary mechanical properties can be tailored and adjusted by alloying and processing. The introduction of steels with a microstructure consisting at least of two different components has led to the enlargement of the strength level without a deterioration of ductility. Furthermore, the development of ultra fine-grained AHS steels and their service performance are reviewed and new techniques are introduced. Various projects have been devoted to develop new materials for flat and long steel products for structural applications. The main stream line is High Strength, in order to match the weight lightening requirements that concern the whole class of load bearing structures and/or steel components and one of the most investigated topics is grain refinement.

  13. The effect of variations in carbon activity on the carburization of austenitic steels in sodium

    International Nuclear Information System (INIS)

    Gwyther, J.R.; Hobdell, M.R.; Hooper, A.J.

    1978-07-01

    Experience has shown that the liquid sodium coolant of fast breeder reactors is an effective carbon-transport medium; the resulting carburization of thin austenitic stainless steel components (eg IHX and fuel cladding) could adversely affect their mechanical integrity. The degree and nature of steel carburization depend, inter alia, on the carbon activity of the sodium environment. Exploratory tests are described in which specimens of austenitic stainless steel were carburized in sodium, the carbon activity of which was continuously monitored by a BNL electrochemical carbon meter. The sodium carbon activity was initially high, but decreased with time, simulating conditions equivalent to plant start-up or coolant clean-up following accidental oil ingress. The extent and nature of steel carburization was identified by metallography, electron microscopy, X-ray crystallography and chemical analysis. (author)

  14. Local hardening evaluation of carbon steels by using frequency sweeping excitation and spectrogram method

    Science.gov (United States)

    Tsuchida, Yuji; Kudo, Yuki; Enokizono, Masato

    2017-02-01

    This paper presents our proposed frequency sweeping excitation and spectrogram method (FSES method) by a magnetic sensor for non-destructive testing of hardened low carbon steels. This method can evaluate the magnetic properties of low carbon steels which were changed after induction heating treatment. It was examined by our proposed method that the degrees of yield strength of low carbon steels were varied depending on hardened conditions. Moreover, it was made clear that the maximum magnetic field strength, Hmax, derived from the measured B-H loops was very sensitive to the hardening if the surface of the samples were flat.

  15. Effect of magnetite as a corrosion product on the corrosion of carbon steel overpack

    International Nuclear Information System (INIS)

    Taniguchi, N.

    2003-01-01

    The mechanism of the acceleration of the corrosion of carbon steel due to the presence of magnetite was studied. Immersion tests of carbon steel in the presence of magnetite powder were performed using sealed glass ampoules. Hydrogen gas enclosed in the ampoule was analysed by gas chromatography, and the material balance of hydrogen gas and reduced Fe(III) in the magnetite against the weight loss of the specimens was analysed. The analysis showed that the main cathodic reaction in the presence of magnetite powder was the reduction of Fe(III). The effect of magnetite on the lifetime of carbon steel overpacks is also discussed in this paper. (author)

  16. Sustainable Steel Carburization by Using Snack Packaging Plastic Waste as Carbon Resources

    Directory of Open Access Journals (Sweden)

    Songyan Yin

    2018-01-01

    Full Text Available In recent years, the research regarding waste conversion to resources technology has attracted growing attention with the continued increase of waste accumulation issues and rapid depletion of natural resources. However, the study, with respect to utilizing plastics waste as carbon resources in the metals industry, is still limited. In this work, an environmentally friendly approach to utilize snack packaging plastic waste as a valuable carbon resources for steel carburization is investigated. At high temperature, plastic waste could be subject to pyrolytic gasification and decompose into small molecular hydrocarbon gaseous products which have the potential to be used as carburization agents for steel. When heating some snack packaging plastic waste and a steel sample together at the carburization temperature, a considerable amount of carbon-rich reducing gases, like methane, could be liberated from the plastic waste and absorbed by the steel sample as a carbon precursor for carburization. The resulting carburization effect on steel was investigated by optical microscopy, scanning electron microscopy, electron probe microanalyzer, and X-ray photoelectron spectrometer techniques. These investigation results all showed that snack packaging plastic waste could work effectively as a valuable carbon resource for steel carburization leading to a significant increase of surface carbon content and the corresponding microstructure evolution in steel.

  17. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  18. The kinetics of phase transformations during tempering of low alloy medium carbon steel

    OpenAIRE

    J. Krawczyk; J. Pacyna; P. Bała

    2007-01-01

    Purpose: This work contains a detailed description of the kinetics of phase transformations during tempering ofhardened low alloy medium carbon steel. Moreover, the differences in hardness and microstructure of samples ofthe investigated steel in relationship to the heat treatment were evaluated.Design/methodology/approach: CHT diagram, illustrating the kinetics of phase transformations duringcontinuous heating (tempering) from as-quenched state of investigated steel, was elaborated using a D...

  19. Hydrogen degradation of 21-6-9 and medium carbon steel by disc pressure test

    International Nuclear Information System (INIS)

    Zhou, D.H.; Zhou, W.X.; Xu, Z.L.

    1986-01-01

    This paper reports the method of disc pressure test and the results for 21-6-9 stainless steel and medium carbon steel in hydrogen gas with different pressures and time of storage. The results show the hydrogen induced degradation of these two kinds of steel. An attempt was made to establish an index which uses variation of area of deformed disc to determine the degradation of ductility in a hydrogen environment. (orig.)

  20. Carbonation of steel slag for CO2 sequestration: Leaching of products and reaction mechanisms

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.

    2006-01-01

    Carbonation of industrial alkaline residues can be used as a CO2 sequestration technology to reduce carbon dioxide emissions. In this study, steel slag samples were carbonated to a varying extent. Leaching experiments and geochemical modeling were used to identify solubility-controlling processes of

  1. CYCLIC RECRYSTALLIZATION OF FERRITE IN HOT-ROLLED LOW-CARBON SHEET STEEL WITH STRUCTURETEXTURAL HETEROGENEITY

    Directory of Open Access Journals (Sweden)

    A. M. Nesterenko

    2009-01-01

    Full Text Available It is determined that in the process of soaking at subcritical temperature 680 °C in hot-rolled rolling of low-carbon steel 08 ps recrystallization is developed with heterogeneous fu ll repeat change of the steel ferrite change by its section.

  2. Corrosion Performance of Carbon Steel in Simulated Pore Solution in the Presence of Micelles

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; De Wit, J.H.W.; Kolev, H.; Van Breugel, K.

    2011-01-01

    This study presents the results on the investigation of the corrosion behavior of carbon steel in model alkaline medium in the presence of very low concentration of polymeric nanoaggregates [0.0024 wt % polyethylene oxide (PEO)113-b-PS70 micelles]. The steel electrodes were investigated in chloride

  3. 76 FR 78882 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Affirmative Preliminary Determination of...

    Science.gov (United States)

    2011-12-20

    ... Steel Wire Rod From Mexico: Affirmative Preliminary Determination of Circumvention of the Antidumping... circumvention inquiry into whether Deacero S.A. de C.V. (Deacero) and Ternium Mexico S.A. de C.V. (Ternium... wire rod are covered by this circumvention inquiry. \\3\\ See Carbon and Certain Alloy Steel Wire Rod...

  4. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  5. 77 FR 73674 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, The United Arab Emirates, and Vietnam

    Science.gov (United States)

    2012-12-11

    ...-1191-1194 (Final)] Circular Welded Carbon-Quality Steel Pipe From India, Oman, The United Arab Emirates... of circular welded carbon-quality steel pipe from India, Oman, the United Arab Emirates, and Vietnam...- quality steel pipe from India, Oman, the United Arab Emirates, and Vietnam were subsidized and/or dumped...

  6. 75 FR 29976 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Extension of the Final...

    Science.gov (United States)

    2010-05-28

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-475-826] Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Extension of the Final Results of Antidumping Duty Administrative...-quality steel plate products from Italy. See Certain Cut-to-Length Carbon-Quality Steel Plate Products...

  7. 78 FR 29113 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Science.gov (United States)

    2013-05-17

    ...-Quality Steel Plate Products From the Republic of Korea: Final Results of Antidumping Duty Administrative... administrative review of the antidumping duty order on certain cut-to-length carbon-quality steel plate products... duty order on certain cut-to-length carbon-quality steel plate products from the Republic of Korea...

  8. 76 FR 22868 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Final Results of...

    Science.gov (United States)

    2011-04-25

    ...-Rolled Carbon-Quality Steel Products From Brazil: Final Results of Countervailing Duty Administrative...-Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty Administrative Review, 75.... See Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

  9. 77 FR 21527 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Science.gov (United States)

    2012-04-10

    ...-Quality Steel Plate Products From the Republic of Korea: Final Results of Antidumping Duty Administrative... administrative review of the antidumping duty order on certain cut-to-length carbon-quality steel plate products... duty order on certain cut-to-length carbon-quality steel plate products (CTL plate) from the Republic...

  10. 75 FR 62566 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-10-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-384 and 731-TA-806-808 (Second Review)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... countervailing duty order on hot-rolled flat-rolled carbon-quality steel products (``hot-rolled steel'') from...

  11. 78 FR 4385 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Preliminary...

    Science.gov (United States)

    2013-01-22

    ...-Quality Steel Plate Products From the Republic of Korea: Preliminary Results of Antidumping Duty... the antidumping duty order on certain cut-to- length carbon-quality steel plate products (CTL plate... Carbon-Quality Steel Plate Products from the Republic of Korea'' dated concurrently with this notice...

  12. 75 FR 16504 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2010-04-01

    ...)] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia AGENCY: United... countervailing duty order on certain hot-rolled flat-rolled carbon-quality steel products (``hot-rolled steel... are Brazil, Japan, and Russia. (3) The Domestic Like Product is the domestically produced product or...

  13. Investigation of Cr-CrN coatings of medium-carbon low-alloyed steels

    International Nuclear Information System (INIS)

    Lojko, V.A.; Semin, E.V.; Markova, L.V.

    2012-01-01

    Results of research of CrN coatings deposited by vacuum-plasma evaporation on a medium-carbon low-alloyed steel are presented. Defects of coatings the reasons of their occurrence are analyzed. (authors).

  14. 76 FR 15299 - Certain Hot-Rolled Carbon Steel Flat Products From India: Preliminary Rescission of...

    Science.gov (United States)

    2011-03-21

    ..., A507). Non-rectangular shapes, not in coils, which are the result of having been processed by cutting... December 31, 2010. \\4\\ See, e.g., Welded Carbon Steel Standard Pipe and Tube from Turkey: Notice of...

  15. Use of plain carbon steel and configuration management program for the metal industry

    International Nuclear Information System (INIS)

    Tariq, M.M.; Kalsoom, T.

    2006-01-01

    The application of Configuration Management (CM) and structural plain carbon steels for metal industry is studied. Requirements of surface treatment and heat treatment are also defined to achieve maximum for metal industry. Triangle of materials, properties and applications is discussed with in the role of CM. Equivalent plain carbon steel have been suggested, based on structural applications. Operating conditions for the required surface treatment e.g. paint, galvanizing or other coatings are studied. Role of CM is highlighted for these activities. (author)

  16. ACCELERATED CARBONATION OF STEEL SLAG COMPACTS: DEVELOPMENT OF HIGH STRENGTH CONSTRUCTION MATERIALS

    Directory of Open Access Journals (Sweden)

    Mieke eQuaghebeur

    2015-12-01

    Full Text Available Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags (stainless steel slag and basic oxygen furnace slags in high quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO2 at elevated pressure (up to 2 MPa and temperatures (20 to 140°C. For stainless steel slags raising the temperature from 20 to 140°C had a positive effect on the CO2 uptake, strength development and the environmental properties (i.e. leaching of Cr and Mo of the carbonated slag compacts. For BOF slags raising the temperature was not beneficial for the carbonation process. Elevated CO2 pressure and CO2 concentration of the feed gas had a positive effect on the CO2 uptake and strength development for both types of steel slags. In addition also the compaction force had a positive effect on the strength development. The carbonates that are produced in-situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100 to 150 g CO2/kg slag. The technology was developed on lab scale by optimisation of process parameters with regard to compressive strength development, CO2 uptake and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-industrial equipment and process conditions.

  17. Strength properties of low-carbon martensitic steel O7Kh3GNM

    International Nuclear Information System (INIS)

    Ehntin, R.I.; Kogan, L.I.; Odesskij, P.D.; Kle ner, L.M.; Tolmacheva, N.V.

    1982-01-01

    With the purpose of substitution of bainitic steels intended for manufacturing plate welded joints the low-carbon martensitic steel 07Kh3GNM is proposed. The 07Kh3GNM steel tempered at 650 deg C has guaranteed values σsub(0.2) >600-750 MPa and σsub(u) >= 700-850 MPa in combination with rather high for this strength level values of ductility, impact strength and fracture toughness. Steel possesses perfect weldability without preheating, in thermal strengthened state and has no tendency to cold cracking and to delayed fracture in heat treated state

  18. GM(1,Nmodel-based prediction of carbon steel corrosion rate

    Directory of Open Access Journals (Sweden)

    ZHENG Ruyan

    2018-02-01

    Full Text Available [Objectives] The corrosion rate prediction of carbon steel in marine environment is very complicated and uncertain. [Methods] To improve the accuracy of prediction model in view of the low precision of grey prediction model for corrosion rate of carbon steel at present stage, the key factors which affect the corrosion rate can be concluded from the grey theory analysis of marine environment and corrosion rate of carbon steel, and then the GM(1,N) model which can predict the corrosion rate of carbon steel is established. [Results] According to the case analysis, the main factors that affect the corrosion rate in seaareas of Qindao, Xiamen, Zhousan, Yulin coastal region are seawater temperature, biofouling, pH value and salinity, and based on the above, the establishment of GM(1,5 model possesses higher precision and less computational costs. [Conclusions] The research shows that the GM(1,N) model can predict the corrosion rate of carbon steel effectively, and also provide a theoretical basis for the prediction of residual life of carbon steel.

  19. Inhibition of carbon steel corrosion by 11-aminoundecanoic acid

    Directory of Open Access Journals (Sweden)

    Saad Ghareba

    2015-12-01

    Full Text Available The current study reports results on the investigation of the possibility of using 11-aminoundecanoic acid (AA as an inhibitor of general corrosion of carbon steel (CS in HCl under a range of experimental conditions: inhibitor concentration, exposure time, electrolyte temperature and pH and CS surface roughness. It was found that AA acts as a mixed-type inhibitor, yielding maximum inhibition efficiency of 97 %. The adsorption of AA onto the CS surface was described by the Langmuir adsorption isotherm. The corresponding apparent Gibbs free energy of AA adsorption on CS at 295 K was calculated to be −30.2 kJ mol–1. The adsorption process was found to be driven by a positive change in entropy of the system. PM-IRRAS measurements revealed that the adsorbed AA layer is amorphous, which can be attributed to the repulsion between the neighboring positively charged amine groups and a high heterogeneity of the CS surface. It was also found that the AA provides very good corrosion protection of CS of various surface roughness, and over a prolonged time.

  20. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1990-11-01

    The report describes the work of a two year programme investigating the anaerobic corrosion of carbon steel embedded in a range of candidate repository cements and concretes at laboratory ambient temperatures. The factors investigated in the study were the rate of the anaerobic corrosion reaction, the effect of hydrogen overpressure on the reaction rate and the form of the corrosion product. Both electrochemical and sample weight loss corrosion rate measurements were used. The cements and concretes used were prepared both with and without small additions of chloride (2% by weight of mix water). The results indicate that the corrosion rate is low, <1 μm/year, the effect of hydrogen overpressure is not significant over the range of pressures investigated, 1-100 atmospheres, and that the corrosion product is dependent on the cement used to cast the samples. Magnetite was identified in the case of blast furnace slag replacement cements but for pulverised fuel ash and ordinary Portland cements no corrosion product was evident either from X-ray diffraction or laser Raman measurements. (Author)

  1. Investigation of the pitting corrosion of low carbon steel containers

    International Nuclear Information System (INIS)

    Mughabghab, S.F.; Sullivan, T.M.

    1988-01-01

    The present study was undertaken because the prediction of the degradation rate of low carbon steel contains over long time frames is one of the crucial elements in the development of a source term model for low-level shallow land burial. The principal data base considered is that of the NBS corrosion measurements of ferrous materials buried in the ground for periods of up to 18 years. In this investigation, the maximum penetration in mils, hm, due to pitting corrosion was found to conform closely to the relation h m = kt n where it is the exposure time of the sample in years, κ is the pitting parameter in mil/(years) n , and n > O is a parameter related to the aeration property of the soil. The central objective of the present investigation is the determination of the dependence of the pitting parameters κ and n on the soil properties. The result of a detailed linear correlation analysis of κ on one hand, the pH value and the resistivity of the soil on the other hand revealed that κ is principally influenced by the pH value of the soil. The resistivity of the soil is found to play a minor role

  2. The anaerobic corrosion of carbon steel in concrete

    International Nuclear Information System (INIS)

    Naish, C.C.; Balkwill, P.H.; O'Brien, T.M.; Taylor, K.J.; Marsh, G.P.

    1990-11-01

    The report describes the work of a two year programme investigating the anaerobic corrosion of carbon steel embedded in a range of candidate repository cements and concretes at laboratory temperatures. The factors investigated in the study were the rate of the anaerobic corrosion reaction, the effect of hydrogen overpressure on the reaction rate and the form of the corrosion product. Both electrochemical and sample weight loss corrosion rate measurements were used. The cements and concretes used were prepared both with and without small additions of chloride (2% by weight of mix water). The results indicate that the corrosion rate is low, < 1 μm/year, the effect of hydrogen overpressure is not significant over the range of pressures investigated, 1-100 atmospheres, and that the corrosion product is dependent on the cement used to cast the samples. Magnetite was identified in the case of blast furnace slag replacement cements but for pulverised fuel ash and ordinary Portland cements no corrosion product was evident either from X-ray diffraction or laser Raman measurements. Further work is presently underway to investigate the effects of elevated temperatures and chloride levels on the anaerobic corrosion reaction and the rate of hydrogen gas production. (author)

  3. Elucidation of mechanism wear carbon steel with structure of martensite

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2013-04-01

    Full Text Available Purpose. The purpose of the paper is an estimation of degree of metal hardness change for the railway wheel with martensite structure during rolling. Methodology. As strength characteristic the Rockwell hardness is used. Wear tests were conducted in the conditions of normal loading with (10% and without sliding on the test equipment SMTs-2. Parameters of the fine crystalline structure (tetragonality degree of the crystalline grid, dislocation density, scale of coherent scattering regions, and disturbance value of the crystalline grid of second kind are determined by the methods of X-ray structural analysis. Findings. During operation of the railway wheels with different strength level, origin of defects on the wheel thread is caused by simultaneous action of both the friction forces and the cyclically changing loadings. Considering that formation of damage centers is largely determined by the state of metal volumes near the wheel thread, one should expect the differences in friction processes development at high contact stress for the wheels with different strength level and structural state. Originality. During the wear tests softening effect of carbon steel with martensite quenching structure is obtained. Softening effect equaled 3.5–7% from the level of quenched metal hardness. The softening effect is accompanied by the reduction of tetragonality degree of the crystalline structure of martensite, reduction of coherent scattering regions, dislocation density increase and crystalline grid disturbance of the second kind. Practical value. The results point out the necessity for further studies to clarify the resulted softening effect mechanism.

  4. Biodiesel compatibility with carbon steel and HDPE parts

    Energy Technology Data Exchange (ETDEWEB)

    Maru, Marcia Marie; Lucchese, Marcia Maria; Legnani, Cristiano; Quirino, Welber Gianini; Balbo, Andrea; Aranha, Isabele Bulhoes; Costa, Lilian Terezinha; Vilani, Cecilia; de Sena, Lidia Agata; Damasceno, Jailton Carreteiro; dos Santos Cruz, Talita; Lidizio, Leandro Reis [Divisao de Metrologia de Materiais-DIMAT, Inmetro, Av. Nossa Senhora das Gracas 50, CEP 25250-020, Duque de Caixas, RJ (Brazil); Ferreira e Silva, Rui [Ceramics Eng. Dept., CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Jorio, Ado [Divisao de Metrologia de Materiais-DIMAT, Inmetro, Av. Nossa Senhora das Gracas 50, CEP 25250-020, Duque de Caixas, RJ (Brazil); Departamento de Fisica, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, CEP 30123-970, Pampulha, Belo Horizonte, MG (Brazil); Achete, Carlos Alberto [Divisao de Metrologia de Materiais-DIMAT, Inmetro, Av. Nossa Senhora das Gracas 50, CEP 25250-020, Duque de Caixas, RJ (Brazil); Programa de Engenharia Metalurgica e de Materiais-PEMM, Centro de Tecnologia, Bloco F, Cidade Universitaria, Universidade Federal do Rio de Janeiro-UFRJ, CEP 21949-900, Rio de Janeiro, RJ (Brazil)

    2009-09-15

    Compatibility of the new environmentally-friendly alternative of diesel engine fuels, biodiesel, with storage and engine part materials, is still an open issue. In this work, the interaction between three fuels (petroleum diesel and two types of biodiesel - soybean and sunflower) and two materials (carbon steel and high density polyethylene) used in storage and automotive tanks, is analyzed in detail. A wide set of characterization techniques was used to evaluate the changes in both solid and fluid materials, as weight change measurement, optical, scanning electron and atomic force (AFM) microscopies, Raman and FTIR spectroscopies, and differential scanning calorimetry. The AFM technique allowed detecting surface roughness and morphology changes in the metallic material following the trends in the weight losses. In the case of polymeric material, weight gain by fluid absorption occurred, being detected by the spectroscopic techniques. The biodiesel fuels underwent some ageing however this phenomenon did not affect the interaction between the biodiesel fuels and the substrates. The petrodiesel, which did not age, caused more significant degradation of the substrates. (author)

  5. Welding of carbon steel vessels without post weld heat treatment

    International Nuclear Information System (INIS)

    Gibb, M.; Bala, S.R.

    1984-01-01

    The methods available for the repair welding of carbon steel vessels without post weld heat treatment and with particular reference to service in a sour environment have been reviewed. All the available techniques have the common aim of providing adequate properties in the weld metal and heat affected zone without the need for a full post weld stress relief. The heat that is required to provide the necessary metallurgical changes comes, therefore, from an alternate source. The two sources used are heat from suitably placed subsequent weld passes or from localized external heat sources. The technique presently being used by Ontario Hydro to repair vessels subject to sour service utilizes both a high preheat and a welding technique which is designed to temper the heat affected zone formed in the base material by the first weld pass. This technique is an improvement over the 'half bead' techniques given in the ASME X1 code and has been shown to be capable of reducing the hardness of the heat affected zone to an acceptable level. Certain recommendations have been made which could improve control of the technique presently used by Ontario Hydro and provide measurable parameters between procedural tests and the actual weld repairs

  6. Effects of hydrogen on carbon steels at the Multi-Function Waste Tank Facility

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1995-01-01

    Concern has been expressed that hydrogen produced by corrosion, radiolysis, and decomposition of the waste could cause embrittlement of the carbon steel waste tanks at Hanford. The concern centers on the supposition that the hydrogen evolved in many of the existing tanks might penetrate the steel wall of the tank and cause embrittlement that might lead to catastrophic failure. This document reviews literature on the effects of hydrogen on the carbon steel proposed for use in the Multi-Function Waste Tank Facility for the time periods before and during construction as well as for the operational life of the tanks. The document draws several conclusions about these effects. Molecular hydrogen is not a concern because it is not capable of entering the steel tank wall. Nascent hydrogen produced by corrosion reactions will not embrittle the steel because the mild steel used in tank construction is not hard enough to be susceptible to hydrogen stress cracking and the corrosion product hydrogen is not produced at a rate sufficient to cause either loss in tensile ductility or blistering. If the steel intended for use in the tanks is produced to current technology, fabricated in accordance with good construction practice, postweld heat treated, and operated within the operating limits defined, hydrogen will not adversely affect the carbon steel tanks during their 50-year design life. 26 refs

  7. Application of heat treated low-carbon electrical steels in small motors

    Energy Technology Data Exchange (ETDEWEB)

    Agueero, A.C.; Moyano, H.R. [CEMCOR-CIMM, Cordoba (Argentina). Inst. Nacional de Tecnologia Industrial; Actis, F.A. [SIDERAR S.A.I.C., Centro Siderurgico Gral. Savio, San Nicolas (Argentina); Casais, O. [Tamyr S.A., Benavidez, Buenos Aires (Argentina)

    1999-08-01

    In this work the influence of the magnetic properties of steels, at different processing conditions, on the performance of a synchronous permanent magnet motor (SPMM) with 2.7 watt power is studied. A commercial low-carbon steel was subjected to 2 different thermal treatments and characterized for microstructure, carbon content and magnetic properties. A computer model using finite element method was developed to calculate the influence of the heat treatment properties on the ampere-turns reduction. Several motor prototypes were constructed using steels in the as-received and heat-treated conditions. Torque measurements were used as indication of the motors performance. (orig.) 4 refs.

  8. Structure and properties of quenched low-carbon steel in case of plastic deformation and tempering

    International Nuclear Information System (INIS)

    Babich, V.K.; Drozdov, B.Ya.; Pirogov, V.A.; Plevako, P.S.

    1977-01-01

    The investigation of the processes taking place during the deformation and the tempering of grade 20 hardened steel has shown that the plastic deformation involves an increase in hardness and a drop in coercive force. The latter is due to a displacement of carbon atoms from normal interstitial locations to crystalline lattice imperfection sites. The effect of tempering has been studied on steels not worked and on those worked by 20 and 40 % after hardening. It is found that the tempering of a cold-worked steel is accompanied by a recrystallization which makes itself evident at 500 deg C after 40 % deformation and at 600 deg C after 20 % deformation. The stability of the low-carbon steel martensite during the recrsytallization is due to the absence of a substantial excess of dislocations of a single sign, and not to the inhibiting effect of the carbide particles. The heterogeneity of the structure produced by the hardening facilitates recrystallization of deformed steel

  9. The CCT diagrams of ultra low carbon bainitic steels and their impact toughness properties

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Jeziorski, L.

    1998-01-01

    The CCT diagrams of ULCB N i steels, HN3MV, HN3MVCu having 5.1% Ni and 3.5% Ni and Cu bearing steels; HN3M1.5Cu, HSLA 100 have been determined. The reduced carbon concentration in steel, in order to prevent the formation of cementite, allowed for using nickel, manganese, chromium and molybdenum to enhance hardenability and refinement of the bainitic microstructures by lowering B S temperature. Copper and microadditions of vanadium and niobium are successfully used for precipitation strengthening of steel both in thermomechanically or heat treated conditions. Very good fracture toughness at low temperatures and high yield strength properties of HN3MVCu and HN3MV steels allowed for fulfillment of the requirements for steel plates for pressure vessels and cryogenic applications. (author)

  10. A quality approach to maintain the properties of S235 JR structural carbon steel in Lebanon

    International Nuclear Information System (INIS)

    Sidawi, J.A.; Al Khatib, H.

    2004-01-01

    Full text.S235JR carbon steel is one of the most popular steels used in Lebanon. It is imported by steel dealers and is widely used by all fabricators and manufacturers of steels for many structural purposes and applications. This kind of steel has good ductile properties as well as excellent weldability. It is still known by its previous designation St 37-2 or E 24-2. S235JR is produced in many shapes and thicknesses such as steel plates, sheets, angles and different other geometric shapes. Standard chemical and mechanical tests were conducted and reported on S235JR hot-rolled structural low-carbon mild steel specimens collected from Lebanese steel market. The main objective of this work is to assure the compliance of these properties with those set by the steel manufacturer. The above mentioned tests were performed at the laboratories of the Industrial Research Institute (IR) in Lebanon to assure the quality and credibility of the results. related European and American standards were presented as references and compared with the achieved results. Discussion was presented to show the similarities and differences between S235JR steel samples and standard requirements. Some of the reasons for such differences were discussed. Sufficient data was furnished through this work for the public and mainly for the Lebanese Standard Organization LIBNOR to easily adopt and implement the EN 10025:1993 European standard that can be applied in Lebanon concerning the most commonly used hot rolled low carbon structural steel. A follow up concerning adopting and implementing EN 10025:1993 will be briefed

  11. Characterization and prediction of carbon steel corrosion in diluted seawater containing pentaborate

    Science.gov (United States)

    Fukaya, Yuichi; Watanabe, Yutaka

    2018-01-01

    This study addresses the influence of Na2B10O16, which may be used for criticality control of fuel debris in the Fukushima Daiichi Nuclear Power Station, on the corrosion behavior of carbon steel in diluted artificial seawater. The corrosion forms of carbon steel were categorized as uniform corrosion, localized corrosion, and passivity based on the balance between the dilution ratio of artificial seawater and the concentration of Na2B10O16. The changes in corrosion forms were arranged on a water quality region map. Passivity was maintained by adding 3.7 × 10-2 M or more of Na2B10O16 to artificial seawater with a dilution ratio of 100-fold or more. The criticality control of the fuel debris and corrosion mitigation of the carbon steel components may be achieved simultaneously in the water quality. The prediction of the corrosion form of carbon steel was attempted by the extended Larson-Skold Index (LSI) = ([Cl-] + 2[SO42-])/([HCO3-] + 2[B10O162-]). However, because the passivating action of B10O162- was remarkably stronger than that of HCO3-, the prediction was difficult under the simple addition of equivalent concentrations. The localized corrosion of carbon steel under the addition of Na2B10O16 preferentially occurred from the crevices of the test specimens, as was the case in stainless steel.

  12. Corrosion of Carbon Steel and Corrosion-Resistant Rebars in Concrete Structures Under Chloride Ion Attack

    Science.gov (United States)

    Mohamed, Nedal; Boulfiza, Mohamed; Evitts, Richard

    2013-03-01

    Corrosion of reinforced concrete is the most challenging durability problem that threatens reinforced concrete structures, especially structures that are subject to severe environmental conditions (i.e., highway bridges, marine structures, etc.). Corrosion of reinforcing steel leads to cracking and spalling of the concrete cover and billions of dollars are spent every year on repairing such damaged structures. New types of reinforcements have been developed to avoid these high-cost repairs. Thus, it is important to study the corrosion behavior of these new types of reinforcements and compare them to the traditional carbon steel reinforcements. This study aimed at characterizing the corrosion behavior of three competing reinforcing steels; conventional carbon steel, micro-composite steel (MMFX-2) and 316LN stainless steel, through experiments in carbonated and non-carbonated concrete exposed to chloride-laden environments. Synthetic pore water solutions have been used to simulate both cases of sound and carbonated concrete under chloride ions attack. A three-electrode corrosion cell is used for determining the corrosion characteristics and rates. Multiple electrochemical techniques were applied using a Gamry PC4™ potentiostat manufactured by Gamry Instruments (Warminster, PA). DC corrosion measurements were applied on samples subjected to fixed chloride concentration in the solution.

  13. Mass attenuation coefficients, effective atomic and electron numbers of stainless steel and carbon steels with different energies

    International Nuclear Information System (INIS)

    Mohd Fakarudin Abdul Rahman; Mohd Iqbal Saripan; Nor Paiza Mohamad Hasan; Ismail Mustapha

    2011-01-01

    The total mass attenuation coefficients (μ/ ρ) of stainless steel (SS316L) and carbon steel (A516) that are widely used as petrochemical plant components, such as distillation column, heat exchanger, boiler and storage tank were measured at 662, 1073 and 1332 keV of photon energies. Measurements of radiation intensity for various thicknesses of steel were made by using transmission method. The γ-ray intensity were counted by using a Gamma spectrometer that contains a Hyper-pure Germanium (HPGe) detector connected with Multi Channel Analyzer (MCA). The effective numbers of atomic (Z eff ) and electron (N eff ) obtained experimentally were compared by those obtained through theoretical calculation. Both experimental and calculated values of Z eff and N eff were in good agreement. (author)

  14. The possibility of tribopair lifetime extending by welding of quenched and tempered stainless steel with quenched and tempered carbon steel

    Directory of Open Access Journals (Sweden)

    V. Marušić

    2015-04-01

    Full Text Available In the conditions of tribocorrosion wear, extending of parts lifetime could be achieved by using stainless steel,which is hardened to sufficiently high hardness. In the tribosystem bolt/ bushing shell/link plate of the bucket elevator transporter conveyor machine, the previously quenched and tempered martensitic stainless steel for bolts is hardened at ≈47 HRC and welded with the quenched and tempered high yield carbon steel for bolts. Additional material, based on Cr-Ni-Mo (18/8/6 is used. The microstructure and hardness of welded samples are tested. On the tensile tester, resistance of the welded joint is tested with a simulated experiment. Dimensional control of worn tribosystem elements was performed after six months of service.

  15. Properties of welded joints of 2,25Cr-1Mo steel with various carbon content

    International Nuclear Information System (INIS)

    Vornovitskij, I.N.; Brodetskaya, E.Z.; Pozdnyakova, A.S.

    1980-01-01

    Properties of welded joints of 2,25 Cr - 1 Mo steel pipelines with different carbon content are considered. It is shown that application of electrodes developed in some countries for welding permits in many cases to exclude heat treatment of welded joints owing to high ductility of weld deposited metal. To improve the ductility, it is necessary to limit both carbon content down to 0,03-0,06% and detrimental elements (sulfur, phosphorus). Heat affected zone hardness may be increased at the expense of carbon. Weld deposited metal possesses the highest long-term strength at the given test temperature; in this case long-term strength of welded joints and base metal is practically the same. The long-term strength of high-carbon steel is higher at the test temperature of 565 deg C as compared to mean-carbon and low-carbon steels, whose long-term strength is practically equal at this temperature. The long-term strength of high-carbon and mean-carbon steels is practically the same and higher as compared with low-carbon one at the test temperature of 510 deg C

  16. 77 FR 37711 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam...

    Science.gov (United States)

    2012-06-22

    ... COMMISSION Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam...-fair-value imports from India, Oman, the United Arab Emirates, and Vietnam of circular welded carbon... respect to circular welded carbon-quality steel pipe from Oman and the United Arab Emirates being sold in...

  17. 76 FR 77775 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-12-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... results of the administrative review of the countervailing duty order on corrosion-resistant carbon steel.... See Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results of...

  18. 78 FR 19210 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2013-03-29

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... countervailing duty (CVD) order on corrosion-resistant carbon steel flat products from the Republic of Korea for... subsidies that result in de minimis net subsidy rates. \\1\\ See Corrosion-Resistant Carbon Steel Flat...

  19. 76 FR 3613 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Final Results of...

    Science.gov (United States)

    2011-01-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... corrosion-resistant carbon steel flat products (CORE) from the Republic of Korea (Korea) for the period of review (POR) January 1, 2008, through December 31, 2008. See Corrosion-Resistant Carbon Steel Flat...

  20. Corrosion of carbon steel under waste disposal conditions

    International Nuclear Information System (INIS)

    Marsh, G.

    1990-01-01

    The corrosion of carbon steel has been studied in the United Kingdom under granitic groundwater conditions, with pH between 5 and 10 and possibly substantial amounts of Cl - , SO 4 2- and HCO 3 - /CO 3 2- . Corrosion modes considered include uniform corrosion under both aerobic and anaerobic conditions; passive corrosion; localized attack in the form of pitting or crevice corrosion; and environmentally assisted cracking - hydrogen embrittlement or stress corrosion cracking. Studies of these processes are being carried out in order to predict the metal thicknesses required to give container lifetimes of 500 to 1000 years. A simple uniform corrosion model predicts a corrosion rate of around 13.4 μm/a at 20C, rising to 69 μm/a at 50C and 208 μm/a at 90C. A radiation dose of 10 5 rad/h and a G-value of 2.8 for the production of oxidizing species would account for an increase in corrosion rate of 7 μm/a. This model overestimates slightly the results actually achieved for experimental samples exposed for two years, the difference being due to a protective film formed on the samples. These corrosion rates predict that the container must be 227 mm thick to withstand uniform corrosion; however, they predict very high levels of hydrogen production. Conditions will be favourable for localized or pitting corrosion for about 125 years, leading to a maximum penetration of 160 mm. Since the exposure environment cannot be predicted precisely, one cannot state that stress corrosion cracking is impossible. Thus the container must be stress relieved. Other corrosion mechanisms such as microbial corrosion and hydrogen embrittlement are not considered significant

  1. Removal of organic compounds from natural underground water in sorption and sono-sorption processes on selected activated carbons

    Directory of Open Access Journals (Sweden)

    Pietrzyk Andżelika

    2017-01-01

    Full Text Available The article rated removal efficiency of organic matter in the processes of sorption and sono-sorption of underground water grasped for municipal purposes. The studies were conducted in laboratory scale and verified in pilot scale at the Water Treatment Plant Tarnobrzeg-Jeziórko. In the research used granular activated carbons, ie. WD-Extra, WG-12, Norit Row 0.8 and Filtrasorb 300. The processes efficiency was evaluated on the basis of changes in the following parameters, ie.: total organic carbon (TOC, permanganate index, UV absorbance, turbidity and colour. The ultrasounds were generated by means of disintegrator Sonics&Materials VCX 130, using the sonication time of 1 and 5 minutes. The results obtained for the batch tests allowed to observe a beneficial effect of ultrasound on the efficiency of the removal of organic material in the sorption process. The combination of sonication and sorption on activated carbon increased the efficiency of the removal of organic matter by 6–37% for TOC, and 18.6–27.9% for permanganate index, depending on the sorbent used. The positive laboratory results were not confirmed in a pilot scale. In the flow conditions the sonication process did not affect the efficiency of removal of organic matter on the filter model with a bed of activated carbon.

  2. Preparation of diamond like carbon thin film on stainless steel and ...

    Indian Academy of Sciences (India)

    Diamond-like carbon; buffer layer; plasma CVD; surface characterization; biomedical applications. Abstract. We report the formation of a very smooth, continuous and homogeneous diamond-like carbon DLC thin coating over a bare stainless steel surface without the need for a thin Si/Cr/Ni/Mo/W/TiN/TiC interfacial layer.

  3. Stress and Composition of Carbon Stabilized Expanded Austenite on Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2009-01-01

    Low-temperature gaseous carburizing of stainless steel is associated with a colossal supersaturation of the fcc lattice with carbon, without the development of carbides. This article addresses the simultaneous determination of stress and composition profiles in layers of carbon xpanded austenite ...

  4. A computational model for the carbon transfer in stainless steel sodium systems

    International Nuclear Information System (INIS)

    Casadio, S.; Scibona, G.

    1980-01-01

    A method is proposed of computing the carbon transfer in the type 316, 304 and 321 stainless steels in sodium environment as a function of temperature, exposure time and carbon concentration in the sodium. The method is based on the criteria developed at ANL by introducing some simplifications and takes also into account the correlations obtained at WARD. Calculated carbon profiles are compared both with experimental data and with the results available by the other computer methods. The limits for quantitative predictions of the stainless steel carburization or decarburization exposed in a specific environment are discussed. (author)

  5. Carbon and chromium oxidation kinetics on argon-oxygen refining of stainless steel

    International Nuclear Information System (INIS)

    Povolotskij, D.Ya.; Zyryanov, S.V.; Kirilenko, E.G.

    1996-01-01

    A study was made into the process of carbon and chromium oxidation when refining stainless steels with 14.5-17.9 % Cr in a 100 t electric furnace. During argon-oxygen refining the oxidation of carbon is shown to proceed under varying kinetic conditions at carbon contents about 0.2 %. At low carbon contents a mixed regime of internal and external diffusion takes place. Oxidation rate is defined by carbon concentration, oxygen consumption and oxidation potential of argon-oxygen mixture. Chromium is oxidized concurrently with carbon. Its oxidation rate is dependent on the consumption of the oxygen blow in combination with argon. 6 refs., 2 figs., 1 tab

  6. The effect of heat treatment on high temperature mechanical properties of microalloyed medium carbon steel

    International Nuclear Information System (INIS)

    Guenduez, Sueleyman; Acarer, Mustafa

    2006-01-01

    In the present work, high temperature tensile properties and abrasive wear performance of a microalloyed medium carbon steel has been examined. Tensile and abrasive wear testing were carried out on as-received and heat treated specimens. The research has shown that microalloyed medium carbon steel was susceptible to dynamic strain ageing due to interaction of mobile dislocations and solid atoms, such as carbon and/or nitrogen. The interaction between dislocations and solid atoms at 200-300 deg. C changes the work hardening rate and contributes to dynamic strain ageing. These interactions also increased abrasive wear resistance of the microalloyed medium carbon steel at 300 deg. C. Therefore, the inference can be drawn that dynamic strain ageing caused an improvement on abrasion resistance

  7. Enhanced Corrosion Resistance of Carbon Steel in Hydrochloric Acid Solution by Eriobotrya Japonica Thunb. Leaf Extract: Electrochemical Study.

    Science.gov (United States)

    Yang, Wenjing; Wang, Qihui; Xu, Ke; Yin, Yanjun; Bao, Hebin; Li, Xueming; Niu, Lidan; Chen, Shiqi

    2017-08-16

    The biodegradable inhibitors, which could effectively reduce the rate of corrosion of carbon steel, were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The mixed-type inhibitors extracted from Eriobotrya japonica Thunb. leaf exhibited excellent inhibition performance, and the inhibition efficiency for carbon steel reached 90.0% at 298 K in hydrochloric acid. Moreover, the adsorption mechanism of the inhibitors on a carbon steel surface is described by the Langmuir adsorption isotherm. Simultaneously, the corrosion morphology of the carbon steel and the inhibitor structure were analyzed by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively.

  8. 76 FR 31938 - Certain Hot-Rolled Carbon Steel Flat Products From India: Notice of Preliminary Results of 2009...

    Science.gov (United States)

    2011-06-02

    ... the File from Christopher Hargett, International Trade Compliance Analyst, through Melissa Skinner... Skinner, Office Director, concerning ``Certain Hot-Rolled Carbon Steel Flat Products from India: Customs...

  9. The Influence of Calcium Carbonate Composition and Activated Carbon in Pack Carburizing Low Carbon Steel Process in The Review of Hardness and Micro Structure

    Science.gov (United States)

    Hafni; Hadi, Syafrul; Edison

    2017-12-01

    Carburizing is a way of hardening the surface by heating the metal (steel) above the critical temperature in an environment containing carbon. Steel at a temperature of the critical temperature of affinity to carbon. Carbon is absorbed into the metal form a solid solution of carbon-iron and the outer layer has high carbon content. When the composition of the activator and the activated charcoal is right, it will perfect the carbon atoms to diffuse into the test material to low carbon steels. Thick layer of carbon Depending on the time and temperature are used. Pack carburizing process in this study, using 1 kg of solid carbon derived from coconut shell charcoal with a variation of 20%, 10% and 5% calcium carbonate activator, burner temperature of 950 0C, holding time 4 hours. The test material is low carbon steel has 9 pieces. Each composition has three specimens. Furnace used in this study is a pack carburizing furnace which has a designed burner box with a volume of 1000 x 600 x 400 (mm3) of coal-fired. Equipped with a circulation of oxygen from the blower 2 inches and has a wall of refractory bricks. From the variation of composition CaCO3, microstructure formed on the specimen with 20% CaCO3, better diffusion of carbon into the carbon steel, it is seen by the form marten site structure after quenching, and this indicates that there has been an increase of or adding carbon to in the specimen. This led to the formation of marten site specimen into hard surfaces, where the average value of hardness at one point side (side edge) 31.7 HRC

  10. Development of Evaluation Technology for Prevention of Two-Phase FAC on Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Shim, Heesang; Lee, Eun Hee; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    There are many pipelines to be managed from wall thinning by flow accelerated corrosion (FAC) in the secondary system of a nuclear power. FAC is a process in which a normally protective oxide layer on the internal carbon or low-alloy steel piping surface dissolves into a stream of flowing water or a wet steam mixture. In this process, the oxide layer becomes thinner and the corrosion rate increases until the corrosion rate and dissolution rates are equal. Recent researches and reports indicate that the FAC problem is prevalent in spite of the development of an inspection method and management skills applying computer programs. Therefore, it is important to mitigate or prevent FAC on the carbon steel, and surface coating technology has been investigated for pipeline systems in a steam flow. Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to manage the FAC of carbon steel piping. Some of the chemicals were known as a corrosion inhibitor. Bateman et al. reported that the addition of Ti may decrease the FAC rate of carbon steel by ∼ 65 %, TiO{sub 2} was also effective in mitigating the stress corrosion cracking of steam generator tubes under concentrated crevice conditions. A platinum doping method was applied as another mitigation strategy of carbon steel wall thinning. Noble metal, including Pt, had produced the layers of a very high catalyst concentration and this catalytic effect induced a lower corrosion potential for nickel alloys.

  11. The effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite

    International Nuclear Information System (INIS)

    Nishimura, T.; Wada, R.; Nishimoto, H.; Fujiwara, K.; Taniguchi, N.; Honda, A.

    1999-10-01

    As a part of evaluation of corrosion life of carbon steel overpack, the experimental studies have been performed on the effects of bacteria on the corrosion behavior of carbon steel in compacted bentonite using iron bacteria (IB) as a representative oxidizing bacteria and sulphur reducing bacteria (SRB) as a representative reducing bacteria. The results of the experimental studies showed that; The activity of SRB was low in compacted bentonite in spite of applying suitable condition for the action of bacteria such as temperature and nutritious solution. Although the corrosion behavior of carbon steel was affected by the existence of bacteria in simple solution, the corrosion rates of carbon steel in compacted bentonite were several μ m/year -10 μ m/year irrespective of coexistence of bacteria and that the corrosion behavior was not affected by the existence of bacteria. According to these results, it was concluded that the bacteria would not affect the corrosion behavior of carbon steel overpack under repository condition. (author)

  12. Development of Evaluation Technology for Prevention of Two-Phase FAC on Carbon Steel

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Shim, Heesang; Lee, Eun Hee; Hur, Do Haeng

    2014-01-01

    There are many pipelines to be managed from wall thinning by flow accelerated corrosion (FAC) in the secondary system of a nuclear power. FAC is a process in which a normally protective oxide layer on the internal carbon or low-alloy steel piping surface dissolves into a stream of flowing water or a wet steam mixture. In this process, the oxide layer becomes thinner and the corrosion rate increases until the corrosion rate and dissolution rates are equal. Recent researches and reports indicate that the FAC problem is prevalent in spite of the development of an inspection method and management skills applying computer programs. Therefore, it is important to mitigate or prevent FAC on the carbon steel, and surface coating technology has been investigated for pipeline systems in a steam flow. Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to manage the FAC of carbon steel piping. Some of the chemicals were known as a corrosion inhibitor. Bateman et al. reported that the addition of Ti may decrease the FAC rate of carbon steel by ∼ 65 %, TiO 2 was also effective in mitigating the stress corrosion cracking of steam generator tubes under concentrated crevice conditions. A platinum doping method was applied as another mitigation strategy of carbon steel wall thinning. Noble metal, including Pt, had produced the layers of a very high catalyst concentration and this catalytic effect induced a lower corrosion potential for nickel alloys

  13. Effect of CO2 partial pressure and different CO2 phases on carbon steel corrosion

    Science.gov (United States)

    Mahlobo, MGR; Premlall, K.; Olubambi, PA

    2017-12-01

    Carbon capture and storage (CCS) is the recent promising technology aimed at reducing greenhouse gas emission. Like many other developed technologies, CCS is faced with great challenges such as pipeline transportation failure due to corrosion. There are many factors contributing to steel corrosion during the pipeline transportation of carbon dioxide (CO2). This study focuses on CO2 partial pressure and different phases of CO2 as some of the factors contributing to steel corrosion. Carbon steel was used as a testing specimen. High pressure reactor was used in this study to compress CO2 from low to high pressures ultimately changing the CO2 from gaseous phase to gas/liquid phase (subcritical) and to dense phase (supercritical). Weight loss method was employed to determine the corrosion rate while scanning electron microscopy (SEM) and X-Ray diffraction (XRD) were used to study the carbon steel morphology and phase analysis. Using low magnification digital camera, the type of corrosion that took place on the carbon steel surface was identified.

  14. A review of degradation modes of low carbon steel in brine environments

    International Nuclear Information System (INIS)

    Natalie, C.A.

    1987-01-01

    A literature search was conducted to review information on degradation modes of low carbon steel in brine solutions. A computer search was used to obtain articles from 1970 to present while a manual search was conducted for articles published prior to 1970. The published articles and reports indicated that uniform corrosion occurred in sea water, geothermal brines and simulated repository brines. The uniform corrosion rate increased with decreasing pH, increasing oxygen contest of brine and increasing temperature. Pitting of low carbon steel in brine solutions was related to scale formation due to presences of sulfur and heavy metal ions or mill scale present prior to exposure. Low carbon steel did not appear to be susceptible to stress corrosion cracking, but data was limited. The presence of anaerobic bacteria greatly increased the rate of corrosion of low carbon steel as compared to sterile conditions. If sufficient hydrogen is present, low carbon steel could fail due to hydrogen embrittlement in brine solutions. However, this is an area where experimental work needs to be done under more specific conditions related to salt repositories. Corrosion fatigue and stray current corrosion require specific conditions to occur which can be avoided during waste storage and were there fore not addressed. Also, galvanic effects were not addressed as it will be possible to minimize galvanic effects by design. 226 refs., 4 tabs

  15. Effect of Ethanol Chemistry on SCC of Carbon Steel

    Science.gov (United States)

    2011-02-22

    Pipeline companies have a keen interest in assessing the feasibility of transporting fuel grade ethanol (FGE) and ethanol blends in existing pipelines. Previous field experience and laboratory research, funded by PRCI and API, has shown that steel ca...

  16. Corrosion behavior of Carbon Steels in CCTS Environment

    OpenAIRE

    Cabrini, Marina; Lorenzi, Sergio; Pastore, Tommaso

    2016-01-01

    The paper reports the results of an experimental work on the effect of steel microstructures on morphology and protectiveness of the corrosion scale formed in water saturated by supercritical CO2. Two HSLA steels were tested. The microstructures were modified by means of different heat treatments. Weight loss was measured after exposure at CO2 partial pressure of 80 bar and 60°C temperature. The morphology of the scale was analyzed by means of scanning electron microscope (SEM) energy-dispers...

  17. 77 FR 69790 - Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Final Results...

    Science.gov (United States)

    2012-11-21

    ... steel flat products (``hot-rolled steel'') from the People's Republic of China (``PRC''). The period of...\\ See Certain Hot-Rolled Carbon Steel Flat Products From the People's Republic of China: Preliminary... Products from the People's Republic of China, 66 FR 59561 (November 29, 2001), remains dispositive. Final...

  18. Corrosion protection of carbon steel by an epoxy resin containing organically modified clay

    OpenAIRE

    Hang, To Thi Xuan; Truc, Trinh Anh; Nam, Truong Hoai; Oanh, Vu Ke; Jorcin, Jean-Baptiste; Pébère, Nadine

    2007-01-01

    International audience; This study focusses on the use of montmorillonite clay (MMT) treated with an organic compound (aminotrimethylphosphonic acid (ATMP)) and dispersed in an epoxy resin to improve corrosion protection of carbon steel. X-ray diffraction was performed to verify that the individual silicate layers were separated and dispersed in the epoxy resin. Corrosion resistance of the coated steel was evaluated by electrochemical impedance spectroscopy (EIS) and local electrochemical imp...

  19. Yttrium implantation effects on extra low carbon steel and pure iron

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Clermont-Ferrand-2 Univ., Le Puy en Velay (France). Lab. Vellave d`Elaboration; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Advanced Materials, Joint Research Center, The European Commission, 21020, Ispra (Vatican City State, Holy See) (Italy); Josse-Courty, C. [Laboratoire de Recherche sur la Reactivite des Solides, UMR 56-13 CNRS, UFR Sciences et Techniques, 9 Avenue A. Savary, B.P. 400, 21011, Dijon Cedex (France)

    1999-05-25

    Extra low carbon steel and pure electrolytic iron samples were yttrium implanted using ion implantation technique. Compositions and structures of pure iron and steel samples were investigated before and after yttrium implantation by several analytical and structural techniques (RBS, SIMS, RHEED and XRD) to observe the yttrium implantation depth profiles in the samples. This paper shows the different effects of yttrium implantations (compositions and structures) according to the implanted sample nature. (orig.) 23 refs.

  20. INCREASING STAMPING FORMABILITY OF LOW-CARBON COLD ROLLED THIN STEEL SHEETS

    Directory of Open Access Journals (Sweden)

    I. Tatarkina

    2015-12-01

    Full Text Available The use of surfactant (épila was studied as a method for improving the cold-formability of steel sheets. The factors of the resulting effect were analyzed. Application of épila significantly reduces the surface roughness and decreases the stress concentrates. Epilam fills pores and microcracks, displaces moisture and gases, thereby reducing metal embrittlement. The application of épila pro-vides the highest category of drawing the low carbon sheet steel 08kp.

  1. Effects of LWR environments on fatigue life of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1995-03-01

    SME Boiler and Pressure Vessel Code provides construction of nuclear power plant components. Figure I-90 Appendix I to Section III of the Code specifies fatigue design curves for structural materials. While effects of environments are not explicitly addressed by the design curves, test data suggest that the Code fatigue curves may not always be adequate in coolant environments. This paper reports the results of recent fatigue tests that examine the effects of steel type, strain rate, dissolved oxygen level, strain range, loading waveform, and surface morphology on the fatigue life of A 106-Gr B carbon steel and A533-Gr B low-alloy steel in water

  2. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments

    International Nuclear Information System (INIS)

    Majumdar, S.; Chopra, O.K.; Shack, W.J.

    1993-01-01

    Both temperature and oxygen affect fatigue life; at the very low dissolved-oxygen levels in PWRs and BWRs with hydrogen water chemistry, environmental effects on fatigue life are modest at all temperatures (T) and strain rates. Between 0.1 and 0.2 ppM, the effect of dissolved-oxygen increases rapidly. In oxygenated environments, fatigue life depends strongly on strain rate and T. A fracture mechanics model is developed for predicting fatigue lives, and interim environmentally assisted cracking (EAC)-adjusted fatigue curves are proposed for carbon steels, low-alloy steels, and austenitic stainless steels

  3. X-ray photoelectron spectroscopy characterization of high dose carbon-implanted steel and titanium alloys

    Science.gov (United States)

    Viviente, J. L.; García, A.; Alonso, F.; Braceras, I.; Oñate, J. I.

    1999-04-01

    A study has been made of the depth dependence of the atomic fraction and chemical bonding states of AISI 440C martensitic stainless steel and Ti-6Al-4V alloy implanted with 75 keV C + at very high doses (above 10 18 ions cm -2), by means of X-ray photoelectron spectroscopy combined with an Ar + sputtering. A Gaussian-like carbon distribution was observed on both materials at the lowest implanted dose. More trapezoidal carbon depth-profiles were found with increasing implanted doses, and a pure carbon layer was observed only on the titanium alloy implanted at the highest dose. The implanted carbon was combined with both base metal and carbon itself to form metallic carbides and graphitic carbon. Furthermore, carbon-enriched carbides were also found by curve fitting the C 1s spectra. The titanium alloy showed a higher carbidic contribution than the steel implanted at the same C + doses. A critical carbon concentrations of about 33 at.% and 23 at.% were measured for the formation of C-C bonds in Ti-6Al-4V and steel samples, respectively. The carbon atoms were bound with metal to form carbidic compounds until these critical concentrations were reached; when this C concentration was exceeded the proportion of C-C bonds increased and resulted in the growth of carbonaceous layers.

  4. Corrosion Behaviour of Nickel Plated Low Carbon Steel in Tomato Fluid

    Directory of Open Access Journals (Sweden)

    Oluleke OLUWOLE

    2010-12-01

    Full Text Available This research work investigated the corrosion resistance of nickel plated low carbon steel in tomato fluid. It simulated the effect of continuous use of the material in a tomato environment where corrosion products are left in place. Low carbon steel samples were nickel electroplated at 4V for 20, 25, 30 and 35 mins using Watts solution.The plated samples were then subjected to tomato fluid environment for for 30 days. The electrode potentials mV (SCE were measured every day. Weight loss was determined at intervals of 5 days for the duration of the exposure period. The result showed corrosion attack on the nickel- plated steel, the severity decreasing with the increasing weight of nickel coating on substrate. The result showed that thinly plated low carbon steel generally did not have any advantage over unplated steel. The pH of the tomato solution which initially was acidic was observed to progress to neutrality after 4 days and then became alkaline at the end of the thirty days test (because of corrosion product contamination of the tomatocontributing to the reduced corrosion rates in the plated samples after 10 days. Un-plated steel was found to be unsuitable for the fabrication of tomato processing machinery without some form of surface treatment - thick nickel plating is suitable as a protective coating in this environment.

  5. Study on pH conditions in deep underground by using isotopic analysis of carbonate minerals

    International Nuclear Information System (INIS)

    Iwatsuki, Teruki; Yoshida, Hidekazu; Hama, Katsuhiro; Metcalfe, R.

    2000-01-01

    This study was undertaken to develop a method for evaluating geochemical environments in deep granitic basement rocks. The method involves analyzing fracture-filling minerals to determine their isotopic compositions. A preliminary isotopic investigation (δ 13 C, δ 18 O, 14 C activity) of the groundwater and fracture-filling calcite in granite at the Tono research site, central Japan, was conducted. The isotopic compositions were used, together with geological evidence for the history of the Tono area, to infer the origins of the waters from which the calcite precipitated. These waters were:1. hydrothermal solutions, 2. relatively 'old' fresh water, 3. seawater, and 4. present groundwater. The investigation methods were very valuable for evaluating the temporal variations of geochemical conditions deep underground. The isotopic evidence for seawater is so far the most direct evidence that seawater penetrated into the granite in this area in the past. (author)

  6. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  7. A study on the impediment of thickness diminution of Carbon steel tube by using a applied magnetic field

    International Nuclear Information System (INIS)

    Kim, Jong Oh; Kim, Jong Hui; Cho, Wan Sik; Hong, Sung Min; Park, Yun Won

    2001-03-01

    Magnetic properties of the carbon steel tube which is used as the pipe laying of cooling water in nuclear power plant were measured to research the impediment of thickness diminution of carbon steel tube. Magnetic field distribution of carbon steel tube in the applied magnetic field was simulated by computer program. On the basis of the simulation results, Alnico 5DG and Alnico 5 were selected as the permanent magnets applicable to the carbon steel tube. Sm2Co17 magnet was used to compare the performance of permanent magnets. The experimental apparatus similar to the draining environment of cooling water in nuclear power plant was also manufactured in order to research the impediment of thickness diminution of carbon steel carbon tube

  8. Microbiologically influenced corrosion of carbon steel in the presence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    Tunaru, M.; Velciu, L.; Mihalache, M.; Laurentiu, P.

    2016-01-01

    Sulphate-reducing bacteria (SRB) are the most important organisms in microbiologically induced corrosion. In this context, the paper presents an assessment (by experimental tests) of the behaviour of carbon steel samples (SA106gr.B) in SRB media. Some of samples were immersed in microbial environment in order microbiological analysis of their surface and another part was used to perform accelerated electrochemical tests to determine electrochemical parameters for the system carbon steel / microbial medium (corrosion rate, the polarization resistance of the surface, susceptibility to pitting corrosion). The surfaces of the tested samples were analyzed using the optical and electronic microscope, and emphasized the role of bacteria in the development of biofilms under which appeared characteristics of corrosion attack. The correlation of all results confirmed that SRB accelerated the localized corrosion of the surfaces of SA 106gr.B carbon steel. (authors)

  9. Carbon steel protection in G.S. [Girldler sulphide] plants: Pt. 7

    International Nuclear Information System (INIS)

    Lires, Osvaldo; Delfino, Cristina; Rojo, Enrique.

    1989-01-01

    In order to protect carbon steel towers and piping of a GS experimental heavy water plant against corrosion produced by the action of aqueous solutions of hydrogen sulphide, a method, elsewhere published, was developed. Carbon steel exposed to saturated aqueous solutions of hydrogen sulphide forms iron sulphide scales. In oxygen free solutions, evolution of corrosion follows the sequence mackinawite → cubic ferrous sulphide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite and pyrite are the most protective layers (these are obtained at 130 deg C, 2 MPa for a period of 14 days). During a plant shutdown procedures, the carbon steel protected with those scales is exposed to water and highly humid air; under such conditions oxidation is unavoidable. Later, treatment in plant conditions does not regenerate scales because the composition of regenerated scales involves more soluble iron sulphides such as mackinawite and troilite. Therefore, it is not recommendable to expose the protective scales to atmospherical conditions. (Author)

  10. Size of Non-Metallic Inclusions in High-Grade Medium Carbon Steel

    Directory of Open Access Journals (Sweden)

    Lipiński T.

    2014-12-01

    Full Text Available Non-metallic inclusions found in steel can affect its performance characteristics. Their impact depends not only on their quality, but also, among others, on their size and distribution in the steel volume. The literature mainly describes the results of tests on hard steels, particularly bearing steels. The amount of non-metallic inclusions found in steel with a medium carbon content melted under industrial conditions is rarely presented in the literature. The tested steel was melted in an electric arc furnace and then desulfurized and argonrefined. Seven typical industrial melts were analyzed, in which ca. 75% secondary raw materials were used. The amount of non-metallic inclusions was determined by optical and extraction methods. The test results are presented using stereometric indices. Inclusions are characterized by measuring ranges. The chemical composition of steel and contents of inclusions in every melts are presented. The results are shown in graphical form. The presented analysis of the tests results on the amount and size of non-metallic inclusions can be used to assess them operational strength and durability of steel melted and refined in the desulfurization and argon refining processes.

  11. Mechanical and service properties of low carbon steels processed by severe plastic deformation

    Directory of Open Access Journals (Sweden)

    J. Zrnik

    2009-07-01

    Full Text Available The structure and properties of the 0,09% C-Mn-Si-Nb-V-Ti, 0,1% C-Mn-V-Ti and 0,09% C-Mo-V-Nb low-carbon steels were studied after cold equal-channel angular pressing (ECAP. ECAP leads to the formation of partially submicrocrystalline structure with a grain size of 150 – 300 nm. The submicrocrystalline 0,09% C-Mn-Si-Nb-V-Ti steel compared with the normalized steel is characterized by Re higher more than by a factor of 2 and by the impact toughness higher by a factor of 3,5 at a test temperature of -40°C. The plasticity in this case is somewhat lower. The high-strength state of the submicrocrystalline 0,1% C-Mn-V-Ti and 0,09% C-Mo-V-Nb steels after ECAP is retained up to a test temperature of 500°C. The strength properties at 600°C (i.e. the fire resistance of these steels are higher by 20-25% as compared to those of the undeformed steels. The strength of the 0,09% C-Mo-V-Nb steel at 600°C is substantially higher than that of the 0,1% C-Mn-V-Ti steel.

  12. Corrosion of austenitic and ferritic-martensitic steels exposed to supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Tan, L.; Anderson, M.; Taylor, D.; Allen, T.R.

    2011-01-01

    Highlights: → Oxidation is the primary corrosion phenomenon for the steels exposed to S-CO 2 . → The austenitic steels showed significantly better corrosion resistance than the ferritic-martensitic steels. → Alloying elements (e.g., Mo and Al) showed distinct effects on oxidation behavior. - Abstract: Supercritical carbon dioxide (S-CO 2 ) is a potential coolant for advanced nuclear reactors. The corrosion behavior of austenitic steels (alloys 800H and AL-6XN) and ferritic-martensitic (FM) steels (F91 and HCM12A) exposed to S-CO 2 at 650 deg. C and 20.7 MPa is presented in this work. Oxidation was identified as the primary corrosion phenomenon. Alloy 800H had oxidation resistance superior to AL-6XN. The FM steels were less corrosion resistant than the austenitic steels, which developed thick oxide scales that tended to exfoliate. Detailed microstructure characterization suggests the effect of alloying elements such as Al, Mo, Cr, and Ni on the oxidation of the steels.

  13. Ni-W coatings electrodeposited on carbon steel: Chemical composition, mechanical properties and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Arganaraz, M.P. Quiroga; Ribotta, S.B. [INQUINOA-CONICET, Instituto de Quimica Fisica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman, Ayacucho 471, (4000) San Miguel de Tucuman (Argentina); Folquer, M.E., E-mail: mefolquer@fbqf.unt.edu.ar [INQUINOA-CONICET, Instituto de Quimica Fisica, Facultad de Bioquimica, Quimica y Farmacia, Universidad Nacional de Tucuman, Ayacucho 471, (4000) San Miguel de Tucuman (Argentina); Gassa, L.M.; Benitez, G.; Vela, M.E.; Salvarezza, R.C. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, Suc. 4, C.C. 16, (1900) La Plata (Argentina)

    2011-07-01

    Highlights: > Hard, ductile and adherent nanostructured Ni-W coatings on carbon steel. > New procedures for achieving deposits by current pulse techniques. > Current pulse frequency was the dominant factor to define coating characteristics. > Ni-W coatings protect the carbon steel from corrosion induced by sulphate anions. - Abstract: Hard, ductile and adherent nanostructured Ni-W coatings were electrodeposited on carbon steel from electrolyte solutions containing sodium tungstate, nickel sulfate and sodium citrate, using different current pulse programs. Current pulse frequency was the dominant factor to define chemical composition, grain size, thickness and hardness. According to the electrodeposition conditions the deposited coatings showed 15-30 at% W, the grain size ranged from 65 to 140 nm, and the hardness varied from 650 to 850 Hv. Tungsten carbide also present in the coating contributed to its hardness. The corrosion resistance of the Ni-W coated steel was tested by potentiodynamic polarization in a neutral medium containing sulphate ions. The Ni-W coating protected the carbon steel from localized corrosion induced by sulphate anions.

  14. Development of carbon steel with superior resistance to wall thinning and fracture for nuclear piping system

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju

    2010-07-01

    Carbon steel is usually used for piping for secondary coolant system in nuclear power plant because of low cost and good machinability. However, it is generally reported that carbon steel was failed catastrophically because of its low resistance to wall thinning and fracture toughness. Especially, flow accelerated corrosion (FAC) is one of main problems of the wall thinning of piping in the nuclear power plant. Therefore, in this project, fabrication technology of new advanced carbon steel materials modified by dispersion of nano-carbide ceramics into the matrix is developed first in order to improve the resistance to wall thinning and fracture toughness drastically compared to the conventional one. In order to get highly wettable fine TiC ceramic particles into molten metal, the micro-sized TiC particles were first mechanically milled by Fe (MMed TiC/Fe) in a high energy ball mill machine in Ar gas atmosphere, and then mixed with surfactant metal elements (Sn, Cr, Ni) to obtain better wettability, as this lowered surface tension of the carbon steel melt. According to microscopic images revealed that an addition of MMed TiC/Fe-surfactant mixed powders favorably disperses the fine TiC particles in the carbon steel matrix. It was also found that the grain size refinement of the cast matrix is achieved remarkably when fine TiC particles were added due to the fact that they act as nucleation sites during the solidification process. As a results, a cast carbon steel dispersed with fine TiC particles shows improved mechanical properties such as hardness, tensile strength and cavitation resistance compared to that of without particles. However, the slight decrease of toughness was found

  15. Super-strong dislocation-structured high-carbon martensite steel.

    Science.gov (United States)

    Sun, Jun-Jie; Liu, Yong-Ning; Zhu, Yun-Tian; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Liu, Wen-Qing; Ren, Xiao-Bing

    2017-07-26

    High-carbon martensite steels (with C > 0.5 wt.%) are very hard but at the same time as brittle as glass in as-quenched or low-temperature-tempered state. Such extreme brittleness, originating from a twin microstructure, has rendered these steels almost useless in martensite state. Therefore, for more than a century it has been a common knowledge that high-carbon martensitic steels are intrinsically brittle and thus are not expected to find any application in harsh loading conditions. Here we report that these brittle steels can be transformed into super-strong ones exhibiting a combination of ultrahigh strength and significant toughness, through a simple grain-refinement treatment, which refines the grain size to ~4 μm. As a result, an ultra-high tensile strength of 2.4~2.6 GPa, a significant elongation of 4~10% and a good fracture toughness (K 1C ) of 23.5~29.6 MPa m 1/2 were obtained in high-carbon martensitic steels with 0.61-0.65 wt.% C. These properties are comparable with those of "the king of super-high-strength steels"-maraging steels, but achieved at merely 1/30~1/50 of the price. The drastic enhancement in mechanical properties is found to arise from a transition from the conventional twin microstructure to a dislocation one by grain refinement. Our finding may provide a new route to manufacturing super-strong steels in a simple and economic way.

  16. A discussion for stabilization time of carbon steel in atmospheric corrosion

    Science.gov (United States)

    Zhang, Zong-kai; Ma, Xiao-bing; Cai, Yi-kun

    2017-09-01

    Stabilization time is an important parameter in long-term prediction of carbon steel corrosion in atmosphere. The range of the stabilization time of carbon steel in atmospheric corrosion has been published in many scientific literatures. However, the results may not precise because engineering experiences is dominant. This paper deals with the recalculation of stabilization time based on ISO CORRAG program, and analyzes the results and makes a comparison to the data mentioned above. In addition, a new thinking to obtain stabilization time will be proposed.

  17. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method

    International Nuclear Information System (INIS)

    Liu, Zaijian; Wang, Wei; Wang, Jia; Peng, Xin; Wang, Yanhua; Zhang, Penghui; Wang, Haijie; Gao, Congjie

    2014-01-01

    Corrosion behavior of carbon steel under seawater film with various thickness was investigated by the wire beam electrode (WBE) method. It was found that the corrosion rate of carbon steel increased significantly under thin seawater film than it was immersed in seawater. The current variation under seawater film indicated that the thickness of diffusion layer of oxygen was about 500 μm, and the maximal current appeared around 40 μm, at which corrosion rate transited from cathodic control to anodic control. The results suggest that WBE method is helpful to study the corrosion process under thin electrolyte film

  18. Effect of combined tensile, bending and torsion deformation on medium carbon steel wire

    Directory of Open Access Journals (Sweden)

    Polyakova Marina

    2017-01-01

    Full Text Available Such schemes of plastic deformation as bending, torsion, tension, compression etc. are considered to be the basic schemes for metal processing methods. Each of these types of deformation has specific influence on microstructure and mechanical properties of the processed metal. For the optimal result of plastic deformation impact on metal structure and properties the mechanism of plastic processing should follow the definite requirements. The effect of different kinds of deformation on medium carbon steel wire was studied using several methods: scanning electron microscopy, atomic force microscopy, dynamic hardness testing. The obtained results can be used in the design of combined methods of deformation processing of carbon steel.

  19. The development of RFT technique for carbon steel tubes in balance-of-plant heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Soo; Kim, Han Jong; Moon, Yong Sick; Kim, Jae Dong; Kim, Wang Bae [Korea Hydro and NuclearPower Co.,Ltd, Seoul (Korea, Republic of); Nam, Min Woo [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2005-05-15

    The NDT method of carbon steel tubes is applied RFT technique. As other NDT methods, It is surprising that RFT has been rapidly developed over the past decade. These improvements have resulted in multi-frequency system, dual driver probes and development of analysis technique. Also these improvements give some profit to power plants as well as general industry. Therefore, the purpose of this study is to improve the reliability of RFT technique for carbon steel tubes. To uplift RFT technique, probes, calibration standards and specimen was developed.

  20. Prediction on Austenite Grain Growth in High Carbon Steel

    Directory of Open Access Journals (Sweden)

    MA Han

    2017-01-01

    Full Text Available The austenite grain growth behavior of Ti-bearing and Ti-free steel was investigated using confocal laser scanning microscope (CLSM and transmission electron microscope (TEM.Samples were held for 60min at 1123-1473K and then austenite grain sizes for different holding time at a series of temperatures were measured.The results show that austenite grain size of both steels increases with the increase of temperature.Besides,the austenite grain size of both steels grows with the holding time,which meets parabolic equation.The second phase particle was observed.The equation of Ostwald ripening was introduced to calculate the size of particle,and the volume fraction equation of second phase particle was applied to calculate the volume fraction of particle.Meanwhile,the modified Gladman model was adopted to predict austenite grain growth.The predicted results agree well with the measured results.

  1. Practical domain for ultrasonic testing of stainless steel over plain carbon steel layered components using M21 waves

    International Nuclear Information System (INIS)

    Grewal, D.S.; Bray, D.E.

    1995-01-01

    The first higher order mode of the Rayleigh wave was discussed by Sezawa in the early part of this century in context of seismological wave studies. These Sezawa, or M 21 , or first higher order mode Rayleigh waves, have subsequently been used in the field of nondestructive testing of layered materials based on the development of the seismological model of the Sezawa waves by others. In this paper the study of the Tiersten formulation in context with slow speed over high speed materials, e.g. stainless steel overlay on plain carbon steel, the limitations and applicability of that formulation is reported. This study illustrates the practical bounds for testing such layered media, using numerical analysis of this formulation for the first higher-order mode to establish theoretical limits, and corroboration of these bounds by experimental results

  2. 76 FR 78313 - Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam

    Science.gov (United States)

    2011-12-16

    ... COMMISSION Circular Welded Carbon-Quality Steel Pipe From India, Oman, the United Arab Emirates, and Vietnam... United Arab Emirates, and Vietnam of circular welded carbon- quality steel pipe, provided for in... of India, Oman, the United Arab Emirates, and Vietnam.\\2\\ \\1\\ The record is defined in sec. 207.2(f...

  3. Pathways to a low-carbon iron and steel industry in the medium-term : the case of Germany

    NARCIS (Netherlands)

    Arens, Marlene; Worrell, Ernst; Eichhammer, Wolfgang; Hasanbeigi, Ali; Zhang, Qi

    2017-01-01

    The iron and steel industry is a major industrial emitter of carbon dioxide globally and in Germany. If European and German climate targets were set as equal proportional reduction targets (referred to here as “flat” targets) among sectors, the German steel industry would have to reduce its carbon

  4. 77 FR 25405 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-04-30

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for the Preliminary Results of... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering...

  5. 75 FR 18153 - Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-04-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products from the Republic of Korea: Extension of Time Limit for Preliminary Results of... countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea. See Countervailing...

  6. 77 FR 31877 - Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-350 and 731-TA-616 and 618 (Third Review)] Corrosion-Resistant Carbon Steel Flat Products From Germany and Korea; Scheduling of Full Five-Year Reviews... corrosion-resistant carbon steel flat products from Korea and the antidumping duty orders on corrosion...

  7. 75 FR 25841 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2010-05-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering...

  8. 76 FR 21332 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-15

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limits for the Preliminary Results of... antidumping duty order on corrosion-resistant carbon steel flat products from the Republic of Korea, covering...

  9. 76 FR 20954 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-04-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  10. 77 FR 16810 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2012-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Extension of Time Limit for Preliminary Results of... Register the countervailing duty order on corrosion-resistant carbon steel flat products (CORE) from Korea...

  11. 76 FR 3083 - Certain Welded Carbon Steel Pipe and Tube From Turkey: Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2011-01-19

    ... International Trade Administration Certain Welded Carbon Steel Pipe and Tube From Turkey: Extension of Time... administrative review of the antidumping duty order on certain welded carbon steel pipe and tube from Turkey... published in accordance with section 751(a)(3)(A) of the Act. Dated: January 12, 2011. Christian Marsh...

  12. 78 FR 40428 - Certain Hot-Rolled Carbon Steel Flat Products from India: Rescission of Antidumping Duty...

    Science.gov (United States)

    2013-07-05

    ... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products from India: Rescission of... administrative review of the antidumping duty order on certain hot- rolled carbon steel flat products (hot rolled... Act of 1930, as amended, and 19 CFR 351.213(d)(4). Dated: June 27, 2013 Christian Marsh, Deputy...

  13. 78 FR 25253 - Seamless Carbon and Alloy Steel Standard, Line, and Pressure From the People's Republic of China...

    Science.gov (United States)

    2013-04-30

    ... International Trade Administration Seamless Carbon and Alloy Steel Standard, Line, and Pressure From the People... seamless carbon and alloy steel standard, line, and pressure pipe ] (``seamless pipe'') from the People's... Act of 1930, as amended, and 19 CFR 351.213(d)(4). Dated: April 22, 2013. Christian Marsh, Deputy...

  14. 76 FR 71938 - Circular Welded Carbon Steel Pipes and Tubes From Thailand: Extension of Time Limit for...

    Science.gov (United States)

    2011-11-21

    ... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Thailand: Extension of Time... the antidumping duty order on circular welded carbon steel pipes and tubes from Thailand for the...: November 15, 2011. Christian Marsh, Deputy Assistant Secretary for Antidumping and Countervailing Duty...

  15. 77 FR 2511 - Certain Welded Carbon Steel Pipe and Tube From Turkey: Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2012-01-18

    ... International Trade Administration Certain Welded Carbon Steel Pipe and Tube From Turkey: Extension of Time... administrative review of the antidumping duty order on certain welded carbon steel pipe and tube from Turkey...)(A) and 777(i)(1) of the Act. Dated: January 11, 2012. Christian Marsh, Deputy Assistant Secretary...

  16. 76 FR 65179 - Certain Welded Carbon Steel Standard Pipe From Turkey: Extension of Time for Preliminary Results...

    Science.gov (United States)

    2011-10-20

    ... International Trade Administration Certain Welded Carbon Steel Standard Pipe From Turkey: Extension of Time for... countervailing duty order on certain welded carbon steel standard pipe from Turkey covering the period of review...: October 14, 2011. Christian Marsh, Deputy Assistant Secretary for Antidumping and Countervailing Duty...

  17. 76 FR 34044 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time Limits for the Preliminary...

    Science.gov (United States)

    2011-06-10

    ... International Trade Administration Carbon and Certain Alloy Steel Wire Rod From Mexico: Extension of Time Limits... administrative review of the antidumping duty order on carbon and certain alloy steel wire rod from Mexico...) and 777(i)(1) of the Act. Dated: June 3, 2011. Christian Marsh, Deputy Assistant Secretary for...

  18. 76 FR 3612 - Circular Welded Carbon Steel Pipes and Tubes From Taiwan; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2011-01-20

    ... International Trade Administration Circular Welded Carbon Steel Pipes and Tubes From Taiwan; Extension of Time... rescinding the review with respect to Yieh Hsing. See Circular Welded Carbon Steel Pipes and Tubes From... accordance with sections 751(a)(3)(A) and 777(i) of the Act. Dated: January 13, 2011. Christian Marsh, Deputy...

  19. 78 FR 40429 - Certain Hot-Rolled Carbon Steel Flat Products From India: Rescission of Countervailing Duty...

    Science.gov (United States)

    2013-07-05

    ... International Trade Administration Certain Hot-Rolled Carbon Steel Flat Products From India: Rescission of... administrative review of the ] countervailing duty order on certain hot-rolled carbon steel flat products (``hot...)(4). Dated: June 27, 2013. Christian Marsh, Deputy Assistant Secretary for Antidumping and...

  20. 76 FR 21331 - Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and the People...

    Science.gov (United States)

    2011-04-15

    ...-807, A-570-814] Certain Carbon Steel Butt-Weld Pipe Fittings From Brazil, Japan, Taiwan, Thailand, and... butt-weld pipe fittings from Brazil, Japan, Taiwan, Thailand, and the People's Republic of China (PRC... duty orders on carbon steel butt-weld pipe fittings from Brazil, Japan, Taiwan, Thailand, and the PRC...

  1. 77 FR 25141 - Corrosion-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time...

    Science.gov (United States)

    2012-04-27

    ...-Resistant Carbon Steel Flat Products From Germany and South Korea: Extension of Time Limits for Preliminary...) orders on corrosion-resistant carbon steel flat products (CORE) from Germany and South Korea (Korea... from Germany and South Korea: Adequacy Redetermination Memorandum,'' (April 20, 2012). The preliminary...

  2. 76 FR 34101 - Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia

    Science.gov (United States)

    2011-06-10

    ...] Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, Japan, and Russia Determinations On...-quality steel products from Russia would be likely to lead to continuation or recurrence of material... products from Brazil and revocation of the antidumping duty orders on hot-rolled flat-rolled carbon-quality...

  3. Biomass-derived carbon composites for enrichment of dilute methane from underground coal mines.

    Science.gov (United States)

    Bae, Jun-Seok; Jin, Yonggang; Huynh, Chi; Su, Shi

    2018-04-03

    Ventilation air methane (VAM), which is the main source of greenhouse gas emissions from coal mines, has been a great challenge to deal with due to its huge flow rates and dilute methane levels (typically 0.3-1.0 vol%) with almost 100% humidity. As part of our continuous endeavor to further improve the methane adsorption capacity of carbon composites, this paper presents new carbon composites derived from macadamia nut shells (MNSs) and incorporated with carbon nanotubes (CNTs). These new carbon composites were fabricated in a honeycomb monolithic structure to tolerate dusty environment and to minimize pressure drop. This paper demonstrates the importance of biomass particle size distributions when formed in a composite and methane adsorption capacities at low pressures relevant to VAM levels. The selectivity of methane over nitrogen was about 10.4 at each relevant partial pressure, which was much greater than that (6.5) obtained conventionally (at very low pressures), suggesting that capturing methane in the presence of pre-adsorbed nitrogen would be a practical option. The equilibrium and dynamic performance of biomass-derived carbon composites were enhanced by 30 and 84%, respectively, compared to those of our previous carbon fiber composites. In addition, the presence of moisture in ventilation air resulted in a negligible effect on the dynamic VAM capture performance of the carbon composites, suggesting that our carbon composites have a great potential for site applications at coal mines because the cost and performance of solid adsorbents are critical factors to consider. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel.

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-09

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  5. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  6. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

    Science.gov (United States)

    Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan

    2017-04-01

    Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

  7. Modification of steel surface by plasma electrolytic saturation with nitrogen and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Kusmanov, S.A., E-mail: sakusmanov@yandex.ru; Kusmanova, Yu.V., E-mail: yulia.kusmanova@yandex.ru; Smirnov, A.A., E-mail: sciencealexsm@gmail.com; Belkin, P.N., E-mail: belkinp@yandex.ru

    2016-06-01

    The effect of the electrolyte composition with ammonia, acetone, and ammonium chloride on the structure and properties of low carbon steel was studied in anode plasma electrolytic nitrocarburising. An X-ray diffractometer, a scanning electron microscopy (SEM) and an optical microscope were used to characterize the phase composition of the modified layer and its surface morphology. Surface roughness was studied with a profilometer–profilograph. The hardness of the treated and untreated samples was measured using a microhardness tester. The sources of nitrogen and carbon are shown to be the products of evaporation and thermal decomposition of the electrolyte components. It is established that the influence of concentration of ammonia, acetone, and ammonium chloride on the size of the structural components of the hardened layer is explained by the competition of the anode dissolution, high-temperature oxidation and diffusion of the saturating component. The electrolyte composition (10–12.5% ammonium chloride, 5% acetone, 5% ammonia) and processing mode (800 °C, 5–10 min) of low carbon steels allowing to obtain the hardened surface layer up to 0.2 mm with microhardness 930 HV and with decrease in the roughness (R{sub a}) from 1.013 to 0.054 μm are proposed. The anode plasma electrolytic nitricarburising is able to decrease friction coefficient of the treated low carbon steel from 0.191 to 0.169 and wear rate from 13.5 mg to 1.0 mg. - Highlights: • Aqueous solution (12.5% NH{sub 4}Cl, 5% ammonia, 5% acetone) is proposed for PEN/C steels. • Microhardness of steel (0.2% C) is 930 HV due to PEN/C for 5–10 min at 800 °C. • Anode PEN/C of low carbon steel decreases its roughness (R{sub a}) from 1.013 to 0.054 μm. • Anode PEN/C decreases friction coefficient of low carbon steel from 0.191 to 0.169 • Anode PEN/C decreases wear loss of low carbon steel from 13.5 mg to 1.0 mg.

  8. Corrosion Response of Low Carbon Steel in Tropical Road Mud ...

    African Journals Online (AJOL)

    Corrosion damages in Steel and Cast- Iron frequently occur in automobile and other vehicle undercarriage parts as a result of regular road mud and other dirt deposits on those components on those vehicles operating on the poorly maintained roads in the developing countries. These ultimately result in Deposit and Pilling ...

  9. corrosion response of low carbon steel in tropical road mud

    African Journals Online (AJOL)

    Dr Obe

    called steel strip laminated Glass Re-inforced Epoxy. (SSL-GRE) pipeline materials with acceptably higher strength and rigidity (tensile strength =31MPa). These new materials appear to be very corrosion resistant but their performance has not yet been fully explored. Until these new corrosion resistant structural materials ...

  10. corrosion response of low carbon steel in tropical road mud

    African Journals Online (AJOL)

    Dr Obe

    A.N.Enetanya. Department of Mechanical Engineering, University of. Nigeria, Nsukka, Nigeria. ABSTRACT. Corrosion damages in Steel and Cast- Iron frequently occur in automobile and other vehicle undercarriage parts as a result of regular road mud and other dirt deposits on those components on those vehicles ...

  11. Effect of Prior Recovery on the Recrystallization of Carbon Steel ...

    African Journals Online (AJOL)

    An investigation has been carried out, using optical metallography and hardness measurement methods, to ascertain the effect of prior-recovery heat-treatment on the rate of recrystallization in mild steel. The results reveal a definite correlation between the combined effect of cold-work and degree of recovery on the one ...

  12. Influence of Molybdenum Addition on Mechanical Properties of Low Carbon HSLA-100 Steel

    Directory of Open Access Journals (Sweden)

    Bogucki R.

    2014-10-01

    Full Text Available The results of mechanical properties and microstructure observation of low carbon copper bearing steel with high addition of molybdenum are presented in this paper. This steels were characterized by contents of molybdenum in the range from 1% to 3% wt. After the thermo -mechanical processing the steels were subsequently quenched and tempered at different temperatures (500-800 °C for 1h. The changes of mechanical properties as function of tempering temperature were typical for the steel with the copper addition. The sudden drop of impact resistance after tempering from 575 °C to 600 °C was caused probably by precipitates of Laves phase of type Fe2Mo.

  13. The influence of molybdenum on stress corrosion in Ultra Low Carbon Steels with copper addition

    Directory of Open Access Journals (Sweden)

    M. Mazur

    2010-07-01

    Full Text Available The influence of molybdenum content on the process of stress corrosion of ultra-low carbon structural steels with the addition of copper HSLA (High Strength Low Alloy was analyzed. The study was conducted for steels after heat treatment consisting of quenching andfollowing tempering at 600°C and it was obtained microstructure of the tempered martensite laths with copper precipitates and the phaseLaves Fe2Mo type. It was found strong influence of Laves phase precipitate on the grain boundaries of retained austenite on rate anddevelopment of stress corrosion processes. The lowest corrosion resistance was obtained for W3 steel characterized by high contents ofmolybdenum (2.94% Mo which should be connected with the intensity precipitate processes of Fe2Mo phase. For steels W1 and W2which contents molybdenum equals 1.02% and 1.88%, respectively were obtained similar courses of corrosive cracking.

  14. Adhesion of composite carbon/hydroxyapatite coatings on AISI 316L medical steel

    Directory of Open Access Journals (Sweden)

    J. Gawroński

    2009-07-01

    Full Text Available In this paper are contains the results of studies concerning the problems associated with increased of hydroxyapatite (HAp adhesion, manufactured by using Pulse Laser Deposition (PLD method, to the austenitic steel (AISI 316L through the coating of carbon interlayer on it. Carbon coating was deposited by Radio Frequency Plasma Assisted Chemical Vapour Deposition (RF PACVD method.Test results unequivocally showed that the intermediate carbon layer in a determined manner increase the adhesion of hydroxyapatite to the metallic substrate. Obtained results give rise to deal with issues of manufacturing composite bilayer – carbon film/HAp – on ready implants, casted from austenitic cast steel by lost-wax process method as well as in gypsum forms.

  15. 75 FR 77828 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-12-14

    ...-Rolled Carbon-Quality Steel Products From Brazil: Extension of Time Limit for Final Results of...-Rolled Carbon Quality Steel Products From Brazil: Preliminary Results of Countervailing Duty... administrative review of the countervailing duty order on certain hot-rolled flat-rolled carbon- quality steel...

  16. 75 FR 64246 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of...

    Science.gov (United States)

    2010-10-19

    ...-Rolled Carbon-Quality Steel Products From Brazil: Correction to Notice of Antidumping Duty Order AGENCY... certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Antidumping Duty Order: Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products From Brazil, 67 FR 11093 (March 12, 2002...

  17. Influence of alloying elements on resistance to tempering of low carbon pearlitic steels

    International Nuclear Information System (INIS)

    Sandomirskij, M.M.; Rivkin, S.I.; Rudnev, A.D.

    1981-01-01

    Specific effect of chromium, nickel, molybdenum, vanadium on stability against weakening during the tempering of low-carbon chromium-nickel-molybdenum-vanadium pearlitic steels of the 15KhNMF type is investigated. It is established that temperature dependence of the specific effect of alloying elements on stability to the tempering of low-carbon pearlitic steel is characterized by the curve with the maximum, position of which in the temperature scale increases from chromium to molybdenum and vanadium. With the increase of the tempering duration specific effect of each of the elements first increases and then, reaching a certain maximum, decreases. With the increase of chromium content from 1 % to 3 % in the steels investigated its specific effect on stability to the tempering decrease monotonously [ru

  18. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo

    2007-01-01

    Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process of...... techniques like electrical resistance or mass loss should be used instead.......Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process...... if the biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system...

  19. A coupled carbonation-rust formation mechanical damage model for steel corrosion in reinforced concrete

    International Nuclear Information System (INIS)

    Nguyen, Huyen; Bary, B.; L'Hostis, Valerie; DeLarrard, T.

    2014-01-01

    This paper aims at presenting a strategy to simulate the corrosion of steel reinforcement due to carbonation of concrete in atmospheric environment. We propose a model coupling drying, carbonation, diffusion of oxygen, formation of rust and mechanics to describe these phenomena. The rust layer is assumed to be composed of two sub-layers with different elastic modulus. An unstable layer with a low modulus (from 0.1 to 5 GPa) is located next to the transformed medium, and another more stable one with a higher modulus (from 100 to 150 GPa) at the interface with steel reinforcement. This model is applied to a numerical meso-structure composed of 4 phases: mortar matrix, randomly distributed aggregates, steel rebar and rust layers to underline the effect of aggregates on damage initiation and corresponding crack pattern of concrete cover. (authors)

  20. Assessment of crevice corrosion and hydrogen-induced stress-corrosion cracks in titanium-carbon steel composite overpack for geological disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Nakayama, G.; Nakamura, N.; Fukaya, Y.; Akashi, M.; Ueda, H.

    2003-01-01

    Overpacks for high-level radioactive waste (HLW) must be reliable for geological disposal for as long as 1000-10 000 years. From a study of parameters such as the critical potential for initiation of crevice corrosion, E R,CREV and the free corrosion potential E sp in neutral aqueous environments it is concluded that composite overpacks composed of a corrosion resistant Ti alloy (Ti-0.06 Pd, or Ti-Gr.17) outer layer and a carbon steel inner layer should never be subject to crevice corrosion and hydrogen-induced stress corrosion cracking when stored deep underground environments. Hydrogen-induced stress corrosion cracking has been shown not to occur in alloys exposed to conditions of disposal based according to results based on accelerated constant current tests and constant load tests. (authors)

  1. Electrochemical study of bio-corrosion mechanisms at the carbon steel interface in presence of iron-reducing and hydrogenotrophic bacteria in the nuclear waste disposal context

    International Nuclear Information System (INIS)

    Leite-de-Souza-Moreira, Rebeca

    2013-01-01

    The safety of deep geological repository for nuclear waste is a very important and topical matter especially for the nuclear industry. Such as nuclear fuel the high level waste have to be stored for time frames of millions of years in metallic containers. Typically these containers should be placed in deep geological clay formations 500 metres underground. Corrosion processes, will take place after the re-saturation of the geological medium and under the prevalent anoxic conditions may lead to the generation of hydrogen. This gas accumulates in clay environment through the years and eventually becomes hazardous for steel containers. In the particular environment of geological repositories does not provide much biodegradable substances. This is the reason that hydrogen represents a new suitable energy source for hydrogenotrophic bacteria. Thereby formed bacterial bio-films on the containers may contribute to a process of fast decay of the steel, the so called bio-corrosion. The aim of this study is to characterize the electrochemical interfaces in order to obtain the mechanisms of bio-corrosion of carbon steels in presence of iron reducing and hydrogenotrophic bacterium Shewanella oneideinsis. The products of corrosion processes, namely hydrogen and iron (III) oxides are used as electron donor and acceptor, respectively. The amount of hydrogen consumed by Shewanella could be estimated with 10 -4 mol s -1 using Scanning Electrochemical Microscopy (SECM) techniques. The influence of the local hydrogen generation was evaluated via chrono-amperometry. When hydrogen was locally generated above a carbon steel substrate an accelerated corrosion process can be observed. Eventually, using Local Electrochemical Impedance Spectroscopy (LEIS) techniques, the mechanism of the generalised corrosion process was demonstrated. (author)

  2. Application of phosphating techniques to aluminium and carbon steel surfaces using nitro guanidine as oxidizing agent

    International Nuclear Information System (INIS)

    Briseno M, S.A.

    1995-01-01

    Phosphate coatings are inorganic crystalline deposits laid down uniformly on properly prepared surfaces by a chemical reaction with the treated base metal. The reaction consists in dissolving some surface metal by acid attack and then causing surface neutralization of the phosphate solution with consequent precipitation of the phosphate coating. Phosphate coatings do not provide appreciable corrosion protection in themselves. They are useful mainly as a base for paints, ensuring good adherence of paint to steel and decreasing the tendency for corrosion to under cut the paint film at scratches or other defects. In this work firstly were realized phosphate on standard carbon steel, employing technical of cold phosphate (at 40 Centigrade degrees and with a treatment time of 30 minutes) and hot phosphate (at 88 Centigrade degrees and with a treatment time of 15 minutes), where with this last were obtained the best results. Both methods used phosphate solutions of Zn/Mn and using as catalyst Nitro guanidine. Aluminium surfaces were phosphate used solutions of Cr and as catalyst Sodium bi fluoride. The phosphating on this surface were realized at temperature of 50 Centigrade degrees and with a treatment time of 10 minutes. In this work were obtained a new phosphate coatings on steel surfaces, these coatings were realized with a phosphate solution manufactured with the precipitates gathered during the hot phosphating on carbon steel. These coatings show excellent physical characteristics and of corrosion resistance. Were determined the physical testings of the coatings phosphate obtained on carbon steel and aluminium surfaces. These testing were: roughness, thickness, microhardness and adhesion. The best results were showed in carbon steel phosphate with precipitated solutions. The technical of analysis for activation with thermic neutrons was used to determine the phosphate coatings composition. Finally, corrosion testings were realized by means of two methods

  3. Corrosion inhibition of carbon steel by an amine- fatty acid in acidic ...

    African Journals Online (AJOL)

    The corrosion inhibition of carbon steel in 3% de-aerated NaCl acidic solution with amine–fatty acid corrosion inhibitor, KI384, was investigated at different temperatures using potentiodynamic polarization technique. The Corrosion rate was calculated in the presence and absence of inhibitor. The inhibition increased with ...

  4. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo

    2007-01-01

    Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process of...

  5. Corrosion inhibition of carbon steel XC70 in H 2 SO 4 solution by ...

    African Journals Online (AJOL)

    In this work, we studied the efficiency of corrosion inhibition of carbon steel XC70 in H2SO4 0.5 M aqueous solution using ferrocenyl derivatives synthesized in our laboratory, this compound is: 3-(ferrocenylmethylamine)benzonitrile. The inhibitory potential of this compound was determined by electrochemical techniques ...

  6. Anticorrosion protection of carbon steel by electrodeposition of niobium in melted fluorides

    International Nuclear Information System (INIS)

    Almeida, M.E. de; Robin, A.

    1990-01-01

    The results about niobium electrodeposition over carbon steel from K sub(2) Nb F sub(7) solutions, on LiF-Na F-KF eutetic at 750 sup(0)C and over the corrosion resistance of obtainment deposit from acid media are presented. (author)

  7. Electrochemical Performance of Low-Carbon Steel in Alkaline Model Solutions Containing Hybrid Aggregates

    NARCIS (Netherlands)

    Koleva, D.A.; Hu, J.; De Wit, J.H.W.; Boshkov, N.; Radeva, T.; Milkova, V.; Van Breugel, K.

    2010-01-01

    This work reports on the electrochemical performance of low-carbon steel electrodes in model alkaline solutions in the presence of 4.9.10-4 g/l hybrid aggregates i.e. cement extract, containing PDADMAC (poly (diallyl, dimethyl ammonium chloride) / PAA (Poly (acrylic acid)/ PDADMAC over a CaO core.

  8. Numerical predictions of dry oxidation of iron and low-carbon steel at moderately elevated temperatures

    International Nuclear Information System (INIS)

    Henshall, G.A.

    1996-11-01

    Wrought and cast low-carbon steel are candidate materials for the thick (e.g. 10 cm) outer barrier of nuclear waste packages being considered for use in the potential geological repository at Yucca Mountain. Dry oxidation is possible at the moderately elevated temperatures expected at the container surface (323-533 K or 50-260 C). Numerical predictions of dry oxidation damage were made based on experimental data for iron and low-carbon steel and parabolic oxidation theory. The Forward Euler method was implemented to integrate the parabolic rate law for arbitrary, complex temperature histories. Assuming growth of a defect-free, adherent oxide, the surface penetration of a low-carbon steel barrier following 5000 years of exposure to a severe, but repository-relevant, temperature history is predicted to be only about 0.127 mm, less than 0.13% of the expected container thickness of 10 cm. Allowing the oxide to spall upon reaching a critical thickness increases the predicted metal penetration values, but degradation is still computed to be negligible. Thus, dry oxidation is not expected to significantly degrade the performance of thick, corrosion allowance barriers constructed of low-carbon steel

  9. Influence of plasma nitriding on the hardness of AISI 304 and low carbon steel

    International Nuclear Information System (INIS)

    Suprapto; Sudjatmoko; Tjipto Sujitno

    2010-01-01

    Nitriding with plasma/ion nitriding technique for surface treatment of AISI 304 and low carbon steel as a machine component material has been done. Surface treatment is meant to improve the surface quality of metal especially its hardness. To reach the optimum condition it has been done a variation of nitriding pressure, while to analyse the result it has been done the hardness and microstructure test, and the nitrogen content. Result of the test indicates that: the optimum hardness obtained at 1.8 mbar of pressure that is 624.9 VHN or 2.98 times while the initial hardness is 210.3 VHN for AISI 304 and 581.6 VHN or 3.07 times compare with initial hardness 142.9 VHN for low carbon steel. The thickness of nitride layer for AISI 304 and low carbon steel is around 30 µm. Nitrogen contents after nitriding are 10.74% mass or 30.32% atom for AISI 304 and 6.81% mass or 21.76% atom for low carbon steel. (author)

  10. MATHEMATICAL SIMULATION OF ARGON MIXING PROCESSES AND STEEL SATURATION WITH CARBON IN LADLE

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available The mathematical model for dissolution process of a powder material in steel melt is proposed in the paper. The model permits to take into account mixing hydrodynamics on the basis of the Navier-Stokes equations. One of the industrial out-of-furnace treatment schemes taken as an example demonstrates the opportunities to model a carbon dissolution in a ladle.

  11. Effect of Additional Sulfide and Thiosulfate on Corrosion of Q235 Carbon Steel in Alkaline Solutions

    Directory of Open Access Journals (Sweden)

    Bian Li Quan

    2016-01-01

    Full Text Available This paper investigated the effect of additional sulfide and thiosulfate on Q235 carbon steel corrosion in alkaline solutions. Weight loss method, scanning electron microscopy (SEM equipped with EDS, X-ray photoelectron spectroscopy (XPS, and electrochemical measurements were used in this study to show the corrosion behavior and electrochemistry of Q235 carbon steel. Results indicate that the synergistic corrosion rate of Q235 carbon steel in alkaline solution containing sulfide and thiosulfate is larger than that of sulfide and thiosulfate alone, which could be due to redox reaction of sulfide and thiosulfate. The surface cracks and pitting characteristics of the specimens after corrosion were carefully examined and the corrosion products film is flake grains and defective. The main corrosion products of specimen induced by S2− and S2O32- are FeS, FeS2, Fe3O4, and FeOOH. The present study shows that the corrosion mechanism of S2− and S2O32- is different for the corrosion of Q235 carbon steel.

  12. 75 FR 32911 - Preliminary Results of Antidumping Duty Administrative Review: Circular Welded Carbon Steel Pipes...

    Science.gov (United States)

    2010-06-10

    ... and tubes from Taiwan, which are defined as: Welded carbon steel pipes and tubes, of circular cross... and unaffiliated customers, net of all movement charges, direct selling expenses, and packing. Where... market prices, less any applicable movement charges, discounts, rebates, and direct and indirect selling...

  13. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado 10400, La Habana (Cuba); Caleyo, F. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)], E-mail: fcaleyo@gmail.com; Rivas, D.; Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2010-03-15

    A stochastic model previously developed by the authors using Markov chains has been improved in the light of new experimental evidence. The new model has been successfully applied to reproduce the time evolution of extreme pitting corrosion depths in low-carbon steel. The model is shown to provide a better physical understanding of the pitting process.

  14. Evaluation of contribution from various hardening mechanisms to yield strength of low- and medium-carbon pearlitic and martensitic steels

    International Nuclear Information System (INIS)

    Sandomirskij, M.M.

    1984-01-01

    Investigation was made into 15Kh2NMFA, 10GN2MFA, 50KhNV, 50KhGSVF, 40Kh5V2FS, 40Kh5M2FS, 40Kh4MVF alloys after hardening and high tempering, as well as after the treatment, simulating the conditions of technological and operational heatings. Pecularities of components of yield strength of low-carbon pearlitic, medium-carbon pearlitic and medium-carbon martensitic steels after hardening and high tempering were considered. Grain-boundary and subgrain-boundary strengthening is the main factor of low-carbon pearlitic steel strengthening. Dislocation structure and carbide phase represent the main factors of medium-carbon pearlitic steel strengthening. Strengthening by uniformly distributed high-dispersion particles is the main factor of medium-carbon martensitic steel strengthening

  15. Nondestructive evaluation of low carbon steel by magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Tomáš, Ivan; Kobayashi, S.

    2010-01-01

    Roč. 25, č. 2 (2010), s. 125-132 ISSN 1058-9759 R&D Projects: GA ČR GA102/06/0866; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * steel * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.771, year: 2010

  16. Chloride induced localized corrosion in simulated concrete pore solution: effect of a phosphate-based inhibitor on the behavior of 304L stainless steel compared to carbon steel

    International Nuclear Information System (INIS)

    Nahali, Haifa; Dhouibi, Leila

    2013-01-01

    In this paper, the acoustic emission technique coupled with electrochemical measurements was used to determine, in simulated concrete pore solution (Ca(OH) 2 ), the critical value [Cl - ] / [OH - ], which prevents the pitting corrosion initiation of AISI 304L austenitic stainless steel, and to compare this critical value with that of the carbon steel in the same medium with and without inhibitor Na 3 PO 4 . The results show that for the austenitic stainless steel, the critical threshold of pitting corrosion initiation is around 5, while for carbon steel without inhibitor in Ca(OH) 2 solution, it has a low value of about 0.6. However, the presence of the inhibitor Na 3 PO 4 in this solution leads to the formation of a protective phosphate layer on the steel surface, increasing the critical ratio [Cl - ] / [OH - ] from 0.6 to 15. Under these conditions, the corrosion behavior of carbon steel is improved and, thanks to the blocking of pitting sites by the Na 3 PO 4 inhibitor, it becomes much more resistant to localized corrosion than AISI 304L austenitic steel. (authors)

  17. Mineral CO2 sequestration by steel slag carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.

    2005-01-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible

  18. Carbon stable isotope analysis as a tool for tracing temperature during the El Tremedal underground coal gasification at great depth

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, A.; Antenucci, D.; Bouquegneau, J.-M.; Coeme, A.; Dauby, P.; Letolle, R.; Mostade, M.; Pirlot, P.; Pirard, J.-P. [Universite de Liege, Liege (Belgium). Laboratoire de Genie Chimique, Institut de Chimie

    2002-01-01

    The new opportunity given by the underground gasifier developed at Alcorisa in Spain (Province of Teruel) in the framework of an European experiment has promoted a better understanding of gasification in a natural reactor. The thermodynamical equilibria of gasification reactions and the repartition of the stable isotopes of carbon ({sup 13}C/{sup 12}C) in the produced gases have been used to monitor the process. An estimation of the temperatures inside the gasifier and at the exhaust gas been performed. As shown by the isotopic balances, the tar formation is negligible or null and the pyrolysis zone spreads continuously. The study has confirmed the reality of the {sup 13}C isotopic abundance measurements for the system CO/CO{sub 2} as an indicator of the temperature inside the gasifier. During the gasifier expansion, the temperature at the exhaust decreases whereas the temperature inside the gasifier is practically constant showing a slight increasing trend. As pointed out by the data, the oxygen enrichment of the gasifying agent plays an important role on the estimated temperatures. 19 refs., 4 figs., 5 tabs.

  19. Laboratory investigations of stable carbon and oxygen isotope ratio data enhance monitoring of CO2 underground

    Science.gov (United States)

    Barth, Johannes A. C.; Myrttinen, Anssi; Becker, Veith; Nowak, Martin; Mayer, Bernhard

    2014-05-01

    Stable carbon and oxygen isotope data play an important role in monitoring CO2 in the subsurface, for instance during carbon capture and storage (CCS). This includes monitoring of supercritical and gaseous CO2 movement and reactions under reservoir conditions and detection of potential CO2 leakage scenarios. However, in many cases isotope data from field campaigns are either limited due to complex sample retrieval or require verification under controlled boundary conditions. Moreover, experimentally verified isotope fractionation factors are also accurately known only for temperatures and pressures lower than commonly found in CO2 reservoirs (Myrttinen et al., 2012). For this reason, several experimental series were conducted in order to investigate effects of elevated pressures, temperatures and salinities on stable carbon and oxygen isotope changes of CO2 and water. These tests were conducted with a heateable pressure device and with glass or metal gas containers in which CO2 reacted with fluids for time periods of hours to several weeks. The obtained results revealed systematic differences in 13C/12C-distributions between CO2 and the most important dissolved inorganic carbon (DIC) species under reservoir conditions (CO2(aq), H2CO3 and HCO3-). Since direct measurements of the pH, even immediately after sampling, were unreliable due to rapid CO2 de-gassing, one of the key results of this work is that carbon isotope fractionation data between DIC and CO2 may serve to reconstruct in situ pH values. pH values reconstructed with this approach ranged between 5.5 and 7.4 for experiments with 60 bars and up to 120 °C and were on average 1.4 pH units lower than those measured with standard pH electrodes directly after sampling. In addition, pressure and temperature experiments with H2O and CO2 revealed that differences between the oxygen isotope ratios of both phases depended on temperature, water-gas ratios as well as salt contents of the solutions involved. Such

  20. Features of austenite formation in low-carbon steel upon heating in the intercritical temperature range

    Science.gov (United States)

    Panov, D. O.; Smirnov, A. I.

    2017-11-01

    The features of austenite formation upon continuous heating of low-carbon steel at the rates of 90-0.15 K/s in the intercritical temperature range (ICTR) have been studied. It has been found that, in the initially high-tempered, initially quenched, and initially cold-deformed steel, the α → γ transition in the ICTR consists of three stages. The thermokinetic diagrams of the austenite formation with the indication of the positions of the critical points Ac 1 and Ac 3 and also of the temperature ranges of the development of each identified stage of the α → γ transformation have been constructed. A complex of structural studies has been carried out, and a scheme of the austenite formation upon continuous heating at a rate of 90 K/s in the ICTR for the initially high-tempered steel, initially quenched steel, and initially cold-deformed low-carbon steel has been suggested, which reflects all stages of this process.

  1. Stress-corrosion crack initiation behavior of carbon steel in simulated BWR environment

    International Nuclear Information System (INIS)

    Nakanishi, Koki; Tanaka, Yasuhiro; Yoshida, Kazuo; Nakayama, Guen; Akashi, Masatsune

    1994-01-01

    Carbon steels and low-alloy steels are said to possess, even though susceptible to stress-corrosion cracking themselves, conspicuously longer life than weld-sensitized Type 304 stainless steels in actual boiling water reactor (BWR) primary coolant environments of high-temperature, high-purity water containing some dissolved oxygen. This has been examined for a carbon steel pipe material and its weld by conducting uniaxial constant-load tests as a laboratory accelerated test. By statistically analyzing the distribution of stress-corrosion cracking lifetimes and metallographical examining the features of stress-corrosion crack initiation in an SEM, following results have been obtained: (1) the stress-corrosion cracking lifetime obeys the exponential distribution model; (2) stress-corrosion cracks are initiated at the bottom of corrosion pits, and it appears possible to analyze their initiation conditions in terms of stress-intensity calculated regarding the pit as a sharp crack; (3) the microcracks as initiated at the corrosion pit are non-propagative per se, so that it is only when they have grown into a main crack by coalescence with nearby microcracks that steady propagation becomes possible; and (4) both the process of pit initiation and that of microcrack coalescence can be described as a Poisson stochastic process just as for the stainless steels in the same environment, so that the whole process of stress-corrosion crack initiation can be conceived as consisting of these two independent Poisson stochastic processes connected in serial succession

  2. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

    International Nuclear Information System (INIS)

    Zhang, Hui; Dong, Liang; Li, Huiquan; Fujita, Tsuyoshi; Ohnishi, Satoshi; Tang, Qing

    2013-01-01

    CO 2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO 2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO 2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89 kg CO 2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed. - Highlights: • A typical carbon mitigation case study on China iron/steel industrial park. • Using carbon SFA to investigate mitigation effects of industrial symbiosis technology. • CCPP greatly reduced the indirect carbon emission embodied in power purchase. • CCSC reduced the carbon emission by distributing fixed carbon into by-product. • Specific low carbon-tech promotion policies fit to China was discussed and proposed

  3. Effect of microstructure of carbon steel on magnetite formation in simulated Hot Conditioning environment of nuclear reactors

    International Nuclear Information System (INIS)

    Sinha, Prafful Kumar; Kiran Kumar, M.; Kain, Vivekanand

    2015-01-01

    Highlights: • Heat treatments used to tailor microstructure of a low and a high carbon steel. • Oxide growth rates established in Hot Conditioning simulated environment. • Only magnetite formed on all microstructural conditions of both the steels. • Growth rate was higher for all microstructures of high carbon steel upto 72 h. • After 72 h growth rate stabilized in narrow band for all microstructures of a steel. - Abstract: The objective of present investigation is to establish the role of starting microstructure of carbon steel on the magnetite formation behaviour in Hot Conditioning simulated environment. Two grades of carbon steel (low and high carbon) were subjected to selective heat-treatments to generate different microstructures: martensite, tempered martensite and modified ferrite–pearlite. Oxidation was carried out in lithiated water of pH 10–10.2 in a static autoclave at 270 °C. The results of the investigation clearly establish that: (a) high carbon steel (0.63% C) showed a relatively higher rate of oxidation over the low carbon (0.08% C) grade at all the test durations and (b) the oxidation rates for both the grades were sensitive to microstructural differences at initial stages of oxidation while the differences narrowed down after 72 h of exposure. The oxide formed was established to be magnetite on all the specimens

  4. Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface

    Science.gov (United States)

    Zhang, Bin; Xue, Yong; Qiang, Li; Gao, Kaixong; Liu, Qiao; Yang, Baoping; Liang, Aiming; Zhang, Junyan

    2017-11-01

    Friction properties of carbon nanotubes have been widely studied and reported, however, the friction properties of carbon nanotubes related on state of itself. It is showing superlubricity under nanoscale, but indicates high shear adhesion as aligned carbon nanotube film. However, friction properties under high load (which is commonly in industry) of carbon nanotube films are seldom reported. In this paper, carbon nanotube films, via mechanical rubbing method, were obtained and its tribology properties were investigated at high load of 5 to 15 N. Though different couple pairs were employed, the friction coefficients of carbon nanotube films are nearly the same. Compared with bare stainless steel, friction coefficients and wear rates under carbon nanotube films lubrication reduced to, at least, 1/5 and 1/(4.3-14.5), respectively. Friction test as well as structure study were carried out to reveal the mechanism of the significant reduction wear and friction on steel surface. One can conclude that sliding and densifying of carbon nanotubes at sliding interface contribute to the sufficient decrease of friction coefficients and wear rates.

  5. Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel

    Science.gov (United States)

    Katiyar, Prvan Kumar; Misra, Sudhir; Mondal, K.

    2018-03-01

    The present work discusses the effect of pearlitic morphology on the corrosion behavior of high-carbon fully pearlitic steel in 3.5% NaCl solution. Four different types of pearlitic steels (furnace-cooled, as-received, air-cooled and forced-air-cooled) consisting of coarse, medium, fine and very fine microstructures, respectively, were tested. Electrochemical behavior of these steels was studied with the help of dynamic and linear polarization and AC impedance spectroscopic tests. The corrosion resistance improved with fineness of the microstructure in general. However, with further reduction in interlamellar spacing beyond a limit, the corrosion resistance reduced slightly. Formation of homogeneous distribution of microgalvanic cells between cementite and ferrite lamellae of fine pearlitic steel improved the corrosion resistance. However, entanglement of the lamellae of pearlite in very fine pearlitic structure as well as breaking of cementite lamellae due to finer pearlitic colonies was attributed to the higher corrosion of the forced-air-cooled steel as compared to the air-cooled steel.

  6. Carbon-14 speciation during anoxic corrosion of activated steel in a repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E.; Cvetkovic, B.Z.; Kunz, D. [Paul Scherrer Institute, Villigen (Switzerland). Lab. for Waste Management; Salazar, G.; Szidat, S. [Bern Univ. (Switzerland). Dept. of Chemistry and Biochemistry and Oeschger Centre for Climate Change Research

    2018-01-15

    Radioactive waste contains significant amounts of {sup 14}C which has been identified a key radionuclide in safety assessments. In Switzerland, the {sup 14}C inventory of a cement-based repository for low- and intermediate-level radioactive waste (L/ILW) is mainly associated with activated steel (∝85 %). {sup 14}C is produced by {sup 14}N activation in steel parts exposed to thermal neutron flux in light water reactors. Release of {sup 14}C occurs in the near field of a deep geological repository due to anoxic corrosion of activated steel. Although the {sup 14}C inventory of the L/ILW repository and the sources of {sup 14}C are well known, the formation of {sup 14}C species during steel corrosion is only poorly understood. The aim of the present study was to identify and quantify the {sup 14}C-bearing carbon species formed during the anoxic corrosion of iron and steel and further to determine the {sup 14}C speciation in a corrosion experiment with activated steel. All experiments were conducted in conditions similar to those anticipated in the near field of a cement-based repository.

  7. FP corrosion dependence on carbon and chromium content in Fe-Cr steel

    International Nuclear Information System (INIS)

    Sasaki, Koei; Tanigaki, Takanori; Fukumoto, Ken-ichi; Uno, Masayoshi

    2015-01-01

    In an attempt to investigate Cs or Cs-Te corrosion dependence on chromium or carbon content in Fe-Cr steel, cesium and Cs-Te corrosion test were performed to three specimens, Fe-9Cr-0C, Fe-9Cr-0.14C and Fe-13Cr-0.14C, for 100 hours at 973K in simulated high burn-up fuel pin environment. Cesium corrosion depth has no dependence on chromium or carbon content in Fe-Cr steel. Cs-Te corrosion was appeared in only Fe-13Cr-0.14C which has chromium carbides ranged along grain boundary. Appearance of the Cs-Te corrosion was determined by distribution or arrangement of chromium carbides which depends on chromium and carbon content. (author)

  8. Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel

    Science.gov (United States)

    Markwitz, A.; Kennedy, J.

    2017-10-01

    A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.

  9. The effect of cyclic and dynamic loads on carbon steel pipe

    International Nuclear Information System (INIS)

    Rudland, D.L.; Scott, P.M.; Wilkowski, G.M.

    1996-02-01

    This report presents the results of four 152-mm (6-inch) diameter, unpressurized, circumferential through-wall-cracked, dynamic pipe experiments fabricated from STS410 carbon steel pipe manufactured in Japan. For three of these experiments, the through-wall crack was in the base metal. The displacement histories applied to these experiments were a quasi-static monotonic, dynamic monotonic, and dynamic, cyclic (R = -1) history. The through-wall crack for the third experiment was in a tungsten-inert-gas weld, fabricated in Japan, joining two lengths of STS410 pipe. The displacement history for this experiment was the same history applied to the dynamic, cyclic base metal experiment. The test temperature for each experiment was 300 C (572 F). The objective of these experiments was to compare a Japanese carbon steel pipe material with US pipe material, to ascertain whether this Japanese steel was as sensitive to dynamic and cyclic effects as US carbon steel pipe. In support of these pipe experiments, quasi-static and dynamic, tensile and fracture toughness tests were conducted. An analysis effort was performed that involved comparing experimental crack initiation and maximum moments with predictions based on available fracture prediction models, and calculating J-R curves for the pipe experiments using the η-factor method

  10. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    Science.gov (United States)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  11. Inhibiting pitting corrosion in carbon steel exposed to dilute radioactive waste slurries

    International Nuclear Information System (INIS)

    Zapp, P.E.; Hobbs, D.T.

    1991-01-01

    Dilute caustic high-level radioactive waste slurries can induce pitting corrosion in carbon steel. Cyclic potentiodynamic polarization tests were conducted in simulated and actual waste solutions to determine minimum concentrations of sodium nitrate which inhibit pitting in ASTM A537 class 1 steel exposed to these solutions. Susceptibility to pitting was assessed through microscopic inspection of specimens and inspection of polarization scans. Long-term coupon immersion tests were conducted to verify the nitrite concentrations established by the cyclic potentiodynamic polarization tests. The minimum effective nitrite concentration is expressed as a function of the waste nitrate concentration and temperature

  12. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    OpenAIRE

    Carreño, J. A.; Uribe, I.; Carrillo, J. C.

    2003-01-01

    A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in t...

  13. Effect of composition and austenite deformation on the transformation characteristics of low-carbon and ultralow-carbon microalloyed steels

    Science.gov (United States)

    Cizek, P.; Wynne, B. P.; Davies, C. H. J.; Muddle, B. C.; Hodgson, P. D.

    2002-05-01

    Deformation dilatometry has been used to simulate controlled hot rolling followed by controlled cooling of a group of low- and ultralow-carbon microalloyed steels containing additions of boron and/or molybdenum to enhance hardenability. Each alloy was subjected to simulated recrystallization and nonrecrystallization rolling schedules, followed by controlled cooling at rates from 0.1 °C/s to about 100 °C/s, and the corresponding continuous-cooling-transformation (CCT) diagrams were constructed. The resultant microstructures ranged from polygonal ferrite (PF) for combinations of slow cooling rates and low alloying element contents, through to bainitic ferrite accompanied by martensite for fast cooling rates and high concentrations of alloying elements. Combined additions of boron and molybdenum were found to be most effective in increasing steel hardenability, while boron was significantly more effective than molybdenum as a single addition, especially at the ultralow carbon content. Severe plastic deformation of the parent austenite (>0.45) markedly enhanced PF formation in those steels in which this microstructural constituent was formed, indicating a significant effective decrease in their hardenability. In contrast, in those steels in which only nonequilibrium ferrite microstructures were formed, the decreases in hardenability were relatively small, reflecting the lack of sensitivity to strain in the austenite of those microstructural constituents forming in the absence of PF.

  14. Low-carbon transition of iron and steel industry in China: carbon intensity, economic growth and policy intervention.

    Science.gov (United States)

    Yu, Bing; Li, Xiao; Qiao, Yuanbo; Shi, Lei

    2015-02-01

    As the biggest iron and steel producer in the world and one of the highest CO2 emission sectors, China's iron and steel industry is undergoing a low-carbon transition accompanied by remarkable technological progress and investment adjustment, in response to the macroeconomic climate and policy intervention. Many drivers of the CO2 emissions of the iron and steel industry have been explored, but the relationships between CO2 abatement, investment and technological expenditure, and their connections with the economic growth and governmental policies in China, have not been conjointly and empirically examined. We proposed a concise conceptual model and an econometric model to investigate this crucial question. The results of regression, Granger causality test and impulse response analysis indicated that technological expenditure can significantly reduce CO2 emissions, and that investment expansion showed a negative impact on CO2 emission reduction. It was also argued with empirical evidence that a good economic situation favored CO2 abatement in China's iron and steel industry, while achieving CO2 emission reduction in this industrial sector did not necessarily threaten economic growth. This shed light on the dispute over balancing emission cutting and economic growth. Regarding the policy aspects, the year 2000 was found to be an important turning point for policy evolution and the development of the iron and steel industry in China. The subsequent command and control policies had a significant, positive effect on CO2 abatement. Copyright © 2014. Published by Elsevier B.V.

  15. Performance evaluation for carbonation of steel-making slags in a slurry reactor.

    Science.gov (United States)

    Chang, E-E; Chen, Chung-Hua; Chen, Yi-Hung; Pan, Shu-Yuan; Chiang, Pen-Chi

    2011-02-15

    CO(2) sequestration by the aqueous carbonation of steel-making slag under various operational conditions was investigated in this study. The effects of the operational conditions, including type of steel-making slag, reaction time, reaction temperature, and CO(2) flow rate, on the performance of the carbonation process were evaluated. The results indicated that the BOF slag had the highest carbonation conversion, approximately 72%, at a reaction time of 1h, an operating pressure of 101 kPa and a temperature of 60°C due to its higher BET surface area of BOF slag compared to UF, FA, and BHC slags. The major factors affecting the carbonation conversion are reaction time and temperature. The reaction kinetics of the carbonation conversion can be expressed by the shrinking-core model. The measurements of the carbonated material by the SEM and XRD instruments provide evidence indicating the suitability of using the shrinking-core model in this investigation. Comparison of the results with other studies suggests that aqueous carbonation by slurry reactor is viable due to its higher mass transfer rate. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Going underground

    Energy Technology Data Exchange (ETDEWEB)

    Winqvist, T.; Mellgren, K.-E. (eds.)

    1988-01-01

    Contains over 100 short articles on underground structures and tunneling based largely on Swedish experience. Includes papers on underground workers - attitudes and prejudices, health investigations, the importance of daylight, claustrophobia; excavation, drilling and blasting; hydroelectric power plants; radioactive waste disposal; district heating; oil storage; and coal storage.

  17. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-03-01

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs

  18. High Corrosion Resistance Offered by Multi-Walled Carbon Nanotubes Directly Grown Over Mild Steel Substrate

    Science.gov (United States)

    Arora, Sweety; Rekha, M. Y.; Gupta, Abhay; Srivastava, Chandan

    2018-02-01

    The inert and hydrophobic nature of carbon nanotubes (CNTs) makes them a potential material for corrosion protection coatings. In this work, a uniform coating of multi-walled CNTs (MWCNTs) was formed over a mild steel substrate by direct decomposition of a ferrocene-benzene mixture over the substrate which was kept inside a chemical vapor deposition setup at a temperature of 800°C. The MWCNTs formed over the substrate were characterized using x-ray diffraction, Raman spectroscopy and transmission electron microscopy techniques. Corrosion behavior of the bare and MWCNT-coated mild steel substrate was examined through potentiodynamic polarization and electrochemical impedance spectroscopy methods. A significant improvement in the corrosion resistance in terms of the reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in the case of the MWCNT-coated mild steel plate. Corrosion resistance increased due to MWCNT coating.

  19. Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel

    International Nuclear Information System (INIS)

    Kong Junhua; Xie Changsheng

    2006-01-01

    Through simulation of thermomechanical processing/on-line accelerated cooling processing and observation of microstructure, the effect of molybdenum on continuous cooling bainite transformation of ultra-low carbon microalloyed steel was studied. The continuous cooling transformation curves of the trial steels with or without molybdenum addition were also determined. The result showed that the separate temperature of bainite was obviously reduced and the size of microstructure became smaller as 0.40 wt% Mo was added to the steel. At the same time, the martensitic structure, which formed at some cooling conditions, became finer and dispersed more uniformly. The deformed austenite would transform to finer bainite even when the cooling rate was not too high

  20. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides.

    Science.gov (United States)

    Finkenstadt, Victoria L; Côté, Gregory L; Willett, J L

    2011-06-01

    Corrosion of metals is a serious and challenging problem faced worldwide by industry. Purified Leuconostoc mesenteroides exopolysaccharide (EPS) coatings, cast from aqueous solution, inhibited the corrosion of low-carbon steel as determined by electrochemical impedance spectroscopy (EIS). There were two different corrosion behaviors exhibited when EPS films from different strains were cast onto the steel. One EPS coating reacted immediately with the steel substrate to form an iron (III) oxide layer ("rust") during the drying process while another did not. The samples that did not flash corrode had higher corrosion inhibition and formed an iron (II) passivation layer during EIS testing that persisted after the cells were disassembled. Corrosion inhibition was strain-specific as polysaccharides with similar structure did not have the same corrosion potential.

  1. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  2. Influences of spray parameters on the structure and corrosion resistance of stainless steel layers coated on carbon steel by plasma spray treatment

    International Nuclear Information System (INIS)

    Yeom, Kyong An; Lee, Sang Dong; Kwon, Hyuk Sang; Shur, Dong Soo; Kim, Joung Soo

    1996-01-01

    Stainless steel powders were sprayed on the grit-blasted SM45C carbon steel substrates using a plasma spray method. The influences of the spray parameters on the structure and corrosion resistance of the layers coated on the carbon steel were investigated. Corrosion behavior of the layers were analyzed by the anodic polarization tests in deaerated 0.1 M NaCl + 0.01 M NaOH solution at 80 deg C. The surface roughness and porosity were observed to decrease with decreasing the particle size. The surface hardness of the coating was always higher than that of the matrix, SM45C, implying that the higher resistance of the coating to erosion-corrosion than that of matrix, and increased as the spray power and the spray distance increase. Stainless steel coats showed more corrosion resistance than the carbon steel did, due to their passivity. The corrosion resistance of the coats, however, were inferior to that of the bulk stainless steels due to the inherent defects formed in the coats. The defects such as rough surface and pores provided the occluded sites favorable for the initiation of localized corrosion, resulting in the conclusion that finer the powder is, higher the corrosion resistance is. And the Cr oxides formation resulting in Cr depletion around the oxides reduced the corrosion resistance of the coats. (author)

  3. Effect of the dendritic morphology on hot tearing of carbon steels

    International Nuclear Information System (INIS)

    Ridolfi, M R

    2016-01-01

    Hot tears form during solidification in the brittle region of the dendritic front. Most hot tearing criteria are based on solid and fluid mechanics, being the phenomenon strictly depending on the solid resistance to applied strains and on the liquid capability of filling the void spaces. Modelling both mechanisms implies the precise description of the dendritic morphology. To this scope, the theory of coalescence of the dendritic arms at grain boundaries of Rappaz et al. has been applied, in this work, to the columnar growth of carbon steels by means of a simple mathematical model. Depending on the alloy composition, solid bridging starts at solid fractions down to about 0.8 and up to above 0.995 (very low carbon). The morphology of the brittle region changes drastically with increasing carbon and adding other solutes. In particular, ferritic dendrites, typical of low carbon steels, tend to offer short and wide interdendritic spaces to the surrounding liquid making possible their complete filling, and few solid bridges; peritectic steels show the rise of austenite growing and bridging rapidly in the interdendritic spaces, preventing void formation; austenitic dendrites form long and narrow interdendritic spaces difficult to reach for the liquid and with a lot of solid bridges. Sulphur addition mainly acts in delaying the coalescence end, more markedly in ferritic dendrites. (paper)

  4. Alternatives to reduce corrosion of carbon steel storage drums

    International Nuclear Information System (INIS)

    Zirker, L.R.; Beitel, G.A.

    1995-11-01

    The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end

  5. Work softening of drawn low carbon steel bars

    Directory of Open Access Journals (Sweden)

    Maria Teresa Paulino Aguilar

    2001-01-01

    Full Text Available The work hardening of metals subjected to complex processing paths is different from that in monotonic deformation. Changes in the deformation mode can promote transients in the strain-hardening rate, leading to anomalous softening or hardening of the material. This paper investigates the influence of strain path changes on the tensile behavior of drawn 0.12% steel rods. Annealed or predrawn specimens were submitted to cyclic twisting and then tested in tension. The results show that the cyclic deformation causes changes in the mechanical behavior of the metal, and the effect will depend on the previous "history" of the material. Cyclic twisting causes hardening in annealed samples, but leads to softening of the drawn bars. These phenomena are in line with the corresponding substructural aspects.

  6. Laser surface modification of boronickelized medium carbon steel

    Science.gov (United States)

    Bartkowska, Aneta; Pertek, Aleksandra; Kulka, Michał; Klimek, Leszek

    2015-11-01

    A two-step process was applied to produce the multicomponent boride layers. Boronickelizing consisted of nickel plating and diffusion boriding. Two different methods of heat treatment of boronickelized C45 steel were used: a typical through-hardening, and a laser surface modification with remelting. Microstructure and some mechanical properties of these layers were examined. Microstructural characterization was studied using optical microscope, Scanning Electron Microscope, energy-dispersive X-ray microanalysis, Electron Back-Scatter Diffraction and X-ray diffraction. The laser modification improved wear resistance, cohesion as well as low-cycle fatigue of the boronickelized layer. Compressive stresses, occurring after laser remelting, could be the reason for the advantageous mechanical behavior of the layer.

  7. Modelling of quenching process of medium-carbon steel

    Directory of Open Access Journals (Sweden)

    A. Kulawik

    2010-01-01

    Full Text Available The paper refers to numerical modelling of the hardening process of steel C45. In the algorithm the heat transfer equation, equilibrium equations and macroscopic model of phase transformations, basis of CCT diagrams, are used. Coupling between basic phenomena of hardening process is considered, in particular the influence of latent heat on the fields of temperature, and also thermal, structural and plastic strains and transformation - induced plasticity in the model is taken into account as well. The method of calculating the phase transformation during heating applied by the authors uses data from the continuous heating diagram (CHT. The homogenization line of austenite determines the end of heating. The influence of austenisation temperature on the kinetics of transformations is taken into account. To calculate the increase of martensite content Koistinen-Marburger formula is used. Field of stresses and strains are obtained from solutions of finite element method equations of equilibrium in increment form.

  8. Torsional Failure of Carbon Fiber Composite Plates Versus Stainless Steel Plates for Comminuted Distal Fibula Fractures.

    Science.gov (United States)

    Wilson, William K; Morris, Randal P; Ward, Adam J; Carayannopoulos, Nikoletta L; Panchbhavi, Vinod K

    2016-05-01

    Carbon fiber composite implants are gaining popularity in orthopedics, but with few independent studies of their failure characteristics under supra-physiologic loads. The objective of this cadaveric study was to compare torsional failure properties of bridge plating a comminuted distal fibula fracture with carbon fiber polyetheretherketone (PEEK) composite and stainless steel one-third tubular plates. Comminuted fractures were simulated in 12 matched pairs of fresh-frozen human fibulas with 2-mm osteotomies located 3 cm proximal to the tibiotalar joint. Each fibula pair was randomized for fixation and implanted with carbon fiber and stainless steel 5-hole one-third tubular plates. The constructs were loaded in external rotation at a rate of 1-degree/sec until failure with a materials testing system. Torsional stiffness and mode of failure, as well as displacement, torque, and energy absorption for the first instance of failure and peak failure, were determined. Statistical analysis was performed with paired t tests and chi-square. There were no significant differences among the 12 pairs for torsional stiffness, first failure torque, peak failure displacement, peak failure torque, or peak failure energy. Stainless steel plates exhibited significantly higher displacement (P fibula fracture fixation model, carbon fiber implants exhibited multiple pre-peak failures at significantly lower angles than the first failure for the stainless steel implants, with some delamination of composite layers and brittle catastrophic failure rather than plastic deformation. The torsional failure properties of carbon fiber composite one-third tubular plates determined in this independent study provide novel in vitro data for this alternative implant material. © The Author(s) 2016.

  9. Mechanical evaluation of hip cement spacer reinforcement with stainless steel Kirschner wires, titanium and carbon rods, and stainless steel mesh.

    Science.gov (United States)

    Kaku, Nobuhiro; Tabata, Tomonori; Tsumura, Hiroshi

    2015-04-01

    In two-stage treatments for infections after total hip arthroplasty, antibiotic-loaded cement spacers help treat the infection by antibiotic elution and prevent contraction. However, such spacers are weak and may fracture while awaiting replacement, impairing functionality. We evaluated whether a Kirschner wire (K-wire) mounted into the spacer reinforced its strength along with the effects of the reinforcing material, position, and intensity. Spacers without reinforcing materials constituted the control group. As reinforcing materials, stainless steel K-wires (diameters 3 and 6 mm), titanium alloy and carbon fibers (diameter 3.175 mm), and stainless steel meshes (inner and outer diameters, 6 and 9 mm, respectively) were inserted into the spacer mold before filling with cement. The spacers complied with ISO 7206-4; a compressive load was applied using a testing machine with a velocity of 25.4 mm/min, and the maximum load was recorded. We used 1-3 K-wires positioned on the medial side, lateral side, neck only, and stem only and tested 3 specimens for each condition. The control group withstood the highest load. Stainless steel was the strongest material; 3-mm K-wires in the neck and lateral side withstood a higher load. The computed tomography (CT) imaging revealed a cavity between the K-wires and cement. When K-wires were inserted along the whole length, despite cement fractures, continuity was maintained because of the reinforcing materials. It is difficult to improve the reinforcing strength of spacers using K-wires; however, K-wires prevented dislocation of cement spacer fragments, which can help prevent contraction and facilitate spacer removal during replacement.

  10. Determination of Cr, Mn, Si, and Ni in carbon steels by optical emission spectrometry with spark source

    International Nuclear Information System (INIS)

    Garcia Gonzalez, M.A.; Pomares Alfonso, M.; Mora Lopez, L.

    1995-01-01

    Elemental composition of steels determines some important of his characteristic moreover it is necessary to obtain their quality certification. Analytical procedure has performed for determination of Cr, Mn, Si and Ni in carbon steels by optical emission spectrometry with spark source. reproducibility of results is 5-11 %. Exactitude has tested with results that have obtained by internationally recognised methods-

  11. Effects of niobium addition on the structure and properties of medium and high carbon steels. v. 1,2

    International Nuclear Information System (INIS)

    Mei, P.R.

    1983-01-01

    An evaluation about the use of niobium in medium and high carbon steels, with ferritic-pearlitic structure, through the understanding of niobium actuaction mechanism in the structure, and consequently in the mechanical properties of those steels is done. (E.G.) [pt

  12. Medium carbon vanadium steels for closed die forging; Acos de medio carbono microligados ao vanadio para forjaria em matriz fechada

    Energy Technology Data Exchange (ETDEWEB)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1993-12-31

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported 16 refs., 21 figs.

  13. 78 FR 16252 - Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results...

    Science.gov (United States)

    2013-03-14

    ...] Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, and Thailand: Final Results of... products (``HR steel'') from India, Indonesia, and Thailand pursuant to section 751(c) of the Tariff Act of... INFORMATION CONTACT: Eric Greynolds (India and Indonesia), Hilary Sadler or Dana Mermelstein (Thailand), AD...

  14. Effects of Mixing the Steel and Carbon Fibers on the Friction and Wear Properties of a PMC Friction Material

    Science.gov (United States)

    Bagheri Kazem Abadi, Sedigheh; Khavandi, Alireza; Kharazi, Yosouf

    2010-04-01

    Friction, fade and wear characteristics of a PMC friction material containing phenolic resin, short carbon fiber, graphite, quartz, barite and steel fiber were investigated through using a small-scale friction testing machine. Four different friction materials with different relative amounts of the carbon fiber and steel fiber were manufactured and tested. Comparing with our previous work which contained only steel fiber as reinforcement, friction characteristics such as fade and recovery and wear resistance were improved significantly by adding a small amount of carbon fiber. For the mixing of carbon and steel fiber, the best frictional and wear behavior was observed with sample containing 4 weight percentage carbon fiber. Worn surface of this specimen was observed by optical microscopy. Results showed that carbon fibers played a significant role in the formation of friction film, which was closely related to the friction performance. The brake pad with Steel fibers in our previous work, showed low friction coefficient and high wear rate. In addition, a friction film was formed on the surface with a relatively poor quality. In contrast, the samples with mixing the steel and carbon fiber generated a stable friction film on the pad surface, which provided excellent friction stability with less wear.

  15. 75 FR 32160 - Certain Hot-Rolled Flat-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit...

    Science.gov (United States)

    2010-06-07

    ...-Rolled Carbon-Quality Steel Products from Brazil: Extension of Time Limit for Preliminary Results of...-quality steel products from Brazil. See Agreement Suspending the Countervailing Duty Investigation on Hot... duty order on certain hot-rolled flat-rolled carbon-quality steel products from Brazil. See Initiation...

  16. Comparison of carbon footprints of steel versus concrete pipelines for water transmission.

    Science.gov (United States)

    Chilana, Lalit; Bhatt, Arpita H; Najafi, Mohammad; Sattler, Melanie

    2016-05-01

    The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing. This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.

  17. Carbon film-coated 304 stainless steel as PEMFC bipolar plate

    Science.gov (United States)

    Chung, Chih-Yeh; Chen, Shi-Kun; Chiu, Po-Jen; Chang, Ming-Hsin; Hung, Tien-Tsai; Ko, Tse-Hao

    Carbon film-coated stainless steel (CFCSS) has been evaluated as a low-cost and small-volume substitute for graphite bipolar plate in polymer electrolyte membrane fuel cell (PEMFC). In the present work, AISI 304 stainless steel (304SS) plate was coated with nickel layer to catalyze carbon deposits at 680°C under C 2H 2/H 2 mixed gas atmosphere. Surface morphologies of carbon deposits exhibited strong dependence on the concentration of carbonaceous gas and a continuous carbon film with compact structure was obtained at 680 °C under C 2H 2/H 2 mixed gas ratio of 0.45. Systematic analyses indicated that the carbon film was composed of a highly ordered graphite layer and a surface layer with disarranged graphite structure. Both corrosion endurance tests and PEMFC operations showed that the carbon film revealed excellent chemical stability similar to high-purity graphite plate, which successfully protected 304SS substrate against the corrosive environment in PEMFC. We therefore predict CFCSS plates may practically replace commercial graphite plates in the application of PEMFC.

  18. Carbon concentration measurements by atom probe tomography in the ferritic phase of high-silicon steels

    International Nuclear Information System (INIS)

    Rementeria, Rosalia; Poplawsky, Jonathan D.; Aranda, Maria M.; Guo, Wei; Jimenez, Jose A.; Garcia-Mateo, Carlos; Caballero, Francisca G.

    2017-01-01

    Recent studies using atom probe tomography (APT) show that bainitic ferrite formed at low temperature contains more carbon than what is consistent with the paraequilibrium phase diagram. However, nanocrystalline bainitic ferrite exhibits a non-homogeneous distribution of carbon atoms in arrangements with specific compositions, i.e. Cottrell atmospheres, carbon clusters, and carbides, in most cases with a size of a few nanometers. The ferrite volume within a single platelet that is free of these carbon-enriched regions is extremely small. Proximity histograms can be compromised on the ferrite side, and a great deal of care should be taken to estimate the carbon content in regions of bainitic ferrite free from carbon agglomeration. For this purpose, APT measurements were first validated for the ferritic phase in a pearlitic sample and further performed for the bainitic ferrite matrix in high-silicon steels isothermally transformed between 200 °C and 350 °C. Additionally, results were compared with the carbon concentration values derived from X-ray diffraction (XRD) analyses considering a tetragonal lattice and previous APT studies. The present results reveal a strong disagreement between the carbon content values in the bainitic ferrite matrix as obtained by APT and those derived from XRD measurements. Those differences have been attributed to the development of carbon-clustered regions with an increased tetragonality in a carbon-depleted matrix.

  19. HYDROTHERMALLY SELF-ADVANCING HYBRID COATINGS FOR MITIGATING CORROSION OF CARBON STEEL.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.

    2006-11-22

    Hydrothermally self-advancing hybrid coatings were prepared by blending two starting materials, water-borne styrene acrylic latex (SAL) as the matrix and calcium aluminate cement (CAC) as the hydraulic filler, and then their usefulness was evaluated as the room temperature curable anti-corrosion coatings for carbon steel in CO{sub 2}-laden geothermal environments at 250 C. The following two major factors supported the self-improving mechanisms of the coating during its exposure in an autoclave: First was the formation of a high temperature stable polymer structure of Ca-complexed carboxylate groups containing SAL (Ca-CCG-SAL) due to hydrothermal reactions between SAL and CAC; second was the growth with continuing exposure time of crystalline calcite and boehmite phases coexisting with Ca-CCG-SAL. These two factors promoted the conversion of the porous microstructure in the non-autoclaved coating into a densified one after 7 days exposure. The densified microstructure not only considerably reduced the conductivity of corrosive ionic electrolytes through the coatings' layers, but also contributed to the excellent adherence of the coating to underlying steel' s surface that, in turn, retarded the cathodic oxygen reduction reaction at the corrosion site of steel. Such characteristics including the minimum uptake of corrosive electrolytes by the coating and the retardation of the cathodic corrosion reaction played an important role in inhibiting the corrosion of carbon steel in geothermal environments.

  20. Influence of the chemical composition on transformation behaviour of low carbon microalloyed steels

    International Nuclear Information System (INIS)

    Calvo, J.; Jung, I.-H.; Elwazri, A.M.; Bai, D.; Yue, S.

    2009-01-01

    In order to design thermomechanical schedules for processing low carbon microalloyed steels, the various critical transformation temperatures, i.e. the start and finish of the austenite transformation (A r3 , A r1 ) and the non-recrystallization temperature (T nr ), must be determined. Continuous cooling torsion and compression testing are useful ways to measure these values. In this study six low carbon microalloyed steels with different additions (Nb, Cu, Si and Mo) were examined using these techniques. Moreover, the equilibrium phase diagrams for each alloy were calculated using FactSage. The comparison of the thermomechanical testing results with the thermodynamic calculations leads to a better understanding of the effect of the different elements on the transformation behaviour of pipeline steels. Regarding transformation temperatures, Cu in residual contents showed a strong effect on decreasing both A r3 and A r1 , which indicates a hardenability effect of this element. On the other hand, increasing Nb contents increased T nr by accelerating Nb(C,N) precipitation. However, when Si was added to a Nb-microalloyed steel, the T nr decreased.

  1. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  2. Cr-Al coatings on low carbon steel prepared by a mechanical alloying technique

    Science.gov (United States)

    Hia, A. I. J.; Sudiro, T.; Aryanto, D.; Sebayang, K.

    2016-08-01

    Four different compositions of Cr and Al coatings as Cr10o, Cr87.5Al12.5, Cr5oAl5o, and Al100 have been prepared on the surface of low carbon steel by a mechanical alloying technique. The composition of each powder was milled for 2 hour in a stainless steel crucible with a ball to powder ratio of 10:1. Hereafter, the Cr-Al powder and substrate were mechanical alloyed in air for 1 hour. Heat treatment of coated sample were carried out at 800°C in a vacuum furnace. In order to characterize the phase composition and microstructure of the coating before and after heat treatment, XRD and SEM-EDX were used. The results show that Cr, Cr-Al or Al coatings were formed on the surface of low carbon steel. After heat treatment, new phases and interdiffusion zone were formed in the coating and at the coating/steel interface, depending on the coating composition.

  3. Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, W.R.; Peixoto, L.C.; Garcia, L.R.; Garcia, A. [Department of Materials Engineering, State University of Campinas, SP (Brazil)

    2009-10-15

    Dual-phase (DP) steels are produced from a specific heat treatment procedure and have recently emerged as a potential class of engineering materials for a number of structural and automobile applications. Such steels have high strength-to-weight ratio and reasonable formability. The present study aims to investigate the effects of four different and conventional heat treatments (i.e., hot rolling, normalizing, annealing, and intercritical annealing) on the resulting microstructural patterns and on the electrochemical corrosion behavior. Electrochemical impedance spectroscopy (EIS) and Tafel plots were carried out on heat treated steel samples in a 0.5 M NaCl solution at 25 C with neutral pH. An equivalent circuit analysis was also used to provide quantitative support for the discussions. The normalizing and the annealing heat treatments have provided the highest and the lowest corrosion resistances, respectively. The intercritical annealing and as-received (hot rolled) low carbon steel samples have shown similar corrosion behavior. Although a deleterious effect on the corrosion resistance has been verified for DP steel due to the residual stress from the martensite formation, it combines good mechanical properties with intermediate electrochemical corrosion resistance. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    International Nuclear Information System (INIS)

    Cheng, Feng; Jiang, Shuyun

    2014-01-01

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  5. Analyses of quenching process during turn-off of plasma electrolytic carburizing on carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie; Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Wang, Bin; Jin, Xiaoyue; Du, Jiancheng [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-10-15

    Highlights: • Cooling rate of carburized steel at the end of PEC treatment is measured. • The quench hardening in the fast or slow turn-off mode hardly takes place. • Decrease of the surface roughness during slow turn-off process is found. • A slow turn-off mode is recommended to replace the conventional turn-off mode. - Abstract: Plasma electrolytic carburizing (PEC) under different turn-off modes was employed to fabricate a hardening layer on carbon steel in glycerol solution without stirring at 380 V for 3 min. The quenching process in fast turn-off mode or slow turn-off mode of power supply was discussed. The temperature in the interior of steel and electron temperature in plasma discharge envelope during the quenching process were evaluated. It was found that the cooling rates of PEC samples in both turn-off modes were below 20 °C/s, because the vapor film boiling around the steel sample reduced the cooling rate greatly in terms of Leidenfrost effect. Thus the quench hardening hardly took place, though the slow turn-off mode slightly decreased the surface roughness of PEC steel. At the end of PEC treatment, the fast turn-off mode used widely at present cannot enhance the surface hardness by quench hardening, and the slow turn-off mode was recommended in order to protect the electronic devices against a large current surge.

  6. High ductility of bainite-based microstructure of middle carbon steel 42SiMn

    Science.gov (United States)

    Kučerová, L.; Bystrianský, M.; Jeníček, Š.

    2017-02-01

    Heat and thermo-mechanical treatments with various processing parameters were applied to middle carbon low alloyed 42SiMn steel. The aim of the treatment was to obtain multiphase microstructure typical for TRIP (Transformation induced plasticity) steel and to achieve the best combination of ultimate tensile strength and ductility. TRIP steels typically possess about 5-15% of metastable retained austenite, which can transform to martensite during plastic deformation. The gradual phase transformation during loading postpones the onset of necking, thus increasing ultimate tensile strength and ductility at the same time. Manganese and silicon, used as the main alloying elements of the experimental steel, are employed to increase austenite stability and to hinder cementite precipitation during the treatment. All proposed methods of heat and thermo-mechanical treatment contain bainitic hold at 400 °C or 425 °C. The final microstructures were very complex, consisting of bainite, ferrite, very small areas of extremely fine perlite lamellas, about 10% of retained austenite and M-A constituent (austenitic islands partially transformed to martensite). Even though pearlite and martensite are undesirable microstructure in TRIP steel, the tensile strength ranged from 850 to 1065 MPa and ductility A5mm from 26 to 47 %.

  7. Simulation of Viscoplastic Deformation of Low Carbon Steel Structures at Elevated Temperatures

    Science.gov (United States)

    Sun, Y.; Maciejewski, K.; Ghonem, H.

    2012-07-01

    The deformation response of a low carbon structural steel subjected to high temperature simulating fire conditions is generated using a viscoplastic material constitutive model which acknowledges the evolution of the material hardening parameters during the loading history. The material model is implemented in an ABAQUS subroutine (UMAT) which requires the determination of the material constants as a function of temperature. Both the temperature dependency and strain-rate sensitivity of the material parameters have been examined by the analysis of a single steel beam and a steel-framed structure subjected to temperatures ranging from 300 to 700 °C. Sequentially coupled thermal-stress analysis is applied to a structure under simulated fire condition. Results of this analysis show that above a transitional temperature, the deformation of the steel is strain-rate dependent. The combined effect of heat flux and loading rate on the complex deformation of a two-story steel structure is examined and the significance of employing a viscoplastic material model is discussed.

  8. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  9. Inhibition effect of phosphorus-based chemicals on corrosion of carbon steel in secondary-treated municipal wastewater.

    Science.gov (United States)

    Shen, Zhanhui; Ren, Hongqiang; Xu, Ke; Geng, Jinju; Ding, Lili

    2013-01-01

    Secondary-treated municipal wastewater (MWW) could supply a viable alternative water resource for cooling water systems. Inorganic salts in the concentrated cooling water pose a great challenge to corrosion control chemicals. In this study, the inhibition effect of 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP), trimethylene phosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) on corrosion of carbon steel in secondary-treated MWW was investigated by the means of potentiodynamic polarization and electrochemical impedance spectroscopy. The inhibition effect increased with increasing concentration of inhibitors. The corrosion rates of carbon steel were 1.5, 0.8, 0.2 and 0.5 mm a(-1) for blank, HEDP, ATMP and PBTCA samples at 50 mg L(-1), respectively. The phosphorus-based chemicals could adsorb onto the surface of the carbon steel electrode, form a coat of protective film and then protect the carbon steel from corrosion in the test solution.

  10. Microstructure and Mechanical Properties of Austempered Medium-Carbon Spring Steel

    Science.gov (United States)

    Kim, Seong Hoon; Kim, Kwan-Ho; Bae, Chul-Min; Lee, Jae Sang; Suh, Dong-Woo

    2018-03-01

    Changes in microstructure and mechanical properties of medium-carbon spring steel during austempering were investigated. After austempering for 1 h at 290 °C or 330 °C, the bainite transformation stabilized austenite, and microstructure consisting of bainitic ferrite and austenite could be obtained after final cooling; the retained austenite fraction was smaller in the alloy austempered at 290 °C because carbon redistribution between bainitic ferrite and austenite slowed as the temperature decreased, and thereby gave persistent driving force for the bainite transformation. The products of tensile strength and reduction of area in the austempered alloy were much larger in the austempered steel than in quenched and tempered alloy, mainly because of significant increase in reduction of area in austempered alloy.

  11. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J.A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6% and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  12. Application of laser-produced-plasmas to determination of carbon content in steel

    International Nuclear Information System (INIS)

    Ortiz, M.; Aragon, C.; Aguilera, J. A.; Campos, J.

    1994-01-01

    This paper describes an analytical method to determine carbon content in solid and molten steel. It is based on the study of the emission spectrum from a Nd-YAG laser produced plasma. The light emitted from the plasma is focused to the entrance slit of a spectrometer and detected by an OMA III system. For every laser pulse an spectral range of 100 A are recorded. With the use of time-resolved spectroscopy a precision of 1.6 % and a detection limit of 65 ppm of carbon content in steel have been obtained. These values are similar to those of other accurate conventional techniques but using optics fiber and laser excitation it is possible to made sample calibrations in hostile environments. Also, as the analysis are made in real time changes in sample composition can be measured without stopping production processes. (Author) 26 refs

  13. Measurements of corrosion rates of carbon steels exposed to alkaline sulfide environments

    International Nuclear Information System (INIS)

    Yeske, R.A.

    1984-01-01

    Corrosion of carbon steel by alkaline sulfide liquors is a serious problem for pulp mills using kraft pulping processes. Studies have been conducted to characterize corrosion rates for carbon steels exposed to simulated liquors with various concentrations of major and minor species known to be present in kraft liquors. Corrosion rate measurements made by linear polarization methods have been compared with results of concurrent weight loss tests. With the exception of solutions containing high concentrations of polysulfides, linear polarization tests are in good qualitative agreement with weight loss measurements. Oxidation of species in the liquor apparently masquerades as metal dissolution in solutions where the rest potential is raised by oxidizing polysulfides. Some uncertainties remain regarding the origins of the Tafel slope constants and oxidation numbers required for agreement between the linear polarization and weight loss results

  14. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    International Nuclear Information System (INIS)

    Smart, N.R.; Blackwood, D.J.; Werme, L.

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed

  15. Corrosion scenario development for corrosion lifetime prediction of carbon steel used for geological disposal package

    International Nuclear Information System (INIS)

    Fukuda, Takanori; Nakayama, Guen; Akashi, Masatsune

    1994-01-01

    A corrosion scenario has been developed in an attempt to ensure the long-term integrity of carbon steel geological disposal packages for high-level nuclear waste. As the service life of the packages must span 1,000-10,000 years, the temperature, pH, and amount of oxygen, in the disposal facilities can hardly be expected to remain constant. Therefore, we clarified a system for predicting the corrosion lifetime of packages, taking into account long-term changes in the types of corrosion of carbon steel in disposal facilities relative to changes in the conditions of such facilities. This corrosion scenario charts the possible types of corrosion (i.e., general corrosion, stress corrosion cracking (SCC), and crevice corrosion) to which packages are subjected

  16. Carbon steel protection in G.S. [Girldler sulphide] plants: Pt. 8

    International Nuclear Information System (INIS)

    Lires, Osvaldo; Delfino, Cristina; Rojo, Enrique.

    1990-01-01

    In order to protect carbon steel of towers and piping of a GS experimental heavy water plant against corrosion produced by the action of aqueous solutions of hydrogen sulphide, a method, elsewhere published, was developed. Carbon steel exposed to saturated aqueous solutions of hydrogen sulphide forms iron sulphide scales. In oxygen free solutions, evolution of corrosion follows the sequence mackinawate → cubic ferrous sulphide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite and pyrite are the most protective layers (these are obtained at 130 deg C, 2 MPa for a period of 14 days). Pyrite formation is favoured by an oxidizing agent presence that allows the oxidation of sulphur ions to disulphur ions. Elemental sulphur or oxygen were used as oxidating agents. Variation and operational parameters such as concentration, temperature, pH, aggregate time, etc. were studied. Though little improvement on protective scales quality was observed, results do not justify operational troubles and the additional costs and effort involved. (Author)

  17. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel

    International Nuclear Information System (INIS)

    Paravicini Bagliani, E.; Santofimia, M.J.; Zhao, L.; Sietsma, J.; Anelli, E.

    2013-01-01

    The effect of different microstructures on the tensile and toughness properties of a low alloy medium carbon steel (0.28C–1.4Si–0.67Mn–1.49Cr–0.56Mo wt%) was investigated, comparing the properties obtained after the application of selected quenching and partitioning (Q and P) and quenching and tempering (Q and T) treatments. After Q and T the strength–toughness combination was the lowest, whereas the best combination was achieved by Q and P, as a result of the carbon depletion of the martensite and the high stabilization of the austenite. Nonetheless, the presence of islands of martensite/austenite (MA) constituents after Q and P treatments prevented the achievement of toughness levels comparable to the ones currently obtainable with other steels and heat treatments.

  18. Corrosion inhibition efficiency of linear alkyl benzene derivatives for carbon steel pipelines in 1M HCl

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2011-06-01

    Full Text Available Linear alkyl benzene sulfonic acid (L and three of its ester derivatives (L1, L2, L3 were prepared, followed by quaternization of these esters (L1Q, L2Q, L3Q. The corrosion inhibition effect on carbon steel in 1 M HCl was studied using weight loss and potentiodynamic polarization measurements. The adsorption of the inhibitors on carbon steel surface obeyed the Langmuir’s adsorption isotherm. The associated activation energy of corrosion and other thermodynamic parameters such as enthalpy (ΔH∗, entropy (ΔS∗ of activation, adsorption–desorption equilibrium constant (Kads, standard free energy of adsorption (ΔGoads, heat (ΔHoads, and entropy of adsorption (ΔSoads were calculated to elaborate the corrosion inhibition mechanism.

  19. Effect of Carbon and Nitrogen Content on Deformation and Fracture of AISI 304 Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    C. Menapace

    2008-04-01

    Full Text Available The effect of small differences in the content of carbon and nitrogen on the room temperature tensile deformation and fracture behaviour of an AISI 304 stainless steel was studied. In the steel containing the lower amount of carbon and nitrogen, a higher amount of strain induced alfa’ martensite is formed, which increases strain hardening rate and both uniform and total elongation at fracture. The presence of large martensitic areas in the cross section causes strain localization at the austenite/martensite interface, which promotes the nucleation of cracks and their propagation along the interface. This results in a decrease of Ultimate Tensile Strength. Strain induced transformation slightly reduces strain rate sensitivity, as well.

  20. Enhancement of corrosion resistance of carbon steel by Dioscorea Hispida starch in NaCl

    Science.gov (United States)

    Zulhusni, M. D. M.; Othman, N. K.; Lazim, Azwan Mat

    2015-09-01

    Starch is a one of the most abundant natural product in the world and has the potential as corrosion inhibitor replacing harmful synthetic chemical based corrosion inhibitor. This research was aimed to examines the potential of starch extracted from local Malaysian wild yam (Dioscorea hispida), as corrosion inhibitor to carbon steel in NaCl media replicating sea water. By using gravimetric test and analysis, in which the carbon steel specimens were immersed in NaCl media for 24, 48 and 60 hours with the starch as corrosion inhibitor. the corrosion rate (mmpy) and inhibition efficiencies (%) was calculated. The results obtained showed decrease in corrosion rate as higher concentration of starch was employed. The inhibition efficiencies also shows an increasing manner up to 95.97 % as the concentration of the inhibitor increased.

  1. Inhibitive effect of N,N'-Dimethylaminoethanol on carbon steel corrosion in neutral sodium chloride solution, at different temperatures

    OpenAIRE

    Hassoune Mohammed; Bezzar Abdelillah; Sail Latéfa; Ghomari Fouad

    2018-01-01

    The inhibition of carbon steel corrosion in neutral sodium chloride solution by N,N'- Dimethylaminoethanol (DMEA), at different temperatures, was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results obtained confirm that DMEA is a good organic corrosion inhibitor for carbon steel in 0.5M of NaCl (concentration encountered in the Mediterranean seawater), over the whole range of temperatures studied. The inhibition...

  2. Thermal tribological behaviour of composite carbon metal/steel brake

    Science.gov (United States)

    Zaidi, H.; Senouci, A.

    1999-04-01

    Friction behaviour of carbon brake block/brake drum system is studied at high sliding speed ( Ω=2000 tr/mn; v=13 m/s) under high applied normal load ( P=20 Kg). The mean contact temperature is measured by K-thermocouple placed in brake block and in brake drum. The real contact temperature is calculated. Friction behaviour and temperature evolution will be given and discussed versus the brake block effusivity/drum brake effusivity ratio and versus Peclet number. Carbon brake block thermal and mechanical damage is observed under high dynamic load (high applied normal load and high sliding speed). The transferred films are analysed and quantified by Scanning Electron Microscopy. The aim of this paper is to present the tribological results versus normal load and sliding speed; and the contact temperature. We will present and discuss thermo-mechanical surface damage analysis of brake block.

  3. Low-carbon steel samples deformed by cold rolling - analysis by the magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Tomáš, Ivan; Vértesy, G.; Kobayashi, S.; Kadlecová, Jana; Stupakov, Oleksandr

    2009-01-01

    Roč. 321, č. 17 (2009), s. 2670-2676 ISSN 0304-8853 R&D Projects: GA MŠk MEB040702; GA ČR GA102/06/0866; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * plastic deformation * ow-carbon steel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.204, year: 2009

  4. AC Induced Corrosion of Carbon Steel in 3.5wt% NaCl Electrolyte

    OpenAIRE

    Strandheim, Espen Oldeide

    2012-01-01

    This paper deals with alternating current (AC) corrosion of low alloy carbon steel in 3.5 wt% NaCl electrolyte. Accelerated corrosion rates have been reported when exposed to AC and the corrosion mechanism is not well understood. Electrical heating of subsea pipelines, applied to avoid hydrate formation and waxing of multiphase hydrocarbon well streams has made this topic increasingly relevant in recent years. To study the effect of AC on corrosion rates, weight loss experiments under a wide ...

  5. Evaluation of Castor Bark Powder as a Corrosion Inhibitor for Carbon Steel in Acidic Media

    OpenAIRE

    Santos, André de Mendonça; Almeida, Thassia Felix de; Cotting, Fernando; Aoki, Idalina Vieira; Melo, Hercílio Gomes de; Capelossi, Vera Rosa

    2017-01-01

    The inhibition effect of castor bark powder obtained from Ricinus communis on AISI 1020 carbon steel in acidic media (HCl 0.5 mol.L-1) has been studied by electrochemical impedance spectroscopy (EIS), polarization curves, scanning vibrating electrode technique (SVET) and weight loss measurements. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed as characterization techniques. The EIS and gravimetric results showed that the inhibitory efficien...

  6. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  7. Analysis of Wood Structure Connections Using Cylindrical Steel and Carbon Fiber Dowel Pins

    Science.gov (United States)

    Vodiannikov, Mikhail A.; Kashevarova, Galina G., Dr.

    2017-06-01

    In this paper, the results of the statistical analysis of corrosion processes and moisture saturation of glued laminated timber structures and their joints in corrosive environment are shown. This paper includes calculation results for dowel connections of wood structures using steel and carbon fiber reinforced plastic cylindrical dowel pins in accordance with applicable regulatory documents by means of finite element analysis in ANSYS software, as well as experimental findings. Dependence diagrams are shown; comparative analysis of the results obtained is conducted.

  8. Finite Element Analysis of Fire Truck Chassis for Steel and Carbon Fiber Materials

    OpenAIRE

    Salvi Gauri Sanjay; Kulkarni Abhijeet

    2014-01-01

    Chassis is the foremost component of an automobile that acts as the frame to support the vehicle body. Hence the frame ought to be very rigid and robust enough to resist shocks vibrations and stresses acting on a moving vehicle. Steel in its numerous forms is commonly used material for producing chassis and overtime alumimium has acquired its use. However, in this study traditional materials are replaced with ultra light weight carbon fiber materials. High strength and low wei...

  9. Effects of various treatments on the serviceability of water-immersed carbon-steel ball bearings

    International Nuclear Information System (INIS)

    Wensel, R.G.

    1977-06-01

    Carbon-steel ball bearings employing various coatings, surface treatments, lubricants and ball and separator materials were tested under conditions simulating those in the NPD/Bruce type fuelling machine heads. The effects of the treatments on operating torques and wear and corrosion rates were studied. Sealed bearings lubricated with Dow FS 3451 (a fluorosilicone grease) gave the best performance in terms of these parameters. (author)

  10. Magnetic behaviour of low-carbon steel in parallel and perpendikular directions to tensile deformation

    Czech Academy of Sciences Publication Activity Database

    Pal'a, J.; Stupakov, Oleksandr; Bydžovský, J.; Tomáš, Ivan; Novák, Václav

    2007-01-01

    Roč. 310, č. 1 (2007), s. 57-62 ISSN 0304-8853 R&D Projects: GA AV ČR 1QS100100508 Grant - others:VEGA(SK) 1/0143/03 Institutional research plan: CEZ:AV0Z10100520 Keywords : degradation * low-carbon steel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  11. Effect of Carbon Steel Composition and Microstructure on CO2 Corrosion

    Science.gov (United States)

    Akeer, Emad S.

    The environmental conditions encountered in oil and gas wells and pipelines can cause severe localized corrosion to mild steel. The utility of carbon steel in oil and gas pipelines depends on formation of protective corrosion product layers. However, the microstructure and chemical composition of steel are considered to be important variables that affect the ability of these layers to protect steel from corrosion. The present study investigated the effect of alloying elements and metallurgy of five different pipeline steels, with different chemical composition and microstructure, on CO2 corrosion in flowing conditions with focus on the iron carbonate layer formed and related corrosion phenomena that could lead to localized corrosion. The microstructure of tested steels was examined using optical microscopy and etching. Preliminary experiments were conducted using a glass cell, which is a very well known and widely used apparatus. Then a comparison was done with the newly developed thin channel flow cell (TCFC) to validate whether the TCFC can be used instead of glass cell in this study, which required very high velocity and wall shear stresses. It was found that there are no significant effects of alloying elements and steel microstructure on corrosion rate in experiments done at pH 4.0 at 25°C and 80°C. Further experiments were then conducted in the TCFC to study the effect of alloying elements and microstructure under conditions where a protective FeCO3 4 corrosion product layer forms, using very high liquid flow rates. For each of the studied steels, an FeCO3 corrosion product layer was formed within two days of exposure at low wall shear stress at 80°C, pH 6.6, and partial pressure of CO2 of 1.5 bar (1.5 bar pCO 2). For all tested steels, the FeCO3 layer reduced the general corrosion rate to less than 1.0 mm/y. These "pre-formed" FeCO3 layers were then exposed to high liquid flow velocity and wall shear stress (535 Pa) for 3 days. This caused partial loss of

  12. Surface coatings on carbon steel for prevention of flow accelerated corrosion under two phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Seung Hyun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B.

  13. Adsorption study of CO and H2O on carbon materials, Ni and stainless steel

    International Nuclear Information System (INIS)

    Kato, S.

    1991-01-01

    Adsorption of CO and water vapor on single crystalline graphite, diamond and an amorphous carbon film at room temperature was investigated by low energy ion scattering (ISS) and compared with stainless steel and nickel surfaces. Even for a CO exposure up to 10 4 L, the C intensity stayed constant and no O peak appeared in the ISS spectra from graphite while Ni and O intensities from Ni surface changed strikingly. Intensities of FE and O signals from stainless steel seriously decrease and increase with increasing exposure of H 2 O, respectively, but did not reach saturation even at an exposure of 10 3 L. On the other hand, C and O intensities from carbon surfaces changed moderately to reach saturation at an exposure of some 100 L. These results indicate that CO and H 2 O do not adsorb significantly on carbon surfaces in contrast to nickel and stainless steel surfaces. As a by-product survival probabilities of scattered He + ions from graphite for the primary energy of 0.6-2 keV were measured to be in a range of 10 -4 to 10 -2 and the survival parameter was deduced to be 5.0 x 10 7 cm s -1 . (author)

  14. Surface coatings on carbon steel for prevention of flow accelerated corrosion under two phase flow conditions

    International Nuclear Information System (INIS)

    Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng; Kim, Seung Hyun; Kim, Ji Hyun

    2015-01-01

    Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B

  15. Passivation of Cu-Zn alloy on low carbon steel electrodeposited from a pyrophosphate medium

    Science.gov (United States)

    Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin

    2018-01-01

    The motivation of this study is to understand whether zinc-based alloy also has a passivation behaviour similar to zinc itself. Cu-Zn alloys were electrodeposited potentiostatically from a pyrophosphate medium on a carbon steel electrode and their corrosion behaviours were studied. Pt and carbon steel electrodes were used in order to examine the corrosion/passivation behaviour of bare Cu, bare Zn and Cu-Zn alloy coatings. The passivation behaviour of all brass-modified electrodes having Zn content between 10% and 100% was investigated. The growth potential affects the morphology and structure of crystals. The brass coatings are more porous than their pure components. The crystalline structure of Cu-Zn alloys can be obtained by changing the deposition potential. The zinc content in brass increases when the deposition voltage applied decreases. However, the growth potential and the ratio of zinc in brass do not affect the passivation behaviour of the resulting alloys. The coatings obtained by applying different growth potentials were immersed in tap water for 24 h to compare their corrosion behaviours with carbon steel having pitting formation.

  16. Corrosion behavior of carbon steel for overpack in groundwater containing bicarbonate ions

    International Nuclear Information System (INIS)

    Nishimura, Toshiyasu; Dong, Junpha

    2009-01-01

    Carbon steel is considered in Japan the candidate material for overpacks in high-level radioactive waste disposal. Effects of bicarbonate solutions on the corrosion behavior and corrosion products of carbon steel were investigated by electrochemical measurements, FT-IR and XRD analyses. The anodic polarization measurements showed that bicarbonate ions (HCO 3 - ) accelerated the anodic dissolution and the outer layer film formation of carbon steel in the case of high concentrations, on the other hand, it inhibited these processes in the case of low concentrations. The FT-IR and XRD analyses of the anodized film showed that siderite (FeCO 3 ) was formed in 0.5 to 1.0 mol/L bicarbonate solution, and Fe 2 (OH) 2 CO 3 in 0.1 to 0.2 mol/L bicarbonate solution, while Fe 6 (OH) 12 CO 3 was formed in 0.02 to 0.05 mol/L bicarbonate solutions. The stability of these corrosion products was able to be explained by using the actual potential-pH diagrams for the Fe-H 2 O-CO 2 system. (author)

  17. Rapid nickel diffusion in cold-worked carbon steel at 320-450 °C

    Science.gov (United States)

    Arioka, Koji; Iijima, Yoshiaki; Miyamoto, Tomoki

    2015-11-01

    The diffusion coefficient of nickel in cold-worked carbon steel was determined with the diffusion couple method in the temperature range between 320 and 450 °C. Diffusion couple was prepared by electro-less nickel plating on the surface of a 20% cold-worked carbon steel. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time to 12,000 h. The diffusion coefficient (DNi) of nickel in cold-worked carbon steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 0% of nickel. The temperature dependence of DNi is expressed by DNi = (4.5 + 5.7/-2.5) × 10-11 exp (-146 ± 4 kJ mol-1/RT) m2s-1. The value of DNi at 320 °C is four orders of magnitude higher than the lattice diffusion coefficient of nickel in iron. The activation energy 146 kJ mol-1 is 54% of the activation energy 270.4 kJ mol-1 for lattice diffusion of nickel in the ferromagnetic state iron.

  18. Effect of Single and Double Pass Arc Welding on HAZ of High Carbon Steel Weldments

    Directory of Open Access Journals (Sweden)

    Alaa Abdul Hasan Atiyah

    2018-01-01

    Full Text Available Measurements of heat affected zone width for multi high carbon steel joint in case of single and double pass arc welded have been studied. These measurements are carried out in accompanying of hardness and microstructural observations. Knowing that, high carbon steel has a poor weld ability and most of welding processes are carried out for repairing components. It is found that a preheating was a very important parameter in identifying the width of heat-affected zone. Preheating the joint at 450°C was found to gives less width heat affected zone (i.e.5.93mm in the case of single pass welding practices. While, in the case of double pass welding, the heat affected zone becomes wider because the excessive heating during welding cycle. The double pass welding has coarsening the structure of first pass. Microscopic observations indicated that the structure of HAZ of high carbon steel was mainly lath martensite (ML under the condition of lower weld heat input. 

  19. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity

    International Nuclear Information System (INIS)

    Schutz, Marta K.; Moreira, Rebeca; Tribollet, Bernard; Vivier, Vincent; Bildstein, Olivier; Lartigue, Jean-Eric; Libert, Marie; Schlegel, Michel L.

    2014-01-01

    The availability of respiratory substrates, such as H 2 and Fe(II,III) solid corrosion products within nuclear waste repository, will sustain the activities of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB). This may have a direct effect on the rate of carbon steel corrosion. This study investigates the effects of Shewanella oneidensis (an HOB and IRB model organism) on the corrosion rate by looking at carbon steel dissolution in the presence of H 2 as the sole electron donor. Bacterial effect is evaluated by means of geochemical and electrochemical techniques. Both showed that the corrosion rate is enhanced by a factor of 2-3 in the presence of bacteria. The geochemical experiments indicated that the composition and crystallinity of the solid corrosion products (magnetite and vivianite) are modified by bacteria. Moreover, the electrochemical experiments evidenced that the bacterial activity can be stimulated when H 2 is generated in a small confinement volume. In this case, a higher corrosion rate and mineralization (vivianite) on the carbon steel surface were observed. The results suggest that the mechanism likely to influence the corrosion rate is the bioreduction of Fe(III) from magnetite coupled to the H 2 oxidation. (authors)

  20. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    International Nuclear Information System (INIS)

    Rabiahtul Zulkafli; Norinsan Kamil Othman; Irman Abdul Rahman; Azman Jalar

    2014-01-01

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H 2 SO 4 ). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  1. Corrosion Behaviour of Carbon Steel in Biodiesel–Diesel–Ethanol (BDE Fuel Blend

    Directory of Open Access Journals (Sweden)

    Thangavelu Saravana Kannan

    2015-01-01

    Full Text Available The biodiesel–diesel–ethanol blend represents an important alternative fuel for diesel engines; however, changes in the fuel composition and the introduction of new alternative fuel often results in corrosion and degradation of the automobile fuel system parts. In this present study, the corrosion behavior of carbon steel in B20D70E10 (biodiesel 20%, diesel 70% and ethanol 10% fuel blend was studied by static immersion at room temperature and 60 °C. The effect of B20D70E10 fuel blend on corrosion rate, morphology of corrosion products, and chemical structure of carbon steel were studied. In addition, the change of fuel properties, namely, total acid number, density, viscosity, calorific value, flash point, and color changes were also investigated. Moreover, fuel compositional changes, such as water content and oxidation product level in the fuel blends were examined. The results showed that the degradation of fuel properties and corrosion rate of carbon steel in B20D70E10 are lower than neat biodiesel (B100, whereas slightly higher than petro-diesel (B0

  2. Stress corrosion cracking tests for low carbon stainless steels with work hardened layer

    International Nuclear Information System (INIS)

    Nakano, Junichi; Kikuchi, Masahiko; Tsukada, Takashi

    2005-01-01

    To avoid introduction of Cr depletion at grain boundaries by welding process, low carbon stainless steels (SSs) were used in corrosive environment as one of countermeasures for Stress Corrosion Cracking (SCC). Recently, it is reported that SCCs were introduced at portion with work hardened layer although low carbon SSs had been used at core shrouds and primary loop recirculation piping in Boiling Water Reactors. To simulate and examine the phenomenon, mechanical working, metallographic observation, hardness test and SCC tests in chloride solutions were conducted for low carbon SSs. From the results of metallographic observation and hardness test, it was confirmed that slip bands were observed around the surface and hardened layer was introduced by mechanical working. From the results of SCC tests, it was noticed that cracks which introduced from the surface, had grown into the matrix. It is thought that low carbon SSs with work hardened layer have susceptibility to SCC from the above. (author)

  3. Heavy reflector experiments composed of carbon steel and nickel in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Silva, Graciete Simoes de Andrade e; Mura, Luis Felipe; Jerez, Rogerio; Mendonca, Arlindo Gilson; Fuga, Rinaldo

    2013-01-01

    The heavy reflector experiments performed in the IPEN/Mb-01 research reactor facility comprise a set of critical configurations employing the standard 28x26-fuel-rod configuration. The heavy reflector either, carbon steel or nickel plates was placed at one of the faces of the IPEN/MB-01 reactor. Criticality is achieved by inserting the control banks BC1 and BC2 to the critical position. 32 plates around 0.3 mm thick were used in all the experiment. The chosen distance between last fuel rod row and the first laminate for all types of laminates was 5.5 mm. Considering initially the carbon steel case, the experimental data reveal that the reactivity decreases up to the fifth plate and after that it increases, becomes nearly zero (which was equivalent to initial zero excess reactivity with zero plates) for the 28 plates case and reaches a value of 42.73 pcm when the whole set of 32 plates are inserted in the reflector. This is a very striking result because it demonstrates that when all 32 plates are inserted in the reflector there is a net gain of reactivity. The reactivity behavior demonstrates all the physics events already mentioned in this work. When the number of plates are small (around 5), the neutron absorption in the plates is more important than the neutron reflection and the reactivity decreases. This condition holds up to a point where the neutron reflection becomes more important than the neutron absorption in the plates and the reactivity increases. The experimental data for the nickel case shows the main features of the carbon steel case, but for the carbon steel case the reactivity gain is small, thus demonstrating that carbon steel or essentially iron has not the reflector capability as the nickel laminates do. The measured data of nickel plates show a higher reactivity gain, thus demonstrating that nickel is a better reflector than iron. The theoretical analysis employing MCNP5 and ENDF/B-VII.0 show that the calculated results have good results up to

  4. Accelerated corrosion of stainless steels with the presence of molten carbonates below 923 K

    International Nuclear Information System (INIS)

    Ota, Ken-ichiro; Toda, Katsuya; Mitsushima, Shigenori; Kamiya, Nobuyuki

    2002-01-01

    The high-temperature corrosion of stainless steels (SUS316L and SUS310S) in the presence of lithium-potassium eutectic carbonate and lithium-sodium eutectic carbonate has been studied by thermogravimetry and the metal consumption method under a carbon dioxide-oxygen atmosphere in the temperature range of 773-1123 K. Although the corrosion of SUS310S obeyed the parabolic rate law for all reaction conditions, the corrosion of SUS316L significantly depended on the reaction conditions. At or above 923 K, the corrosion of SUS316L obeyed the parabolic rate law, even with a carbonate coating. The corrosion rates were accelerated during the initial period of corrosion tests below 923 K, especially around 823 K with a lithium-sodium carbonates coating. The initial accelerated corrosion was a local corrosion, which produced through holes in the metal specimens, and occurred more clearly at higher carbon dioxide partial pressures with the lithium-sodium carbonate coating than with the lithium-potassium carbonate coating. (author)

  5. Nippon Steel Corp.: Carbon fiber seat business of Tonen Corp., formal bribery Nippon Steel Corp; Tonen no tanso seni shito jigyo. Shinnittetsu ga seishiki baishu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-28

    Nippon Steel Corp. and Tonen Corp. announced that it signed the transfer contract of carbon fiber seat business on December 1, 1998. (Nittetsu composite) is established as a business company of carbon fiber compound material fitted to the existent business, and it makes use of the multiplier effect of the business integration, and the new day iron which purchased a business from Tonen Corp. works for the scale expansion. (translated by NEDO)

  6. Structure and mechanical properties of a high-carbon steel subjected to severe deformation

    Science.gov (United States)

    Gorkunov, E. S.; Zadvorkin, S. M.; Goruleva, L. S.; Makarov, A. V.; Pecherkina, N. L.

    2017-10-01

    The structure and mechanical properties of a high-carbon eutectic steel subjected to the cold plastic deformation by hydrostatic extrusion in a wide range of true strain have been studied. Using scanning and transmission electron microscopy, it has been shown that the formation of cellular, fragmented, and submicrocrystalline structures occurs in the ferritic constituent of the pearlite structure of the steel upon extrusion. This is a consequence of the occurrence of dynamic recovery and continuous dynamic and post-dynamic recrystallization, which cause a decrease in the density of free dislocations at the true strain of more than 1.62. The partial dissolution of the carbide phase is also observed. It has been found that, at a true strain of up to 0.81, the strength properties of the investigated steel are determined mainly by subgrain, dislocation, and precipitation mechanisms of the strengthening; in the deformation range of 0.81-1.62, the role of the grainboundary strengthening increases. At strains above 1.62, grain-boundary strengthening is a prevailing mechanism in the formation of the level of strength properties of the extruded U8A steel. The ultimate tensile strength and yield stress over the entire strain range only uniquely correlate with the density of highangle boundaries; the dependences of the strength characteristics on other structural parameters are not monotonic.

  7. Pyrolytic carbon-coated stainless steel felt as a high-performance anode for bioelectrochemical systems.

    Science.gov (United States)

    Guo, Kun; Hidalgo, Diana; Tommasi, Tonia; Rabaey, Korneel

    2016-07-01

    Scale up of bioelectrochemical systems (BESs) requires highly conductive, biocompatible and stable electrodes. Here we present pyrolytic carbon-coated stainless steel felt (C-SS felt) as a high-performance and scalable anode. The electrode is created by generating a carbon layer on stainless steel felt (SS felt) via a multi-step deposition process involving α-d-glucose impregnation, caramelization, and pyrolysis. Physicochemical characterizations of the surface elucidate that a thin (20±5μm) and homogenous layer of polycrystalline graphitic carbon was obtained on SS felt surface after modification. The carbon coating significantly increases the biocompatibility, enabling robust electroactive biofilm formation. The C-SS felt electrodes reach current densities (jmax) of 3.65±0.14mA/cm(2) within 7days of operation, which is 11 times higher than plain SS felt electrodes (0.30±0.04mA/cm(2)). The excellent biocompatibility, high specific surface area, high conductivity, good mechanical strength, and low cost make C-SS felt a promising electrode for BESs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Pitting growth rate in carbon steel exposed to simulated radioactive waste

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1996-06-01

    Dilute high-level radioactive waste slurries can induce pitting corrosion in carbon steel tanks in which such waste is stored and processed. The waste is normally maintained with closely monitored nitrite and hydroxide concentrations known to prevent the initiation of pitting. Coupon immersion tests are being conducted in laboratory simulants of waste to determine the probability and growth rate of pitting in steel in the event of out-of-limits nitrite concentrations. Sets of about 36 carbon steel coupons have been immersed in known corrosive conditions (nitrite < 5 per cent of the established limit) at a temperature of 50 degrees C. Three sets have been removed from testing after 64, 150, and 350 days of immersion. The long immersion times introduced variability in the exposure conditions due to the evaporation and replenishment of solution. The deepest corrosive attack was measured on each coupon by optical microscopy. The deepest pits were ranked and analyzed as a type 1 extreme value distribution to extrapolate from the coupon population to the maximum expected pit depths in a waste tank structure. The data were compared to a power law for pit growth, although the deepest pits did not increase monotonically with time in the limited data set

  9. The effect of heat treatment on the hardness and impact properties of medium carbon steel

    Science.gov (United States)

    Mazni Ismail, Noor; Khatif, Nurul Aida Amir; Aliff Kamil Awang Kecik, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2016-02-01

    This paper covers the effect of heat treatment on the mechanical properties of medium carbon steel. The main objective of this project is to investigate the hardness and impact properties of medium carbon steel treated at different heat treatment processes. Three types of heat treatment were performed in this project which are annealing, quenching and tempering. During annealing process, the specimens were heated at 900°C and soaked for 1 hour in the furnace. The specimens were then quenched in a medium of water and open air, respectively. The treatment was followed by tempering processes which were done at 300°C, 450°C, and 600°C with a soaking time of 2 hours for each temperature. After the heat treatment process completed, Rockwell hardness test and Charpy impact test were performed. The results collected from the Rockwell hardness test and Charpy impact test on the samples after quenching and tempering were compared and analysed. The fractured surfaces of the samples were also been examined by using Scanning Electron Microscope. It was observed that different heat treatment processes gave different hardness value and impact property to the steel. The specimen with the highest hardness was found in samples quenched in water. Besides, the microstructure obtained after tempering provided a good combination of mechanical properties due to the process reduce brittleness by increasing ductility and toughness.

  10. Production, energy, and carbon emissions: A data profile of the iron and steel industry

    International Nuclear Information System (INIS)

    Battles, S.J.; Burns, E.M.; Adler, R.K.

    1999-01-01

    The complexities of the manufacturing sector unquestionably make energy-use analysis more difficult here than in other energy-using sectors. Therefore, this paper examines only one energy-intensive industry within the manufacturing sector--blast furnaces and steel mills (SIC 3312). SIC 3312, referred to as the iron and steel industry in this paper, is profiled with an examination of the products produced, how they are produced, and energy used. Energy trends from 1985 to 1994 are presented for three major areas of analysis. The first major area includes trends in energy consumption and expenditures. The next major area includes a discussion of energy intensity--first as to its definition, and then its measurement. Energy intensities presented include the use of different (1) measures of total energy, (2) energy sources, (3) end-use energy measures, (4) energy expenditures, and (5) demand indicators-economic and physical values are used. The final area of discussion is carbon emissions. Carbon emissions arise both from energy use and from certain industrial processes involved in the making of iron and steel. This paper focuses on energy use, which is the more important of the two. Trends are examined over time

  11. Pitting growth rate in carbon steel exposed to simulated radioactive waste

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1996-01-01

    Dilute high-level radioactive waste slurries can induce pitting corrosion in carbon steel tanks in which such waste is stored and processed. The waste is normally maintained with closely monitored nitrite and hydroxide concentrations known to prevent the initiation of pitting. Coupon immersion are being conducted in laboratory simulants of waste to determine the probability and growth rate of pitting in steel in the event of below-limits nitrite concentrations. Sets of about 36 carbon steel coupons have been immersed in known corrosive conditions (nitrite < 5% of the established limit) at a temperature of 50 C. Three sets have been removed from testing after 64, 150, and 350 days of immersion. The long immersion times introduced variability in the exposure conditions due to the evaporation and replenishment of solution. The deepest corrosive attack was measured on each coupon by optical microscopy. The deepest pits were ranked and analyzed as a type 1 extreme value distribution to extrapolate from the coupon population to the maximum pit depths in a waste tank structure. The data were compared to a power law for pit growth, although the deepest pits did not increase monotonically with time in the limited data set

  12. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wang, Bin; Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Jin, Xiaoyue; Du, Jiancheng; Hua, Ming [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-12-01

    Highlights: • The plasma discharge behaviors for PEB/C on steels were evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • The decomposition mechanism of electrolyte and was analyzed. - Abstract: A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000–12,000 K and 2 × 10{sup 22} m{sup −3}–1.4 × 10{sup 23} m{sup −3}. The atomic ionization degrees of iron, carbon and boron are 10{sup −16}–10{sup −3}, and 10{sup −23}–10{sup −6}, 10{sup −19}–10{sup −4}, respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed.

  13. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.

    Science.gov (United States)

    Wikieł, Agata J; Datsenko, Iaryna; Vera, Mario; Sand, Wolfgang

    2014-06-01

    Sulfate reducing prokaryotes are associated with the steel deterioration. They build heterogeneous biofilms, capable of accelerating corrosion processes. In this study metabolic activity and the biofilm development of Desulfovibrio alaskensis were correlated to electrochemical response of carbon steel surface. In the exponential growth phase sulfide concentration reached its maximum of about 10mM. This phenomenon was responsible for the parallel increase in the corrosion potential (Ecorr) up to -720mV (vs. SCE). Subsequently, during the intensive biofilm formation and development another Ecorr peak (-710mV vs. SCE) occurred. Decrease in Ecorr was registered during the biofilm maturation and kept stable, being 20mV lower than in the control. While carbon steel was protected from the microbial attachment and exposed to metabolic products, only one potential maximum (-730mV vs. SCE) was recorded. Here Ecorr variations coincided with sulfide concentration changes and kept at 120mV lower vs. the control. Weight loss examinations revealed corrosion rates, which did not exceed 0.05mm/y. Confocal microscopy suggested the importance of extracellular proteins in the biofilm formation. Above 150 proteins were detected in the EPS matrix. Surface effects of biofilm and metabolic products were visualised, revealing the role of attached microorganisms in the localised corrosion. © 2013.

  14. The effect of double steps heat treatment on the microstructure of nanostructure bainitic medium carbon steels

    Science.gov (United States)

    Foughani, Milad; Kolahi, Alireza; Palizdar, Yahya

    2018-01-01

    Nowadays, Nano structure bainitic steel have attracted attention mostly because of its special mechanical properties such as high tensile strength, hardness, appropriate toughness and low manufacturing cost. The main concern for the mass production of this type of steels is prolong austempering process which increases the production costs as well as time. In this research, in order to accelerate the bainitic transformation and decrease the production time, a medium carbon steel has been prepared and two steps austempering process was employed to prevent the bainite laths thickening. The Samples were austenetized at 1000°C for 15 min and were kept in the salt bath between 1 - 12 hours at 290°C in one step and between 1 - 12 hours at the temperature range of 250°C - 300°C in two steps bainite transformation. The obtained micro structures were studied by the optical and scanning electron microscopy (FESEM) and the mechanical properties were investigated by using tensile and hardness tests. The results show that the two steps austempering process and lower carbon concentration lead to lower austempering time as well as the formation of more stable retained austenite and nanostructured bainite lath which results in higher mechanical properties.

  15. Irradiation assisted stress corrosion cracking of low carbon stainless steel in BWR

    International Nuclear Information System (INIS)

    Mayuzumi, Masami

    2008-01-01

    Some examples and characteristics of old intergranular stress corrosion cracking (IGSCC) and the improvement methods are described. Stress corrosion cracking (SCC) of low carbon stainless steel in the core shroud and major piping of BWR has been reported since 1990. Most parts of them start at the transgranular stress corrosion cracking (TGSCC) and progress to IGSCC. The shape of crack is originated by the residual tensile stress that depends on welding and mechanical processing. The chromium-deficient layer was not observed. The crack progressed from the parent materials to the deposited metal with low content of ferrite. SCC crack growth rates of type SUS316 were 1/10 of type SUS304 stainless steel. The countermeasures of SCC of low carbon stainless steel to control its generation and progressing are stated. Method for SCC of major piping can include the introduction heating stress improvement (IHSI) and narrow gap edge welding. Methods for SCC of shroud include the laser peening, water jet peening, and polish processing. (S.Y.)

  16. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2016-01-01

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  17. Pitting growth rate in carbon steel exposed to simulated radioactive waste

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1995-01-01

    Dilute high-level radioactive waste slurries can induce pitting corrosion in carbon steel tanks in which such waste is stored and processed. The waste is normally maintained with closely monitored nitrite and hydroxide concentrations known to prevent the initiation of pitting. Coupon immersion are being conducted in laboratory simulants of waste to determine the probability and growth rate of pitting in steel in the event of below-limits nitrite concentrations. Sets of about 36 carbon steel coupons have been immersed in known corrosive conditions (nitrite < 5% of the established limit) at a temperature of 50 C. Three sets have been removed from testing after 64, 150, and 350 days of immersion. The long immersion times introduced variability in the exposure conditions due to the evaporation and replenishment of solution. The deepest corrosive attack was measured one each coupon by optical microscopy. The deepest pits were ranked and analyzed as a type 1 extreme value distribution to extrapolate from the coupon population to the maximum pit depths in a waste tank structure. The data were compared to a power law for pit growth, although the deepest pits did not increase monotonically with time in the limited data set

  18. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    International Nuclear Information System (INIS)

    Liu, Run; Wang, Bin; Wu, Jie; Xue, Wenbin; Jin, Xiaoyue; Du, Jiancheng; Hua, Ming

    2014-01-01

    Highlights: • The plasma discharge behaviors for PEB/C on steels were evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • The decomposition mechanism of electrolyte and was analyzed. - Abstract: A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000–12,000 K and 2 × 10 22 m −3 –1.4 × 10 23 m −3 . The atomic ionization degrees of iron, carbon and boron are 10 −16 –10 −3 , and 10 −23 –10 −6 , 10 −19 –10 −4 , respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed

  19. Some observations on the carburization of type 316 stainless steel foil in a low carbon activity sodium environment

    International Nuclear Information System (INIS)

    Thorley, A.W.; Jeffcoat, P.J.

    1982-01-01

    Work currently being undertaken to establish the equilibrium composition of carbides which form in stainless steel foils during their exposure to low carbon activity sodium environment is described. The time it takes the carbon to reach equilibrium during exposure to sodium of different carbon activity is discussed. The lowest carbon activity measureable in test loops where the sodium is just above carburizing to stainless steel is reported. Analytical techniques are used to determine the composition of the carbide and the austenite matrix and hence estimate the carbon activity of the equilibrium structure. This provides a comparison with carbon activity values determined by alternative methods such as the Harwell Carbon Meter and nickel tab techniques

  20. Fiscal 2000 report on result of R and D of underground storage technology for carbon dioxide; 2000 nendo nisanka tanso chichu choryu gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This paper presents the fiscal 2000 results of R and D of underground storage technology for carbon dioxide. As basic experiments, a measurement apparatus was manufactured for simulating the pressure and temperature conditions in aquifers to measure the rate at which CO{sub 2} is dissolved in water and the reactivity between CO{sub 2} and rocks, with the basic performance verified. Methods were investigated and classified that monitor environmental impact and safety. For the purpose of anticipating the long-term behaviors of CO{sub 2} sequestered underground, a simulator was developed, extracting, from investigation of the literature, natural phenomena required for the anticipation. As the system studies, examination was conducted for analysis of the energy balance of the underground storage technology, rational design (safety and economy) of an entire system ranging from source to storage point, investigation from social and economic perspectives, and estimation of the effect of suppressing global warming. In the injection experiment, Minami-Nagaoka natural gas field was selected as a prospective experiment site from the characteristics of the cap rock and aquifer. One injection well was drilled to a depth of 1,230 m, with investigations performed such as physical well-logging and core sampling. Existing data were utilized in the simulation study of CO{sub 2} behavior underground during the injection period. The information of the basic geophysical survey/exploratory well by the Japan National Oil Corporation was collected and compiled, with the preliminary geological study undertaken in the areas described. (NEDO)

  1. Diffusion of uranium in compacted bentonite in the presence of carbon steel

    International Nuclear Information System (INIS)

    Idemitsu, K.; Furuya, H.; Tachi, Y.; Inagaki, Y.

    1994-01-01

    In a high-level waste repository, a carbon steel overpack will be corroded by consuming oxygen trapped in the repository after closure. This will create a reducing environment in the vicinity of repository. Reducing conditions are expected to retard the migration of redox-sensitive radionuclides such as uranium. The apparent diffusivities of uranium were measured in compacted bentonite (Kunigel V1 reg-sign, Japan) in contact with carbon steel under reducing conditions or without carbon steel under oxidizing conditions for comparison. The apparent diffusivities of uranium were 3.5 x 10 -14 to 1.1 x 10 -13 m 2 /s under reducing conditions and 9.0 x 10 -13 to 1.4 x 10 -12 m 2 /s under oxidizing conditions. There was no significant effect of dry density (1.6 to 1.8 g/cm 3 ) and silica sand (0 or 40%) on the apparent diffusivities. Since the bentonite pore water would be buffered at a pH between 8 and 9, uranium in the bentonite pore water would probably exist as a neutral hydroxide complex under reducing conditions and as an anionic carbonate or hydroxide complex under oxidizing conditions. The anion exclusion theory cannot explain the difference of diffusivities between the two conditions. The uranium concentrations in bentonite under oxidizing conditions were one order of magnitude higher than those under the reducing conditions. The uranium concentration in the bentonite pore water under the reducing condition is estimated to be two orders of magnitude lower than that under the oxidizing conditions under the assumption of diffusion in porous media

  2. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products.

    Science.gov (United States)

    Zhang, Yeshui; Nahil, Mohamad A; Wu, Chunfei; Williams, Paul T

    2017-11-01

    A stainless-steel mesh loaded with nickel catalyst was produced and used for the pyrolysis-catalysis of waste high-density polyethylene with the aim of producing high-value carbon products, including carbon nanotubes (CNTs). The catalysis temperature and plastic-to-catalyst ratio were investigated to determine the influence on the formation of different types of carbon deposited on the nickel-stainless-steel mesh catalyst. Increasing temperature from 700 to 900°C resulted in an increase in the carbon deposited on the nickel-loaded stainless-steel mesh catalyst from 32.5 to 38.0 wt%. The increase in sample-to-catalyst ratio reduced the amount of carbon deposited on the mesh catalyst in terms of g carbon g -1 plastic. The carbons were found to be largely composed of filamentous carbons, with negligible disordered (amorphous) carbons. Transmission electron microscopy analysis of the filamentous carbons revealed them to be composed of a large proportion (estimated at ∼40%) multi-walled carbon nanotubes (MWCNTs). The optimum process conditions for CNT production, in terms of yield and graphitic nature, determined by Raman spectroscopy, was catalysis temperature of 800°C and plastic-to-catalyst ratio of 1:2, where a mass of 334 mg of filamentous/MWCNTs g -1 plastic was produced.

  3. 77 FR 27438 - Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final Results of Expedited...

    Science.gov (United States)

    2012-05-10

    ... International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From Korea: Final... third five-year sunset review of the countervailing duty order on certain corrosion-resistant carbon..., plated, or coated with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or...

  4. 75 FR 77615 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2010-12-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products from Korea..., 2010, the Department published the preliminary results of this review. See Certain Corrosion-Resistant...

  5. 76 FR 69703 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Extension of...

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-816] Corrosion-Resistant Carbon... administrative review of the antidumping duty order on corrosion-resistant carbon steel flat products from Korea..., 2011, the Department published the preliminary results of this review. See Certain Corrosion-Resistant...

  6. 76 FR 4291 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-580-818] Corrosion-Resistant Carbon... Commerce (the Department) initiated an administrative review of the countervailing duty order on corrosion... partial revocation of the countervailing duty order on corrosion-resistant carbon steel flat products from...

  7. Effect of carbon activity on the creep behaviour of 21/4Cr, 1Mo steel in sodium

    International Nuclear Information System (INIS)

    Cordwell, J.E.; Charnock, W.; Nicholson, R.D.

    1979-02-01

    The creep endurance and creep cracking behaviour of 2 1/4Cr, 1Mo steel in sodium at 475 0 C have been studied at three different sodium carbon activities. Creep endurance was found to increase with increasing carbon activity of the sodium. Tests carried out in high carbon activity sodium were discontinued before fracture. Creep crack initiation displacement at notches decreased with increasing carbon activity, presumably as a result of notch tip carburisation. The plastic zones at the tips of blunt notches in specimens exposed in high carbon activity sodium were preferentially carburised. These observations were similar to those made previously on 9Cr, 1Mo steel. One difference detected metallographically was that in a high carburising environment uniform carburisation was obtained in the 2 1/4Cr, 1Mo steel specimens whereas carburisation gradients were observed in the 9Cr, 1Mo steel. Creep crack propagation rates for given notch opening displacement rates in low and intermediate carbon activity sodium were indistinguishable. However, the strenthening that resulted from the mild carburisation of the specimen in the intermediate carbon activity sodium caused slower notch opening displacement rates and crack propagation rates than in the low carbon activity sodium, when the rates were compared at the same crack length. (author)

  8. Extended X-Ray Absorption Fine Structure Investigation of Carbon Stabilized Expanded Austenite and Carbides in Stainless Steel AISI 316

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2011-01-01

    Low temperature carburized AISI 316 stainless steel - carbon expanded austenite - was investigated with EXAFS and synchrotron diffraction together with synthesized carbides of the type M3C2, M7C3 and M23C6. It was found that the chemical environment of carbon expanded austenite is not associated ...

  9. 76 FR 78887 - Circular Welded Carbon Quality Steel Pipe From the People's Republic of China: Rescission of...

    Science.gov (United States)

    2011-12-20

    ... International Trade Administration Circular Welded Carbon Quality Steel Pipe From the People's Republic of China... opportunity to request an administrative review of the countervailing duty order on circular welded carbon.... Christian Marsh, Deputy Assistant Secretary for Antidumping and Countervailing Duty Operations. BILLING CODE...

  10. Application of Moessbauer effect to the study of austenite retained in low carbon steels

    International Nuclear Information System (INIS)

    Azevedo, A.L.T. de; Silva, E.G. da

    1979-01-01

    Moessbauer effect measurements were performed in two samples of low carbon, low alloy steels, one with a bainite granular microstructure and the other a martensitic one. The concentration of the retained austenite was determined in both samples by Moessbauer spectrometry and X radiation, a very good agreement for the sample with a greater austenite content having been observed. From the assumption that the carbon atoms in the f.c.c. matrix repel one another due to Coulomb interactions, giving origin to quadrupolar interactions, it was possible to determine carbon concentration in the MA (Martensite Austenite) components of bainite, the results being in good agreement with the one obtained from metallographic considerations. (I.C.R.) [pt

  11. A. C. response of lithium, stainless steel, and porous carbon electrodes in thionyl chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mogensen, M.

    1985-01-15

    Impedance measurements on Li electrodes in SOCl/sub 2/ electrolytes indicate that the structure of the passivating surface layer formed in 1.8M LiAlCl/sub 4/ differs from that formed in 1.8M AlCl/sub 3/, 1.2M LiCl, 0.6M SO/sub 2/. Also, porous carbon electrodes are found to behave differently in these two electrolytes. Unpolarised stainless steel electrodes show a 67/sup 0/ constant phase angle impedance over a wide frequency range whereas polarised to 0 mV ..nu..s. Li the impedance diagram is very similar to that of Li. Finally, it is found that passivation may develop differently for Li pressed onto stainless steel from that of Li pressed onto glass.

  12. Effect of organic acids traces on the carbon steel corrosion behavior

    International Nuclear Information System (INIS)

    Stefanescu, D.; Radulescu; Mogosan, S.

    2009-01-01

    There are many different ways in which organic matter may get in water-steam cycles. One important pathway is constituted by organic matter admitted into the system by chemical make-up water under standard operation conditions (without inverse osmosis). The high molecular weight organic matter, in particularly polysaccharides are broken in organic acids, in particular acetic and formic acid. This paper presents an overview of the investigations undertaken referring to the behavior SA106 gr. B mild steel in secondary circuit aqueous environment contaminated with formic and acetic acid traces. The samples were filmed in static autoclaves in operation conditions of secondary circuit, in contaminated environment and after that they were investigated using metallographic microscopy and SEM. In addition, an electrochemical technique videlicet impedance spectroscopy (EIS) was used to investigate the corrosion behavior of SA106 gr. B carbon steel in secondary circuit medium contaminated with formic and acetic acid traces. (authors)

  13. Results of polarization resistance and impedance of steel bars embedded in carbonated concrete contaminated with chlorides

    International Nuclear Information System (INIS)

    Andrade, C.; Alonso, C.; Gonzalez, J.A.

    1989-01-01

    Laboratory results of the corrosion rate of steel embedded in carbonated concrete contaminated with chlorides determined through the Polarization Resistance method are presented here as examples of the possibilities offered by this technique in order to monitor the reinforcement corrosion process. The Rp technique has the advantages of fast response, simple and relatively accurate. Contrasts with gravimetric losses are presented. The A.C. Impedance measurements determined on the same specimens are also presented. The difficulties found in the interpretation of the results are stressed. R T values cannot easily be obtained. Several electrical circuits which may model the behaviour of the steel/concrete system are discussed. Finally, comments on the basic criteria to interpret results of both techniques are given. (author) 4 refs., 6 figs

  14. Evolution of carbon steel corrosion in feedwater conditions reproduce by the Fortrand loop

    International Nuclear Information System (INIS)

    Delaunay, Sophie; Bescond, Aurelien; Mansour, Carine; Bretelle, Jean-Luc

    2012-09-01

    Fouling and tubes support plate blockage of steam generators (SG) are major problems in the secondary circuit of pressurized water reactor (PWR) plants. Corrosion products (CP) responsible of these phenomena are mainly constituted of magnetite. Limit the amount of these CP, generated in the feedwater system and transported to SG, constitutes one way to limit fouling and blockage of SGs. This work requires the understanding of CP behaviour in the feedwater system conditions. A specific experimental circulating water loop, FORTRAND, was built at EDF to follow the formation, the transport and the deposition of iron oxides in representative conditions of the secondary circuit feedwater system. The test section operating at high temperature (up to 250 deg. C) is made in carbon steel and includes three removable segments while all the other parts of the loop are made in stainless steel. First results confirm the formation of iron oxides on carbon steel and stainless steel surface in the conditions of PWR secondary circuits. The surface characterizations show that magnetite is the corrosion product formed on carbon steel and stainless steel at 220 deg. C and goethite is formed at room temperature on stainless steel. The aim of the most recent tests performed in FORTRAND loop was to follow the evolution of corrosion in the feedwater conditions. Tests were performed in one-phase flow conditions at 150 L.h -1 with a linear velocity of 0.82 m/s at 220 deg. C in morpholine/ammonia/hydrazine medium, at pH 25C equal to 9.2. To conduct this study, a removable segment constituted by ten tubes was added to the loop. Several tests were performed to follow the deposit thickness, the iron lost in solution and the oxide morphology with time from two to nine hundred sixty hours. Chemical conditions were controlled and the reproducibility of the results was confirmed by the observation of three tubes at each test. SEM pictures present kinetics with three steps: after the first hours the

  15. The influence of heat treatment on strain aging phenomena of the low alloyed carbon steel piping

    International Nuclear Information System (INIS)

    Lee, J. S.; Kim, I. S.; Kim, J. W.

    2001-01-01

    Strain aging characteristics were studied on the low alloyed carbon steel. Intercritical annealing in two phase region was performed to the SA106 Gr.C steel to reduce the detrimental strain aging effects. Tensile tests were carried out at various temperatures before and after treatment. Yield point return technique was used to measure the relative interstitial solute content. Tensile test results of heat treated specimen showed that the extent of ductility loss due to dynamic strain aging was reduced and that the temperature regions of the minimum ductility were shifted to higher temperature compared to the as received. The heat treatment seemed to reduce interstitial solute content in the ferrite matrix, which exhibited the decreased aging index as well as increased source hardening and yield point elongation. Activation energies of interstitial solute bulk diffusion determined by yield point return technique were 113.9 and 122.8 kJ/mol before and after heat treatment, respectively

  16. Microbiologically influenced corrosion of sa106 gr.b carbon steel in raw water

    International Nuclear Information System (INIS)

    Tunaru, M.; Velciu, L.; Stancu, M.; Popa, L.

    2015-01-01

    This paper presents the evaluation of microbiological corrosion susceptibility of carbon steel SA106gr.B in raw water. The experiment consisted of a series of electrochemical accelerated tests which evaluated the pitting corrosion susceptibility and determined corrosion rates before and after the immersion. The microbiological analysis of the water determined the types of bacteria and bacterial concentration present in water and in biofilms. Microbiological analysis of the water sample emphasized the existence, in small numbers (10-101 ml-1), of heterotrophic aerobic bacteria, sulphate-reducing bacteria and iron-oxidizing microorganisms. Along with sulphate-reducing bacteria, the heterotrophic aerobic bacteria and the iron-oxidizing microorganisms are categorized as having an important role in the corrosion of metals, including steel. The surfaces of the tested samples were analysed using the optical and electronic microscope, and emphasized the role of bacteria in the development of biofilms under which appeared characteristics of corrosion attack. (authors)

  17. Correction: Electrochemical Investigation of the Corrosion of Different Microstructural Phases of X65 Pipeline Steel under Saturated Carbon Dioxide Conditions. Materials 2015, 8, 2635–2649

    Directory of Open Access Journals (Sweden)

    Yuanfeng Yang

    2015-12-01

    Full Text Available In the published manuscript “Electrochemical Investigation of the Corrosion of Different Microstructural Phases of X65 Pipeline Steel under Saturated Carbon Dioxide Conditions. [...

  18. Modelling of induction heating of carbon steel tubes: Mathematical analysis, numerical simulation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Di Luozzo, N. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Fontana, M., E-mail: mfontan2006@gmail.com [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Arcondo, B. [Laboratorio de Solidos Amorfos, INTECIN, Facultad de Ingenieria, Universidad de Buenos Aires - CONICET, Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Numerical simulations of the heating by induction in steel tubes were performed. Black-Right-Pointing-Pointer Finite element method was employed in this electromagnetic-heat transfer coupled problem. Black-Right-Pointing-Pointer The outside temperature evolution of the steel tubes was determined experimentally and numerically. Black-Right-Pointing-Pointer Temperatures in the inner and outer tube surface and the heat affected zone were determined. - Abstract: The transient liquid phase bonding process is been performed to join carbon steel tubes. Fe{sub 96.2}B{sub 3.8} wt% amorphous ribbons of thickness a Almost-Equal-To 20 {mu}m have been employed as filler material. The tubes are aligned with their butted surfaces in contact with the amorphous layer. The joint is heated into a high frequency induction coil under Argon atmosphere. The temperature is raised at the highest possible rate to the process temperature (at about Almost-Equal-To 1250 Degree-Sign C) and then held for a predetermined time. In this paper, the numerical simulations of the heating stage of the bonding process have been made using the finite element method. This method had shown of being able to deal with these kind of coupled problems: electromagnetic field generated by alternating currents, eddy currents generated on the steel tube, heating of the steel tube due to joule effect and heat transfer by conduction, convection and radiation. The experimental heating stage, for its further simulation, was done with carbon steel tubes. In particular, we are interested in the temperature evolution of the tube upon heating: time to reach the process temperature at the joint, temperature differences between the inner and outer surface of the tube and the extension of the heat affected zone, taking into account the ferromagnetic-paramagnetic transition. The numerical simulations are validated by comparison with infrared radiation thermometer measurements of the

  19. Microhardness tests of stainless steel 52100 implanted with nitrogen and carbon dioxide

    CERN Document Server

    Mardanian, M; Taheri, Z

    2003-01-01

    In this research work, samples of stainless steel 52100 disks were implanted with nitrogen and carbon dioxide ions at the energy of 90 keV. Microhardness measurement were performed to determine the hardness of the surface. The N-2 sup + implanted steels at the doses of 1x10 sup 1 8 ions cm sup sub 2 gave the highest hardness of 49.70%, while for the CO sub 2 sup + ions implantation, the hardness of 17% and 5% were obtained at the doses of 3x10 sup 1 8 and 1x10 sup 1 9 ions cm sup - 2, respectively. To support the interpretation of our microhardness results the implanted surface were analyzed by the use of XRD method. Our results indicated that the hardness of the N sub 2 sup + implanted samples are due to formation of beta-Cr N phase in the surface layer, while in the CO sub 2 + implanted samples no observation of carbon as graphite or carbide was made. In addition, the absence of any hump in the XRD spectrum indicating that carbon is not in the amorphous phase either.

  20. Secondary electron yields of carbon-coated and polished stainless steel

    International Nuclear Information System (INIS)

    Ruzic, D.; Moore, R.; Manos, D.; Cohen, S.

    1982-01-01

    To increase the power throughput to a plasma of an existing lower hybrid waveguide, secondary electron production on the walls and subsequent electron multiplication must be reduced. Since carbon has a low secondary electron coefficient (delta), measurements were performed for several UHV compatible carbon coatings (Aquadag/sup X/, vacuum pyrolyzed Glyptal/sup X/, and lamp black deposited by electrophoresis) as a function of primary beam voltage (35 eV to 10 keV), surface roughness (60 through 600 grit mechanical polishing and electropolishing), coating thickness, and angle of incidence (theta). Also measured were uncoated stainless steel, Mo, Cu, Ti, TiC, and ATJ graphite. The yields were obtained by varying the sample bias and measuring the collected current while the samples were in the electron beam of a scanning Auger microprobe. This technique allows delta measurements of Auger characterized surfaces with < or =0.3 mm spatial resolution. Results show delta to have a typical energy dependence, with a peak occurring at 200 to 300 eV for normal incidence, and at higher energy for larger theta. In general, delta increases with theta more for smooth surfaces than for rough ones. Ninety percent of the secondary electrons have energies less than 25 eV. Some carbonized coating and surface treatment combinations give delta/sub max/ = 0.88 +- 0.01 for normal electron beam incidence: a reduction of almost 40% compared to untreated stainless steel

  1. ON THE ANODIC POLARIZATION BEHAVIOR OF CARBON STEEL IN HANFORD NUCLEAR WASTES

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER, K.D.

    2007-01-31

    The effect of the important chemical constituents in the Hanford nuclear waste simulant on the anodic behavior of carbon steel was studied. Specifically, the effect of pH, nitrite concentration, nitrite/nitrate concentration ratios, total organic carbon and the chloride concentration on the open circuit potential, pitting potential and repassivation potential was evaluated. It was found that pH adjusting, although capable of returning the tank chemistry back to specification, did not significantly reduce the corrosivity of the stimulant compared to the present condition. Nitrite was found to be a potent inhibitor for carbon steel. A critical concentration of approximately 1.2M appeared to be beneficial to increase the difference of repassivation potential and open circuit potential considerably and thus prevent pitting corrosion from occurring. No further benefit was gained when increasing nitrite concentration to a higher level. The organic compounds were found to be weak inhibitors in the absence of nitrite and the change of chloride from 0.05M to 0.2M did not alter the anodic behavior dramatically.

  2. ON THE ANODIC POLARIZATION BEHAVIOR OF CARBON STEEL IN HANFORD NUCLEAR WASTES

    International Nuclear Information System (INIS)

    BOOMER, K.D.

    2007-01-01

    The effect of the important chemical constituents in the Hanford nuclear waste simulant on the anodic behavior of carbon steel was studied. Specifically, the effect of pH, nitrite concentration, nitrite/nitrate concentration ratios, total organic carbon and the chloride concentration on the open circuit potential, pitting potential and repassivation potential was evaluated. It was found that pH adjusting, although capable of returning the tank chemistry back to specification, did not significantly reduce the corrosivity of the stimulant compared to the present condition. Nitrite was found to be a potent inhibitor for carbon steel. A critical concentration of approximately 1.2M appeared to be beneficial to increase the difference of repassivation potential and open circuit potential considerably and thus prevent pitting corrosion from occurring. No further benefit was gained when increasing nitrite concentration to a higher level. The organic compounds were found to be weak inhibitors in the absence of nitrite and the change of chloride from 0.05M to 0.2M did not alter the anodic behavior dramatically

  3. Hybrid Effect Evaluation of Steel Fiber and Carbon Fiber on the Performance of the Fiber Reinforced Concrete

    Science.gov (United States)

    Song, Weimin; Yin, Jian

    2016-01-01

    Fiber reinforcement is an important method to enhance the performance of concrete. In this study, the compressive test and impact test were conducted, and then the hybrid effect between steel fiber (SF) and carbon fiber (CF) was evaluated by employing the hybrid effect index. Compressive toughness and impact toughness of steel fiber reinforced concrete (SFRC), carbon fiber reinforced concrete (CFRC) and hybrid fiber reinforced concrete (HFRC) were explored at steel fiber volume fraction 0.5%, 1%, 1.5% and carbon fiber 0.1%, 0.2%, 0.3%. Results showed that the addition of steel fiber and carbon fiber can increase the compressive strength. SF, CF and the hybridization between them could increase the compressive toughness significantly. The impact test results showed that as the volume of fiber increased, the impact number of the first visible crack and the ultimate failure also increased. The improvement of toughness mainly lay in improving the crack resistance after the first crack. Based on the test results, the positive hybrid effect of steel fiber and carbon fiber existed in hybrid fiber reinforced concrete. The relationship between the compressive toughness and impact toughness was also explored. PMID:28773824

  4. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale

    Science.gov (United States)

    Hossain, R.; Pahlevani, F.; Quadir, M. Z.; Sahajwalla, V.

    2016-10-01

    Although high carbon martensitic steels are well known for their industrial utility in high abrasion and extreme operating environments, due to their hardness and strength, the compressive stability of their retained austenite, and the implications for the steels’ performance and potential uses, is not well understood. This article describes the first investigation at both the macro and nano scale of the compressive stability of retained austenite in high carbon martensitic steel. Using a combination of standard compression testing, X-ray diffraction, optical microstructure, electron backscattering diffraction imaging, electron probe micro-analysis, nano-indentation and micro-indentation measurements, we determined the mechanical stability of retained austenite and martensite in high carbon steel under compressive stress and identified the phase transformation mechanism, from the macro to the nano level. We found at the early stage of plastic deformation hexagonal close-packed (HCP) martensite formation dominates, while higher compression loads trigger body-centred tetragonal (BCT) martensite formation. The combination of this phase transformation and strain hardening led to an increase in the hardness of high carbon steel of around 30%. This comprehensive characterisation of stress induced phase transformation could enable the precise control of the microstructures of high carbon martensitic steels, and hence their properties.

  5. The relationship between elemental carbon and diesel particulate matter in underground metal/nonmetal mines in the United States and coal mines in Australia.

    Science.gov (United States)

    Noll, James; Gilles, Stewart; Wu, Hsin Wei; Rubinstein, Elaine

    2015-01-01

    In the United States, total carbon (TC) is used as a surrogate for determining diesel particulate matter (DPM) compliance exposures in underground metal/nonmetal mines. Since TC can be affected by interferences and elemental carbon (EC) is not, one method used to estimate the TC concentration is to multiply the EC concentration from the personal sample by a conversion factor to avoid the influence of potential interferences. Since there is no accepted single conversion factor for all metal/nonmetal mines, one is determined every time an exposure sample is taken by collecting an area sample that represents the TC/EC ratio in the miner's breathing zone and is away from potential interferences. As an alternative to this procedure, this article investigates the relationship between TC and EC from DPM samples to determine if a single conversion factor can be used for all metal/nonmetal mines. In addition, this article also investigates how well EC represents DPM concentrations in Australian coal mines since the recommended exposure limit for DPM in Australia is an EC value. When TC was predicted from EC values using a single conversion factor of 1.27 in 14 US metal/nonmetal mines, 95% of the predicted values were within 18% of the measured value, even at the permissible exposure limit (PEL) concentration of 160 μg/m(3) TC. A strong correlation between TC and EC was also found in nine underground coal mines in Australia.

  6. Phase analysis of corrosion products of carbon steel in sea water

    International Nuclear Information System (INIS)

    Garcia R, J.; Yee M, H.; Maldonado M, H.; Nunez, L.; Reguera, E.

    1998-01-01

    Nowadays carbon steel continues being the most widely used metallic material in marine and coastal buildings. The economic losses, due to corrosion processes, of those countries with important industrial and social activities in coastal regions are highly significant. In this sense the evaluation of the corrosion process of carbon steel and other materials in seawater or in coastal zones is a primary task for protection methods or to predict the hfe of an specific installation. In this communication we present the phases analysis, using XRD and Moessbauer techniques, of corrosion products of a carbon steel (CT3, equivalent to AISI C1020) exposed in two natural corrosion stations in the Caribbean sea (Cuba). The exposition time run from days to 36 months and the evaluated rust are characteristic of samples totally immersed in seawater, from the splash zone and form coastal zones at different distance from the shoreline. Quantitative phase analysis shown presence of magnetite (Fe 3 O 4 ), maghemite (y-Fe 2 O 3 ), akaganeite (B-FeOOH), lepidocrocite (y-FeOOH) and goethite (a-FeOOH) as iron bearing phases, and CaCO 3 (Calcite and aragonite), these last ones mainly in the immersed samples. Quantitative phase analysis by XRD was implemented as a linear combination of the patterns characteristic of all the detected phases and an appropriate model for the background. The quantitative results were used in kinetic models to understand the phase transformation between the iron oxides and oxy hydroxides in the studied conditions. The XRD qualitative and quantitative results were corroborated by Moessbauer spectroscopy in the temperature range of 20 to 300 K. (Author)

  7. Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder

    International Nuclear Information System (INIS)

    Park, Tae Jun; Lee, Eun Hee; Kim, Kyung Mo; Kim, Hong Pyo

    2012-01-01

    Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work

  8. Adsorption and performance of the 2-mercaptobenzimidazole as a carbon steel corrosion inhibitor in EDTA solutions

    Energy Technology Data Exchange (ETDEWEB)

    Calderón, J.A., E-mail: andres.calderon@udea.edu.co [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Vásquez, F.A. [Centro de Investigación, Innovación y Desarrollo de Materiales –CIDEMAT, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Carreño, J.A. [Laboratório de H2S, CO2 e Corrosividade, Instituto Nacional De Tecnologia (INT), Av. Venezuela, 82 – Térreo, Anexo 01, Sala 101A, Saúde, Rio de Janeiro, RJ (Brazil)

    2017-01-01

    This study presents a thermodynamic analysis of the adsorption and anti-corrosion performance of 2-mercaptobenzimidazole (2-MBI) on carbon steel in EDTA-Na2 solutions. The adsorption of the inhibitor on the metal surface was studied as a function of the concentration of the inhibiting species and the temperature of the system. The corrosion inhibition efficiency was studied by electrochemical impedance spectroscopy and mass loss tests. The results show that the adsorption of the inhibitor onto the metal surface behaves according to the Langmuir model, following an endothermic process. The inhibitor is chemically adsorbed onto the carbon steel surface. The efficiency of corrosion inhibition was above 93%, which was confirmed by both mass loss tests and the electrochemical impedance technique. The good performance of the corrosion inhibitor was maintained up to 24 h after the inhibitor was added to the corrosive EDTA-Na2 solutions. When the ratio of the volume of solution/exposed area was reduced, a decrease in the area covered by the inhibitor was observed. The best cost/benefit ratio for the corrosion protection of carbon steel was obtained when the number of moles of the inhibitor per surface area was maintained at 2.68 mmol cm{sup −2}. - Highlights: • Adsorption of the inhibitor on the metal surface is confirmed by thermodynamic data. • Adsorption of the inhibitor onto the metal behaves according to the Langmuir model. • Endothermic adsorption process indicates that the inhibitor is chemically adsorbed. • The efficiency of corrosion inhibition was above 93%. • The good performance of the corrosion inhibitor was maintained up to 24 h.

  9. Determination of local carbon content in austenite during intercritical annealing of dual phase steels by PEELS analysis

    International Nuclear Information System (INIS)

    Garcia-Junceda, A.; Caballero, F.G.; Capdevila, C.; Garcia de Andres, C.

    2007-01-01

    Parallel electron energy loss spectroscopy has allowed to analyse and quantify local variations in the carbon concentration of austenite islands transformed during the intercritical annealing treatment of commercial dual-phase steels. These changes in the carbon content of different austenite regions are responsible for the different volume fractions of tempered martensite, martensite and retained austenite obtained after intercritical annealing and overaging treatment. This technique reveals how carbon distribution in austenite evolves as the transformation process advances

  10. Corrosion analysis of decommissioned carbon steel waste water tanks at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Soo, P.; Roberts, T.C.

    1995-07-01

    A corrosion analysis was carried out on available sections of carbon steels taken from two decommissioned radioactive waste water tanks at Brookhaven National Laboratory. One of the 100,000 gallon tanks suffered from a pinhole failure in the wall which was subsequently patched. From the analysis it was shown that this leak, and two adjacent leaks were initiated by a discarded copper heating coil that had been dropped into the tank during service. The failure mechanism is postulated to have been galvanic attack at points of contact between the tank structure and the coil. Other leaks in the two tanks are also described in this report

  11. The effect of water vapor on the corrosion of carbon steel at 65 degree C

    International Nuclear Information System (INIS)

    Gdowski, G.E.; Estill, J.C.

    1995-01-01

    AISI 1020 carbon steel was exposed to air at various relative humidities at 65 degrees C. A ''critical relative humidity'' (CRH) of 75--85% was determined. The CRH is the transitional relative humidity where oxidation/corrosion changes from dry oxidation to aqueous film electrochemical corrosion. Short term testing suggests that aqueous film electrochemical corrosion results in the formation of an inner oxide of Fe 3 O 4 , and an outer oxide of a powdery Fe 2 O 3 and/or Fe 2 O 3 ·xH 2 O

  12. Effect of quenching techniques on the mechanical properties of low carbon structural steel

    Directory of Open Access Journals (Sweden)

    K. Miernik

    2010-07-01

    Full Text Available The paper presents the results of the impact of incomplete quenching technique on the mechanical properties of low carbon structural steel.Significant influence of the heating method to the α + γ field was observed on the strength and plasticity after hardening process. The best combination of mechanical properties was obtained for the 3th technique consisting of pre-heating the material to the austenite field, next cooling to the appropriate temperature in the α + γ and hardening from that dual phase region. The high level of toughness with relatively high strength were observed, compared to the properties obtained for the two other ways to quench annealing (incomplete hardening.

  13. Pulsed dc discharge in the presence of active screen for nitriding of high carbon steel

    OpenAIRE

    Saeed, Adnan; Khan, Abdul Waheed; Jan, Faiq; Waqar, Muhammad; Abrar, Muhammad; Mujahid, Zaka - Ul - Islam; Hussnain, Ali; Zakaullah, Muhammad

    2014-01-01

    A discharge of nitrogen - hydrogen mixture by 50 Hz pulsed dc in the presence of active screen cage is investigated by optical emission spectroscopy (OES). The aim is to identify the parameters (mixture ratio, filling pressure and current density) that may lead to high concentration of active species (N2, N2+ and N). The maximum concentration in this experiment is found with 40% H2 - 60% N2, at filling pressure of 3 mbar with current density of 5 mAcm-2. High carbon steel samples are nitrided...

  14. Residual Stress Distribution in Carbon Steel Pipe Welded Joint Measured by Neutron Diffraction

    OpenAIRE

    Makoto, HAYASHI; Masayuki, ISHIWATA; Yukio, MORII; Nobuaki, MINAKAWA; ROOT, John H.; Mechanical Engineering Research Laboratory, Hitachi, Ltd.,; Nuclear Engineering Division, Hitachi Ltd.,; Tokai Establishment, Japan Atomic Energy Research Institute; Tokai Establishment, Japan Atomic Energy Research Institute; National Research Council of Canada

    2000-01-01

    In order to estimate crack growth behavior of fatigue and stress corrosion cracking in pipes, the residual stress distribution near the pipe weld region has to be measured through the wall thickness.Since the penetration depth of neutron is deep enough to pass through the thick pipe wall, the neutron diffraction technique for the residual stress measurement is effective for this purpose.At the first step the residual stress distribution near the weld region in a butt-welded carbon steel pipe ...

  15. Carbon coated stainless steel as counter electrode for dye sensitized solar cells

    Science.gov (United States)

    Prakash, Shejale Kiran; Sharma, Rakesh K.; Roy, Mahesh S.; Kumar, Mahesh

    2014-10-01

    A new type of counter electrode for dye sensitized solar cells has been fabricated using a stainless steel sheet as substrate and graphite, graphene and multiwall carbon nanotubes as the catalytic material which applied by screen printing technique. The sheet resistances of the substrates and there influence on the dye sensitized solar cells has been studied. The fabricated counter electrodes i.e. SS-graphite, SS-graphene SS-MWCNT and SS-platinum were tested for their photovoltaic response in the form of dye sensitized solar cells.

  16. Analysis of G52-28 carbon steel exposed in GS1 column of isotopic exchange

    International Nuclear Information System (INIS)

    Velciu, Lucian; Dinu, Alice; Doanta, Dan; Dragomir, Stefan; Popa, L

    2008-01-01

    This paper presents some analysis performed on G52-28 carbon steel samples exposed in GS1 column of ROMAG-PROD Heavy Water Plant at Drobeta - Turnu Severin, Romania. The samples were maintained in isotopic exchange column on all period of its continuous working span (around 2.5 years). Analysis consisted in the quality evaluation of the structural material and the layer formed, after exposed period, using following methods: optic microscopy (metallography), scanning electron microscopy (SEM), and traction and adherence tests. (authors)

  17. Hydrogen evolution behavior in the corrosion of carbon steel in contact with magnetite

    International Nuclear Information System (INIS)

    Taniguchi, Naoki; Kawakami, Susumu; Tateishi, Tsuyoshi; Fukudome, Kazuyuki; Nishimura, Tsutomu

    2005-07-01

    It has been reported that the corrosion of carbon steel is accelerated by a contact with magnetite, which is a representative corrosion product in low oxygen environment. It is important to clarify the corrosion mechanism in the presence of magnetite for long term prediction of overpack corrosion. There are two possible cathodic reactions in the presence of magnetite coupled with anodic reaction. One is reduction of Fe(III) in magnetite, and the other is hydrogen evolution reaction. If the former dominates the cathodic reaction, corrosion acceleration will stop with the consumption of Fe(III). While, if the latter is the main cathodic reaction, corrosion acceleration is possible to continue for a long time. In this study, corrosion rate and hydrogen evolution behavior were investigated by the immersion test of carbon steel in contact with dummy corrosion product to contribute to understanding the corrosion mechanism. The immersion tests of carbon steel were carried out in sealed glass ampoule in the presence of dummy corrosion product with changing the Fe(III)/Fe(II) ratio. The corrosion rates increased with increase in Fe(III)/Fe(II) ratio, and rapid acceleration was observed when Fe(III)/Fe(II) ratio over stoichiometrical value of magnetite(=2). The hydrogen evolution reaction was not influenced by Fe(III)/Fe(II) although its rate was larger that without dummy corrosion product. According to the results, the cause of severe corrosion acceleration due to magnetite is inferred to be the oxidation by excessive Fe(III) in the magnetite. It was also indicated that corrosion acceleration by a factor of several times is possible to occur when Fe(III)/Fe(II) ratio in magnetite is 2 or less, and the hydrogen evolution reaction dominates the cathodic reaction. The hydrogen evolution rate and its change with time of carbon steel in contact with high purity magnetite without excessive Fe(III) were measured. As a result, the hydrogen evolution reaction was accelerated up to

  18. Evaluation of the Microbiologically Influenced Corrosion in a carbon steel making use of electrochemical techniques

    International Nuclear Information System (INIS)

    Diaz S, A.C.; Arganis, C.; Ayala, V.; Gachuz, M.; Merino, J.; Suarez, S.; Brena, M.; Luna, P.

    2001-01-01

    The Microbiologically Influenced Corrosion (MIC) has been identified as a problem of the nuclear plants systems in the last years. The electrochemical behavior of metal coupons of carbon steel submitted to the action of sulfate reducing bacteria (SRB) was evaluated, making use of the electrochemical techniques of direct current as well as electrochemical noise. The generated results show a little variation in the corrosion velocities which obtained by Tafel extrapolation and resistance to the linear polarization, whereas the electrochemical noise technique presented important differences as regards the registered behavior in environment with and without microorganisms. (Author)

  19. Some aspects of the electrochemical behaviour of mild steel in carbonate/bicarbonate solutions

    International Nuclear Information System (INIS)

    Rangel, C.M.; Leitao, R.A.; Fonseca, I.T.

    1986-01-01

    The electrochemical behaviour of mild steel in aqueous solutions of sodium carbonate/sodium bicarbonate (600 ppm) has been investigated using potentiodynamic polarization. In the pre-passive region three well-defined peaks are observed associated to reduction peaks corresponding to Fe(II) and Fe(III) species. A transpassive anodic peak is also observed being attributed to Fe(VI) species showing, in sweep reversal experiments, an associated reduction peak and an increase in the peak associated to the reduction of Fe(III) species. The characterization of the transpassive peak will be subject of further publication. (author)

  20. The electrochemistry of carbon steel in simulated concrete pore water in boom clay repository environments

    Directory of Open Access Journals (Sweden)

    Rosas-Camacho O.

    2011-04-01

    Full Text Available The prediction of corrosion damage of canisters to experimentally inaccessible times is vitally important in assessing various concepts for the disposal of High Level Nuclear Waste. Such prediction can only be made using deterministic models, whose predictions are constrained by the time-invariant natural laws. In this paper, we describe the measurement of experimental electrochemical data that will allow the prediction of damage to the carbon steel overpack of the super container in Belgium’s proposed Boom Clay repository by using the Point Defect Model (PDM. PDM parameter values are obtained by optimizing the model on experimental, wide-band electrochemical impedance spectroscopy data.

  1. A study of passivation/depassivation of carbon steel; electrochemical impedance spectrocopy vs. potential noise fluctuations

    International Nuclear Information System (INIS)

    Roberge, P.R.; Halliop, E.; Sastri, V.S.

    1992-01-01

    A technique based on recording corrosion potential fluctuations generated by corroding electrodes was used under open-circuit conditions to study passivation and depassivation of carbon steel. Quantification of the electrochemical signal in terms of the pitting corrosion rate has been attempted. The amplitude of electrochemical noise signals was analyzed under different pitting conditions and correlated to polarization resistance values obtained from the electrochemical impedance spectra. The automatic statistical data analysis of electrochemical impedance data points has been successfully applied to calculate polarization resistance values and other interesting characteristics of such measurements

  2. TEM Study of the Orientation Relationship Between Cementite and Ferrite in a Bainitic Low Carbon High Strength Low Alloy Steel

    OpenAIRE

    Illescas Fernandez, Silvia; Brown, A.P.; He, K.; Fernández, Javier; Guilemany Casadamon, Josep Maria

    2005-01-01

    Two different bainitic structures are observed in a steel depending on the sample heat treatment. The different types of bainitic structures exhibit different orientation relationships between cementite and the ferrite matrix. Upper bainite presents a Pitsch orientation relationship and lower bainite presents a Bagaryatski orientation relationship. Different heat treatments of low carbon HSLA steel samples have been studied using TEM in order to find the orientation relationshi...

  3. Effect of Adding Cerium on Microstructure and Morphology of Ce-Based Inclusions Formed in Low-Carbon Steel

    OpenAIRE

    Z. Adabavazeh; W. S. Hwang; Y. H. Su

    2017-01-01

    Intra-granular Acicular Ferrite (IAF), as one of the most well-known desirable microstructure of ferrite with a chaotic crystallographic orientation, can not only refine the microstructure and retard the propagation of cleavage crack but also provide excellent combination of strength and toughness in steel. The effect of adding cerium on microstructure and controlling proper cerium-based inclusions in order to improve properties in low-carbon commercial steel (SS400) were investigated. The ty...

  4. Effects of material and loading variables on fatigue life of carbon and low-alloy steels in LWR environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1995-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Section III of the Code specifies fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data suggest that the Code fatigue curves may not always be adequate in coolant environments. This paper reports the results of recent fatigue tests that examine the effects of steel type, strain rate, dissolved oxygen level, strain range, loading waveform, and surface morphology on the fatigue life of A106-Gr B carbon steel and A533-Gr B low-alloy steel in water

  5. Finite element analysis of bond behavior in a steel reinforced concrete structure strengthened carbon fibre reinforced polymer (CFRP strips

    Directory of Open Access Journals (Sweden)

    P. Pastorek

    2017-01-01

    Full Text Available The article deals with the analysis of influence of carbon-fibre reinforced polymer (CFRP on stress distribution in a steel reinforced concrete beam loaded by four-point bending flexural test. Simulation of the delamination is modelled by FEM with a cohesion zone material model. Distribution of cracks with CFRP strengthening is analysed, too. Finally, the fatigue life tests analysis was executed for the steel specimen (W.Nr. 1.0429 – concrete steel, which was used in the reinforced concrete beam. The fatigue test results are used to plot the fatigue life curve.

  6. Influence of modification on descriptions of low-carbon steel of ST1KP and wheeled КP-Т

    Directory of Open Access Journals (Sweden)

    J. Tatarko

    2013-06-01

    Full Text Available Purpose. Establishment of influence of modification on chemical composition stabilizing, improvements of morphology and location of nonmetallics and increase of stability and level of mechanical properties of steels St1kp and KП-Т. Methodology. For the performance of the given goal the modern methods of researches are used: chemical and spectral; electron microscopy; metallography; determination of mechanical properties. Chemical composition of steels was determined on DSTU 2651-2006 and specifications U 35.2-23365425-600:2006. Findings. Influence of multifunction modifiers were set on chemical composition, forming of nonmetallics and mechanical properties in low-carbon steel of St1kp and wheeled KP-T. It is proved that multifunction modifiers diminish the amount of nonmetallics and improve their morphology, facilitate chemical composition stabilization and increase of mechanical properties level of probed steels. Originality. Possibility of chemical composition stabilization and mechanical properties, changes morphology of nonmetallics due to volume crystallization at modification were first proved. Practical value. Use of modifiers of different compositions at the enterprises of JSCo «ArselorMittal Krivoi Rog» and JSCo «INTERPAYP NTZ» at smelting of steels St1kp and KП-T allowed to promote mechanical descriptions, especially shock viscidity of the prepared wheels from steel KП-T at the average on 14 %. Two new modifiers of multifunction action for treatment low-carbon and wheeled steels were developed, the novelty of which was confirmed by the patents ofUkraine № 85254 and № 93684.

  7. Carbon emissions due to deforestation for the production of charcoal used in Brazil’s steel industry

    Science.gov (United States)

    Sonter, Laura J.; Barrett, Damian J.; Moran, Chris J.; Soares-Filho, Britaldo S.

    2015-04-01

    Steel produced using coal generates 7% of global anthropogenic CO2 emissions annually. Opportunities exist to substitute this coal with carbon-neutral charcoal sourced from plantation forests to mitigate project-scale emissions and obtain certified emission reduction credits under the Kyoto Protocol’s Clean Development Mechanism. This mitigation strategy has been implemented in Brazil and is one mechanism among many used globally to reduce anthropogenic CO2 emissions; however, its potential adverse impacts have been overlooked to date. Here, we report that total CO2 emitted from Brazilian steel production doubled (91 to 182 MtCO2) and specific emissions increased (3.3 to 5.2 MtCO2 per Mt steel) between 2000 and 2007, even though the proportion of coal used declined. Infrastructure upgrades and a national plantation shortage increased industry reliance on charcoal sourced from native forests, which emits up to nine times more CO2 per tonne of steel than coal. Preventing use of native forest charcoal could have avoided 79% of the CO2 emitted from steel production between 2000 and 2007; however, doing so by increasing plantation charcoal supply is limited by socio-economic costs and risks further indirect deforestation pressures and emissions. Effective climate change mitigation in Brazil’s steel industry must therefore minimize all direct and indirect carbon emissions generated from steel manufacture.

  8. Measuring The Influence of Pearlite Dissolution on the Transient Dynamic Strength of Rapidly-Heated Plain Carbon Steels.

    Science.gov (United States)

    Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura

    2016-07-01

    Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high temperature manufacturing processes, including high speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time-dependent. The present work uses a rapidly-heated, high strain rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about three seconds. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.

  9. Metallurgy and mechanical properties variation with heat input,during dissimilar metal welding between stainless and carbon steel

    Science.gov (United States)

    Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.

    2018-02-01

    The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.

  10. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    Science.gov (United States)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  11. Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage

    Science.gov (United States)

    Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.

    2018-02-01

    The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.

  12. Simulations of Macrosegregation with consideration of inclusion effect in solidifying carbon steels

    International Nuclear Information System (INIS)

    Cao, Y F; Chen, Y; Kang, X H; Fu, P X; Liu, H W; Li, D Z

    2015-01-01

    During casting of steel ingots, the inclusions such as oxide, sulfide will inevitably exist in the melt. These inclusions will flow upward together with light solutes during solidification due to their lower density relative to the steel melt, which therefore causes impacts on the thermo-solutal convection in the melt and final solute distribution. Hence, a macrosegregation model that considers the effects of inclusions on melt flow in the mushy zone is established. Of the new model two important parameters, the inclusion capturing probability by solid, k p , and the original volume fraction, n 0 , are systematically studied in terms of simulations, which shows that decreasing k p or increasing n 0 leads to stronger ascending flow in the melt. And then as a validation example, the model was used to predict the macrosegregation in a 3.3-ton steel ingot. The prediction demonstrates that with consideration of inclusions, the melt convection strength is enhanced and thus the zones of macrosegregation are expanded comparing to simulations without taking account of inclusions. Further comparison with experiment results indicates that a better agreement of the carbon segregation along the centerline of the ingot can be achieved when considering the inclusion buoyancy. (paper)

  13. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: electrochemical and morphological characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Mariana Silva de; Goncalves, Marcia Monteiro Machado; Rola, Monick Alves da Cruz; Maciel, Diana Jose; Senna, Lilian Ferreira de; Lago, Dalva Cristina Baptista do, E-mail: sdp.mari@gmail.com, E-mail: marciamg@uerj.br, E-mail: monickcruz@yahoo.com.br, E-mail: dijmaciel@gmail.com, E-mail: lsenna@uerj.br, E-mail: dalva@uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Instituto de Quimica

    2016-10-15

    In this work, the corrosion behavior of carbon steel AISI 1020 was evaluated in artificial seawater in the presence of mixed sulfate-reducing bacteria (SRB) culture isolated from the rust of a pipeline. The corrosion evaluation was performed by electrochemical techniques (open circuit potential (E{sub ocp}), polarization curves and electrochemical impedance spectroscopy (EIS)), while the formation of a biofilm and corrosion products were observed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). The presence of SRB in the medium shifted the open circuit potential to more positive values and increased the corrosion rate of the steel. Electrochemical and morphological techniques confirmed the presence of a biofilm on the steel surface. EDS spectra data showed the presence of sulfur in the corrosion products. After removing the biofilm, localized corrosion was observed on the surface, confirming that localized corrosion had occurred. The biogenic sulfide may lead to the formation of galvanic cells and contributes to cathodic depolarization. (author)

  14. Corrosion of low-carbon cast steel in concentrated synthetic groundwater at 80 to 150 C

    International Nuclear Information System (INIS)

    Ahn, T.M.; Soo, P.

    1995-01-01

    Corrosion properties of American Society for Testing and Materials (ASTM) A216-Grade WCA low-carbon steel were evaluated in concentrated synthetic groundwater at 80 to 150 C. The evaluation provides information on the use of the steel as a container material in the proposed Yucca Mountain high-level waste repository. Uniform corrosion rates measured over 4 months ranged from 10 to 40 microm/year, in initially aerated static solutions under gamma irradiation at 1.3 x 10 6 rad/h. Irradiation effects on uniform corrosion rates were not discernible after 4 months. Pitting corrosion was also found, but the pitting factor was small. Microstructural effects on corrosion were not significant. During corrosion under irradiation, there was an indication of a large amount of hydrogen absorption in the steel. Constant extension rate tests showed evidence for environmental assisted cracking under free corrosion conditions, and strong evidence of hydrogen embrittlement and moisture-induced ductility loss. The use of the test results in support of the Yucca Mountain project is discussed

  15. Flexural Strength of Carbon Fiber Reinforced Polymer Repaired Cracked Rectangular Hollow Section Steel Beams

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-01-01

    Full Text Available The flexural behavior of rectangular hollow section (RHS steel beams with initial crack strengthened externally with carbon fiber reinforced polymer (CFRP plates was studied. Eight specimens were tested under three-point loading to failure. The experimental program included three beams as control specimens and five beams strengthened with CFRP plates with or without prestressing. The load deflection curves were graphed and failure patterns were observed. The yield loads and ultimate loads with or without repairing were compared together with the strain distributions of the CFRP plate. It was concluded that yield loads of cracked beams could be enhanced with repairing. Meanwhile, the ultimate loads were increased to some extent. The effect of repair became significant with the increase of the initial crack depth. The failure patterns of the repaired specimens were similar to those of the control ones. Mechanical clamping at the CFRP plate ends was necessary to avoid premature peeling between the CFRP plate and the steel beam. The stress levels in CFRP plates were relatively low during the tests. The use of prestressing could improve the utilization efficiency of CFRP plates. It could be concluded that the patching repair could be used to restore the load bearing capacity of the deficient steel beams.

  16. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented

  17. Uranium extraction from underground deposits

    International Nuclear Information System (INIS)

    Wolfe, C.R.

    1982-01-01

    Uranium is extracted from underground deposits by passing an aqueous oxidizing solution of carbon dioxide over the ore in the presence of calcium ions. Complex uranium carbonate or bicarbonate ions are formed which enter the solution. The solution is forced to the surface and the uranium removed from it

  18. SPEED DEPENDENCE OF ACOUSTIC VIBRATION PROPAGATION FROM THE FERRITIC GRAIN SIZE IN LOW-CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. A. Vakulenko

    2015-08-01

    Full Text Available Purpose. It is determining the nature of the ferrite grain size influence of low-carbon alloy steel on the speed propagation of acoustic vibrations. Methodology. The material for the research served a steel sheet of thickness 1.4 mm. Steel type H18T1 had a content of chemical elements within grade composition: 0, 12 % C, 17, 5 % Cr, 1 % Mn, 1, 1 % Ni, 0, 85 % Si, 0, 9 % Ti. The specified steel belongs to the semiferritic class of the accepted classification. The structural state of the metal for the study was obtained by cold plastic deformation by rolling at a reduction in the size range of 20-30 % and subsequent recrystallization annealing at 740 – 750 ° C. Different degrees of cold plastic deformation was obtained by pre-selection of the initial strip thickness so that after a desired amount of rolling reduction receives the same final thickness. The microstructure was observed under a light microscope, the ferrite grain size was determined using a quantitative metallographic technique. The using of X-ray structural analysis techniques allowed determining the level of second-order distortion of the crystal latitude of the ferrite. The speed propagation of acoustic vibrations was measured using a special device such as an ISP-12 with a working frequency of pulses 1.024 kHz. As the characteristic of strength used the hardness was evaluated by the Brinell’s method. Findings. With increasing of ferrite grain size the hardness of the steel is reduced. In the case of constant structural state of metal, reducing the size of the ferrite grains is accompanied by a natural increasing of the phase distortion. The dependence of the speed propagation of acoustic vibrations up and down the rolling direction of the ferrite grain size remained unchanged and reports directly proportional correlation. Originality. On the basis of studies to determine the direct impact of the proportional nature of the ferrite grain size on the rate of propagation of sound

  19. Rokibaar Underground = Rock bar Underground

    Index Scriptorium Estoniae

    2008-01-01

    Rokibaari Underground (Küütri 7, Tartu) sisekujundus, mis pälvis Eesti Sisearhitektide Liidu 2007. a. eripreemia. Sisearhitekt: Margus Mänd (Tammat OÜ). Margus Männist, tema tähtsamad tööd. Plaan, 5 värv. vaadet, foto M. Männist

  20. Some aspects of barreling in sintered plain carbon steel powder metallurgy preforms during cold upsetting

    Directory of Open Access Journals (Sweden)

    Sumesh Narayan

    2012-04-01

    Full Text Available The present research establishes a relationship of bulged diameter with densification and hydrostatic stress in forming of sintered iron (Fe powder metallurgy preforms cold upset under two different frictional conditions, namely, nil/no and graphite lubricant condition. Sintered plain carbon steel cylindrical preforms with carbon (C contents of 0, 0.35, 0.75 and 1.1% with constant initial theoretical density of 84% and aspect ratio of 0.4 and 0.6 were prepared using a suitable die-set assembly on a 1 MN capacity hydraulic press and sintered for 90 minutes at 1200 °C. Each sintered preform was cold upset under two different frictional constraints. It is seen that the degree of bulging reduces with reducing frictional constraints at the die contact surface. Further, it is found that the bulging ratio changed as a function of relative density and hydrostatic stress, respectively, according to the power law equations.

  1. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment

    International Nuclear Information System (INIS)

    Ma Yuantai; Li Ying; Wang Fuhui

    2008-01-01

    The atmospheric corrosion performance of carbon steel exposed in Wanning area, which located in the south part of China with tropic marine environment characters, was studied at different exposure periods (up to 2 years). To investigate the effect of β-FeOOH on the corrosion behavior of carbon steel in high chloride ion environment, rust layer was analyzed by using infrared spectroscopy, scanning electron microscope, X-ray diffraction, and the rusted steel was measured by electrochemical impedance spectroscopy method. The weight loss test indicated that the corrosion rate of carbon steel sharply increased during 6 months' exposure and gradually reduced after longer exposure. The results of rust analysis revealed that the underlying corrosion performance of the carbon steel was dependent on the inherent properties of the rust layers formed under different conditions such as composition and structure. Among all the iron oxide, β-FeOOH exerted significant influence. The presence of a monolayer of the rust as well as β-FeOOH accelerated the corrosion process during the initial exposure stage. EIS data implied that β-FeOOH in the inner layer was gradually consumed and transformed to γ-Fe 2 O 3 in the wet-dry cycle, which was beneficial to protect the substrate and reduced the corrosion rate

  2. Nature of the hardening of 15KhNMFA and GNMFA type low-carbon pearlite steels for power mechanical engineering

    International Nuclear Information System (INIS)

    Sandomirskij, M.M.; Sobolev, Yu.V.; Kovalev, V.A.; Astaf'ev, A.A.; Savukov, V.P.

    1981-01-01

    The nature of the hardening of low-carbon pearlite steels for power mechanical engineering of the 15KhNMFA and GNMFA type due to carbide phase precepitation during tempering, is considered. The structural and phase composition of welded steels and their welded joints is studied as applied to different regimes of heat treatment. The nature of the processes which take place in steels during heat treatment and their effect on steel strength and tempering resistance are shown [ru

  3. Effect of B and B + Nb on the bainitic transformation in low carbon steels

    International Nuclear Information System (INIS)

    Zhu Kangying; Oberbillig, Carla; Musik, Celine; Loison, Didier; Iung, Thierry

    2011-01-01

    Research highlights: → B retards slightly the bainite transformation kinetics. → Combined addition of B + Nb delayed dramatically bainite transformation kinetics. → B refines the microstructure and promotes lath morphology of bainite. → Larger packets of laths and longer laths are observed in the B + Nb steel. → More free boron/finer borocarbide precipitates on γ grain boundaries in B + Nb steel. - Abstract: Development of new, advanced high and ultra-high strength bainitic steels requires the selection of the optimum balance of bainite promoting elements allowing the production of the desired bainitic microstructure over a wide range of cooling rates. The addition of boron or a combined addition of boron and niobium is well known to retard strongly the polygonal ferrite formation but very little knowledge has been acquired on the bainitic transformation. Therefore, the purpose of this study is to investigate the influence of boron and boron plus niobium on the bainite transformation kinetics, microstructural evolution and mechanical properties in a low carbon steel (Fe-0.05C-1.49Mn-0.30Si). Isothermal and continuous cooling transformation diagrams were determined and followed by a detailed quantitative characterisation of the bainite microstructure and morphology using complementary advanced metallographic techniques (FEG-SEM-EBSD, SIMS and TEM). The relationship between microstructure and hardness has been evaluated. Finally, results of SIMS and TEM analyses coupled with microstructural investigations enable to propose a mechanism to explain the effect of the synergy between boron and niobium on the bainitic transformation and the resultant microstructure.

  4. Ultrasonic characterization of defects. Part 4. Study of realistic flaws in welded carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lingvall, F.; Stepinski, T. [Uppsala Univ. (Sweden). Signals and Systems

    1999-02-01

    This report treats the ultrasonic measurements performed on the new V-welded carbon steel blocks and development of the algorithms for feature extraction, flaw position estimation, etc. Totally 36 different defects, divided into 8 types, were manufactured and implanted into the V-welds in the steel blocks. The flaw population can also be divided in two major groups: sharp flaws (various types of cracks and lack of fusion) and soft types of flaws (slag, porosity and over penetration). A large amount of B- and D-scan measurements were performed on these flaws using 6 different transducers. The evaluation of these measurements resulted in the conclusion that the signal variation for the same type of defects is rather large compared to the variation found in signals from artificial and simulated defects. The steel block measurements also revealed that some of the defects were hard to distinguish, particularly if traditional features like fall/raise times, pulse duration and echo dynamics are used. To overcome this difficulty more powerful feature extraction methods were proposed, like the discrete wavelet transform and principal component analysis. Another important subject that is treated in this report is the estimation of flaw positions from B-scans. The previously used, one dimensional method, appeared to be sensitive to errors in the steel block measurements which, in some cases, resulted in poor flaw position estimates. Therefore, a two dimensional approach was proposed which should result in more robust estimates due to the larger amount of data that is used for the estimation.

  5. Carbon Contamination During Ion Irradiation - Accurate Detection and Characterization of its Effect on Microstructure of Ferritic/Martensitic Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Toloczko, Mychailo B.; Kruska, Karen; Schreiber, Daniel K.; Edwards, Danny J.; Zhu, Zihua; Zhang, Jiandong

    2017-11-17

    Accelerator-based ion beam techniques have been used to study radiation effects in materials for decades. Although carbon contamination induced by ion beam in target materials is a well-known issue, it has not been fully characterized nor quantified for studies in ferritic/martensitic (F/M) steels that are candidate materials for applications such as core structural components in advanced nuclear reactors. It is an especially important issue for this class of material because of the effect of carbon level on precipitate formation. In this paper, the ability to quantify carbon contamination using three common techniques, namely time-of-flight secondary ion mass spectroscopy (ToF-SIMS), atom probe tomography (APT) and transmission electron microscopy (TEM) is compared. Their effectiveness and short-comings in determining carbon contamination will be presented and discussed. The corresponding microstructural changes related to carbon contamination in ion irradiated F/M steels are also presented and briefly discussed.

  6. NbC precipitates EELS spectra in a very low carbon microalloyed steel

    Directory of Open Access Journals (Sweden)

    Mancilla, J. E.

    2004-06-01

    Full Text Available In this paper a characterization study by transmission electron microscopy (TEM and electron energy loss spectroscopy (EELS of NbC precipitates in microalloyed steel is presented. The steel was hot rolled in a laboratory scale two-high reversing mill. The shape, size, location, and number of particles per unit area in the steel microstructure are reported. The particles were semi quantitatively analyzed for the heavier alloying elements using EDS, while EELS was used for the lighter elements, e. g. carbon and nitrogen. The EELS study of the precipitates reveals that the carbon is present as a compound (NbC without nitrogen.

    En este trabajo se presenta un estudio de caracterización por espectroscopia de pérdida de energía de electrones (EPEE realizado en un microscopio electrónico de transmisión de los precipitados de NbC en un acero microaleado. El acero se laminó en caliente en un laminador dúo reversible escala laboratorio. Las partículas de precipitados se caracterizaron en tamaños, formas y distribución y se analizaron semicuantitativamente para los elementos de aleación del acero más pesados, empleando un detector por dispersión de energías de rayos X, mientras que la EPEE se empleó para los elementos más ligeros, es decir, el carbono y el nitrógeno. El estudio por EPEE de los precipitados muestra que el carbono está presente como un compuesto (NbC sin que se haya encontrado nitrógeno en los mismos.

  7. Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal

    International Nuclear Information System (INIS)

    Foct, F.; Gras, J.M.

    2003-01-01

    In France and other countries, carbon and low alloy steels have been proposed as suitable materials for nuclear waste containers for long term geological disposal since, for such types of steels, general and localised corrosion can be fairly well predicted in geological environments (mainly argillaceous and granitic conditions) during the initial oxic and the following anoxic stages. This paper presents a model developed for the long term estimation of general and localised corrosion of carbon steel in argillaceous and granitic environments. In the case of localised corrosion, the model assumes that pitting and crevice corrosion propagation rates are similar. The estimations are based on numerous data coming from various experimental programmes conducted by the following laboratories: UKAEA (United Kingdom); NAGRA (Switzerland); SCK-CEN (Belgium); JNC (Japan) and ANDRA-CEA-EDF (France). From these data, the corrosion rates measured over long periods (from six months to several years) and derived from mass loss measurements have been selected to construct the proposed models. For general corrosion, the model takes into account an activation energy deduced from the experimental results (Arrhenius law) and proposes three equations for the corrosion rate: one for the oxic conditions, one for the early stage of the anoxic conditions and one for the long term anoxic corrosion. Concerning localised corrosion, a semi-empirical model, based on the evolution of the pitting factor (ratio between the maximum pit depth and the average general corrosion depth) as a function of the general corrosion depth, is proposed. This model is compared to other approaches where the maximum pit depth is directly calculated as a function of time, temperature and oxic or anoxic conditions. Finally, the presented semi-empirical models for long term corrosion estimation are applied to the case of nuclear waste storage. The results obtained by the different methods are then discussed and compared

  8. Surface property enhancement by RE-borosulphurizing on high-carbon steel

    Science.gov (United States)

    Wang, Dong; Zhang, Xiu-li; Zhao, Han-yu; Li, Yun-dong

    2013-10-01

    Pack boronizing and rare-earth (RE)-borosulphurizing of high-carbon steel (T8) were conducted at 950 ∘C for 6 h. Characterizations of the layers formed on the surface of the high carbon steel were carried out by metallographic techniques, scanning electron microscopy, Auger electron spectroscopy and wear and corrosion resistance tests. It has been revealed that the diffusion front of the boride layer (BL) has a sawtooth shape, while that of the RE-borosulfide layer (RBSL) is flat. Different from the BL layer, the RBSL layer is compact, continuous and flat. The formation of FeS, Fe2B and FeB phases on the substrates was confirmed by Auger electron spectroscopy analysis. The wear resistance test indicated that within a certain range, the abrasion resistance of the RBSL layer is better than that of the BL layer, especially under high-load conditions. The corrosion resistance test using the weight loss method has shown that the corrosion resistance of the RBSL layer is better but decreases faster with time extension than that of the BL layer.

  9. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    Science.gov (United States)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures (pH as was observed with the increase in temperature. XRD and Raman spectroscopy confirmed the formation of magnetite. The oxide film formed by precipitation process was negligible at temperatures from 150 to 240 °C compared to that at higher temperatures (> 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  10. Development of Fractal Dimension and Characteristic Roughness Models for Turned Surface of Carbon Steels

    Science.gov (United States)

    Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Ding, Cong; Sun, Guodong

    2016-08-01

    Relationships between material hardness, turning parameters (spindle speed and feed rate) and surface parameters (surface roughness Ra, fractal dimension D and characteristic roughness τ∗) are studied and modeled using response surface methodology (RSM). The experiments are carried out on a CNC lathe for six carbon steel material AISI 1010, AISI 1020, AISI 1030, AISI 1045, AISI 1050 and AISI 1060. The profile of turned surface and the surface roughness value are measured by a JB-5C profilometer. Based on the profile data, D and τ∗ are computed through the root-mean-square method. The analysis of variance (ANOVA) reveals that spindle speed is the most significant factors affecting Ra, while material hardness is the most dominant parameter affecting τ∗. Material hardness and spindle speed have the same influence on D. Feed rate has less effect on three surface parameters than spindle speed and material hardness. The second-order models of RSM are established for estimating Ra, D and τ∗. The validity of the developed models is approximately 80%. The response surfaces show that a surface with small Ra and large D and τ∗ can be obtained by selecting a high speed and a large hardness material. According to the established models, Ra, D and τ∗ of six carbon steels surfaces can be predicted under cutting conditions studied in this paper. The results have an instructive meaning to estimate the surface quality before turning.

  11. Influence of explosive welding parameters on properties of bimetal Ti-carbon steel

    Directory of Open Access Journals (Sweden)

    Prazmowski Mariusz

    2017-01-01

    Full Text Available Explosion welding of metals is a process of great technological significance in terms of modern metal composites manufacturing possibilities Nevertheless, selecting welding parameters is not an easy task. This paper assesses the effect of various values of distance of sheets on the quality of the bond zone in titanium (Ti Gr.1 - carbon steel (P355GH structure. The research was carried out for initial state bonds i.e. immediately following explosion welding. The results of mechanical and structural investigations were presented. In order to determine changes in the value of strengthening, microhardness tests of both the weld and the joined plates were performed. Performed metallographic analysis shows that the standoff distance affects the quality of the bond zone boundary. Smaller distance promotes the formation of waves with lower parameters (of length and height, whereas greater distances allow forming the bond of a more pronounced, repetitive wavy character, however, increasing the quantity of the fusion zone at the same time. Also, the initial distance between the materials to be joined makes for the strengthening in the areas adjacent to bond boundary. The results received allowed to conclude that for the assumed parameters it is possible to obtain Ti -carbon steel bi-metal with properties meeting the standard’s requirements.

  12. Development of the mitigation method for carbon steel corrosion with ceramics in PWR secondary system

    International Nuclear Information System (INIS)

    Okamura, Masato; Shibasaki, Osamu; Miyazaki, Toyoaki; Kaneko, Tetsuji

    2012-09-01

    To verify the effect of depositing ceramic (TiO 2 , La 2 O 3 , and Y 2 O 3 ) on carbon steel to mitigate corrosion, corrosion tests were conducted under simulated chemistry conditions in a PWR secondary system. Test specimens (STPT410) were prepared with and without deposited ceramics. The ceramics were deposited on the specimens under high-temperature and high-pressure water conditions. Corrosion tests were conducted under high pH conditions (9.8) with a flow rate of 1.0-4.7 m/s at 185 deg. C for 200 hours. At a flow rate of 1.0 m/s, the amount of corrosion of the specimens with the ceramics was less than half of that of the specimens without the ceramics. As the flow rate increased, the amount of corrosion increased. However, even at a flow rate of 4.7 m/s, the amount of corrosion was reduced by approximately 30% by depositing the ceramics. After the corrosion tests, the surfaces of the specimens were analyzed with SEM and XRD. When the deposited ceramic was TiO 2 , the surface was densely covered with fine particles (less than 1 μm). From XRD analysis, these particles were identified as ilmenite (FeTiO 3 ). We consider that ilmenite may play an important role in mitigating the corrosion of carbon steel. (authors)

  13. Experimental Study on Vacuum Carburizing Process for Low-Carbon Alloy Steel

    Science.gov (United States)

    Wei, Shaopeng; Wang, Gang; Zhao, Xianhui; Zhang, Xiaopeng; Rong, Yiming

    2013-10-01

    As a low-carbon alloy steel, 20Cr2Ni4A steel has an excellent mechanical properties. It has been used for producing heavy-duty gears, which require good wear and fatigue resistance. The vacuum carburizing process can improve the quality of gears and extend the service life. In this article, a complete heat-treatment process for 20Cr2Ni4A, with carburizing, tempering, quenching and cryogenic steps involved, was proposed. A numerical method was employed to design the carburizing step. The carburized samples were characterized by analysis of carbon profile, surface-retained austenite content, microstructure, and hardness profile. A good microstructure was obtained with acicular-tempered martensite, less-retained austenite, fine granular-dispersed carbides, and was oxide free. The final surface hardness was 64.2HRC, and the case depth was 0.86 mm, which meet the requirements of products. The relationships among process, performance, and microstructure were investigated to understand the inner connection.

  14. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.

    Science.gov (United States)

    Dwivedi, D; Lepkova, K; Becker, T

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  15. Emerging surface characterization techniques for carbon steel corrosion: a critical brief review

    Science.gov (United States)

    Dwivedi, D.; Lepkova, K.; Becker, T.

    2017-03-01

    Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.

  16. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing

    International Nuclear Information System (INIS)

    Alihosseini, H.; Dehghani, K.

    2012-01-01

    Highlights: ► BH of UFG low carbon steel sheets was studied. ► Three passes of CGP are used for producing of UFG sheets. ► Maximum BH was achieved to the UFG specimen pre-strained 8% by baking at 250 °C. - Abstract: In the present work, the bake hardening of ultra-fine grained low carbon steel was compared with that of its coarse-grain counterpart. The ultra-fine grained sheets were produced by applying three passes of constrained groove pressing resulting the grains of 260–270 nm. The microstructure of ultra-fine grain specimens were characterized using electron back-scatter diffraction technique. Then, the bake hardenability of ultra-fine grain and coarse-grain samples were compared by pre-straining to 4, 6 and 8% followed by baking at 150 °C and 250 °C for 20 min. The results show that in case of baking at 250 °C, there was an increase about 108%, 93%, and 72% in the bake hardening for 4%, 6% and 8% pre-strain, respectively. As for baking at 150 °C, these values were 170%, 168%, and 100%, respectively for 4%, 6% and 8% pre-strain. The maximum in bake hardenability (103 MPa) and final yield stress (563 MPa) were pertaining to the ultra-fine grain specimen pre-strained 8% followed by baking at 250 °C.

  17. Surface Modification by Friction Stir Processing of Low-Carbon Steel: Microstructure Investigation and Wear Performance

    Science.gov (United States)

    Sattari, Behnoosh; Shamanian, Morteza; Salimijazi, Farshid; Salehi, Mehdi

    2018-01-01

    A low-carbon steel sheet with a thickness of 5 mm was subjected to friction stir processing (FSP) by one to four different passes. The microstructures of different regions were characterized using the optical microscopy and electron backscatter diffraction. The Vickers micro-harness was measured at the distance of 200 μm below the processed surfaces. The influence of pass numbers (PNs) on wear resistance was studied in terms of coefficients of friction (CoFs), weight losses and wear rates. SEM topographies of the worn surfaces were also studied to evaluate the wear mechanisms. Microstructure observations showed that Widmänstatten ferrite plates were formed in stir zones (SZs) and heat affected zones. As PN increased, these grains were widened due to the increment of the carbon diffusivity and lengthened because of the high heat input and microstructure anisotropy. Besides, increasing the PN causes increasing of the hardness and wear resistance, simultaneously. Specifically, the wear rate in the SZ was reduced from 2.8 × 10-2 mm3 m-1 in base metal to 0.3 × 10-2 mm3 m-1 in sample which was subjected to 4 FSP passes. However, variation in PN had no considerable effect on CoFs. Oxidative wear mechanism was observed on the worn surface of the steel and the FSPed samples while more debris was formed by increasing the PNs.

  18. Surface Modification by Friction Stir Processing of Low-Carbon Steel: Microstructure Investigation and Wear Performance

    Science.gov (United States)

    Sattari, Behnoosh; Shamanian, Morteza; Salimijazi, Farshid; Salehi, Mehdi

    2018-02-01

    A low-carbon steel sheet with a thickness of 5 mm was subjected to friction stir processing (FSP) by one to four different passes. The microstructures of different regions were characterized using the optical microscopy and electron backscatter diffraction. The Vickers micro-harness was measured at the distance of 200 μm below the processed surfaces. The influence of pass numbers (PNs) on wear resistance was studied in terms of coefficients of friction (CoFs), weight losses and wear rates. SEM topographies of the worn surfaces were also studied to evaluate the wear mechanisms. Microstructure observations showed that Widmänstatten ferrite plates were formed in stir zones (SZs) and heat affected zones. As PN increased, these grains were widened due to the increment of the carbon diffusivity and lengthened because of the high heat input and microstructure anisotropy. Besides, increasing the PN causes increasing of the hardness and wear resistance, simultaneously. Specifically, the wear rate in the SZ was reduced from 2.8 × 10-2 mm3 m-1 in base metal to 0.3 × 10-2 mm3 m-1 in sample which was subjected to 4 FSP passes. However, variation in PN had no considerable effect on CoFs. Oxidative wear mechanism was observed on the worn surface of the steel and the FSPed samples while more debris was formed by increasing the PNs.

  19. Transformation Characteristics of Ferrite/Carbide Aggregate in Continuously Cooled, Low Carbon-Manganese Steels

    Science.gov (United States)

    Di Martino, S. F.; Thewlis, G.

    2014-02-01

    Transformation characteristics and morphological features of ferrite/carbide aggregate (FCA) in low carbon-manganese steels have been investigated. Work shows that FCA has neither the lamellae structure of pearlite nor the lath structure of bainite and martensite. It consists of a fine dispersion of cementite particles in a smooth ferrite matrix. Carbide morphologies range from arrays of globular particles or short fibers to extended, branched, and densely interconnected fibers. Work demonstrates that FCA forms over similar cooling rate ranges to Widmanstätten ferrite. Rapid transformation of both phases occurs at temperatures between 798 K and 973 K (525 °C and 700 °C). FCA reaction is not simultaneous with Widmanstätten ferrite but occurs at temperatures intermediate between Widmanstätten ferrite and bainite. Austenite carbon content calculations verify that cementite precipitation is thermodynamically possible at FCA reaction temperatures without bainite formation. The pattern of precipitation is confirmed to be discontinuous. CCT diagrams have been constructed that incorporate FCA. At low steel manganese content, Widmanstätten ferrite and bainite bay sizes are significantly reduced so that large amounts of FCA are formed over a wide range of cooling rates.

  20. Underground Politics

    DEFF Research Database (Denmark)

    Galis, Vasilis; Summerton, Jane

    of various kinds, as well as for identifying and displacing undesired individuals/groups/bodies. A case in point is a recently-established police project (REVA) in Sweden for strengthening the so-called internal border control. Specifically, several underground stations in Stockholm now have checkpoints......Public spaces are often contested sites involving the political use of sociomaterial arrangements to check, control and filter the flow of people (see Virilio 1977, 1996). Such arrangements can include configurations of state-of-the-art policing technologies for delineating and demarcating borders...... status updates on identity checks at the metro stations in Stockholm and reports on locations and time of ticket controls for warning travelers. Thus the attempts by authorities to exert control over the (spatial) arena of the underground is circumvented by the effective developing of an alternative...

  1. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yishan; Zuo, Yu, E-mail: zuoy@mail.buct.edu.cn; Zhao, Xuhui; Zha, Shanshan

    2016-08-30

    Graphical abstract: CLS adsorbs preferentially around active sites on steel surface. - Highlights: • Calcium lignosulfonate is effective inhibitor for steel in simulated pore solution. • Both general corrosion and pitting can be inhibited by CLS. • The preferential adsorption of CLS around pits was detected by M-IR. • At beginning CLS adsorbs on surface unevenly and preferentially at active sites. • After pre-filming time an intact adsorption CLS film forms on steel surface. - Abstract: The corrosion inhibition of calcium lignosulfonate (CLS) for Q235 carbon steel in saturated Ca(OH){sub 2} + 0.1 mol/L NaCl solution was studied by means of weight loss, polarization, fluorescence microscopy (FM), scanning electron microscopy/energy dispersive spectrometry (SEM/EDS), microscopic infrared spectral imaging (M-IR) and X-ray photoelectron spectroscopy (XPS). For the steel in simulated concrete pore solution (pH 12.6), an increase of E{sub b} value and a decrease of i{sub corr} value occurred with different concentrations of CLS. The optimal content of CLS was 0.001 mol/L at which the inhibition rate was 98.86% and the E{sub b} value increased to 719 mV after 10 h of immersion. In mortar solution and in reinforced concrete environment, CLS also showed good inhibition for steel. The preferential adsorption of CLS around pits was detected by M-IR. The result illustrates that at the early stage the adsorption of CLS was heterogeneous and CLS may have a competitive adsorption with chloride ions at the active sites, which would be beneficial for decreasing the susceptibility of pitting corrosion. After the pre-filming time, an intact adsorption CLS film formed on carbon steel surface. The adsorption between CLS and calcium presented as Ca−O−S bonds. The adsorption of CLS on carbon steel surface occurred probably by both physisorption and chemisorption.

  2. Fundamental Studies on the Electrochemical Behaviour of Carbon Steel Exposed in Sulphide and Sulphate-Reducing Environments

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel

    The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies and for recommendati......The aim of the report is to give a fundamental understanding of the response of different electrochemical techniques on carbon steel in a sulphide environment as well as in a biologically active sulphate-reducing environment (SRB). This will form the basis for further studies...

  3. Approaches to Quantify Potential Contaminant Transport in the Lower Carbonate Aquifer from Underground Nuclear Testing at Yucca Flat, Nevada National Security Site, Nye County, Nevada - 12434

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Robert W.; Birdie, Tiraz [Navarro-INTERA LLC, Las Vegas, Nevada 89030 (United States); Wilborn, Bill; Mukhopadhyay, Bimal [National Nuclear Security Administration/Nevada Site Office, Las Vegas, Nevada 89030 (United States)

    2012-07-01

    Quantitative modeling of the potential for contaminant transport from sources associated with underground nuclear testing at Yucca Flat is an important part of the strategy to develop closure plans for the residual contamination. At Yucca Flat, the most significant groundwater resource that could potentially be impacted is the Lower Carbonate Aquifer (LCA), a regionally extensive aquifer that supplies a significant portion of the water demand at the Nevada National Security Site, formerly the Nevada Test Site. Developing and testing reasonable models of groundwater flow in this aquifer is an important precursor to performing subsequent contaminant transport modeling used to forecast contaminant boundaries at Yucca Flat that are used to identify potential use restriction and regulatory boundaries. A model of groundwater flow in the LCA at Yucca Flat has been developed. Uncertainty in this model, as well as other transport and source uncertainties, is being evaluated as part of the Underground Testing Area closure process. Several alternative flow models of the LCA in the Yucca Flat/Climax Mine CAU have been developed. These flow models are used in conjunction with contaminant transport models and source term models and models of contaminant transport from underground nuclear tests conducted in the overlying unsaturated and saturated alluvial and volcanic tuff rocks to evaluate possible contaminant migration in the LCA for the next 1,000 years. Assuming the flow and transport models are found adequate by NNSA/NSO and NDEP, the models will undergo a peer review. If the model is approved by NNSA/NSO and NDEP, it will be used to identify use restriction and regulatory boundaries at the start of the Corrective Action Decision Document Corrective Action Plan (CADD/CAP) phase of the Corrective Action Strategy. These initial boundaries may be revised at the time of the Closure Report phase of the Corrective Action Strategy. (authors)

  4. The applicability of C-14 measurements in the soil gas for the assessment of leakage out of underground carbon dioxide reservoirs

    Directory of Open Access Journals (Sweden)

    Chałupnik Stanisław

    2014-03-01

    Full Text Available Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage. Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to know if there is any escape of CO2 from underground gas reservoirs, created as a result of sequestration. Such information is crucial to ensure safety of the population in areas located above geological reservoirs. It is possible to assess the origin of carbon dioxide, if the measurement of radiocarbon 14C concentration in this gas is done. If CO2 contains no 14C, it means, that the origin of the gas is either geological or the gas has been produced as a result of combustion of fossil fuels, like coal. A lot of efforts are focused on the development of monitoring methods to ensure safety of CO2 sequestration in geological formations. A radiometric method has been tested for such a purpose. The main goal of the investigations was to check the application possibility of such a method. The technique is based on the liquid scintillation counting of samples. The gas sample is at first bubbled through the carbon dioxide adsorbent, afterwards the adsorbent is mixed with a dedicated cocktail and measured in a low-background liquid scintillation spectrometer Quantulus. The described method enables measurements of 14C in mine and soil gas samples.

  5. 76 FR 64896 - Certain Cut-to-Length Carbon-Quality Steel Plate From the Republic of Korea: Extension of Time...

    Science.gov (United States)

    2011-10-19

    ... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate From the Republic of Korea... administrative review of the antidumping duty order on certain cut-to-length carbon-quality steel plate from the.... Christian Marsh, Deputy Assistant Secretary for Antidumping and Countervailing Duty Operations. BILLING CODE...

  6. The Roles of H2S Gas in Behavior of Carbon Steel Corrosion in Oil and Gas Environment: A Review

    Directory of Open Access Journals (Sweden)

    Yuli Panca Asmara

    2018-03-01

    Full Text Available Hydrogen sulfide (H2S is the most dangerous element which exists in oil and gas reservoir. H2S acidifies water which causes pitting corrosion to carbon steel pipelines. Corrosion reaction will increase fast when it combines with oxygen and carbon dioxide (CO2. Thus, they can significantly reduce service life of transportation pipelines and processing facilities in oil and gas industries. Understanding corrosion mechanism of H2S is crucial to study since many severe deterioration of carbon steels pipelines found in oil and gas industries facilities. To investigate H2S corrosion accurately, it requires studying physical, electrical and chemical properties of the environment. This paper concentrates, especially, on carbon steel corrosion caused by H2S gas. How this gas reacts with carbon steel in oil and gas reservoir is also discussed. This paper also reviews the developments of corrosion prediction software of H2S corrosion. The corrosion mechanism of H2S combined with CO2 gas is also in focused.

  7. Electrochemical Impedance Spectroscopy Study on Corrosion Protection of Acrylate Nanocomposite on Mild Steel Doped Carbon Nanotubes

    International Nuclear Information System (INIS)

    Mahmud, M R; Akhir, M M; Shamsudin, M S; Afaah, A N; Aadila, A; Asib, N A M; Harun, M K; Abdullah, S; Alrokayan, Salman A H; Khan, Haseeb A; Rusop, M

    2015-01-01

    Acrylate:carbon nanotubes (A:CNTs) nanocomposite thin film was prepared by sol- gel technique. The corrosion coating protection of acrylate:carbon nanotubes (CNTs) nanocomposite thin film has been coated on mild steel characterised by electrochemical impedance spectrometer (EIS) measurement and equivalent circuit model are employed to analyse coating impedance for corrosion protection. In this study, 3.5 w/v % sodium chloride (NaCl) solution was immersed the acrylate:carbon nanotubes nanocomposite thin film. As the results, the surface morphology were found that there formation of carbon nanotubes with good distribution on acrylate-based coating. From EIS measurement, A:CNTs nanocomposite thin film with 0.4 w/v % contain of CNTs was exhibited the highest coating impedance from Nyquist graph after immersed in sodium chloride solution and may provide the excellent corrosion protection. The Bode plots have shown the impedance is high at the beginning from the time at high frequency and slightly decreases with value of frequency become smaller. (paper)

  8. Microstructure and properties of SA 106B carbon steel after treatment of the melt with nano-sized TiC particles

    International Nuclear Information System (INIS)

    Park, Jin-Ju; Hong, Sung-Mo; Park, Eun-Kwang; Kim, Kyeong-Yeol; Lee, Min-Ku; Rhee, Chang-Kyu

    2014-01-01

    Carbon steel dispersed with nano-sized TiC ceramic particles was fabricated using the liquid metal casting process by means of their ex-situ introduction. For this purpose, the nano-sized TiC powders with an initial average size of 40 nm were first mechanically activated with two metal powders (Fe, Ni) and then introduced externally into the molten carbon steel during the casting process. According to the chemical composition analysis, 90% of the initial TiC nanoparticles were discovered within the cast carbon steel. Compared to cast carbon steel without TiC nanoparticles, the grain size refinement and mechanical property enhancement were achieved. Atom probe tomographic analysis revealed that the TiC nanoparticles were approximately 30 nm in size in the carbon steel matrix with a number density of 1.49×10 21 m −3

  9. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Necib, S. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); Diomidis, N. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Keech, P. [Nuclear Waste Management Organisation NWMO, Toronto (Canada); Nakayama, M. [Japan Atomic Energy Agency JAEA, Horonobe-Cho (Japan)

    2017-04-15

    Carbon steel is widely considered as a candidate material for the construction of spent fuel and high-level waste disposal canisters. In order to investigate corrosion processes representative of the long term evolution of deep geological repositories, two in situ experiments are being conducted in the Mont Terri rock laboratory. The iron corrosion (IC) experiment, aims to measure the evolution of the instantaneous corrosion rate of carbon steel in contact with Opalinus Clay as a function of time, by using electrochemical impedance spectroscopy measurements. The Iron Corrosion in Bentonite (IC-A) experiment intends to determine the evolution of the average corrosion rate of carbon steel in contact with bentonite of different densities, by using gravimetric and surface analysis measurements, post exposure. Both experiments investigate the effect of microbial activity on corrosion. In the IC experiment, carbon steel showed a gradual decrease of the corrosion rate over a period of 7 years, which is consistent with the ongoing formation of protective corrosion products. Corrosion product layers composed of magnetite, mackinawite, hydroxychloride and siderite with some traces of oxidising species such as goethite were identified on the steel surface. Microbial investigations revealed thermophilic bacteria (sulphate and thiosulphate reducing bacteria) at the metal surface in low concentrations. In the IC-A experiment, carbon steel samples in direct contact with bentonite exhibited corrosion rates in the range of 2 µm/year after 20 months of exposure, in agreement with measurements in absence of microbes. Microstructural and chemical characterisation of the samples identified a complex corrosion product consisting mainly of magnetite. Microbial investigations confirmed the limited viability of microbes in highly compacted bentonite. (authors)

  10. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept.. China Energy Group; Arens, Marlene [Fraunhofer Inst. for Systems and Innovation Research (ISI), Karlsruhe (Germany)

    2013-01-31

    Iron and steel manufacturing is among the most energy-intensive industries and accounts for the largest share, approximately 27 percent, of global carbon dioxide (CO2) emissions from the manufacturing sector. The ongoing increase in world steel demand means that this industry’s energy use and CO2 emissions continue to grow, so there is significant incentive to develop, commercialize and adopt emerging energy-efficiency and CO2 emissions-reduction technologies for steel production. Although studies from around the world have identified a wide range of energy-efficiency technologies applicable to the steel industry that have already been commercialized, information is limited and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on 56 emerging iron and steel industry technologies, with the intent of providing a well-structured database of information on these technologies for engineers, researchers, investors, steel companies, policy makers, and other interested parties. For each technology included, we provide information on energy savings and environmental and other benefits, costs, and commercialization status; we also identify references for more information.

  11. Effects of materials and water chemistry factors on FAC rate of carbon steels

    International Nuclear Information System (INIS)

    Watanabe, Yutaka; Abe, Hiroshi

    2011-01-01

    Pipe wall thinning due to flow accelerated corrosion (FAC) is one of the most important degradation modes which can take place in nuclear power plants. Potential area of FAC is widespread in piping systems and probability of pipe failure due to FAC is relatively high compared to other causes. FAC is a complex phenomenon, where mass transfer under turbulent flow, chemical reactions at interfaces, and mass diffusion in oxide scales cooperatively or competitively interact. Among a number of influencing parameters for FAC rate, this paper focuses on Cr in carbon steels and pH of water. pH is the primary water chemistry parameter to manage FAC susceptibility of the whole piping systems. Small amount of Cr has a significant effect for improving resistance of the carbon steels to FAC. This fact offers an effective countermeasure for FAC mitigation by using Cr modified steels, but, at the same time, the Cr dependence could give difficult problems, when we manage pipe wall thinning with thickness inspections. In a procedure to sample piping lines and locations of thickness measurement, we may need to take into account Cr content of the pipes picked up for the inspection. We also need to pay attention on difference in Cr content between pipes and weld filler metal, even though the absolute Cr levels of the both steels are minor. In the cases that Cr content of weld metal is lower than that of pipe materials, circumferential grooving may form along the weld. Basically, effects of those material and water chemistry factors can be attributed to oxide scale properties, such as solubility to water, porosity, semiconductor property, etc. This paper briefly reviews experimental data of Cr, Ni, Cu effects and of pH effects, including both widely recognized 'historical' data and recent data on combined effects of Cr content and pH obtained by the authors. Characteristics of oxide scales formed in the FAC experiments, such as defect characteristics and Cr enrichment distribution, and

  12. The efficiency of different types of wood charcoal on increasing carbon content on surfaces of low carbon steel in the pack carburizing process

    Directory of Open Access Journals (Sweden)

    Narongsak Thammachot

    2014-09-01

    Full Text Available The purpose of this research is to compare the efficiency of five types of wood charcoal, eucalyptus, coconut shell, tamarind, bamboo and cassava root in increasing carbon content on surfaces of low carbon steel by the pack carburizing process. The experiment for pack carburized low carbon steel (grade AISI 1020 was conducted by using the different wood charcoals as carburizers, mixed with 10% limestone (by weight as the energizer. The carburizing temperature of 950°C, and carburizing times of 2, 4 and 6 hours were used in the experiment. After grinding, the specimens in each case were checked for carbon content by optical emission spectroscopy. Micro-Vickers hardness testing and microstructure inspections were carried out. The results of the experiment showed that the efficiency of eucalyptus charcoal as the carburizer (for increasing carbon content on surfaces of low carbon steel was higher than that of tamarind, cassava root, coconut shell and bamboo charcoals. The averages for carbon content were: 1.16, 1.06, 0.97, 0.83 and 0.77% respectively.

  13. Effect of microalloying elements on the structure and properties of low-carbon and ultralow-carbon cold-rolled steels

    Science.gov (United States)

    Girina, O. A.; Fonshtein, N. M.; Storozheva, L. M.

    1994-03-01

    Cold-rolled steels used for the forged components of automobiles should exhibit high, partly mutually-exclusive properties: high forgeability with desirably high strength, resistance to aging combined with hardenability at temperatures for drying paint coatings, etc. Satisfaction of these requirements is provided to a considerable degree by microalloying. The final mechanical properties of cold-rolled steel depend on such structural parameters of hot-rolled strip as texture, the amount of dissolved C and N atoms in α-solid solution, and ferrite grain size. With constant hot rolling production schedules these structural parameters are governed by steel composition, in particular by the type of microalloying. In this work the effect is considered for dispersed microalloying elements, i.e., phosphorus, boron, titanium, and nïobium, on the final mechanical properties of low- and ultralow-carbon steels.

  14. Study of caffeine as corrosion inhibitors of carbon steel in chloride solution containing hydrogen sulfide using electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Solehudin, Agus; Berman, Ega Taqwali; Nurdin, Isdiriayani

    2015-09-01

    The corrosion behaviour of steel surface in the absence and presence of caffeine in 3.5% NaCl solution containing dissolved H2S gas is studied using electrochemical impedance spectroscopy (EIS). The experimental results of carbon steel corrosion in 3.5% NaCl solution containing 500 mg/l H2S at different caffeine concentrations showed that corrosion rate of carbon steel decreases with increasing of caffeine concentrations from 0 to 0,1 mmol/l. Whereas, the corrosion rate increase with increasing of caffeine concentrations from 1 to 10 mmol/l. It is clear that no inhibition efficiency increases with increasing inhibitor concentration. The optimum value of inhibition efficiency was 90% at a caffeine concentration of 0.1 mmol/l. This suggests that caffeine's performance as a corrosion inhibitor is more effective at a concentration of 0.1 mmol/l.

  15. An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys

    Science.gov (United States)

    Ashida, Yugo; Daigo, Yuzo; Sugahara, Katsuo

    2017-08-01

    Commercial metals and alloys like carbon steels, stainless steels, and nickel-based super alloys frequently encounter the problem of environmentally assisted cracking (EAC) and resulting failure in engineering components. This article aims to provide a perspective on three critical industrial applications having EAC issues: (1) corrosion and cracking of carbon steels in automotive applications, (2) EAC of iron- and nickel-based alloys in salt production and processing, and (3) EAC of iron- and nickel-based alloys in supercritical water. The review focuses on current industrial-level understanding with respect to corrosion fatigue, hydrogen-assisted cracking, or stress corrosion cracking, as well as the dominant factors affecting crack initiation and propagation. Furthermore, some ongoing industrial studies and directions of future research are also discussed.

  16. Inhibiting properties and adsorption of an amine based fatty acid corrosion inhibitor on carbon steel in aqueous carbon dioxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Buchweishaija, Joseph

    1997-12-31

    Carbon dioxide corrosion is a major corrosion problem in oil and gas production systems and many organic inhibitors have been tested and used to protect the substrate from corrosion. This thesis studies the mechanism of interaction of the inhibitor molecule with the metallic substrate and how this affects the dissolution rate of the metal. The performance of a commercial amine based fatty acid corrosion inhibitor has been investigated using rotating cylinder electrodes and carbon steel electrodes in CO{sub 2} saturated formation water in the temperature range between 35 to 80{sup o}C. The corrosion process was monitored by electrochemical impedance measurements, and at the end of each experiment full polarization curves were recorded. When the inhibitor was applied on noncorroded electrodes, high inhibitor performance, over 99.7%, was observed independent of temperature. On precorroded electrodes inhibitor performance was found to depend on temperature and time of precorrosion. Above 60{sup o}C, the inhibitor performance decreased with increasing time of precorrosion, presumably because of the formation of a corrosion film of either iron carbonate or a combination of iron carbonate and iron carbide which prevent the inhibitor from reaching the surface. The inhibitor protection efficiency was assumed to be associated with the degree of inhibitor coverage at the material surface, and adsorption isotherms have been calculated in the concentration range between 0.1 ppm and 100 ppm. A Langmuir isotherm was found to give the best fit. The inhibitor performance on a 2 days precorroded rotating electrode was investigated at different solution pH ranging between 4.5 and 6.5 at 35{sup o}C. 130 refs., 80 figs., 22 tabs.

  17. A fundamental understanding of the electrochemical noise related to pitting corrosion of carbon steel

    Science.gov (United States)

    Cheng, Yufeng

    The pitting behavior of carbon steel in chloride-containing solutions was studied by the electrochemical noise technique. The semiconducting nature of the passive film formed on carbon steel was revealed as well. The initiation of metastable pits is generally indicated by a typical current and potential transient with the shape of a quick current rise and potential drop followed by a slow recovery. The potential fluctuations mainly come from the response of the electrode capacitance to pit growth charge. Only the current transients directly reflect the metastable pitting process. The potential dependence of the pit initiation rate is well illustrated by the point defect model, which assumes that pitting initiation is due to the anion-catalyzed cation vacancy condensation at the film/metal interface. Pit growth kinetics are controlled by the ohmic potential drop across the cover over the pits. The repassivation time of metastable pits is affected by the potential drop across the pit cover. A pit stabilization criterion of the ratio of peak pit current to pit radius indicates that the critical condition to maintain the stable pit growth must exceed 2 x 10-2 A cm-1 to avoid repassivation. The main role of chloride ions in pitting is to increase the chance of the breakdown of a passive film, rather than to inhibit surface repassivation. The initiation of a metastable pit will have a certain influence on subsequent pitting events in the case of high pitting activity. When the pitting activity decreases, the metastable pitting events will follow the Poisson distribution. Spectral analysis of noise data indicates that any transient having a sudden birth or a sudden death generates f-2 noise, while that without sudden change shows f -4 behavior. The roll-off frequency reflects the repassivation or growth rate of metastable pits. The noise resistance coincides with the polarization resistance only in passivity or general corrosion. For pitting, the noise resistance cannot

  18. Improvement of the corrosion and tribological properties of CSS-42L aerospace bearing steel using carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fangfang; Zhou, Chungen; Zheng, Lijing, E-mail: zhenglijing@buaa.edu.cn; Zhang, Hu

    2017-01-15

    Highlights: • The corrosion and tribological properties of an aerospace bearing steel CSS-42L was investigated. • Carbon ion implantation was conducted and an amorphous layer formed at the near surface of CSS-42L steel. • The enhanced Cr diffusion and the decreased free electrons are contributed to the improvement of corrosion properties. • The external hard layer has positive effect on the wear resistance. - Abstract: The aerospace bearings steel CSS-42L was ion implanted by carbon with implantation fluxes of 5 × 10{sup 16} ions cm{sup −2}. The composition, microstructure and hardness of the carbon implanted samples were characterized using X-ray photoelectron spectroscopy, Auger electron spectroscopy, X-ray diffraction, and nanoindentation tests. The corrosion and tribological properties were also evaluated in the present work. The results shown that carbon implantation produced an amorphous layer and graphitic bounds formed at the near surface of CSS-42L steel. In the electrochemical test, the carbon implanted samples suggested lower current densities and corrosion rates. Carbon ion implanted samples shown a relative Cr-enrichment at the surface as compared with nonimplanted samples. The improved corrosion resistance is believed to be related to the formed amorphous layer, the enhancement of Cr diffusion in the carbon implantation layer which contributed the formation of passive film on the surface, the decrease of free electrons which caused by the increase of carbon fraction. The external hard layer had positive effect on the wear resistance, reducing strongly the friction coefficient about 30% and the abrasive-adhesive mechanism present in the unimplanted samples was not modified by the implantation process.

  19. Equilibrium concentration of radionuclides in cement/groundwater/carbon steel system

    International Nuclear Information System (INIS)

    Keum, D. K.; Cho, W. J.; Hahn, P. S.

    1997-01-01

    Equilibrium concentration of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment, while it almost entirely exists as the precipitate of Fe(OH) 3 (s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amounts of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements - cesium, strontium, cobalt, nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system. (author)

  20. 76 FR 17381 - Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of...

    Science.gov (United States)

    2011-03-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Notice of Final Results of the Sixteenth Administrative Review Correction In notice document 2011...